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Abstract: The stochastic signal observed by collaborations such as NANOGrav, PPTA, EPTA +InPTA,
and CPTA may originate from gravitational waves induced by primordial curvature perturbations
during inflation. This study investigates small-scale properties of inflation and reheating, assuming a
log-normal form for the power spectrum of the primordial curvature and a reheating phase equation
of state w = 1/9. Inflation and reheating scenarios are thoroughly examined using Bayesian methods
applied to the NANOGrav 15-year dataset. The analysis establishes constraints on the reheating
temperature, suggesting Ty, 2 0.1 Gev, consistent with Big Bang nucleosynthesis constraints. Addi-
tionally, the NANOGrav 15-year dataset requires the amplitude (A~0.1) and width (A < 0.001) of
the primordial curvature power spectrum to be within specific ranges. A notable turning point in the
energy density of scalar-induced gravitational waves occurs due to a change in the equation of state
w. This turning point signifies a transition from the reheating epoch to radiation domination. Further
observations of scalar-induced gravitational waves could provide insights into the precise timing of
this transition, enhancing our understanding of early Universe dynamics.

Keywords: PTA; inflation; reheating

1. Introduction

The detection of gravitational waves (GWs) resulting from compact binary mergers by
the LIGO-Virgo-KAGRA collaboration [1-3] represents a groundbreaking achievement in
astrophysics and cosmology, significantly advancing our understanding of the diverse popu-
lation of GW sources [4-15]. This milestone has opened avenues for exploring stochastic GW
backgrounds, which promise profound insights into various astrophysical and cosmological
phenomena [16,17], such as dark matter [18-20] and modified gravity [21-26].

Recent observations from multiple pulsar timing array (PTA) collaborations—including
at the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) [27,28],
Parkes Pulsar Timing Array (PPTA) [29,30], European Pulsar Timing Array (EPTA) in
combination with Indian Pulsar Timing Array (InPTA) [31,32], and Chinese Pulsar Tim-
ing Array (CPTA) [33]—have revealed a common spectrum signal characterized by the
Hellings-Downs angular correlation feature inherent in GWs. This distinctive signal, re-
sembling a fiducial characteristic strain spectrum of f~2/3, is regarded as an ensemble of
inspiraling supermassive black hole binaries by default [27,30,32,33]. However, alternative
interpretations are also possible, and uncovering the precise origin of this interesting signal
remains an active area of investigation [34-69]. For more about the physical processes
generating GWs with the PTA band, see [70-80].

Scalar-induced gravitational waves (SIGWs), linked to the formation of primordial
black holes (PBHs), originate from secondary orders of linear scalar perturbations dur-
ing the inflationary epoch, and these perturbations are seeded by primordial curvature
perturbations, as extensively discussed in the literature [5,7,9,11-13,81-124]. Generating
significant SIGWs requires amplifying the amplitude of the primordial curvature power
spectrum. This amplification is often realized by inflationary models that incorporate
transitional ultra-slow-roll phases [91,125-166]. The frequencies of the peak of SIGWs are
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intricately linked to the scales of the peak in the power spectrum of primordial curvature
perturbations. Specifically, the frequencies of SIGWs in nanohertz (nHz) correspond to
the scales characterized by wave numbers on the order of k,~10” Mpc™! in the power
spectrum of primordial curvature perturbations. This relationship between frequency and
scale is critical for understanding the detectability and observational implications of SIGWs
in the universe’s early history.

This study is centered around analyzing the PTA signal associated with SIGWs, specif-
ically during the reheating epoch, with the equation of state being w = 1/9 before the
radiation-dominated era. This particular equation of state emerges within the framework
of a scalar field and offers a solution to the problem of excessive PBH production observed
when fitting PTA data with SIGWs. Recent investigations have underscored challenges
linked to this issue, highlighting the significance of non-Gaussianity in primordial curva-
ture perturbations [38,39,167]. Our study aims to rigorously constrain inflationary and
reheating scenarios by employing Bayesian methods applied to the NANOGrav 15-year
dataset within the context of the equation of state w = 1/9.

To organize our analysis effectively, we structure our discussion as follows: Section 2
offers a succinct review of the energy density of SIGWs. Section 3 presents our findings
and interpretations derived from the analysis. Finally, Section 4 concludes our study,
summarizing key insights and implications. Throughout this work, we adopt natural units,
where the speed of light c = 1.

