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Abstract

A closed form expression for multiplicity-free quantum 6-j symbols (MFS) was proposed in [1] for 
symmetric representations of Uq(slN ), which are the simplest class of multiplicity-free representations. In 
this paper we rewrite this expression in terms of q-hypergeometric series 4�3. We claim that it is possible 
to express any MFS through the 6-j symbol for Uq(sl2) with a certain factor. It gives us a universal tool for 
the extension of various properties of the quantum 6-j symbols for Uq(sl2) to the MFS. We demonstrate 
this idea by deriving the asymptotics of the MFS in terms of associated tetrahedron for classical algebra 
U(slN ).

Next we study MFS symmetries using known hypergeometric identities such as argument permutations 
and Sears’ transformation. We describe symmetry groups of MFS. As a result we get new symmetries, 
which are a generalization of the tetrahedral symmetries and the Regge symmetries for N = 2.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Racah-Wigner coefficients or 6-j symbols play an important role in mathematics and theoreti-
cal physics, because they appear in many different problems. 6-j symbols in fact were introduced 
as a physical concept in the studies of elementary particles by Wigner and they appear in quan-
tum mechanics textbooks, e.g. in [2] there is a whole chapter dedicated to the 6-j symbols. In 
mathematics the definition of 6-j symbols is ambiguous because they depend on the choice of 
bases and the definition is not invariant. This leads to our lack of knowledge about the properties 
of these very important quantities.

While initially they were defined for the SU(2) group, where they are rather well-studied, 
nowadays we are interested in more complex cases of the general SU(N) or slN groups. Even 
more interesting is the case of quantum groups, since they give a deformation of 6-j symbols, 
which allows one to find a fine structure inside. From the point of view of gauge theories of 
great interest are 6-j symbols for higher representations of gauge groups. These are used for 
example for studying the confinement in QCD, which can be described by Wilson-loops. Thus 
the 6-j symbols for the higher representations of quantum Uq(slN ) groups are of great interest in 
physics. 6-j symbols are applied in many areas of theoretical physics, for example:

• Conformal field theories are a widely studied subject in theoretical and mathematical physics. 
In these theories 6-j symbols play an important role of fusion matrix, e.g. for the Liouville theo-
ries the Uq(sl2) 6-j symbols are required [3]. And for a wide class of such theories, namely, for 
Wess-Zumino-Witten theories (WZW), 6-j symbols we studied in the present paper describe the 
modular transformations of conformal blocks and correlators. They also play an important role 
when conformal bootstrap is applied [4,5].
• Another active area of modern theoretical physics is Chern-Simons theory (CS) and its ap-
plications. The main objects studied there are Wilson-loop averages. These studies are closely 
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related to the problem of confinement, because the hope is that understanding of dependence of 
Wilson-loop averages of simpler 3d CS theory on the representation would lead to the under-
standing of the more complex 4d theories. The 3d CS Wilson loops are closely related to the 
WZW conformal blocks [6,7] and 6-j symbols we’ve discussed are applied directly to the studies 
of these Wilson-loops as well [8,9].
• One more application of 6-j symbols is for the lattice gauge theories, in particular, it is known 
that they are used to calculate functional integral in the SU(2) lattice gauge theories [10]. Our 
results probably can be used to generalize this to more complex models
• 3d quantum gravity theories also heavily rely on 6-j symbols, and symmetries of those corre-
spond to the invariance of the amplitudes under the Hamiltonian constraints [11]. The Ponzano-
Regge state-sum model provides a quantization of 3d gravity as a spin foam, providing a quantum 
amplitude to each 3d triangulation defined in terms of the 6j-symbol (from the spin-recoupling 
theory of SU(2) representations) [12]. Both of these were widely studied only in SU(2) case be-
cause it is only in this case where 6-j symbols are known in their full generality. Thus the studies 
of SU(N) 6-j symbols can lead to the advancements in the quantum gravity as well.
• Other theories where 6-j symbols can be applied include quantum computing [13,14], quantum 
R-matrices and integrable systems [15], Turaev-Viro invariants of 3-manifolds and topological 
field theory [16,17], Drinfeld associator and Kontsevich integral [18,19], orthogonal polynomials 
[20–22] and others.

From mathematical point of view they describe the associativity data, which are still un-
known for Uq(slN ). The main difficulty is in the appearance of the so-called multiplicities, which 
happens when the algebra rank N is greater than 2. However, even for multiplicity-free represen-
tations analytical formulas for 6j-symbols are known only for a small class of representations, 
namely, for symmetric representations.

One can see that 6-j symbols are widely used in both classical and modern works. Note that 
in many situations, e.g. in the quantum gravity or in statistical models, one considers partition 
functions, which contain a sum over all possible 6-j symbols of the given gauge group. In such 
problems it would be very useful to use symmetries between different 6-j symbols in order to 
reduce the sum and simplify the computation.

Quantum 6-j symbols have a lot of symmetries, most of them are still unknown. Nowadays 
we have different situations for Uq(sl2) and more general Uq(slN ) 6-j symbols. All symmetries 
of Uq(sl2) 6-j symbols are well known and well studied, many interesting and surprising results 
are obtained, see e.g. [23–26]. In the present paper we are interested in the so-called linear
symmetries. Non-linear symmetries (e.g. the pentagon relation), that are more complicated, are 
out of the scope of this paper. Linear symmetries of Uq(sl2) Racah coefficients include Regge 
symmetries, the tetrahedral symmetries and transformation q ↔ q−1 [27]. Known symmetries of 
Uq(slN ) include complex conjugation, a q ↔ q−1 and the tetrahedral symmetries [7].

Some symmetries may be obtained with the help of the eigenvalue hypothesis [26,28–31]
including some generalization for Regge symmetries. It says that the Racah matrices are uniquely 
defined by the eigenvalues of the R̂-matrices. All studied examples says that it is true and this 
hypothesis becomes a useful tool to derive symmetries. Moreover, there is an exact expression 
for the Racah matrices through the R̂-matrix eigenvalues for the matrices of the size up to 5 × 5
[32] and 6 × 6 [33].

The 6-j symbols calculation is a big problem for Uq(slN ) representations. There are few cal-
culation methods and each of them is extremely tedious. Unlike the Uq(sl2) case, where the 
answer is known in a closed form for each representation [34], the analytical expression for arbi-
3
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trary representations is still unknown. However, for the special case of symmetric and conjugated 
symmetric Uq(slN ) representations, the analytical expression was proposed recently [1,35]. The 
result gives us plenty of new questions. In particular, which properties of the expression are spe-
cial for Uq(sl2) and which can be generalized to the more complex cases. For instance, in this 
context it was found [36] that 6-j symbols for symmetric representations of Uq(slN ) can be ex-
pressed in terms of orthogonal q-Racah polynomials as well as their counterpart for Uq(sl2). Also 
note that 6-j symbols of Uq(slN ) for non-symmetric representations were studied in [37–39]. One 
of the most promising applications of Uq(slN ) 6-symbols is to distinguish mutant knots, which 
currently has to be done by other means [40–44] without using 6-j symbols, which are unknown 
in the required cases.

In this paper we study the analytical expression from [1] in order to find new symmetries. In 
section 2 we start by introducing Racah coefficients and 6-j symbols for Uq(slN ). In this paper 
we consider 6-j symbols that have only symmetric and conjugate to symmetric representations. 
All these 6-j symbols may be transformed via tetrahedral symmetries into either type I and type II 
[7]. For type I the only conjugate to symmetric representation is the second one, for type II – the 
third one. Each type can be considered as a natural generalization of Uq(sl2) 6-j symbols because 
each tensor product decomposition for this case has no multiplicities and can be enumerated by 
an integer number rather than a whole Young diagram. We consider the expression for both types 
as an analytic function and study its special properties to obtain new symmetries.

In section 3 we simplify the expression. Firstly, we prove that the expression may be reduced 
and the series became much more similar to Uq(sl2) series. This was done for both types inde-
pendently and as it appears they can be represented as one universal expression for both types. 
Then we express it in terms of q-hypergeometric function 4�3 with some factor. Also it is proven 
that this expression does not have any inequality restrictions on its arguments, as it was proposed 
in the original article. As a result, the expression becomes more convenient for studying symme-
tries.

In section 4 we analyze the hypergeometric expression of multiplicity-free 6-j symbol. We find 
the transformation between the multiplicity-free Uq(slN ) 6-j symbol and its Uq(sl2) counterpart. 
This result creates a lot of possibilities to generalize well-known Uq(sl2) 6-j symbol properties to 
the considered case. As an immediate output of such relation in section 5 we derive the classical 
(q = 1) 6-j symbol asymptotics, using known results for U(sl2). Originally it was written in 
terms of the associated tetrahedron [45,23]. The U(slN ) generalization modifies the expression 
so that the tetrahedron now depends on N and deforms differently for two types of 6-j symbols.

In section 6 the resulting 6-j symbol expression has been studied for symmetries. Obtained 
4�3 series has two known symmetries: permutations of arguments in each row and the Sears’ 
transformation [46]. The total number of hypergeometric symmetries is 23040 for both types, it 
was obtained by manual computations on computer. However, only 24 form symmetry group of 
6-j symbols for type I and 12 for type II. Some of them are tetrahedral, others can be described 
as the Regge symmetry generalization for N ≥ 2.

We also consider additional symmetries that equates Uq(slN ) and Uq(slM) 6-j symbols in 
subsections 6.4, 6.5. Being obtained as symmetries between hypergeometric series, they require 
a normalizing factor in terms of 6-j symbols. Non-trivial expressions are found for both types 
and examples are provided. The main results of these subsections are symmetries that generalize 
permutation in a different from tetrahedral way. They become usual well-known symmetries 
when N = 2, but for N > 2 they depend on N explicitly.
4
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2. Racah coefficients, 6-j symbols and types I, II expression

To define 6-j symbols we need firstly to remind the Racah matrix definition. Here we work 
with q-deformed algebra Uq(slN ). Let us consider 3 irreducible C-modules of representations 
R1, R2, R3 acting in VR1, VR2, VR3 . Due to a tensor product associativity, (VR1 ⊗ VR2) ⊗ VR3 =
VR1 ⊗ (VR2 ⊗ VR3), hence there is a unitary transformation

U : (R1 ⊗ R2) ⊗ R3 → R1 ⊗ (R2 ⊗ R3). (1)

On the other hand, we can rewrite it in irreducible components, where MR1,R2
X is a multiplicity 

space of all X’s in the decomposition R1 ⊗ R2:

(R1 ⊗ R2) ⊗ R3 =
(⊕

i

M
R1,R2
Xi

⊗ Xi

)
⊗ R3 =

⊕
i,k

M
R1,R2
Xi

⊗ M
Xi,R3
R4k

⊗ R4k
,

R1 ⊗ (R2 ⊗ R3) = R1 ⊗
⎛⎝⊕

j

M
R2,R3
Yj

⊗ Yj

⎞⎠=
⊕
j,k

M
R1,Yj

R4k
⊗ M

R2,R3
Yj

⊗ R4k
.

