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Abstract We reanalyze the A, — p transition form fac-
tors in the perturbative QCD (PQCD) approach by including
higher-twist light-cone distribution amplitudes (LCDAs) of a
A baryon and a proton. The previous PQCD evaluation per-
formed decades ago with only the leading-twist Aj; baryon
and proton LCDAs gave the form factors, which are two
orders of magnitude smaller than indicated by experimen-
tal data. We find that the twist-4 Aj; baryon LCDAs and the
twist-4 and -5 proton LCDAs contribute dominantly, and the
enhanced form factors become consistent with those from lat-
tice QCD and other nonperturbative methods. The estimated
branching ratios of the semileptonic decays A, — p£v; and
the hadronic decay A, — pm are also close to the data. It
implies that the b quark mass is not really heavy enough,
and higher-power contributions play a crucial role, similar
to the observation made in analyses of B meson transition
form factors. With the formalism established in this work,
we are ready to study various exclusive heavy baryon decays
systematically in the PQCD approach.

1 Introduction

A lot of progresses have been made on probing exclusive b-
baryon decays with large amount of data collected by LHCb
in recent years. C P violation (CPV) has been established in
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the K, B and D meson systems, but not yet in baryon sys-
tems. Therefore, exploring baryon CPV is one of the most
important missions in both experimental and theoretical fla-
vor physics. An evidence of CPV has been attained at the
confidence level of 30 in the Ag — prntr~m~ decay
[1]. Though CPV is not observed in other modes [2—4], the
experimental precision has reached the percent level, such as
Acp(A) — pK™) = (—2.0£1.3+£1.9)% and Acp(A) —
pr~) = (—3.5£1.7£2.0)% [2]. The above progresses moti-
vate theoretical investigations on baryon CPV to a similar
precision. A QCD-inspired formalism is definitely required
for predicting CPV in heavy baryon decays, to which relative
strong phases among various amplitudes are the key ingre-
dient. Nevertheless, such a well-developed QCD method has
not been available currently.

Several potential frameworks have been proposed for stud-
ies of hadronic heavy hadron decays, which include the effec-
tive theories such as the heavy quark effective theory (HQET)
[5-8] and the soft-collinear effective theory (SCET) [9,10],
the factorization approaches such as the QCD factorization
(QCDF) based on the collinear factorization [11-14] and
the perturbative QCD approach (PQCD) based on the k7
factorization [15-17], and phenomenological methods such
as topological diagrammatic approaches [18-20], final-state
interactions [21-23] and flavor symmetry analyses [24-26].
The above formalisms have been applied to heavy meson
decays extensively, but applications to heavy baryon decays,
especially to hadronic decays, are still limited. The general-
ized factorization assumption has been employed to estimate
branching ratios of numerous b-baryon decays [27-29]. As
to QCD-inspired methods, the QCDF approach was applied
to Aj baryon decays under the diquark approximation [30],
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and the A, — pK and pm branching ratios were calculated
in the PQCD approach [31], but with the results being several
times smaller than experimental data.

It has been known from global fits to B meson decay
data [32,33] that nonfactorizable contributions are crucial
for color-suppressed tree-dominated modes, and that the
W-exchange and penguin-annihilation amplitudes generate
large strong phases. The above contributions cannot be com-
puted unambiguously in the other frameworks, such as the
factorization assumption and the QCDF approach, but can be
inthe PQCD approach [15—17]. For comparisons of these the-
oretical methods and their phenomenological impacts, refer
to [34,35]. It is the reason why the CPV in, for instance,
the B > K*tn~ and B’ — 77~ modes [36-38], has
been predicted successfully in [15-17]. In fact, the PQCD
approach has demonstrated a unique power for predicting
CPV in two-body hadronic B meson decays. b-baryon decays
involve more W-exchange and penguin-annihilation dia-
grams [23,39], whose PQCD evaluation is feasible in prin-
ciple. It is our motivation to examine the applicability of the
PQCD formalism to exclusive heavy baryon decays in this
work.

Baryonic transitions were firstly investigated in the PQCD
approach in Ref. [40], where the proton Dirac form fac-
tors at large momentum transfer were derived. This frame-
work was then extended to studies of heavy-to-light bary-
onic transition form factors, which are essential inputs to
exclusive processes like the semileptonic decays A, — pfv
[41] and Ap — A £V at large recoil [42,43], the radia-
tive decay A, — Ay [44], and the two-body hadronic
decays A, — AJ/W¥ [45], Ap — pm, pK [31] and
Ap — A, A.K [46]. Only the leading-twist light-cone
distribution amplitudes (LCDAs) were considered in the fac-
torization formulas for all the above Aj; baryon decays. It
was noticed that the factorizable contributions to two-body
hadronic decays are unreasonably smaller than the nonfac-
torizable ones, and the predicted A, — pK~ branching
ratio is several times lower than the measured value [31].
In another word, the A, — p transition form factors are
down by about two orders of magnitude compared to those
from nonperturbative methods in the literature: the PQCD
approach gave the A, — p form factor at the maximal recoil
fi= 22798 %1073 in[31]and 2.3 x 1072 in [41], while
lattice QCD yielded f; = 0.22+0.08 [47]. To verify the
applicability of PQCD, we should first resolve the difficulty
appearing in the A, — p transition form factors.

The contribution to a heavy-to-light mesonic transition
amplitude is divided into two pieces at leading power in the
QCDF approach, the nonfactorziable soft form factor and the
factorizable hard spectator contribution. The latter is calcu-
lated in a perturbation theory, and the former can only be
handled in nonperturbative methods, such as lattice QCD
[47,48], QCD sum rules (QSR) [49], light-cone sum rules
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(LCSR) [50,51], light-front quark model [52—-54], etc.. In the
baryonic case it has been proved in the SCET [55] that the
leading-power contribution is completely factorizable due to
the absence of an endpoint singularity in the collinear fac-
torization. The corresponding diagrams contain at least two
hard-collinear gluon exchanges, so that the leading-power
contribution is suppressed by O(asz) in the strong coupling.
On the contrary, a soft contribution to the baryonic form
factor is power-suppressed in the SCET [55], but not down
by «y, which turns out to be numerically important. Taking
the A, — A transition form factor £, at maximal recoil as
an example, one got £5 = —0.0121‘8:882 from the leading-
power contribution [55], and £5 = 0.38 from the SCET sum
rules [56]. It implies that QCD dynamics is quite different
between the mesonic and baryonic decays, and that the power
suppression from the b quark mass may not be effective.

The soft form factor for a heavy-to-light baryonic transi-
tion is nonfactorizable in the collinear factorization, because
an endpoint singularity from small parton momentum frac-
tions will be developed, if the soft form factor is expressed as
aconvolution of a hard kernel and the baryon LCDAs beyond
the leading twist. The PQCD approach based on the k7 factor-
ization, in which parton transverse momenta are kept to avoid
the endpoint singularity [57,58], provides a new set of power
counting rules [35,59]. The k7 resummation is demanded to
organize the large logarithms owing to the introduction of
the additional scales k7. The resultant Sudakov factors sup-
press the long-distance contributions now characterized by
large b with b being the variables conjugate to k7. Once the
endpoint singularity is smeared, the higher-twist contribu-
tion to the heavy-to-light form factor is regarded as being
factorizable and calculable in the PQCD formalism. The fac-
torizable contribution then picks up the additional piece from
the higher-twist LCDAs under the Sudakov suppression, such
that the previous leading-twist PQCD results can be signifi-
cantly enhanced.

The above discussion suggests that the contributions from
higher-twist LCDAs are factorizable in the k7 factorization,
and their inclusion may increase the much smaller A, — p
form factors at leading power [31,41]. Here we will analyze
these form factors in the fast recoil region by including the
Ap baryon LCDAs up to twist 4 and the proton LCDAs up
to twist 6 in the PQCD approach. It will be shown that the
Ap — p form factors become comparable to those derived
from other nonperturbative methods and indicated by exper-
imental data, when the above higher-twist LCDAs are taken
into account. In particular, the convolution with the twist-4
Ap baryon LCDAS and the twist-4 and -5 proton LCDAs give
the dominant contributions. We then estimate the branch-
ing ratios of the semileptonic decays A, — pfv, with the
leptons £ = e, u, T by extrapolating the form factors at
large recoil to the whole kinematic range. The agreement
of our results with data encourages the generalization of the
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established PQCD formalism to more complicated two-body
hadronic heavy baryon decays.

The remainder of this paper is organized as follows. The
PQCD framework for computing the A, — p transition
form factors is explained in Sect. 2, where the A}, baryon and
proton LCDAs of various twists are defined. The numerical
outcomes for the A, — p form factors and for the differ-
ential widths of the semileptonic decays A, — pfv, are
presented and discussed in Sect. 3. We also make the prelim-
inary prediction for the A, — pm branching ratio based on
the naive factorization assumption. The last section contains
the conclusion. The explicit expressions for the factorization
formulas together with the hard scales involved in various
diagrams are collected in the Appendix.

2 Theoretical framework
2.1 kg factorization

The Ap — p transition form factors are defined via the
matrix element of the V — A current [5],

(P(p', sHuy, (1 = ys)b|Ap(p, s))
=N, Y frvy —ifr0uq" + 33)A6 (D, )

— N, s)(g1yu —i820q" + 839, Vs Ab(p, ),
(1)

where 0, = i[yu, »1/2, and Ap(p,s) (N(p',s)) is the
spinor of the A} baryon (proton) with the momentum p (p’)
and the spin s (s”). The form factors f; and g; depend on
the invariant mass squared of the lepton pair ¢ with qu =
Pu — p;L. We work in the rest frame of the A, baryon, and
parameterize the Aj, baryon and proton momenta in the light-
cone coordinates as

mAh
= _(19 17 0)7
P \/5
m
p = jzb(m,nz,ox )

with the large component 1 ~ O(1) and the small compo-
nent 1y ~ O(m%,/m%b), mp, (mp) being the A, baryon
(proton) mass. Namely, the fast recoiled proton has been
assumed to move approximately in the plus direction. The
invariant mass squared of the lepton pair is then given, in
terms of 7y and 12, by ¢* = m3 (1 —n1)(1 = n2).