2. Scalar-Induced Gravitational Waves

In this section, we delve into a cosmological scenario featuring a reheating epoch
with the equation of state parameter satisfying w = 1/9, which precedes the onset of
Big Bang nucleosynthesis (BBN). Specifically, we focus on a scenario where the transition
from the reheating era with w = 1/9 to the standard radiation-dominated (RD) era is
instantaneous, with the temperature of the Universe at this transition denoted by Ty,. The
w = 1/9 reheating scenario was chosen for this study because it represents a non-standard
equation of state that can arise in certain inflationary models with non-canonical kinetic
terms or non-trivial interactions [168,169]. Investigating this scenario allows us to explore
the potential observable consequences of alternative reheating dynamics and broaden our
understanding of the range of possible post-inflationary behaviors. Previous investigations
of SIGWs in similar scenarios have been conducted [170], where the authors fixed the
reheating temperature Ty, and the width of the primordial curvature power spectrum.
In contrast, our study loosens the constraints on the reheating temperature Ty, and the
width of the peak in the power spectrum of primordial curvature perturbations. Utilizing
Bayesian methods and data from the NANOGrav 15-year dataset, we rigorously constrain
both the primordial curvature power spectrum and Ty;,. This method enables us to examine
a wider range of parameter space, providing insights into the implications for cosmological
models that incorporate SIGWs within these scenarios.

For a general constant equation of state w and constant sound speed c;, the energy
density in a SIGW can be expressed as [86]

—2b oo 1+v
Qcw ih = (kk> / dvs./ duT (u,v,b,cs) Pr(ku) Pr(kv), 1)
rh 0 |

1—v|
where the subscript “rh” denotes the “reheating”, b = (1 — 3w) /(1 + 3w), and Py is the
power spectrum of the primordial curvature perturbations. Here, u = |k — k|/k and
v = k/k are dimensionless variables, where the auxiliary wave number k comes from

the Fourier transform of the second-order source, k = |k| and k = |k| [84]. The transfer
function 7 (u,v,b,¢s) is



Universe 2024, 10, 251 30f13
_ 2 2
T(u,0,b,cs) = N(b,cs) (4” e Y - g2
b2 p—b 2
X ( )+ s Pb+2(y)> Ocs(u+v)—1)
(2)

2!

+2(Q, () + 20,5 (1) Oes(u+0) 1)

+%(Qh_ (—y)+ ZZI%QZ;H( ))28(1_%(”"'0))}

Here, the variable y = 1 — [1 — cZ(u — v)?]/(2c2uv), the function @(x) is the Heaviside
theta function, and the function N (b, ¢s) is
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where the function I'(x) is the Gamma function.

The Ferrers functions P} (x) and Q) (x), along with Olver’s function Q) (x) in the
transfer function (2), can be expressed using hypergeometric functions. Specifically, they
are defined as follows:
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and

F(a,b;c;x) = 1_(1C)F(a, b;c;x), (7)
where F(a,b;c; x) is Gauss’s hypergeometric function. By utilizing the correspondence
between the evolution of the GW’s energy density and that of radiation, we can calculate
the energy density in the present-day GW. This calculation is

4
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where g, and g, are the effective energy and entropy degrees of freedom at the generation of
the SIGWs and ), oh? is the energy density parameter of the present-day radiation, respectively.

In this study, we adopt the log-normal form for the power spectrum of primordial
curvature perturbations, represented as:

2
Prll) = —— exp(—h‘é’;/zk*)), ©)
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where A controls the width of the spectrum, k. determines the peak position in the spectrum,
and A denotes the amplitude of the spectrum. This paper focuses on narrow peak spectra
with A < 0.1, a condition supported by our results presented below. For an extremely
narrow peak spectrum with A — 0, the log-normal form power spectrum (9) reduces to a
d-function form, Pr = Ak,é(k — k). For a log-normal spectrum with a finite width, the

corresponding energy density parameter Q(GAV)\,’OhZ for SIGWs is given by [100]

® 12~ gl L ginnt K| 0@ g2
Here, Q(GA&,,Oh2 denotes the present energy density in SIGWs from the primordial

(4)

curvature power spectrum with a finite-width log-normal form, Qg th is the energy
density induced by the d-function form, and the function Erf(x) denotes the error function.
At the horizon crossing for a wavenumber k, the temperature T is approximately

related by:
1 _1
k~1.5><107 (T2 gus(T)\ 3 T an
~ Mpc \106.75) \ 106.75 GeV )’

The corresponding frequency f related to the scale k is:

k

= —~16nHz| ———— |. 12
f 2r <1O6 Mpc1> (12
Combining Equations (11) and (12), we establish the relationship between the frequency f

and the temperature T as:
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It is important to note that there is a minimum requirement for the reheating tem-
perature during BBN, which is T3, > 4 MeV, as indicated by various studies [171-174].
Consequently, this imposes an upper limit on the reheating frequency f;,, ensuring that
fin < 0.1 nHz, which falls below the sensitivity range of pulsar timing arrays.

