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Chapter 1

Introduction

Inclusive double spin asymmetries have been measured in ~d(~e,e′)

using the CLAS detector and a polarized N~D3 target at Jefferson
Lab in 1998. The goal of these measurements is to study the spin
structure of the deuteron and the neutron in the low Q2 transition
region between the real photon point, where the Gerasimov-Drell-
Hearn (GDH) sum rule is expected to be satisfied, and the deep
inelastic scattering limit. The analysis and the results for virtual
photon asymmetries, the spin structure function gd

1(x,Q
2) and its

first moment within a Q2 range of 0.3 GeV2 to 1.2 GeV2 are dis-
cussed in this note. In the following, we introduce the relevant
definitions and relationships and give an overview of the goals of
the experiment (Chapter 2). We discuss the analysis in detail in
Chapter 3 and present our results in Chapter 4.
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Chapter 2

Theoretical Background

2.1 Electron-Nucleon Scattering

Electron scattering is a useful tool for investigating the structure of
the nucleons. Electrons are point-like objects without any internal
structure, as far as we know and the electromagnetic interactions
of electrons are well understood. Electron-nucleon scattering can
be expressed in first order by the one photon exchange process as
shown in Fig.2.1. The kinematic parameters are defined as

ν = E − E
′

(2.1)

~q = ~k − ~k′ (2.2)

Q2 = −q2 = (p− p
′

)2 = 4EE
′

sin2(θ/2) (2.3)

W 2 = p′2 = M2 + 2Mν −Q2 (2.4)

x = Q2/2Mν (2.5)

with the rest mass M of the stationary target nucleon, incoming
electron beam energy E and outgoing E

′
of the scattered electron,

incoming electron momentum ~k and the scattered electron momen-
tum ~k′, the electron scattering angle θ, the energy transfer ν, four-
momentum transfer squared Q2 and the final state invariant mass
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Figure 2.1: Electron-Nucleon Scattering.

squared W 2. The Bjorken scaling variable x can be interpreted
as the fraction of the (longitudinal) proton momentum carried by
the struck quark in the Parton Model. For a massless electron of
energy E striking a stationary nucleon of mass M , the scattering
cross section can be written

dσ

dΩdE ′ =
α2

q4

E ′

E
LµνWµν (2.6)

where Lµν represents the lepton tensor, Wµν is the hadronic tensor
and α is the fine structure constant. The hadronic tensor can
be expressed in terms of four structure functions which become a
function of x only in the scaling limit:

F1(x,Q
2) = MW1(ν,Q

2) (2.7)

F2(x,Q
2) = νW2(ν,Q

2) (2.8)

g1(x,Q
2) = M2νG1(ν,Q

2) (2.9)
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g2(x,Q
2) = Mν2G2(ν,Q

2) (2.10)

where F1, F2 are unpolarized structure functions and g1, g2 are po-
larized structure functions.

If the lepton and the target nucleon are both logitudinally polar-
ized, the unpolarized and polarized structure functions are related
to the spin averaged and spin weighted differential cross sections.

d2σ↓↑

dΩdE ′+
d2σ↑↑

dΩdE ′ =
8α2E ′2

MQ4

[

2 sin2 θ

2
F1(x,Q

2) +
M

ν
cos2 θ

2
F2(x,Q

2)

]

(2.11)
and

d2σ↓↑

dΩdE ′−
d2σ↑↑

dΩdE ′ =
16α2E ′2 sin2 θ

2

MQ4

[

E + E ′ cos θ

ν
g1(x,Q

2)− Q2

ν2
g2(x,Q

2)

]

(2.12)
where σ↓↑ and σ↑↑ are cross sections of the beam and target spin
anti-parallel and parallel respectively. Experimentally, one often
measures the asymmetry

A|| =
d2σ↓↑

dΩdE′ − d2σ↑↑

dΩdE′

d2σ↓↑

dΩdE′ + d2σ↑↑

dΩdE′

=
dσ↓↑ − dσ↑↑

dσ↓↑ + dσ↑↑
(2.13)

since this expression can be evaluated using the measured count
rates for anti-parallel and parallel spin and the often difficult to
determine absolute luminosity and acceptance cancels. This is the
approach taken in the present analysis.

2.2 Virtual Photon Asymmetries and Spin Structure Func-
tions

Spin dependent structure functions g1 and g2 can be measured in
inclusive polarized lepton scattering from a polarized target. The
same reaction can also be analyzed in terms of virtual photon ab-
sorption cross section. In the electron scattering experiment, the
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electron emits a virtual photon γ∗ and the virtual photon is ab-
sorbed by the nucleon. Virtual photons can have 3 possible spin
states which are m = 0 (longitudinal) and m = ± 1 (transverse).
The cross section for the unpolarized case can be separated into two
parts, a transverse photon part σT (m = ± 1) and a logitudinal)
photon part σL (m = 0) :

dσ

dΩdE ′ = ΓTσT (γ∗) + ΓLσL(γ∗) (2.14)

These cross sections are related to the transverse and longitudinal
structure functions W1 = F1/M and WL = (1 + τ)W2 −W1 where
τ = ν2/Q2,

σT (γ∗) =
4π2αW1

K
(2.15)

σL (γ∗) =
4π2αWL

K
(2.16)

and K = (W 2−M2)/2M = ν−Q2/2M is the equivalent energy for
a real photon to reach the same final state invariant mass W (Hand
convention). The ratio of the two photon polarization states can
be written as ΓL = εΓT using ε = (1+2(1+ τ) tan2( θ

2
))−1. Eq. 2.14

can be written again as

dσ

dΩdE ′ = ΓTσT (γ∗)(1 + εR). (2.17)

where R is the ratio of longitudinal to transverse photoabsorption
cross sections, R = σL/σT .

If the incident (virtual) photon and the target are polarized ei-
ther parallel or anti-parallel, the total spin of the final hadronic
state along the photon direction can be either Sz = ±3/2 or
Sz = ±1/2 depending on the orientation of target and photon
helicity (Fig.2.2). The photon asymmetries A1 and A2 can be de-
fined in terms of the corresponding (virtual) photon absorption
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Figure 2.2: Polarized virtual photon absorption on quarks inside nucleons.
One can see that only quarks with their spin parallel to the overall nucleon

spin can contribute to σ
1/2

T (γ∗) (a), while quarks with their spin opposite to

the nucleon spin contribute to σ
3/2

T (γ∗) (b). The virtual photon has positive
helicity (sz(γ

∗) = +1) in these sketches.

cross sections,

A1(γ
∗) =

σ
1/2
T (γ∗)− σ

3/2
T (γ∗)

σ
1/2
T (γ∗) + σ

3/2
T (γ∗)

(2.18)

and
A2(γ

∗) =
σTL

σT

(2.19)

where σTL is the longitudinal-transverse interference cross section.
A measurement of A1 in the resonance region can provide a di-

rect tool to study the spin properties of the electromagnetic tran-
sition form factors for the baryon resonances. In elastic scatter-
ing, the final state is a spin-1/2 state and |Sz| = 3/2 is excluded,

σ
3/2
T (γ∗) = 0 and A1 = 1. On the other hand, the ∆ (P33(1232))

resonance has spin 3/2. Therefore both |Sz| = 3/2 and |Sz| = 1/2
final states are possible. According to the Clebsch-Gordon coeffi-
cients (assuming a pure M1 transition), the cross section σ

1/2
T (γ∗) is

only 1/3 the size of σ
3/2
T (γ∗) which yields A1 = −1/2. For another

example, the P11(1440), the Roper resonance, is a spin 1/2 reso-
nance which will lead to a more positive overall value of A1 than
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that for the ∆ alone in the region where both resonances overlap.
Measurements of A1 across the resonance region can help unravel
the relative strength of these and other partially overlapping res-
onances and the non-resonant background. The Q2 dependence
of these asymmetries sheds light on the resonance transition form
factors. Additional information can be extracted from a compari-
son of proton and neutron asymmetries, especially on the isospin
decomposition of each transition. This is one of major motivations
of the present experiment on the deuteron.

The experimental asymmetry A|| introduced earlier can be writ-
ten in terms of the two virtual photon asymmetries A1 and A2:

A|| =
dσ↓↑ − dσ↑↑

dσ↓↑ + dσ↑↑
= D(A1 + ηA2) (2.20)

with the following definitions:

D =
1− εE ′/E

1 + εR
(2.21)

η =
ε
√
Q2/E

1− εE ′/E
(2.22)

To extract A1 from these measurements, one has to know the values
of R and A2 which are presently not well known in the resonance
region. The correction due to R is fairly minor, but since η is
not small in our experiment, the uncertainty due to A2 can be
substantial, and we only quote our results forA1+ηA2. In principle,
A1 and A2 can be separated by measuring both with longitudinal
and with transverse target spin, or by varying the kinematic factors
D and η at fixed ν andQ2 (Super-Rosenbluth separation). The first
method is not possible with the CLAS detector since the beam
would be deflected too much by the target magnet, and the second
method requires much higher statistics than we were able to collect
in the present experiment.

10



The spin structure functions g1 and g2 can also be defined in
terms of the asymmetries A1 and A2 as

g1(x,Q
2) =

τ

1 + τ

(

A1(x,Q
2) +

1√
τ
A2(x,Q

2)

)

F1(x,Q
2) (2.23)

and

g2(x,Q
2) =

τ

1 + τ

(√
τA2(x,Q

2)− A1(x,Q
2)
)

F1(x,Q
2). (2.24)

Inverting Eq.2.20 and inserting in Eq.2.23 yields

g1(x,Q
2) =

τ

1 + τ

(

A||/D +

(

1√
τ
− η

)

A2(x,Q
2)

)

F1(x,Q
2)

(2.25)
Due to the partial cancellation of the two terms in front of A2, its
uncertainty has less impact in this case and we can use a model for
A2 to extract g1 from our data.

In the resonance region, g1 can be linked to the spin-dependent
transition strength for different resonances. On the other hand, in
the deep inelastic (scaling) limit (τ →∞), g1 converges to g1(x) →
A1(x)F1(x) since |A2| is bounded by

√
R which disappears in this

limit. This allows us to interpret g1 in terms of quark distribution
functions.