As stated before, the transverse momenta of the valence
quarks are retained in the PQCD approach based on the k7
factorization. We thus choose the partonic momenta as

b = (m,\b X{map, le)
ﬁ b \/5 b )

m
K, = <x; My . k’1T>,

V2
xXamp,
k 0, . kor),
2= ( 7 2T)
nma
k/=<x/ h,O,k/ >’
2 2 ﬁ 2T
X3MA
k3=<0, ﬁb,kw),
nima
K — <x’—",0, K. ) 3)
3 3 \/E 3T

where k; is the b quark momentum, k» (k3) and k), (k}) are
the spectator u (d) quark momenta in the A, baryon and the
proton, respectively, and x;, k;7 and x/, k!, denote the corre-
sponding light-cone momentum fractions and the transverse
momenta. Note that x; is of O(m}/ m%\b), my, being b quark
mass, in order for the b quark to be off-shell by kl2 ~ —k%T,
as required by the k7 factorization. The dominant plus com-
ponents of k are kept, and the minus components of k; for
the soft light quarks are selected by their inner products with
k;, which appear in the hard kernels for the A, — p form
factors. Since the two soft quarks in the Aj; baryon need to
turn into the energetic quarks in the proton, at least two hard
gluons are exchanged as shown in the leading-order Feynman
diagrams in Fig. 1. That is, the A, — p decay amplitudes
start at (’)(af) in the PQCD approach.

The Ap — p transition amplitude is formulated in the
PQCD approach as [31]

A= Wa, (xi, bi, ) ® H(xi, b, x], b}, )

[AIe A

@Wp(x;, b}, 1), “

where the hard kernel H is derived from the diagrams in
Fig. 1, W5, and W p stand for the A, baryon and proton wave
functions, respectively, and u is the factorization scale. The
symbol ® represents the convolution in the momentum frac-
tions and in the impact parameters b; and b, which are conju-
gated to the corresponding transverse momenta. With the par-
ton transverse degrees of freedom being included, the above
k factorization formula holds for higher-twist contributions
due to the absence of endpoint singularities. At the same time,
the large double logarithms ag In?(m 5 ,b) are produced from
radiative corrections to the baryon wave functions, which
must be summed to all orders in o to improve the conver-
gence of perturbation expansion. The k7 resummation is thus
applied to the baryon wave functions to extract the Sudakov
factors [31,60,61] as in its application to meson wave func-
tions [62,63]. The Sudakov factor, which decreases fast with
b and vanishes at b = 1/Aqcp, Aqcp being the QCD scale,
is expected to effectively suppress the long-distance contri-
butions from the large b regions. We also implement the
renormalization-group evolution in x up to a hard scale ¢,
which is set to the maximum of all scales involved in the

@ Springer
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Fig. 1 Feynman diagrams for the A, — p transition form factors, where the black dots denote the weak interaction vertices. These diagrams are

labelled by Dy, D>, ... and Dj¢ in sequence in the text

factorization formula [31]. The necessary constraint on the
hard scale, r > 1 GeV, is imposed, because it should not go
below the initial scale, at which models for the baryon wave
functions are defined.

We then arrive at an factorization formula improved by
the resummation and renormalization-group evolution,

A =Y, (xi, b)) ® H(x;, bi, x;, b, 1)
QY p(x], b)) exp [—Sa, (1) — Sp(1)], S

where the Aj, baryon (proton) wave function V5, (¥p)
is obtained by factorizing the extrinsic impact-parameter
dependence of the wave function W,, (Wp) into the total
exponential factor exp[—Sa, ()] (exp[—S,(®)]) [31]. The
remaining impact-parameter dependencies of ¥4, and ¥ p
are intrinsic. We point out that another type of double log-
arithms o, In? x;, appearing in the hard kernel, will also
become crucial as the endpoint regions dominate. The thresh-
old resummation that sums this type of double logarithms to
all orders leads to the jet function (or the threshold Sudakov
factor) S;(x;) [64,65], which can further improve the per-
turbative expansion. The jet function S;(x;), extracted from
the hard kernel, is process-dependent. Because a systematic
derivation of S;(x;) for baryonic decays goes beyond the
scope of this paper, we will naively set S;(x;) = 1 below,
and investigate its effect in the future. The higher-twist Ay
baryon and proton wave functions and the corresponding
power-suppressed contributions will be analyzed quantita-
tively based on Eq. (5). The factorization formulas for the
Ap — p form factors from the diagrams in Fig. 1 and the
involved hard scales are provided in Appendix A. It will be
seen that the predictions for these form factors as well as the
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relevant observables in the PQCD formalism are substan-
tially enhanced.

2.2 Light-cone distribution amplitudes of baryons

Hadronic wave functions are universal nonperturbative inputs
to a factorization theorem, which need to be specified before
predictions for an exclusive QCD process are made. The
explicit form of a wave function, being a three-dimension
object, may be very complicated. As a usual practice, one
assumes that a wave function is factorized into a product
of a momentum-fraction-dependent part and a transverse-
momentum-dependent part. The former corresponds to a
LCDA for the collinear factorization, and the latter has
been parameterized as a simple Gaussian type function.
This assumption has been widely adopted in applications
of the k7 factorization to exclusive processes. Since the
transverse-momentum, i.e., impact-parameter dependencies
of the baryon wave functions ¥», and ¥ p are still not well
constrained, we will neglect them in our numerical studies.

2.2.1 Ay baryon light-cone distribution amplitudes

The Aj baryon LCDAs are defined by the matrix elements
of nonlocal operators sandwiched between the vacuum and
the Aj baryon state, whose general Lorentz structures can
be found in Refs. [51,66-68]. We start with the momentum-
space projector

(YA;,)ozﬂy (xi, )

1
= W{ff\lh)(u)[Ml (2, x3)ysC T 1
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where N, is the number of colors, C represents the charge
conjugation matrix, and Ap(p) is the Aj baryon spinor. We

. D o 7@ _ -
choose the normalization constants as f Ay f Ay = fa, =

0.021+0.004 Ge V3, which are close to fa, =0.0224+0.001
GeV? from the leading-order sum rule calculation [69], and
overlap with other estimates in the literature (see [70] and
references therein). Note that the normalization constants
have been derived in diagonal, non-diagonal and mixed sum
rules at the leading-order and next-to-leading-order levels in
[69]. Because the equality f [(\1; ~ f [(\zb) assumed above is not
guaranteed in non-diagonal and mixed sum rules [69], and
invalidated under next-to-leading-order corrections [70], we
favor the result for f 1(\1b,2) from the leading-order diagonal
sum rules. The terms containing the derivatives with respect
to the transverse momenta of the soft light quarks have been
ignored in Eq. (6). Their contributions are expected to be
tiny, similar to what was observed in the PQCD analysis of
B meson transition form factors [71].

The remaining parts of the projector in Eq. (6) are
expressed as

M (x2, x3) = }%T”illf;ﬁ(m,%) + @V@Jr(m,m), 7N
i it
Mr(x2, x3) = El/fz(m,m) + EI//4(X2,X3), (3

where the two light-cone vectors n = (1,0,0) and n =
(0, 1, 0) satisfy n - n = 1. Various models for the Aj baryon
LCDAS Y2, 3, W3 * and 4 have been proposed in Refs.
[66-68]. Viewing the obvious difference among these mod-
els, we will investigate the contributions to the A, — p form
factors from all of them for completeness:

e Gegenbauer-1 [66], which was obtained by taking into

account only the leading-order perturbative contribution
to the associated QCD sum rules,

I _
Yo(xz, x3) = mibeXS |:_4€ ma, (x2+x3)/€o
€

0
+a2c§/2<x2 — X3 ) l4e—mA,,(x2+x3)/€1 ,
X2 + X3 €
2m3 X2
— A —
U3 (. x3) = — e e,
K]
2m3 X3
— Ap72
U5 (. a3) = ——e e,
€
3

5 2 50
Ya(x2, x3) = —mAb/ dse™/"

N mp, (x2+x3)/2

with the Gegenbauer moment a, = 0.333f8:§§g, the
Gegenbauer polynomial Cg/ 2()c) = 3(5)c2 — 1)/2, the
parameters €y = ZOOféSO MeV, €1 = 6501‘?88 MeV and
€3 = 230+£60 MeV, the Borel mass 0.4 GeV < 17 <
0.8 GeV, the continuum threshold so = 1.2 GeV and the
constant ' = [° dss e/,

e Gegenbauer-2 [68], which was formulated in the heavy
quark limit with the moments being derived in QCD sum
rules,

2)
4 ay’ 32 (X2 — X3>
2(x2, x3) =my, x0x3 | ——5Cy' " | ———
1/, Ap 6(()2)4 0 <X2 +x3

@)
Myt /e | D2 372
@472

o <x2 - XS) e_mAb(x2+x3)/e§2)) ’
X2 + x3
(3
g 172 (X2 —X3
3Co
(3) X2 + X3
€0

(3
(()3) 4 a,

Yy (2, x3) = my, (x2 4 x3)

XefmAb(x2+X3)/e 1/2

« (X2 - X3> e—mAb(xz—i-x3)/€§3)

X2 +x3
p X2 — X
3 1 12 (X2 — X3
+m (x24+x3) | —=C ==
& (02 + x3) o ! <x2 +x3>

3

Xe—mAh(x2+x3)/n§3) b3 C1/2
3372
3

(xz — x3) e~ (2+x3)/15)

