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1 Introduction 

The idea that our universe endured a hot dense past before expanding and cooling 
to its present state has caused a special relationship to develop between the fields 
of high energy physics and cosmology. In order to describe our high temperature 
past, an understanding of high energy physics is required. On the other hand, our 
understanding of high energy physics is incomplete, and the early universe has 
proven to be a useful “laboratory” in which to test new ideas. A new high energy 
theory can be used to model earlier epochs. If this new high energy physics affects 
the evolution of the universe in a way that can be detected today, a test of that 
theory results. In addition, applying high energy theories to studying the early 
universe has introduced interesting new ideas into the field of cosmology. 

This field is too vast to cover in three lectures. (For more detailed discussions 
see, for example, references [l], and [2).) My goal is, by presenting a selection of 
topics, to convey my enthusiasm for the field and to point out areas which could 
prove fruitful for further research. 

‘Lectures presented at the 1987 Theoretical Advanced Studies Institute, Santa Fe, New Mexico 
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When one applies theories of the high energy physics to the early universe 
one can take different approaches. The most conservative approach is to 

simply make sure that your beautiful theory of particles does not have any 
cosmological disasters hidden in it. As we shall see, there are ways in which a 
model can have a cosmology which is inconsistent with our observed universe, 
even if the particle physics looks great. On the other hand, there are unsolved 
issues in cosmology which seem to look naturally toward high energy physics 
for resolutions. There is a lot of work to be done just in exploring what high 
energy physics can and can not do to address these issues. Part of the fun, 
of course, is that you may start out with one of these approaches but there is 
no telling in which area you may end up contributing. It pays to keep your 
eyes open to all possibilities. As these lectures progress I will be stopping to 
emphasize points that could cause cosmological stumbling blocks for models 
of high energy physics, as well as to present some important cosmological 
issues waiting to be solved. 

In a certain sense cosmology lacks a definiteness found in other areas of 
physics. One can not go back in time and determine what did and did not 
happen the way one can measure a cross section or a critical temperature in 
the laboratory. Still, our curiosity drives us to understand the early universe 
as best we can, and there are constraints which serve as tests of cosmolog- 
ical models. First of all one must have internal consistency. For example, 
a proposed change at the grand unification scale could have unacceptable 
consequences at a later epoch when nuclear physics plays a dominant role. 
Then there is the obvious need for consistency with current observations. 
As we shah see, events in the early universe can leave traces (sometimes 
dramatic, sometimes subtle) which can appear in, and possibly contradict, 
current observations. The fact that many new and more detailed observa- 
tions are expected in the coming years makes this a particularly exciting time 
to be studying cosmology. 

I will start these lectures with a presentation of the standard big bang 
model of cosmology. ’ Although not perfect, its many successes make it a 
good starting point for most discussions of cosmology. I will point to places 
where well understood laboratory physics is incorporated into the big bang, 

IFor a Marc complete discussion of the standard big bang model see, for example, 
reference [3] 
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leading to successful predictions. Then I will move on to much less established 
aspects of high energy physics and discuss some of the new ideas they have 
introduced into the field of cosmology. 

2 The Standard Big Bang: Evolution of Space- 
time 

Cosmologists find it attractive to assume that, when viewed on large enough 
scales, our region of the universe looks just the same as any other. That 
is, on large scales the universe is homogeneous, no point is singled out. It 
is almost as if we are still bitter over the death of geocentrism, and declare 
that if we can not be the center of the universe then no one else can either! 
Cosmologists also like to assume that the universe is isotropic, so that there 
is no preferred direction in the universe just as there is no preferred point. 
These two assumptions together are known as “the cosmological principle”. 
This may sound like something deep, but of course the reason this principle 
is popular is that it leads to a successful model. 

2.1 Friedmann-Robertson-Walker Cosmologies 

Any homogeneous and isotropic spacetime can be described by the Robertson- 
Walker metric in which the invariant length ds is given by s 

(da)S = (&)a - a(t)2 I l(TLI::l + t”(d~9)~ + 2 sinr(dqS)r 
I 

. (1) 

The coordinates T, 0 and q5 provide a parameterization of the three space 
dimensions. The coordinate t is a measure of time, and a(t) is called the 
“scale factor” and gives an overall scale as a function of time. If Santa Fe 
were expanding uniformly the number of blocks from this building to the 
plaza would remain constant, while the length of a block, and the total 
distance, would be increasing. The number of blocks would be the analogue 
of T, 8 and 4 while the block size would be the analogue of a(t) . 

‘Throughout I use units where c = fi = kid* ‘rn.1111 = 1. 



For Robertson-Walker spacetimes the curvature scalar of three dimen- 
sional space is given by 

R(t) = ka(t)-’ (2) 

and is independent of position since space is homogeneous. The curvature 
scalar distinguishes between three types of space: 

Type Curvature Spatial Volume 
closed R>O &$R-3/2 

flat R=O infinite 
open R<O infinite 

If R # 0, I will measure o(t) in units of [RI-‘/* so k = fl. A flat uni- 
verse appears in the a --t 00 limit in these units. In the case of the closed 
universe there exist homogeneous and isotropic models with different global 
topologies, but locally they look the same. 

In almost all modern theories of cosmology it is assumed that general 
relativity correctly describes the dynamics of spacetime, at least over length 
scales greater than the Planck length (= Gzf,,,,,). Thus, to calculate the 
dynamics one needs to know the stress- energy tensor ( T) of the matter in 
the universe. Homogeneity and isotropy restrict T to the form: 

(3) 

again, independent of position. The parameter p is the energy density and 
p is called the pressure. When the matter takes on a familiar form such as 
that of an ideal gas, p is the pressure we are used to defining. 

Einstein’s equations in a Robertson-Walker spacetime give 

li 1 

0 

8uG k - 
a =-j-p-- (4) 

which is known as the Friedmann equation. Here G is Newton’s constant. 
Note that (for p > 0) in an open or flat (k = -1 or 0) universe & can not go 
through zero. In this case. an expanding universe ,wilI expand forever. For a 
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closed universe (k = 1) b can go through zero. Typically an expanding closed 
universe will eventually re-contract. 

To solve Eqn (4) for a(t) one needs to know p(a). The conservation of 
stress-energy (VT = 0) gives 

$ (p2) = -3p2. 

If p(p) is given then Eqn (5) can be solved for p(a) and the evolution of a(t) 
can be calculated. 

2.2 Input From Microscopic Physics 

The one place where the physics of microscopic processes comes in to calcu- 
lating a(t) is in determining the relationship between the pressure and the 
energy density. The equation which gives p(p) is called the equation of state. 
In the standard big bang there are two equations of state which appear. 

2.2.1 Non-relativistic matter 

Today most of the matter we observe in the universe appears to be non- 
relativistic: 

Kinetic Energy < Rest Energy. (6) 

Because the kinetic energy is relatively small 

p=o (7) 

is a very good approximation to the equation of state. This is known as 
a non-relativistic, dust dominated, or matter dominated equation of state. 
Plugging into Eqn (5) gives 

WC0 
da (8) 

which is solved by 

Here B is a constant of integration. Equation (9) can be understood by 
noting that the amount of energy in a co-moving volume remains the same 
while the volume scales as as. 
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2.2.2 Relativistic matter 

In most models the particles in the hot early universe are highly relativistic: 

Kinetic Energy > Rest Energy. P-4 

As with a relativistic ideal gas, the equation of state is 

This is called a relativistic or“radiation dominated” equation of state. In 
this case Eqn (5) gives 

44 -= 
da 

-pas. (12) 

Equation (12) is solved by 

P=$ (13) 

where D is a constant of integration. Equation (13) can be understood by 
realizing that for relativistic matter, as with photons for example, the energy 
in a co-moving volume scales as a-l or “redshifts”, while the volume still 
scales as a-j. 