3. Methodology and Results

In this section, we proceed under the assumption that the signal in the NANOGrav
15-year dataset originates from gravitational waves induced by the finite-width log-normal
form of the primordial curvature power spectrum given in Equation (9). We utilize Bayesian
methods on the NANOGrav 15-year dataset to derive constraints on both the primordial
curvature power spectrum and the reheating temperature Ty,. The analysis involves lever-
aging the information from the 14 frequency bins in the NANOGrav 15-year dataset [27,34]
to infer the posterior distribution of T;;, and the parameters within the primordial curvature
power spectrum parameterized as Equation (9). We employ the Bilby code [175], which
implements the dynesty algorithm for nested sampling [176], to compute the posterior
distribution. To establish the log-likelihood function, we begin by calculating the energy
density of scalar-induced gravitational waves at frequencies corresponding to the 14 bins
in our analysis. Subsequently, we create the logarithm of the probability density functions
using 14 independent kernel density estimates. Finally, we multiply the probabilities from
these 14 bins to construct the comprehensive likelihood function [39,43,46,47,177,178]. This
formulation is expressed as

14

L(A) =T]Li(Qcw(fi,A)). (14)

i=1
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Here, A = {A, A, f«, Ty} encompasses all the model parameters, covering both those
associated with the primordial curvature power spectrum (9) and the reheating temper-
ature Ty,. The priors for these parameters are specified in Table 1, where U/ indicates a
uniform distribution.

Figure 1 presents the posterior distributions for the parameters linked to the primordial
curvature power spectrum defined in Equation (9), including the reheating temperature
denoted as Ty,. Table 1 compiles the median posterior values and the boundaries of the 90%
credible intervals for these parameters. Within the posterior distributions, the relationship
between the scale k; and the corresponding frequency f, is governed by Equation (12).
At a confidence level of 90%, the NANOGrav 15-year dataset requires the width of the
power spectrum of primordial curvature to be A < 0.001, which supports the narrow peak
assumption made in Section 2. Moreover, the lower bound on the reheating temperature,
T > 0.1 Gev, conforms to the constraints imposed by BBN. The constraints on the
amplitude A and the peak scale frequencies f. of the primordial curvature power spectrum
are consistent with those reported in a publication by the NANOGrav Collaboration
investigating new physical phenomena [34].

logi0A

|0910A

10910(Tin/GeV)

LN S
NN QT 0T o

log10A 10910(Tin/GeV)

>0

log10A

v

|0g10(f* /HZz)

Figure 1. This figure presents the posterior probability distributions for the parameters in the primordial
curvature power spectrum parameterization, as described in Equation (9), and the reheating temper-
ature. (Ty,). The diagonal panels show the marginalized one-dimensional posterior distributions for
each parameter, while the off-diagonal panels show the two-dimensional joint posterior distributions,
revealing the correlations between parameter pairs. The scale k. and the corresponding frequency f
are related through the expression given in Equation (12). The posterior distributions summarize the
probabilistic constraints on these parameters based on the analysis of the available data.
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Table 1. Summary of the prior distributions, median posterior values, and 90% credible interval
bounds for the reheating temperature (Ty,) and the parameters associated with the primordial
curvature power spectrum, as described in Equation (9). The priors are represented by uniform
distributions, denoted by /. The median posterior values provide the most probable estimates for
each parameter, while the credible interval bounds of 90% indicate the range within which the true
parameter values are likely to lie, based on the given data and the assumed model.

Parameter log,o(f«/Hz) logy A log;, A log,o(Tin/GeV)
prior Uu(-10,-2) Uu-6,-1) U(-5,1) Uu(-10,-7)
posterior 626177 —3.6123 —0.28"728 —0.121048

Using the optimal parameter values obtained from Table 1, we computed the energy
density in SIGWs. The resulting energy density is depicted by the blue line in Figure 2, and
the blue region denotes the 1-0 confidence intervals. In particular, around a frequency of
approximately f~10~%! Hz, we observe a notable turning point in the energy density of
SIGWs. This turning point corresponds to a change in the equation of state w, which affects
the evolution of SIGWs and leads to a distinctive feature in the energy density spectrum.