(2)

If we consider some particular R4 in the decomposition, it corresponds to the vector space 
of representations. A basis constructed from the highest weights’ vectors differs for these two 
fusions.

R1 R2 R3 R4

Xi

U

R1 R2 R3 R4

Yi

Thus, there is a transformation between two vector spaces that is defined by the Racah matrix or 
Racah-Wigner 6-j symbols.

Definition 1. Racah coefficients are elements of Racah matrix that is the map:

U

(
R1 R2
R3 R4

)
:
⊕

i

M
R1,R2
Xi

⊗ M
Xi,R3
R4

→
⊕

j

M
R1,Yj

R4
⊗ M

R2,R3
Yj

. (3)

Definition 2. Wigner 6-j symbol is the element of a normalized Racah matrix:{
R1 R2 Xi

R3 R4 Yj

}
= 1√

dimq(Xi)dimq(Yj )
Ui,j

(
R1 R2
R3 R4

)
. (4)

Here dimq means the quantum deformation of the usual expression for the dimension of the 
representation [47]. It can be computed for every Uq(slN ) representation R using the correspond-
ing Young diagram λ (λT is a transposed Young diagram):

dimq(λ) =
∏ q

1
2 (N+i−j) − q− 1

2 (N+i−j)

q
1
2 (λi−i+λT

j −j+1) − q
− 1

2 (λi−i+λT
j −j+1)

. (5)

(i,j)∈λ

5
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In this paper we work with the special class of 6-j symbols, which can be seen as a natu-
ral generalization of Uq(sl2) case for Uq(slN ) 6-j symbols. The initial representations and the 
resulting one are either symmetric or conjugated to symmetric for this class. Further we will 
assume that R1, R2, R3, R4 representations are symmetric. Corresponding Young diagrams are 
[r1], [r2], [r3], [r4], here rn are integers that denote numbers of boxes for Uq(slN ) symmetric 
representations. Conjugated Young diagram is written as [rn] and corresponds to Rn.

Definition 3. We shall call two 6-j symbols below type I and type II, · means N − 1 vertical 
boxes.

I type:

{ [r1] [r2] X

[r3] [r4] Y

}
≡
{

. . . · . . . · · · . . . · . . .

. . . . . . · · . . . · . . .

}
, (6)

II type:

{ [r1] [r2] X

[r3] [r4] Y

}
≡
{

. . . . . . . . . . . .

· . . . · . . . · · . . . · . . .

}
. (7)

Although arguments R1, R2, R3, R4 are very simple and can be parametrized by the width 
and N , the last pair of X and Y Young diagrams has more sophisticated expressions. There 
are two possible cases of tensor products: [rn] ⊗ [rm] and [rn] ⊗ [rm]. Each element in the de-
composition depends on the initial pair of representations and the ordering number in the sum. 
From the Littlewood-Richardson rules [48] it is easy to see that the mentioned tensor products 
are multiplicity-free and all representations in a decomposition have different width. Similarly 
to Uq(sl2) case, where it is possible to enumerate diagrams by the only integer parameter i, for 
mentioned Uq(slN ) decompositions we have the enumerating parameter – the first row length. 
To shorten the notation we shall write 6-j symbol of type I and type II in a more compact form. 
Let us denote the type by variable T ∈ {1, 2}. Type I 6-j symbol is:

[
r1 r2 i

r3 r4 j

]N

1
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[r1] [r2]

[
i,

r2 − r1 + i

2

N−2
]

[r3] [r4]
[
j,

r2 − r3 + j

2

N−2
]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (8)

and type II:

[
r1 r2 i

r3 r4 j

]N

2
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[r1] [r2]

[
r1 + r2 + i

2
,
r1 + r2 − i

2

]

[r3] [r4]
[
j,

r2 − r3 + j

2

N−2
]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (9)

where i, j is defined in such a way in order to have a nice N = 2 limit.
Let us note that the fusion rules restrictions require additional equalities:

r1 + r3 = r2 + r4 for type I,

r1 + r2 = r3 + r4 for type II.
(10)

Definition 4. The equations (11) between Uq(sl2) 6-j symbols are called Regge symmetries or 
Regge transformations [49] (ρ = r1+r2+r3+r4 , ρ′ = r1+r3+i+j

, ρ′′ = r2+r4+i+j
):
2 2 2

6
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{
r1 r2 i

r3 r4 j

}
=
{

ρ − r3 ρ − r4 i

ρ − r1 ρ − r2 j

}
=
{

ρ′ − r3 r2 ρ′ − j

ρ′ − r1 r4 ρ′ − i

}
= (11)

=
{

r1 ρ′′ − r4 ρ′′ − j

r3 ρ′′ − r2 ρ′′ − i

}
=
{

ρ − r3 ρ′ − r4 ρ′′ − j

ρ − r1 ρ′ − r2 ρ′′ − i

}
=

=
{

ρ′′ − r3 ρ − r4 ρ′ − j

ρ′′ − r1 ρ − r2 ρ′ − i

}
.

Definition 5. The tetrahedral symmetry is a known property of 6-j symbol to be invariant under 
row and column permutations [7] (λi, μ, ν are arbitrary Young diagrams):{

λ1 λ2 μ

λ3 λ4 ν

}
=
{

λ3 λ2 ν

λ1 λ4 μ

}
=
{

λ3 λ4 μ

λ1 λ2 ν

}
= (12)

=
{

λ1 μ λ2

λ3 ν λ4

}
=
{

λ2 λ1 μ

λ4 λ3 ν

}
.

Proposition 1. 6-j symbol in Uq(slN ), N > 2 with symmetric and conjugate to symmetric repre-
sentations is either trivial (X and Y has the only possible value) or may be equated by tetrahedral 
symmetry and conjugation to either type I or type II.

Proof. There are only a few possible variants to write down a 6-j symbol with symmetric and 
conjugate to symmetric representations. By conjugation of 6-j symbol we can transform R4 to a 
symmetric diagram. Thus, let us prove the proposition without loss of generality only for sym-
metric R4. Let us now investigate how the first three arguments may be organized. There are four 
different cases that correspond to the number of conjugated representations in the product.

• All three representations are conjugated.
Let us conjugate all terms in the product [r1] ⊗ [r2] ⊗ [r3] ⊃ [r4], so we can consider [r1] ⊗
[r2] ⊗ [r3] ⊃ [r4] and N > 2. It is obvious from the fusion rules [48] that for N > 4 it is 
not possible to combine the representations into a conjugated one because there are no more 
than 3 rows in a resulting Young diagram, whereas [r4] has N − 1 > 3 rows.
Now we need to prove that it is not possible even for N = 3,4. The N = 4 case requires the 
rows of R4 to be equal. The Littlewood-Richardson rules [48] say that the resulting diagram 
is constructed as the first multiplier with the second multiplier’s elements but with some 
restrictions. For symmetric diagrams they forbid to put the new elements in one column. 
Hence, if we need to combine diagrams into a rectangular one, the corresponding 6-j symbol 
is trivial. Indeed, the only way to combine the diagrams properly is to consider them equal 
and to put them under each other.
Here and below we use some non-negative integer parameters a, b, c that encode a Young 
diagram, the aim of these parameters is to specify the shape of a considered diagram.
The N = 3 case has a [r4] diagram that may be written as [a, a]. The [a, a] is trivial, because 
there is the only diagram X = [r1 +r2 −b, b] that has width a. Indeed, if the width is smaller, 
the third multiplier can not make the second row width equal to a, if it is greater, we can not 
make R4 anymore.
Therefore, all N > 2 6-j symbols with 3 conjugated representations are trivial.

• All three representations are symmetric.
Obviously, if R1, R2, R3, R4 are symmetric in Uq(slN ), N > 3, then the corresponding 6-
j symbol has the only X = [r1 + r2], the same for Y . If N = 3, there is a possibility to 
7
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make a Young diagram with columns of height N . However, the fusion rules restrict X =
[r1 + r2 − a, a] = [b + r4, b], hence X = [r1 + r2 + r4, r1 + r2 − r4] and this 6-j symbol is 
trivial.

• Two representations are conjugated and one is symmetric.
Note, that the multiplicity of R4 in decomposition R1 ⊗ R2 ⊗ R3 does not change under 
a permutation of multipliers. Hence we may always decompose the product of conjugated 
representations and then multiply it by the symmetric one. Without loss of generality we 
consider [r1] ⊗ [r2] ⊗ [r3].
Let us firstly decompose the product of conjugated representations. In general, it has the 
diagram [aN−2, b], where b ≤ a. It is obtained from [(r1 +r2)

N−2, r1 +r2 −c, c] by reducing 
the column of height N . If N > 3, the product [aN−2, b] ⊗ [r3] may have a symmetric 
diagram in the decomposition only if a = b, but it will be trivial because X = [(r3 − r4)

N−1]. 
If N = 3, [a, b] ⊗[r3] easily makes symmetric diagram with condition X = [a, a + r3 − r4]. 
But we can find a from the [r1] ⊗ [r2] decomposition and it is unique for fixed r1 and r2.
As a result, there are no non-trivial 6-j symbols with two conjugated symmetric representa-
tions and symmetric R4.

• One conjugated representation.
There are three such 6-j symbols up to a conjugation:{[r1] [r2] X

[r3] [r4] Y

}
,

{[r1] [r2] X

[r3] [r4] Y

}
,

{[r1] [r2] X

[r3] [r4] Y

}
. (13)

One can check that they may be nontrivial.

We can apply a tetrahedral symmetry to these 6-j symbols, in particular, row permutation of 
arguments (R1, R2) ↔ (R3, R4). After this transformation the first and the third 6-j symbols are 
swapped and the second one is invariant. Applying other symmetries, one can check that type I 
and type II are not equated by tetrahedral symmetries. �

It is worth mentioning that there are tetrahedral symmetries acting within each type. In par-
ticular, a type I 6-j symbol is still type I after row permutations and the swap of the first two 
columns. Type II is conserved only by the row permutation of the first two columns. These are 
the only tetrahedral symmetries that possible to derive if one considers symmetries of type I or 
type II. The others either were used earlier to transform 6-j symbol into one of the types, or trans-
form any type into a completely different 6-j symbol, which has non-symmetric representations 
and much more complicated structure, so they are out of the scope of the present paper.