X2 + x3
o) B
0 12 (X2 —X3
3Co
O (xz + x3)
0

vy T (x2, x3) = mf\,,(m + x3)

(3) a
Xe—mAh(xz—i-xg)/eO + 2 3 ;/2
6(3)‘
2
% X243 e—mAb(x2+X3)/€£3)
X2 + X3

3 b?) 12 (X2 — X3
—my, (x2 +x —C
A, (02 + X3) n(3)3 1 <x2+x3)

1
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3)
Xe—mA,,(X2+X3)/’7§3) + bLCl/2
332
N3

s

_ 3
o X2 — X3 Y (xz+x3)/77§ k
X2 + X3

“ B
¢4(x2’x3)=m%\b A 172 (xz x3>

(@270 \xa+x3
0
@ a?
xe My 2 tx)/eg 4 T2 o1/2
@22
€
(xz_X3>€mAb("2+x3)/€34) D)
X2 + x3
with the Gegenbauer polynomials Cg/ 2()c) = 1,

Cy?(x) = 1, Cy*(x) = (2x2 — 1)/2, and the parame-

ters al) = 1, a8 = 1,a8" = 1,4 = 0.391+0.279,

ay) = —0.161503%8, afP = —05417)0, b =
1L, b = —024702% P = 02017018 Gev,
e = 02324097 Gev, P = 03527596 GeV,
e = 055172 GeV, ) = 0.055799! Gev,

€ = 0262%9 118 Gev. 1Y = 0.324%315% GV and
7y = 0.63340.099 GeV.
e Exponential model [67],

X2X3 4
Ya(x2, x3) = —-my,
)

e—(Xz+X3)MA,,/wo’

2x7

+- 3

V3 (x2,x3) = —5my,e
@y

_ 2x3 _
vy (2, x3) = — mibe Gatxz)ma, fwo
w,

0

—(x2+x3)mp, /oo
9

1
Valiz, x3) = i eI 0, (11)
0

where wg = 0.4 GeV measures the average energy of the
two light quarks.
e Free-parton approximation [67],

15x2x3m‘1‘\h 2A —xomp, — x3mp,)

Ya(x2, x3) = 255
@(21_\ — XoMp, — X3MA,),
1//3+_(XQ x3) = 15xzm§\b(2A — Xomp, — x3m,\b)2
' 445
@(21_\ — XM, — X3Mp,),
1/[3_+(x2 x3) = 15x3m3\b(2/_\ — Xomp, — xgmAb)2

4A5
OQA — xomp, — x3mp,),
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Smib(Zl_\ — xama, — x3my,)°
8AS
OQRA — xamp, — x3mp,), (12)

Ya(x2, X3) =

with the theta function © and the scale A = (mp, —
mp)/2 ~ 0.8 GeV.

All the above models for the A, baryon LCDAs obey the
normalizations

1
/ dx1dxadx36(1 — x1 — x2 — x3)Y2(x2, x3) = 1,
0

1
/ dx1dx2dx38(1 — x1 — x2 — x3)
0
(Wi~ (2, x3) + ¥y T, x3)) /4 = 1,

1
/ dx1dxrdx3§(1 — x1 — xp — x3)Ya(xp, x3) = 1. (13)
0

In order to compare our results with the previous ones,
we quote the simple model for the leading-twist Aj; baryon
LCDA proposed in Ref. [72],

I,
C
SﬁNc[(p+mAb)y5 18y

[Ap(P)]at (xi, 1), (14)

(YAb)otﬁy (xi, ) =

¥ (x;) = Nxjx2x3 exp

(_ m3, B m? B m? ) , 15

2/32)61 2,32)62 2,32)63

whose Lorentz structure has been simplified under the
Bargmann—Wigner equation [73] in the heavy quark limit,
such that the spin and orbital degrees of freedom of the light
quark system are decoupled. The u dependence can be orga-
nized into the total exponential factor as stated before, f /’\h
is set to the value 4.28J_r8:gi x 1073 GeV? the same as in the
previous analysis [31], N = 6.67 x 10'? is determined by
the normalization condition, the shape parameter takes the

value B = 1.0£0.2 GeV, and m; = 0.3 GeV represents the
mass of the light degrees of freedom in the Aj baryon.
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Table 1 Twist classification of the proton LCDAs in Eq. (16)

Twist-3 Twist-4 Twist-5 Twist-6
Vector Vi Vo, V3 V4, Vs Ve
Pseudo-vector Ay A, Aj Ay, As Ag
Tensor T T, T3, Ty Ty, 15, T3 Ts
Scalar S1 S
Pesudoscalar Py Py

2.2.2 Proton light-cone distribution amplitudes

The proton LCDAs with definite twists have been defined in
Ref. [74], and the corresponding momentum-space projector
is written as

(Y plapy (x}, 1) = {slm,,cﬂa (N*tys),

1
8v2N,
+ Som ,Cpa (N~ y5)y + P1mp(CV5),3aNy
+ Pamy(Cys)paN, + ViI(CP)pa(NTys),
+ Va(CP)ga(Nys5)y

m —
+ v37”(cm,.«sa(1v+ysyi>y

mp o—. 1
+V4—(Cn)ﬁa(N Vs¥Y )y
2
+v5—”(cz>,sa<N ¥s)y
2

mp — \ 7
+ Vo e (CDa (N7 y)y + A1 (CrsPpa (W),

+ A2 (CysP)pa(N7),

m i}
+A37p(CVSVL)ﬂa(N+Vl)V

mp o— 1
+A47(CVSVJ_)/301(N Y )y

m?
+A5—(CV5¢),30¢(N )y

mz
+A6—(CV5¢)ﬁa(N )y = TiCoLp)pa(NFysy ™)y
— T2(iCo1p)pa(N ysyh)y

- T mp iC Nt
3. (iCopz)pa(NTys)y

mp . .
_T4P_2(1C(71P)ﬂa(N 7/5))/

mz
_TS_(ICUJ_z)ﬂoc(N VsY )

mz
_T6_(1CUJ_1)/304(N ysy D)y

+ T77(Cm/)ﬁa(1v tysott),

m - ’
+ TgT”(Cm/)ﬁa(N ysoiw}, (16)

with the proton mass m , = 0.938 GeV. The light-like vector
P can be decomposed into

1 m?

Pl — EZMP_E’ (17)

P, =
where p’ is the proton momentum, and z is a light-like vector
with z2 = 0. We have adopted the shorthand notations o'p, =
0"MPyz,, and Nt = NZP/(2Pz) and N~ = NP#/(2Pz)
for the “large” and “small” components of the proton spinor
N, respectively. The symbol L denotes the projection per-
pendicular to z or P, and the contraction y,y+ means
yiyt = y“gf;vy" with gf;v = guv — (Puzy + 2z, Py)/Pz.
The twist classification of the LCDAs V;, A;, T;, S; and P; is
specified in Table 1, and their explicit expressions are listed
below:

o Twist-3 LCDAs

Vi(x) = 120x1x2x3[¢9 + ¢ (1 — 3x3)], (18)
A1(x;) = 120x1x2x3(x2 — x1)93 (19)
1
Ti(x;) = 120x12x3[¢ + 5 @5 - o)1 — 3x3)].

(20)
e Twist-4 LCDAs
Va(xi) = 24x1x2099 + ¢ (1 — 5x3)], 21)
V3(x;) = 12x3[98 (1 — x3) + ¥y (xf 4+ x3
—x3(1 — x3)) + ¥, (1 —x3 — 10x1x2)],
(22)
A (x;) = 24x1x2(x2 — X1} , (23)

A3(x;) = 12x3002 — D[ + ¥ + ¥y (1 — 2x3)],
(24)

To(x;) = 24x1x2[E9 + &7 (1 — 5x3)], (25)
T3(xi) = 6x3[(E + ¢ + ¥ (1 — x3)

+ &+ ¢y — ¥+ x5 —x3(1— x3))

+ &+ oy D —x3 = 10x1x2)], (26)
T7(xi) = 6x3[(—£5 + ¢

YD —x3) + (—&; + ¢4 — V)
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(x4 x5 — x3(1 — x3))

+ (=& + o + ¥ H A —x3 — 10x1x2)],
(27)

Si(xi) = 6x3(x2 — x)[(E) + 6§ + v + & + o
YD)+ E + oy — v —2x3)], (28)
Pi(xi) = 6x3(x2 —x)[(E] — ¢ — v + &5 —of
— VYD) +E = by U —2x3)]. (29)

o Twist-5 LCDAs

Va(xi) = 3[1#2(1 —x3) + V5 2x1x2 — x3(1 — x3))

+ 9 —x3 =207 + 2], (30)
Vs(xi) = 6x3[¢? + ¢ (1 — 2x3)], (31
Ag(xi) =300 — x)[—Y2 + 5 xs + v (1 - 2x3)], (32)
As(x;) = 6x3(x2 — x1)5 (33)

3
Tu(x;) = 5[@2 + 92 + oD - x3)
+ (&5 +¢5 — 5 )(2x1x2 — x3(1 — x3))
+ES +oF DU —x3 =268 + 2, (34)
Ts(x;) = 6x3[£9 + &5 (1 — 2x3)], (35)
3
Ty(x;) = 5[(1/49 +¢9 — )1 —x3)
+ (5 — ¢5 — &5 )(2x1x2 — x3(1 — x3))
+ (7 +oF —EDH WA —x3 =27 +x3)], (36)
3
Saxi) = S = D= + 69 + 89
+ (&5 + 05 — ¥+ EF +oF +ydHa - 2x3)(]3,7

3
Pa(xi) = 5 (x2 = DI + ¢ — &2)

+(E5 — ¢35 + ¥z + & — ¢ — YD - 2x3)].