2.3 The Quark Spin Distribution

The simplest version of the constituent quark model 3 describes the
nucleon as the ground state of three quarks in a symmetrical S-
state and the resonances as excited states in a harmonic oscillator
potential. One can define the distribution function qi(x) as the
probability density of finding a given quark flavor i with momen-
tum fraction x inside the nucleon. The spin dependent structure
function g1 can be written using the distribution functions q↑↓

i
(x)
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with two different polarization directions, parallel or anti-parallel
to the nucleon spin.

g1(x) =
1

2
Σie

2

i

(

q↑i (x)− q↓i (x)
)

(2.26)

where ei is the individual parton’s charge. The net spin contribu-
tion of a quark flavor i can be defined as

∆qi =
∫ 1

0

[

q↑i (x)− q↓i (x)
]

dx (2.27)

The non-zero matrix elements of the axial-vector current operator
are a singlet contribution a0 and non-singlets a3 and a8.

a0 = ∆Σ = ∆u+ ∆d+ ∆s (2.28)

a3 = F +D = ∆u−∆d (2.29)

a8 = 3F −D = ∆u+ ∆d− 2∆s (2.30)

The matrix elements a3 and a8 can be determined by the weak
decay constants, F and D, which are constrained by hyperon and
neutron beta decay measurements. The integral over the spin stru-
cure function g1(x) (Ellis-Jaffe integral) leads us to the spin prob-
abilities weighed with the squared quark charges.

Γp
1 =

∫ 1

0
gp
1(x)dx =

1

2

(

4

9
∆u+

1

9
[∆d+ ∆s]

)

(2.31)

Γn
1 =

∫ 1

0
gn
1 (x)dx =

1

2

(

4

9
∆d +

1

9
[∆u+ ∆s]

)

(2.32)

Using the values extracted from beta-decays, ∆u−∆d = 1.26 and
∆u + ∆d − 2∆s = 0.58, and assuming ∆s = 0, one can predict 4

values of the integral Γp
1 = 0.186 for protons and Γn

1 = −0.024 for
neutrons. But the data show different answers from this prediction
by Ellis and Jaffe, about 0.14 for the proton and -0.06 for the
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neutron, yielding a quark contribution ∆Σ = ∆u + ∆d + ∆s ≈
.25 ± .05 to the overall proton spin and implying that a part of
the proton spin is carried by the orbital angular momentum of the
constituents and an additional contribution comes from the gluonic
field. The polarized distributions can be expressed in terms of the
contribution from valence and sea quarks (∆Σ), gluons (∆G) and
the total orbital angular momentum of the nucleon constituents
(Lz).

Jz =
1

2
∆Σ + ∆G+ Lz =

1

2
(2.33)

where ∆G = G+−G− is the difference between the helicity parallel
and anti-parallel gluon distributions within the nucleon. Existing
data imply that the valence quark contribution is close to (relativis-
tically corrected) expectations, while the sea is negatively polarized
and the gluons contribute a significant and likely positive amount.
On the other hand, the role of the orbital angular momentum is
still unknown so far.

The difference between the proton and the neutron integral, the
Bjorken sum rule 5, is more fundamental since the contribution of
strange quarks is cancelled and only isospin symmetry is invoked:

Γp
1 − Γn

1 =
1

2

(

3

9
∆u− 3

9
∆d

)

=
1

6
(∆u−∆d) =

1

6
gA (2.34)

where gA is the axial coupling constant in neutron beta decay.
At finite Q2, QCD predicts a logarithmic Q2 dependence of all
structure functions due to the ‘running’ of the coupling constant
αs ≈ 1/ log(Q2) and gluon radiative effects. The Bjorken sum rule
including corrections to order α3

s can be written 6 as:

∫ 1

0

[

gp
1(x,Q

2)− gn
1 (x,Q2)

]

dx =
gA

6
×



1− αs(Q
2)

π
− 3.5833

(

αs(Q
2)

π

)2

− 20.2153

(

αs(Q
2)

π

)3

· · ·


 (2.35)
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All existing data confirm the integral value 0.21 with perturbative
QCD corrections. Similar pQCD corrections apply to the integrals
for the proton and the neutron separately.

2.4 Q2 dependence of the spin structure functions

In the QCD-improved parton model, the quark distributions and
spin structure functions evolve withQ2 due to gluon bremsstrahlung
and gluon-induced quark-antiquark pair creation. QCD predicts
that the number of resolved partons which share the nucleon’s mo-
mentum increases with Q2. The probability of finding a quark is
increased at small x and is decreased at large x because high mo-
mentum quarks lose momentum by radiating gluons. The evolution
of the parton distribution with Q2 produces the logarithmic Q2 de-
pendence of the polarized and unpolarized structure functions. The
Q2 evolution of structure functions is theoretically described using
NLO (next to leading order) analysis based on the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations 7,8,9.
The DGLAP equations show that the Q2 dependence of the quark
distribution is related to the gluon polarization, which can there-
fore in principle be inferred from measurements of spin structure
functions over a large kinematic regime. Unfortunately, the present
data set on the deuteron is too restricted in kinematic range to con-
tribute significantly to the world data in the deep inelastic region
in this respect.

The evolution of the unpolarized and polarized structure func-
tions is similar and the ratio g1/F1 (or the asymmetry A1) could
depend much less on Q2. This is indeed born out by results from
experiment E143 11 at SLAC which show that above Q2 ≈ 1 GeV2,
this ratio is nearly independent of Q2. However, below 1 GeV2

the Q2 dependence of the ratio g1/F1 becomes stronger, possibly
due to higher twist effects. Higher twist contributions basically
stem from inteference terms between different quark currents as
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well as quark-gluon correlations and final state interactions of the
struck quark. These higher twist effects 10 yield corrections to the
structure functions proportional to powers of 1/

√
Q2 and recent

data 11 indicate that higher twist may change the proton integral
by as much as 3% - 5% at Q2 = 3 GeV2. As nucleon resonances be-
come more important (at lower W and Q2), the structure functions
and asymmetries are mostly driven by the resonant final state. As
Q2 decreases, the asymmetries become less positive and eventually
change sign, in particular in the region of the ∆ resonance. Corre-
spondingly, the integrals Γp and Γd ≈ Γp + Γndecrease rapidly and
become negative as Q2 approaches zero. The energy scale at which
the resonant final states become important coincides with a reso-
lution 1/Q2 appropriate for the size of the constituent quarks. We
cannot directly measure the “constituent quark distribution func-
tion” without considering the final hadronic state. However, the
measured structure functions averaged over several resonant final
states may still agree with the ones measured in the deep inelastic
region after the proper extrapolation to the resonace region, as has
been shown in the case of unpolarized structure functions 12 (local
duality). It is still an open question whether (and how well) duality
works in the case of polarized structure functions 13,14. Our data
allow a first test of duality for the case of gd

1 of the deuteron. In
general, our data can be compared to models (see, e.g., Ref. 15) that
attempt to describe the transition between the perturbative QCD
description of spin structure functions (including higher twist) and
the limit of strong coupling QCD at low Q2 and in the resonance
region.

2.5 Gerasimov-Drell-Hearn Sum Rule

In 1966, S.B. Gerasimov 17 and separately S.D. Drell and A.C.
Hearn 18 derived a sum rule which relates the spin-dependent total
cross section of circularly polarized real photons on longitudinally
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polarized nucleons to the anomalous magnetic moment of the nu-
cleon. The GDH sum rule is:

IGDH =
m2

8π2α

∫ ∞

νthr

(

σ1/2 − σ3/2

) dν

ν
= −κ

2

4
(2.36)

where σ1/2 and σ3/2 are the total cross section for hadron photo-
production for total helicity 1

2
and 3

2
, κ is the anomalous magnetic

moment of the nucleon, ν is the lab energy of the photon and νthr

is the pion photoproduction threshold energy. This sum rule is
derived from two theorems, the low energy theorem 19,20 and the
dispersion relations 21 for forward Compton scattering. Since no
assumptions were made using QCD or the parton model, the GDH
sum rule is considered to be sturdy and could provide a good check
point on various nucleon models, as well as the behavior of Γp

1(Q
2)

and Γn
1 (Q2) as Q2 → 0. However, some recent analyses of pion

photo-production amplitudes 22,23,24 claim that the sum rule may
be violated, especially if one considers the difference between the
proton and the neutron result. In principle, such a violation could
indicate that the “no subtraction” assumption for the integral is
invalid. However, a more likely scenario is that there are signifi-
cant other contributions to the integral (from multi-pion produc-
tion, eta and other meson production, and from the high-energy
region beyond W = 2 GeV), which are not properly included in
the evaluation of Refs. 22,23,24.

The GDH sum rule for the proton can be tested against recent
measurements at MAMI 25 and ELSA which agree well with the
sum rule prediction. A direct measurement for the neutron is still
outstanding. However, by measuring the spin structure function
integrals Γ1 at small Q2, one can constrain the value of the real
photon integral. To connect the integrals Γ1 to the GDH integral,
one can use the relationships quoted in Section 2.2 to show 26 that

ΓN
1 (Q2 → 0) → Q2

16π2α

∫ ∞

νthr

(

σ1/2 − σ3/2

) dν

ν
= − Q2

8M2
κ2

N . (2.37)
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Figure 2.3: The first moment of the proton spin structure function g1. The
data shown are SLAC (circle) and CERN (rectangle) data. The solid line at
higher Q2 is the Q2 evolution of the integral in the DIS domain. The dotted
line at Q2 → 0 indicates the slope predicted by the GDH sum rule. The
other lines are predictions from, from the top, Soffer/Teraev, Burkert/Ioffe
and Burkert(from AO, resonance only). Details are in the text.

Since the GDH sum rule is negative, the integrals Γp,d
1 (Q2) must

have a negative slope at Q2 = 0 and then change rapidly at low Q2

to meet the positive experimental results in the DIS region. This
low-Q2 behavior is dominated by the contribution from the ∆ and,
to a lesser extend, other resonances.

2.6 Theoretical Predictions of the Spin Structure Func-
tions and the Sum Rules

Theoretical calculations and models for the spin structure functions
and sum rules have been made by several groups. For the proton,
the GDH sum rule predicts a negative slope at Q2 ≈ 0 for the value
of the integral Γp

1 while all experiments yield positive values in the
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DIS domain. Fig.2.3 shows the rapid change and zero-crossing at
Q2 < 1. The SLAC (E143) data indicate that the integral starts
decreasing rapidly as Q2 decreases. The zero-crossing, however, is
still not confirmed and more precise data, also covering the lower
Q2 region, are needed. The Q2 dependence of the sum rule was first
parametrized by Anselmino and others 26 using a model based on
the vector meson dominance which describes Γp,n(Q

2) throughout
the whole Q2 region. Burkert and Li 27 have parametrized the am-
plitudes for the resonances up to 2 GeV using existing experimental
data. They see a strong Q2 dependence of the resonance contri-
butions which, by themselves, would change the sign of the proton
integral at Q2 ≈ 0.8 GeV2. Burkert and Ioffe 28 then combined the
contribution from the resonances with a smooth parametrization
of the non-resonant part, following the ansatz of Anselmino. The
parametrization is chosen such that both the GDH integral is re-
covered in the limit Q2 → 0 and the measured value for the integral
Γ1 is reproduced in the DIS region. Soffer and Teryaev 29 suggested
that the rapid change of the Γ1 at low-Q2 region is determined by
the Burkhardt-Cottingham sum rule.