The expression for 6-j symbol of type I and II was proposed in [1]. It may be written as 
follows.[

r1 r2 i

r3 r4 j

]N

T

= θN (r1, r2, i) θN (r3, r4, i) θN (r1, r4, j) θN (r2, r3, j) [N − 1]q ![N − 2]q !
zmax∑

z=zmin

(−1)z[z+N−1]q !·AT,z

[z− r1+r2+i

2 ]q ![z− r3+r4+i

2 ]q ![z− r1+r4+j

2 ]q ![z− r2+r3−j

2 ]q ![ r1+r2+r3+r4
2 −z]q ![ i+j+r1+r3

2 −z]q ![ i+j+r2+r4
2 −z]q ! ,

(14)

θN(a, b, c) =
√√√√ [ a+b−c

2 ]q ![ c+a−b
2 ]q ![ b+c−a

2 ]q !
[ a+b+c + N − 1]q ! ,
2

8
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AT,z =

⎡⎢⎢⎣
[k + zmin − z]q !

[k + zmin + N − 2 − z]q ! for type I,

[k − zmax + z]q !
[k − zmax + N − 2 + z]q ! for type II.

(15)

To write the 6-j symbol expression we use quantum numbers notations. It is by the definition 

[n]q = q
n
2 −q

− n
2

q
1
2 −q

− 1
2

. Quantum generalization of factorials for non-negative integers can be written 

as [n]q ! =∏n
k=1[k]q . Also k = 1

2 min(i − r1 + r2, j − r3 + r2) and zmin, zmax are defined as the 
smallest and the largest integers for which the summand is non-trivial, i.e. there are no factorials 
of negative integers. The expression differs for two types only in the AT,z expression. Also the 
following conditions were imposed in the original paper [1] (as we show below, they are not 
necessary):{

0 ≤ r2 ≤ r1 ≤ r3
0 ≤ r1 ≤ r2

for type I,
for type II.

(16)

3. Hypergeometric expression for 6-j symbols

In this section we express the 6-j symbol expression in terms of basic q-hypergeometric series 
4�3. Firstly, we define the q-hypergeometric functions and remind their symmetric properties. 
After this we use the inequality properties (16) to simplify the 6-j symbol expression. We prove 
with the help of tetrahedral symmetries that the 6-j symbol’s domain may be extended beyond 
the mentioned inequalities. Then we write the obtained series as a 4�3 function. As a result, both 
types can be written as q-hypergeometric 4�3 series multiplied by some factor.

3.1. q-Hypergeometric symmetries

A q-Pochhammer symbol is defined as (a, q)n =∏n−1
k=0(1 − aqk).

Definition 6. The q-hypergeometric series are defined as:

p+1φp

(
a1, . . . , ap+1
b1, . . . , bp

;q, z

)
:=

∞∑
n=0

(a1, q)n . . . (ap+1, q)n

(b1, q)n . . . (bp, q)n(q, q)n
zn. (17)

It can be also rewritten in a form, which is more convenient for us:

p+1�p

(
a1, . . . , ap, ap+1

b1, . . . , bp
;q, z

)
:= p+1φp

(
qa1, . . . , qap , qap+1

qb1, . . . , qbp
;q, z

)
. (18)

It is far more convenient because it may be reformulated in terms of q-factorials:

p+1�p

(
a1 + 1, . . . , ap + 1, ap+1 + 1

b1 + 1, . . . , bp + 1
;q, z

)
=

∞∑
n=0

[a1 + n]q !
[a1]q ! . . .

[ap+1 + n]q !
[ap+1]q !

[b1]q !
[b1 + n]q ! . . .

[bp]q !
[bp + n]q !

zn

[n]q ! . (19)

This expression evidently has the limit lim
q→1

[a]q ! = a!, where the whole series becomes a usual 

hypergeometric function.
9
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There are a lot of known symmetries for 4�3 series. Here we consider only permutation 
symmetry and Sears’ transformation.

Definition 7. Permutation symmetry is the evident property of r�p functions to be invariant 
under permutations ω ∈ Sr and u ∈ Sp:

r�p

(
a1, . . . , ar

b1, . . . , bp
;q, z

)
= r�p

(
aω(1), . . . , aω(r)

bu(1), . . . , bu(p)
;q, z

)
. (20)

Definition 8. Sears’ transformation [46] is the relation between two 4�3 functions:

4�3

(
x, y, z, n

u, v,w
;q, q

)
=[v−z−n−1]q ![u−z−n−1]q ![v−1]q ![u−1]q !

[v−z−1]q ![v−n−1]q ![u−z−1]q ![u−n−1]q ! ×

× 4�3

(
w − x,w − y, z,n

1−u+z+n,1−v+z+n,w
;q, q

)
,

(21)

where x + y + z + n + 1 = u + v + w.

3.2. 6-j symbol as 5�4 series

Let us denote the sum (15) as 
[
r1 r2 i

r3 r4 j

]N

T

= K ′ ·∑m Im = K ′ · I , where m = 1
2 (r1 + r2 +

r3 + r4) − z. Then it can be easily rewritten as:

I =
mmax∑

m=mmin

(−1)
r1+r2+r3+r4

2 −m[ r1+r2+r3+r4
2 −m+N−1]q !·AT,m

[m]q ![ r3+r4−i

2 −m]q ![ r1+r2−i

2 −m]q ![ r2+r3−j

2 −m]q ![ r1+r4−j

2 −m]q ![ i+j−r2−r4
2 +m]q ![ i+j−r1−r3

2 +m]q !
,

(22)

K ′ = θN (r1, r2, i) θN (r3, r4, i) θN (r1, r4, j) θN (r2, r3, j) [N − 1]q ![N − 2]q ! , (23)

AT,m =

⎡⎢⎢⎣
[k − mmax + m]q !

[k − mmax + N − 2 + m]q ! for type I,

[k + mmin − m]q !
[k + mmin + N − 2 − m]q ! for type II.

(24)

The explicit relations for mmin and mmax can be easily found from the denominator factorials, 
because the summand is zero if and only if there is a negative factorial in the denominator:

mmax = 1

2
min

⎛⎜⎜⎝
r1 + r2 − i

r3 + r4 − i

r1 + r4 − j

r2 + r3 − j

⎞⎟⎟⎠ , mmin = 1

2
max

⎛⎝ 0
r1 + r3 − i − j

r2 + r4 − i − j

⎞⎠ . (25)

As it can be derived from fusion rules, k, mmax, mmin are always integers when a 6-j symbol 
exists. Moreover, k has a clear meaning in terms of Young diagrams – it is the minimum width 
among the conjugated parts of diagrams, corresponding to Xi and Yj .

One can notice, that the considered expression fits the 5�4 definition (18), if z = q . This 
allows us to claim the following.

Proposition 2. Both type I and type II may be written as 5�4 q-hypergeometric series multiplied 
by simple factors:
10
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[
r1 r2 i

r3 r4 j

]N

T

= K ′′ · 5�4

(
a1, a2, a3, a4, a5

b1, b2, b3, b4
;q, q

)
, (26)

2ai =

⎛⎜⎜⎜⎜⎝
2{k − mmax + 1,−k − mmin − N + 2}T

−r1 − r2 + i

−r3 − r4 + i

−r1 − r4 + j

−r2 − r3 + j

⎞⎟⎟⎟⎟⎠ ,

2bi =

⎛⎜⎜⎝
−r1 − r2 − r3 − r4 − 2(N − 1)

i + j − r2 − r4 + 2
i + j − r1 − r3 + 2

2{k − mmax + N − 1,−k − mmin}T

⎞⎟⎟⎠ ,

(27)

K ′′ = K ′ · AT,0 · [ r1+r2+r3+r4
2 + N − 1]q !

[ r3+r4−i
2 ]q ![ r1+r2−i

2 ]q ![ r2+r3−j
2 ]q ![ r1+r4−j

2 ]q ![ i+j−r2−r4
2 ]q ![ i+j−r1−r3

2 ]q ! , (28)

where {e1, e2}T ≡ eT is e1 for type I and e2 for type II.

It can be proven straightforwardly by substitution of q-Pochhammer symbols.

3.3. Expression of 6-j symbol as 4�3 series

The obtained expression for 6-j symbol is not quite convenient to find its symmetries. Expres-
sions for k, mmin and mmax may be simplified in the following way.

Lemma 1. For all type I 6-j symbols k − mmax = i+j−r1−r3
2 if the following conditions are satis-

fied: {
r2 ≤ r1 ≤ r3,

r1 + r3 = r2 + r4.
(29)

Proof. Let us consider k − mmax = i+j−r1−r3
2 . One can check that there are 2 cases when it is 

so, hence they may be written as the union of two systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
r1 + r2 − i ≤ r3 + r4 − i,

r1 + r2 − i ≤ r2 + r3 − j,

r1 + r2 − i ≤ r1 + r4 − j,

j − r3 ≤ i − r1;

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2 + r3 − j ≤ r3 + r4 − i,

r2 + r3 − j ≤ r1 + r2 − i,

r2 + r3 − j ≤ r1 + r4 − j,

i − r1 ≤ j − r3.

(30)

If the conditions (29) satisfied, the first three inequalities are true. The union of these two systems 
may be reduced to the next expression.[

j − i ≤ r4 − r2,

j − i ≥ r4 − r2.
(31)

Consequently, every 6-j symbol from type I is described by k − mmax = i+j−r1−r3 . �
2

11
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Lemma 2. For all type II 6-j symbols k + mmin = r1+r2−i
2 if the conditions are satisfied:

{
r1 ≤ r2,

r1 + r2 = r3 + r4.
(32)

Proof. The proof for type II is analogous to type I. �
Lemma 3. Conditions on arguments of a 6-j symbol (16) are redundant, i.e. the expression (15)
is valid even if the inequalities are not satisfied.

Proof. We are able to obtain every possible 6-j symbol of types I and II by performing a tetra-
hedral symmetry (12) that leaves the type invariant:

{ [r1] [r2] X

[r3] [r4] Y

}
=
{ [r3] [r2] Y

[r1] [r4] X

}
=
{ [r2] [r1] X

[r4] [r3] Y

}
. (33)

One may immediately notice that these symmetries may transform a 6-j symbol from region r2 ≤
r1 ≤ r3 into all possible representations. The problem is that the expression for the transformed 6-
j symbols may differ from the initial expression. We can check it by substituting arguments trans-
formed by tetrahedral symmetries. Let us show that in our notations it acts on r1, r2, r3, r4, i, j
as a permutation. For Rn, the symmetry evidently acts as a permutation of rn. There are also 

representations X and Y that is conjugated, we can consider only diagram 
[
j,

r2−r3+j
2

N−2]
as an 

example. Under conjugation it transforms 
[
j,

r2−r3+j
2

N−2]→
[
j,

r3−r2+j
2

N−2]
, but the expres-

sion depends only on j that is invariant under conjugation.
Therefore, tetrahedral symmetry acts on the expression as a permutation of arguments. One 

can check that it is invariant under written tetrahedral symmetry transformation. The same for 
type II, but we need only one relation (the inequality is r1 ≤ r2):

{ [r1] [r2] X

[r3] [r4] Y

}
=
{ [r3] [r4] X

[r1] [r2] Y

}
. (34)

The symmetry acts non-trivially only on r1, r2, r3, r4, we already showed why it is a permutation. 
It is easy to see that the expression is invariant under such a transformation.