(33)

o Twist-6 LCDAs
Ve(xi) = 2[¢g + o¢ (1 —3x3)], (39)
Ap(xi) = 2(x2 — x1)¢g (40)
To(xi) = 2199 + 305 — 91~ 3wl 1)

with the values of the involved parameters being given in
Table 2.

3 Numerical results

3.1 Ap — p form factors at g2 = 0

We present the numerical results of the A, — p transition
form factors in this subsection, which include the contribu-

tions from the A, baryon LCDAs up to twist 4 and the pro-
ton LCDAs up to twist 6. Because the PQCD predictions are

@ Springer

more reliable in the large recoil (small ¢2) region, we evalu-
ate the form factors at ¢> = 0 and then extrapolate them to
the whole kinematic range 0 < q2 < (mp, —m p)2 in order
to estimate the branching ratios of the semileptonic decays
Ap — plvy.

We first compare in Table 3 the contributions to the form
factors from the proton LCDAs of different twists by convo-
luting them with the hard kernels and the leading-twist Ay
baryon LCDA in Eq. (15). The values denoted by ~ 0 are
smaller than 1 x 107, and the entries in the last column sum
up the contributions from all the proton LCDAs. The result
of the form factor f1(0) = 1.9 x 1073 from the leading-twist
A}, baryon and proton LCDAs is consistent with the previ-
ous PQCD calculations [31,41]. It is found that the contri-
butions from the twist-4 proton LCDAs are much larger than
from the leading-twist ones, which dominate the form fac-
tors f1(0) and g1(0). The twist-5 contributions to the other
four form factors are also sizeable. Table 3 indicates clearly
that the higher-twist contributions significantly enhance the
Ap — p form factors. The enhancement of B meson transi-
tion form factors by the higher-twist pion LCDAs was also
observed [75], but not as strong as in the baryonic case.

We present the contributions to the form factor f(0) from
various twist combinations of the A, baryon and proton
LCDAs in Table 4. All the four models of the A, baryon
LCDAs are covered. The two theoretical uncertainties in the
total results are estimated from the variations of the parame-
ters in the A, baryon LCDAs introduced in Sect. 2.2.1, and in
the proton LCDAs listed in Table 2, respectively. It is noticed
that the dominant contribution to f1(0) comes from the com-
bination of the twist-4 A, baryon LCDA and the twist-5
proton LCDAs, and the leading-twist contribution is about
two orders of magnitude lower than the dominant one, no
matter which model of the A, baryon LCDAs is employed.
It further confirms that the higher-twist contributions are cru-
cial for the A, — p form factors at the scale of the b quark
mass. We point out that the twist-6 proton LCDAs, as com-
bined with the first three models of the A, baryon LCDAs, do
give contributions smaller than the leading-twist ones. Note
that the Ap baryon LCDA in Egs. (14) and (15), despite of
being classified as twist 2, contains some twist-3 components
through the m 5, term actually (but without the mixture from
the twist-4 component). Thus, the results in Table 3 should
be compared to those without the twist-4 A, baryon LCDA
in Table 4. It is then reasonable that the contribution from the
twist-4 proton LCDAs is more important than the one from
the twist-5 proton LCDAs in Table 3.

It is seen in Table 4 that the values of f;(0) derived from
the two Gegenbauer models for the Aj, baryon LCDAs are
quite different, and those from the exponential and free-
parton models are close to each other. Hence, we will focus
on the latter for the numerical analysis and discussion here-
after. To understand why the power-suppressed contribution
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Table 2 Parameters in the proton LCDAs in units of 10~2 GeV? [74]. The accuracy of those parameters without uncertainties is of order of 50%

48 b ¢ v Vi v & & &
Twist-3 (i = 3) 0.53+0.05 211 057
Twist-4 (i = 4) ~1.08+0.47 322 212 1.61£047  —6.13 099 0.85+0.31 2.79 0.56
Twist-5 (i = 5) —1.08£0.47  —2.01 142 1.61£.047 098  —0.99 0.85+0.31 —0.95 0.46
Twist-6 (i = 6) 0.53£0.05 3.09 025

Table 3 Form factors in units of 10~ from the leading-twist A; baryon LCDA in Eq. (15) and the proton LCDAs of various twists

Twist-3 Twist-4 Twist-5 Twist-6 Total
f 1.9 6.3 1.0 —0.015 9.2
1 0.12 —0.45 —0.63 ~0 —0.96
f3 —0.015 0.84 0.66 ~0 1.5
g1 2.5 8.4 0.71 —0.008 11.6
2 0.12 —0.30 —0.66 ~0 —0.84
g3 —0.027 0.90 0.64 ~0 1.5

Table 4 Form factor f;(0) from various twist combinations of the A, baryon and proton LCDAs. The first (second) theoretical errors of the total
results come from the variations of the relevant parameters in the A baryon (proton) LCDAs

Twist-3 Twist-4 Twist-5 Twist-6 Total
Exponential
Twist-2 0.0007 —0.00007 —0.0005 — 0.000003 0.0001
Twist-31— — 0.0001 0.002 0.0004 — 0.000004 0.002
Twist-37F —0.0002 0.0060 0.000004 0.00007 0.006
Twist-4 0.01 0.00009 0.25 0.0000007 0.26
Total 0.01 0.008 0.25 0.00007 0.27£0.0940.07
Free parton
Twist-2 0.0006 —0.00007 —0.0005 — 0.000002 0.0001
Twist-31— — 0.0001 0.002 0.0003 — 0.00001 0.002
Twist-37F —0.0002 0.006 0.00003 0.00005 0.005
Twist-4 0.009 0.0005 0.22 ~0 0.23
Total 0.009 0.008 0.22 0.00004 0.24£0.0740.06
Gegenbauer-1
Twist-2 0.075 —0.003 —0.063 — 0.0004 0.009
Twist-31— — 0.008 0.17 0.035 0.0003 0.19
Twist-37F —0.015 0.45 0.001 0.008 0.45
Twist-4 0.92 0.01 2.32 0.0002 241
Total 0.97 0.63 2.32 0.008 2.48
Gegenbauer-2
Twist-2 0.00006 0.000003 —0.00002 ~0 0.00005
Twist-37— ~0 0.006 —0.0003 — 0.0004 0.005
Twist-37T 0.00002 —0.002 —0.00004 — 0.0005 — 0.003
Twist-4 0.014 0.001 0.35 ~0 0.36
Total 0.014 0.006 0.34 — 0.0008 0.37
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Table5 Numerators /;; of the integrands in the factorization formula for the form factor £} (0) from the diagram D7 inFig. 1 withi = 2, 3t=,371,4
and j = 3,4, 5, 6. An overall coefficient Cmib Iay/ (64\/§N3) with the color factor C = 8/3 is implicit for the entries

hij Twist-3 Twist-4

Twist-2 0 rynd(x; — Dx3(—=Va+Va+ A+ A3+ T3+ T7 + 81 — Pp)

Twist-31~ Vi 2x3(1 — x)(Vi + Ay) ryd T 2x3(Vs — A3)

Twist-37F 0 Yy 23R + T3 — T + S1 + Pr)

Twist-4 Y48x3(—T1) rgd(xr — DA —x)) (Vo — V3 — Az — A3)

hij Twist-5 Twist-6

Twist-2 P2Yndx3(=Vi+ Vs — Ay — A — 5) 39281 — x1)(1 — x5) Te

Twist-31T— P2 7200 — DA —x)(Tu + 275 — Ty + S + P) 0

Twist-3~F rAs 200 — D — x5)(Va — Ay — Tg) P33T 2(1 = x)) (= Ve — Ae)

Twist-4 }’21,044(1 - xé)(V4 —Vs+ Ay +As+Ty+Tg+ Sr — Pr) 0

twist-2 twist-3* - twist-3— 7 twist-4
150
100
50
0
150
100
50
¢ 0.25 ¢ 0.25
% % 0
0.00 0.00
S ¥ & X & S ¥ & XS
Qo Qo Qo Qo ~ Qo Qo Qo Q ~
X3 X3

Fig. 2 Dependencies of the A; baryon LCDASs 2, Y5, ¥4 * and ¥4 on the momentum fractions x; for the exponential model (top) and the
free-parton model (bottom) proposed in [67]. Each point inside the triangles satisfies the relation x; + x; + x3 = 1

incredibly surpasses the leading-power one, we take a closer
look at the behaviors of the integrands in the factorization
formula for f1(0). We exhibit in Table 5 the numerators
hij of the integrands from the diagram D7 in Fig. 1, which
are proportional to the products of the A, baryon LCDAs
of twists i = 2,377,37F, 4 and the proton LCDAs of
twists j = 3,4,5,6. The powers in the small mass ratio
r = mp/mp, manifest the 1/m; suppression associated
with the higher-twist proton LCDAs. Comparing h45 with
h4a, one finds that the former contains one more power of r,
but the latter acquires an additional factor 1 — x;. We then
illustrate the dependencies of the Aj; baryon LCDAs of dif-

@ Springer

ferent twists on the three momentum fractions xj 7 3 in Fig. 2
for the exponential and free-parton models. It is obvious that
these two models show similar behaviors with the twist-4
LCDAs strongly peaking around x; = 1, where the b quark
carries most of the A, baryon momentum. It turns out that
the factor 1 — x yields a severe suppression on f44, and h4s
contributes dominantly, although it is down by a power of
1/my.

