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Abstract We present a novel subtraction method to remove
the soft and collinear divergences at next-to-leading order for
processes involving an arbitrary number of fragmentation
functions, where this method acts directly in the hadronic
centre-of-mass frame. We provide the analytical formulae of
the subtraction terms in the general case where all the final
state partons fragment to hadrons and for the two special
cases when one of the partons of the final state does not
fragment, i.e. it is a photon or involved in a jet.

1 Introduction

Among the processes constituting the Standard Model back-
ground, those involving fragmentation functions (FFs) play
a crucial role, with prompt photon production being a well-
known example. In such production, two components stand
out: the direct component, where the photon is produced
directly in the hard sub-process, and the fragmentation com-
ponent, where the photon is emitted collinearly by a hard
parton. While the latter component can be significantly
reduced by implementing isolation criteria, it cannot be
completely eliminated due to finite resolutions in energy
and angle of the detectors. Given the precision of exper-
imental data at the LHC, accounting for this contribution
is imperative. For instance, studies on di-photon produc-
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tion at NLO, as demonstrated in references [1] and [2], have
revealed the significance of including fragmentation compo-
nents. These components provide a qualitative understand-
ing of the data by considering additional topologies within
the collinear approximation, which were absent when solely
considering NLO corrections to the direct component. Con-
sequently, this approach has led to improved data descrip-
tions concerning distributions such as the azimuthal angle
between the two photons or the transverse momentum of
the photon pair. To achieve a quantitative understanding,
computations of the direct part must progress to next-to-
next-to-leading order (NNLO) accuracy [3,4], which encom-
passes these topologies beyond the collinear approximation.
Notably, recent advancements have reached NNLO accuracy
for the fragmentation component of inclusive photon pro-
duction [5,6], complementing the direct contribution [7,8].
A second example, also well-known, pertains to the pro-
duction of heavy quarks, particularly charm (c¢) and bot-
tom (b) quarks, at high transverse momentum. In this kine-
matic regime, where the transverse momentum significantly
exceeds the heavy quark’s mass, perturbative calculations
exhibit the emergence of large collinear logarithms at each
order. Such collinear logarithms can be subtracted from the
fixed order calculations and resummed to all orders by the
introduction of heavy quark parton densities and renormali-
sation group evolved fragmentation functions of light quarks,
gluons and heavy quarks into heavy quark flavoured hadrons
(B, D, A.). Such FFs have been determined either in Mellin
moment N-space [9-14] or directly in x-space [15-24]. For
transverse momenta significantly exceeding the heavy quark
mass, this procedure becomes indispensable to reinstate
the convergence of the perturbative expansion. Nonetheless,
even for transverse momenta only moderately larger than
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the heavy quark mass, resumming the collinear logarithms
while retaining finite mass terms m?/ p% in the hard process
[25-28] yields improved theoretical predictions. These pre-
dictions exhibit reduced theoretical uncertainties stemming
from scale variations and demonstrate better agreement with
experimental data. For instance, see [29-31] for comprehen-
sive studies on inclusive D and B meson production at the
LHC.

The NLO QCD corrections to processes involving Frag-
mentation Functions (FFs) have a long history, dating back to
the late 1970s. Initially, computations focused on inclusive
cross-sections for single hadron production in e*e™ colli-
sions, considering both massless [32] and massive quarks
[9,10]. Subsequently, similar calculations were extended to
hadron collisions [33] and deep-inelastic scattering [34]. The
NLO computations also encompass di-hadron production in
e*e™ collisions [35] and hadron collisions [36,37]. Initially,
these computations were often tailored to specific observ-
ables, whereas more recent efforts strive for flexibility to
describe a broader range of observables. Achieving this flex-
ibility requires addressing the soft and collinear divergences
arising from real emissions across a general phase space. It’s
worth noting that at NLO, only one parton can be soft and/or
collinear, with the divergences typically being logarithmic at
most.

There are two main methods, with variations, used to
handle singularities in terms of the space-time regulator
& = (4—n)/2 (where n is the space-time dimension). The first
method involves slicing the phase space into small regions in
which these divergences show up and a region free of diver-
gences. Within these small regions, the integration over the
soft/collinear parton is carried out analytically, retaining only
the most singular terms as the size of the regions approaches
zero. In other words, this method involves neglecting terms
that vanish as the size of these small regions approaches zero
and retaining only the size-dependent logarithmic terms. This
approach is commonly referred to as the phase space slic-
ing method. Within this framework, general algorithms have
been developed to address jet and hadron production in e*e™
and hadronic collisions [38—41]. The other method, known
as the subtraction method, consists of adding and subtract-
ing certain integrands. The sum of these integrands retains
the same divergences as the original integrand when a par-
ton becomes soft and/or collinear, but they are simplified
enough to allow for analytic integration over the phase space
of the soft/collinear parton. Similar to the phase space slic-
ing method, general algorithms have also been developed
for the subtraction method, primarily focusing on jets [42—
45]. Subtraction methods have proven their efficiency com-
pared to phase space slicing methods to deal with the soft
and collinear singularities by avoiding important numeri-
cal cancellations between large positive terms coming from
the real emission and negative ones coming from the soft
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and collinear terms. The general methods developed so far
require boosts to transition from the laboratory frame to a
dedicated frame chosen to simplify the analytical computa-
tion of the subtracted terms. However, these boosts can be
computationally costly. Therefore, we are exploring the fea-
sibility of performing the analytical integration of the sub-
traction terms directly in the laboratory frame. To be more
specific, we focus on the case of hadron collisions, where the
laboratory frame is the hadronic centre-of-mass frame. In
these collisions, the standard subtraction methods typically
parameterise the phase space using energy, polar angle, and
azimuthal angle. However, these variables are not the most
natural for describing hadronic collisions. Instead, the natural
variables are the transverse momentum, rapidity (or pseudo-
rapidity, given that all masses are neglected), and azimuthal
angle. Consequently, incorporating cuts in this parameterisa-
tion becomes more complicated. An initial attempt towards
this objective was made in reference [46], limited to 2 — 2
reactions and focused on two-jet production. However, the
generalisation of the method presented in [46] to reactions
involving more particles in the final state was deemed com-
plicated (cf. ref. [42]). A similar challenge arose in another
effort [47] focused on two-hadron production.

The objective of this article is to introduce a novel sub-
traction method dedicated to reactions involving fragmenta-
tion functions. Specifically, we address the general scenario
where the Leading Order (LO) processes are 2 — N — 3
reactions (or N — 1 body reactions), and where M partons
fragment with M < N — 3. The new method presented in
this work incorporates the two features outlined in the pre-
vious paragraph: 1) the integration of the subtraction terms
is carried out in the hadronic centre-of-mass frame, and 2)
the phase space is characterised by the “natural” variables
of hadronic collisions, namely the transverse momentum,
rapidity, and azimuthal angle. While it is certainly possible to
adapt existing general subtraction methods such as FKS [42]
or Catani-Seymour [43] to accommodate reactions involving
multiple fragmentation functions, the desired features would
not be present. This is the case of the work described in the
reference [48], which consists in adapting the tool aMC@NLO
dedicated to jet processes to fragmentation ones. Neverthe-
less, their way to proceed is a combination of the subtraction
and phase space slicing methods.

The outline of the article is the following. Section2 pro-
vides an overview of the method. We consider the case of
a hadronic reaction involving two hadrons yielding N — 3
hadrons (M = N — 3), and present the formulas for the
hadronic cross section at both LO and NLO accuracies after
having taken into account the constraints on energy and lon-
gitudinal momentum conservation. Additionally, we outline
the structure of initial and final state collinear divergences,
obtained from the LO formula by expressing the evolved par-
ton density functions (PDFs) and fragmentation functions in
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terms of the bare ones. The subtraction strategy is explained
in a general manner, with detailed calculations postponed
to Sect.3. This subtraction is performed within a cylinder
in transverse momentum around the beam axis and outside,
in N — 3 cones centred on the direction of the N — 3 hard
partons.

In Sect. 3, we provide the detailed construction of the sub-
traction terms and their analytical integration. We consider
the different regions, namely inside the cylinder and inside
the various cones (i.e., outside the cylinder). The divergences
in terms of the regulator ¢ are discussed.

In Sect. 4, we collect the different divergent terms resulting
from the analytical integration of the subtracted terms. These
terms are used to construct the different parts of the cross
sections containing the initial state collinear divergences, the
final state collinear divergences, and the soft divergences.
We demonstrate that the collinear divergences fit the struc-
ture derived in Sect. 2, allowing them to be reabsorbed into a
redefinition of the PDFs or FFs. Additionally, we show that
the soft divergences cancel against those coming from the
virtual contribution.

In Sect.5, we apply the subtraction method to the case
where some hard partons do not fragment, i.e., M < N — 3.
Due to space constraints, we focus specifically on the case
where M = N — 4. We investigate two scenarios: (i) when
the non-fragmenting parton is a photon, and (ii) when the
non-fragmenting parton is involved in a jet. We demonstrate
that the method presented in the preceding sections works
effectively in these cases as well.

Finally, we conclude this article with a summary and
prospects for future research. While we have removed many
detailed calculations from the main text to improve readabil-
ity, we believe they remain valuable for readers. Appendix A
provides a summary of the expressions of DGLAP kernels
at the lowest order. In Appendix B, we present the detailed
computation of the soft integral using azimuthal angle and
rapidity. The computation of collinear integrals (both inside
and outside the cylinder) is detailed in Appendices C and D
respectively. In Appendix E, we outline the steps to obtain the
results presented in Sect.4. Additionally, Appendix F illus-
trates the discussion in the main text regarding the soft limit
in QCD using the specific reaction ¢ + ¢ — g + g. Lastly,
Appendix G provides a recap of the different notations used
throughout the article to facilitate understanding of the for-
mulae.

2 Presentation of the method

The method to remove the soft and collinear singularities is a
modification of the subtraction method presented in [47]. The
original method was designed for 2 — 2 reactions at leading
order where at most two hard partons fragment. It was point-

lessly complicated involving some analytically unsolved one
dimensional phase space integrals.

In this article, the method is generalised for the case where
an arbitrary number of partons in the final state fragment.
More precisely, we consider, at leading order, a partonic reac-
tion 2 — N — 3 where all the partons in the final state
fragment.! Then, at NLO approximation, we have to con-
sider the case of a partonic reaction 2 — N —2 where N —3
hard partons fragment, the non fragmenting parton being soft
and/or collinear to another one. Furthermore, simplifications
are brought in the method in such way that the phase space
integrals of the subtracted terms can be performed analyti-
cally. As already mentioned, the subtraction is performed in
the hadronic centre-of-mass frame and the four-momenta are
parameterised with the rapidity, the azimuthal angle and the
transverse momentum. Note that, for a matter of simplicity,
the subtraction terms are built for a squared matrix element
summed over the colours. In the rest of the article, we intro-
duce compact notations which are recapped in Appendix G.
To start with, let us present the hadronic cross section at lead-
ing order.

2.1 LO accuracy

Let us consider the inclusive hadronic reaction Hy + Hy, —
H3 + Hy + --- + Hy_1 + X where each hadron H; has a
four-momentum K;. The hadronic cross section in the QCD
improved parton model is given by

N—-1
O‘I]_“IO = Z dx; dx, l_[ dx;d"K;
{i}nN_1€S) 1=3
N—1
x FI Gy, MY FE Ry, M?) T DG M3 601y,
1=3

2.1)

where {i}y_1 stands for iy, iy, ..., iy_1, the summation
runs over all types of partons as indicated by the use of the set
Sy = {u,i,d, d,...,g}.? The function Ff"(ik, M?) rep-
resents the partonic density of a parton i; inside a hadron
Hj carrying a fraction of the hadron four-momentum x; at
the energy scale M whereas the function Df '(xy, M]%) repre-
sents the fragmentation function of a parton i; into a hadron
Hj carrying a fraction of the parton four-momentum x; at
the energy scale M . The partonic cross section for the reac-
tion iy +ip — i3+ ---+iy—1 = [i]y—1 in which each
parton labelled by i; has a four-momentum p; is defined in
n =4 — 2¢ dimensions as

! The method can be applied for a mixed case where some hard partons
in the final state do not fragment. Examples will be presented in Sect. 5.

2 Ttis implicitly assumed that the partonic cross section must fulfil con-
servation laws, thus if the sum selects a choice of partons iy, ..., iy_|
which violates these laws the partonic cross section is set to zero.

@ Springer
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2(N-3 — N-1
PO B i 3”/ P+ 2y
T A 4GHG 1A @yt
x 8"(K; — % p1) Q)" 8" (P — Py) IM[}y, 1% (2.2)

In Eq. 22), P = p1 +p2and Py = p3 +--- + py-1
are, respectively, the sum of initial and final state partonic
momenta, gy is the QCD coupling constant and p is the
energy scale such that g, is dimensionless in a n-dimensional
space time, C;; and C;, are the dimensions of the colour rep-
resentations to which the partons i and i> belong times the
extra number of polarisations in a space-time of dimension
n, namely

N, fori =¢q,q

Ci :{(Ng—l)%forizg : 2:3)
with N, the number of colours in the fundamental repre-
sentation. Note that, in Eq. (2.2), |M[”,.]AF1 |2 represents the
squared amplitude stripped from the coupling constants and
the related powers of the scale . We will keep this con-
vention all over the article. The integration over the four-
momentum py, for each /, is performed to get rid of the con-
straint 8" (K; —X; p1)3. Using the rapidities and the transverse
momenta for coordinates of the different four-momenta,
Eq. (2.1) reads

1 1
LO _
w= > IN25 Q) N-Hn-N+3
{i}n-1€Sp

3(1\’—3) 2(N-3)¢

8 1%

4¢C;, Gy,

/d)zl di dPSY) | (%)

X8 ((fl +)22)J7E - E+> s <(J?1 - iz)%g - E)

N—1 I‘{' ;
_ _ T
X Ay (F)v-1) 8" 2( x_) My, P
1=3 !
(2.4)
with
N-1 N-1
K7 Kri .
Ep=) == coshOn,  E-=3 == sinh(n),
1=3 =3

2.5)

3 Notice that the definition of &(;1,_, given in Eq. (2.2) is not the stan-
dard definition of the partonic cross section because of the presence of
8"(K; — X; p1), the latter one is introduced to insure the conservation
of momenta.

@ Springer

and d PSE\',')_1 1 (X) denoting the phase space of the hard par-
tons which is given by

N—1 _
_ dx; _
dPSy) () =[] =5 dyd" K.
1

1=3 X

(2.6)

In Eq. (2.4), the quantity A;),_, ({x}ny—1) represents the
combination of partonic densities and fragmentation func-
tions for a specific partonic subprocess. We write it with the
following homogeneous notation

N—1
Apyyo (Fiv-n) = [ | D i M),
=1

2.7)

where the two new symbols (i) and {x}y—_1 stand for

» XN—1-
238

(On—1=i102i3 ... in—1, {X}y—1=1X1, X,...

Note that, in Eq. (2.7), not all of the quantities Dl.ll{ "(x;, Mlz)
have the same meaning. Firstly, the different energy scales
M have the following sense:

M forl=1,2
Ml:{Mfforl=3,...,N—1' (&
Secondly, we define

Hp - 2
F; " (X1, M=)
D% MYy = ———— forl=1.2,.... (210
X1

while for / = 3,...,N — 1, Difl’(yfl, Mlz) is the standard

fragmentation function D:l G, M 12,). Note that the division
by x1 x> resulting from the definition (2.10), comes from the
flux factor of the partonic reaction. The constraint on the
conservation of the energy and the longitudinal momentum
are eliminated by integrating on x| and x, leading to

B . _
o= 3 KD [dPS 0 Aw (Fxn
{”N*lesp
Nl g
<2 (Z 7) M, P e
=3
with
N-1 N-1
. Kri . Kri _y,
x| = - el Xy = - e (2.12)
= Wi = /s
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and are the bare partonic densities divided by x for/ = 1, 2 and
the bare fragmentation functions for/ =3,..., N — 1.
w1 1 g2 N7 2(N-3)e Injecting Eqs. (2.14) and (2.15) into Eq. (2.7), expanding
iz 7 ON-3 32 (2 7)(N—4)n—N+3 4G, Ciy and keeping only terms of order oz? and asl, we get
(2.13) B o
Ay ((XIv-1) = Ay, ((XInv-1) + ﬁ
Note that, although not explicitly specified, |M[1]N ] 1> is a

function of x;, y; and K7;.

