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Abstract
The 3rd ICFA Beam Dynamics Mini-Workshop on Ma-

chine Learning (ML) Applications for Particle Accelerators
was held in Chicago, Il, USA, on November 1-4, 2022. This
was an in-person workshop focused on ML techniques as
applied to accelerator operations, design, and simulations.
There were 76 attendees representing 26 institutions from
around the world. A total of 59 abstracts were submitted
allowing us to build a diverse program with both oral and
poster presentations. The workshop was sponsored by the
Center for Bright Beams (CBB), with support from the Na-
tional Science Foundation and by RadiaSoft, an industry
leader in high-level research and design and scientific con-
sulting for beamline physics and machine learning. CBB
supported eight graduate students for this meeting. The
workshop was approved as a mini workshop by the Inter-
national Committee for Future Accelerators (ICFA) Beam
Dynamics Panel. In this report we provide a summary of
the workshop and directions of future efforts.

BRIEF HISTORY
At the time of the 1st ICFA Beam Dynamics Mini-

Workshop on Machine Learning Applications for Particle
Accelerators, in early 2018 [1,2], there was growing interest
in the topic but only a few groups seriously researching meth-
ods. There was some notable work prior to 2018, including
the use of ML to improve beam collimation at the LHC [3,4],
the use of Bayesian Optimization (BO) at SLAC [5], use
of Genetic Algorithms for chromaticity correction [6], opti-
mizing nonlinear dynamics with particle swarm and genetic
algorithms [7], and use of genetic algorithms for maximizing
dynamic aperture [8]. Although there were discussions at
conferences and at various laboratories on the topic prior to
2010 [9–14], general tools and computing resources were
still lagging the demands of particle accelerator systems.
What is encouraging is many people were exploring the use
of neural networks to model accelerator problems and some
were having significant success. Between 2010 and today
there have been hundreds of papers presented at conferences
and dozens of papers published in peer reviewed journals.
The 2nd ICFA workshop was held a little over one year later,
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in 2019 [15], demonstrating how, over just one-year, impres-
sive progress was made at many labs. The 3rd workshop was
delayed due to the Covid19 pandemic and was finally able to
take place in Chicago in November of 2022. With over two
and one-half years after the second workshop, this third work-
shop showed that the pandemic did not slow us down and the
progress over that long period has shown the technologies
for using ML in accelerators are now becoming much more
sophisticated and mature. There are now two open-source
repositories of tools people can use, XOpt/Badger based at
SLAC [16], and COI/GeOFF based at CERN [17].

The 3rd ICFA Beam Dynamics Mini-Workshop on Ma-
chine Learning Applications for Particle Accelerators was
held from 1 to 4 November 2022 in Chicago, IL, USA, as
an in-person event [18]. The workshop had representation
from all regions. As is the tradition for this workshop series,
the first day was dedicated to tutorials and demonstrations.
The goal of this workshop was to continue to work on build-
ing a world-wide community of researchers and engineers
interested in applying artificial intelligence and machine
learning technologies to particle accelerators. All the pre-
sentations, posters, and session summaries are available on
the workshop website as a record of the presentations and
discussions.

The community of accelerator scientists and engineers
focusing on machine learning applications is strong and sup-
portive. This was clear during the first day of tutorials and
collaboration discussions. The tutorials were well prepared,
with help from RadiaSoft, who provided a cloud-based plat-
form for attendees to work through examples. ML tools
are starting to be developed and shared. XOpt/Badger and
the COI/GeOFF ML toolsets are being adopted by other
laboratories and collaborations are growing.

The types of problems in accelerator systems can be
split into four topics: Tuning/optimization/control, Prog-
nostics/alarm handling/anomaly-breakout detection, Data
analysis, and Simulations/modeling.