THE leading-twist LCDAs contribute to the A, — p form
factors only through the diagrams D and D;, but not through
the diagram D7, at the level of the theoretical accuracy in the
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present work. We thus compare h45 with the leading-twist
one h23,

3

ha3(from D1) = 64f 2fAb Y24(1 — x2) (V1 — Ay + 2T),
(42)
my
has(from D —h 1—x
45( 7) = 64fN2 2 5)
Va—Vs+As+As+Tu+ T3+ S2 — Po),
(43)

with the color factor C = 8/3. As indicated in Fig. 2, ¥4
in the exponential and free-parton models exhibit the max-
ima near the endpoint x| =~ 1, i.e., (x3 + x3) = 0, and
decrease with xp + x3 owing to the factors e~ atx3)may /o
and QA — xom Ap — X3M Ab)3, respectively. However, ¥,
being proportional to x>x3, diminishes around the endpoint
region. Figure 3 shows that the combination of the higher-
twist LCDAs Vy — Vs + Ay + As + Ty + Tg + S» — P>
is also larger than the leading-twist one V| — Ay + 277 in
the endpoint region x| ~ 1, i.e., x; ~ 0. The virtual par-
ticle propagators in the diagram D7, being proportional to
1/(1 — x1) and 1/x} roughly (see the factorization formu-
las in Appendix A), induce further enhancement as x| ~ 1
and x, ~ 0. The above endpoint behaviors explain why the
higher-twist LCDAs of both baryons overcome the power
suppression from 1/m; and remarkably increase the contri-
butions to the form factors.

The huge enhancement caused by the higher-twist baryon
LCDAs warns us to investigate how the contribution to the
form factor f](g> = 0) is distributed in the impact-parameter
space. We truncate the integrations over b on the proton side
at a common upper bound b, < 1/Aqcp, as done in Ref.
[76]. The curves for both the exponential and free-parton
models increase from 0 and become flat gradually as b, —
1/Aqcp in Fig. 4, implying that the Sudakov suppression on
the long-distance contribution is effective enough. Since the
hard ¢ is chosen as the maximum of all the scales involved
in the A, — p transition, Fig. 4 confirms that the increase
of f1(0) is not attributed to nonperturbative dynamics from
be ~ 1/Aqcp. In addition, the contributions to the A, — p
transition form factor fi(0) from different ranges of s /7 for
the exponential model are displayed in Fig. 5. It implies that
most of the contribution comes from the range with o /7 <
0.2, and that the contribution to a heavy-to-light baryonic
transition form factor is indeed perturbative in the PQCD
approach [77].

We compare our predictions for the form factors fi(0),
12(0), g1(0) and g2(0) in Table 6 with those from the non-
relativistic quark model (NRQM) [78], LCSR [50,79,80],
relativistic quark model [81], 3-point QSR [49], lattice QCD
[47] and previous PQCD studies [31]. The consistency with

0.10
0.05
0.00
—0.05
-0.10

Fig. 3 Dependencies of the leading-twist proton LCDAs Vi —A14-2T;
in Eq. (42) (left) and of the twist-5 proton LCDAs V4 — V5 + A+ A5+
Ty + Ty + S» — P> in Eq. (43) (right) on the momentum fractions xlf

030

= Exponential model

0.25¢
Free parton model

0.20¢
0.15¢

fi(@*=0)

0.10f
0.05¢

0.00 - . s
0 1 2 3 4

Fig. 4 Dependence of the form factor f;(0) on the cutoff b,

those from light-LCSR-.A4, light-LCSR-P and lattice QCD
hints that the PQCD approach is an effective framework for
analyzing exclusive heavy baryon decays, once the higher-
twist contributions are taken into account.

The other five form factors f>3(0) and g1,2,3(0) are also
computed using the exponential and free-parton models for
the A, baryon LCDAs, and the outcomes are gathered in
Tables 7, 8,9, 10 and 11. Similarly, these form factors receive

=0)%
o =
S & 8 S

o

Contribution to f;(¢*
_— N 8 £ W

(=4

[

0.03 0.06 09 0.12 0.15 0.18 0.21
a;/n

o

Fig. 5 Contributions tothe A, — p transition form factor f; (q2 =0)
from different ranges of o/ for the exponential model
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Table 6 Form factors f1(0), f2(0), g1(0) and g2(0) from the expo-
nential and free-parton models of the A; baryon LCDAs obtained in
this work and in the NRQM, LCSR, 3-point QSR, lattice and previous

PQCD studies. The theoretical errors of our results from the variations
of the relevant parameters in the A, baryon and proton LCDAs have

been added in quadrature

J1(0) 12(0) £1(0) £2(0)

NRQM [78] 0.043
Heavy-LCSR [50] 0.0237900¢ 0.02379:006
Light-LCSR-A [79] 0.141903 —0.05410:019 0.147903 —0.02810:002
Light-LCSR-P [79] 0.12400 —0.04775013 0.124003 —0.01610007
QCD-light-LCSR [80] 0.018 —0.028 0.018 —0.028
HQET-light-LCSR [80] —0.002 —0.015
Relativistic quark model [81] 0.169 0.009 0.196 —0.00004
3-point QSR [49] 0.22 0.0071
Lattice [47] 0.22+0.08 0.04+0.12 0.12+0.14 0.04+0.31
PQCD [31] 22708 % 1073
This work (exponential) 0.2740.12 0.0084+0.005 0.314+0.16 0.0144-0.008
This work (free parton) 0.2440.10 0.00740.004 0.2740.13 0.01440.010
Table 7 The same as Table 4 but for the form factor f>(0) in unit of 1073

Twist-3 Twist-4 Twist-5 Twist-6 Total
Exponential
Twist-2 0.021 0.003 —0.021 0.004 0.007
Twist-31— —0.014 0.079 —0.12 ~0 —0.053
Twist-37F —0.048 0.19 —0.041 0.002 0.11
Twist-4 0.28 —0.86 8.04 —0.017 7.45
Total 0.24 —0.58 7.86 —0.011 7.543.942.7
Free parton
Twist-2 0.018 0.007 —0.018 0.004 0.011
Twist-31— —0.008 0.076 —0.11 ~0 —0.04
Twist-37F —0.033 0.18 —0.033 0.002 0.12
Twist-4 0.26 —0.60 7.11 —0.017 6.75
Total 0.24 —0.34 6.95 —0.012 6.8+£3.242.9
Table 8 The same as Table 4 but for the form factor f3(0) in unit of 1073

Twist-3 Twist-4 Twist-5 Twist-6 Total
Exponential
Twist-2 —0.022 0.020 0.013 —0.004 0.007
Twist-31— 0.046 —0.047 0.001 ~0 0.001
Twist-37F 0.11 —0.19 0.038 —0.002 —0.037
Twist-4 —0.31 0.77 —7.28 0.022 —6.8
Total —0.17 0.55 —7.22 0.016 —6.8+4.74+4.1
Free parton
Twist-2 —0.020 0.015 0.011 —0.004 0.002
Twist-37— 0.041 —0.041 0.006 ~ 0 0.007
Twist-37F 0.097 —0.18 0.032 —0.002 —0.05
Twist-4 —0.29 0.51 —6.38 —0.022 —6.1
Total —0.17 0.30 —6.33 0.017 —6.24+4.34+3.8
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Table 9 The same as Table 4 but for the form factor g1 (0)

Twist-3 Twist-4 Twist-5 Twist-6 Total
Exponential
Twist-2 0.0008 —0.00003 —0.0006 0.00002 0.0002
Twist-31— —0.0001 0.003 —0.0003 —0.000006 0.002
Twist-37F —0.0004 0.007 —0.0002 0.00008 0.006
Twist-4 0.011 —0.004 0.29 —0.0001 0.30
Total 0.011 0.006 0.29 —0.00001 0.314+0.13£0.10
Free parton
Twist-2 0.0007 —0.00003 —0.0005 0.00002 0.0002
Twist-31— —0.0001 0.002 —0.0003 —0.00001 0.002
Twist-37T —0.0003 0.007 —0.0002 0.00007 0.006
Twist-4 0.010 —0.00 0.25 —0.00011 0.26
Total 0.010 0.007 0.25 —0.00004 0.2740.11£0.09

Table 10 The same as Table 4 but for the form factor g, (0) in unit of 1073

Twist-3 Twist-4 Twist-5 Twist-6 Total
Exponential
Twist-2 0.043 —0.014 —0.034 0.008 0.004
Twist-37— —0.061 0.079 —-0.12 ~0 —0.10
Twist-37T —0.16 0.37 —0.082 0.005 0.13
Twist-4 0.58 —1.62 15.5 —0.04 14.4
Total 0.39 —1.18 15.3 —0.028 14.44+6.6+4.5
Free parton
Twist-2 0.039 —0.010 —0.029 0.008 0.008
Twist-37— —0.049 0.14 —0.12 ~0 —0.031
Twist-37F —0.13 0.35 —0.067 0.003 0.16
Twist-4 0.53 —1.08 13.5 —0.041 12.9
Total 0.39 —0.60 13.3 —-0.03 13.148.444.7
Table 11 The same as Table 4 but for form factor g3(0) in unit of 1073

Twist-3 Twist-4 Twist-5 Twist-6 Total

Exponential
Twist-2 ~0 0.002 ~0 ~0 0.002
Twist-37— —0.001 —0.025 ~0 ~0 —0.025
Twist-37F ~0 0.005 —0.002 ~0 —0.004
Twist-4 0.003 —0.09 ~0 ~0 —0.09
Total 0.002 —0.11 —0.003 ~0 —0.1140.10+0.09
Free parton
Twist-2 ~0 ~0 ~0 ~0 0.001
Twist-37— ~0 —-0.019 ~0 ~0 —0.021
Twist-37F ~0 0.002 —0.002 ~0 ~0
Twist-4 0.004 —0.088 ~0 ~0 —0.083
Total 0.003 —0.10 —0.004 ~0 —0.0940.084+0.10
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large contributions from the higher-twist LCDAs, and follow
the relations postulated in HQET, f; ~ gj and f» = f3 =~
g2~ g3~ 0[5,82].