In order to get the structure of the collinear divergences in
the initial and final state, let us recall the relations between
the bare partonic densities and the renormalised ones as well
as the relations between the bare fragmentation functions and
the renormalised ones:

— o 2 —
Df!r. M) = Df @) + 5= 3 [Hk,- (* :42) ® D;’} ).
k 2

JES)
fork =1,2and

- s 2 -
D (x, M) = D} (x)+£i > [H,-k (* A’;z)@:Df} (x).
T JESp k 1
(2.15)

for k = 3,..., N — 1. Both in Egs. (2.14) and (2.15), a
special notation is introduced for the convolution. To explain
it, let us consider two multivariate functions f(ai,...,ay)
and g(b1, ..., bg). We will denote the convolution of these
two functions with respect to the variables a; and b;

[f (a1, - ax—1. % agy1....an)
®g(b1, ..., bi—1,%,b11, .. -,bl()],7 (x)

Lz
= —f(al,~--,ak—1,z,ak+1,--~aN)
X

X
g<bl,--~,bl—1,E,bl+ls--~,bK>~ (2.16)

Note that we also use the following convention that if a
function /4 involved in the convolution has only one argument
we write in our special notation 4 instead of (). In addition,
the quantity Hy;(z, u*/M}) is defined by

2 2\ ¢
Iz o 4 p 1
H"( M2> P ()<M,§> T —e)

+ finite terms.
The quantities Pl-(j4) (z) are the one-loop DGLAP kernels in
four dimensions (cf. Appendix A) and the finite terms are
factorisation scheme dependent and they are zero in the MS
scheme used in this paper. In Egs. (2.14) and (2.15), DlH (%),

(2.17)

2 2 ~
X {Z |:Hi,j1 (* %) ® Aijigjpyn—t {X1%7 2 >!<}1\171):|2 (x1)
s

I=1 jieS,

2
+ Z Z |:H!k’k< ’M2> ® Agiligjon- (E|%e 2 %y 1)j| (Xk) ¢ -
JKESp f 1

k=3
(2.18)
In Eq. (2.18), we used the compact notation
(lik 2 jiIN=1 = Q10203 =~ ig—1 Jk ik+1--- iN—1,  (2.19)
(XX *}y_y = X1, X2, oo o Xe—1y *y Xkly <oy ANZT
(2.20)

The quantity A(i) v_1 ({x¥}n—1) is the combination of bare par-
ton densities divided by their arguments and bare fragmen-
tation functions, namely

N—-1
A(i)Nq({X}Nfl) = 1_[ DSII(JEZ).

=1

221

Injecting Eqgs. (2.18) into (2.11) and relabelling the partons
yields

LO _ (n) B () =
On = Z Ktlnlz /dPSI\?l—lh(x)

{iln-1€Sp

Ay o
x §n2 <Z fc) {A(i)Nl {x}v-1) ‘Mln[]l"*l |2
> 2
Qg Cil K
B el
»

®A(i\i/'jl)N V(XX sy 1)] () ‘Mlllz v 1|2

2
+ Z > [HM ( )@Aw owr (R %)y n} &)
f 1

k=3 jieS,

M- ) J (2.22)

This last equation gives the structure of the collinear diver-
gences for the initial state (the first term in brackets) and for
the final state (the second term in brackets) which are depicted
in Figs. 1 and 2.

2.2 NLO accuracy

It is well known that to reach the NLO accuracy, we have
to take into account the one loop virtual corrections to the

@ Springer
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Born amplitude M[;}, _, as well as the corrections originating
from the phase space integration of an on-shell extra parton
emitted by this Born amplitude, the so called real emission.*
Since the former corrections have the same kinematics as
the LO cross section, we will focus on the latter ones. Let us
consider the same hadronic reaction but induced by a partonic
reaction having N — 2 partons in the final state i| 4+ i —
i3+is+---+iy = [i]y. Letus denote i y the particle which
can be soft or collinear to the other ones. The matrix element
squared can be written as

N-2 N-1
M P =" 3 B (o) Eij + G™(py). (223)
i=1 j=i+l
where the squared eikonal factor is given by
Eyj = Di-Pj
Pi* PN Pj- PN
_ 1 Pi " Dj
Q%x2 y Pi- PN Pj- DN
— 1 /
= QZT%N E;;, (2.24)

with py = (cosh(yw), pr v sinh(yy)) in which py y is the
unit vector in the direction of p7 y and x7 y = pr n/ 0. The
functions Hgl)(pN) and G (py) are regular when py — 0
or when iy is collinear to another parton. This decomposition
is not unique but the soft and collinear limits do not depend
on this ambiguity. An arbitrary energy scale Q has been intro-
duced in order to use a dimensionless variable x7 y for the
integration on the transverse momentum of the particle iy .
It is obvious that the cross section for the real emission will
not depend on the choice of this scale.

After having taken into account the constraint on the
conservation of energy and longitudinal momentum, the
hadronic cross section for the real emission reads

O_Il}eal — Z Ki(lni)z /dPSX;),]h(x)
{iln-1€Sp
N—1 I}
« /dPS?G') 82 (Z % “3”)
1=3

x Agyy_ {x}v-1)
N-2 N-1
< | D0 D" HY (n) Ef+ x5y 026G (o) |

i=1 j=i+l

(2.25)

4 Note that new tree level channels might open up at NLO exhibiting
also collinear divergences.

@ Springer

where dPSﬁ(;) is the phase space of the parton iy divided by
x% n Which is given by

dPS\Y = dyy dxr y x50 doy (sin gy )" . (2.26)

The direct azimuthal angle of the vector pr y with a refer-
ence vector in the transverse momentum plane is generically
denoted by ¢ . This reference vector will be different accord-
ing to the integrands. In Eq. (2.25), the quantities x; and x»
are given by

N—1
K
X = |:Z LT +waNeYN:| =X t+owxrye™,  (227)

N—1 K
_ Tl -y -w | ¢ -y
Xy = e +wxrye =X)t+twxrye s

= Vs
(2.28)
where w = Q/./s and
2(N-2 ) (4—
(O _ 1 1 gs( ) [ (N=2) (=n)
ity = 9N-2 2 (zn)(N—B)n—N+2 4Ci| Ciz
x Q" V(n-2). (2.29)

In Eq. (2.29), V (n — 2) represents the solid angle volume of
azimuthal angles in a space of dimension n — 2, knowing that

2
= 2.
V(n) =D (2.30)

A word of warning about Eqgs. (2.27) and (2.28). Indeed,
we can get the impression that X; = x; but this is not the
case because the constraints on the K7 ;/x; are different from
those appearing at LO. The requirement that x; and x, must
be both less or equal to 1 fixes the bounds on the yy integra-
tion to

1—x WXT N
mealen< )’ meiHZhl(l A2>- (2.31)

2.3 Subtraction strategy

To start with, let us introduce some notations. We define
two sets: S; = {1, 2} which is the set of labels of initial state
partonsand Sy = (3,4, ..., N — 1} which is the set of labels
of hard partons in the final state. Furthermore, with respect
to this last integration (cf. Eq. (2.26)), let us introduce the
quantity 7 as

N-2 N-1

T:/dpsgc) YN fijonxrn. o) E; (232)

i=1 j=i+1
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with

Z K(n) H(")(pN) A(l-)N_]({X}N—l)

i1iz
[iIn-1€Sp

K
x 512 (Z -t pm) (2.33)

1=3

fijOn.xT N, dN) =

Then, the sum in the right hand part of Eq. (2.32) is split
into four parts:

T:[dPSE\',') Jr2(yn, xT N, ON) Ely

N-1
+ Z iGN, xT N, ¢N) EY;
i=3
N-1
+ Z LN, X7 N, ON) E;
i=3
N-2 N1
+ fijn, xT N, dN) Efj ¢ - (2.34)
i=3 j=i+1

The four integrands in the curly brackets of Eq. (2.34) are
denoted respectively T, 7@ 73 and T™  The splitting is
such that the phase space integration of the first term (7))
generates soft and initial state collinear divergences (ISR),
the phase space integration of the second and the third term
(resp. T® and T ®) generates soft, initial state collinear and
final state collinear (FSR) divergences and the integration
over the last one (T™) generates soft and final state collinear
divergences. Thus the hadronic cross section associated to the
real emission can be written as

oRedl = / dPS{) . (x) T + finite terms, (2.35)

where the finite terms are associated to the function
G™ (py) in Eq. (2.25).

In our strategy, the subtraction is performed only in some
regions of phase space like in some other subtraction methods
leading to more flexibility by avoiding large cancellations
between positive and negative weight events. So, the phase
space of the particle iy is split into two parts.

e Part I. The momentum py is located inside a cylinder
in transverse momentum around the beam axis of radius
prm- In this part, by definition pry < prm, thus it
contains the soft divergences, the initial state collinear
divergences and a part of the final state collinear diver-
gences. At this level, we have to specify the integration
bounds for the phase space of i y. Inside the cylinder, we

define

T = f dps\Y T®, (2.36)
in

where the symbol [, dPS(") is understood as

/ daps’
mn
XTm -2 s . 5 YN max
= [avrnaie [Cdow i [T dy.
0 0 YN min
(2.37)

The subtraction is done, at the integrand level, by adding
and subtracting a soft contribution and a collinear one.
Schematically, we write

4
i k k) soft k) coll
oh = [ ars 0 {3 [ -7 - 2]

k=1

4
+ Z |:T(k) sott (k) bO]l:I } (2.38)

k=1

Note that the Eq. (2.38) gives the impression that the
subtraction is not fully performed at the integrand level
because the symbol 7}3‘) already contains an integration
on py.As we will see later, to perform the analytical inte-
gration of the subtraction term, it is sometimes preferable
to modify the integration bounds on yy. But in this case,
it is always possible to make some changes of variables
in order to have a common integration for the Tir(lk) and
the subtraction terms. Note also that the terms soft and
collinear for the subtraction terms need some explana-
tions. We call 7;(1/() ft the quantity ’T in which the
variable which drives the energy of the partlcle iy is set
to zero, it will contain the soft divergences as well as the
soft-collinear ones. 7, ! i the quantity Z,*’ in which
the variables which drlve the rapidity and the azimuthal
angle of the particle i y are set to some values at which the
integrand diverges but where the soft part has been sub-
tracted; it contains only the pure collinear divergences.
Thus, the ke point is to be able to construct for each
integrand 7; () (fork =1, 2, 3, 4) soft and collinear con-
tributions Wthh have the same divergences as the original
one, i.e. the first term in the curly brackets of Eq. (2.38)
is free of soft and collinear divergences and can be safely
integrated numerically in four dimensions. In addition,
they have to be simple enough in order that the phase
space integration over py can be performed analytically.
The details of this construction for these subtraction terms
will be given in the next section, the way we build them
will depend on the index k. This can be viewed as a loss
of generality compared to Ref. [43] for instance but we
believe that it is more efficient, especially for the soft
parts, by avoiding unnecessary cancellations.
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e Part II. The momentum py is located outside this cylin-
der. Then, the phase space is split into N — 2 subparts.
Namely, N —3 cones, denoted I'; withi =3,..., N—1,
in rapidity and azimuthal angle, each of size Ry,, around
the different N — 3 hard outgoing parton directions, i.e.
I'i = {pry > prm;din < Ru} and the remain-
der {pr~ > prm;din > Rum, Yk € Sy}. The quan-
tity dy,, represents the distance in the azimuthal angle
— rapidity plane between the partons i; and i, that is
t0 say digm = v/ (% — Ym)? + (¢ — ¢m)>. So, Part Il is
formed by N — 3 divergent regions containing only one
type of final state collinear singularity and a region which
is free of divergences corresponding to parton iy located
outside the N — 3 cones I';. For part II, we define

T = / dps§y T®), (2.39)
out
where now the symbol || dPS;’,l) stands for
/ dps\
out
T XT N max
E/ don (Sil’ld)/v)izg / deNle ~2e
0 XTm
YN max !
/ dyn. (2.40)
YN min

where X7 N max 1S the maximum value taken by the vari-
able x7 y. Note that this value depends on ¢y. Outside
the cylinder, the hadronic cross section can be written as

N—1 4
o= [ ans o0 [ 7 - X 3
k=1 i=3 k=2
N—1 4 _
+ Z%ﬁﬁ’”m“}. (2.41)
i=3 k=2

In this case, we need to construct subtraction terms only
for the final state collinear divergences, this is the reason
why the summation starts at k = 2 in the subtraction
terms. Note that we put another exponent for the quan-
tity 7,57 ¢! o indicate that it depends on the direction
around which a collinear cone is drawn. Again, these sub-
traction terms are such that the difference of the two first
terms in the curly brackets of Eq. (2.41) leads to a finite
contribution and the integration over py inside the cones
of the subtraction terms can be performed analytically.
Their constructions are postponed to the next section.

The hadronic cross section is obtained by summing the
two contributions inside and outside the cylinder, that is to
say

Real out

oReal — 5 | 5OU | finite terms. (2.42)

@ Springer

We can split URC“I into two parts one which contains no diver-

gences and can be treated in four dimensions,

4

O_]I_ilnite — /dpsg\‘}llh(x) {Z I:Zlgk) _ 7:]51() soft Zr(lk) coll]
k=1

N—1 4
+ Z 7;(ukt) Z Z o(ukt'l)m“} + finite terms,  (2.43)

k=1 i=3 k=2

and the other which contains the soft and collinear diver-
gences explicitly given as poles in the regulator &

4
o = [arsi o [ [0 7]

k=1

N—1
(k,i) coll
LYy }

i=3 k=2

(2.44)

We notice that the obtained results can be easily used to get
the cross sections for reactions where one of the partons does
not fragment, the latter one can be a photon or a jet. This case
will be discussed in Sect. 5.

3 Detailed calculation of the subtraction terms

3.1 Inside the cylinder

In this section, we show how to build the different subtraction
terms inside the cylinder for the different quantities Tir(lk) and

perform explicitly their integration over py analytically.

3.1.1 Pure FSR: bothi and j belong to Sy

Construction of the subtraction terms Let us recall the
definition of the quantity 7; @),

XTm T
7154)=/0 dxr N Xp N 25/0 doy (singy) ¢

YN max N-2 N-1
/
x/ dyy Z Z JijON. X1 N, ON) Ejj.
YN min i=3 j=i+l

@3.1)

The subtraction term for the soft part of 7;1(14) can be built as

XTm T
4) soft 1-2 . -
T =/0 dxr N X7y Sfo dey (singy) ¢

N-2 N-1

+00
xf dyn Z Z fijn, 0, ¢N) Ej;.
- i=3 j=i+l
(3.2)
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Several remarks can be pointed out. First, the quantity
fij(yn, 0, @) does not depend any more on either yy or ¢
because any dependence on yy or ¢ is multiplied by x7 .
Thus, this quantity can be replaced by f;; (0, 0, 0) and can be
factorised out from the integral. Second, in the limit where
XT N goes to zero, the integration bounds on the variable yy
are sent to oo (cf. Eq. (2.31)). And finally, the quantity E’ i
does not depend on x7 y but depends on yy and ¢ . Defining
the soft integral as

" T 5 +o00
J;;H:/ dey (siny)~ 8/ dyn Ej;. (3.3)
0 —00
the soft subtraction term becomes
- N—2 N—1 ke
T =3 3 ﬁj(o,o,O)J;f“fo dxrnxp 28 (3.4)
i=3 j=i+1

However, the quantity 70" — 7. **™ i still divergent in
the collinear regions py//p; (fori = 3,..., N — 1) and
xr v # 0. To get rid of these divergences, we have to intro-
duce a new subtraction term 7;(14) coll o build it, let us restart
from Eq. (3.1) and write E;j as

1 1
Efj = gij(yn, dN) < — + = > (3.5)
Pi - PN Pj PN
with
Pi-Pj
&ijON,ON) = —————— =g;i(yn, PN). (3.6)
Y (ri+pj) v
Inserting Eq. (3.5) into Eq. (3.1) leads to
7;}(14) _ 7;‘54) soft
XTm 12 b . 2 YN max
=/ dxrnxpy °° / doy (singy) =° / dyn
0 0 YN min
N-1 R
X ; P [Li(yN,xTN,de) - Li(}’NJPN):I, (3.7
where
N—1
Li(yN,XT N, ON) = Z fiiON. Xt N, ON)&ii (YN, DN)
j=itl
i—1
1
+ iji()’viTN»¢N)gji()’Na¢N) e’ (3.8)

j=3 !