Therefore, the expression does not change when we write a 6-j symbol without additional 
inequality conditions (16). Then we can get rid of these conditions as even if they are not satisfied 
the expression is valid. �

We have proven in Lemma 1 that for arguments satisfying the inequality condition (16) there 
are only one combination of k − mmax that is present for type I 6-j symbols. This results into 
the exact value of AT,m which allow us to reduce the whole series. Then we apply tetrahedral 
symmetries to prove that the statement is true for all type I 6-j symbols. The same procedure has 
been done for type II and this allows us to simplify both expressions and write down them as 
follows.
12
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[
r1 r2 i
r3 r4 j

]N
T

= K ′
mmax∑

m=mmin

(−1)
r1+r2+r3+r4

2 −m[ r1+r2+r3+r4
2 +N−1−m]q !

[m]q ![ r3+r4−i

2 −m]q ![ r2+r3−j

2 −m]q ![ r1+r4−j

2 −m]q ![ i+j−r2−r4
2 +m]q !×

× 1
[ r1+r2−i

2 +(N−2)δT ,2−m]q ![ i+j−r1−r3
2 +(N−2)δT ,1+m]q ! .

(35)

We can express all factorials as q-Pochhammer symbols. The substitution differs for factorials 
with +m and −m:

[m0 + m]q ! = [m0]q !(qm0+1, q)m · q− m
4 (2m0+m−1)

(1 − q)m
,

[m0 − m]q ! = (−1)m[m0]q !
(q−m0, q)m

· (1 − q)m

q
m
4 (2m0+m−1)

.

(36)

By substituting this to the main expression one can check that among depending on m terms 
only q-Pochhammer symbols remain. This allows us to write the series as a hypergeometric 
function:[

r1 r2 i

r3 r4 j

]
T

∼ 4�3

(
a1, a2, a3, a4

b1, b2, b3
;q, q

)
. (37)

The 4�3 arguments may be easily obtained using (36). Note, that there is the following rela-
tion on the arguments:

a1 + a2 + a3 + a4 + 1 = b1 + b2 + b3. (38)

And the factorizable part of the expression:

KT = θN (r1,r2,i)θN (r3,r4,i)θN (r1,r4,j)θN (r2,r3,j)[N−1]q ![N−2]q ![ r1+r2+r3+r4
2 +N−1]q !

[ r3+r4−i

2 ]q ![ r1+r2−i

2 +(N−2)δT ,2]q ![ r2+r3−j

2 ]q ![ r1+r4−j

2 ]q ![ i+j−r2−r4
2 ]q ![ i+j−r1−r3

2 +(N−2)δT ,1]q ! .

(39)

Combining all this into one, we come to the following statement.

Proposition 3. The considered 6-j symbol expression may me expressed as a 4�3 function for 
both types. The factor KT is as in (39).

[
r1 r2 i
r3 r4 j

]N
T

= KT · 4�3

(
a1, a2, a3, a4

b1, b2, b3
;q,q

)
,

2ai =
⎛⎝−r1 − r2 + i − 2(N − 2)δT ,2−r3 − r4 + i

−r1 − r4 + j
−r2 − r3 + j

⎞⎠ , 2bi =
( −r1 − r2 − r3 − r4 − 2(N − 1)

i + j − r2 − r4 + 2
i + j − r1 − r3 + 2 + 2(N − 2)δT ,1

)
.

(40)

(41)

This is the most suitable form of 6-j symbol for our aims. As it can be seen, we reduced the 
5�4 series to the 4�3 one. This is a non-obvious result. In order to proceed with this reduction 
we used tetrahedral symmetry along with the special properties of the considered two types. Due 
to the fact that Uq(sl2) 6-j symbols are expressed via 4�3 too, we may use the same techniques 
13
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to obtain new results, also the limit N = 2 is very easy to apply. This result gives us an idea 
of a strong connection between 6-j symbols and q-hypergeometric series. For example, it is 
interesting whether all multiplicity-free 6-j symbols can be expressed as 4�3 series.

It is interesting to analyze the number of independent parameters in the obtained expression. 
Neglecting q , on both sides we have 7 parameters: {r1, r2, r3, r4, i, j, N} and {a1, a2, a3, a4, b1,

b2, b3}. They are not independent, it was mentioned that, on the one hand, each type has re-
strictions for N > 2 that fix one parameter. On the other hand, obtained 4�3 series satisfies a 
balance condition 

∑
i ai + 1 =∑i bi . Thus, for N > 2 there are 6 parameters on both sides. For 

N = 2, the fusion rules do not fix rn, so there are 6 parameters on both sides. It is natural to 
ask whether there is a connection between the fusion rules and the balance condition. It seems 
like these equalities have different meaning, because the condition on {ai, bi} is satisfied even if 
r1 + r3 �= r2 + r4. From this point of view another question arises: what class of 6-j symbols can 
be described in terms of 4�3 series with such equality? This question is out of our consideration 
in this paper, but it is still important and interesting to study.

4. Relation with Uq(sl2) 6-j symbols

In this section we investigate the relation between 6-j symbols in multiplicity-free Uq(slN )

and Uq(sl2) cases. As we have seen, the core of both expressions is 4�3 hypergeometric series. 
We have already mentioned the number of independent parameters in the series, but now we 
analyze it in details. Then we shall see the interesting connection between the usual Uq(sl2) 6-j 
symbol and considered one.

Let us write down the 4�3 arguments as a vector space with the basis (r1, r2, r3, r4, i, j, N). 
We put all the additional constants in �C since they do not play any role in the next discussion:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 + r2 + r3 + r4 + 2(N − 1)

r1 + r2 − i + 2(N − 2)δT ,2
r3 + r4 − i

r1 + r4 − j

r2 + r3 − j

−r2 − r4 + i + j + 2
i + j − r1 − r3 + 2(N − 1)δT ,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1
1 1 0 0 −1 0 2δT ,2
0 0 1 1 −1 0 0
1 0 0 1 0 −1 0
0 1 1 0 0 −1 0
0 1 0 1 −1 −1 0

−1 0 −1 0 1 1 2δT ,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1
r2
r3
r4
i

j

N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ �C.

(42)

The rank of this matrix is 6, so there is a kernel of dimension one. This kernel is described 
by a zero vector �v. Note that (38) is a completely different condition that does not depend on the 
values of parameters. The zero vector can be written as follows

�v =
⎧⎨⎩
(

0,1,0,1,1,1,−1
)

, Type I,(
1,1,0,0,0,1,−1

)
, Type II,

(43)

with the corresponding shift in the parameters being

α�v =
{

α�v = α(r2 + r4 + i + j − N), Type I,

α�v = α(r1 + r2 + j − N), Type II.
(44)

This freedom allows to shift the arguments value without changing the actual value of the 
hypergeometric series, so it can be considered as a symmetry for 6-j symbol although for hy-
pergeometric series it is tautological equality. If one examines the transformation for type I 6-j 
14
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symbol, it can be seen that the fusion rules are in conflict with it. Indeed, the non-trivial trans-
formation changes r2 + r4, but leaves r1 + r3 unchanged, thus (10) forbids such transformation 
for N > 2, for either type I or type II. However for N = 2 the fusion rules disappear and we can 
apply it without any problems. So we take Uq(slN ) 6-j symbol and make transformation (43) in 
order to get the expression for Uq(sl2) 6-j symbol:

4�3(r1, r2, r3, r4, i, j,N)1

= (−1)N · 4�3(r1, r2 + N−2, r3, r4 + N−2, i + N−2, j + N−2,2),

4�3(r1, r2, r3, r4, i, j,N)2 = (−1)N · 4�3(r1 + N−2, r2 + N−2, r3, r4, i, j + N−2,2).

(45)

The only part of expression that differs is the factor KT . It partly replicates the hypergeometric 
arguments, so only a few terms are left in the relation between of multiplicity free Uq(slN ) 6-
j symbols and Uq(sl2) ones. For the sake of brevity, we will write the hypergeometric function 
from (40) as 4�3(r1, r2, r3, r4, i, j, N)T . The factor K ′ changes after transformations, let us write 
it down explicitly.

K ′(N) = θN (r1, r2, i) θN (r3, r4, i) θN (r1, r4, j) θN (r2, r3, j) [N − 1]q ![N − 2]q ! ,

(46)

�T (N) := 1

[N−1]q ![N−2]q !
K ′(N)

K ′(2)
. (47)

�1(N) =
(

N−2∏
m=1

[
i−r1+r2

2 + m
]
q

[
j+r2−r3

2 + m
]
q

[
j−r1+r4

2 + m
]
q

[
i−r3+r4

2 + m
]
q

)− 1
2

,

(48)

�2(N) =
(

N−2∏
m=1

[
r1+r2−i

2 + m
]
q

[
j+r2−r3

2 + m
]
q

[
j+r1−r4

2 + m
]
q

[
i+r3+r4

2 +1 + m
]
q

)− 1
2

.

(49)

The resulting relation between multiplicity-free Uq(slN ) and Uq(sl2) 6-j symbol is as follows.

[
r1 r2 i
r3 r4 j

]N
1

=
{

r1 r2 + N − 2 i + N − 2
r3 r4 + N − 2 j + N − 2

}
(−1)N [N − 1]q ![N − 2]q ! · �1(N),[

r1 r2 i
r3 r4 j

]N
2

=
{

r1 + N − 2 r2 + N − 2 i
r3 r4 j + N − 2

}
(−1)N [N − 1]q ![N − 2]q ! · �2(N).

(50)

It can be easily checked that the remaining fusion rules for N = 2 (triangle inequality, etc.) 
are always satisfied and the resulting 6-j symbol is non-trivial. On the other hand, if one tries 
to transform Uq(sl2) 6-j symbol into N > 2 one, the number of problems arises and it is not 
possible in general. For example, if r1 + r3 − r2 − r4 > 0, there is no corresponding N > 2 6-j 
symbol.