∫ 1

0
dxg2(x,Q

2) = 0 (2.38)

The sum Γ1 + Γ2 is related to the longitudinal-transverse intefer-
ence cross section σ

′

LT and the rapid fluctuation of Γ1 follows by
subtraction of the Burkhardt-Cottingham sum rule value of Γ2. Re-
cently, Ji and Osborne 30 evaluated the Q2 dependence of the GDH
sum rule using chiral perturbation theory at Q2 = 0 to 0.2 GeV2

and the twist-expansion (OPE) from Q2 = ∞ to about 0.5 GeV2

providing constraints on the Q2 evolution of the sum rule at both
low and high Q2. Drechsel and others 31 calculated the spin struc-
ture functions g1 and g2 using a model based on a gauge-invariant
and unitary isobar model for one pion photo- and electroproduc-
tion. They found that the zero-crossing of the proton integral Γ1

shifts from Q2 = 0.75 GeV2 (for the single pion channel only) to
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Q2 = 0.45 GeV2 when they include η and multi-pion channels. In-
clusive spin structure function data, SLAC E130 35 and E143 36,
show the asymmetry in the resonance region of the ∆ region is
indeed negative and compatible with A1 = −0.5 but the integral
stays positive above Q2 ≈ 0.5 GeV2. An accurate measurement of
the spin structure functions at low Q2 is needed for a better under-
standing of higher twist and nonperturbative contributions to the
structure functions.

2.7 Spin Structure Functions of the Deuteron

It is important to study the spin structure functions (g1) and their
integrals (Γ1) for both the proton and the neutron to unravel the
isospin-dependence of quark distributions (∆u vs. ∆d) and res-
onance transitions. In particular, the integral Γp

1 − Γn
1 offers a

unique opportunity to test models of the nucleon over the whole
range of resolution (Q2) since exact sum rules exist both in the
limit of high Q2 (the Bjorken sum rule) and at Q2 = 0 (the GDH
sum rule). On the other hand, the isoscalar integral Γp

1 + Γn
1 pro-

vides a particularly strong constraint on the net quark polarization,
∆Σ = ∆u+∆d+∆s, since the contribution to this integral due to
strange quarks is small and only the combination 3F −D is needed
as external input (see Section 2.3).

In the absence of a free neutron target, spin structure func-
tions of the neutron have to be extracted from measurements on
the deuteron or 3He. Both targets have been used in past measure-
ments in the DIS region at SLAC32,33 and HERMES34 as well as for
measurements in the resonance region at Jefferson Lab (including
the present data). Since nuclear corrections are quite different for
these two targets, a comparison of the extracted neutron spin struc-
ture functions from both can test how well we control these nuclear
corrections. This is particularly important for measurements in the
resonance region, where corrections like resonance broadening due
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Figure 2.4: Ellis-Jaffe Integral for the Deuteron. SLAC data and theoretical
predictions
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to Fermi motion could play a much more important role than in
the DIS regime. The advantage of using 3He as a “neutron target”
lies in the relatively small contribution from the protons in 3He
since in the ground state they are mostly coupled to a spin-0 pair.
On the other hand, the deuteron is a more loosely bound system of
only two nucleons, and nuclear effects like Fermi-motion, binding
(off-shell) effects, meson exchange currents, final state interactions,
nuclear shadowing, non-nucleonic components in the wave function
and coherent meson production are both smaller and can be more
realistically modelled with state-of-the art relativistic calculations
(see, e.g., references 37,39,40). In particular the integral Γd

1 over the
deuteron spin structure function gd

1 is very close to the isoscalar
integral Γp

1 + Γn
1 , with only minor corrections due to the deuteron

D-state:

ΓD(Q2) ≈
(

1− 3

2
PD

)

(

Γn(Q2) + Γp(Q2)
)

/2 (2.39)

where PD ≈ 5% is the weight of the D-wave in the deuteron. Cor-
rections to this relationship are estimated 39 to be less than 3% for
0.1 < Q2 < 2.0 GeV2.

Additional information on nuclear effects can be gotten from
a comparison of the GDH sum rule prediction for the deuteron as
a whole to the sum of the predictions for the proton and neutron
individually. The anomalous magnetic moments for proton and
neutron result in the GDH integral value IGDH

p = −204.8µb for the
proton and IGDH

n = −233.2µb for the neutron. Thus, the GDH
prediction for the incoherent sum of proton and neutron integrals
is about −438µb. On the other hand, the experimental value of
the anomalous magnetic moment for the deuteron is very small,
κd = −0.143, resulting in the GDH prediction IGDH

d = −0.65µb
where the integral is to be taken from the threshold of nucleonic
breakup of the deuteron (2.22 MeV) to infinity. To satisfy this
small value on the deuteron GDH integral, a large positive contri-
bution to the integral is needed below pion threshold. Arenhovel
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et. al. 40 evaluate this part of the GDH sum rule for the deuteron
by explicit integration up to a photon energy of 550 MeV, includ-
ing photodisintegration channels as well as coherent and incoherent
single pion photoproduction channels. The contribution from pho-
todisintegration (γd → np) is dominantly from the M1 transition
to 1S0 at very low energy, which can only be reached by the an-
tiparallel spin orientation, resulting in a large positive contribution
to the deuteron GDH integral. This contribution nearly cancels
the incoherent sum of the proton and neutron integrals, implying
that nuclear corrections above pion threshold are small. Indeed,
the authors of Ref. 40 show that the contribution from incoherent
pion production on the deuteron (γd→ πNN) is very close to the
sum of the free proton and neutron values.
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Chapter 3

Analysis

The present analysis is based on the data set collected during the
first run of the EG1 run group in Hall B in 1998 (EG1a) for exper-
iment 93-009. A polarized solid state target of frozen deuterated
ammonia (15N~D3) immersed in a 1 K liquid 4He bath and sur-
rounded by a 5 T superconducting Helmholtz magnet (with better
than 10−4 field uniformity) was installed inside the CLAS detector
(at a position about 57 cm upstream of the nominal CLAS center).
The target material was pre-irradiated before the run and polar-
ized by driving a hyperfine transition with 140 GHz microwave
radiation (Dynamic Nuclear Polarization). The polarization was
monitored using standard NMR techniques throughout the run.
A more precise offline determination of the polarization (see Sec-
tion 3.4) showed that it fluctuated between 0.15 and 0.26. This
polarization was lower than usually obtainable with this method
(0.3 - 0.4) due to insufficient microwave power and less than opti-
mal target material. The direction of the target polarization was
along the beam direction. A small sample of runs was taken with
opposite target polarization, but this sample was not used in the
present analysis due to its low target polarization and low statistics.
The total target thickness was about 1 g/cm2, about 65% of which
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came from the ammonia, while the rest was made up of LHe coolant
and various entrance and exit foils and heat shields (Kapton and
Aluminum). Additional runs were taken on an empty target cell
(immersed in the same liquid He bath) and on a cell containing a
slab of 12C of the same thickness in g/cm2 as the ammonia (“Car-
bon target”). These runs were used to extract the dilution of the
desired asymmetries through unpolarized nucleons in the ammonia
targets.

Polarized electrons from the CEBAF strained GaAs cathode
were accelerated to 2.5 GeV or 4.2 GeV and scattered off this tar-
get. The polarization was reversed every second, with a pseudo-
random pattern, to ensure cancellation of systematic errors. The
beam current was integrated over each 1 second period using a
Faraday cup with charge-to-pulse converter which yielded a count
(“click”) for each 0.1 nC of integrated charge in a helicity-gated
scaler. Substantial differences between the current for positive and
negative beam helicity were found (of order 0.3%) which made
accurate normalization of the physics count rates very important.
The beam was rastered over part of the target cross section to avoid
local depolarization; unfortunately, a substantial target misalign-
ment prevented us from illuminating the whole target uniformly,
which contributed to the low target polarization and made the
NMR measurements rather unreliable. Only very few runs were
taken with 4.2 GeV electrons on ND3, which were excluded from
the present analysis due to their low statistics. The 2.5 GeV runs
fell into two categories: Most were taken with the CLAS in its nom-
inal “electron inbending” (positive) torus polarity, with an average
beam current of about 2.5 nA (total luminosity about 9×1033) and
an average beam polarization of about 0.71, as measured during pe-
riodic runs with the Hall B Moller polarimeter. Some runs were
also taken with the CLAS torus in “outbending” (negative) polar-
ity. However, the beam current for these runs had to be reduced
to about 0.5 nA, leading to unstable beam and large normalization
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errors (since the Faraday cup electronics yielded only 5 “clicks” for
each 1 second helicity state at these low currents). A statistical
analysis of two sets of these runs taken at different dates (about
1 month apart) showed that they were mutually inconsistent (pos-
sibly because the target material had been changed in between).
Since they also had low statistics, it was decided to omit them from
the final analysis reported here.

The scattered electrons were detected in the CLAS detector
with its usual configuration, except that the mini-torus was re-
moved to make room for the polarized target and a special down-
stream beamline with lead shielding was introduced. The 5 T field
of the target provided sufficient shielding against Moller electrons.
The large acceptance of CLAS more than offset the relative small
luminosity that can be achieved with solid state polarized targets,
and it allowed us to cover the whole kinematic range from elastic
scattering to the edge of the resonance region (W = 2GeV) and
from Q2 = 0.3 GeV/c2 to 1.2 GeV/c2.