and

N-—1
Liyn.on) = | Y £ij(0,0,008; (yn, ¢n)

j=i+1

Fig. 1 Labelling of parton radiation in the final state. The variables
Xk, Zx and xj are defined as follows: Ky = xxpk, px = zkqx and
K = Xrqk, where pi, gk, and Ky are the four-momenta of the partons
ix, jk and the hadron Hy, respectively

i—1 1
+ Y £5i(0,0,0) gji(yn. ¢v) | —- (3.9)
=3 DPri

In Egs. (3.8) and (3.9), we took the convention that if the
lower bound of the sum is greater than the upper bound,
then the sum gives zero. Furthermore, for each term of the
summation over the subscript i, a collinear approximation
pn = (1 —2z;)/z; pi is done in the term enclosed by squared
brackets in Eq. (3.7). The variable z; represents the ratio of
the energy of the parton after the emission of iy over the
energy before the emission, cf. Fig. 1, yielding the collinear
subtraction term

_ Zi)71728

Zim i

4) coll — i
7’1( )¢ 2 X %8 JCOH / : Zi2€ (1
=3

11—z ~
X[Li (yi, - lXTi,O>—Li(yi»0)]~ (3.10)

1

The collinear integral J°!', appearing in Eq. (3.10), is defined
as

+00

s
Jeoll = / d (singy) 2 / dyy S50V
0 —00 Pi * PN

(3.11)

The details of the computation of J!! are given is Appendix C.
Concerning Eq. (3.11), two remarks are in order. First, to sim-
plify the analytic computation of J°!! the bounds of the yy
integration are sent to infinity. This is justified by the fact that
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the collinear divergence is at yy = y; and not at the bound-
ary of the integration. The choice of these bounds washes out
the dependence on i in the final result of J<°!!, Second, in the
collinear subtraction term, we choose to multiply the inte-
grand by a factor cos ¢, it does not change the divergence
which is located at ¢y = 0. If this factor is not present,
once the analytical computation over ¢ and yy has been
performed, a global factor ['>(1 — &)/ (1 — 2¢) appears,
which is different from the global factor found in the soft
case or if i or/and j belong to set S; (see below), namely
I'2(1/2 — &)/ (1 — 2¢). To factorise out the latter, the for-
mer global factor has to be expressed in terms of the latter. It
gives some spurious factors which blur uselessly the formulae
obtained at the end. Note that, in the collinear approximation,
L;(yi, (1 —z;)/zi x7i,0) and ii(yi, 0) become simply

l_
L; (yh - Lxri, ) Z fij <)’l xTuO)
ol 'l

Jj=i+l1
xr,,o>, (3.12)

+ijl (YM

l

—1
Z 17 (0.0,0) + Z £ji (0,0,0).

j=it1 j=3

Li(yi,0) =

(3.13)

Analytical integration of the subtraction terms The gory
details of the computation of the two integrals JisjOft and Jeoll
are given in, respectively, the Appendices B and C. Let us
mention the final result:

r2(f—e) [ 2 - -
soft _ A—2¢ 2 _z ) 2 ..
Joft =2 Fﬁfﬁj{g+2m@%)gm(wﬁ
+a 2} (3.14)
—2¢ 12 L _
gon _ 22 T —e) (3.15)
—e T'(1—=2¢)

where cfl-j = cosh(y; — y;) — cos(¢; — ¢;) and yi*j =y —
v;)/2. With these results, the analytical integration over py
of the soft subtraction term can be performed easily yielding

; F2 (_ N-2 N-—1
7(4)50t — 2—1—28 —28 0.0,0
" F(l 28) o 123:]214:-1 flJ( )
2 2 . .o
X {8—2 — S In(2dyj) +1n? (2dy) — 40y} }

(3.16)

while the analytical integration of the collinear subtraction
term leads to

@ coll _
,Z;n CO!
—e I'(1—-2¢)

l

2 2 N—1 1
2~ sr‘( —¢) e /‘ dzi 28 (1 — )12

i=3

@ Springer

(3.17)

11—z ~
X | Lj Vis T — xri,0) = Li(vi, 0) [,
i

where z;m = x7;/(x17; + X7 m).

It remains to express the coefficients of the collinear diver-
gences when py // p; in terms of the “plus” distributions. For
that, note that the structure in z; of Eq. (3.17) is of the type

1 di 1— ; —2¢
Alzxﬁaf - )(z—z> [F(zi) = F(D].

zi (1 =z
(3.18)
It can be further re-written as
1
_ dz; 1 In(1 — z;)
Al =x 25/ —1-28|: —2¢ i|
1 Ti i Zi i 1_Zi l_Zi
x [F(zi) — F(1)]. (3.19)

Note that, as will be clear later, the term zl.z ¢ does not need to
be expanded around ¢ = 0 because it drops out after a change
of variables to recover the collinear structure, cf. Appendix E.
A1 will be written in terms of the “plus” distributions which
is defined as

1 1
fo dx (g() s F(x) = /0 dx g(x) (F(x) — F(1)),
(3.20)
where g(x) is a function singular at x = 1 such that (1 —
x) g(x) is integrable and F(x) is a regular one at the same

point.
Using that

/1 dzi 5, F)
Zim i ! (I_Zi)-‘r
=/1 dzi 5. F(z) = F(1)+F(1){ ( Zim )
im G K -z 1 —2im
JT
6

1
+28|:_ 5 ln (zim) + Li2(zim) —

+1In(1 —zim) 1H(Zim)]}7 (3.21)
and
1 . .
/ dizgg <ln(1 z,)> Fo
Zim <i 1_Zi +
1 g, Ny
=/ A 20 FG)=F() |y
Zim i 1
1 72
+ F(1) { In? (1 —zim) + Liz2(zim) — ?} (3.22)
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the A; term becomes

1
_ dz; F(z;)
A= | [ S TG0
Zim Zi ( Zl)"r

1
dz; In(1 — z;
_28/ —Z" z,-zs (—i_ %l)) F(zi)
Zim <i Zi +

+F(1)|:ln( “im )—i—slnz(—zim )“
1_Zim ]_Zim

Making the appearance of the “plus” distributions gener-
ates some soft terms. Therefore, we will group the results
of the analytical integration on x7 x, ¢ and yy of the soft
and collinear subtraction terms into the quantity Tir(14) div

(4) soft (4)coll _ . .
T, +7, yielding

(o)
T(l—2¢)

N-1 ] 2¢

1 9 / dzi  z; ( 11—z )
P E X775 — —— Fi | yi» xri,0
{ e o {m o d—zp 0T

i=3

U dz; In(l —z; 11—z
—28/ %Z?S (%) fi()’i, : lei,0>i|
zim Zi i /)4 Zi

N-2 N-1

+>° ) £i(0,0,0)

i=3 j=i+1

(4) div -2
T = g2

1 1
X [87 -2 InQ2x7; x7 j dij) +In*(xr ;) + In? (x7 ;)
- 1 - 2
+ 2In(erm) InQ2dy) + 5 In*@dy) —2 () ] } (3.24)

where, to lighten the notations, the following quantity has
been introduced

N—1
Fion-Xr N ¢N) = Y, fijON. XT N, ON)
j=i+l

i1
+ Y fiiON-XT N BN).

j=3

(3.25)

3.1.2 Mixed terms ISR and FSR: i belongs to S; and j
belongs to Sy

This case is a bit more complicated due to the appearance
of initial and final state collinear divergences. Let us treat in
detail the case where i = 1. The case where i = 2 can be
obtained from the former one by changing the label 1 into
the label 2 and the sign of the rapidities.

Construction of the subtraction terms Let us remind the
definition of 7;1(12):

XTm T
2 11— . _
Tié)z/ dxmxr}v“f dg (sin ) 2
0 0

N—-1

YN max ,
x/ dyn Y fijon.xrN.¢8) Ef;. (3.26)
YN min j=3
The yy integration range is split in two parts:
YN max YN max Vi
[ = [ [ an (3.27)
YN min Y YN min

and the change of variable Ay = yy — y; in the first (respec-
tively Ay = y; — yy in the second) integral of the right hand
side of Eq. (3.27) is performed. This leads to

XTm g
2 —1— . _
72 = [ anr a0 [ ey singn
0 0
N-—1
X
=379

e
X
cosh(Ay) — cos ¢y

AYy
dAy f1j(yj + Ay, x7 N, dN)

Ay

N-1 .AvY,

+ E / dAy f1;(yj — Ay, xT N, ®N)
— Jo
j=3

e Ay

x cosh(Ay) — cos gy

(3.28)

where AYy = yymax —yj and AYy = y; — YN min. In the
limit x7 y — O, the two bounds A Y, and AY,, are sent
to 400 (see Eq. (2.31)) and, because of the factor e in its
integrand, the first integral in the square brackets diverges in
this region in addition to the final state collinear divergence
at Ay = 0 and ¢y = 0. The divergence at Ay = +o00 origi-
nates from the collinear divergence when the parton iy flies
along the beam direction. To disentangle these two diver-
gences, we use a partial fraction decomposition to write 7;1(12)
in the following form:

XTm T
Y = / dxr y xpy 2 f dgy (sin gn) >
0 0
N—-1
x |2 f
s
j=370

dAy f1j(yj + Ay, x7 N, dN)
e A —2 cosgn

x cosh(Ay) — cos pn

AYy
dAy f1j(yj + Ay, x7 N, ¢N)

5 For the sake of simplicity, it is assumed that v; belongs to the range

[ YN min» YN max], that is to say that Ay > 0. If it is not the case, no
collinear divergence shows up.
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N—-1 AY,

+ E / dAy f1j(yj — Ay, xT N, dN)
— Jo
j=3

e Ay

x cosh(Ay) — cos oy

(3.29)

Then, introducing the change of variables Ay = In(1/¢)
leads to

XTm e
=2 [ vl [ oy Ging

0
N—1 1
dt 1
X ;/EMMTJCU ()’j‘i‘ln(?),xTN,CbN)
1

1
/ dr fij <yj+ln(—>,XTN,¢N)
MYy t

t —2 cosoy
X
t24+1—2¢ cosoy

N—1 1 1
Ay, —n(-=
+;/;Mmdff1] (y, n(t>,xTN,¢N>

t
X
124 1—21cosopy

J=3

(3.30)

The subtraction terms for the last two terms of Eq. (3.30) will
be constructed, simply, by sending A Y,,, and A Y}y to infinity
and taking the function fi; at Ay = 0 and ¢y = 0. Let us
now focus on the first term of Eq. (3.30). The key point is that
exp(—A Yys) depends on x7 n in a complicated way. It will
thus be replaced in the construction of the subtraction term
by the expression exp(—A I?M) =x7 Ny exp(y;)/(1 —X1)
which goes to zero at the same speed as exp(—A Yys) when
xr N — O but is a linear function of x7 y. Let us consider
the quantity

=

-1
7@
in T 2

N

~
Il
(o8]

Hm —im2e [T . 2
A dxr N Xy A don (sinpy)

dt 1
o P B VA BUA L el R

1-x;
(3.31)

—

The order of integration over the variables x7 5 and the ¢
will be exchanged in Eq. (3.31). The structure of ’2;1(12)/ with
respect to these two variables is of the type

Structure of 7}1(12) !

. XTm _1-2¢ 1 d[
= dxr N X7y — F(@,xrn), (3.32)
0 x7 N Bij

@ Springer

where B1; = w exp(y;)/(1—x1). This change of the integra-
tion order leads to a dichotomy of cases. This can be under-
stood by remembering that when the fraction of 4-momentum
X1 or x3 goes to 1, there is almost no room to emit a soft gluon,
such that the limiton p7 y due to kinematics becomes smaller
than the size of the cylinder inducing this dichotomy.

1) x7 m < 1/B1; This case yields two terms and the structure
of Th(lz) "after a change of variable x7 y = z ¢ in one of them,
becomes

Structure of 7;1(12) !

B1j XTm 1/B1;
:/ dri~'172¢ / dzz "2 F(1, z1)
0 0

1 XTm
dt —1-2¢
+ — deNxTN F(t,xrn). (3.33)
Bijxrm [ JO

2) xym > 1/pB1;. This case generates only one term and
by changing the variable x7 y = zt, the structure of ’ZI%’
becomes

Structure of ’];1(12)/

1 1/B1j
=/ dri~172¢ / dzz 722 F@t, z1).
0 0

Note that expressing the components of the four-mome-
ntum py in terms of the variables z and ¢ leads to

(3.34)

(3.35)

By inspecting Eq. (3.35), itis easy to realise that the vanishing
of the variable z leads to the soft limit while the vanishing of
the variable ¢ leads to the collinear limit py//pi. Indeed, in
the limit # — 0, the four-momentum py becomes

py =zeV % (1, 0, 1) , (3.36)
such that py is collinear to K. The four-momentum p; of
the parton i is p; = x1 K1, the four-momentum of the parton
jriszy x1 K1 = x1 K1, cf. Fig. 2. Thus, the momentum py is
equal to (1 —z1) x; K1 = (x; — x1) K and from Eq. (3.36),
xireadsx; = x; +zwedi.

All this preliminary discussion yields the construction of
the subtraction terms. The one for the initial state collinear
divergence will be constructed from Eq. (3.33) or Eq. (3.34)
as

(@) coll ini = [ . e [YPY
Ty =2 E / don (singy) / dzz
— Jo 0
Jj=3

. . 1 B1j XTm e
X (ffj(z)—fl_,-(o)) [®<E —XTm> /0 drt~172

J
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Fig. 2 Labelling of parton radiation in the initial state. The variables
X1, 21 and x; are defined as follows: p; = x1K1, g1 = z1p1, and
q1 = X1 K1 where p1, q1, and K are the four-momenta of the partons
i1, j1 and the hadron Hj, respectively

1 1
+0 (me - —) / dtt’lfzs] )
Bij/) Jo

In Eq. (3.37), flcj (z) corresponds to the function fi;(yw,
XT N, ¢n) in which all the scalar products containing py
are evaluated in the configuration where py//pi, that is to
say by reading the components of py in Eq. (3.36). It is
easy to realise that, with respect to the variables describing
the phase space of the particle iy, it is thus a function of z
only. Note also that ffj (0) corresponds to f1;(0, 0, 0). For
the final state collinear divergence, the subtraction term can
be read directly from Eq. (3.30):

(3.37)

N—
Tm
(2)coll fin __ 2 : —1-2¢
7;r1 =2 /0 de NXT N

x [f1jj, xr . 0) — £1(0,0,0)]
x / " dw (singy) 2
0

fl 2 cos oy
X dt
o t24+1-—2tcosgy

TR 1-2

— co &

=2 J [) deNxTN
j:

x [f1j (. xr N, 0) —

=

w

f1j(0,0,0)].
(3.38)

The subtraction term for the soft divergence can be con-
structed by looking at Eqgs. (3.30) and (3.33) (or (3.34)) as

N—

(2) 50ft Z

j=3
*T'm ! 2 cos
X{/ deNxT}st/ dtz—(bN
0 0 t“+1—2¢ cospy

1 BijxXTm 1/B1j
+ O (— —me> |:/ dtt_1_28/ dzz 7%
Bij 0 0
1 X
dt Tm
+f — dzz_l_zs]
Bijxrm L JO

I Yy
+ @(m - i) / dtz‘l‘“/ ! dzz—l—zf}, (3.39)
Bij/) Jo 0

Analytical integration of the subtraction terms The ana-
lytical integration of 7, %1, (D collint 5 q g collin o

easy to perform and the results are

7(0,0,0) / i doy (singy) ¢
0

N—1
8

,Z;r(12)soft _ 2725 F(l =

_ 1
f1j(0,0,0) x;%¢ {?2
Jj=3

—l% In(B1j xTm) +© (me - ﬂi) In?(By; x7 m)} . (3.40)

1j

T collini _ _5-2¢ r’ (3 —e 1
m (l—2¢) ¢
= ]/ﬂ]] —1-2¢ - -
<2 /0 22 £ - £50)]
1 . 1
x| © ﬁ_me Brjxrm) "+ 0O xrm—ﬂT
j j
(3.41)
r2(d—e 1 '

(2)coll fin __ e
,Z;n =-2

I'(l—2¢) ¢

&

XT'm
x fo dxr n xp 5 2¢ [f1;(vj. x7 N, 0) = f1;(0,0,0)].
(3.42)

In order to make the “plus” distributions appear explic-
itly, the following changes of variable z = (x1/z; — X1)
x exp(—yj)/w, respectively xry = (1 — z;)/zjxT,
are applied on the terms containing an integral over z in
Eq. (3.41), respectively over x7 y in Eq. (3.42). Let us discuss
in detail the first change of variable. The terms containing an
integral over z in Eq. (3.41) are of the type