2.3 General Properties of the Big bang 

I will now introduce a crude version of the standard big bang. At very 
early times the matter was very hot, so it is taken to be relativistic. As the 
universe expands and cools the kinetic energy of the matter redshifts, until 
eventually it becomes non-relativistic. I will assume that this transition 
occurs instantaneously at a time t,. Corrections to this approximation kill 
not significantly alter the qualitative discussion which follows. 

This model has three adjustable parameters, D (the integration constant 
in the relativistic era), k (the curvature), and t,. The integration constant 
(B) in the non-relativistic era can be calculated by writing 

B D 
p(&) = - = - 

40 a(k)’ 

and solving for B. The value of t, comes from microphysics. It is the masses 
of the particles and the spectrum of bound states which tell us at what 
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stage the matter becomes non-relativistic. That leaves two “cosmological” 
parameters, Ic and D, which we must fit to our universe. 

Before fitting the big bang model to our universe we can make some 
interesting general remarks. The Friedmann equation (4) can be re-written 
as 

iL = ~-ggzx 

t (15) 
N a-2 op a-1 

were we take the positive root because the universe is observed to be expand- 
ing today. Using expression (9) or (13) for p one finds that the first term 
in the square root goes as a-’ or am1 respectively. Since h is a decreasing 
function of a, an upper bound on a in the past can be found by taking i 
constant at today’s value: 

a(t) < ad(t) E a,, . (taut,) fort < t-. 

The fact that ad goes to zero at to means that a itself wss zero at some 

finite time in the past (no earlier than ta). A Robertson-Walker spacetime 
with a = 0 is singular and is not physically understood. Such singularities 
are known to appear generically in most spacetimes, not just in Robertson- 
Walker141. The real frontier of our understanding, however, lies at small but 
finite values of a which correspond to very large v&nas of p and require a 
knowledge of ultra-high energy physics to understand. It is possible that 
new ideas from this front could allow such singularities to be avoided or 
understood. 

Still, the Standard Big Bang does have an a = 0 singularity. We usually 
choose t = 0 at this point and call it the beginning of the universe. Using 
a* one can get an upper bound on the age of the universe: 

J ew. t -= i-‘da < 
a-0. 

0 J 0 
izda= t 

a- 

Any evidence that the universe is older than this bound would contradict the 
standard big bang model. 



2.4 Fitting D and k to Observations 

The value of h/a today is called H, the Hubble constant. The recession speed 
8, of an object a distance d away due to the expanding universe is 

8, = Hd. 

The observed value of H is written[51 

(18) 

h 
H = h x lOOicmaec-’ Mpc-’ N - 

1OlOyr 

where lMpc(megaparsec) = 3 x 1O”cm. The parameter h is bounded by 

1 2 h 2 0.4 (20) 

and represents our uncertainty in H. 
In order to fit the parameter le in the big bang one must measure the 

spatial curvature of the universe. It is convenient to define P-it (using Eqn 

(41 1 
i a 

0 - a 
If p = prrir then the expansion is driven entirely by p, and k = 0. Today 
p-it N 2ha x 10-1sgm/nn3. It is often convenient to work with R zz p/prrit. 
Then 

k 87rG 
s= 3 -p-it (1 - n) (22) 

gives the spatial curvature. 
If one just considers the luminous matter (stars) in the universe one finds 

th&] 
illurn E z 21 .Ol (23) 

giving fi 2 .Ol. On the other hand one can also estimate the masses of 
dynamical systems by inferring the gravitational forces necessary to explain 
the motions of observed objects. When this technique is applied to galaxies, 
one get&‘] 

n,, z 2 2: 0.1 - 0.3 (24) 

which gives a higher lower bound on the R. 
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The discrepancy between Eqns (23) and (24) is the starting point for a 
very interesting and active area of current research: The search for the “dark 
matter” or “missing mass”. Theoretically this matter could be some exotic 
new particles from grand unification, or a more familiar form of dark matter 
such as planets. This issue provides a classic opportunity for high energy 
physics to interact with cosmology and it is the subject of Blumenthal’s 
lecture in this volume. 

We are not yet done with putting bounds on R. The age of the universe 
is related to R, as one can see qualitatively by examining Eqn (15). The 
curvature contribution to the right side does not decrease with a while the 
p contribution does. The more the curvature dominates, the more slowly 
h decreases and the faster the universe evolves. One can make arguments 
based on geology, as well as stellar evolution and the evolution of nuclear 
abundances, which put lower bounds on the age of the universe[‘l. There 
is general agreement that the age of the universe is no less than 10 billion 
years. This conservative bound gives19 

il 5 l.lb 5 6.9. 

Putting Eqns (24) and (25) together one gets 

0.1 5 n < 6.9. (26) 

The fact that we do not know if Cl is greater than or less than one means 
that we do not know what sign to give the spatial curvature in the big bang 
model. Thus, we can not predict whether the universe will go on expanding 
forever, or eventually re-contract. Equation (26) does tell us, however, that 
p is not “too far” from p,+t or that the spatial curvature is not “too large”. 
In fact 

8aG 
- +J.gPcrit 5 2 5 

8xG 
-yj--0.9Pd (today) (27) 

are the limits on the curvature. 
We have already passed over an important success of the big bang model 

which is often under-emphasized. The big bang gives a finite upper bound 
on the age of the universe. In determining which values of a are consistent 
with the lower bounds on the age of the universe, it is perfectly possible that 
a contradiction would arise rather than Eqn (25). If the big bang were to 
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allow the universe to be s, maximum of a few thousand years old, it might be 
adopted by creationists, but it would have no place in modern science. It is 
still possible that as these lower and upper bounds on the age of the universe 
are refined, the big bang model might become inconsistent. There are some 
who believe we are on the brink of such an inconsistency today. 

Now that we have determined the spatial curvature as best we can, let us 
try to fit the one remaining parameter, the integration constant D. A simple 
lower bound on D comes from looking at the microwave background photons. 
Currently we observe the universe to be lilled with a thermal distribution 
of photons at about 3K. These microwave photons contribute a relativistic 
component pmw to p today, as they did in the relativistic era. Thus 

Pm0 = % (allthetime). (28) 

In the relativistic era the photons were not the only component to the energy 
density so 

D > D,,,,. (29) 
Using the standard formula for p of a relativistic thermal gas and the bound 
on a implied by Eqn (27) gives 

D > Dmw 
= P??UCl~ ‘I tad., 

= (3K)4$$’ 
t0dW 

2 6.3 x IO”‘. 

What does such IL large value of D mean? It is, after all, just a free 
parameter in the big bang model and it can be what ever it likes. Many 
people choose, however, not to simply leave it at that. I will now discuss 
several puzzles or problems that people associate with such large values of 
D. In the process I hope the physical meaning of the dimensionless number 
D will become clearer. 

2.4.1 Large numbers puzzle 

Some people balk at any theory in which dimensionless parameters must be 
set very far from one. They take it as a sign that something important is 
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being swept under the rug, and argue that if a model could be found without 
this problem it would have considerably greater appeal. 