3.1 Raw Data Analysis

The data analysis is based on the standard Hall B analysis pack-
age, RECSIS release-1-21. RECSIS consists of individual detector
analysis packages and packages to combine those information and
to reconstruct particle tracks and particle identification. The raw
data from all CLAS experiments stored on tape (STK Redwood
tape drive controlled by the Mass Storage Server) in BOS format,
Fig.[3.1]. BOS is a program system written in FORTRAN 77 for
the dynamic management of data. In this dynamic memory man-
agement system, the data areas are called banks and each bank
contains data. All banks are stored in one large COMMON area.
The Hall B DAQ system (CODA) separates data in runs and files.
Each file has maximum size of 2 GByte and one run has about
10 to 20 files. Data contain the raw detector events, mainly TDC
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and ADC values from each detector as well as beam related infor-
mation. RECSIS converts these raw data into meaningful physics
quantities ( a process called cooking ). About 10% of the data were
processed during the first part (pass 0) of processing for detector
calibrations and general quality checks. The pass 0 data sample
was selected evenly throughout the entire running period, consid-
ering running conditions and experiment downtime. The very first
run of each running period is also included for the detector cali-
bration. The full data processing was done using the JLab Linux
batch farm from August to October 1999. The monitoring and
quality checks were done online and offline during the processing.
Monitoring histograms for each detector component and for re-
constructed physical variables were written and monitored on a
file-by-file basis. A web-based database was used for the quality
bookkeeping, identifying reconstrucion and hardware failures. Ntu-
ples were generated from the processed data. These ntuples only
contain variables necessary for the physics analysis.

The event selection and particle identification are described in
Section 3.2. Due to the uncertainties on the magnetic field and
detector geometry survey, momentum corrections were applied to
each electron track, Section 3.3. In Section 3.4, the extraction of
the target polarization from the inclusive and exclusive analysis is
explained. The dilution factor is described in Section 3.5, and ad-
ditional backgrounds are discussed in Sections 3.6 and 3.7. After
dealing with dead-time corrections (Section 3.8), the extraction of
the raw asymmetries is presented in Section 3.9. Radiative correc-
tions and the models that enter them are discussed in Sections 3.10
and 3.11, respectively, followed by a section on electroweak correc-
tions (Section 3.12). The final two sections deal with the extraction
of final Physics results (Section 3.13) and a complete discussion of
systematic errors (Section 3.14). Additional information on the
running conditions, data taken and analysis details can be found
in the analysis notes by Raffaella DeVita and Renee Fatemi, as well
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as the Ph.D. thesis of Junho Yun.

Figure 3.1: The CLAS data flow layout.

3.2 Run/Event Selection

All physical variables for each identified particle track needed for
the present analysis, Table [3.1], were written into specialized ntu-
ple files on an event-by-event basis. The total data set consist of
320M electron events at 2.5 GeV for the inbending, positive torus
current of 2250 A, and 150M at 2.5 GeV for the outbending, neg-
ative torus polarity (-1500 A). The inbending runs were separated
into 5 groups and the outbending into 2 groups according to the
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event number
particle ID (SEB)

momentum
x vertex
y vertex
z vertex
theta
phi

corrected momentum
2nd moment from EC hit

total energy in EC
inner EC energy
outer EC energy

number of photoelectrons in CC
β

energy in SC
x-coord EC hit
y-coord EC hit
x vertex at DC1
y vertex at DC1
z vertex at DC1
x cosine at DC1
y cosine at DC1
z cosine at DC1

helicity

Table 3.1: The physical quantities stored into ntuples.
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group run number beam energy (GeV) torus (A) target pol.
inbending group1 * 15360 - 15383 2.494 +2250 0.22
inbending group2 15385 - 15388 2.494 +2250 -0.15
inbending group3 * 15389 - 15405 2.494 +2250 0.20
inbending group4 * 15213 - 15235 2.565 +2250 0.26
inbending group5 * 15272 - 15339 2.565 +2250 0.16
outbending group1 15406 - 15421 2.494 -1500 0.19
outbending group2 14629 - 14679 2.565 -1500 0.20

Table 3.2: Runs are separated into inbending (5 groups) and outbending (2
groups) and analyzed separately. The run groups which were included in the
final analysis are indicated by asterisks (*)

beam condition, the target polarization (NMR measurements) and
the running period, Table [3.2]. For positive torus polarity, elec-
trons bend toward the beamline resulting in a suppression of small
scattering angles and, therfore, a better statistics at large θe (higher
Q2). The runs with negative torus polarity were not used for the
present analysis, as discussed above, except to study the longterm
trend in the target polarization.

The ”2.5 GeV” data were taken at two slightly different ener-
gies, 2.565 GeV and 2.494 GeV, in order to compromise with Hall
A and C for high beam polarization (“magic” energy setting). All
runs which were taken during major detector breakdowns were ex-
cluded from the analysis as well as runs with wrong trigger setup,
unstable beam conditions, wrong helicity information and large
Faraday cup asymmetries.

Since we measure asymmetries, electrons are separated into two
different helicity states. During each run, the electron helicity was
chosen at the injector each second. The helicity pattern Fig. [3.2] is
formed by pairs of electron buckets with opposite helicity states. A
‘Sync’ pulse line generates a helicity pulse at 1 Hz and the helicity
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for the next 1 second-period (“1 bucket”) is chosen. The first of
two consecutive helicity states is chosen pseudo-randomly while the
second is its complement. The program “HelP” reads all helicity
information from the ”HLS” and ”TGBI” BOS banks and outputs
a helicity table for each file. The helicity table contains helicity in-
formation for each bucket, as well as the Faraday Cup readings for
the integrated beam charge, the range of event numbers occuring
in that bucket, and the number of electrons in each sector. The
table starts with the helicity state flag for each state. The original
flag is the first state of the helicity pair and assigned ‘1’ if both he-
licity states are in time and the ROC is synchronized. The second
state is a complement and assigned ‘2’ if it is a good complement
to the first helicity state. Mismatches between the different scaler
readings or other problems detected by “HelP” were flagged with
negative numbers. A bad helicity bucket cutoff was made primar-
ily using these original and complement flags, 1 and 2 in sequence
for a complete bucket pair. These flags take care of the failures
like ROC out of sync, scaler helicity mismatch, TGBI bank mis-
reading, and a significant change in the trigger rate or Faraday cup
readout failures. Additional cuts were made requiring a Faraday
Cup variation of less than 10% from one 1-second “bucket” to the
next and a reasonable numbers of electrons reconstructed in each
sector. This requirement helped remove problems stemming from
beam instabilities, beam drop outs and scaler malfunction. In all
cases, buckets of data and the corresponding Faraday cup read-
ings were removed from the data set in pairs, ensuring that only
matched pairs of opposite helicity in sequence entered the analysis.

In spite of the helicity cuts, there is a systematic difference in
the number of beam electrons (charge) for the two opposite helicity
states. The average Faraday Cup asymmetry was 0.3%. These false
asymmetries are basically from helicity-correlated asymmetries in
the beam current. They were corrected by normalizing all count
rates to the beam current for each helicity.
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Figure 3.2: The helicity flips at a frequency of 1 Hz with a pseudo-random
sequence.

The electron selection is originally from the RECSIS package
Simple Event Builder (SEB). Since one negative track is required
for the SEB, each event has at least one electron candidate. First,
the ideal electron must have a hit in the EC or SC, then the SEB
checks the hit position, timing, geometry match for each detector
and β using time of flight and momentum analysis. The SEB uses
very broad cuts for the initial particle identification.

Additional cuts, Table 3.3, are used for more accurate electron
selection. The main source of false electron identification is from
e− and π− separation, i.e. a π− misidentified as an electron. These
two different particles can be distinguished by their signal in the
electromagnetic calorimeter (EC). While most pions deposit only
the minimum-ionizing amount of energy in the EC, the electrons
shower and deposit nearly all of their energy in the EC. The EC
sampling fraction, the fraction of electromagnetic shower energy
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1. SEB paricle ID = 11 (electron)
2. Etot/p greater than 0.2 (EC sampling fraction)
3. number of photoelectrons greater than 0.5
4. z vertex from -60cm to -50cm
5. reconstructed radial distance from beam line less than 5 cm
6. electron momentum less than 2.5 GeV
7. electron mementum greater than 0.5 GeV
8. theta less than 50◦

Table 3.3: Electron cuts. The norminal target position was -55 cm.

in EC that is detected as scintillation light, is about 0.27. This
ratio decreases as the measured electron momentum decreases. A
study of the energy calibration shows that the measured electron
momentum of 0.5 GeV corresponds to the ratio Etotal/p of 0.2 where
Etotal is the total energy deposited in both inner and outer EC.
Therefore, we identify electrons via a cut that requires the ratio of
total energy deposited in the EC and the momentum of a particle
to be greater than 0.2 and reject electrons with less than 0.5 GeV
momentum.

The Cerenkov counter information is also used in the cut to
exclude particles with no associated photoelectron created in CC
(the number of photoelectrons required for electrons was greater
than 0.5). A more careful treatment of the π− contamination can be
found in Sections 3.7 and 3.14. A vertex cut (reconstructed vertex
must be less than 5 cm from the target center) is used to make sure
the electron originated from the target (excluding the downstream
exit windows and heat shields) and the vertex reconstruction is
reasonable. (The target itself was much smaller, 1 cm long and
1.5 cm in diameter. However, due to the limited vertex resolution
and the correlation between reconstructed radial and longitudinal
position, combined with a lateral offset of the beam and target from
CLAS center, the more generous cuts described above had to be
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used to avoid losing too many events). No fiducial cuts were used
to maximize statistics. While the efficiency of the combined cuts
listed in Table 3.3 is not known accurately and can be kinematics-
dependent, this efficiency drops out in the calculation of count rate
asymmetries. A comparison between the results with and without
fiducial cuts showed no statistically significant difference, within
the larger error bars of the results with fiducial cuts.

3.3 Momentum corrections

The momentum of a particle is calculated using the drift chamber
reconstructed track and the torus magnetic field. However, the
knowledge of the drift chamber wire position and the torus mag-
netic field value is limited due to the accuracy of existing survey
data and B field maps. All CLAS data show a systematic shift
of the reconstructed electron momentum relative to the expected
one in the case of kinematically complete events. These are due
to the difference between the actual drift chamber geometry (and
torus magnetic field) and survey values parametrized in the recon-
struction codes. The correction factor to the electron momentum is
extracted comparing the elastic peak position (W = 0.939) in the
W spectra with the theoretical value and it is a function of φ, θ
and the torus field, under the assumption that only the momentum
is reconstructed incorrectly.

Pcorrect = F (θ, φ) · I0
Iread

· Preconstructed (3.1)

F (θ, φ) =
(

a+ bφ + cφ2
) dθ − f

gθ − h
(3.2)

where F (θ, φ) is the correction factor with seven parameters from
a fit to the data using a constraint of the corrected position of W
elastic peak. I0 is the actual torus field and Iread is the torus field in
the database and the one used in the reconstruction. The discrep-
ancy between I0 and Iread stems from inaccurate IOC readout, for
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example, the readout torus current Iread is 2251A while the actual
current is 2250A.

The resulting correction on the electron momentum, Fig 3.3, is
of the order of ≈ 0.1 % and tends to decrease for increasing electron
polar angle.