(1-%1)e i o
/ dzz7 "2 [G(2) — G0)] = Ay, (3.43)
0

After the first change of variable, it becomes

AN —142¢
Ay = dzy z) (1
w %

x (F(z1) = F(1)),

Z1)7172s

(3.44)
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with F(z1) = G(x1 e /o (1 — z1)/z1). Making explicit
the appearance of the “plus” distributions, with the help of
Egs. (3.21) and (3.22), leads to

s ()21 e—yj)% { ldﬂzh F(z1)
: ® o L (I —zy
Ld In(1 —
—25[ = e <—§_ Zl)) F(z)
x <1 21 +

+ F(1 [m( i >~|—811’12( i )“ (3.45)
l—xl 1—x1

As in the preceding case, we will group the divergent parts
because the evaluation of the “plus” distributions gener-

ates some soft terms. For that purpose we define 7; ' @div _
(2) soft (2) coll ini (2) coll fin
T AT, + T

. Thus, using the result given
by Eq. (3.45) and the one associated to the change of vari-
able x7 y = (1 — z;)/z; xr; (cf. Egs. (3.21) and (3.22)) and
neglecting terms which vanish when ¢ — 0, the divergent
part reads

2 (1
sy _ 52 T2 (3—¢)
in r(—2e)
N-1 e 1-z
y _x@, y]) -2 1dﬂzzgf11( Z z1>
= oo (=2

1 - —_ v
dz In(l —z x1e Vi 1l—z
+2/ 1 ( ( 1)) ffj( 1 1>
@ 2l 11—z ® 21

1 U dz, Sij (yj, xr,,O)
__x—25/ 22 2. j
Zjm

zj (1—zj)t

ldz; In(1 — z;

-2 Zj 2 n(l —z;)
+2ij8/ sz€< 11—z, )
Zjm J J =+
1—z; . 1 1
Xflj (yjs Jijs())_flL](O)_ [__
j & &

+1In (x_—l e me)
w

— (T(}El,yj) +1n2(me))

X7 XT
+ ij {ln <L) + ¢ In® <L>}i“ , (3.46)
XTm XTm
with zjm = x7;/(x7 j + X7 m),
X1 XTm (1_21)37"j
xGryp = | G T ATm = o (3.47)
e B e S U=ipe™ ’
G xrm > S
and
T (x1,y;5)

@ Springer

1n? (2 ) +2 InGer )
= x In (%) —lnz(XTm) if XTm < % '

2 (F1e
In (x‘i) )

Let us finish this part by the following remark. The
dichotomy of cases yields the two conditions x7, < (1 —
x1)eYi/wand x7 > (1 — X1) e/ /w. For the case 7;1(13)
the conditions would have been x7, < (1 — X3) ¢’/ /w and
Xrm > (1 — X2) €7 /w. For practical applications, in order
to avoid numerous cases, the value of x7 1, can be adjusted in
such a way that the condition x7 1, less than (or greater than) is
always true irrespective of the index j. Since all the final state
hadrons are detected, their rapidity y; for j =3,..., N — 1
must be in the range ymin < y; < Ymax Where ymin and ymax
are determined by experiments. Then, defining the rapidity
yum as max(| Ymin|, |ymax|), we have that

(=% e

if x7m > =

(3.48)

e < eV Vje(3,4,...,N—1}. (3.49)

Thus, if on one hand, we demand that x7 , is chosen as

| — max(iy, &
oy = 4 LWL X))y, (3.50)

w

with 0 < A < 1, then the inequality

. ((1 —xpe (11— iz)eyj)
X7 m < min

s
w w

Vje(3,4,...,N—1}, (3.51)

is always true. On the other hand, we could have chosen for
XTm

1 — min(¥, %2)

XTm=A—— M, (3.52)
1)
with A > 1 which would have led to the inequality
<(1 —xDe i (1— iz)é”)
XTm = Max s
w w
Vje{3,4,...,N—1}. (3.53)

These two definitions of x7, (Egs. (3.50) or (3.52)) will
clearly reduce the number of cases to deal with.

3.1.3 Pure ISR: both i and j belong to S;

Construction of the subtraction terms Let us remind the
quantity ’Z;T(I])

XT'm bid
7= [ s [ don Gingn
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YN max
X / dyn fi2(yn. x7 N, dN) El5. (3.54)
y

N min

The squared eikonal factor appearing in Eq. (3.54) is par-
ticularly simple since, indeed, E{, = 2. The yy integration
range is split in two parts

YN max YN max Yo
/ dyn = / dyn + f
YN min Yo YN min

where yy is arbitrary (and can be chosen as 0 or any of the
vi). The change of variable Ay = yxy — yo (respectively
Ay = yo — yn) in the first (respectively the second) integral
of the right hand side of Eq. (3.55) is performed leading to

dyn, (3.55)

T m T
T =2 /0 dxr y xg 2 /0 depy (sin gy) 2
AYy
X [[ dAy fiz(vo + Ay, xT N, ON)
0
AY,,
+/0 dAy fi2(yo — Ay, xT N, ¢N)] . (3.56)

The two terms in the squared brackets in Eq. (3.56) have
the same form as the first term of Eq. (3.29), thus the way to
construct the subtraction terms will proceed in the same way.
Since, in this case, there are only divergences when py//p1,
pn//p2 or py = 0, the subtracted term can be built as

1/B
(I)colllm —2 Z / den (singn)~ 2 / 0 d227172€
We We 1
x (1@ -1 o) [@ (—ﬂm —m)

BloXTm 1
X / dit™'7% 40 (xrm — —)
0 Bio

i
x/ dtt*‘*%] ,
0

2 T
T =2 £12(0.0.00 Y fo d (sin gy)~2*
=1

1 Bio X7 m 1/B10
ol [ [
Bio 0 0
1 dt [*Tm 1
+/ — dz 171728] +0 (XTm - 7)
Boxrm L JO Bio

1 1/Bio
[ [P
0 0

where the function fl(zl)c, respectively f1(22)c’ corresponds
to f12(400, 0, ¢pn), respectively fi2(—o0, 0, ¢n), that is to
say to the function f12(yn, X7 N, ¢n) in which all the scalar
products containing the four-momentum py are evaluated
using PN = ze Q/2(1, 0, 1), resp.

(3.57)

(3.58)

py = ze 0 Q/2(1,0, —1). In addition, By is defined
as foo = o exp(—yo)/(1 — x2).

Analytical integration of the subtraction terms The inte-
gration over the variables z, ¢y and 7 can be easily performed.
But again, we want to express the divergent part in terms of
the “plus” distributions. We thus introduce the changes of
variable z = (¥1/z1 — X1) exp(—yp)/w in the first term of
the sum in Eq. (3.57) and z = (x2/22 — xz) exp(yp)/w in

the second one. Introducing 7,(" " = (D30t 7 collini
leads to
1 . -
F0dv _y2. TG —8) [ x Gy
m
'a—-2e) &

1 (De (x1e7%0 1—z
dZ] 2 12 w 21
X —Z
X1

21 1 (I —z+

1 -y
d In(1 — Y1 —

+2/ 71 (n( Zl)) f(l)c(xle Zl)
7 2 1 —2z ® Z]

_ 2)c (X220 1—27
X (X2, —y0) %€ /ldzz 2, /12 ( © Zz>
- — 2
€ % 22 (I -2z2)4

Vdzy (In(1 —2z2) Qe (%26 1—2,
+2 o\ T 12
% 22 l—z /4 ® 22

1 1 X1X2
— f12(0,0,0) = | = —+In{ —5
€ 3

—¢ (T(il, yo) + Y (x2, —yo)ﬂ }

3.2 Outside the cylinder

(3.59)

In this case, x7 y cannot reach zero (xy y > X7 m) such
that only collinear divergences remain when the parton iy
is collinear to the final state parton i ;. The subtractions are
performed inside the cones of size Ry, in rapidity —azimuthal
angle drawn around the direction of each hard parton of the
final state.

3.2.1 Pure FSR: both i and j belong to Sy

Construction of the subtraction terms The starting point
is the following formula

@ T ) o XT N max 1-2e
,Z)ut = dey (sinpy) dxr N Xr N
0

XTm
YN max
X / dyN
YN min

Pi Pj
PT; (pi +pj)- PN’

XT N, PN)

(3.60)
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where the function F; is defined in Eq. (3.25). Inside each
cone I'; around the 3-vector p;, the subtraction part is given
by

x/
4 11 T N max
7;(ml)co / dXTNXTN ¢ Fi(i, xr N, 0)
X

Tm

d d —2¢
// b dyw (o) )2+¢N

(3.61)

The constraint d;jy =

/ _ 6
where X7y = XT N max|gy=0-

i —yn)2+ (/)12\, < Ry, complicates the analytical com-

putation of a collinear integral of the type J°!l. This is for
this reason that, in Eq. (3.61), the denominator cosh(y; —
YN) — cos ¢ appearing in the integrand, as well as the mea-
sure (sin ¢ ~N)"2E are replaced by the first non-vanishing term
of their Taylor expansion when yy — y; and ¢y — O.

Analytical integration of the subtraction terms The
details for the integration over ¢ and yy are given in
Appendix D. Since there is no soft divergence, we set
RN = N T KD collin order to keep the same notation
as in the “inside the cylinder” case. Note that, as explained in
Appendix D, the size of the cone Ry, is not a fixed value but
can be squeezed by the kinematics. Using the result of this
appendix, the divergent part coming from the integration of

the subtracted term is

2 (1 -2
v _,2: T2 (3—8) Ry
out I(l1—2¢ —¢

N—-1 X/TN
max —1-2¢
<y :/ dxr y x5 528 Fi G . 0),
7 m

(3.62)

Then, making the change of variable x7 v = (1—2z;)/zi x7i,
Eq. (3.62) becomes

2/(1 -2 N 1
TWdiv _ 5-2e r (f _8) Rth ‘ —28 / dZ, 25
Out F(l - 2 6) 78 Zi min

1 In(1 — z; 1—1z
><|: —2e n( Zl)]ﬁ‘(%w sl xri,0>,

1—z 11—z Zi
(3.63)

with z; min = X7 /(X7 i + X7 y 10 - The determination of the
lower bound on the z; integration follows from the fact that
x1 and x7 must be less or equal to one. While the upper bound
of the z; integration comes from the fact that x7 y > X7,
thatis to say zjm = x7;/(xT; + X7 m). Since the integration

6 Note that the exact value of X7 ymax (OF x/T N max) depends on the
kinematics of the outgoing hadrons and thus is process dependent. It
will not be given explicitly.

@ Springer

variable z; runs between z; min and z; i, which never reaches
1, Eq. (3.63) can be written as

2 (1 —2g& N—1
T@Wdiv _ _5-2¢ r (§ — 8) Ry i —2e

T-20) & &7

X/Zimﬁzzs 1 o, In(1 —z;)
i G LL—2i)y l—z /4

x F; (y,, I-a xm,0>. (3.64)
Zi

3.2.2 Mixed terms ISR and FSR: i belongs to S; and j
belongs to S

Construction of the subtraction terms In this case also, we
treat in detail the case where i = 1 and we define

@_ [T . e [TNma 1—2¢
Tow = | don (singy) dxr n X7 5
0 X

Tm
YN max N-1
/
x/ dyn Y fijon.xrn.¢8) Efj. (3.65)
YN min j=3

Since x7 y cannot reach zero, only subtraction terms for final
state collinearity are necessary. Thus the collinear subtrac-
tion term will have the same structure as in the “pure FSR”
case, the only difference will be the coefficient in front. The
required subtracted term is

N—-1

co x/TNmax
To(uztl) ! / deNxTN Zfl,(yJ,XTN,O)
doy dyy (pn) 2 ——
/ / (v >2+¢N
(3.66)

Analytical integration of the subtraction terms From the
Eq. (3.64), we immediately get that

T(Z)dlv__ e =2
out I(1—2¢) ¢ : Ti

X/ijﬁzz-s 1 o, (ln(l—zj))
Zjmin <J Pl =zj)+ l—z; /4
1—-z;

x fij (yj,zjTjﬁ).
J

3.2.3 Pure ISR: both i and j belong to S;

Let us define the quantity 7_ (D

out

m_ [" , Lo [T Nma 1-2¢
7;ut = d¢y (singy) dXTNxT
0 x

Tm
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YN max
X / dyn fr2(n. x7 N, ON) Els. (3.68)
y

N min

The integration variable x7 y cannot vanish thus the right
hand side of Eq. (3.68) does not diverge and there is nothing
to subtract.

4 The divergent terms

After having collected all the divergent terms from the ana-
lytical phase space integration on py of the different counter
terms, we have to show that the ones of collinear origin are
absorbed into the redefinitions of the PDFs and the FFs and
the ones of soft origin cancel against the divergences coming
from the virtual contribution. This implies that the coeffi-
cients H;; have to verify some conditions in the collinear
and the soft limits. Let us present in this section these equa-
tions as well as the finite pieces associated to the divergent
terms once the poles in ¢ have been cancelled. We will give
only the results and relegate all the details to Appendix E.

Let us discuss first the part associated to the initial state
collinear divergences. The comparison of the structure of
collinear divergences coming from the initial state, derived
in Sect.2.1 Eq. (2.22), and of the results obtained after inte-
gration over the phase space of the soft/collinear parton of the
subtracted terms leads to the following conditions required
to absorb the collinear divergences into a redefinition of the
partonic density functions:

N-—1
| [Hf”((l — ) p)+ Y HP(( —Z1)p1)]
=3

(n)( ) z| |M

iy [ilir:jiln—1

2, (4.1)

N—1
2 [Hf;)((l —2)p)+ Y Hy((1—22) Pz)}
=3

) Ciy 2
= a5, (22) ~ |M[l|lz oyl “4.2)

The functions al-(]'.’)(z) are the coefficient of the distribution
1/(1 — z)+ in the one-loop DGLAP kernels in n dimensions,
cf. Appendix A. The finite terms associated to the initial state
collinear divergences are given by’

ini. coll. __ 4)B Ys
OH - Z Kiliz 2
{iln—1€S)

7 Keeping in mind that only the case where x7 p, fulfills the condition
(3.51) is shown.

x/dPS%’),lh(i)52 <Z KTI) Z/ @

=3 J1ESp

(n—4)
x1 C,‘l 111111 (z1)
X Ay ()l ol
A IN=1 a | =2+

a®
I lll( 1) ln(A )+2a(4) (Z ) <1n(1 _Zl)> :|
+

(I —zD4+ s -z
4 2
X AMji gy |7 L <> 20, 4.3)
with A; = % fori = 1, 2. As expected, the struc-

ture of Eq. (4 3) is the convolution of a PDF times a product of
a one-loop DGLAP kernel and a partonic amplitude squared.
It gives the dependence of the NLO partonic cross section on
the factorisation scale for initial state.

The collinear divergences originating from the final state
have to be absorbed into a redefinition of the fragmentation
functions. To fulfil this requirement, the collinear limit of the
coefficient H;; must obey to

|2
ik Jk Lilik:jrln—1

~ K7k
2% Bx ((1 ) 7) =a") (z) |M!

for each k in Sy, “4.4)
with
N—1 k—
B (pv) = Y HY (pn) + Z H (pn) . (4.5)
j=k+1 j

The finite parts associated to the final state collinear diver-
gences are given by

fin. coll. B % “ =
O_anCO = Z Ki1i2 E /.dPSN_lh(x)
{i}Nflesp

N—-1 3
Kt {f dzi <{ Xk} )
x 82 — —A X| Xy :
(123: M ) T Tk = keI N-1
4
% t(:jk )(Z ) n l(kl)k(zk) In Zl% X%k 0*
(I—z)+ (T—z)+ X7 M}%
In(1 — zi)
4 k 4) 2
+ Zalklk( k) < 1—2z >+:| |M[i\iktjk]/v71|
Ckm de o )Ek
+ In (thh) /_ A(z)N | ({x|xk : —} )
X Tk JN—1

4
’(k ;k (Zk) |M(4) |2
(1 —z)4 Lilik: jieln—1

(4.6)
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Also in this case, the structure of the terms in the curly brack-
ets of Eq. (4.6) is a convolution of a FF times the product of a
one-loop DGLAP kernel and a partonic amplitude squared.
Note that the first term, depending on the factorisation scale,
receives contributions from inside and outside the cylinder
while the last term, depending on the cone size, receives
contributions only from outside the cylinder. This is why the
upper bound of the z; integration, given by®

X7k — Xk XTm
km = ————,

4.7
X7t 4.7

does not reach 1.