2.4.2 Large entropy puzzle 

The large numbers puzzle is often recast as the large entropy puzzle. For 
a relativistic gas of particles in equilibrium the energy density (p) and the 
entropy density (a) are given by 

p = & 

a 
* = ijp 

(31) 

(32) 

where j is the number of Bose plus 7/S the number of Fermi degrees of 
freedom. On can then see that 

D3/4 = (pa’)3’4 

= ($+4. a4)3’4 

= 1.8(@?)-I”. [m”] (33) 

so D3/’ is roughly the entropy contained in a cube one radius of curvature 
on a side. Thus large D can be thought of as large entropy. 

2.4.3 Flatness puzzle 

Certainly the large value of D has something to do with the degree of flatness 
of the universe. Since a flat universe appears ss the a + 00 limit in our units 
and p = D/a’, a nearly flat universe with finite p must necessarily have a 
large D. The relationship between large D and flatness can be explored by 
rewriting Eqn (21) as 

P&t -=I- k 

P pd?G’ 

Using the definition of the Planck length (4 s G) and Eqn (13) for p in the 
relativistic era this becomes 

(35) 
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Bounds on D and a- from Eqns (30) and (27) were used to get the inequal- 
ity. If D were O(1) Eqn (35) would give a large deviation from flatness for a 
universe where a/lp >> 1 . The large value of D means our universe is “flat 
for its size”. Equation (35) also says that for our universe to be as flat as 
it is today, it must have been much more flat in the past. For example, at 
the era when grand unification physics would be relevant, a/a- N lo-rs. 
Equation (35) then gives 

for the grand unification era. 
How much one chooses to be puzzled by these puzzles is to some extent 

a matter of personal taste. As I said earlier, one can regard D as a free 
parameter which must be set, and leave it at that. Some find it appealing 
to declare, as a new principle, that k = 0. In this case p is identically prrit 
at all times and D = m. Of course, it is still possible that such a principle 
would be contradicted by future observations. 

Probably the strongest basis for concern comes from demanding that the 
adjustable parameters of today’s models become the derived parameters of 
tomorrow’s. From this point of view all free parameters in present theories 
are puzzles awaiting resolution. To some it seems more likely that parameters 
can be derived in some new super theory when they are all O(l), and numbers 
like 10”’ seem less easy to come by. One way to demonstrate this point is 
to suppose that some fundamental development caused us to modify the big 
bang model at very early times and left us with the task of matching up to the 
standard big bang at, say, the end of the grand unification era. According to 
Eqn (36) we would be required to have p = peii with an accuracy of one part 
in 10sa ! If the requirement were simply p N p-it the task would appear much 
easier. Critics of this line of thinking argue, however, that it is ridiculous 
to talk about what is easy or hard to do with a new theory until one knows 
what it isl1ol. 

2.5 Causality Structure of the Big Bang 

The region in causal contact with an event is determined by how far photons 
which start at that event can travel. For a photon da = 0 so Eqn (1) gives 
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dt’ = a’dP where 1 is the coordinate distance that the photon has traveled. 
The physical distance d a photon travels between times tr and tr is then 
given by 

d = a(t$ = a(ta) l;’ a-‘dt (37) 

so given a(t) one can solve for d. We have seen (from Eqn (35)) that for most 
of the history of the universe the curvature of the universe can be neglected. 
This makes it particularly easy to solve the the Friedmann equation (Eqn 
(4) ) for a(t). In the relativistic era (using Eqn(13)) 

a= 2t :GD N--J 
112 

which gives 

d = 2(tp - a) ‘=%*’ 2tz. 

In the non-relativistic era (using Eqn (9)) 

(39) 

U-----l 
=/= 0= it $GB 

which gives 

d = ;(tl - t, t, ) l/3 a/3 Iw+At 3 
itl’ (41) 

This means that throughout the evolution of the universe the largest regions 
in causal contact have a size of roughly t. 

One result of the above discussion is that at t = 0 there is no causal 
contact in the universe. At first sight this may seem strange since a(O) = 0 
and the distance between any two points in the universe is zero. Of course, 
one must be careful with such a singularity. As one works back toward t = 0 
the causal regions decrease in size as t, while the separation between points 
decreases more slowly (see Eqns (38) and (40)). Thus the initial singularity 
can be thought of as many arbitrarily small causally separate regions which 
are arbitrarily close together. 
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3 The Standard Big Bang: Evolution of Mat- 
ter 

3.1 Thermal Equilibrium 

It is usually assumed that the matter in the early universe was in thermal 
equilibrium. Today the matter is clearly not in thermal equilibrium. We 
see hot stars and cold comets, clusters of galaxies as well as voids. These 
structures are believed to be the result of gravitational collapse. Gravita- 
tional collapse starts to play a serious role in the big bang model after the 
end of the relativistic era. Before then the high pressure due to the rela- 
tivistic particles counteracts gravitational collapse, a typical particle having 
escape velocity from an initial gravitational perturbation. All the effects of 
gravitational collapse in cosmology are not completely worked out. It seems 
clear, however, that in the relativistic era the predecessors of the currently 
observed galaxies and other structures were probably tiny perturbations on 
the matter distribution. I will neglect these perturbations in most of the 
following discussion. 

A thermal distribution of very relativistic particles (T > m, where m is 
the mass of a particle) has an energy density given by Eqn (31). In the very 
non-relativistic limit (T < m) 

p=mn 

where the number density n is given by 

(42) 

_ mT 3’2e-miT n=il 2r ( > 
- 

Of course thermal equilibrium means equilibrium over a “reasonable” part 
of phase space, and understanding what degrees of freedom really might be 
in equilibrium is an important part of the problem. Changes in what is in 
and out of equilibrium play an important role in many interesting aspects of 
the big bang model. 

During the relativistic era (using Eqns (31) and (13) 

1 1 
~~T’~-~TT- 

a4 a 
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For equilibrium to occur the interactions which maintain equilibrium must 
proceed quickly compared to the expansion rate (l/&) of the universe. 
Using Eqns (31) and (4) one finds 

1 Ii -E- 
t cop a 

= O(1) x XT 
mP 

(45) 

where mp = J1/G - N 101gGeV. At temperatures much below 10’sGeV the 
expansion rate is much slower (by a factor T/mp) compared with the inverse 
time scale given by T, which should play an important role in the interactions 
of relativistic matter. These rough dimensional arguments hint that equilib- 
rium might reasonably occur. Calculating what degrees of freedom really are 
in equilibrium at a given era demands more work. Here I will report some of 
the more interesting results of such calculations. 

3.2 Photon Decoupling 

One interesting event which the big bang predicts is “photon decoupling”. 
At temperatures somewhat above 1/3GeV one expects to find photons, as 
well as e-, H+, D+, 3He++, and ‘He++ particles kept in equilibrium by elec- 
tromagnetic interactions. As the temperature drops below 1/3GeV, energies 
are low enough to allow the electrons and the nuclei to bind into neutral 
atoms. The absence of free charged particles means that the interactions of 
the photons with other matter drop off dramatically. The photons at this 
stage are effectively decoupled from the other matter. The only thing which 
affects the evolution of the photons is redshifting of their momentum, i due 
to the expansion of the universe: 

i(t) = i&f= 
a(t) 

(the subscript d refers to the time of decoupling). The thermal nature of 
the distribution is preserved because the Boltemann factor for a photon with 
some initial kd is the same as one for the redshifted k(t) at some resealed 
temuerature * : 

k(t) ezp( $) = erp( - 
d 
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Figure 1: Recent measurements of the microwave radiation. The plot shows 
equivalent black body temperature as a function of wavelength 

where 
i; sz T$, 

a(t) 
(48) 

Thus the big bang model predicts that there should be a thermal distribution 
of photons present today, left over Erom the time when they decoupled from 
other matter. Probably the most significant experimental result in cosmology 
is that such a spectrum of photons is indeed observed. 