This result is interesting not only because it reveals the hidden relation between two classes of 
6-j symbols, but additionally it can be applied to extend a lot of known properties of Uq(sl2) to 
arbitrary N . In the next section we derive the asymptotics formula for the multiplicity-free case. 
Let us show an example of such a generalization.
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5. Asymptotics of 6-j symbol

The 6-j symbol asymptotics formula for N = 2, q = 1 was conjectured by G. Ponzano and 
T. Regge [45] and later was proven by J. Roberts [23]. It is formulated in terms of tetrahedron 
that is combined from the edges of length Jn := rn + 1/2, J5 := i + 1/2, J6 := j + 1/2 and 
approximates the limit λ → ∞ for representations {λrn, λi, λj}:{

r1 r2 i

r3 r4 j

}
∼ 1√

12π |V (Jn)| cos

(
6∑

n=1

Jn · (Jn) + π

4

)
, (51)

where V is the tetrahedron volume, i is the external dihedral angle about the edge Ji .
Let us consider 6-j symbols at q = 1. Using (50) we can find the asymptotics for U(slN) 6-j 

symbol as an asymptotics for equal U(sl2) 6-j symbol. It looks very similar to (51), but with 
deformed expressions for edges, volume and angles. The tetrahedron is now made of J̃n edges, 
which can be found from U(slN) Jn:{

J̃m = Jm,

J̃n = Jn + N − 2,
(52)

where m and n are defined differently for two types:

m ∈ {1, 3}, n ∈ {2, 4, 5, 6} Type I, (53)

m ∈ {3, 4, 5} , n ∈ {1, 2, 6} Type II.

The corresponding volume and angles are denoted by Ṽ and ̃n.
The resulting asymptotics for 6-j symbol corresponding to arbitrary symmetric representations 

of Uq(slN ), thus, can be written in terms of the associated tetrahedron, but now the tetrahedron 
depends on N :

1

�T (N)

[
r1 r2 i

r3 r4 j

]N

T

∼ (−1)N ·(N−1)!·(N−2)!√
12π ·|V (J̃n)| cos

(
6∑

n=1

J̃n · (J̃n) + π

4

)
. (54)

Although the factor is quite long for the general case, it becomes much simpler when all rn
coincide, for example, for type I it looks like:(

i
2 + N−2

)!(
i
2

)!
(

j
2 + N−2

)
!(

j
2

)
!

[
r r i

r r j

]N

T =1

∼ (−1)N(N − 1)!(N − 2)!√
12π |V (J̃n)|

cos

(
6∑

i=1

J̃n · (J̃n) + π

4

)
.

(55)

Let us note, that the generalized formula when all parameters of 6-j symbol are the same 
does not correspond to the regular tetrahedron if N > 2. Due to this fact we can not simplify 
the relation further. Interestingly, the resulting tetrahedron is deformed for every type differently. 
In particular, type II corresponds to the trigonal pyramid, whereas type I is a bent tetrahedron, 
which is combined of 4 equal isosceles triangles.
16



V. Alekseev, A. Morozov and A. Sleptsov Nuclear Physics B 960 (2020) 115164
6. Symmetries derivation

6.1. Hypergeometric symmetries group

In this subsection we do not write any symmetries explicitly. Here we are describing the 
structure of obtained symmetries. The statements in this subsection are given without analytical 
proof, but it has been checked manually.

We use both permutation symmetry (20) and Sears’ transformation (21) in order to get all 
possible 6-j symbol transformations. The arbitrary composition of Sears’ transformations and 
permutations can be written as:

4�3

(
a1, a2, a3, a4

b1, b2, b3
;q, q

)
= C̃ · 4�3

(
ã1, ã2, ã3, ã4

b̃1, b̃2, b̃3
;q, q

)
, (56)

where variables with˜denote the resulting arguments. There is a factor C that appears after 
Sears’ transformations, but we are not interested in it for now. The resulting symmetry has the 
following form:[

r1 r2 i

r3 r4 j

]N

T

= C

[
r̃1 r̃2 ĩ

r̃3 r̃4 j̃

]M

T

, (57)

where ̃rn, ̃i, ̃j are some linear combination of rn, i, j obtained by the mentioned transformations. 
Parameters N, M denote the ranks of the corresponding algebras.

To find the symmetries we have to solve the linear system of equations on arguments 
r̃n, ̃i, ̃j, M . Initially we consider M = N to get a unique solution. The rank of the system is 
6, because the hypergeometric function has 7 arguments with one additional constraint. Note, 
that we do not restrict them to the fusion rules when we solve the system. That is done because 
Sears’ transformation do not respect the fusion rules, but some of its combinations with permu-
tations do. Hence we need to obtain all symmetries and then recover fusion rules using (45). In 
this subsection we do not consider the relation (45) as a symmetry because it is used to satisfy 
fusion rules by fixing parameter M .

Proposition 4. The overall set of symmetries G that contains all compositions of permutations 
and Sears’ transformation is a group and it has 23040 elements in total [50].

For N = M = 2 case this group was discovered in [51], where it was called 22.5K group. 
They claimed that it is in fact Coxeter group D6, which arises in hyperbolic geometry as the 
group of hyperbolic tetrahedral symmetries. The volume of a hyperbolic tetrahedron is known to 
be connected with the quantum 6-j symbol of Uq(sl2) in an appropriate limit [52].

Our result was obtained via the computer algebra system. Permutations and Sears’ trans-
formations were programmed explicitly and combined multiple times. By fixing all the con-
straints on permutations and Sears’ transformation, the program reached 23040 elements. It was 
checked that they are closed under composition. Each symmetry is non-degenerate due to the 
non-degeneracy of the initial equations, hence all elements are invertible. As a result, 23040 
symmetries including identity form a group.

Most of these symmetries cannot be applied in 6-j symbols because they often do not preserve 
the positiveness of rn, i, j . Also the structure of its subgroups is not clear and it makes the anal-
ysis more complicated. Thus, we are interested only in the subgroup that generalizes the known 
17
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set of symmetries from N = M = 2 to arbitrary N and M , let us call it S ⊂ G. There are 144 el-
ements in S and it is analogous to the Uq(sl2) group of permutations and Regge transformations, 
which we denote as H = S

∣∣
N=M=2. Moreover, these groups are in one to one correspondence: 

each symmetry for N �= 2 �= M may be transformed to a N = 2 = M symmetry and vice versa. 
Note, that the found symmetries from S are well-defined for hypergeometric series, but for 6-j 
symbols they require the positiveness of rn, i, j, M − 2.

The other symmetries from G are out of our scope in the next discussion. The reformulation of 
symmetries from G in terms of 6-j symbol has some difficulties. On the one hand, the number of 
group elements is too large to analyze the symmetries manually, on the other hand the subgroups 
structure is still unclear. Also there are a lot of symmetries that do not preserve the positiveness of 
representation parameters, so a lot of symmetries can not be applied to 6-j symbols. Interestingly, 
the whole group may be obtained as a combination of symmetries S and the following one:[

r1 r2 i

r3 r4 j

]N

T

=
[

r1 r2 i

−r3 − 1 r4 j

]N

T

. (58)

After the transformation (45) is used to find M , it is natural to consider two classes of sym-
metries: one for N = M and another for N �= M .

Definition 9. If the symmetry requires N = M , we call it the internal one, else we call it the 
external symmetry. The set of internal and external symmetries are denoted by I and E respec-
tively.

Let us provide this definition with examples of both internal and external symmetries.
The internal symmetry:[

r1 r2 i

r3 r4 j

]N

2
=
[
r2 r1 i

r4 r3 j

]N

2
. (59)

The fusion rules (10) formally require two equalities for LHS and RHS. However, they are lin-
early dependent in this case, so the equality for one side yields the equality for the other side. 
Moreover, if N �= M �= 2, the conditions are in contradiction.

The external symmetry:[
r1 r2 i

r3 r4 j

]N

1
= C

[
r1 i + N − M r2 + N − M

r3 j + N − M r4 + N − M

]M

1
, (60)

where C is some factor. Here we have to restrict representations by two equalities: r1 + r3 =
r2 + r4 and r1 + r3 = i + j + 2(N − M), so we should fix 2M = 2N + i + j − r1 − r3:

[
r1 r2 i

r3 r4 j

]N

1
= C

⎡⎢⎣r1
r2 + r4 + i − j

2

3r2 + r4 − i − j

2
r3

r2 + r4 − i + j

2

r2 + 3r4 − i − j

2

⎤⎥⎦
N+ i+j−r2−r4

2

1

. (61)

Parameters of the transformed 6-j symbol on the RHS have to be non-negative. Parameters ̃rn, ̃i, ̃j
are non-negative for each external symmetry, as it will be derived in Appendix. On the other hand, 
M still have to be greater than or equal to 2, so not all 6-j symbols may be transformed by this 
symmetry. Each external symmetry induces a subset of 6-j symbols that has such a relation.
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Proposition 5. For any non-trivial 6-j symbol 
[
r1 r2 i

r3 r4 j

]N

T

the external symmetry of any type 

transforms it into the 6-j symbol with non-negative ̃rn, ̃i, ̃j .

The proof of this statement uses explicit relations for 6-j symbol symmetries and it is proven 
in Appendix.

Proposition 6. The internal symmetries of 6-j symbols form group I with the following structure. 
It is isomorphic to either S4 for type I or S3 ×Z2 for type II.

If we consider only internal symmetries, we obtain subgroup I ⊂ S. One can check in a 
straightforward way that |I | = 24 for type I, |I | = 12 for type II and the symmetries are isomor-
phic to mentioned groups.

G ⊃ S
N=M⊃ I, E := S/I,

Type I: S ∼= S4 × S3, I ∼= S4,

Type II: S ∼= S4 × S3, I ∼= S3 ×Z2,

|G| = 23040, |S| = 144

The explicit relations are written in the next subsections. The internal symmetries from I may 
be applied to any 6-j symbol of the corresponding type. In other words, for every rn, i, j with the 
satisfied fusion rules it is possible to write down all symmetries from I .

External symmetries relate 6-j symbols for different algebras. There are two important things 
to note here. Firstly, 6-j symbols and 4�3 differs by a factor that is not always invariant under 
external symmetries, so we need to add a normalizing factor to this symmetry. Secondly, since 
there are two group ranks N and M , both of them should be greater than or equal to 2 for the 
symmetry to be valid. As a result, it may be applied only to the part of all type I and type II 6-j 
symbols.

Let us note that for Uq(sl2) there are no restrictions from fusion rules, therefore S coincides 
with I and we have all 144 symmetries [27].

Remark 1. Both internal and external symmetries can be derived using the relation (50) between 
Uq(sl2) 6-j symbols and MFS.

This method may also be used to check the obtained equalities. If one expresses the list of 
MFS symmetries as Uq(sl2) 6-j symbols equalities, factors can be reduced and the equalities 
form the list of Uq(sl2) symmetries.