3.2 Semileptonic and hadronic A, baryon decays

To calculate the branching ratios of the semileptonic decays
Ap — plyy with £ = e, u, T, we need the behaviors of
the Ap — p transition form factors in the whole kinematic
range 0 < q2 < (mp, — mp)z. The form factors are first
evaluated at seven points of g2 in the low ¢ region from 0 to
m , m; being the T lepton mass, where the PQCD approach
is trustworthy. We then derive the form factors in the large g2
region via an extrapolation from the low-g? results, assuming
the parametrizations of F (= f;, g;) in the z-series formula
[83],

F(0)

2
F@) ==

N
1+ al g - Zk(O)]} (44)

pole k=1

The parameter z is defined as

Vi — —F
Vie — +«/l‘+ —
with 19 = t4(1 — VT—1_/t1) and tx = (ma,£m,)>.

The values of F'(0) and the poles mpole are taken from the
PQCD calculation and from [84], respectively. We truncate
the expansion in Eq. (44) at N = 1 for simplicity, and fit
it to the seven low-¢2 inputs to determine the single free
parameter aj.
The fit quality is measured by the goodness of fit,
7 . piny2
R =1- Z;:I(F.’ L (46)
Zj:l(F]]'n _ Fm)2

where F in denote the seven PQCD inputs in the region

2(q*) = (45)

0 < g2 < m , Fj come from Eq. (44) at the same g% as
Fin i and FIt is the mean value of the seven F]lrl We have

checked that R?’s in all the fits range between 0.99 and 1,
reflecting the satisfactory quality. The resultant parameters
for Eq. (44) are given in Table 12 with the standard errors of
ay being assigned. The ¢2 dependencies of the form factors
are exhibited in Fig. 6, where the bands represent the theo-
retical uncertainties caused by the parameters in the baryon
LCDAs and by the parameter aj. The absolute values of all
the form factors increase with g2 as expected.

We then predict the branching ratios of the semileptonic
decays A, — pfv; based on the form factors presented in
Fig. 6. We introduce the helicity amplitudes

V A
H)LZs}»W = H)tz,)tw - H)tz,)tw’ (47)
HG = e Gaw) (p. A2l V (A)|Ap, A1), (48)

@ Springer

where A1, A and Ay denote the helicities of the A, baryon,
the proton and the off-shell W~ boson, respectively, €# is the
polarization vector of the W™ boson, and V (A) labels the
vector (axial vector) current. The various helicity amplitudes
are then expressed, in terms of the A, — p form factors, as
[85-92]

Joma, —mp? = g2

\4
Hr/z,o = \/q>2
x [na, +mp) 16D +a* @)
o, w2 = g2
Hipo=

Ve

x | (ma, = mp)g) qH - ngz(qz)] :

H)j = \/2[(mA1, —mp)? —q?]

x [~ f1@®) = tna, +mp) @D ]

Hily ) = [2L0ma, +mp)? — g2

x [—g1¢%) + (ma, = mp)ea(gh)].

\/(mAb + m,,)2 —q°

Hl‘;2,t = \/(]7
x [, = mp) fi@®) + @),
L o —mp2—g?
Hr/z,z =

\/672

x| na, +mpgia® - a?g3@?). (49)

where the subscript ¢ refers to the temporal component of
the helicities of the off-shell W~ boson [88]. The above

arnplitudes obey the relations H)}; = Hl/kz _sy and
A A
Hy, o = —HZ5, 2y

The d1fferent1al angular distributions for the semileptonic
decays A, — plvg are given by [54,85]

G%:|Vub|2‘]2|pp|
51273m%
b

2\ 2 2

s1="2) (A, + %4 50
5 1+ —542], (50)
q q

where my is the charged lepton mass, 6; stands for the angle
between the charged lepton and the proton in the A, baryon
rest frame, and the factors Ay, A and |p,| are written as

AU (Ay — pliy)
dg?dcosty

A = 2sin? 0@(1‘112/2,0 + Hzl/z,o) + (1 —cos 9@)2H12/2,1
+ (1 + cos 9{)21‘131/2,_1, (51)
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Table 12 Values of the parameters for the form factors in Eq. (44)

F(0) mpole (GeV) ai
Exponential
N 0.27£0.12 5.325 —10.6+2.1
I 0.008+0.005 5.325 —8.5+0.8
NE —0.007+0.006 5.749 —10.1+0.7
g1 0.31£0.16 5.723 —8.0+2.2
2 0.014+£0.008 5.723 —7.4%+1.0
g3 —0.00011+£0.00013 5.280 —9.1+0.2
Free parton
fi 0.24+£0.10 5.325 —10.8+2.0
i) 0.007£0.004 5.325 —7.7£1.1
3 —0.00610.006 5.749 —10.7+0.8
g1 0.2740.14 5.723 —9.2+24
22 0.013£0.010 5.723 —7.7£1.2
g3 —0.00009+0.00012 5.280 —9.440.3
6 T T I 6 T
—— Exponential —— Exponential
57 — Free parton 5T — Free parton
4 4 T
W 3 &3
2 2
1 1
0+ T T T T T T T t T T T T T T T T
00 25 50 75 100 125 15.0 17.5 20.0 00 25 50 75 100 12,5 15.0 17.5 20.0
0.25 T T T 0.25 T T T
—— Exponential —— Exponential
0201 Free parton 0207 Free parton
0.15 0.15 I T
«w 0.10 & 0.10
0.05 0.05
0.00 ’ ‘ ‘ 0.00
—0.05 + T T T T T T —-0.05 T T T
00 25 50 75 100 125 15.0 17.5 20.0 . 10.0 125 15.0 17.5 20.0
0.05 0.001
0.000
0.00
—0.001
« —0.05 & —0.002
—0.003 i
=0.10 4 — Exponential —— Exponential
—— Free parton =0.00411___ Free parton
-0.15 T T T —-0.005 T T T
00 25 50 75 100 125 15.0 17.5 20.0 00 25 50 75 100 125 15.0 17.5 20.0

q%(GeV?)

Fig. 6 ¢2 dependencies of the form factors

Ay = 2cos? Oe(H12/2,0 + H31/2»0)
+ sinz 9@(H12/2,1 + HEI/Z,—I) + 2(H12/2,t + H31/2,t),
— 4 cosby (H1/2,0H1/2,t + H_1/2,0H—1/2,t) (52)

\/mi'\b +mh 4+ g* —2(m3, m2 +m2q% + q>m3,)

Ipp| = ZmAb

(33)

q?(GeV?)

Integrating Eq. (50) over cos ¢, we derive the differential
decay widths

dT (Ap — plig) /1 dT (A — pliy)

d Op.
dq? 1 dg?dcos6, coste

(54)
plotted in Fig. 7 for £ = e, u, T, which lead to the inte-

grated branching ratios B(Ap — pfvy) = (16£11) x 10~4
with £ = e, and B(Ap — ptiy) = (11£7) x 107

@ Springer
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8 —— Exponential
D‘ 15 —— Free parton
o
—
X 10
3
9]
Q
T 5
<
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© 0.0 2.5 5.0 7.5 100 125 15.0 17.5 20.0

q%(GeV?)
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15 —— Free parton

(Ap—=puv,)(x10-1GeV 1)
=
1)

7.5 10.0 125 15.0 17.5 20.0

ar.

dq?
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'”T 15 —— Free parton
o
-
X 101 —
g N
& 54 _
s
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n|§ 0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0

q%(GeV?)

Fig. 7 ¢? dependencies of the differential widths for the A, — piy
decays with ¢ = e, v, T

for the exponential model of the Aj; baryon LCDAs, and
B(Ap — ptvy) = (14£10) x 10~* with £ = e, u and
B(A, — pti;) = (10£7) x 107* for the free parton
model. We remind that the above results for the A, — ptv;
decay depend on the extrapolation of the form factors to the
large ¢2 region completely. The central values of our pre-
dictions are higher than the LHCb data B(A, — puv,) =
(4.1£1.0) x 10~* [93] due to the larger form factors obtained
in the previous subsection. However, they are still compatible
with each other when the substantial theoretical uncertain-
ties are considered. Besides, we expect that our results will
decrease a bit, after the threshold Sudakov factor mentioned
in the Introduction and the intrinsic impact-parameter depen-
dencies of the baryon wave functions are included.

Next we estimate the branching ratio of the two-body
hadronic decay A, — pM, with M denoting a light pesu-
doscalar meson, in the naive factorization framework. This
decay is dominated by the color-favored tree contribution,
for which the naive factorization assumption is supposed to
hold reasonably well. The corresponding decay amplitude is
expressed as

G *
(PM[HofrlAp) = TZV,,,,qual(m
(Mlay" (1 — y5)g10) (pliiy, (1 — )bl Ap), (55)

@ Springer

where Gr = 1.166 x 107> GeV~2 is the Fermi constant,
Vup and V4 are the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements, and a1 (1) = C1(u) + C2(u)/3 represents
the Wilson coefficient with C{(mp) = 1.076 and C>(mp) =
—0.175 at the scale of the b quark mass m; = 4.8 GeV.
Inserting the definition of the pseudoscalar decay constant

v,
(M(@)|luy" (1 — ys5)d|0) = —ifmg, (56)

q being the pseudoscalar meson momentum, we decompose
the A, — pM decay amplitude into

M(Ap — pM) =iN(Mi + Mays)Ayp. (57)

The functions M and M are given by

G
Mi = 22V Vg o) fu(ma, = mp) fimy), (58)

G
Mo = 2V Vagar () furma, + mp)gi(m3p), - (59)

with the pseudoscalar meson mass my;. The A, — pM
decay width is then written as

ool | (ma, +mp)? —m?
F(Ap = pM) = 2 | =y MMy P
T my,

(mp, —m )2—m2
P MIAR L (60)
Ap

175! =
\/ [(m%, — (mar +mp)2lm%, — (myr — mp)21/Q2ma,) is
the proton momentum in the rest frame of the A, baryon.