Figure [I] shows the results of several measurements of this so called “mi- 
crowave background” radiation made at different wavelengths. The vertical 
axis gives the corresponding temperature assuming that light of that wave- 
length is in a black body distribution. The results are consistent with a true 
black body spectrum at a temperature of 2.8K. 

Observations of the microwave background can provide important infor- 
mation to cosmologists, and the results can prove to be serious constraints 
on cosmological models. For example, the microwave radiation can probe 
the isotropy of the universe. Radiation reaching us from different directions 
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Figure 2: Measurements of the microwave anisotropy. 

decoupled at very different locations in the universe. Variations in the tem- 
perature observed in different directions can be interpreted as evidence for 
anisotropy on the corresponding distance scale. Figure [2] shows measure- 
ments of variations in the temperature of the microwave background aa a 
function of the angular separation between observing directions. All the cer- 
tain results (without “?‘s”) are upper bounds except the dipole measurement. 

The dipole measurement might represent a large scale anisotropy,[ll] but it 
is simpler (and standard practice) to assume that it is the result of our pe- 
culiar motion with respect to the microwave background. With the dipole 
accounted for in this manner Fig [2] h 6 ows a striking confirmation of the 
isotropy assumption made in the big bang model. 

On closer inspection, however, Fig [2] shows that the universe is too 
isotropic for the big bang model. In the previous section we concluded that 
the the size of a region of the universe which is in causal contact is always 
roughly t. This fact’means that microwave photons originated in causally sep- 
arate regions if their directions differ by more than a few degrees 13). Although 
some degree of isotropy is part of the initial assumptions of the big bang, 
the data show that a truly striking degree of isotropy is actually present. 
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What caused such isotropy on larger angular scales? In the big bang model 
it could not have been causal processes. The striking isotropy of the universe 
on large scales (at the time of decoupling) can not be explained in the big 
bang model and is just another aspect which must be set “by hand” to fit 
the observations. 

It is important to keep the microwave background in mind when doing 
any work in cosmology. There are many examples of ways in which physics, 
even at much earlier times, could have enough of an effect on the back- 
ground radiation to contradict current observations. For example, explicit 
anisotropies in the matter at decoupling might be produced. Also, the mi- 
crowave background could appear anisotropic after traversing a universe full 
of gravitational radiation produced at an earlier era. 

I should remark that it is possible that the microwave background is 
not the radiation predicted by the big bang model. Other explanations do 
existIl3, but they seem rather contrived to me. Perhaps it is a good exercise 
is to try and imagine alternative sources of the microwave radiation, even if 
one only ends up convinced that there are no serious contenders. 

3.3 Primordial Nucleosynthesis 

At sufficiently early times the temperatures were so high that nuclei were 
easily dissociated. As the universe cooled it eventually became favorable 
for the protons and neutrons to combine into nuclei. This process has been 
extensively analysed using large computer codes. I will outline the results 
here. For a detailed review of this subject see reference [IS]. 

When the temperatures were around lOil4eV the energy density was still 
dominated by photons, electrons and positrons, and the light neutrinos and 
antineutrinos. Equilibrium was sustained by these electromagnetic interac- 
tions: e+ + e- t-1 7 + 7, 7 + p +-+ 7 + p(etc), aa well as the electroweak 
interactions n ++ p + e + V, 7 + n ++ p + e, and e + n c1 p + 7 which main- 
tain the neutrons and protons in roughly equal numbers. One might think 
that with binding energies of several MeV there would be many light nuclei 
around at this stage. However, the equations for nuclear statistical equilib- 
rium give the number densities of deuterons and He++ compared with that 
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of baryons to be 

and 

eJb/T N lo-13 

e%=JT N 4 x lo-38 

To a good approximation the nucleon mass (mN) may be taken to be the 
same for both protons and neutrons in these formulas. The respective nuclear 
binding energies, BD and BIE,, are 2.2MeV and 26MeV so the Boltzmann 
factors do not account for the small values of these number densities. The 
ratio 7, (C r&b/+) can be determined from observations today since baryon 
number should be conserved between the 2’ N 1OMeV era and the present. 
Its value is found to be about lo-r0 and it is clearly this small number 
which is responsible for the low relative abundances of light nucleons at these 
temperatures. 

A while later, when the temperature drops to around lMeV, the weak 
interaction rates become too slow to compete with the expanding universe 
and maintain equilibrium. The ratio of neutrons to protons “freezes out” at 
this time since the nucleons are no longer in equilibrium, and the neutrinos 
decouple, just as the photons did in the earlier discussion. If the correspond- 
ing ‘Lcosmic background neutrinos” could be detected we would have a probe, 
similar to the microwave photons, with which to look even deeper into our 
cosmic past. 

Turning back to the nucleons, the relative numbers of protons and neu- 
trons at neutrino decoupling is given by their mass difference (Am ): 

nN 
-=e AmlTp.... N 1 

Rp - 6’ 

Of course this ratio changes after neutrino decoupling because the neutrons 
can decay. The value of this ratio at later times is given by 

n, 1 -t/s. - N -e - 
nP 6 

where T,, is the neutron lifetime. 
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At a temperature of about 0.3MeV equilibrium would prefer ‘He nuclei 
to free protons and neutrons, but the production rates are too slow for equi- 
librium to occur yet. The low densities of %Te, D, and % (traceable to the 
small value of 7) which are intermediate states for ‘He production cause the 
production rates to be low. 

Finally, as the temperature reaches O.lMeV the production rate becomes 
sufficient to bind essentially all the nucleons it can into ‘He. By this time 
free neutron decay has reduced the neutron to proton ratio to 

so the mass fraction of ‘He winds up being about l/4. Small amounts of ?Li 
and ‘Be are also produced but the production rates are extremely low for 
heavier elements. 

The nucleosynthesis calculations are sensitive to several factors. The 
larger n is, the greater the abundance of intermediate states and the earlier 
‘He production begins in earnest. If there were additional contributions to p , 
the expansion rate would be faster at a given temperature (see Eqns (31) and 
(4)) so freeze out would occur at a higher temperature. Both these effects 
would increase the neutron to proton ratio at the time of Helium production 
and change the resulting abundances. 

Still, the standard big bang model can give definite predictions of pri- 
mordial nuclear abundances. One obstacle to testing these predictions is the 
difficulty of determining “observed” primordial abundances based on obser- 
vations today. Various production and depletion mechanisms are expected 
to have operated between primordial production and now. There have been 
attempts to calculate all these effects, and there are established values for 
“observed” primordial abundances[ 141. The value of the parameter n is also 
not known precisely enough, so the standard procedure is to use some of 
the data to fit n precisely and than compare the rest of the predictions. 
Amazingly enough, the predictions are quite successful. 