3.4 Beam and Target Polarization

The target polarization was measured using the NMR technique
during the run. This NMR measurement was not reliable mainly
due to the uncertainty on the TE measurement for normalization
and the depolarization of the target by the beam. We used al-
ternative methods to extract the product of the target and beam
polarization, based on the known asymmetry for elastic scattering
off protons and neutrons. This elastic asymmetry is given by

AN
elastic =

cosψ
√

1− ε2 + sinψ cosφ
√

2ε(1− ε)
(

Q2

4m2

)−1/2 GE(Q2)
GM (Q2)

1 + ε
(

Q2

4m2

)−1 G2
E

(Q2)

G2
M

(Q2)

(3.3)
where the angles ψ = θq and φ = 0 describe the direction of the
target spin in relation to the virtual photon and ε is the virtual pho-
ton polarization parameter. The quantities GE(Q2) and GM(Q2)
are the electric and magnetic (Sachs) form factors of the nucleon
in question (proton or neutron), which are known to very good
precision in our Q2 region of interest.

Two semi-independent methods were used to extract the prod-
uct PbPt of beam and target polarization, involving inclusive quasi-
elastic and exclusive (e, e′p) events. In the case of the inclusive
analysis, one measures the asymmetry in the quasi-elastic peak
and compares it to a model calculation which averages the results
from Eq. 3.3 over both proton and neutron (weighted by their elas-
tic cross sections) and corrects it for the effects of Fermi motion
and the D-state component of the deuteron. The resulting theo-

34



Figure 3.3: W spectra for inclusive electrons before(line) and after(shaded
area) the momentum correction. The final width of the quasielastic peak after
the correction was 76 MeV. In the case of the corresponding correction on the
NH3 data, the width of the elastic peak was reduced from 23 MeV to 16 MeV.
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Q2 outbending Aquasi−elastic inbending Aquasi−elastic

0.125 0.054
0.149 0.063
0.177 0.072
0.211 0.085
0.251 0.099
0.3 0.114 0.113
0.36 0.132 0.130
0.42 0.153 0.153
0.5 0.177 0.177
0.6 0.206 0.206
0.71 0.242 0.242
0.84 0.281 0.281
1 0.330 0.330

1.2 0.390

Table 3.4: The inclusive theoretical asymmetries for the outbending runs up
to Q2 = 0.36 GeV2 have only been integrated from W = 0.9GeV2 - 1.0 GeV2,
while the higher Q2 bins for the outbending runs and all Q2 bins for the
inbending runs have been integrated over W =0.85 GeV2 - 1 GeV2

retical value Aquasi−elastic, Table 3.4, was calculated in PWIA using
up-to-date fits to the nucleon form factors and a Paris potential
wave function for the deuteron. The product PbPt can be written

PbPt =
Ameasured

DF × Ad
quasi−elastic

(3.4)

where DF is the dilution factor due to the presence of unpolarized
target material. The evaluation of the inclusive dilution factor will
be discussed in the following section. The measured asymmetry
was averaged over the region 0.85 GeV2 < W < 1.0 GeV2 for all
inbending runs and for the outbending events with Q2 > 0.4 GeV2,
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and 0.9 GeV2 < W < 1.0 GeV2 for the outbending events with
Q2 < 0.4 GeV2.

In the exclusive method, electron–proton coincidence events in
quasi-elastic kinematics were chosen with additional cuts: 0.85 GeV2 <
W < 1.0 GeV2, |θp − θ~q| < 5◦, 1.3 GeV2 < Q2 < 2.0 GeV2, and
φe−φp = 180◦ +/- 7◦ In this case, the result of Eq. 3.3 for the proton
can be applied directly (in the PWIA), after some small corrections
for Fermi smearing and the deuteron D-state. The spectrum of the
difference between φelectron and φproton was used to extract the di-
lution due to events from 15N and 4He in the target material. The
dilution was estimated in two different ways: 1) integrating the
two side wings outside the region φe − φp = 180◦ +/- 10◦ for both
ND3 and corresponding Carbon target events and taking the ratio
of the integrals as the cross-normalization between the two, and 2)
double gaussian fitting of the ND3 spectrum using constraints on
the width and center extracted from the Carbon target runs. In
case 1), the dilution factor was the ratio of the difference of the
ND3 counts minus the scaled Carbon target counts in the region
φe − φp = 180◦ +/- 7◦, divided by the ND3 counts. In case 2),
we used the area of the Gaussian representing the deuteron peak,
divided by the sum of both Gaussians, again integrated over the
same φ region.

The target polarization is extracted from the obtained values
for PbPt using the measured beam polarization Pb from Moller runs.
The results of the two methods fairly agree within error bars, Fig
[3.5], and the first two groups shows that our NMR measurements
were in reasonable shape; however after run 15250 the extracted
values were about half less than the NMR values. We suspect those
are due to bad TE measurement or due to localized beam induced
depolarization.
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Figure 3.4: Sample of double gaussian fits (left) and the ND3 and Carbon
target spectra overlaid after the cross normalization of the “wings” (right).
The dilution factor is the difference between the two spectra on the right,
divided by the ND3 total.

group run pb*pt stat error
inb. 1 15360 - 15383 0.094 0.011
inb. 2 15385 - 15388 -0.061 0.023
inb. 3 15389 - 15405 0.082 0.014
inb. 4 15214 - 15235 -0.173 0.014
inb. 5 15272 - 15339 -0.080 0.017
outb. 1 15406 - 15421 0.103 0.021
outb. 2 14629 - 14679 -0.177 0.037

Table 3.5: The product of the target and beam polarization.
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Figure 3.5: Target Polarization vs run numbers.

3.5 Dilution Factor

Since we used ND3 as the target material, we have to deal with
the contribution of non-deuteronic materials in the target like 15N
contained in ND3, target windows (aluminum foils), liquid 4He for
the refrigerator etc. The fraction of the events actually scattered
from the deuteron to those from all target materials is the dilution
factor, DF = ND3/Nfull target. The 12C in the Carbon target was
used as an approximation of the 15N in the Ammonia target and
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Figure 3.6: Subtraction of Carbon target data from ND3. The top line is
the measured ND3 spectrum and the middle is the normalized Carbon target
spectrum. The bottom line is the subtracted spectrum which represents the
deuteron spectrum. The quasi-elastic peak is overlayed with a model calcula-
tion normalized to the data.
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the dilution factor can be written as:

DF ≈ (N15ND3
+N4He +Nfoils)− A · (N12C +N4He +Nfoils)

(N15ND3
+N4He +Nfoils)

(3.5)
The Carbon and ND3 target runs have different statistics, and the
equivalent target thicknesses (in nucleons per cm2) as well as the
effective cross sections (due to different proton/neutron ratios) are
slightly different for the Carbon target versus the non-deuteronic
part of the ND3 targets. Therefore, the dilution factor estimation
relies on the extraction of the ratio A of events coming from the
Carbon target versus those coming from the non-deuteronic part
of the ND3 target for normalization. Eq. [3.5] can be written again
as:

DF ≈ NND3 − A ·N12C

NND3

(3.6)

We have two slightly different beam energy settings, 2.494 GeV
and 2.565 GeV and unfortunately only 2.565 GeV Carbon data
were taken during the EG1 run period. The Carbon subtraction is
not reliable for the 2.494 GeV run groups due to the detector accep-
tance changes between two different beam energy runs. Therefore,
the dilution factor was determined by averaging within a given
kinematic bin over all 2.565 GeV run groups. The same dilution
factor was then applied to all run groups. This was possible since
all inbending run groups were taken with the same frozen ammonia
sample in the ND3 target cell. The ratio A was extracted by com-
paring the quasi-elastic tails, the tail left to the quasi-elastic peak,
of the Carbon and ND3 spectra, integrated up to the W limits given
in Table 3.6. The W limits were chosen such that according to
model calculations only quasi-elastic scattering from 15N and 12C
would contribute, not quasi-elastic scattering from d. These model
calculations were checked by comparing the results for different W
limits.
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Q2 bin upper W limit
0.3 0.835
0.36 0.832
0.42 0.816
0.5 0.790
0.6 0.760
0.71 0.717
0.84 0.655
1.0 0.609
1.19 0.506

Table 3.6: W limits for each Q2 bin below which the deuteron does not con-
tribute significantly.

3.6 Polarized Nitrogen and Residual Proton Corrections

The contribution from the polarizable target nuclei in the target
aside from the deuteron changes the observed asymmetries and
has to be corrected for. For the target materials NH3 and ND3,
the unpaired proton in 15N and the ≈ 2% of 14N contamination
are polarizable. The ND3 target also needs additional corrections
since it contains ≈1.5 % of unsubstituted or residual polarizable
protons from NH3 or ND2H. The correction to the asymmetry may
be written as 36:

A|| = C1

(

ARaw
|| − C2

)

+ Arc (3.7)

where the Arc is the radiative correction. The correction factors
C1 and C2 are given by

Cd
1 =

1

1− ηp +Dn/ (1− 1.5ωD)
≈ 1.02 (3.8)

Cd
2 =

UpF
p
2

UdF d
2

(Dn −Dp) (Ap − Arc) ≈ −0.03 (Ap − Arc) (3.9)

42



with related factors
ηp = number of protons

number of deuterons + number of protons
≈ 0.015

ηN = number of 14N
number of 14N+number of 15N

≈ 0.02

Dn = ηN
PN

Pd

gEMC(x)
9

PN = polarization of 15N = −0.40Pd

Pd = polarization of deuteron
gEMC(x) = correction for the EMC effects

Dp = ηN
P res

p

Pd+(2ηN−1)
PN
Pd

gEMC (x)

9

P res
p = residual proton polarization = 0.191+ 0.683 Pd

1.5ωD = deuteron D-state contribution, ωD ≈ 0.05
Up, Ud = radiative corrections due to the unpolarized cross sections

Our data are not corrected for these effects, but they are in-
cluded in the systematic error. Typically, C1 is considered as a
correction to the dilution factor. C2 has a significant kinematic
dependence and this correction amounted to approximately 5% of
the asymmetry 44.

3.7 π− and electron-positron pair contamination

Cerenkov counter (CC) and electromagnetic calorimeter (EC) in-
formation is used in the electron identification. The electron se-
lectivity and pion rejection strongly depend on the π/e ratio at
a given angle and momentum. The ratio of pions misidentified as
electrons to the number of electrons at the same angle and momen-
tum is a few percent with proper detector threshold and electron
cuts. Our electron cut required more than 0.5 photoelectrons and
E/p > 0.2. Matching π− and electron E/p spectra at E/p < 0.15,
where π− are peaked, one can estimate the ratio of a π− tail leaking
under the electron E/p peak [Fig.3.7]. The ratio was estimated by
integrating the number of π− and electrons with E/p > 0.2.