The cancellation of the soft divergences between the real
emission and the virtual one will also yield some conditions
that the coefficients H;; have to satisfy in the soft limit. Before
giving them, let us recap the structure of the virtual contri-
bution:

virt __ (n) B 47[““2 ‘ s 1
o= 2 K 07 ) 2z T(-¢

{iln-1€Sp

x /dpsj(;llh@)

i AW o]
x Agyy_ (Flv-1) [82 +— | My,

1 N-2 N— . i
_ n J (n) 2
¥ ;;c 1( = >+]-' )

(4.8)

The energy scale Q appearing in Eq. (4.8) is the same as the
one appearing in Eq. (2.24). As in the case of the real emis-
sion, the virtual cross section is independent of this scale by
construction. The function F (")(Qz) is finite when ¢ — 0.
After having collected the divergences of soft origin, as well
as the finite pieces associated, coming from the analytical
integration over py of the different subtraction terms and
having compared them to the virtual term leads to the fol-
lowing relations valid in n dimensions:

._.

w2 _
A My, 17 =

(n)
" (0),

N-2 N—
=i+1

i=1j
BMW — _

—1
Y b CF = HP ), (4.9)

8 The bounds on the z; integration are different from the ones given in
Eq. (3.63) because a change of variables has been performed to recover
the structure of Eq. (2.22), cf. Appendix E.
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where the b;; are the coefficients of the §(1 — z) of the one-
loop DGLAP kernels (cf. Appendix A). The finite part asso-
ciated to the soft divergences is given by

N-1

4 o IET[
oit= Y Ko fdPSE\',’)lh(xM( ;)

{iln-1€S)p =3 !

X Agyy_ (XIv-1)

N-1 N—1
XTk
x [E 1n2<x—) all (1) =’ (xrm) Y all ()
=3 T'm k=1

2 X @ ) @
i (1—i1> “ll(l)+ln (1—)?2> iz ()

2 N-1 2
4
- E biklA < ) btku ln( )i| |M[(z|)N 1|2
k=1 k=3

N-2 N-1

+2 In(xrm) Z] > BP0 I ( 5 pf')
i Jj=i+1
N-2 N—
+ Z Z 190 [ n*@d;) -2 (v5) ]+}'(4)(Q2)

(4.10)

Some terms are proportional to the coefficient in front of
the plus distribution of the diagonal one-loop DGLAP ker-
nel taken at z = 1 times a partonic amplitude squared and
others are not. This is related to the well-known fact that
in QCD, since the gluons carry colour charges, the ampli-
tude of real emission in the soft limit is proportional to the
colour connected Born amplitudes. Squaring the latter does
not always lead to the Born amplitude squared. However,
this will not prevent us from having cancellation/absorption
of divergences. A non trivial example is given in Appendix F.
Note also that Eq. (4.3) and (4.10) mirror the dependence on
X1 m of the subtraction terms. They vanish logarithmically as
xrm — 0 as expected.

Let’s remark that the soft factorisation formula at O ()
has the same type of decomposition in terms of squared
eikonal factors as the the squared matrix element in Eq.
(2.23), apart from the non divergent part. Thus, at this order,
the integration over py of the soft current squared is imme-
diate in sight of the results obtained in Sect. 3. At O(af),
the integration over the soft momenta of the Abelian part of
the QCD soft current squared requires to push further the &
expansion of the Appendix B results while the integration of
the non Abelian part necessitates new soft integrals.

5 Cases with non fragmenting partons

We have to treat the case where one or several partons, say
ify, 115, ... donot fragment, this is typically the case if these
partons are photons or they initiate jets. Let us discuss these
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two cases in more detail. For simplicity, we will discuss the
case where only one parton does not fragment. It is easy to
extend the results obtained in this section to the case where
several partons do not fragment. The non-fragmenting parton
will be denoted iy _;.

5.1 Parton iy—_1 is a photon

It is well known that a high-pr photon can be produced by
two mechanisms: either it comes directly from the partonic
sub-process or it is emitted collinearly by a parton produced
at large transverse momentum. The latter case is described
by a fragmentation function of the parton into a photon and
thus the results of the preceding section can be used. Note
that since the photon is observed, its four-momentum cannot
be soft nor collinear to the beams, the photon plays the same
role as any other hard parton.

In this subsection, we will see that the direct production
can also be described by the general formula givenin Sect. 2.1
at the cost of introducing a technical fragmentation function
of a photon parton into a photon. At lowest order in the elec-
tromagnetic coupling at which we are working, this fragmen-
tation function is merely a Dirac distribution which should
be integrated for practical implementation. Nevertheless, for
the uniformity of the presentation, it is interesting to keep
this constraint unsatisfied.

Letus first discuss the fragmentation of a parton (including
a photon parton) into a photon. As in the hadronic case, the
renormalised fragmentation function is written in terms of
the bare one’

2
DY (x. M}) = D] (x>+% 3 [H,k (* Z )@DV} ),
f 1

les,

5D

with §), = S, U{y}. Since we consider only point-like inter-
actions, the bare fragmentation [)IV (z) is given by

D/ (2) =81 —2) 8y (5.2)

Injecting this result into Eq. (5.1) gives

2
Hyk <x A%) (5.3)

9 Since we are interested only by the direct contribution, we consider
only the inhomogeneous term in the evolution equation, cf. ref. [49] for
example.

DY (x, M7) =8(1 = x) 8ty +

Note that, at NLO QCD approximation and lowest order in
QED (neglecting QED radiative corrections), we have

2 2
u 0
Hyy <x M]%) Hyg (x M%) =0, 5.4)
and
2 2 2\ ¢
1z , I+ =x)7) [4mp
Hyy (x M%> 0; . i) (5.5)

where Q, is the fractional electric charge of the quark ¢,
ie., @, = 2/3 for an up-type quark and Q; = —1/3 for a
down-type quark.

The LO approximation for the reaction H; + Hy — Hz +

-+ Hy_3 + y can thus be described by Eq. (2.1) using
only the first term of the right hand side of Eq. (5.3) for the
fragmentation function of a parton into a photon. We then
get

o= 3 K [aps @ Ae iy

{iln—2€S)p

N—-1 Ile
n—2 n 2
X (Z I ) Mgy, 17

=3

(5.6)

with X and x, given by Eq. (2.12). Note that the first sum

concerns only the partons iy, ..., iy—_2, because at this level

in—1 = y. The only difference, compared to Eq. (2.1), is that

a factor g2 is transformed into a ¢ in the overall normalisa-

tion factor

2(N—4) o2 M2(N e
4¢C;, Ci,

ws 1 1 8s
itz T ON=2 2 (27.[)(N—4)n—N+3

(5.7)

When an extra parton is emitted, the structure of the
collinear emission contains terms similar to those appear-
ing in the general case (with the constraint §(1 — xXy_1))
plus a term describing the collinear emission of a photon by
a parton. The term of order o” in Eq. (5.3) gives Eq. (5.6)
from Eq. (2.11) while the term of order « is used to build the
structure of the collinear divergences which is given by

O n) B n) -
O"];] = Z }Cl(ll)2 /dPSSV—lh(x)

{ilN—2€S)

o~ Kri\ [ - _
x 8" (Z x[) {Aqu({x}Nf}) \Mp, 1P

1=3
|: 2
] i1 ji MZ

@A iy jn 1 X 1T ¥ n—D]y G My

=1 jieS,
E
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N-2 2 (4) - > )
m - L _ ~ a,; (XN-1) X2, .0
+Z Z |:Hjﬂk <*, 1‘42)®A(f|ikijk)Nl ({xlxk Dk N—])i| (Xk) X A(i)Nfz ({x}N—Z) {|: }1’-/N 1_ ln( TN 21 )
k=3 ji€s, 7 1 I —=xy-1+ My
2 (n—4) ;- _
x |M[r;|ikijk|N—l| ayjN_l(fol) +2a(4) Gy_1) In(l — xy—1)
B Mz B B (I —Xv—1D+ VIN-1 1— XN N
+ Y My (It 5 | Ay, (Flv-2)
- 3 b P
In-1€8p 1 O VY vy v
’ 2 ) o al G
|M[i|iN—l:jN—]]N—l| ) ' (58) +1In (Rth) OGEN-1m—XN-1) 7
(I —=Xn-1)+
. 4) 2
Note that, in Eq. (5.8), for compactness reasons, a normal- x |M[i|iN,1:jN,]]N,1| } (5.11)

isation factor IC;?I.)ZB containing a factor e? has been factored
out, thus the term in the last line is multiplied by o /(2 )
instead of «/(2 ) as suggested by Eq. (5.3). In addition, in
this term the extra constraint which reads §(1 —xy—1/zn—1)
has been taken into account hence the missing integration
over Zy—1.

At NLO approximation, the introduction of a technical
fragmentation function of a photon parton into a photon (first
term of Eq. (5.3)) enables the use of the formula (2.25) to
describe the cross section for the real emission up to a dif-
ferent overall normalisation factor, that is to say

> K" / dps\y | (x) f dps\”

{i}n-1€Sp

Nl g
0 -
X Ay {x}n-1) 8" (Z o + pr N)

=3

Real __
(o2 H =

N=2 N—1
x Z Z Hi(jn)(pN) Ej; +x7y 0*G™(py)
i=1 j—it1
(5.9)

where the quantities x| and x; are given by Eq. (2.27) and
(2.28), and the overall normalisation factor reads

s2 (N=3) e2 M2 (N=2)¢

4¢C;, Gy,

iy 7 gN=-2 (2 (277)(N*3)”*N+2

x Q725 V(n—2).

(5.10)

The strategy for the subtraction is exactly the same as in
the case with N — 1 fragmenting partons. The subtracted
terms can be analytically integrated over the phase space of
the parton iy. The noticeable difference is a new term for
final state divergences, describing the collinear splitting of
the parton jy_; into a photon and the parton iy,'” which
reads

4)B s
offyl = > Ko
2 27

{iln—1€Sp

N—-1 IETZ
dPSy) . (082 (Z XI)

=3

10 Note that the partons iy_1 and jy_1 have the same flavour since the
electromagnetic interaction preserves it.

@ Springer

Note that this corresponds to the Eq. (4.6) with the con-
straint § (1 —xy—1/zn—1). Furthermore, this constraint trans-
lates into a new upper bound over the x_ integration for the
last term in curly brackets, with respect to the one appearing
in Eq. (4.6), given by 2y _1m = X7 y—1/(XT N1 + X7 ).

The case where the photon is in the initial state can be
obviously treated by this method. Nevertheless, it is more
complicated to find a way to present the results without intro-
ducing numerous new formulae. Thus, in order to reduce the
size of the article, we choose not to present this case here.

5.2 Case of jets

In this subsection we look at the case where some partons do
not fragment and are combined to form jets. In order to lighten
this article, we will treat the case where only the parton iy_1
does not fragment. At LO accuracy, the formula is the same as
for the photon case, the parton iy 1 forms the jetand py_1 =
Pjet> but at NLO, what is fixed is the momentum of the jet
which can be formed by either the parton iy_; or the parton
iy or by both partons iy 1 and i y. Thus, the partoniy_; can
also be soft and/or collinear. The phase space is then sliced
in two parts pr y—1 > prn and pr y—1 < pr n. Each part
has a collinear divergence and the sum of the two vanishes
due to the Kinoshita—Lee—Nauenberg (KLN) theorem. Let us
sketch this cancellation. Starting from Eq. (E.10) by putting
DN (xn-1/zn—1) = 8(1 — xy—1/2n—1) and neglecting
terms of order (’)(asz), the non-cancelled collinear divergence

carried by a}}“l'vcflll' reads'!

fin. coll. __ (n)B YUs 1
VT = D K o Ta—e

{”N*Z ESp

1
_ _ dz
X/dPSX/Z)_zh(x)dYN—ldn 2KTN—1/

12 2"
N-2 = =
_ Kr;  Krn-i _
x 82 (Z S + T) AGyy_o (XIn=2)
1=3

2

I Hereafter, to keep the formulae as compact as possible, the variable
Xny—1 is named only z.
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(n—4)
2 a' o (2)
1 IN-1JN-1
X H; ; , — —_—
iN-1jN-1 <Z M}%) + -2,

2 2
a(4)(z)iN—le—1 In Xrn @
(I—-2+ MJ%
In(1 — z)
4) (n) 2
* 2aiN71jN’l(Z) ( -z )+ |M[i|iNfl5.l'N—l]N—l|
4)
a. . (Z)
+ ln <R2) @ IN— —Z M
) @@EN-1m —2) 1—o.
() 2
|Ml\lzv 1:jN=1IN— 1| ’ (5.12)

with zyv—1m = X7 N-1/(XTN=1 + X7 m). The interesting
quantity is the four momentum of the jet Kje; which is, in the
collinear approximation, Kje¢ = Ky-1/z. Thus, changing
K1 against Kje leads to

fin. coll. __ (n) B ﬁ 1
oWV = D Ko )
{i}n—2€S)

x / dPSY (%) dyjerd" 2K jer

N-2 K ,
— T _
x 8" (Z & + KTJet) Ay, ((X}n-2)

=3
1 2
(n) 2 H
X |M[i|iN—13jN—|]N—1| X /1/2 dz |:HiN1jN1 <Z’ M_%)
(n—4)
+aiN—1jN—l(Z) + a )(Z)IN 1JN-1 In 2 X7 JetQ
(=24 (I=2)4 M3

4) ln(l _Z)
c2a 0 (M=) |

) Cjetm (4) (Z)
Fin(rg) [ s
1/2

l/N 1
(1 -+

with fjetm = (X7 jet — X7 m)/ X7 jet. The integrals over z can
be performed. Nevertheless, the term H;y,_, jy_, (2, /LZ / MJZC)
in square brackets in Eq. (5.13) contains a collinear diver-
gence and the z integration does not remove it. However, in
Eq. (5.13), there is only the contribution where iy is soft
and/or collinear, and one has to add the contribution where
iy—1 is soft and/or collinear. Thus in general, we get the
following result

, (5.13)

fin. coll. __ (n) B Ys 1
oifis = Y K A TA 8

{i}n—2€S)

x /dPSﬁQ”_Zh(i) dyjerd" K7 jet

N-2 Iz. ;
— T d _
x 812 (Z X + KTjet) Ay s ({x}n-2)

=3
2
o Q
x Zl tn\l/v 1jN—tIn- 1| ij 1 <XTjet,M—J2C,me).
(5.14)

JN-1

Let us discuss the dependence of the above mentioned diver-
gences on the type of parton which initiates the jet. Let us
assume first that jy_1, the parton which initiates the jet, is
a quark (or an anti-quark), then i) can be a gluon and iy_1
a quark (or an anti-quark) or vice versa. Summing the two
contributions iy soft and/or collinear and i _; soft and/or
collinear, leads to

Q2 1 MZ
Jq (XTjet,M—},xrm =//2dz Hyq |2 —5 M%

2 (n—4) (n 4)
2 agq (2) (2)
+Heg |2 —5 | + -
8 (Z M;> TEE TR,

@ @ 2
QAqq (Z) Agq (Z) TJet Q
+[(1—z>++(1—z>+}ln( 2 )
@ o Ind —2)
+2 [ (2) +a, (z)]
+

-z
G [ afd@) | ag @
1 2 / ' 99 84 .
+ n(Rth) ” dz [(1 e Te
(5.15)

The collinear divergence presents in Eq. (5.15) vanishes
because the coefficient in front the divergence vanishes,
indeed

1 2 2
/ Hag (25 | +Heq | 2 Mz
1/2 M3 My

_ 1 fam? @ @)
=-- ( - ) i 8)/ dz[ PP @+ PP @]

f
(5.16)

But the quantity | 11/2 dz [P @ (z) + Pég) (z)] sums to zero as
it should be.

Let us assume now that the jet has been initiated by a
gluon jy_1 = g, then iy and iy_1 can be a pair of quark—
anti-quark of a certain flavour or iy and iy_; are gluons.
Thus summing the different contributions leads to

0? )

—XTm
2

M

Te (XTjet»
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“ o 1IN ~2Np | (X7ja @
= [ dz{2NrHg |z +H - £ In +In(R
//2 F ilqg Mf 88 Mj% 6 M}gp ( th)

coy, @ 4 e
I-2+ d-2+
o, aly @ N age @) | (¥ X7 @
-2+ (A-2+ M3
In(1 —
2 o o] (7).
Setm af(x) | ag ()
+1 R2/ dz |2 Np 28 + 88 )
n (Ru) 12 Z|: Pa-a+ " a-25

(5.17)

The collinear divergence presents in Eq. (5.17) also vanishes
because the coefficient in front of the divergence vanishes,
indeed

1 MZ M2
fin e ) 5]

_! <4w2>

T M%

where N is the number of active flavours. Again, the quan-
tity fll/z dz [2 Nr P(4> () + P(4) (z)] sums to zero in agree-
ment with the KLLN theorem which states that degenerate
states like a jet are free of collinear divergences.