There are many ways the standard nucleosynthesis calculations could be 
upset. Anisotropies in spacetime have been shown to have a noticeable effect 
on the results. Also, inhomogeneities in the nucleon distribution which might 
be introduced at the quark-hadron phase transition could dramatically af- 
fect the outcome!15*161. Again, there could be important processes affecting 

20 



nuclei at temperatures lower than O.lIMeV which are not included in stan- 
dard calculations. Because of all these issues, primordial nuclear abundance 
predictions are not as brilliant a success of the standard big bang as the 
microwave background is. Still, they are a more modest success, and it inter; 
esting to test new proposals in particle physics and cosmology to see if the 
standard calculations are changed. A failure to preserve the standard results 
might bring the burden on the new model to explain nuclear abundances. 
Instead, one could point to the many weak areas in the standard calculations 
and hope that when those issues are understood better everything would 
work out. 

4 Incorporating More Speculative Physics 
Into the Standard Big Bang 

In the the previous section we discussed efforts to incorporate well established 
laboratory physics (e.g. atomic and nuclear physics) into the big bang model. 
The results produced interesting consequences which, at least to some extent, 
could be tested today. Now we turn to applications of less well established 
physics to the big bang. 

4.1 Baryon Number Violation 

Most models of grand unification have baryon number changing interactions. 
In these models the baryon number of the universe is no longer a free pa- 
rameter which must be adjusted to fit current observations. Rather, it has 
dynamics and its evolution must be understood. Simple thermal equilibrium 
arguments would tell us that at temperatures where baryon number violation 
occurs easily, interactions would maintain the baryons and anti-baryons in 
equal numbers, leaving the net baryon number equal to zero. Fortunately, 
it has been shown that as temperatures fall below the scale where baryon 
number violations occur readily, non-equilibrium processes can occur which 
can leave a residual net baryon number. This is an example of free parameter 
of an old model becoming a derived parameter in a new one. The details of 
these calculations will be discussed in Hall’s lecture. I wish to stress here, 
however, that once one introduces baryon non-conservation into high energy 
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Figure 3: The double well potential 

physics, one shoulders the responsibility of correctly accounting for the net 
baryon number observed today. If the number comes out wrong, one would 
have grounds for rejection of that particular model. 

4.2 Strange Objects 

Field theory can do an excellent job of describing particles interacting in a 
laboratory. It is then quite conventional to assume that it can equally well 
describe particles interacting in the early universe. However, field theories 
contain states which do not look at all like particles. Many such states have 
manifested themselves when field theories are applied to condensed matter 
physics, but in the realm of high energy physics none are clearly observed to 
play a role in laboratory experiments. Still, if one takes field theory seriously 
in its entirety, these states could be there and one would expect them to play 
a very significant role in the early universe. 

4.2.1 Domain Walls 

Consider a single real field q5 with a potential like the one in Fig [3]. The 
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potential has two degenerate minima at 4 = fu. Particles of the 4 field cor- 
respond to small oscillations in the field around one of the minima. However, 
this model also contains states which do not look like particles. Let us con- 
sider boundary conditions which are plane symmetric in the z - y plane and 
let us require C$(Z = -m) = --d and +4(z = co) = o. Somewhere in between 
z = foe, 4 must cross over from one minimum to the other. In doing so 
the configuration must acquire some non-zero energy. In fact, the minimum 
energy configuration consistent with these boundary conditions contains a 
sheet-like region in the z - y plane with an energy per unit area of roughly 
~9. and a width of about l/a. Such a field configuration is called a domain 
wall. A single infmite domain wall is stable, in the sense that it takes an in- 
finite amount of energy to stimulate its decay. In particular, one must move 
the field in half of space up over the barrier between the two minima in order 
to get rid of a domain wall (this takes an infinite amount of energy for every 
finite section of domain wall which is removed). Of course if a domain wall 
encloses a finite size region rather than extending to infinity, that wall can 
disappear, because the inside region can shrink to eero size, leaving the field 
near only one minimum in all of space. Still, if the interior region is large 
enough a finite domain wall can play an interesting dynamical role before 
decaying. 

It takes an infinite amount of energy to get rid of an infinite domain wall, 
and likewise, one must move the field from one minimum to the other in half 
of space to create one. That procedure would also use an infinite amount 
of energy. However, when it comes to cosmology there is always an infinite 
amount of energy available because there is a finite energy density in a space 
of infinite extent. (Of course in a closed universe the volume of space is 
finite, but then so is the energy needed to create a domain wall.) Since the 
energy density diverges as one works back toward t = 0 in the big bang, there 
must be a time were the energy density is large compared with the height of 
the barrier separating the two minima. Under these circumstances domain 
walls could be freely created and destroyed. In fact, at high enough energy 
densities it would be hard to distinguish domain walls as such because there 
would be many field excitations with shorter wavelength than the thickness 
of a domain wsll. 

The cosmic production of domain walls is usually discussed in terms of 
the “Kibble mechanism”1171: Initially the energy density in 4 is much greater 
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than the barrier separating the two minima, but as the universe expands and 
cools, the fields evolve closer and closer to a minimum energy configuration. 
In the case where there are more than one minimum energy states available 
(such as the current example), different regions (or “domains”) of the universe 
would approach different choices of minimum energy state. The exact size of 
these domains is hard to calculate but they are not expected to be larger than 
the causal horizon size at the time of domain formation. (One would expect 
some causal contact would be necessary to communicate which minimum a 
given region is approaching.) On boundaries between domains, domain walls 
necessarily form. Thus the causal structure of the big bang guarantees that 
if a field with a potential such as the one in Fig [3] exists, domain walls 
will form ss the universe evolves. Domain walls can be thought of as “two 
dimensional defects” in the field configuration. In some sense the field would 
“rather” approach one minimum everywhere but the causal dynamics do not 
allow this to happen. 

4.2.2 Nielsen-Olesen Strings 

Nielsen-Olesen string&*1 are the one dimensional analogue of the (two dl- 
mensional) domain walls. Again, the degeneracy of minima of the potential 
allows defects to form as the universe cools, but the nature of the defects 
is line-like rather than plane-like. A simple example is given by a complex 
scalar field with the “Mexican hat” potential shown in Fig [4] In this case 
there are not just two, but a continuum of degenerate minima, corresponding 
to the circle at the bottom of the Mexican hat (141 = 0). An infinite straight 
Nielsen-Olesen string can be constructed by imposing the right cylindrically 
symmetric boundary conditions: The field at large distances from the axis of 
symmetry must be in a minimum of the potential, and the choice of which 
minium varies smoothly around the bottom of the Mexican hat as one circles 
around the axis of symmetry. Any continuous field configuration with these 
boundary conditions must have some region where the field is at the top of 
the potential. The minimum energy configuration occurs when this region 
runs &sight down the axis of symmetry, like a string. 

The model just described is a model with a broken global U(1) symmetry. 
It is well known that such a model has a massless particle in the spectrum 
called a Goldstone boson (corresponding to excitations of the field in direc- 
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Figure 4: The Mexican hat potential. Note that all points on the circle at 
the bottom of the hat are degenerate absolute minima. 

tions where the potential does not increase, around the Mexican hat ). This 
massless particle produces a long range force field around the string, and the 
mass per unit length and radius of the string are actually infinite. If the U(1) 
symmetry is gauged, there are no masslesa puticles and the string has mass 
per unit length N ~9 and width N l/o. As with domain walls, an infinite 
amount of energy is required to get rid of an infinite string, and strings are 
stable in that sense. Finite closed loops of string are unstable because they 
could collapse to a point and annihilate, but in practice a large loop of string 
might have a long lifetime. 