This workshop series aims to collect and unify the com-
munity’s understanding of the relevant state-of-the-art ML
techniques, provide tutorials on machine learning for ac-
celerator physicists and engineers, and seed collaborations
between laboratories, academia, and industry.
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3rd MINI-WORKSHOP ON
ML FOR ACCELERATORS

The first day of the workshop was dedicated to tutorials
and the day ended with presentations and discussions on
building collaboration, with a focus on the XOpt/Badger and
COI/GeOFF toolsets. The next two and a half days were
divided into nine sessions: BO, Reinforcement Learning
(RL), Prognostics, Modeling, Facilities, Optimization, Anal-
ysis, a poster session, and summaries from session chairs.
There was an equal number of talks and posters covering a
wide range of topics. The poster session was a vital part of
the workshop, and presenters were encouraged to embrace
a better poster design process to feature a core message
and maximize the insights transmitted from their work. All
presentations, whether oral or poster represented very high-
quality work.

Tutorials and Collaboration
For this instance of the workshop, we decided that the

community was more advanced and so we focused the Tuto-
rials on a few specific topics.

Bayesian optimization is one of the most widely used
methods that applies to many accelerator problems. Ryan
Roussel, SLAC, provided an excellent overview on BO meth-
ods and demonstrated how to apply the methods to acceler-
ator problems. An excellent paper published in PRAB by
Ryan and his collaborators covers the topic of multi-objective
BO [19], which he discussed in the tutorial. There are many
recent examples of applying BO for accelerator problems;
BO to optimize trajectory alignment for electron cooling
at RHIC [20], BO for a recoil mass separator [21], BO for
tuning with safety constraints [22], and BO for the beam
injection process [23].

Antonin Sulc, DESY, went through anomaly detection
(AD) methods. Anomaly detection is a popular topic since if
offers the promise of detecting problems more quickly. There
are different classes of anomalies; point anomalies, group
anomalies, contextual anomalies, hidden anomalies, and
more. Good examples of applications of anomaly detection
in accelerators are Uncertainty aware AD to predict errant
beam pulses [24] and AD at the European XFEL [25].

Kishansingh Rajput, TJNAF, gave an excellent hands-on
tutorial on Reinforcement Learning. This ML method is
extremely important for optimization problems where the
system has some state that is influenced by its environment.
A classic example is autonomous cars, where the state of the
car must follow its awareness of the environment (e.g., per-
haps via a camera). For accelerators there are many problems
that fit well into such a model. At CERN they are studying
sample-efficient reinforcement learning for the accelerator
controls [26]. At FNAL they are looking at real-time correc-
tion in the Fermilab Booster [27]. For superconducting rf
guns, a study of deep reinforcement learning for the SeaLab
project shows how it can be used to optimize multiple pa-
rameters quickly and efficiently [28]. And for the medium
energy beam transport section of the China Accelerator Fa-

cility for Superheavy Elements they have used reinforcement
learning for orbit correction [29].

Natalie Isenberg, BNL, presented an introduction to the
important topic of uncertainty quantification (UQ) for ML
applications. The aim of UQ is to place statistics on the
models. This includes spatiotemporal statistics, sensitiv-
ity analysis, uncertainty propagation, parameter estimation,
data assimilation, as well as other inverse problems. This
topic is beginning to get more attention in the accelerator
community as people gain experience using ML applica-
tions. At SLAC they studied how to quantify uncertainty in
virtual diagnostics [30]. They also looked more generally at
UQ for deep learning applications [31].

Corey Adams of Argonne National Laboratory presented
an overview of the Argonne Leadership Computing Facility,
a DOE user facility, that has many resources for AI/ML
research and activities enabled by the available hardware
and hardware coming online [32].

Bayesian Optimization
BO has many applications for accelerator systems, as it

is for global optimization of black box functions. We quite
often don’t have physics or even detailed engineering mod-
els for the many accelerator subsystems used to control our
machines. We typically don’t need such models, as we have
operators who learn how to get the machines to perform as
needed to meet experimental needs. These statistics-based
models allow strategies to be developed to help optimized
subsystems quickly and dependably. Three excellent exam-
ples of BO were presented in the first session. SLAC is
using BO to tune particle accelerator emittance with partial
measurements (results shown in Fig. 1). At Argonne they
are using BO for the ATLAS ion LINAC to improve perfor-
mance. And at BNL, they used BO to align beam trajectories
for the low energy electron cooler at RHIC.
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Figure 1: Live optimization of the emittance at FACET-II
(courtesy of Sara Mishovich.)