6.2. Type I internal symmetries

In this subsection we write down the internal symmetries of type I. These symmetries are 
very similar to the known ones and can be seen as a natural generalization of the symmetries 
from Uq(sl2), although in terms of Young diagrams it’s not obvious. In the shortened notation 
it is easy to see the correspondence between Uq(sl2) and Uq(slN ) symmetries. Although the 
internal symmetries of type I by definition need r1 + r3 = r2 + r4 to be satisfied, we do not 
write it explicitly because in every equality either both 6-j symbols exist or both of them do not. 
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The same idea is used for type II internal symmetries. To write down the symmetries in a more 
compact way, we use the following variables:

ρ = r1 + r2 + r3 + r4

2
ρ′ = r2 + i + r4 + j

2
= r1 + i + r3 + j

2
= ρ′′. (62)

All 6-j symbols below are equal and form group I . Columns of the equality list correspond to 
row permutations, rows correspond to Regge symmetries analogue:[

r1 r2 i

r3 r4 j

]N

1
=

[
r3 r4 i

r1 r2 j

]N

1
=

[
r1 r4 j

r3 r2 i

]N

1

=
[
r3 r2 j

r1 r4 i

]N

1
=
[
ρ − r4 ρ − r3 i

ρ − r2 ρ − r1 j

]N

1
=

[
ρ − r2 ρ − r1 i

ρ − r4 ρ − r3 j

]N

1

=
[
ρ − r4 ρ − r1 j

ρ − r2 ρ − r3 i

]N

1
=
[
ρ − r2 ρ − r3 j

ρ − r4 ρ − r1 i

]N

1
=
[
r1 ρ′ − j ρ′ − r4
r3 ρ′ − i ρ′ − r2

]N

1

=
[
r3 ρ′ − i ρ′ − r4
r1 ρ′ − j ρ′ − r2

]N

1
=
[
r1 ρ′ − i ρ′ − r2
r3 ρ′ − j ρ′ − r4

]N

1
=
[
r3 ρ′ − j ρ′ − r2
r1 ρ′ − i ρ′ − r4

]N

1

=
[
ρ′′ − j r2 ρ′′ − r3
ρ′′ − i r4 ρ′′ − r1

]N

1
=
[

ρ′′ − i r4 ρ′′ − r3
ρ′′ − j r2 ρ′′ − r1

]N

1
=
[
ρ′′ − j r4 ρ′′ − r1
ρ′′ − i r2 ρ′′ − r3

]N

1

=
[

ρ′′ − i r2 ρ′′ − r1
ρ′′ − j r4 ρ′′ − r3

]N

1
=
[
ρ′′−j ρ−r3 ρ′−r4
ρ′′−i ρ−r1 ρ′−r2

]N

1
=
[

ρ′′−i ρ−r1 ρ′−r4
ρ′′−j ρ−r3 ρ′−r2

]N

1

=
[
ρ′′−j ρ−r1 ρ′−r2
ρ′′−i ρ−r3 ρ′−r4

]N

1
=
[

ρ′′−i ρ−r3 ρ′−r2
ρ′′−j ρ−r1 ρ′−r4

]N

1
=
[
ρ−r4 ρ′−j ρ′′−r3
ρ−r2 ρ′−i ρ′′−r1

]N

1

=
[
ρ−r2 ρ′−i ρ′′−r3
ρ−r4 ρ′−j ρ′′−r1

]N

1
=
[
ρ−r4 ρ′−i ρ′′−r1
ρ−r2 ρ′−j ρ′′−r3

]N

1
=
[
ρ−r2 ρ′−j ρ′′−r1
ρ−r4 ρ′−i ρ′′−r3

]N

1
.

(63)

These 24 symmetries form a representation of group I mentioned above. It has two notable 
subgroups: row permutations and Regge transformations analogue. The isomorphism I ∼= S4 is 
as follows. Permutations from the first row correspond to {(), (12)(34), (14)(23), (13)(24)}. The 
first column symmetries correspond to {(), (12), (23), (13), (123), (132)}. All others can be read 
from the table:

() (12)(34) (14)(23) (13)(24)
(12) (34) (1324) (1423)
(23) (1243) (14) (1342)
(13) (1432) (1234) (24)
(123) (243) (134) (142)
(132) (143) (124) (234)

We can write down the generalization of Regge transformations (11):

[
r1 r2 i

r3 r4 j

]N

1
=
[
r1 ρ′ − j ρ′ − r4
r3 ρ′ − i ρ′ − r2

]N

1
=
[
ρ′ − j r2 ρ′ − r3
ρ′ − i r4 ρ′ − r1

]N

1
. (64)
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Let us give a couple of examples of these symmetries:

• Regge symmetry analogue, type I (1st column is invariant, N ≥ 2):{ [8] [4] [12,4N−2]
[10] [14] [6]

}
=
{ [8] [6] [14,6N−2]

[10] [12] [4]
}

,{[10] [8] [18,8N−2]
[12] [14] [6,5N−2]

}
=
{ [10] [5] [15,5N−2]

[12] [17] [9,8N−2]
}

,{[12] [6] [16,5N−2]
[14] [20] [8]

}
=
{ [12] [9] [19,8N−2]

[14] [17] [5,5N−2]
}

,{[12] [8] [10,3N−2]
[14] [18] [6]

}
=
{ [12] [11] [13,6N−2]

[14] [15] [3]
}

.

• Regge symmetry analogue, type I (2nd column is invariant, N ≥ 2):{[4] [6] [2,2N−2]
[3] [1] [5,4N−2]

}
=
{[2] [6] [4,4N−2]

[5] [1] [3,2N−2]
}

,{[6] [5] [7,3N−2]
[3] [4] [2,2N−2]

}
=
{[7] [5] [6,2N−2]

[2] [4] [3,3N−2]
}

,{[5] [6] [7,4N−2]
[4] [3] [8,5N−2]

}
=
{[4] [6] [8,5N−2]

[5] [3] [7,4N−2]
}

,{[4] [6] [2,2N−2]
[5] [3] [7,4N−2]

}
=
{[2] [6] [4,4N−2]

[7] [3] [5,2N−2]
}

.

6.3. Type II internal symmetries

One can similarly consider type II, there are only 12 symmetries. For brevity we use the 
following variables:

ρ = r1 + r2 + r3 + r4

2
ρ′ = r2 + i + r4 + j

2
ρ′′ = r1 + i + r3 + j

2
. (65)

All 6-j symbols below are equal. Columns of the table correspond to a column permutation, rows 
correspond to Regge symmetries.[

r1 r2 i

r3 r4 j

]N

2
=
[
r2 r1 i

r4 r3 j

]N

2
(66)

=
[
ρ − r3 ρ − r4 i

ρ − r1 ρ − r2 j

]N

2
=
[
ρ − r4 ρ − r3 i

ρ − r2 ρ − r1 j

]N

2

=
[
r1 ρ′ − r4 ρ′ − j

r3 ρ′ − r2 ρ′ − i

]N

2
=
[
ρ′ − r4 r1 ρ′ − j

ρ′ − r2 r3 ρ′ − i

]N

2

=
[
ρ′′ − r3 r2 ρ′′ − j

ρ′′ − r1 r4 ρ′′ − i

]N

2
=
[
r2 ρ′′ − r3 ρ′′ − j

r4 ρ′′ − r1 ρ′′ − i

]N

2

=
[
ρ − r3 ρ′ − r4 ρ′′ − j

ρ − r ρ′ − r ρ′′ − i

]N

=
[
ρ′ − r4 ρ − r3 ρ′′ − j

ρ′ − r ρ − r ρ′′ − i

]N
1 2 2 2 1 2
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=
[
ρ′′ − r3 ρ − r4 ρ′ − j

ρ′′ − r1 ρ − r2 ρ′ − i

]N

2
=
[
ρ − r4 ρ′ − r3 ρ′ − j

ρ − r2 ρ′ − r1 ρ′ − i

]N

2
.

The structure of isomorphism I ∼= S3 ×Z2 is as follows:

()() (12)()
(12)(ab) ()(ab)
(13)(ab) (132)(ab)
(23)(ab) (123)(ab)
(123)() (23)()
(132)() (13)()

The Regge transformation is the only new relation here:

[
r1 r2 i

r3 r4 j

]N

2
=
[
r1 ρ′ − r4 ρ′ − j

r3 ρ′ − r2 ρ′ − i

]N

2
=
[
ρ′′ − r3 r2 ρ′′ − j

ρ′′ − r1 r4 ρ′′ − i

]N

2
(67)

Let us give a couple of examples of these symmetries.

• Regge symmetry analogue, type II (1st column is invariant, N ≥ 2):{[5] [6] [10,1]
[3] [8] [7,5N−2]

}
=
{[5] [7] [10,2]

[3] [9] [6,5N−2]
}

,{[5] [6] [11]
[1] [10] [7,6N−2]

}
=
{[5] [7] [11,1]

[1] [11] [6,6N−2]
}

,{[4] [6] [10]
[1] [9] [7,6N−2]

}
=
{[4] [7] [10,1]

[1] [10] [6,6N−2]
}

,{[3] [6] [8,1]
[4] [5] [8,5N−2]

}
=
{[3] [8] [8,3]

[4] [7] [6,5N−2]
}

.

• Regge symmetry analogue, type II (2nd column is invariant, N ≥ 2):{[4] [2] [6]
[1] [5] [3,2N−2]

}
=
{[6] [2] [6,2]

[3] [5] [1]
}

,{[4] [3] [6,1]
[1] [6] [2,2N−2]

}
=
{[5] [3] [6,2]

[2] [6] [1,1N−2]
}

,{[5] [6] [10,1]
[4] [7] [10,6N−2]

}
=
{[10] [6] [10,6]

[9] [7] [5,1N−2]
}

,{[5] [6] [9,2]
[2] [9] [4,4N−2]

}
=
{[7] [6] [9,4]

[4] [9] [2,2N−2]
}

.

6.4. Type I external symmetries

In this subsection we consider external symmetries from the group S.
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Notation 1. Let us denote by ∼= a external symmetry between two 6-j symbols with additional 
inequality restriction M ≥ 2. For brevity we also drop out factors that occur in equalities and 
can be written as C = (−1)N−M KT (r1,r2,r3,r4,i,j,N)

KT (̃r1 ,̃r2 ,̃r3 ,̃r4 ,̃i,j̃ ,M)
.

Let us consider external symmetries of type I. It is convenient to write down not the whole 
set S \ I , but the factor E = S/I . In Uq(sl2) we have the subgroups of Regge transformations, 
row and column permutations, one can notice that here we also have similar subgroups. The 
external symmetries for type I are analogous to column permutations and may be easily written 
with notations �i = N − Mi , ni = Mi − 2, n0 = N − 2.[

r1 r2 i

r3 r4 j

]N

1

∼=
[
r1 i + �1 r2 + �1
r3 j + �1 r4 + �1

]M1

1

∼=
[

i + n0 r2 + �2 r1 − n2
j + n0 r4 + �2 r3 − n2

]M2

1

(68)

∼=
[

i + n0 r1 − n3 r2 + �3
j + n0 r3 − n3 r4 + �3

]M3

1

∼=
[
r2 + n0 i + �4 r1 − n4
r4 + n0 j + �4 r3 − n4

]M4

1

(69)
N=M5=2∼=

[
r2 + n0 r1 − n5 i + �5
r4 + n0 r3 − n5 j + �5

]M5

1
, (70)

where ni , �i and Mi are fixed by fusion rules.
We emphasize that E is isomorphic to S3 only for N = M5 = 2. In this case 6 elements 

from above are represented by {(), (23), (13), (132), (123), (12)} correspondingly. In general, it 
is impossible to satisfy the fusion rules, so E have only 4 transformations which are not closed 
under composition and E ∼= S3 \ {(12)}.