The key to the presence of Nielsen-Olesen strings in a field theory is a 
suitable degeneracy of the manifold of ground states (E M). There must 
be a non-trivial mapping from M to the physical space around the string 
(represented by the circle). The equivalent statement in group theory is 
II,(M) # 0. Any times these conditions exist one can expect strings to arise 
via the Kibble mechanism, the same way domain walls can. One expects at 
least of order one piece of string per causal horizon size to appear when the 
energy density drops below that of the barrier in the potential. 
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4.2.8 Monopoles 

Monopoles are the “point-like” analogue of the strings and walls. The po- 
tential for a simple model is hard to draw, but again the key is non-trivial 
mapping from the manifold of ground states to the physical space around the 
monopole, represented by the surface of a sphere (E.g. l&(M) # 0). One 
expects monopoles to be produced by the Kibble mechanism in the early 
universe if this condition is met. The size and mass of the monopole are 
characterized by the mass scale in the potential in the usual way. 

One thing that makes monopoles particularly interesting is that essen- 
tially all theories of grand unification have them. That is because we know 
that the u(l) symmetry of electromagnetism is a good symmetry of the 
world today, and there turns out to be no way of breaking a simple unifica- 
tion symmetry, leaving an unbroken U(l), without producing a non-trivial 
Ifs(M). These monopoles have a net magnetic charge (thus their name). 
Domain walls and Nielsen-Olesen strings appear in many models of grand 
unification but certainly not in all. No monopoles, strings, or walls appear 
in the standard model of electroweak interactions. 

Because at a distance magnetic monopoles look like point particles, their 
evolution is easy to calculate. What follows is a very rough calculation of 
the contribution of magnetic monopoles to the energy density. All relevant 
mass scales are assumed of order Mo, the grand unification mass scale, and 
coupling constants are assumed O(1). Assuming one monopole per causal 
horizon gives the energy density in monopoles (p,.,,) at the time of formation 
t, to be . 

Using Eqns (4) and (38) and neglecting curvature gives 

1 
- - E = 

87r 

&In J 
3Gp,., -J~lIJ~ (55) 

where Eqn (31) was used to introduce T,, the temperature at which the 
monopoles form. Thus 

(56) 
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After their production the monopoles are essentially non-relativistic (p,,, - 

a-“) while most of the other matter is relativistic (ptot - a-‘) . This means 

- x 10-10 Q. Pm 
Pt.: ( > %I 

(57) 

Because the energy density in non-relativistic matter decreases more slowly 
than that of relativistic matter with the expansion of the universe, the 
monopoles can eventually come to dominate. Equation (57) indicates that 
monopole domination would occur at T FZ 10’GeV (using Eqn (44)). Not 
only would such monopole domination disrupt the big bang model at the 
eras of nucleosynthesis and photon decoupling, it would completely contradict 
present observations since at most one magnetic monopole has been observed! 
More sophisticated calculations which include monopole-anti-monopole an- 
nihilation fail td alter this result in a qualitative way [lgl. This is a very 
serious problem with grand unification since all models of grand unification 
have magnetic monopoles. 

I should remark that problems such as the one just discussed can occur 
if any stable heavy particles are produced in sufficient numbers in the early 
universe. A particle need not be as exotic as a magnetic monopole to cause 
problems, and every model of high energy physics must be checked for such 
problems. Of course, one must wonder if there can be domain wall and string 
problems similar to the monopole problem. I shall briefly return to the issue 
of strings in section 6. 

In a recent paper12’l a dynamical process was presented which would 
cause monopoles to annihilate with anti-monopoles fast enough to avoid the 
monopole problem. The authors are convinced, however, that their proposed 
dynamics, although causal, is not a realistic dynamics for the field theory in 
question. Thus the monopole problem and the Kibble mechanism appear to 
remain intact. 

4.3 Potential Dominated States 

We have discussed states in field theory where the fields deviate far from 
the fluctuations around potential minima which correspond to traditional 
particles. In fact, the field is actually at a local maximum of the potential at 
a point (for monopoles), on a line (for Nielsen-Olesen strings), or on a plane 
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(for domain walls). It is interesting to study what would happen if a field 
were at a maximum of the potential over some large three dimensional volume 
in space. Furthermore, let us assume that the potential energy density (V) 
dominates over energy density due to gradients and time variation. There is 
nothing that makes such a state really stable the way monopoles etc. are, but 
it may have a non-trivial lifetime. Later on I will discuss how such a state 
might come about. For now I will focus on the cosmological consequences of 
a potential dominated state, should it come about. We shall see that these 
consequences are very interesting and provide motivation for finding out if 
such states really can arise. 

It is easy to check the effect of a potential dominated state on the evo- 
lution of the universe by writing down the stress-energy of a field neglecting 
non-potential terms: 

(58) 

Comparing Eqn (58) with the standard Robertson-Walker form for the stress- 
energy (Eqn (3)) gives 

p=-p=-v. (59) 
Equation (59) represents a completely different equation of state compared 
with the two used in the standard big bang model. The resulting evolution of 
spacetime is very different as well. Applying the conservation of stress-energy 
(Eqn (5)) to a potential dominated state gives 

-$ (pd) = 3pa’ = p$ (a”) 

which implies 

For a potential dominated state the energy density does not drop as the 
universe expands. The Friedmann equation is 

h -= $GV E Hv 
a (62) 
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so the expansion rate is constant and 

a - Pvt. (63) 

Here we have the universe expanding exponentially, as opposed to the power 
law evolution encountered in the standard big bang. 

Let us modify the standard big bang model in a simple way in order to 
introduce a period where the equation of state of matter is the potential 
dominated equation of state. Suppose that early in the relativistic era the 
matter became potential dominated at a time tl and then returned to the 
relativistic equation of state at a time t 1. The evolution of the scale factor 
and p would look like this: 

t > tl a - t’l” p = D,fa’ 
t1 > t > ts a - enfvt p = const 
t, > t > t, a - t=/= p = Da/a4 . 

t, > t a - t’fs p = Bfa= 

(64) 

The integration constants D1 and Da (for the two different relativistic eras) 
can be related by using Eqn (61) to equate p(tl) with p(t2): 

D2 = Dle’h(t¶-‘l). (65) 

What is striking about this expression is that Ds can be very large even if 
D1 is not. In this model it is Da which is known to be large based on the 
discussion in section 2.4. If Hv(t2 - tl) 2 66 then one can have Da 2 10”’ 
with D1 only O(1). Thus this modification of the big bang appears to offer 
an explanation for the large value of D discussed earlier. 

Models in which a potential dominated period occurs are called “inflation- 
ary” cosmologies, and when a N eEvt the universe is said to be “inflating”. 
The first mention of this sort of cosmology in the literature is reference [21]. 
Inflationary cosmologies are interesting for several reasons and the next sec- 
tion is devoted to discussing them. 

5 Inflation 

In section 4.3 we saw that introducing an inflationary period into the stan- 
dard big bang model allowed the integration constant D to be large after 
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inflation even if it is chosen O(1) before. The spatial curvature is expo- 
nentially reduced as the universe expands during inflation, while the energy 
density remains constant. Thus, the relative importance of energy density 
and curvature in the Friedmann equation is greatly shifted away from the cur- 
vature, and the universe appears to be much more flat than before inflation. 
This fact offers hope that the large value of D (and the associated puzzles) 
might be explained in inflationary cosmologies. I will return to this issue 
after mentioning some other attractive aspects of inflationary cosmologies. 