It is straightforward to get, by employing the form factors
derived in the previous subsection, the A, — pm branching
ratio B(Ap — pr~) = (13410) x 107 from the exponen-
tial model for the A, baryon LCDAs, and B(Ap — pr™) =
(11+£8) x 1070 from the free-parton model, whose large theo-
retical uncertainties originate from those of the form factors.
These predictions are also higher than the experimental data
B(Ap — pr~) = (4.5£0.8) x 107° [94], similar to the
case of the semileptonic decays.

where

4 Summary

The heavy-to-light transition form factors are important
ingredients for exclusive heavy hadron decays. The previous
studies of the A, — p form factors in the QCDF and PQCD
approaches have manifested that the leading-power contri-
bution is much smaller than indicated by the experimental
data. In this paper we extended the PQCD analysis to the
inclusion of the higher-twist baryon LCDAs. It was observed
that the combination of the twist-4 Aj; baryon LCDAs and
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the twist-5 (twist-4) proton LCDAs dominates the contribu-
tions to the form factors f 23 and g2 (the form factor g3),
and that the contributions from the twist-6 proton LCDAs
are indeed suppressed. We have examined the distribution of
the above dominant pieces in the impact-parameter space,
and concluded that the enhancement of the form factors is
not attributed to the long-distance dynamics. Our results for
the form factors are close to those in other theoretical meth-
ods within errors, implying that the endpoint contributions
from the higher-twist LCDAs can be handled appropriately
in the PQCD formalism, and the framework established here
is ready for systematic applications to various semileptonic
and hadronic two-body decays of heavy baryons.

Based on the obtained form factors, we have estimated the
branching ratios of the semileptonic decays A, — p£v; and
of the two-body hadronic decay A, — pm under the naive
factorization assumption, whose central values are higher
than but still compatible with the measured ones, as the sig-
nificant theoretical uncertainties are considered. It suggests
that a precise knowledge of the baryon LCDAs is necessary
for a rigorous comparison between theoretical predictions
and experimental data. It is also urgent to derive the threshold
Sudakov factor for heavy-to-light baryonic transitions, which
is expected to improve the agreement with the current data
by lowering our results to some extent. The intrinsic impact-
parameter dependencies of the baryon wave functions can
also be taken into account to achieve the same purpose. At
last, the complete set of topological diagrams needs to be
calculated in order to make predictions for CPV in hadroic
two-body heavy baryon decays. This calculation is feasible
in principle in the PQCD approach.
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Appendix A: Factorization formulas

We list below the factorization formulas for the form factor
fi(g*> = 0) from the Feynman diagrams D;, i = 1-14, in
Fig. 1. Those for the other five form factors can be derived in a
similar way. The last two diagrams with three-gluon vertices
do not contribute due to the vanishing color factors:

P> =0 =

fA;,
CMA”SN SIN /[d ]

/ [dx'1167°a2 (1P h——

/ b db| / bydb,
/bgdb3/d91 fd@z exp[—SP1 (x, x', b, b)]

F1(D, b3)F3(A, B, C, b}, by), (61)

@ =0=cm i,,gfv” Ty /[d]

/ [dx'1167%a2 (1P )h ——

/ b db| / bydb,
/ bydb) / do, / db exp[—SP2 (x, x', b, b)]
Fi(C, bz)F3(A B, D, b}, b3), (62)

fa /
=CM;, =2
AvgN, S«ch Ldx
1

/ 2 2..D3
/[dx 11670 (t73)h )

/bldblfbidbi/b3db3
/bédbé/d@lfdez

/ d03 exp[—SP3 (x, x', b, )]

Fi(A, by +bs— b} — DY)
F1(B, b3 +b’)F1(C b)) Fi(D, b3), (63)

fA;,
CMA”SN SIN /[d]

/ 2 2,.Dy
f[dx Hér“a; (t"*)h——= o )7

/ brdbi / b db), / badbs

@2n )5

@n )5

7(q*=0)

P> =0) =
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Table 13 Auxiliary functions A, B, C and D. An overall coefficient m%\b is implicit for the entries

A B C D
D, 1 —x; I+ (1 +x3)x5—1) X2x5 x3x4
D> 1 —x] I+ (1 +x2)x) =1 X2x5 x3x4
Ds 1 —x; x3(x) + x5) (x2 + x3)(x + x5) x3x4
Dy 1—x] x5 (x2 + x3) (x2 4 x3)(x} + x5) x3x%
Ds 1—x] x5 (x2 + x3) x2x5 (x2 4+ x3)(x} + x5)
De¢ 1—x] x2(x) + x5) x2x5 (x2 4+ x3)(x} + x5)
D7 x3(x] 4+ x4) 1 =xp x2x% x3x5
Dg x2(x] 4+ x5) 1 =xp x2x% x3x%
Do 1—x; x3(x} 4 x3) (x2 + x3) (x5 + x3) X3}
Dio 1—x; x5 (x2 4 x3) (x2 4 x3)(x} + x5) x3x5
Dy 1—x x2(x5 4+ x5) x2X% (x2 4+ x3) (X} + x5)
Di» 1—x; x5 (x2 4+ x3) x2X5 (x2 4+ x3)(x} + x5)
Di3 x2(x] 4+ x3) L+ (xp +x3)(x5 — 1) x2X5 x3X5
Dis x3(x] 4+ x3) 1+ (xp +x) (x5 — 1) x2x5 x3X5
/bédbgfd@l /d@z f1D7(q2 —0)=C ?\ Iay 1
"8Nc 82N,
/ d63 exp[—SP* (x, x', b, )] / [dx] / [dx'1167%a?(tP)h—— G )5
Fi(A, by + by — b} — b
1(4, 5y + o 3) , /bldblfb’zdb;/b3db3/del
Fi(B, b3 + b3) F\(C, b3 + b3 — by) F1(D, b3),
L f (64) / do> exp[—SP7 (x, x', b, b))
Ds, 2 _ Ap
fi7g" =0 = Ang 8fN /[ x] Fi(D, by — by)F3(A, B, C, b}, by), (67)
3 fa 1
dx' 1167 %2 (175 )h—— Pg? =0 :
/[X] 72’0(( ) (27()7 f] (q ) = Angcngc
/b]dbl fb/ldbq /bzdbz /[dx]/[dx]l67t2(x (tDS)hW
/b’zdb;/dol /d@z /bldbl /bzdbz
/ d6s exp[—SP5 (x, x', b, b)] / bhdb), / do, / d6y exp[—SP8 (x, X', b, b)]
Fi(A, by + b} — by — b)) Fl(C,b/z)FS(A B, D, by + by, by), (68)
F1(B, by + by)Fi(C, by + b — b)) Fi1 (D, b), Do, 2 o anr3 A,
(65) f1 (ge=0=CM Ab8N 8fN /[dx]
Do, 2 _ oy _ 3 Iay 2 D
=0)=CM ’ 9
f17°(q ) Mg, 8\/>Nc /[ /[a’x]l6n ol )h(2 7
/[dx]16n2a2(t06)h oy /bldbl fb’ldb’l /bgdb3
/bldblfb/ldbﬁ/bzdbz /bgdbg/d@lfdez
/ bydb), / do / do, / d6y exp[—SP (x, x', b, b)]
/ /
/d93 expl—SP5(x. x'. b, b')] Fi(A, by + b} — b3 — b}
Fi(B, b3 + b3) F1(C, b3 + by — b)) F1(D, b}),
Fi(A, by + b} — by — b)) (69)
Fi(B, by + b)) Fi1(C, b)) F1(D, b)), (66) Do, 2 3 fa, /
g=0=CM [dx]
fi g Ar g, SINC
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Table 15 The same as Table 5 but for the diagrams Dg, D7, Dg, D9 and D1 in Fig. 1