These symmetries are interesting because they cannot be expressed as a combination of any 
known symmetries. From hypergeometric point of view these symbols have the same value of 
4�3 but it’s still possible that KT is changed by this transformation.

Let us write down a few examples of these symmetries:

• The first symmetry, N = M1 = 4:{[3] [1] [4,12]
[6] [8] [5,12]

}
=
{[3] [4] [1,12]

[6] [5] [8,32]
}

.

• The second symmetry, N = 4, M2 = 3:{[5] [4] [1]
[7] [8] [9,32]

}
= −

√
[2]q [3]q
[5]q [8]q

{ [3] [5] [4,3]
[11] [9] [6]

}
.

• The third symmetry, N = 4, M3 = 2:{[7] [3] [4]
[2] [6] [1,12]

}
=
√

[2]q [3]q
[5]q [6]q

{ [6] [7] [5]
[3] [2] [8]

}
.

• The fourth symmetry, N = 4, M4 = 5:{[6] [4] [8,32]
[5] [7] [9,42]

}
= −[2]q [3]q

[7]q

√
1

[6]3

{ [6] [7] [3,23]
[9] [8] [2]

}
.

q
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6.5. Type II external symmetries

In a similar way we can consider type II symmetries E = S/I and fix M by transformation 
(45). These symmetries are analogous to a column permutation and row permutations:[

r1 r2 i

r3 r4 j

]N

2

∼=
[
j + �1 r1 + �1 r4

i r3 r2 + �1

]M1

2

∼= (71)

∼=
[
r2 + �2 j + �2 r3

r4 i r1 + �2

]M2

2

∼=
[

i − n3 r1 + �3 r2 + n0
j + n0 r3 r4 − n3

]M3

2

∼=

∼=
[
r2 + �4 i − n4 r1 + n0

r4 j + n0 r3 − n4

]M4

2

∼=
[
r4 − n5 j + �5 r1 + n0
r2 + n0 i r3 − n5

]M5

2

∼=

∼=
[
j + �6 r3 − n6 r2 + n0

i r1 + n0 r4 − n6

]M6

2

∼=
[
r1 + �7 r4 − n7 j + n0

r3 r2 + n0 i − n7

]M7

2

∼=

∼=
[
r3 − n8 r2 + �8 j + n0
r1 + n0 r4 i − n8

]M8

2

∼=
[
r4 − n9 i − n9 r3
r2 + n0 j + n0 r1 + �9

]M9

2

∼=

∼=
[
i − n10 r3 − n10 r4
j + n0 r1 + n0 r2 + �10

]M10

2

N=M11=2∼=
[
r3 − n11 r4 − n11 i

r1 + n0 r2 + n0 j + �11

]M11

2
.

We emphasize that the last 6-j symbol exists only for N = M11 = 2 as it is impossi-
ble to satisfy the inequalities otherwise. The isomorphism E

∣∣
N=M11=2

∼= A4 is as follows. 
The first row corresponds to elements {(), (143), (134)}. The first column is presented by 
{(), (132), (234), (243)}. Other elements can be read from the table:

() (143) (134)
(132) (123) (142)
(234) (14)(23) (13)(24)
(243) (124) (12)(34)

If we consider arbitrary N , E is not closed under compositions and E ∼= A4 \ {(12)(34)}.
Let us write down a few examples of these symmetries:

• The first symmetry, N = M1 = 4:{[5] [2] [7]
[4] [3] [6,22]

}
=
{[6] [5] [7,4]

[7] [4] [2,22]
}

.

• The third symmetry, N = 4, M3 = 5:{[8] [1] [9]
[5] [4] [6,12]

}
= −

√
[10]q [8]q
[4]q [3]q

{[6] [7] [8,5]
[8] [5] [1,13]

}
.

• The seventh symmetry, N = 4, M7 = 5:{[8] [1] [9]
[5] [4] [6,12]

}
= −

√
[10]q [8]q
[4]q [3]q

{[7] [1] [8]
[5] [3] [6,13]

}
.
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• The ninth symmetry, N = 4, M9 = 3:{[8] [4] [6,3]
[3] [9] [5,32]

}
= −

√√√√ [2]2
q [3]q [6]2

q [10]q
[4]3

q [5]q [11]q [12]q
{ [8] [5] [8,5]

[6] [7] [9,5]
}

.

7. Main results

In this section we collect the most important results obtained in the paper. We are using the 
special notation (8, 9) for MFS.

• Expression (40) for MFS via q-hypergeometric series:[
r1 r2 i

r3 r4 j

]N

T

= KT · 4�3

(
a1, a2, a3, a4

b1, b2, b3
;q, q

)
, (72)

2ai =

⎛⎜⎜⎝
−r1 − r2 + i − 2(N − 2)δT ,2

−r3 − r4 + i

−r1 − r4 + j

−r2 − r3 + j

⎞⎟⎟⎠ ,

2bi =
⎛⎝ −r1 − r2 − r3 − r4 − 2(N − 1)

i + j − r2 − r4 + 2
i + j − r1 − r3 + 2 + 2(N − 2)δT ,1

⎞⎠ .

(73)

Factor KT depends on type T and defined as in (39):

KT = θN (r1,r2,i)θN (r3,r4,i)θN (r1,r4,j)θN (r2,r3,j)[N−1]q ![N−2]q ![ r1+r2+r3+r4
2 +N−1]q !

[ r3+r4−i

2 ]q ![ r1+r2−i

2 +(N−2)δT ,2]q ![ r2+r3−j

2 ]q ![ r1+r4−j

2 ]q ![ i+j−r2−r4
2 ]q ![ i+j−r1−r3

2 +(N−2)δT ,1]q ! .

(74)

• Relation (50) between MFS and Uq(sl2) 6-j symbols:[
r1 r2 i

r3 r4 j

]N

1
=
{

r1 r2 + N − 2 i + N − 2
r3 r4 + N − 2 j + N − 2

}
(−1)N [N −1]q ![N −2]q ! ·�1(N),

(75)[
r1 r2 i
r3 r4 j

]N
2

=
{
r1 + N − 2 r2 + N − 2 i

r3 r4 j + N − 2

}
(−1)N [N − 1]q ![N − 2]q ! · �2(N),

(76)

with factors �1, �2 defined in (48):

�1(N) =
(

N−2∏
m=1

[
i−r1+r2

2 + m
]
q

[
j+r2−r3

2 + m
]
q

[
j−r1+r4

2 + m
]
q

[
i−r3+r4

2 + m
]
q

)− 1
2

,

(77)

�2(N) =
(

N−2∏
m=1

[
r1+r2−i

2 + m
]
q

[
j+r2−r3

2 + m
]
q

[
j+r1−r4

2 + m
]
q

[
i+r3+r4

2 + 1 + m
]
q

)− 1
2

.

(78)
25
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• The asymptotics (54) of MFS for U(slN):

1

�T (N)

[
r1 r2 i

r3 r4 j

]N

T

∼ (−1)N · (N − 1)! · (N − 2)!√
12π · |V (J̃k)|

cos

(
6∑

n=1

J̃k · (J̃k) + π

4

)
,

(79)

where J̃k are defined in (53).

7.1. Symmetries of 6-j symbols

There is a group of MFS symmetries that has 144 elements in total. It is convenient to split 
them into the internal and external symmetries. The internal ones always act in Uq(slN ), the 
external ones connect Uq(slN ) and Uq(slM) 6-j symbols.

• Counterpart of the Regge transformations (64), type I (ρ′ = r1+r3+i+j
2 = r2+r4+i+j

2 ):[
r1 r2 i

r3 r4 j

]N

1
=
[
r1 ρ′ − j ρ′ − r4
r3 ρ′ − i ρ′ − r2

]N

1
=
[
ρ′ − j r2 ρ′ − r3
ρ′ − i r4 ρ′ − r1

]N

1
. (80)

• Counterpart of the Regge transformations (67), type II (ρ′ = r1+r3+i+j
2 , ρ′′ = r2+r4+i+j

2 ):[
r1 r2 i

r3 r4 j

]N

2
=
[
r1 ρ′ − r4 ρ′ − j

r3 ρ′ − r2 ρ′ − i

]N

2
=
[
ρ′′ − r3 r2 ρ′′ − j

ρ′′ − r1 r4 ρ′′ − i

]N

2
. (81)

The next symmetries are between Uq(slN ) and Uq(slM) 6-j symbols. Values of Mi are fixed 
by fusion rules. For brevity we use the notations �i = N − Mi , ni = Mi − 2, n0 = N − 2.

• Type I external symmetries (68):[
r1 r2 i

r3 r4 j

]N

1

∼=
[
r1 i + �1 r2 + �1
r3 j + �1 r4 + �1

]M1

1

∼= (82)

∼=
[

i + n0 r2 + �2 r1 − n2
j + n0 r4 + �2 r3 − n2

]M2

1

∼=
[

i + n0 r1 − n3 r2 + �3
j + n0 r3 − n3 r4 + �3

]M3

1

∼=

∼=
[
r2 + n0 i + �4 r1 − n4
r4 + n0 j + �4 r3 − n4

]M4

1

N=M5=2∼=
[
r2 + n0 r1 − n5 i + �5
r4 + n0 r3 − n5 j + �5

]M5

1
.

• Type II external symmetries (71):[
r1 r2 i

r3 r4 j

]N

2

∼=
[
j + �1 r1 + �1 r4

i r3 r2 + �1

]M1

2

∼= (83)

∼=
[
r2 + �2 j + �2 r3

r4 i r1 + �2

]M2

2

∼=
[

i − n3 r1 + �3 r2 + n0
j + n0 r3 r4 − n3

]M3

2

∼=

∼=
[
r2 + �4 i − n4 r1 + n0

r4 j + n0 r3 − n4

]M4

2

∼=
[
r4 − n5 j + �5 r1 + n0
r2 + n0 i r3 − n5

]M5

2

∼=

∼=
[
j + �6 r3 − n6 r2 + n0

i r + n r − n

]M6 ∼=
[
r1 + �7 r4 − n7 j + n0

r r + n i − n

]M7 ∼=

1 0 4 6 2 3 2 0 7 2
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∼=
[
r3 − n8 r2 + �8 j + n0
r1 + n0 r4 i − n8

]M8

2

∼=
[
r4 − n9 i − n9 r3
r2 + n0 j + n0 r1 + �9

]M9

2

∼=

∼=
[
i − n10 r3 − n10 r4
j + n0 r1 + n0 r2 + �10

]M10

2

N=M11=2∼=
[
r3 − n11 r4 − n11 i

r1 + n0 r2 + n0 j + �11

]M11

2
.