The field whose stress-energy becomes potential dominated during infla- 
tion is called the inflaton. During the inflationary period the energy density 
of the in&ton holds constant, while relativistic, and non-relativistic matter 
have their energy densities reduced by e-4av(t~-tll and e-s*v(“-‘ll respec- 
tively. At the end of inflation the inflaton potential energy is released into 
radiation composed of inflatons and whatever else the inflatons couple to. If 
the amount of expansion is as large (of order es”) as would be needed to give 
a large enough D, then essentially all the matter in the universe is inflatons 
and their decay products. 

Thus, inflation offers a way out of the monopole problem. If monopoles 
are produced before the inflationary period, and temperatures after inflation 
are not high enough to produce more of them, then monopoles would be 
present only in negligible numbers. Grand unified models which allow for an 
appropriate period of inflation can avoid the monopole disaster. This aspect 
of inflation is a useful tool, and it can be used to get rid of other troublesome 
objects should they arise in high energy models. The other side of this issue 
is that things that you do want must be produced by inflaton decay. If one’s 
model has baryon number violation, one’s baryon number generating scheme 
must operate after inflation has occurred. 

Inflation also drastically alters the causality structure of the big bang. We 
saw in section 3.2 that causal processes could not account for the observed 
isotropy of the cosmic microwave radiation in the standard big bang. With 
inflation the story is very different. Regions that are in causal contact before 
inflation are increased in size by exponential factors. In inflationary models 
the entire universe fits inside one causally connected region. I should stress 
that this fact alone does not guarantee sufficient isotropy. What the causal 
forces actually do to isotropy is a separate issue. (Of course, the causal 
regions around events after the inflationary period are the same as in the 
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standard big bang.) 
There is yet another important aspect of inflationary cosmologies. As 

the inflationary period proceeds all field excitations get red-shifted away. 
Eventually the most significant field fluctuations are the inherent quantum 
fluctuations of fields in an exponentially expanding universe. It is then only 
these fluctuations which provide deviations from a perfectly isotropic and ho- 
mogeneous distribution of matter. The inflationary period essentially wipes 
the slate clear of primordial fluctuations and introduces its own, calculable 
fluctuations in their place. This process has been investigated in some de- 
tail, and there is hope that the spectrum of fluctuations that emerge from 
inflation might be just what is needed to explain the formation of galaxies 
and other structure in the universe. 

Let us return to the issue of large D. Clearly, inflation does not really 
elevate D to the status of a derived parameter. The value after inflation 
is simply much larger than the initial value. In an inflationary cosmology, 
the need to explain the large value of D, or why the universe is “flat for 
its size”, is reduced to the need to explain why D1 is O(1) initially. In 
fact, what happens after inflation depends so little on what happened before 
it, that all one really cares about is that an inflationary period is entered. 
The inflationary era itself can then produce a universe very much like that 
described by the standard big bang. 

Many non-traditional cosmic entrances to inflation have been proposed, 
but it is impossible to arrange things so that any early cosmology will enter an 
inflationary period. As we shall see, the initial cosmology does have a lot to 
do with whether an inflationary era is entered. An inflationary period acts as 
a funnel which evolves many diverse cosmologies into the (large D) standard 
big bang bottle,, but there are still many others which spill over the edge. 
Even so, this property, along with the others I have just discussed, makes 
inflation a powerful tool for cosmologists searching for a deeper understanding 
of our universe. 

5.1 Getting Inflation to Happen 

The above discussion was based on the assumption that it is possible for the 
matter to enter a potential dominated state. Furthermore, it was assumed 
that this state would last long enough that Hv(t, - tl) 2 O(100). I now 
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turn to the issue of how this may come about. I will only be able to offer a 
summary here, I direct you to the references for details. 

At first glance, it may not seem like much to ask the potential dominated 
state to last O(100) expansion times, but really it is. This fact can be seen 
by means of a simple dimensional argument. I assume that the microphysics 
which causes an inflationary state to be entered is characterized by a mass 
scale mr, and that all couplings are O(1). One would expect that V, the 
energy density during inflation would be O(mf), and (tl - tl), the lifetime 
of the imlationary state would be O(mir). One then finds (using Eqn(62)) 
that 

Hv(ta - tl) x 2. (66) 

As long as mr < mp, our estimate says that inflation occurs for only a 
fraction of an expansion time. The number we want to be O(100) comes 
out to be the small number mr/mp. The details of the inflationary period 
must therefore be sufficiently complex to invalidate this simple dimensional 
argument. 

5.1.1 Old inflation 

When Alan Guth introduced his “old” inflationary modell22] he had no trou- 
ble making inflation occur for many expansion times. In his model the in- 
flaton had a potential such as the one depicted in Fig [5]. The key feature 
is a “false” minimum, separated by a barrier from the lower “true” minima. 
Guth argued that as the universe cooled from high temperatures the inflaton 
would become trapped in the false minimum. The expansion of the universe 
would then redshift away all contributions to the stress energy except that of 
the potential, leaving a potential dominated state. The decay of the inflaton 
into the true minimum is a tunneling process with the usual exponentially 
suppressed rate. In this scheme ta - tl is m~leotlw~ so the inflationary period 
is plenty long enough. 

The main 
l 

roblem with old inflation has to do with the nature of the 
decay process1 31. A uniform field in a false minimum will decay via bubble 
formation: A finite region will decay through the barrier and approach the 
true minimum. Unfortunately the size of such a region is typically around 
mu’, and it has been shown that the decay process never really is complete 



Figure 5: The form of the potential for old inflation. There is a local mini- 
mum which is distinct from the global minimum. 

over aU space. Furthermore, the regions that do not remain inflating are 
dominated by large bubbles with aU their energy concentrated in the bubble 
walls. Essentially nowhere is there a region which could evolve into the 
universe we observe today. Old inflation has no trouble getting inflation for 
a long enough period, the problem lies in getting it to stop. 

I should remark that old inflation actually represents a possible pitfall 
for any model of high energy physics. All models should be checked for 
potentials of the form shown in Fig [5]. The presence of such a potential 
could cause the universe to inadvertently enter an era of old inflation, and 
cause the model to have an unacceptable cosmology. 

5.1.2 New inflation 

Another form of inflation, called “new inflation”[24*251, offers a more graceful 
exit from an idationary period. In new itiation the inflaton has a poten- 
tial similar to the one in Fig [3]. The inflationary state is one in which the 
inflaton is everywhere balanced at the top of the potential hump. The decay 
of the inflationary state occurs as the field “rolls OR” the local maximum. 
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This decay process is not limited to finite sized regions the way the bubble 
formation was in old inflation. Although there are still “bubble walls” be- 
tween regions which roll in different directions, inflation continues even as 
the rolling starts, so such walls are pushed very far apart. 

If all dimensionless couplings are O( 1) the “rollover” time is O(m;r ) and 
the dimensional argument presented above applies. The inflationary period 
is only made long enough by adjusting parameters in the potential to increase 
the rollover time. 

Considerable effort has gone into understanding the spectrum of devi- 
ations from pure homogeneity and isotropy which emer e from quantum 
fluctuations in a new inflationary cosmology ~2627329~39;I . The resulting 
spectrum of perturbations has been called “almost scale invariant”. If all 
couplings are O( 1) the magnitude of the perturbations comes out too large 
to be consistent with bounds on the isotropy of the microwave background. 
(Remember, causal contact is not enough to guarantee isotropy.) The cou- 
plings of some models can be adjusted to accommodate this problem, and 
typically a dimensionless coupling must be set 0(10-r’) to reduce the pertur- 
bations to acceptable levels. It this adjustment is the most extreme needed, 
and once it is made the duration of inflation easily comes out long enough. 