In all cases, the deduced pion contamination was rather small
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Figure 3.7: The solid line is the E/p spectrum for electrons in the EC, and the
shaded histogram represents the corresponding π− spectrum, scaled to match
the electron spectrum at low E/p.
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Inbending outbending
0.5 < p < 0.8 θ < 25◦ n/a 0.5%
0.5 < p < 0.8 θ > 25◦ 0.87% 2.6%
0.8 < p < 1.5 θ < 25◦ 0.82% 1.17%
0.8 < p < 1.5 θ > 25◦ 0.46% 1.0%
1.5 < p < 2.5 θ < 25◦ n/a n/a
1.5 < p < 2.5 θ > 25◦ n/a n/a

Table 3.7: The ratio of π/e for each momentum and angle bin.

(below 1.2%). Since the physics source (and kinematical depen-
dence) of this background is very similar to that from electron-
positron pairs (see below) and the latter gave a larger contribu-
tion, we included the pion contamination in the treatment of this
background and its systematic error. Even a much larger pion con-
tamination would be negligible compared to the overall systematic
error on the dilution factor from all sources (up to 30%).

The second source of electron contamination is electron-positron
pair production primarily created from bremsstrahlung photons
and the decay of a π0. Pair-produced electrons are not distin-
guishable from the electron actually originating in the beam. The
pair production from bremsstrahlung photons at forward angles is
negligible for EG1 ( since θe > 6◦ ). The main background is e+e−

pairs from the 1.2% decay probability of π0 → e+e−γ as well as
π0 → γγ followed by e+e− conversion of one of the two photons.
The ratio of e+/e− can be obtained by reversing the torus polarity
and comparing the combination of e− inbending and e+ inbending.
A detailed study 41 by Peter Bosted for our experiment gave the
results shown in Fig.3.8.

The correction to A|| is given by

Acorr
|| = Araw

|| (1− rRA) / (1− r) (3.10)
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Figure 3.8: The ratio of e+/e− vs W . Crosses are inbending and circles are
outbending data. Lines are from parametrizations following the Wiser fit. For
details, see Peter Bosted’s technical note.
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where r is the measured e+/e− rate ratio and RA is the ratio of the
asymmetries for the e+ and e−, RA = Apos

|| /A
neg
|| . For our analysis,

we assumed RA = 0 which means that on average the asymmetry
for all processes leading to e+e− final states is zero. Therefore, an
additional dilution factor of (1− r) was applied to our asymme-
tries, which we took from the table generated by Peter Bosted. We
used his results for a Cerenkov threshold of 0.5 photoelectrons, in
agreement with our electron cut. While this threshold likely leads
to an overestimation of the true dilution through electron-positron
pairs, it reflects at the same time the possible size of pion contam-
inations to the positron (and, to some extent, electron) samples
and therefore can serve as a safe upper limit for the remaining pion
dilution discussed above. According to the table, the ratio r is
usually less than a few percent but can rise up to 10% (lowest Q2

bin) or even 20% (highest Q2 bin) right at the high W edge of our
kinematic range.

The assumption RA = 0 is consistent with the results of Peter
Bosted’s analysis 41, although a slightly negative ratio RA < 0
is favored. We included a systematic error corresponding to the
maximum possible deviation from our assumption, RA = ±1, in
our final results.

3.8 Dead time correction

In addition to the slightly different beam charge for the two helicity
states, we also have to consider the possibility of slightly different
data acquisition dead times for the two helicity states. Unfortu-
nately, during the 1998 run of EG1, we did not have dead-time
gated scalers for each helicity state individually. Instead, the dead
time was estimated in a two-step process. First, we used the life-
time gated clock scaler to determine a linear relationship between
the total data acquisition rate ṅDAQ (typically around 1500 Hz)
and the total life time fraction (ratio between the gated and the
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ungated clock scaler). We found that all 2.5 GeV runs could be
described reasonably well with the relationship

LT = 1− 3.5× 10−5 × ṅDAQ (3.11)

resulting in an average life time of 0.95. In the second step, we used
the average count rate for the two helicity states for each run group
to calculate the helicity-dependent lifetime. Due mostly to the
charge asymmetry of the electron beam, the count rate for positive
helicity was about 0.3% higher than that for negative helicity (we
also included the additional effect of a small rate difference due to
the actual polarization-dependent scattering process). This lead
to a life-time asymmetry of typically 1.6 × 10−4, a small but not
negligible correction which we applied to the integrated Faraday-
cup counts for each helicity state.

3.9 Raw Asymmetry

All W spectra for ND3 (helicty + and -) and 12C were written into
ASCII files for each Q2 and W bin and each run group. We used
125 bins in W of width 0.02 GeV each, from 0 to 2.5 GeV, and 9
bins in Q2 of width ±9.4% each, beginning at 0.3 ± .028 GeV/c2

up to 1.2± .11 GeV/c2. We used the inbending run groups 1, 3, 4
and 5 for the final analysis (see section 3.2). The raw asymmetries
were calculated for each kinematic bin. and the Physics quantities
of interest extracted separately for each group, The final results
were then combined (according to their statistical weights) at the
last stage. All statistical errors and group-specific systematic errors
(due to beam charge asymmetries and beam and target polarization
as well as dead time) were calculated for each group individually
and then propogated through to the final results. Systematic errors
common to all groups (dilution factor, pion contamination, radia-
tive corrections etc.) were calculated by varying the data from each
group simultaneously and recording the combined effect in the final
results.
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The first step was to extract the raw deuteron asymmetry Araw
||

from the diluted count rate asymmetry using

Araw
|| =

1

DF · PbPt

Adil
|| (3.12)

where the diluted asymmetry is

Adil
|| =

N+/FC+ −N−/FC−

N+/FC+ −N−/FC− . (3.13)

Here N+ and N− are the counts from the ND3 target for each
helicity state, while FC+ and FC− are the life-time corrected total
numbers of Faraday cup clicks for each helicity state (proportional
to the integrated beam charge).

3.10 Radiative Correction

The electron travels in the bulk of target materials and may lose
energy before or after the scattering off the target nucleon. These
radiative energy losses are due to bremsstrahlung or ionization in
external material like entrance and exit windows. The actual scat-
tering kinematics can be changed due to the energy loss in materials
along the electron’s path. The corrections for these energy losses
are refered as external radiative corrections. In addition, one has
to consider the internal radiative corrections since the electron
scattering includes contributions from higher order process as well
as the Born process, a single virtual photon exchange. The longi-
tudinal asymmetry can be written in terms of the unpolarized (σu

||)
and polarized(σp

||) cross sections.

A|| =
σ↑↓ − σ↑↑

σ↑↓ + σ↑↑
=
σp

σu
(3.14)

The calculation of the internally radiated cross sections is decom-
posed into elastic, quasi-elastic and inelastic tail terms.

σp
r = σp

Born (1 + δν) + σp
el + σp

quasi + σp
inel (3.15)
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σu
r = σu

Born (1 + δν) + σu
el + σu

quasi + σu
inel (3.16)

where σel, σquasi are σinel the radiative tails due to the internal
bremsstrahlung for elastic, quasi-elastic and inelastic scattering
processes and

δν = δvert + δl
vac + δh

vac (3.17)

where δvert are the electron vertex corrections, and the δl
vac and

δh
vac are the vaccum polarization correction of the lepton and the

hadron respectively. We used a program which is based on the
SLAC radiative correction code, RCSLACPOL by Linda Stuart.
This code uses models of all Physics quantities (unpolarized and
polarized structure functions) in the DIS and resonance region to
calculate both unradiated (Born) and radiated (raw) asymmetries,
based on the approaches developed by Kuchto and Shumeiko 42 for
the internal corrections and by Tsai 43 for the external corrections,
including the radiative depolarization of the beam due to the exter-
nal bremsstrahlung 44. The models used are described in the next
section.

The code provides us with two numbers for each kinematic bin:
The so-called radiative dilution factor

FRC =
σu

Born (1 + δν) + σu
inel

σu
Born (1 + δν) + σu

el + σu
quasi + σu

inel

(3.18)

which accounts for the fraction of the measured rate that comes
from the radiated elastic and quasi-elastic tails, and the additive
correction

ARC = ABorn
model −

Aradiated
model

FRC
(3.19)

The Born asymmetry and the errors can then be written

ABorn
|| =

ARaw
||
FRC

+ ARC (3.20)

50



and

σBorn
A||

=
σRaw

A||

FRC
(3.21)

The statistical (and systematic) error bars of the extracted Born
asymmetries are thus increased over that of the measured raw
asymmetries due to the fact that the latter are “diluted” by the
radiated elastic and quasielastic tails.

3.11 Model Input

Models for polarized and unpolarized structure functions are used
both for radiative corrections (see previous section) and to extract
Physics quantities of interest (A1, g1 etc.) from the measured
asymmetries. All models used are based on parametrizations of
world data collected by Linda Stuart, Thia Keppel, Keith Grif-
fioen, Frank Wesselmann and the authors of the present note 47.
These parametrizations were modified by us to better describe the
region of low Q2 and low W 50.

For elastic and quasielastic scattering, form factor parametriza-
tions for Gp,n

E,M were used together with simple “Fermi-smearing”
and “Pauli-suppression” corrections. Form factor fits from P. Bosted51

were used, modified for the most recent results from JLab’s Hall
A52 for the proton electric form factor Gp

E. Some alternative model
fits were used for systematic studies.

The unpolarized structure functions F1 and F2 were modelled
using the most recent fit by the NMC collaboration 58 in the DIS
region and Thia Keppel’s parametrization of resonance data for
both the proton and the deuteron 53. The ratio R was taken from
the updated SLAC parametrization 55 (“R1998”). The low-Q2 re-
gion was modeled by using smooth extrapolations to the existing
photon point data 54. Alternatively, we also used fits by Bodek 59

and Ricco 56 for F1 and R for systematic studies. Neutron struc-
ture functions were extracted from the proton and deuteron fits by
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first correcting the latter for Fermi-smearing of the resonance peaks
(using the same PWIA Paris wave function model of the deuteron
as for the quasi-elastic asymmetries).