-5
— Best-fit
lo region
—6 | NANOGrav
S
=
(L)
<}
>
o
_11 4
_12 1
-13 T T T - T T T -
-9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -55 -5.0

log10(f/HZ)

Figure 2. This figure depicts the energy density of the SIGW for parameter values corresponding
to the best-fit values. The blue curve in the middle represents the predicted SIGW energy density
spectra based on these best-fit parameter sets; the blue region denotes the 1-0 confidence intervals for
the energy density of SIGWs. To provide context, the red violin plots illustrate the energy density
estimates of the free spectrum obtained from the NANOGrav 15-year dataset. The width of the
violins at each frequency indicates the probability density of the energy density. By comparing the
predicted SIGW spectra with the NANOGrav observational constraints, this figure allows for an
evaluation of the agreement between the best-fit models and the available data.

The energy density spectrum of SIGWs, as shown in Figure 2, exhibits a sharp decrease
in the ultraviolet region around the frequency of f~10~°. This feature is a characteristic of
SIGWs originating from a primordial curvature power spectrum with a narrow peak. In the
case of a J-function form of the primordial curvature power spectrum, P; (k) = Azé[In(k/k.)],
which represents an extremely narrow peak, the energy density of SIGWs cuts off at scales
of k > 2k, [90]. Our data analysis requires a very narrow peak in the primordial curvature
power spectrum, with constraints indicating A < 0.001. This narrow peak directly results in
the observed sharp decrease in the energy density of SIGWs. Therefore, the feature in Figure 2
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is a consequence of the primordial curvature power spectrum having a very narrow peak, as
necessitated by the PTA data.

4. Conclusions and Discussion

The stochastic signal observed by collaborations such as NANOGrav, PPTA, and
EPTA, along with InPTA and CPTA, likely originates from gravitational waves induced
by primordial curvature perturbations generated during inflation. Following inflation, the
Universe undergoes a reheating phase aimed at increasing its temperature. Information
about the small-scale properties of inflation and reheating can be encoded in the energy
density of SIGWs. This study explores the small-scale characteristics of inflation and
reheating and assumes that the equation of state during the reheating phase is characterized

by w = 1/9. During the oscillation of the inflaton, w = Z—I_; for a power-law potential
V(¢) o ¢? [179,180]. The choice w = 1/9 corresponds to a scalar field potential of the form
V(¢) ~ ¢*/? near its minimum, which exhibits a flatter minimum compared to the standard
quadratic case, leading to distinct reheating dynamics. The ¢°/2 potential form can arise
in inflationary models with non-canonical kinetic terms, such as k-inflation [181] or DBI
inflation [182], or be motivated by considering higher-order corrections to the inflaton
potential [183]. The total potential model under consideration includes terms that allow for
a smooth transition from the inflationary phase to this specific reheating scenario [184].

To model the power spectrum of the primordial curvature perturbations, a log-normal
form is adopted. By applying Bayesian methods and analyzing the NANOGrav 15-year
dataset, we obtain posterior distributions for the key parameters. These include the char-
acteristic frequency f., the width parameter A, the amplitude A of the primordial cur-
vature power spectrum and the reheating temperature T;;, /GeV. The obtained posterior
values are logo(f./Hz) = —6.26712 log,,A = —3.6753, log;y A = —0.28"]1¢ and
log(Tin/GeV) = —0.1219¢1

It is important to acknowledge that the w = 1/9 reheating scenario is one among
many possibilities for post-inflationary dynamics. The more commonly assumed scenario is
w = 0, which corresponds to a quadratic potential minimum [185,186]. However, exploring
alternative scenarios, such as w = 1/9, allows us to investigate the potential observational
signatures of non-standard reheating dynamics and test the robustness of our conclusions.
The choice of equation of state during reheating can have significant effects on observable
signatures, such as the energy density of scalar-induced gravitational waves [86,101,187].
In the w = 1/9 scenario, distinct reheating dynamics can lead to modifications in the
spectral shape and amplitude of the gravitational wave background compared to the
standard w = 0 case. Exploring these alternative scenarios provides valuable insights into
the sensitivity of observables to the details of the reheating phase and can help constrain
inflationary models based on observational data [188].

Furthermore, the energy density of SIGWs displays a distinctive turning point, which
corresponds to a change in the equation of state w. This turning point signifies the transition
from the reheating epoch to the radiation-dominated era, highlighting a significant phase
in the evolution of the early Universe. Future observational data on scalar-induced gravita-
tional waves hold the potential to refine our understanding further, potentially pinpointing
the precise time when the reheating phase transitioned into the radiation-dominated era.
Such insights could shed light on fundamental aspects of cosmological evolution during the
early Universe and aid in the refinement of theoretical models of inflation and reheating.
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