The “jet functions” introduced in Egs. (5.15) and (5.17)
have some similarities with the ones used in ref. [5S0]. Note
however, that the cone of size Ry, is not a jet cone in the
sense that our cone is centred on the direction of the hardest
parton which is the jet direction only in the collinear limit.
Despite that, the merging rule to build the jet is close to the
so called k; algorithm [51,52] which, for a jet made of at
most two partons, reduces to dy_iy < Ry; this is verified
in our case. The integral over z in Eqs. (5.15) and (5.17) can
be performed analytically and we get

Q2
jq <XTjeta ~5>XTm
My

13 272 3 0?
—cp | == <t J In TJet
2 3 2 MJ%

3 .
+In(R) Cr |:— — 3 jerm +2 In <ﬂ)] ;
2 1 - jetm
(5.19)

/ dz 2NFP(4>(z)+P<4>(z)]
1/2

(5.18)

ra-—e)

and

23Np

Q2
s7g XTjetsW7me = - 18

N 67 2x2
“lo9 3
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; N 11
><|:2Nln< Cetm )—l-i-fN + (Nr — 4 N¢) etm
_gjetm 3 6

2
Ve = NP) G+ 5 (V7 = No cﬁclm] . (5.20)

Note that a dependence on the scale MJZC is still present in
Egs. (5.19) and (5.20). It is cancelled by terms coming from
the soft part, cf. Eq. (4.10). Indeed, from this equation, the
coefficient bjy , j,, in front of In(Q*/M?7) will be either
a byy or a bge (coefficients in front of the log in (5.19) and
(5.20)) depending on the flavour of the parton jy_; which is
the jet at LO and which initiates it at NLO.

6 Summary and prospects

In this article, we have presented a novel general method
for subtracting collinear and soft divergences at NLO accu-
racy, specifically designed for processes involving an arbi-
trary number of fragmentation functions. While several gen-
eral subtraction methods exist [42,43], the one discussed in
this article introduces several new features:

1. Analytical integration of the subtraction terms is per-
formed in the hadronic centre-of-mass frame.

2. Longitudinal Lorentz boost invariant variables are emplo-
yed to describe the phase space.

We have explicitly addressed scenarios where all hard par-
tons fragment, providing recipes for constructing the various
subtraction terms and analytically integrating them over the
phase space of the parton which may be soft or collinear with
respect to others. As anticipated, collinear divergences can
be absorbed into a redefinition of the PDFs or FFs, while
the soft divergences cancel out when the virtual contribu-
tion is added. Additionally, we have investigated situations
where one hard parton in the final state does not fragment.
Our results demonstrate that the subtraction method remains
effective in such cases, including scenarios where the unfrag-
mented hard parton is a photon or contributes to a jet. Notably,
our method imposes no restrictions on the number of hard
partons that do not fragment, although for the sake of brevity,
we have focused on the case of a single unfragmented hard
parton in this article.

An immediate application of this method will involve
the revision of the DiPhox/JetPhox numerical codes, which
currently employ phase space slicing techniques to address
soft and collinear divergences. Despite their age, these
codes are still utilized by experimental collaborations, par-
ticularly those focusing on characterising the quark-gluon
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plasma. These collaborations study various correlation vari-
ables between particles that easily escape the plasma (typ-
ically photons) and those strongly interacting with it (such
as jets or hadrons). The existing codes are well-suited for
analysing these observables. Furthermore, while codes incor-
porating NNLO corrections to di-photon production exist,
none of them integrate the two fragmentation components
by their own. The extension of this subtraction method to
NNLO accuracy is a challenging task which should be a value
for tagged and double tagged reactions whatever the tagged
particles are. We plan to address the rewriting of these Phox
family legacy codes in a forthcoming practical article. In the
present article, we have provided comprehensive results to
address more complex processes, such as NLO corrections to
di-photon plus jets including the fragmentation components
and photon + k jets (k > 1) with fragmentation. Regarding
applications to reactions containing heavy quarks, the cur-
rent method is limited to scenarios where the typical energy
scale, such as transverse momentum or invariant mass, is sig-
nificantly larger than the mass of the heavy quark. However,
this method can be extended to handle cases involving mas-
sive hard partons, thereby enabling the description of the full
kinematic range of reactions involving heavy quarks.
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A One-loop DGLAP kernels

In this appendix, we provide the expressions of the one-loop
DGLAP kernels and define various functions related to them,

which are utilized in the main text. The one-loop DGLAP
kernels in n = 4 — 2¢ dimensions split in the form

(n) _ a(n)(z b 8 1
P (Z)_—(I—Z)+ +bij (1 —72)
_ aij) @ aj '@ b 8(1
S U-0s ‘o, -9
(n—4)
@, % @
=P oo (A1)

plus eventually some terms of order O(e%) which play no
role in a NLO computation. The expressions of the functions
al(;‘) (z) are given by

aly(z) =2 N, |:z+(1_z—z)2+z(l—z)2], (A.2)
af @) =Cr [1+22], (A3)
aly)2) = [#} (1—2), (A.4)
a\(z) =Tr [z2 +(1 - z)z] (1-2), (A.5)

where N, is the numbers of colours, Cr = (NC2 —-1)/(2N,)
and Tr = 1/2.Note that at the order of accuracy used (NLO),
the flavours of the quarks do not need to be specified, that
is to say a(f';l (z) = a;‘&k (z) (where g; and g are quarks of
different flavours). The extra parts needed to get the one-loop

DGLAP kernels in n dimensions are given by

alt () =0, (A.6)
(" V() =Cr(1-2)2, (A7)
<" V() =Crz(1-2), (A.8)
<" V) =Tr2z(1 —2)% (A.9)
The coefficients b;; read
bij=0 (f i#)), (A.10)
11N, —2N
beg = ‘TF, (A.11)
3
byq = 3 Cr. (A.12)

To be complete, one has to add the case where i or j is a
photon.

14 (1 —2)%
() = 0% [%‘7’)} (1-2),

ag)@ = 0% [+ -2 -2,

(A.13)

(A.14)
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alt™P(z) =
<" V@)=

05 z(1-2),
Q% 2Nz (1 - 2)%,

(A.15)
(A.16)

where QO r represents the charge of the quark in units of e.

B The soft integral

Let us introduce a “Feynman” parameter, denoted u, in order
to write the eikonal factor E l’ ; as

1
Ey= [ au 2 Pj ;- (B.1)
0 ((upi+ A —u)pj)-pn)
We set
jj =upi+ (1 —u)p;j
= (mrij cosh(y;;), Tir;;, mrij sinh(yi;)). (B.2)

Since p; and p; are lightlike, I'I%j =2u(l—u)p;-pj,and

the transverse momentum I17;;!? is given by

HzTij =u’pr;+(1— M)2P%j + 2u(l —u)pripr j cos(¢ij),
(B.3)

where ¢;; is the azimuthal angle between the two vectors
ﬁT, and pr; and the transverse mass mr;; is defined as
mTl i = l'I2 + l'ITl i The rapidity y;; can be extracted from
one of these two equations:

mr;j cosh(y;j) = u pr; cosh(y;) + (1 —u) prj cosh(y;),
(B.4)

mrij sinh(y;;) = u pr; sinh(y;) + (1 — u) pr ; sinh(y;).
(B.3)

Furthermore, the scalar product between the four momenta
Hi j and ]31\/ is

[l7ij cos(¢n), (B.6)

I;j - pn = mrij cosh(y;; — yn) —
where ¢y is the direct azimuthal angle between the vectors

HTij and ﬁT N-
The soft integral, defined in Eq. (3.3), becomes then

1 T
BN = i p; /O du /0 den sin(gy) ¢

+00 1
X d .
/_oo YN i i; cosh(yij — yn) — Tz cos(én))?

(B.7)

12 We denote Iy ij the length of the vector l:[Tij.
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A priori, this integral seems more complicated to compute
than the equivalent one using the polar angle as variable
because in this case, an extra integration has to be per-
formed.'> As we will see, this is not a problem and the cal-
culation proceeds in the same way as in the standard case.

To start with, let us split the range of the yy integration in
two parts

+o0o +o00 Yij
/ dyn F(yn) =/ dyn F(yzv)+/ dyn F(yn).

—%° Vij —00

(B.8)

We make the changes of variable Ay = yy — y;; in the first
integral of the right hand side of Eq. (B.8) and Ay = y;; —yn
in the second one

“+o00 +o00
/ dyy F(yn) = / dAy F(yij + Ay)
—00 0

+00
+/0 dAy F(yij — Ay). (B.9)

The integrands F(y;; = Ay) depend on Ay only through
cosh(xAy) such that the two integrals are equal and the soft
integral becomes simply

1 T
Jif'letZZPi'Pj/() du/o dy sin(¢n)>°

“+o00 1
X / dAy
0 (mr;j cosh(Ay) —

M7 cos(pn))?
(B.10)

Then, the change of variable cos(¢n) = 2 x — 1 is performed
leading to

1 +00
. _ -2
]IPJ.Oﬂ =2! ngi - pj A du '/0 dAy (mT,-j cosh(Ay) + I—[T,‘j)

1
X/ dxx~1778(1 — x)~ /2
0

( 207 ;) )*2
x|1— X
mr ij cosh(Ay) + Iz ;
1 +00 5
:2]72811,' -pj/ du/ dAy (mT,-j COSh(Ay)+HTij)
0 0

r2(i—
XM2F1<2,1—8;1—28;Z),

I'(l—2¢) 2 (B.11)
where o Fy is the Gauss hypergeometric function (cf. ref. [53])
and

2 HT ij

7= . (B.12)
mrij cosh(Ay) + Ir;;

13 There is one integral over the azimuthal angle and one over_the
rapidity instead of only one over the polar angle between py and I i
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Using the quadratic transformation given by Eq. (15.3.16) of
ref. [53], yields

2 (1
J.S.Oft — 21725 . i r (i B 8) ldu
ij PUPiTa Z2e) Jy

+00 5
X / dAy (mT,-j cosh(Ay))
0
3
F 17 = 1 - ) '/2 )
X2 1< ) &2 )

_ 7
mr;j cosh(Ay) '

(B.13)

with

/

z (B.14)

The four-momentum IT;; is time like because p; - p; > 0
and 77 < 1, such that the hypergeometric function can be
expanded in a series'*

» r2(l_, 1 _
St =27 i py % /0 dulmriy)
L T—o) ir(1+n)r(%+n) ! (HTU>2"

rg) % nt \mrij

'l —e+n) n!
+o0
x f dAy cosh 2D (Ay).
0

(B.15)

In order to perform the Ay integration term by term, let us
introduce

+00 1
Un) = dAy ——————. B.16
" /(; Y cosh? "D (Ay) (B.16)
It is easy to get that
+00 1
U@ = dAy —————
© ./0 Y cosh2(Ay)
= [tanh(Ay)]§™
=1. (B.17)

Let us establish a recurrence relation for U (n). In order to
do that, we use the following relation, valid for m > 1 and
easily established by an integration by parts:

/‘ dz . 1 sinh(z)
cosh”(z)  m—1 cosh”~1(2)

. m—2 / dz
m—1 cosh”2(z)

form # 1.
(B.18)

14 We disregard the case where p; - p j = 0 which is not relevant for
NLO computations. Furthermore, we assume that # # 0, 1 in such
way that 7/ < 1 to justify the expansion. Once the integration over Ay
has been performed, the result will be a regular function of u for these
values.

The first term on the right hand side of Eq. (B.18) will always
vanish when the integration bounds are 0 and +oo form > 2.
But this condition is satisfied if n > 1, thus we get that

Um = 2" U - 1)
ST
2n2(m—1)
="  Un-2)
2n+12n—-1
o 2n2(m—-1)---2 v ©.19)
T 2n+DR2n=1---3 ' '
Using the result of Eq. (B.17) leads to
221 (n1)? 5y T2+ 1)
Un) = ———— =2°" ———— ~_ B.20
™= TQo+1) (B.20)

Applying the duplication formula for the gamma function,
we then obtain

VT Tn+1)

Un)=——~. B.21
) == Tntd) (B.21)

Putting the result of Eq. (B.21) into Eq. (B.15) yields

FG-e) () /Oldu (mrij)

Tt =272 p; o p; T —29)
L rd-—e ﬁi r2(+n 1 (nm>2"
r (%) 2 =0 'd—e+n) n! mrj ’
(B.22)

The series in the right hand side of Eq. (B.22) can be summed
up into a new hypergeometric function

) r2(l_g -
It =2! 25pi'Pj1~(1(+283/0 du (mr i)

2 ..
X2F1<1,1; 1 —e¢; %)
mr ;i

Using the linear transformation Eq. (15.3.6) of Ref. [53],
Eq. (B.23) becomes

(B.23)

) 1"2 l — & 1 —
Jl.jpft=21—25pi-mﬁ/0 du (mr i)~

_ _1— 2
X rd—ell—e) Pl 1246 L
T(—&)T(—e) m

m2 \ '
+< 2”) (1 —e)l+e)

My

2
IT;;
xoFi| —&, —&; —&; —— | 1+
ms. ..
Tij

(B.24)
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Remembering that ,F(a, b; b; z) = (1 — z)™%, Eq. (B.24)
can be rearranged in the following way

' 1"2 l — & 1 _
T =2 iy m%i J o)

m,
x {—— R (11246
I+e mri;

+ T —&) T +¢) (Hf,')_l_s m%i,,' (HzTij)s } :
(B.25)

Note that since the remaining hypergeometric function is
finite when ¢ = 0 and is multiplied by ¢, the arguments of the
latter can be taken at e = 0. Thus, using that,F; (1, 1; 2; z) =
—In(1 — z)/z and dropping some terms which vanish as
e = 0, Eq. (B.25) can be re-written as

2

‘ Fz(l—é‘) 1 c HT”
Joft—pl=2e o 27 /d -—1 4
i PEPiTa Z2e Jo M) 2 "\

ij Tij

ra-ora+e () (m,) } . (B26)

Let us focus on the first term inside the curly brackets of
Eq. (B.26). The quantity B; which is defined to be

! 1 n ..
B E/ du —In | - 2le ’ B.27)
0 I3 mrij
can be written as
1 Udu ) 5
i"Pj
1
du
+/(; = [ln(HZTU) - ln(sz”)]} X (B.28)

The quantities l'IzT ij and m% ;j are second order polynomials
in the variable # and can be written as

m.=p2. (1-2)(1-2L (B.29)
Tij = P1j s o) .
u u

myi; = pr (1 - Z) (1 - ﬁ—> : (B.30)
where

~ PT j

T b prie (3D
iy = PTj (B.32)

prj — prietOimy)’

In Egs. (B.29) and (B.30), the way of writing a second order
polynomial in terms of its roots is not standard but it will

@ Springer

simplify the computation of the two integrals of Eq. (B.28).
Indeed, we can notice that 7z and 1 are complex conjugate
while u and u_ are real but do not belong to the range [0, 1]
as it can be inferred from Eq. (B.32) and that 1 — u /i and
1 —u/u_ are positive when u is in [0, 1]. Thus the logarithms
of l'[zT ij and sz ;j can be safely split, namely

2 N _ 2 _u o u
ln(HTij)_ln(ij)~|—ln 1— = +In{1 P ,

u4 —
(B.33)
In(m};;) = In(p} ;) +1In (1 - %) +1n (1 - %) .
(B.34)

The first integral in the curly brackets of Eq. (B.28) can be
performed easily leading to

Udu
/O = (i1t = nm3 )

e (1 (1 (1
= —L12 -— | — L12 — ) + L12 — | + L12 -— 1.
u4 u_ u4 u_

(B.35)

For the second integral, after a change of variablet = 1 — u,
the quantities HZT ij and sz ;j can be written as

My = P (1_1—ﬁ+) (1_1—12)'

For the same reasons, the logarithm of these quantities can
be safely split leading for this second integral to

(B.36)

(B.37)

U du 5 5
/O R 0113, = nn} )]
1 1
1—uy 1—u_
(1 AR
-i-le(1 = >+L12<1 F ) (B.38)
. —

Using the following property of the dilogarithms, namely

(1 . 1 | 1
Lio | — ) + Liy =—In"(1- -
z 1—-z 2 z

for z ¢ [0, 1],

(B.39)

the quantity B becomes

1 2 1 2 1
Bl: In 1—~— +ln 1—~—
4pi-pj Uy U_
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(B.40)

(o) o- )

For the second term in the curly brackets of Eq. (B.26),
let us introduce

1 —1—¢ e
B2=/0 au () (m3,)

which can be written as

(B.41)

1 &
By=Qpi-pp)'—* U duu™""F (1 —u)~* (H%ij)
0
1 &€
+/(; duu=® (1 —u)y~17¢ (HZTU) ]

Let us focus on the first integral of Eq. (B.42). The distribu-

—1—¢

(B.42)

tion u can be replaced by
1 1 1

w Tt )+ —— —¢ < n(”)> + 0(?),
e (u)+ u n

(B.43)

and the rest of the integrand is expanded around & = 0 yield-
ing

1 &
—1- - 2
/O duw™ = (1=~ (1)

1 2
= - [1 +e 1n(p%j)+% 1n2(p%j)]+fo
[ U du u u
e[ (i ) et )
0o u u4 u_
U du ! In(u)
—f —ln(l—u)i|—8f du< )
0o Uu 0 u n

1 &2
= [1 +eIn(py ) + 5 lnz(p%j):|

o)) 5]

The second integral of Eq. (B.42), with a change of variable
t =1 —u,gives

1 &
- . 2
fo duu=? (1 —u)~'—* (HT,.].)