The virtual photon asymmetry A1 was modeled in the DIS re-
gion by an updated Q2 and x – dependent fit to the world data 47

(SLAC, EMC, SMC, HERMES and preliminary proton results from
EG1). In the resonance region, a combination of the extrapolated
DIS fit and asymmetries from the code AO was used that yielded
a good fit to the existing E143/E130 data. The fit was adjusted to
optimize the description of our preliminary proton data from EG1.
The overall fit was constrained to converge against the GDH sum
rule value for the integral IGDH at the real photon point.

For the photon asymmetry A2 in the DIS region, we used an
iterative fit of the Wandzura-Wilczek relation 49

g2(x) = −g1(x) +
∫ 1

x

g1(y)

y
dy (3.22)

which describes all existing deep inelastic data well 60. In the reso-
nance region, we used two different models. One assumes that the
Wandzura-Wilczek relation approximately holds in this region, as
well, augmented by a small “higher twist” term which is needed to
ensure that the Burkardt-Cottingham sum rule 48 is fulfilled at all
Q2,

∫ 1

0
g2(x)dx = 0 (3.23)

where the integral includes the elastic peak. As an alternative, we
used the values for A2 calculated wth MAID2000 up to W = 1.7,
with a smooth interpolation to the DIS region beyond this point.

A detailed description of all models and assumptions and the
actual code can be found at the secure EG1 web site 50.
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3.12 Electroweak Asymmetry

The parity-violating effects from the interference between the elec-
tromagnetic and weak neutral current interactions is another source
of unwanted asymmetries. The asymmetry from the interference
between γ and Z0 exchange is defined

AEW =
σR − σL

σR − σL

(3.24)

where σR and σL are the cross sections for the right-handed and left
handed electron. Experiments45 have been performed by scattering
polarized electrons off deuterons in the deep inelastic region. The
results are in agreement with the standard parton model and can
be roughly parametrized 61 by

AEW ≈ −(1.0± 0.3)× 10−4Q2. (3.25)

In our kinematic region of interest, this contribution would increase
the raw asymmetry by about ≈ 5 % of its value for the deuteron.
In the resonance region, the parity violating asymmetry is expected
to be even smaller (of order 10−5) and therefor negligible (approx-
imately the same size as that in elastic scattering)46. The elec-
troweak asymmetry only depends on the beam polarization so it
can be suppressed by reversing the target polarization. This asym-
metry is treated as a (negligible) contribution to our systematic
error.

3.13 Extracted Physics Results

As stated before, we calculated the virtual photon asymmetry,
A1(W,Q

2)+ ηA2(W,Q
2), and the spin structure function g1(x,Q

2)
for each kinematic bin and each run group separately, following the
relationships listed in Chapter 2. We used our models (see Section
3.11) for the structure function R (needed to calculate D) and for
F1 and A2 (needed to calculate g1). Since the statistics collected
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during the 1998 run of EG1 was too low to present the data in
the narrow kinematic bins originally chosen, we combined every 4
bins in W and the two lowest, the three intermediate and the four
highest Q2 bin into a single value for A1(W,Q

2) + ηA2(W,Q
2) and

g1(x,Q
2), properly weighing each bin by its statistical weight, e.g.:

g1average =

∑

i g1i/σ
2(g1i)

∑

i 1/σ
2(g1i)

(3.26)

σ(g1average) =

(

∑

i

1/σ2(g1i)

)−1/2

(3.27)

We also calculated the integral
∫

g1(x,Q
2)dx for each of our

Q2 bins, from pion threshold (W = 1.08 GeV) up to the edge of
the resonance region (W = 2.0 GeV) or the upper kinematic limit
reached by our data. The integral was approximated by converting
the ∆W = 0.02 GeV bins into the corresponding bin sizes ∆x and
summing over all bins,

∑

i g1(i)∆xi. Again, we combined the inte-
grals for the two lowest, the next three, the next two and the two
highest Q2 bins to increase the statistical accuracy of the results.

As our next step, we combined the results from group 1 and 3
and those from group 4 and 5 pairwise. First, we ascertained that
the results from the two run groups to be combined were consistent
with each other. We did this by calculating the z-score, e.g.:

z =
g1(Group1)− g1(Group3)

√

σ2(g1(Group1)) + σ2(g1(Group3))
(3.28)

for each of the remaining larger kinematic bins and the integrals.
From these z-scores, we then determined the average z-score for all
W bins for a given Q2 bin:

zaverage =

∑

i zi

n
(3.29)
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Quantity Q2 [GeV2/c2] average z σz χ2/d.o.f.
A1 + ηA2 0.34 0.357 0.289 1.081

0.53 -0.012 0.302 0.299
0.99 0.078 0.333 0.705
all 0.141 0.177 0.706

g1 0.34 0.302 0.289 1.061
0.53 0.041 0.302 0.278
0.99 0.135 0.333 0.768

Integral all 0.585 0.5 0.753

Table 3.8: Comparison of run groups 1 and 3.

as well as the total average z-score for all bins combined (and sep-
arately for all integral results as well). If the two datasets are
consistent, the expectation value for these average z-scores would
be zero and its standard deviation would be 1/

√
n, where n is the

number of bins entering the average. Both groups 1 and 3 and
groups 4 and 5 yielded z-scores within 1.2 standard deviations. We
also calculated the total χ2 for the comparison between two groups,
which again was less than 1.2 per degree of freedom in all cases.

After combining the result of group 1 with group 3 and of group
4 with group 5 (again using proper statistical weighting), we re-
peated the same procedure to combine the resulting two datasets
into one. In this case, we found only marginal agreement between
the two datasets; while all χ2 values were within 1.2 per degree
of freedom and the average z-score for the integrals was only 1.3
standard deviations off, there was a clear trend towards more neg-
ative asymmetries for the combined group 4+5 dataset for all 3
Q2 bins (yielding an average z-score of - 0.4, about 2.3 standard
deviations). Possible causes of this difference could be related to
the fact that groups 1 and 3 were taken much later during the run
than groups 4 and 5, with a slightly different beam energy (2.49
GeV vs. 2.57 GeV) and opposite beam polarization. However, no
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Quantity Q2 [GeV2/c2] average z σz χ2/d.o.f.
A1 + ηA2 0.34 0.101 0.289 1.041

0.53 -0.092 0.302 1.169
0.99 0.617 0.333 1.226
all 0.209 0.177 1.137

g1 0.34 0.185 0.289 0.960
0.53 -0.063 0.302 1.162
0.99 0.547 0.333 1.226

Integral all 0.456 0.5 0.627

Table 3.9: Comparison of run groups 4 and 5.

conclusive connection between these changes and the observed dif-
ferences could be found, and a purely statistical fluctuation cannot
be excluded. Therefore, we decided to combine these remaining
two datasets as well using statistical weighing. In any case, for
any given kinematical bin the average discrepancy was less than
its statistical error.

The resulting values for all quantities of interest are given in
Chapter 4. In the remaining Section, we discuss the treatment of
and results for systematic errors.

3.14 Systematic Errors

The largest contributions to the systematic errors on the asymme-
tries and spin structure functions come from radiative corrections,
uncertainties in the unpolarized structure functions F1 and R, and
from the 12C normalization to the ND3 spectra and the resulting er-
ror in the dilution factor. At higher Q2 and W , the contamination
with e+e− pairs and the uncertainty on the asymmetry A2 also con-
tribute significantly. The integrals have a sizable systematic error
contribution from resolution effects.

In the following, we discuss each individual source of system-
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Quantity Q2 [GeV2/c2] average z σz χ2/d.o.f.
A1 + ηA2 0.34 -0.424 0.289 1.725

0.53 -0.499 0.302 1.057
0.99 -0.279 0.333 0.795
all -0.409 0.177 1.234

g1 0.34 -0.428 0.289 1.875
0.53 -0.470 0.302 1.179
0.99 -0.342 0.333 1.004

Integral all -0.670 0.5 0.506

Table 3.10: Comparison of combined run groups 1+3 with 4+5.

atic errors in turn. All systematic errors were evaluated by chang-
ing the corresponding analysis input parameters simultaneously
for all 4 run groups and then look at the corresponding change
in the final combined quantities (the virtual photon asymmetry
A1(W,Q

2)+ηA2(W,Q
2), the spin structure function g1(x,Q

2), and
the integrals Γ1(Q

2)). We added the individual systematic errors
in quadrature to obtain the overall sytematic error for each data
point. The tables at the end of this Section give an overview of the
relative contribution from the major systematic errors to each of
our data points.

Helicity-dependent beam charge asymmetry
As noted before, there was a systematic difference of about 0.3%
between the average number of electrons contained in each positive
helicity “bucket” and the average number of electrons contained in
each negative helicity “bucket”. This effect has been corrected for
by integrating the number of Faraday cup integrator “clicks” (1
click corresponded to 0.1 nC integrated charge) for each bucket
and then normalizing the count rates for each helicity state by the
total accumulated charge for that state.

Possible systematic errors on this procedure could come from
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non-linearities of the Faraday cup electronics or “cross talk” be-
tween the helicity signal and the integrator. However, these errors
should be only a few percent of the effect and can therefore be
subsumed under the deadtime correction (see below) which is of
similar magnitude. In addition, since we took data with two dif-
ferent beam energies and two opposite orientations of the electron
spin at the target (relative to the source), this systematic error
would be largely canceled in the combined results from all four run
groups.

However, there is a small statistical error remaining which comes
from the small number of clicks recorded for each 2-second bucket
pair. Depending on when a given bucket begins, the very first click
(which is counted as a full 0.1nC) can represent anywhere from 0 to
0.1nC actual accumulated charge since the beginning of the bucket,
while at the end one can miss anywhere between 0 to 0.1nC of accu-
mulated charge if the corresponding click falls outside the window
of 1 second. Since the buckets are arranged in pairs of helicity
states and their complements, there is also a correlation between
the two buckets of such a pair (too little charge counted towards
the first one automatically entails too much for the second one).
The result is that there is a statistical error on the charge difference
Q+−Q− of 0.1nC/

√
2 for each bucket pair. This yields a statistical

error on the charge asymmetry of
√

Npairs/2 (0.1nC/Qtot) for a run

with total integrated charge Qtot and Npairs bucket pairs (see also
Ref. 62).

This statistical error is independent for each run group, and
was treated by increasing the statistical errors of the final results
of each run group by a corresponding amount before they were
combined. Since a change in the beam asymmetry affects both
the Physics asymmetries of interest and the quasi-elastic asymme-
try from which the polarization was obtained, we determined the
proper additional statistical error by varying the beam asymme-
try within this statistical error and then observing the resulting
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change in the final results after going through the whole analysis
chain again. For the inbending runs analyzed here, the additional
statistical error was negligible in all cases (less than 10% of the
count rate error).