Twist3 Twist4
Dg
Twist2 0 0
Twist3t— 0 Y 20 (Vo= Vi + Ay + A3 =21 — T35 + Ty + 1 + Py)
Twist3~F 0 rl/f3_+2(1—xi)(—V2+V3—A2—A3+2T2+T3—T7—Sl — Py)
Twist4 Yadxo (V) — Ay +2Th) rl/f44xixz(—V3 —A3—T3—T7—S1+ P)
Twist-5 Twist-6
Twist-2  r2yd(l —x|)(=Va— As — Ty — Tg — S2 + P2) 3241 — x}) (Vs — Ag + 2T¢)
Twist-377 r2yf " 2x(xa(Va — Vs — Ay — As + Ty + 215 — Tz — S — P») 0
Twist-37F r2y; T2(1 —x))(—Va+ Vs + As + As — T4y —=2T5s — Tz + So + P>) 0
Twist-4 0 0
Dy
Twist2 0 rYnd(x; — Dx3(=Vo + Va+ Ay + A3+ T3+ T9 + 81 — P1)
Twist3t— 1[/;72()(3 —x1x3) (V1 + Ayp) ”//;72)53(‘/3 — A3)
Twist3~t 0 Yy 23R + T3 — T+ S1 + Py)
Twist4 Ya8x3(—=T1) ryngd(x; — D1 —x3)(Va = V3 — Ax — A3)
Twist-5 Twist-6
Twist-2 P2Yndx3(=Vi+ Vs — Ay — A — 5) 3281 — x1)(1 — x5) Te
Twist-31— P2 200 — DA — x)(Tu + 275 — Ty + S + P) 0
Twist-3~F r2s 200 — D — x5)(Va — Ay — Tg) r2ys T2(1 = x5) (= Vs — Ae)
Twist-4 r2ad(l — x5)(Va — Vs + A + As + Ty + Ty + So — P2) 0
Dg
Twist2 0 rynd(x; — Dx2 (V3 + A3 + 281 —2P))
Twist3+~ 0 ry (=S — Py)
Twist3~ T V3 200 — Dxa (Vi + A ry T2xa(=Va — Ag)
Twist4 Yadxa (—Vi + Ay) rra8(xy — (1 — x5)(=S1 + P1)
Twist5 Twist6
Twist2 r2y28x2(—S2 + P) rynd(x; — (1 = x5) (= Ve + Ae)
Twist3+~ P2l T2 — D — x5)(=Vs — As) Py T2(1 = X5) (Ve + Ae)
Twist3 ™" r2ys A — DA =3 (=S — Po) 0
Twist4 r2Yad(l — x5)(Va + As + 25, — 2Py) 0
Dy
Twist2 0 rynd(x; — Dx3(=T5 — T + S| — Py)
Twist3t~ 0 0
Twist3~+ 0 Yy T2x3(Vo = V3 + A2+ A3 — 2T — T3+ T7 + S1 + P2)
Twist4 Yadx3 (Vi — Ay +2TY) ryad(x; — (1 — xi)(VQ — Aj)
Twist5 Twisto6
Twist2 r2004x3(Vs — As) r3Ynd(x; — D1 — x)) (Ve — Ag + 2T5)
Twist3t— P2l = DA —x)D)(=Va+ Vs + A+ As — Ty — 2T5 + Tg + So + P») 0
Twist3~F 2yt — D — XD Tk 0
Twist4 P2 Yud(l = x)(=Ts — Ty + S» — P2) 0
Do
Twist2 0 rynd(x; — (1 — x1)(=Va2 + A2)
Twist3t— Vi 200 — D —x)(=Vi — A)) ry 21— x)(V3 — A3 — 281 —2P))
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Table 15 continued

Twist5 Twist6
Twist3~F Y3 200 — D —x)(=Vi — Ay) Yy 2(1 — x1)(Vs — A3 — 25, —2Py)
Twist4 0 rirad(x; — l)xé(—V3 — A3 =251+2P)
TwistS Twist6
Twist2 P2Ynd(1 — x1)(—=V4 — Ay — 25, +2P) 0
Twist3 1t~ rAd 200 — Dy (Va + As — So — Po) P}y 2xl (= Ve — Ae)
Twist3~F r2y 200 — Dy (Ve + Ag — So — Po) Py T2x, (= Ve — A —6)
Twist4 r2yadal(—Vs + As) 0
/[a’x]16n2a2(zD‘°)h(2 7 /bldbl /d@zexp[—SD”(x,x’,b,b’)]
/7 /
/badba[b%db%/bédbé/del/d92 FQ(A,B,bz+b2)F1(C,b2)F1(D,b3), (73)
fA}, 1
f(¢* = 0) =M}
/ dos exp[—SP0 (x, x', b, b')] ! A 8N, 84/2N,
2 D
Fi(A, by + b — by — b /[dx]/[dx’]mn a2 (tPyh—— n )5
F\(B,b +b’F Cb’F D, b3), 70
1(B, b3 +b3) Fi( YF1(D, b3) (70) /-bzdbsz’zdb’sz3db3
(P =0) = cmd, L2 /[
b
8N SfN /d@l /d@z expl— 8Pt (x, X', b, )]
/ 2 D
/ [ N6l P h s Fa(A, B, by + B) Fy(C, b)) Fi(D, by, (74)
/bldblfb'dbl /bzdbz where C = 8/3isthe color factorand [dx] = dx;dxpdx38(1—
wan. [ aor [ a6 X1 —x2—x3), [dx']is defined analogously, the auxiliary func-
/ 2772 / ! / 2 tions A, B, C and D in Table 13 are related to the denomi-
_Dn , , nators of the four propagators in each diagram, and the hard
/ d63 exp[ =571 (x, ', b, b)) kernels  are collected in Tables 14, 15 and 16. The exponent
F1(A, by + b} — by — b)) $Di is the sum of the total exponents from the A, and proton
Fi1(B. by + bY)F\(C, by Fi(D, by + by — b)), wave functions with the hard scale 2 involved in the dia-
(71) gram D;. The functions Fj, F, and F3 are written, in terms
fDIZ( - 0) o Fay 1 of the Fourier integrals, as
1 q Ap 8Nc SfN lkT.b
_ 2
f[dx]/[dx ]16n2a2(r"12>h(2 7 A= /d et a
/bldbl /b’ldb’l /bzdbz =27 {Ko(ﬂb)G(A)
i .
[ v [ a, [ ao +7 [Jo(V/=Ab) +iNo(v=Ab) 9(—A>} SNCA)
) oikrb
o —sPee X' b, b F>(A,B,b) = | d°k
[ dsexpi-s e b0 2(A, B, b) f T DETE
Fi(A, by + b} — by — b)) ld
Fi(B, by + b5) Fi(C, b)) Fi(D, by), (72) =7 /0 ¢
Dz, 2 3 Iay 1 Z [ _ —q — ] _ }
=0)=CM +— (N Z1b) —iJ Z1b)|0(—=Z)t, 76
i " )=C A SN, §UAN. > 1(vV—21D) 1(V—=21D) | 0(—Z1) (76)
f[dx]/[dx]167#042(;"”);;W F3(A,B,C, b1, b)) = /dzk]T
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Table 16 The same as Table 5 but for the diagrams D1y, D12, D13 and D4 in Fig. 1

Twist3 Twist4

Dy
Twist2 0 rynd(xr — Dxa(=Va + A2)
Twist3 T~ 0 ryy T2x0(Va = Va4 Ay + A3 —2Th — T3+ T7 + S1 + P1)
Twist3~F 0 0
Twist4 Yadxy (Vi — A1 +2TY) riad(x; — (1 — x{)(T;; +T7—S1+ P)

Twist5 Twist6
Twist2  r2yadxa(Ty + Ty — S» + Pa) P3Ynd(x — (1 — x]) (Vs — Ag + 2T)
Twist3T~ 0 0

Twist3 ™ r2yy 200 — DA —xD(~Va+ Vs + Au+ As — T4 —2T5 + S+ P») 0

Twist4
D>
Twist2 0

r2 a4l — x))(=Vs + As)

Twist3?~ ¥ 201 — DL — x)(Vi + Ay)
Twist3 ™ ¥ 720 — D1 — x)(V) + A))

0

rynd(xr — DA —x)(=T3 = T; + S1 — P1)
Py 20— x)(=Va — Ay + 2T + T35 — T7 + Si + P1)
ryy 21— x))(=Va — A+ 20+ T3 = T7 + S + Py)

Twistd 0 ryad(x) — Dxy(Vo— Vs — Ay — A3 = T35 — T7 — S + P1)
Twist5 Twist6
Twist2 P2Ynd(l —x))(—=Va+ Vs — Ay — As — Ty — Ty — So + P2) 0
Twist3t— P2l T2 — xixh) (Vs + As + Ty + 215 + Ty + S2 + Po) 3y 2x5 (Ve + Ae)
Twist3~+ rAy 20 — xix5) (Vs + As + Ty +2Ts + Tg + S + Pa) r3y; T 2xh (Ve + Ag)
Twist4 r2Ya3xh(=Ty — Ty + So — P2) 0
Dq3
Twist2 0 riyndx (V3 + Az + 281 —2P)
Twist3t— 0 0
Twist3~F V3 T20 (Vi + A)) rys T2(1 — x) (1 — x3) (V3 — A3 — 281 — 2P))
Twist4 0 radxa (xs — D(Va — Az)
Twist5 Twist6
Twist2 r2y4(1 — x2)(1 — x5)(— Vs + As) 0
Twist3t— rA 200 — xx)(Va+ As + So + Po) 3y T2(1 = x5 (Ve + Ag)
Twist3~+ 0 0
Twist4 r2yad(l — x5) (Vs + Ay + 25, — 2P)) 0
Dyy
Twist2 0 ryndxzs(—Va+ Vi + Ay + A3+ T3+ T7 4+ St — Pp)
Twist3t— Vi 20 (=Vi — Ay 7200 = x3)(1 = x5)(=Va — Ay + 2T + T3 — T + S1 + P1)
Twist3~+ 0 0
Twist4 0 rw44(xé — Dx3(T34+T7 — S1 + Pp)
Twist5 Twist6
Twist2 r2¢/24(1 —x3)(1 — xé)(—T4 — T3+ S5 — P) 0
Twist3t— 0 0
Twist3~F P2y T 2(x] — D(Vs + As + Ty — 2T5 + S + P») P33T 2(1 = x)) (= Ve — Ae)
Twist4 r2ad(l — x5)(Va — Vs + A + As + Ty + T7 + S1 — P2) 0
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:nZ/I _—
0o 21(1 —z21) /23]

dzidza VX2

|1/ XaZ2022) + 3 [N(/=XaZ2)
—ih(/=XaZa) |6(-72)],

(77)

in which J,, (N,,) is the Bessel function of the first (second)
kind, K,, follows the relation

T
Ky (—iz) = 7e<’””>/2 [ () + i N, (2)], (78)
and the variables Z1, Z, and X, are given by
Zy =Az+ B(1 —2), (79
Zr, =A(l —22)
Z
— 2 [B(l—z)+Czl, (80)
z1(1 —z1)
711 =z
Xo = (by — 21b2)” + %b%, (81)

with Feynman parameters z’s. Because A, Z1, Z» and X, are
all positive, the imaginary parts of the above functions Fj 7 3
do not contribute.
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