1 2 &2 2,2
:—g 1+81n(pTi)+?1n (p7;)

Li ! Li ! 71 (Bas
el () v (=) - ) e

L du

(u)+

(B.44)

Plugging the results of Egs. (B.44) and (B.45) into Eq. (B.42)
leads to

1 1 2pi-pi
By = {—- [2—2eln<M>
2pi-pj € PTipPT

2 2
+f In2 Pri 1 In? P
2 2pi-pj 2pi-pj

Using the results of Egs. (B.40) and (B.46) and the fact
that T'(1 — &) T'(1 4+ ¢) ~ 1 4+ 2 2 /6, Eq. (B.26) becomes

2(1
Jispftzz—Zar (7_8) _%+21n 2Pi'Pj
/ I —2e¢) € DPTi PTj

2
8 2 P%i 1 In? P
2 2pi-pj 2pi-pj
1 1
& [1112 (1 - _—) +1n2 <1 — —>“ (B.47)
2 u4 u_

Finally, using the definition of the two roots &4 and u_ as
well as introducing d;; = cosh(2 y};) — cos(¢;;) with y}; =
(yi —¥j)/2, we end up with

Fz(l—g) 2 -
soft _ H—2¢ 2 _= .
Jit =2 F(1_28){ 8+21n(2d”)

—e 12 (2d;) + 4 (y;j)z} . (B.48)

Note that the definition of d ;j 1s equivalent to the one given
in Sect. 3.1.1. Let us notice that the result of Eq. (B.48) is
particularly simple, the dilogarithms combine to logarithms
squared and the dependence on the azimuthal angle is through
d; - In addition, this result is explicitly invariant under boosts
along the beam direction as it depends only on difference of
rapidities and azimuthal angles.

C The collinear integral inside the cylinder

Let us recall the integral to compute (see Eq. (3.11)):

Jeol = / dey (sin ) >
0

+00
X/ dyN

—00
As mentioned earlier, the result of this integral will not
depend on y; because the range of integration in yy extends

cos oy
cosh(yny — yi) —cosgn

(C.1)
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to infinity. As in the appendix B, the yy integration range is
divided into two parts

+00 +00 Vi
/ dyn F(yn) = / dyn F(yn) + / dyn F(yn).
—00 yi —00
(C2)
We again make the changes of variable Ay = yy — y; in the

first integral on the right hand side of Eq. (C.2) and Ay =
yi — yn in the second one

+o00 +o00
/ dyy F(yn) = / dAy F(y;i + Ay)
0

—00

+00
+/ dAy F(y;i — Ay). (C.3)
0

The integrand depends on Ay only through cosh(+Ay) such
that the two integrals are equal and thus

T
JCOH — 2 / d¢N (Sin ¢N)_28
0

oo
x / dAy cos P : (C.4)
0 cosh(Ay) — cos oy
which can be written as
o T
J°°”=2/ dAy/ d¢y (singy) 3¢
0 0
h(A
o cosh(Ay) (C.5)
cosh(Ay) — cos gy

Setting cos ¢y = 2x — 1 leads to

1
JCOH — 21—28 /OodAy f dxx—l/z—é‘ (1 _ x)—1/2—a
0 0

_ cosh(Ay) (- )_1
x cosh(Ay) + 1 ot ’

where z = 2/(1+cosh(Ay)). The x integration gives a Gauss
hypergeometric function

2 (1
0

(1 —2¢)

1
x 2F <1,§—8;1—28;Z):|.

Using the quadratic transformation, Eq. (15.3.16) of Ref.
[53], yields

21
Jeoll _ p1-2¢ L (-2 /OodAy
rd—28 Jo

1 /2
x | =1 +,F; z,l;l—s;z ,
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(C.6)

cosh(Ay)
cosh(Ay) + 1

(C.7)

(C.8)

with 7/ = 1/ cosh(Ay). As in the preceding case, the hyper-
geometric function can be expanded in a series as 7/ < 1.1
The key point here is that the first term in the square brack-
ets leads to a divergence when integrated on Ay. However,
this term cancels against the first term of the hypergeometric
series. Doing so and shifting the variable of the series such
that it starts at O yields

r2(3—¢) r(d—e 3 1
ra—-2e r(}) 2= m+D!
F(3+m) TQ+m)
re—e+m

Jcoll — 21—2 e

dAy (cosh(Ay))~20m+D,
(C.9)

Using the Eq. (B.21) for the integration on Ay leads to a
series of the type

r2(i—e)ra—e
ri-20 r(})

Jcoll — 2—28 ﬁ

+00 2
r=(1 1
&_’ (C.10)
¢ T(2—&+m) m!

which can be expressed as a hypergeometric function whose
argument is 1 and can be rewritten in terms of gamma func-
tions as long as ¢ < O:

r2(3—¢) ra—e

F(1—28) T 2—e)
22 12 (} =)

T e TA-2¢)

Jeoll = p=2¢ JFi(L 152 —er 1)

(C.11)

D The collinear integral inside the cone

Let us evaluate the collinear integral that arises when iy lies
within the cone I';:

" ¢—28
CO.
Jout —// don dyn —)2+¢2

Similar to Appendix C, the integration range over yy is split
into two parts. We perform the change of variables Ay =
yn — yi and Ay = y; — yy in the parts where yy > y; and
yN < yi, respectively, resulting in

gt =2 [ [ dowa

15 Once more, a rigorous approach would involve introducing a cutoff
A to prevent reaching the value Ay = 0, ensuring 7/ < 1, and then
taking the limit A — O at the end.

(D.1)

¢—25

D.2
(Ay)2 +o5 B2
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The condition that iy lies within the cone I'; is expressed as
(Ay)? + ¢% < RZ. However, by construction, Ay must be
less than min(yn max — Vi, ¥i — YN min)- In cases where pr y
is large, it’s possible that

min(yy max — Yi, ¥i — YNmin) < R,

which implies that the integration domain is no longer a disk
in the Ay-¢n plane. As a result, the analytical calculation
of the integral JE! becomes complicated. To address this
challenge, we adopt the following strategy. Firstly, in the

subtraction term, we use
meaX = meaX|¢N=O and &Nmin = VN min|¢y=0

as bounds for the yy integration. These bounds are inde-
pendent of ¢y. Secondly, we dynamically adjust Ry, to
min(Rin, AYmax), where Aymax = min(yy max — YN, YN —
YN min) represents the largest value taken by Ay. In other
words, the value of Ry, is not fixed but may vary depending on
the kinematics. In summary, by implementing these adjust-
ments, we ensure that our calculation accounts for the varying
nature of the integration domain, overcoming the complica-
tion introduced by large transverse momenta. In this way,
the analytical integration remains easy and the dependence
on Ry, is logarithmic.

To perform the integral analytically, we introduce polar
coordinates in the plane Ay-¢, such that

Ay =r cos(9),
¢ =r sin(0).

After this change of variable, equation (D.1) becomes

Rin /2
J°°”=2/ drr*‘*%/ do (sin9)2¢.
0 0

out (D.3)
Note that, since Ay and ¢ are positive, the angle 6 runs
between 0 and 7 /2. The r integration is trivial and we intro-
duce a new variable x such that cos 6 = 2x — 1 leading
to

-2
Jeol — Ry™* Hl-2e /] dx x~12 (1 — )12
—2¢ 1/2
21 )
— 2728 F (i _8) Rth 6. (D4)
'a—-2e¢ -—2¢

E Details of the divergent terms construction

Let us collect the different divergent terms resulting from the
analytical integration of the subtraction terms

div _ +@div | Gy div | ~@)div , ~(1)div
To' =T, + T, + T+ T,

tot T

+ 7—(4) div + T(S) div + T(Z) div

out out out (E 1)
Note that the quantities on the right-hand side of Eq. (E.1)
are given by Eqs. (3.24), (3.46), (3.59), (3.64) and (3.67),

except '™ and 7)Y which have not been computed

explicitly but can be easily obtained from Tir(lz) 4 and ’]:)(uzt) div
by changing the signs of all the rapidities and the labels 1 <>
2. We will distinguish the soft part from the collinear ones.
The soft part can be obtained from Eq. (E.1) by collecting all
the terms containing the functions f;;(0, 0, 0), f1;(0, 0, 0)
and f>;(0, 0, 0):

2 (1
Tsoft_z—Ze r (7 _8)
ot ['(l—2¢)

N—2 N—1 ’ I | 2p: -y , 4
1> Y £00.0.0) Z- (=) ey

i=3 j=i+l

- 1 - 2
+In% (7 ) +2 Iy ) INQ2d;p) + 5 In*(2d) =2 () ]

=

+Y" £1;00,0,0)

~.

X
—
m.\,"—‘l‘»
|
o | —

In (%) TGy + 1n2(xrﬂ,->]

+
T

12j(0,0,0)

X
1 -
Il
mN‘_w

™| —

2 . .
- = ln( szzp,) + Y (x2, —y;) + lnz(xm')]

+ f12(0,0,0)

1 1 2p1-p2 _ _
X [8—2 - In (u) + Y (x1, yo) + Y (x2, —yo)] .

(E2)

Let us introduce alsfﬂ defined as

soft __
o= D

{i}NfleSp

dpS\ | () TOM. (E.3)

In order to facilitate the reading, only the case where x7 1,
fulfils the condition (3.51) will be presented.'® Expanding
around ¢ = 0 the right hand side of Eq. (E.2) and keeping
only the relevant terms in ¢ leads to!”

Y g () e
i \"Qr ) 27 T(1—e¢)

{i}Nfl eSp

X /dPSE\r,l)_lh(i) Ay xIv=1)

O_Is_;)ft =

16 Tt is easy to have the formulae with the condition (3.53).

17 Note that in the soft limit, the variables x; and X are equivalent.
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N-2 N-1

2pi D

+2InGrm) Y Y HPO) In (%)
i=1 j=i+l
N—2 N—1

—2I’Grm) Y Y HPO)

i=1 j=i+l
N-1

+> 1n2< ) H;?)(O)—i— Z H{" (0)

i= Jj=i+1

& H® X2
<1—X1>Z © +1n’ <1—i2>

]:

—1
x Hf;”<0)+2 Hy? (0)
j=3

H(n)(o) [ In? (zdl]) (y;j>2}

(E-4)

=i+l

N-2 N-1
+2
i=3 j=i+

The final state collinear singularity related to a hard parton
ix coming from inside the cylinder is given by

21 )
g fincoll _ _5-2¢ r*(; —¢) xr;° /1 dvg 28
kin k
r'a—-—2e) e am Uk
[ 1 <1n(1 - vk)) }
X|—— -2 —=
(I =)+ L—we /4
I — v 1 — v
X [fk <Yka XT ks 0) + fik (yk, XT ks 0)
Uk Uk
1 — v
+ S | vk o T 0 . (E.5)

and the one coming from outside the cylinder is
2(1 —2¢& p—2e¢ m
g fincoll _ _5— 261 (E_E)ka Ry /Z" dvk 26
out T(1-2¢) ¢ ok

Ck min
<ln(1 —vk)) }
8 —_—
1 — v i

Vi 1 — v
XTk,O) + fik (yk, ” XTk,0>

ol _
|:(1 — V)4

l_
X [fk (yk,
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1-— Uk
X7k, 0 . (E.6)
Uk
In Egs. (E.5) and (E.6), we changed the name of the integra-
tion variable zj into vy for reasons which will become clear

later on. The corresponding cross section cr;‘[“kcou is

fin coll _
OHk = Z

{”N*lesp

+ S (yk,

T fin coll]

k out

/dPSE\r;) lh(x) I:z];(ﬁtrllco]l

(E.7)

Remembering the definition of the functions f;;, it is easy to
realise that the Dirac distributions coming from the conserva-
tion of the transverse momentum will depend on vy through
the product v x; suggesting that by a suitable change of
variables these constraints could be independent of the vari-
able of the “+” distributions. Let us sketch the structure of
Eq. (E.7) in terms of the variables x; and vg. It is of the type

dxe ' due
2
/ 5 s i -G, ve),
k Zk min Uk

and the change of variables vy = zz and x; = X;/zx whose
Jacobian is 1/zx leads to the following structure

dxy 1 X
/—_2_28 dzix G ,zk
X; T Zk
fin coll

Up to vanishing terms when ¢ — 0, the cross section o 5}/
can be written as

(E.8)

(E.9)

47 12\° « 1
fin coll (n) B n s
o= ) Kb ( 3 ) S T
27 I'(1 —
{i}N—IESp Q i ( 8)
) e\ ¢ Ry o
daprsi” . (%) ( ) §" 2 =

X 1/1 oo ([ )
_Z s
e Jx, Z]]{.,_zg ON-1 2 IV
[ 1 (ln(l—zk)) j|
x|— —2¢ [ — X2
(I —zi)+ l—z /4
XZkEk<(1—Zk)—>+l( )
" S (2], )
— Ay X[ Xk + —
L glt2e (On-1 o IO

k k

1 - Kri
X ————Zk & ((1 —2%) _—) , (E.10)
(1 —zp)+ Xk
with
Tk = Tk
sk(a— k)—)— > H,§7><(1_ ) )
j=k+1
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k—1 Kri
+> HY ((1 — 2 )—)
j=3

K K
+ HD ((1 — 20 ﬂ) + HD ((1 — 20 ﬂ) .
Xk Xk
(E.11)

and ¢ m given by Eq. (4.7).

The initial state collinear contribution can be split into two
parts, a divergent one and a finite one in which the regulator
& is set to zero:

P 1[4
Tlmcoll__ —2¢
div I(—26) & Zx(m yi)
1 Xre 1= 71)
d Iij (
xf Thpe D2 9 ) 4y yo) 2
5 21 1 —=z1)+
g A (2 120)
x/ — 7] +1<2:, (E.12)
o 21 (I—z+

Timcoll _ 5 1 {/1 dz1 <ln(1 _Zl))
! 5 2 I—z1 /4
-y N-1 .
e (X170 1 =21 dzi (In(l —zy)
X J12 C( o 2 + Z - 1—
1 i=3 i < 21 +
eV 1—
xffj(xle 721)+1<—>2},
o 21

The associated cross section is then

ini coll wB (47 un? f 1 1
oH = Z K 2 5 —
12 0 27 T'(1—¢) —¢

{iln-1€Sp

N—1 I‘{'
x fdPs(;}llh()z)a"*2 (Z _T’)

=3 M
/1 dzy
X 2
g =z

R
A(,‘)A_1 X|X| L
21 JN-1

= —2e¢
X1 XT
x 7] T2¢ <7_m> [Hl('zl)((l —21) p1)

1 —x;

Lz In(1 — z7)
Z H(n)((l —Z1)p1)i| —2¢ ﬁ Z—zl (5_7111)
X 1 +
__ X
X AGyn_i <{x|x1 D —
N—

+ Z (@ —m)m)} +1e 2}.