In order to maintain the necessary small coupling the effective interactions 
between the infiaton and the other fields must all be very small. This fact 
makes it a challenge to couple energy out of the inflaton and into all the 
familiar forms of matter, once the inflationary period is over. None the 
less, models have been constructed in which the familiar forms of matter do 
eventually get sufficiently excited after inflation is over. 

I have yet to address the issue of how the inflaton can get balanced on top 
of the potential hump at the beginning of inflation. Initially it was hoped 
that thermal effects could play a significant role, but the small couplings 
of the inflaton preclude thermal equilibrium before inflation as a reasonable 
possibility. Some current thinking on this subject centers on the flat nature 
of inflaton potentials. The adjustments one makes to produce slow rollover 
and small quantum perturbations cause the inflaton potential to be very flat 
near the local maximum. If fields are near the local maximum the poten- 
tial produces only a very slight force toward a potential minimum, while 
the expanding universe is constantly redshifting away the gradient and time 
derivative contributions to the stress-energy. The redsbifting process can pro- 
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teed faster than the slow slippage toward a minimum and cause a potential 
dominated state to be entered. Numerical work1311 indicates that this could 
happen even with a rather large amount of initial space and time variations 
present in the inflaton field. With a fairly wide range of initial conditions the 
adjustments to the i&&on potential required to avoid excessive quantum 
fluctuations were sufficient to allow inflation to start. On the other hand, 
plenty of perfectly reasonable initial conditions do not inflate in these models. 

I feel that despite the existence of models that “work”, our understanding 
of the onset of inflation leaves a lot to be desired. No convincing examples 
exist of models which very generally enter an inflationary period. The in- 
terested student should study the literature with a critical eye and an open 
mind. The field is in need of some fresh new thinking on this difficult prob- 
lem. 

6.1.3 Other ideas 

Some interesting alternatives to standard new inflation have already been 
proposed. Generally, as indicated by the dimensional argument presented 
earlier, things grow easier as the rnr approaches mp. Of course the closer one 
gets to the Planck scale the more nervous one gets about one’s understanding 
of gravity. 

In his “chaotic inflation” scenario 1321 Linde abandons the local maximum 
of the potential in favor of a more general region of a potential. Linde shows 
that large e4 fluctuations at the Planck era for an inflaton with a simple 4’ 
potential can end up inflating for a sizable period. Due to the proximity 
of the Planck scale no small couplings are needed for sufficient inflation, 
but the usual adjustments must be made to prevent excessive anisotropies. 
In addition, the initial fluctuation must be sufficiently uniform in order for 
inflation to start. The exact uniformity requirements are thought by some 
to arise “naturally”, while others are not convinced. 

Another interesting idea involves depicting the birth of the universe sa a 
quantum gravity fluctuation, and showing that some initial states appear to 
naturally fluctuate into an inflating spacetime in simple models1331. Other 
proposals suggest that quantum corrections to Einstein’s equations could 
cause an inflationary period near the Planck era 1341. All these proposals 
would look better if gravity were really understood at the quantum level. 
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5.2 Current Status of Inflation 

From a cosmologist’s point of view inflation appears to be a very powerful 
tool. It can take a variety of initial cosmologies and evolve them to a cos- 
mology consistent with our observed universe. It can produce large values 
of the integration constant D, get rid of monopoles and other junk, improve 
the causality structure, and inflation can introduce its own spectrum of en- 
ergy density perturbations in place of whatever there wss before. From the 
standpoint of microscopic physics inflation is not easy to come by. For some 
reviews see references [35], [36] and [37). AlI models in which inflation occurs 
seem very contrived. At this point it is fair to question what one achieves 
by gaining the benefits of inflation at the expense of contrived microphysics. 
Fortunately for inflation, our understanding of physics at the appropriate en- 
ergy scales is very poor. One can hope that, should a better understanding 
emerge, inflation will appear to fit more naturally into the picture. 

I should remark that a typical model in which inflation occurs does not 
have “just enough” inflation, but considerably more. The scale factor in- 
creases by much more than e”@“l so D > 10”’ and the universe is extremely 
flat. If it is ever determined that the curvature is non-negligible today, all 
inflationary models except those with just enough inflation would be ruled 
out. 

It is important to emphasize that a discussion of inflation touches on 
some of the deepest unsolved problems in physics. At present we have only 
a classical theory of gravity, whereas we describe matter quantum mechan- 
ically. How this quantum theory produces a c-number stress-energy to go 
into Einstein’s equations is not absolutely clear. In particular, the “cosmo- 
logical constant” term (= Ag,,,,) in the stress energy is set very small today 
to match observations, but no one understands the physics behind it. The 
cosmological constant is intimately connected with inflation since it can can- 
cel or enhance the effects of the potential (= Vg,) in the stress-energy. It 
is possible that a deeper understanding of the cosmological constant could 
radically change our understanding of inflation. 136,3gl 

The process by which quantum fluctuations can emerge as classical ob- 
jects is also not understood, yet this process plays a central role in the cal- 
culation of energy density fluctuations produced by inflation. As Murray 
Gell-Mann likes to say, the universe is full of Schriidlnger’s cats. The nature 
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of the perturbations which emerge from inflation will not be fully compre- 
hended until the quantum to classical transition is understood. 

Inflation is closely tied up with the question “what are the initial condi- 
tions of the universe?“. At this point we do not even know if the question 
makes sense, let alone has a clear answer. We will never know what role 
inflation may have played in the early universe unless progress is made on 
this question, or the onset of inflation is made sufficiently independent of 
what went before. 

Inflation has a very clear appeal from a cosmologist’s perspective. There 
are many outstanding issues regarding its implementation, but these all lie in 
areas of physics which are incomplete in their own right. Inflation’s promise 
for cosmology makes it well worth pursuing these unresolved issues vigorously, 
and makes any advances on these fronts all the more rewarding. 

8 Cosmic Strings 

Unfortunately, I do not have time in these lectures to discuss the topic I am 
most actively investigating. I will just give a plug for it here, and refer you to 
the literature for more details. The evolution of Nielsen-Olesen strings after 
their formation in the early universe is now being actively investigated140,411. 
There is hope that regardless of the details of the initial network, with time 
it will approach a so called “scaling solution n(42,43*441. Such a string net- 
work would not cause problems the way the monopoles did, yet it might 
have interesting effects on the evolution of the universe. Loops which break 
off a network of infinite string could become the seeds of gravitational col- 
lapse. The work is still in progress, but there is some indication that this 
process could account for much of the structure (e.g galaxles and clusters) 

that we now observe in the universe145*46,47,481. This scheme is particularly 
appealing because the nature of perturbations made by the string network 
should depend very little on what happened in the very early universe. It has 
also been suggested that radiation from currents on superconducting cosmic 
strings could cause explosions which might be resposible for the formation of 
voids and filaments14gl. 
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7 Conclusions 

In these lectures I have shown some of the interesting issues which arise at 
the frontier between high energy physics and cosmology. I have argued that 
all high energy physicists must take an interest,in cosmology in order to 
fully test their theories. I also pointed to opportunities which exist for high 
energy physicists to make interesting contributions to cosmology. We have 
seen how gross features of our universe such as its size, the relative absence 
of monopoles, and the microwave background, result in important tests and 
constraints for cosmology. We live in a time when more detailed observations 
are coming in at a rapid rate, and new challenges for cosmology will no doubt 
arise. I feel that the interface between cosmology and high energy physics 
has a very exciting future, and I hope you all will participate in one way or 
another. 
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