Reinforcement Learning
There were three talks on RL. At FNAL they are using

ML to regulate the extracted beam spill in the Fermilab De-
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livery ring. Their approach is to construct a differentiable
simulator that trains a neural network to regulate the spill ex-
traction rate instantaneously. Preliminary results show such
an approach can outperform a PID controller. At CERN,
they are using ML to optimize rf manipulations to split and
merge bunches. The parameters to adjust are the rf phase
and amplitude. At the University of Malta, they are look-
ing generally at ways to apply RL in beam-based feedback
systems.

Prognostics
Fault detection and prediction is notoriously challenging,

as we are hoping that some algorithm or autonomous en-
tity can monitor signals for us and alert us when something
doesn’t look correct. Such an entity can tirelessly monitor
that signal and watch for anomalies. It may even detect sub-
tle changes that seriously deviate from past behavior. In this
session four talks covered different methods for fault detec-
tion and discussed the challenges. At TJNAL ML is used for
improved SRF operation at CEBAF. These systems are com-
plex, with thousands of signals to monitor, and must operate
under strict stability guidelines. At SLAC, beam-based rf
station fault identification is used at LCLS. At DESY, they
are working on beam trajectory anomaly detection. Fermilab
is disentangling beam losses using real-time edge comput-
ing. And at TJNAF, they are developing uncertainty aware
anomaly detection to predict errant beam pulses.

Modeling
Modeling covers Data models as well as accelerator mod-

eling. BNL is using ML for nonlinear dynamics for storage
ring design. At the University of Chicago ML methods
are being developed for end-to-end differentiable accelera-
tor modeling. SLAC described their experience with inte-
grating online physics models, adaptive ML models, and
model-based controls. And BNL presented how ML tools
are being developed for modeling luminosity tuning for the
future electron ion collider.

Facility
Facility talks were a little more diverse and tended to

focus on operations. By integrating natural language pro-
cessing into electronic logbooks BNL has greatly improved
the power of logbooks. This goes well beyond simple search
but allows the logbook to learn from each end user the things
they most need to know as well as learn what the overall
operations team needs at any given moment. At CERN they
are looking at how ML can lead towards more autonomous
accelerators. Also, at CERN they are working on getting
ML into the control room, with ML frameworks under devel-
opment and in use. At BNL data analysis and control of an
MeV ultrafast electron diffraction system is being improved
using ML.

Optimization
In this session four talks discussed more complex opti-

mization problems in accelerators. Using RL at the Karl-

sruhe Research Accelerator (KARA) and the Ferninfrarot
Linac- und Test Experiment (FLUTE), along with surrogate
models and parallel BO, they are tackling many different
problems to gain high stability beams, pulse optimization,
virtual diagnostics, and improved operations. Fermilab is
working on optimizing the performance of the LINAC RF
systems using ML. At PETRA III (DESY), they are using
ML for insertion device gap compensation. At the APS,
ANL, they are using ML to help resolve operations prob-
lems in optimization and anomaly prediction.

Analysis
The analysis session tended to focus on applying ML to

different kinds of measurements. At SLAC they are using
Neural Networks and differential simulations to reconstruct
the phase space from beam measurements. CERN is de-
veloping physics informed neural networks for improving
neural network predictions. At FRIB, they are developing
ML tools for transverse 2D phase-space tomography using
beam position measurements. Cornell is collaborating with
BNL to use ML in simulation studies and orbit response
measurements to improve the AGS models.

THE NEXT WORKSHOP
We are pleased to announce that the 4th Workshop on

Machine Learning Applications for Particle Accelerators
will be held 5-8 March, 2024 in Gyeongju, Republic of Korea.
More information can be found at www.indico.kr/e/ml2024/.
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