(E.13)

>11 [Hf’;)((l —z)p)
1

(E.14)

The relations given by Egs. (4.1), (4.2) and (4.4) must
be fulfilled in order to absorb the collinear divergences into
a redefinition of the partonic density functions as well as

the fragmentation functions. They are obtained by compar-
ing the structure of the collinear divergences in the initial
and final states, as derived in Sect. 2.1 (see Eq. (2.22)),
with the results delineated form the subtraction terms after
the integration over the phase space of the soft/collinear
parton, cf. Eqs. (E.10) and (E.14). When the variables z;
(lel,2,. — 1) approach one, according to the defini-
tion of the functlons a(") (z), only the diagonal cases survive,
namely when i = j and the relations (4.1), (4.2) and (4.4)
become

WAy M P (E.15)

i1i] [i1n—1

HY 0) + Z H(0) =a

Y5 (0) + Z Hy(0) = af), (D M7}, P (E.16)
=3
B (0) = a") (1) |Mf}y 1P
for each k in Sy. (E.17)

With these relations in hand, Eqgs. (E.14) and (E.10) can be
expressed in terms of DGLAP kernels. To achieve this, we
enforce the appearance of the quantity H for initial state
and final state radiations, utilizing Egs. (2.17) and (A.1),
and expanding the rest around ¢ = 0. This leads to the
Eq. (4.3) presented in Sect. 4. The terms containing the final
state collinear divergences can be treated in the same manner,
yielding Eq. (4.6).

Note that in order to enforce the appearance of a DGLAP
kernel, we must include additional soft terms that are not
explicitly expressed in Eqs. (4.3) and (4.6). These terms will
be incorporated into the soft part which now reads

2 &
oot — Z KB 4np P !
"= i1z 02 27 (1 —¢)

{iln-1€Sp

N—1 I-(' ,
x / dPS) | () Ay, (FIn-1) 8" (Z _T)

N Y o (2 2”/)
€ i=1 j=i+1 Q
| e N-1 M2
+ - Zbikik (ﬁ) Z blAlk
€ 0 =
|M[(l’§iv ] |> + finite terms of Eq. (E.4)} . (E.18)

The soft divergences cancel out with the real emission due to
the relations (4.9), which are valid in n dimensions. Follow-
ing this cancellation, some finite terms remain, as shown in
equation (4.10). Note that by using Egs. (E.15), (E.16) and
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(E.17), we get that q(p1) 9(pa) a(pr) 9(pa)
(n) (n) M 2
[ 1111(1) +a1212(1)] liln- 1 =
N—-1
- [2 HE O+ (HPO) + Hz‘Z’(O))} :
k=3 a(p2) 9(ps) a(p2) 9(ps)
(E.19)
N-1 o o al(p1) 9(p4) a(p1) 9(p4)
n n 2
|: alklk(l)j| |MlJN 1|
k=3
-2 N—-1 + +
Z Z HPY O+ Y HPO |, (E20)
=3 j=i+1
’ = () a(p) ()
1 N—
AW — 3 Z l(:ll (D). (E.21) Fig. 3 Born Feynman diagrams of the reactiong +§ — g + g
k=1

F A non trivial example to illustrate the Born colour
connected amplitudes

In this appendix, we compute explicitly the soft approx-
imation of the reaction g(p1) + g(p2) — g(p3) +
g(pa)(+g(ps)), that is to say the coefficient of the eikonal
factors taken at ps = 0. We compare them to the result of
the one loop correction of g (p1) +g(p2) — g(p3) + g(pa).
This gives an example of the relations among the coefficients
of the eikonal factors in order to have a cancellation of the IR
divergences. This reaction is taken because it contains both
external fermions and gluons.

The Born amplitude is depicted in Fig. 3. Atthe Born level,
the sum of the three diagrams is represented by the product
of a string of y matrices carrying two Lorentz indices as well
as string of colour matrices carrying colour indices FZ ?1M 4a3 as
multiplied by the Dirac spinors and the polarisation vectors
describing the external particles.

The Born amplitude can be written as
D o Wi (P1) €13 (p3) €, (pa).

(F.1)

MB

9G—2¢ = 1_)1'2 (p2)

In the soft approximation, it is necessary to consider only
the emission of an extra gluon on the external legs as depicted
in Fig. 4.

The different amplitudes are

s

FH3M4

Ml = —8s i j1;a3a4 (Tas)jll'l uil (pl)

51’2([’2)
P1-PpPs5

1 (P3)ey (pa) €73 (ps),

s
Py - wam
p Vi, (p2) szj-l;‘zw (T"5)l.2j2 ui, (p1)

(F.2)

My = g

1 (p3) &t (pa) €5 (ps), (F.3)
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Fig. 4 Feynman diagrams depicting the soft gluon emission associated
tog+qg—>g+g

ey
Flzl] b3a4

i 239595y (py)

(F4)

l_)iz (p2)
5

1 (p3) &5 (pa) €5 (ps),
Hs

4 171‘2(172)
5

34 . rbaasay .
Fizil;a3b4 if ui, (p1)

1 (P3) €1, (pa) €5 (ps). (ES)

In the Born amplitude, using colour decomposition, the

string Tj,}"%% . can be written as
mams  _
iisazay — (Ta4 Ta3)i2,'| Al (p3, pa)
+ (T TS), . A (py, p3), (F6)
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with Tr [T9 T T9 T% T% 7] = C} N, (CF - %) :
AF3HY (p3, pg) = (—i gf) [V““ 1= )2 2 p3)2 yh (E13)
P1—Pp3 1
Tr|(TUTBTHSTUTBTS | = ~CpN.(Cqp —C
o VIR (—p3, —p4. p3 + P4)} E7) rf ] 2 F c(Ca r)

(p1+ p2)? x (Ca —2CF), (F.14)

The tensor V#YP(p, g, r) is the usual tensor appearing in the
QCD Feynman rules for the triple gluon vertex

VI (p,q,r)=g¢""(p—q)’ + 8" (g — )"

+g’ " (r = p)". (F.8)

Let us define the soft amplitude M as M = M +
M+ M3+ My. Because of the gauge invariance, replacing
e"s(ps) by pg > in the soft amplitude leads to the following
relation

M3 14 as _ T MH3Mn4 as
i2j1:a3as4 (T )jlil Jeitiazay (T )izjz
W34 : rbiasas K34 . rbiasas __
+ Iﬁizil:bsm if + l_‘1'21'1:613/74 if =0. (F9)

This relation can be checked explicitly by injecting Eq. (F.6)
into Eq. (F.9) and by using i f*¢T® = [T? T¢]. The
decomposition given by Eq. (F.6) yields for the soft ampli-

tude
Hs s
- p p
M= —gs Uiz([?z) {(T““ 79 Tas)m1 |: 1 _ 4]
P1-DPs pP3-ps
X AM3H(p3, py)
M5 s
p p
+ (Taj T Ta3)izi1 |: 4 _ #] AP (3. pa)
P4 - Ps P2 Ps
Py’ Py

+ (Ta4 T4 Ta3)i2il [ — 7i| AMM(PS’ P4)

P3-ps  pa-ps
+ 3 < 4} wiy (p1) e (p3) &) (pa) €75 (ps)- (F.10)

Under this form, the invariance ¢35 (ps) — ¢*5(ps) + X pg‘ >
is explicit.

Squaring the soft amplitude generates terms which are the
product of a trace on the colour matrices times a trace on the y
matrices times an eikonal factor E;; = p;-p;/(pi-ps pj-ps)-
There are four independent types of colour matrices which
can be easily evaluated. We want to enforce the appearance
of the Casimirs of the fundamental and the adjoint represen-
tations of the SU(N,) Lie group (resp. Cr and Cy) in the
colour factors for reasons that will be clear later on. To do
so, we make use of
(T*TY;j = Cr §ij,

fabc fa’bc = Cp bad, (Fll)

where Cp = (Nf —1)/(2N.) and C4 = N.. We get

Tr[T% T4 T T% T% T%] = C}. N, (F.12)

1
T[T TS TS T T T%] = 2 Cp Ne (Ca =2 Cr)*.
(E15)

Concerning the traces of the y matrices, there is no new trace
to compute. Itis rather clear from Egs. (F.1), (F.2), (F.3), (F4),
and (F.5) that they will be the same as those appearing in the
computation of the Born amplitude squared, namely

Tr [152 AP (ps, pa) pr ATV (ps, p4)]

2
u u
X HMSUS (p3s 613) H;L4V4(p4a 6]4) = 8g? (? -2 s_2> N
(F.16)

Tr [152 AM43 (py, p3) p1 ATV (pa, Pa)]

2
t t
X nu3v3 (P3s 613) H;L4V4(p4s Q4) = Sg? (; -2 S_2> s
(E17)

Te[ 2 AP (ps, pa) py AT (pa ) |

2 2
1" +u
X H;L3V3 (p3s C]3) H;,L4v4 (p4s q4) = 88? S2 ’

(F.18)

where the symbols s, t and u are the usual Mandelstam vari-

ables: s = (p1 + p2)%,t = (p1 — p3)* and u = (p2 — p3)°
and

) fori =3, 4.
Pi - 4i

(F.19)

Iy (pi,qi) = <_gvr +

The arbitrary four-momentum ¢; in Eq. (F.19) is light-like
and not collinear to p;. Also, the square matrix element does
not depend on the choice of g3 and g4 but the different traces
do. To get the right hand side of Egs. (F.16), (F.17) and (F.18),
we have used that g3 = p4 and g4 = p3. Putting everything
together and after some algebra, we end up with the following
result for the squared amplitude not averaged over the initial
polarisations and colours

IMygel* = 48°Cr Ne

2Cy

Cyp—2C
x {Elz W? 41 (Ca —2Cp) [% )
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+ (E13 + E24) Cy

rou t u?
X[2Cp|l—4+—)—Cy 7_}_272
u ot u s

+ (E14 + E23) Cy

rou u 12
X[2Cpl—4+—)—Cy 7_{_272
u t t s

2

+ Esq (1P +u*) C} [l - 7” ) (F.20)

tu A

This result is in agreement with the one given in Ref.
[54]. The coefficients H;;(0) can be read directly from
Eq. (F.20).'® Note that the QED case (g +§ — ¥ + ¥ + )
is obtained by setting C4 = 0, Cr = 1 and replacing
gs by e O, where Q is the electric charge of the initial
fermions.'® We get:

t u
|/\/qu—>3)/|2 =16¢° Q?c N¢ Evp (; + ?) .

After that, the only surviving factor is Hy>(0) which is pro-
portional to the Born squared amplitude. In the QCD case, as
discussed previously, due to the fact that the soft gluon carries
colour charge, these coefficients H;;(0) are not always pro-
portional to the Born squared amplitude as seen in Eq. (F.20).
Having the different H;; (0) at our disposal, we can verify the
cancellation of soft divergences between the real emission
and the virtual ones, as described in equation (4.9). We can
extract the values for the factors A" and Ci@ in front of the
divergences from reference [55], considering the structure of
the virtual corrections outlined in equation (4.8). We indeed
verify that

HS 0) + H (0)
(Ca—Cp)*+C%
tu

2C5C
= 8Cr Ne [ -=5 F}
(E21)
HS(0) + Hyy (0)

2
t t
-sereun fre (+7) - (25
u t u s

(F22)
H{(0) + Hy3 (0)

t u u 12
=8CrCyN: |2Cr |-+~ ) —Ca|-+25 ],
u t t K
(F.23)

3

Z Z HP(0) =2 (Ca+ Cr)IME_ 7
i=1 j=i+l

(F.24)

18 The factor g_f,’ is notincluded in the coefficients H;; (0), cf. Eq. (2.25).

19 Note that there remains a global factor N, which corresponds to the
number of colours of the initial state g g.

@ Springer

(> +u?),

where |M5 g~ ggl is the squared Born amplitude not aver-
aged over spins and colours and stripped from the coupling

constant of the reaction gg — gg. It is given by

(F.25)

=8CF N, -+
ME_ P =8CF [w . }( u?),

which is in agreement with ref. [55].

G Notations

In this article, we introduced new notations to maintain the
formulas as compact as possible. This appendix serves as a
glossary where most of the notations used are summarised.
We have denoted by {x}y a sequence of labelled symbols x;
where the index i runs from 1 to N

{x}n =x1, x2,..., xN. (G.1)
We also denoted by (x)y a collection (a sequence without
comma) of symbols indexed by an integer
X)N =x1x2... xpN. (G.2)
And a symbol to describe a generic reaction where two bodies
produce N —2 bodies, with all the bodies labelled by i indexed
by an integer running from 1 to N, is introduced as follows:
liln=i1+ip—>i3+---+ipn. (G.3)
Furthermore, we also introduced a notation to describe
a sequence, collection, or reaction where one symbol is
replaced by another, for example:

{xlxi s zity = x1, X2, .05 Xio1, 205 Xigls o0 XN, (G4)
(lig 2 N = 0102 k=1 Jkik+1 - IN, (G.5)
ilix : il =it +i2 = i3+ + ik

+ jk ik + - Fin. (G.6)

We also needed a special notation for the convolution. Specif-
ically, when considering the convolution of two multivariate
functions f(ai,...,ay) and g(by, ..., bg) where the con-
volution involves only the variables a; and b;, we denoted it
as:

[f (a1, ....ak=1, % axs1, ... an)

®gi, ... bi—1, %, bi11, ..., bk)],7 (x)

'd

Z

E/ Z_nf(als-'~’akflvzsak+1"'°a1v)
X



Eur. Phys. J. C (2024) 84:611

Page 350f37 611

X
Xg(bl"'abl—laZabl"r]a""bK)' (G7)

Note that we also adhere to the convention that if a func-
tion & involved in the convolution has only one argument, we
write it in our special notation as simply % instead of 4 (x). A
word of caution regarding Eq. (G.7): when n # 1, the convo-
lution product defined in this equation is non-commutative.
Therefore, in such cases, the function on the right-hand side
of the product corresponds to the PDFs, while the one on the
left-hand side corresponds to the DGLAP kernels.

To describe the measures for the different phase spaces,
we introduced the notations

N
dPS\) | (F) =
[

1 _
dx;
n—2
!

dy; d"?Kry, (G.8)

Il
w
=1

which is the measure of the phase space of the hadrons and

dPS\Y = dyy dxr y X175 do (sin gy)" 4, (G.9)
which is the measure of the phase space of the parton which
can be soft and/or collinear to the other ones divided by x% N

In addition, we provide a summary of the various vari-
ables used in this article. Let us recall that K; represents the
four-momentum of the hadron labelled by i, which is param-
eterised by the rapidity y;, the magnitude of the transverse
momentum K7 ;, and the azimuthal angle between the trans-
verse momentum K ri and a reference direction in the trans-
verse plane. We also introduced an arbitrary energy scale Q in
order to build dimensionless variables. Furthermore, the par-
ton i which fragments into the hadron i carrying a fraction
of four-momentum x; has a four-momentum p; = K;/x;.
Additional variables introduced include:

Kri _pri _ Kri

w = Q/s, XTiZ?, XTi_?Zx,'Q'

Due to the conservation of the energy and longitudinal
momentum, the fractions of four-momentum x; and x; car-
ried away by the initial partons from their parent hadrons are
fixed

X1 =X +owxrye’n, X=X t+wxprye N,

with

=

—1

5)
Il

N-—1
Kri i A Z Kri -y
e’ Xy = e '
Vs x = Vsx

N
I
(98]

Note that the constraint coming from the conservation of the
transverse momentum has not been taken into account. This

constraint can be expressed as:

At leading order, these fractions of four-momentum are
denoted x; and X7, and they are given by:

N—-1 N-1
% Kri eV F Kri eV
1= - s 2 = - .
pt S X pt S X

It’s worth noting that while the definition of X1 (and Xx;) may
resemble that of X; (and X;), the constraint on the transverse
momenta is different at this order. Specifically, it reads:

=

— K7y

X

=0,

~
1
w

where we have named Xx; the fraction of momentum carried
by the hadron from its parent parton by similarity.

The fact that x; and x, must be less than one determines
the bounds on the rapidity of the parton iy which can be soft
and/or collinear. These bounds are given by

1 — X WXT N
YNmax = In s YN min = In < .
wWXT N

1-— X2
For convenience while integrating over yy, we have defined

AYy = YNmax — Yj» AYy =Yj — YN min-

When the parton iy is emitted collinearly to another parton
ix, a new variable z; is introduced which is bounded from
above by zj i outside the cylinder of size x7 1:

XTk XTk

k= Zkm = —— -
XTk+ XTm

XTk+XTN

To enforce that the coefficient of the collinear singularity is
a convolution of a partonic cross section times a DGLAP
kernel, we trade x; for x; = zx xx. This bound becomes, for
a hadron or a jet,

Com = X7k — Xk XTm
m — —’
X7k

¢ XTjet_me
jetm = —
XTjet

To conclude this appendix, we also needed to define quanti-
ties that enable us to distinguish between two regimes in the
case of initial state singularities. Specifically,

Bij =wexp(y;)/(1 —Xx1), p2j =wexp(—y;)/(1—Xx2).

@ Springer
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