8. Conclusion

The 6-j symbols beyond Uq(sl2) are rapidly becoming very complicated to analyze. Even in 
the case of symmetric and conjugate to symmetric representations where we know the analytic 
expression, there are many features that hide from our sight. Firstly, 6-j expression in its original 
form [1] is the q-factorial series that can be written as a function 5�4, but after some manipu-
lations it became clear that the expression is very similar to Uq(sl2) one and may be written as 
(41) via 4�3.

Secondly, the hypergeometric function has a relation (38) that is necessary to use the Sears’ 
transformation. This allows us to think that there is an important class of 6-j symbols with 6 free 
parameters that is connected with 4�3 series. Considered expression (41) is already applicable 
to N = 2 case and types I, II. It is an interesting question what else may be expressed via 4�3.

The relation (50) between multiplicity-free Uq(slN ) and Uq(sl2) symbols reveals the nature of 
multiplicity-free case. In fact, multiplicity-free 6-j symbols tend to be very similar to Uq(sl2) one. 
As was found in [47,31], the other class of 6-j symbol with symmetric incoming representations 
may be expressed via Uq(sl2) one. The further study of more difficult classes can tell us more 
about the structure of 6-j symbols, but now we can vividly see that q-hypergeometric series play 
the main role in this problem.

Obtained symmetries show that there are much more relations for 6-j symbols in Uq(slN ) than 
tetrahedral symmetries. As the most bright example of this statement, we show that the Regge 
symmetry is generalizable to both types as (64), (67). External symmetries, on the other hand, 
are less convenient to use, but they provide a lot of new relations that depend on N explicitly and 
connects 6-j symbols from different N .

Relations, we found in the present paper, which show similarities between Uq(slN ) and 
Uq(sl2) and allow to express one through the other are of great use in the applications of 6-j 
symbols. Modern problems in many of the physical and mathematical theories where 6-j sym-
bols appear require the knowledge of Uq(slN ) 6-j symbols. However, these are much less studied 
than the Uq(sl2) case, where general answer and properties are known. The results of this paper 
show that many of these properties can be generalized to a large class of Uq(slN ) 6-j symbols. 
Generalization of these results to even larger classes, especially to the Racah matrices withput 
multiplicities, is still an open problem.

To conclude, let us list a few problems where, on the one hand, these symbols should definitely 
appear, and on the other hand, they have not yet been found there.

The first problem is the refined Chern-Simons theory, which is related to the Khovanov-
Rozansky polynomials and superpolynomial knot invariants [53]. An indication of the existence 
of analogs of 6j-symbols was obtained in the works of [54,55]. On the other hand, the R-matrix 
formalism for the Khovanov-Rozansky homology is gradually developing [56,57], which allows 
us to hope for promising research in this direction in the future.

The second problem is related to the matrix-model approach to colored HOMFLY polyno-
mials, in which the dependence on color is governed by 6j-symbols. In general, we know that 
matrix models can be used to obtain a wide variety of interesting quantities (from recent work, 
27
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see, e.g., [58]). Moreover, we know that in the case of torus knots, the colored HOMFLY polyno-
mials, expressed by the Rosso-Jones formula, can be represented as a matrix integral. For other 
knots, similar matrix integrals have not yet been found (see attempts to obtain them [59]). How-
ever, we know that the Rosso-Jones formula does not contain 6j-symbols, they were resummed 
and turned into Adams coefficients. Therefore, it is possible that matrix formulas do not exist 
for non-torus knots, or some generalizations of them are needed. There are 2 promising areas at 
once, to which matrix models can be generalized. These are tensor models [60] and topological 
recursion [61,62]. Without going into details, we note that topological recursion for torus knots is 
already under development, while the relationship between tensor models and HOMFLY colored 
polynomials remains for future research.
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Appendix A

In this Appendix we write down explicitly the new symmetries mentioned in select results. 
Also we prove that external symmetries always preserve the non-negativeness of ̃rn, ̃i, ̃j .

• Counterpart of the Regge transformations (64) in terms of Young diagrams, type I:⎧⎨⎩ [r1] [r2]
[
i, r2−r1+i

2
N−2

]
[r3] [r4]

[
j,

r2−r3+j
2

N−2]
⎫⎬⎭= (84)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[r1]

[
r2 + r4 − i + j

2

] [
−r2 + r4 + i + j

2
,
r3 − r2 + j

2

N−2
]

[r3]
[
r2 + r4 + i − j

2

] [
r2 − r4 + i + j

2
,
r2 − r3 + j

2

N−2
]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭=
28
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=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
r1 + r3 − i + j

2

]
[r2]

[
−r1 + r3 + i + j

2
,
r2 − r1 + i

2

N−2
]

[
r1 + r3 + i − j

2

]
[r4]

[
r1 − r3 + i + j

2
,
r2 − r3 + j

2

N−2
]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

• Counterpart of the Regge transformations (67) in terms of Young diagrams, type II:⎧⎨⎩ [r1] [r2]
[

r1+r2+i
2 , r1+r2−i

2

]
[r3] [r4]

[
j,

r2−r3+j
2

N−2]
⎫⎬⎭= (85)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[r1]

[
r2 − r4 + i + j

2

] [
r1 + r2 + i

2
,
r1 − r4 + j

2

]
[r3]

[
r4 − r2 + i + j

2

] [
r2 + r4 − i + j

2
,
r2 − r3 + j

2

N−2
]
⎫⎪⎪⎪⎬⎪⎪⎪⎭=

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
r1 − r3 + i + j

2

]
[r2]

[
r1 + r2 + i

2
,
r2 − r3 + j

2

]
[
r3 − r1 + i + j

2

]
[r4]

[
r1 + r3 − i + j

2
,
r2 + r1 − i

2

N−2
]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

• Type I external symmetries (68):

[
r1 r2 i

r3 r4 j

]N

1

∼=
[

r1
r2+r4+i−j

2
3r2+r4−i−j

2
r3

r2+r4−i+j
2

r2+3r4−i−j
2

]N+ i+j−r2−r4
2

1

(86)

∼=
[

i + N − 2 i+j+r2−r4
2 + N − 2 i+j+r1−r3

2
j + N − 2 i+j−r2+r4

2 + N − 2 i+j−r1+r3
2

]2+ r2+r4−i−j

2

1

(87)

∼=
[

i + N − 2 i+j+r1−r3
2

i+j+r2−r4
2 + N − 2

j + N − 2 i+j−r1+r3
2

i+j−r2+r4
2 + N − 2

]2+ r1+r3−i−j

2

1

(88)

∼=
[

r2 + N − 2 r2+r4+i−j
2 + N − 2 3r1+r3−i−j

2
r4 + N − 2 r2+r4−i+j

2 + N − 2 r1+3r3−i−j
2

]2+ i+j−r2−r4
2

1

(89)

∼=
[
r2 + N − 2 r1 + N − 2 i + 2N − 4
r4 + N − 2 r3 + N − 2 j + 2N − 4

]4−N

1
. (90)

• Type II external symmetries (71):

[
r1 r2 i

r3 r4 j

]N

2

∼=
[

r3+i−r1+j
2

r3+i+r1−j
2 r4

i r3
3r2+i−r4−j

2

]N+ r1+j−r3−i

2

2

(91)

∼=
[

r4+i+r2−j
2

r4+i−r2+j
2 r3

r4 i
3r1+i−r3−j

]N+ r2+j−r4−i

2

(92)

2 2
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∼=
[

r3+j−r1+i
2

r3+j+r1−i
2 + N − 2 r2 + N − 2

j + N − 2 r3
r4+j+r2−i

2

]2+ r1+i−r3−j

2

2

(93)

∼=
[

r4+j+r2−i
2 + N − 2 r4+j−r2+i

2 r1 + N − 2
r4 j + N − 2 r3+j+r1−i

2

]2+ r2+i−r4−j

2

2

(94)

∼=
[

r2+i+r4−j
2

r2+i−r4+j
2 + N − 2 r1 + N − 2

r2 + N − 2 i
3r3+i−r1−j

2

]2+ r4+j−r2−i

2

2

(95)

∼=
[

r1+i−r3+j
2 + N − 2 r1+i+r3−j

2 r2 + N − 2
i r1 + N − 2 3r4+i−r2−j

2

]2+ r3+j−r1−i

2

2

(96)

∼=
[
r3 + N − 2 r2 j + N − 2

r3 r2 + N − 2 i + r3 − r1

]2+r1−r3

2
(97)

∼=
[

r1 r4 + N − 2 j + N − 2
r1 + N − 2 r4 i + r1 − r3

]2+r1−r3

2
(98)

∼=
[

r2+j+r4−i
2 + N − 2 r2+j−r4+i

2 + 4 − N r3

r2 + N − 2 j + N − 2 r1+j+r3−i
2 + 2N − 4

]4−N+ r4+i−r2−j

2

2

(99)

∼=
[

r1+j−r3+i
2 + 2 − N

r1+j+r3−i
2 + 2 − N r4

j + N − 2 r1 + N − 2 r2+j+r4−i
2 + 2N − 4

]4−N+ r3+i−r1−j

2

2

(100)

∼=
[
r3 + N − 2 r4 + N − 2 i

r1 + N − 2 r2 + N − 2 j + 2N − 4

]4−N

2
. (101)

A.1. Proof of statement 5

Proof. Let us firstly prove that the following expressions are non-negative:{
r1 + r3 + i − j ≥ 0,

3r2 + r4 − i − j ≥ 0,
T ∈ {1,2}, (102)

i + r1 − r3 ≥ 0, T = 2. (103)

The non-negativity can be proven using the inequalities on i, j . These inequalities are tautologi-
cal generalization of the Uq(sl2) case [31]:

max

( |r1 − r2|
|r3 − r4|

)
≤ i ≤ min

(
r1 + r2
r3 + r4

)
, max

( |r2 − r3|
|r1 − r4|

)
≤ j ≤ min

(
r2 + r3
r1 + r4

)
.

(104)

With the suitable substitution the proof is obvious:

r1 + r3 + i − j ≥ r1 + r3 + (−r3 + r4) − (r1 + r4) ≥ 0, (105)

3r2 + r4 − i − j ≥ 3r2 + r4 − (r1 + r2) − (r2 + r3) ≥ r2 + r4 − r1 − r3 = 0, (106)
30
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i + r1 − r3 ≥ max

(
r2 − r1 + r1 − r3
r3 − r4 + r1 − r3

)
= max

(
r2 − r3
r1 − r4

)
= max

(
r2 − r3
r3 − r2

)
≥ 0. (107)

Similarly one can derive non-negativeness of all expressions from external symmetries. Since the 
derivation is analogous in these cases, they are omitted. �
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