CLAS detector resolution and momentum correction.
The finite CLAS detector resolution in angle and momentum of
the scattered electron yields an uncertainty of about 20 MeV on
the reconstructed W for each event. The systematic shift in the
elastic peak position (see Section 3.3) was also on the order of a
few MeV. Since the correction for this effect could only be done
for the elastic peak itself, there is the possibility for an additional
systematic shift in the inelastic region. Finally, the beam energy
and torus current also had some associated uncertainties yielding
a possible systematic error of a few MeV on the reconstructed W .

As a consequence, one can estimate that a certain fraction of
electron events that were assigned to a given 20 MeV bin in W re-
ally “belonged” to an adjacent bin. We simulated the effect of this
possible shift on the final Physics results by shifting all measured
counts by one bin (+20 MeV) in W and recalculating all results.
Of course, some of the observed change in these results is simply
due to statistics: since a partially different data set enters the cal-
culation for each kinematic bin, one can expect that the results
change by the corresponding statistical uncertainty. In the case of
the asymmetries A1 + ηA2 and spin structure functions g1, we had
combined 4 W bins of 20 MeV into the final bins, so only the top-
most of these 4 bins lost data and the bottommost bin contained
new data after the shift. One can show that the corresponding ex-
pected statistical variation of the result is σ/

√
2 on average, where

σ is the (ordinary) statistical error of the combined bin.

We used a χ2-test to compare the final results after the shift
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with those before it, with

χ2
red =

1

n

∑

i

(Ai − A′
i)

2

(

σi/
√

2
)2 (3.30)

where n is the total number of W bins. For the lowest Q2 bin the
resulting χ2 was around 0.85 per degree of freedom, indicating that
the change was insignificant compared to statistics. For the upper
two Q2 bin, the χ2 was up to 1.44 per degree of freedom, indicating
that the variation was 20% larger on average than purely statistical
fluctuation would predict. We assigned a systematic error of size
20% of the observed variation for each of the kinematic bins in this
case. In all cases the resulting systematic error is small compared
to both statistical and other systematic errors.

For the integrals Γ1 we directly took the observed variation as
the systematic error, since nearly all data entering the integral cal-
culation remained the same (only the kinematical weighting factors
changed due to the shift). The resulting variation of the integrals
in all cases was less than one half of the total systematic error.

Beam and target polarization.
As described in Section 3.4, the product of beam and target polar-
ization PbPt was directly extracted from the measured quasi-elastic
asymmetry in ~d(~e, e′). The main error on this measurement was
statistical (count rate limited); this statistical error was once again
applied for each run group separately (since the polarization prod-
uct was determined for each separately) and added to the total
statistical error for all final results of that run group as described
for the case of the charge asymmetry above. This additional statis-
tical error was typically less than 20% of the count rate statistical
error.

The largest systematic error on the determination of PbPt stems
from the dilution factor in the quasi-elastic region. Since this er-
ror is correlated with the corresponding one for the inelastic re-
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gion, it is described in the next subsection. The remaining uncer-
tainties on the theoretical value of the asymmetry (from the form
factors, deuteron wave function and radiative corrections) are all
much smaller than the statistical and dilution factor errors and
were therefore ignored.

12C and ND3 normalization, dilution factor.
Since the dilution factor was calculated using the measured 12C
spectrum, any discrepancy between that spectrum and that of the
non-deuteronic part of the ND3 target (including their relative nor-
malization) would yield an incorrect result. Possible differences be-
tween the two spectra come from the different ratios of neutrons to
protons in 15N versus 12C, different target thickness and radiation
length, different amount of liquid 4He coolant and slightly differ-
ent nuclear structure. Since the cross-normalization uses the low-
energy “tail” of the quasi-elastic peak, nuclear structure differences
(high-momentum components in the nuclear wave functions) and
contamination from high-momentum components in deuterium can
bias the result. Some estimate of the magnitude of these differences
can be gotten from a recent run of the second part of EG1, which
took data on both a pure 15N target and on 12C. Using the same
cross-normalization method as in the present analysis, differences
up to 3% where observed in the two W spectra.

We did a detailed study of different methods to determine the
cross normalization, including different upper W thresholds and us-
ing exclusive d(e, e′p) data as well as inclusive ones. We conclude
that a safe upper limit for the uncertainty in the normalization con-
stant A (see Eq. 3.6) is 5%. We increased this value to 6% in order
to cover all additional effects described above as well as further
dilution and contamination effects from polarized non-deuteronic
target material. Note that the corresponding change in the dilu-
tion factor itself was about 25% of its value throughout most of the
kinematic range (∆DF = ∆A/A × (1−DF ), see Eq. 3.6, with a
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typical value of DF = 0.19). By using a variation in A of 6% as
an upper bound we clearly cover all other systematic errors that
are proportional to the measured asymmetry (including beam and
target polarization).

The effect of this systematic error on the final results was deter-
mined by changing the normalization factor by 6%, recalculating
the dilution factor for all kinematic bins, recalculating the beam
and target polarization PbPt from the quasi-elastic asymmetry, and
then propagating the results through the whole analysis, including
the combination of the 4 groups into one.

Polarization contribution from N and H.
The nitrogen correction can be applied by two factors, Cd

1 and Cd
2 ,

Section[4.9]. The error on Cd
1 is neglected since this value is very

small and stable. The factor Cd
2 contains the proton asymmetry

and has a significant kinematic dependence. It can be calculated
using the measured proton asymmetry and its error. The study
from SLAC E15544 estimates the systematic error of approximately
5% of the asymmetry. It is therefore safely included in the dilution
factor systematic error which was assumed to be as much as 25%
(see above).

Pair symmetric background and π− contamination.
The effect from the electron-positron pair contamination is esti-
mated using the measured ratio of e+/e− as a direct dilution factor
to the asymmetry. The size of the systematic errors from the π−

contamination turned out to be smaller (less than 1%). As an up-
per limit for the combined systematic error from both sources, we
compared our final results with and without the dilution factor as
determined in Section 3.7.

Deadtime corrections.
We estimated the systematic error on our dead time correction (see
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Section 3.8) by comparing the final results with and without that
correction. This systematic error is negligible throughout the kine-
matic region.

Radiative corrections.
The systematic error from radiative corrections is due to the var-
ious model assumptions and calculational techniques used in the
radiative code. We studied in detail how our final results changed
with “reasonable” variations of the input models for the elastic nu-
cleon form factors (dipole fit, Bosted fit, and Gary-Krumpelmann
fit vs. standard fit), for the structure function R (fits by Bodek
and by Ricco et al. vs. standard fit), for A2 = 0 in the resonance
region, and for different fits to A1 in the resonance region. We also
studied the effect of different treatments of quasi-elastic scattering
(Fermi-momentum and Pauli blocking). We compared the results
with and without peaking approximation, and for different inter-
action points within our target. For the asymmetries A1 + ηA2

we also varied the model for F1 (Bodek fit vs. standard fit) as
part of the radiative correction error. For the structure function
g1 and the integrals Γ1, there is a very strong correlation between
the effect of F1 on the radiative correction and the direct influence
of F1 on the conversion from measured asymmetries. Therefore,
the systematic error due to F1 was not included here but rather
determined through a simultaneous variation of F1 in the radiative
code and in the conversion (see next subsection).

We added the largest observed variations in each of these cate-
gories in quadrature to obtain the final systematic error. This error
is mostly dominated by the contributions from the elastic form fac-
tor variations and different models of A1 in the resonance region.

Model-dependence of extracted quantities, F1, R, A2.
As discussed in Section 3.11, the extracted asymmetries A1 + ηA2

depend on the value of the ratio R of longitudinal to transverse vir-
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tual photon absorption cross sections. Our default model as well
as the parametrization of Ricco et al. yielded only small values of
R ≤ 0.1 in the first and second resonance regions, while Bodek’s
parametrization gives rather large values of R ≈ 0.2 throughout
the full kinematic range. The resulting systematic error is one of
the largest affecting the extracted asymmetries at low W .

In addition, the structure function F1 is also needed to extract
g1 and the integral Γ1 from our data. Again, we estimated this error
by comparing the final results for the Bodek parametrization with
our own, simultaneously replacing the Bodek fit for F1 in both the
conversion from A|| to g1 and in the radiative code (see previous
subsection). The combined effect on g1 and the integrals turned
out to be rather small.

Finally, the asymmetry A2 was also varied from our default
model to the results from MAID2000 and to A2 = 0 throughout
the resonance region. The systematic error on g1 and Γ1 due to A2

was taken as the maximum deviation from the “standard” results
due to these two variations. This error was largest at higher values
of W .

Summary of all systematic errors.
The following tables list all major systematic errors for each of the
final kinematic bins for the extracted asymmetries, the spin struc-
ture functions and the integrals. Note that the systematic errors
for the structure function g1 and the integrals Γ1 are not normalized
to the number of nucleons (i.e. divided by two) as is customary in
the literature.
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W StrucFunc Dilution Rad Corr Resolution pions/e+e- TOTAL
1.12 0.053 0.181 0.082 0.000 0.000 0.207
1.20 0.048 0.007 0.037 0.000 0.000 0.061
1.28 0.064 0.014 0.045 0.000 0.000 0.081
1.36 0.027 0.021 0.060 0.000 0.000 0.069
1.44 0.010 0.010 0.024 0.000 0.000 0.028
1.52 0.007 0.008 0.012 0.000 0.000 0.017
1.60 0.002 0.003 0.014 0.000 0.000 0.015
1.68 0.003 0.021 0.009 0.000 0.001 0.023
1.76 0.001 0.005 0.008 0.000 0.003 0.011
1.84 0.002 0.012 0.012 0.000 0.005 0.017
1.92 0.008 0.019 0.012 0.000 0.014 0.028
2.00 0.001 0.001 0.008 0.000 0.005 0.009

Table 3.11: Contribution of different systematic error sources to the total
systematic error for A1 + ηA2 at Q2 = 0.34 GeV2/c2.

W StrucFunc A2 Dilution Rad Corr. Resolution pions/e+e- TOTAL
1.12 0.049 0.004 0.067 0.006 0.000 0.000 0.084
1.20 0.056 0.004 0.008 0.009 0.000 0.000 0.058
1.28 0.052 0.010 0.014 0.009 0.000 0.000 0.065
1.36 0.010 0.011 0.015 0.009 0.000 0.000 0.043
1.44 0.018 0.010 0.012 0.009 0.000 0.000 0.029
1.52 0.003 0.010 0.010 0.009 0.000 0.000 0.020
1.60 0.018 0.015 0.002 0.009 0.000 0.000 0.025
1.68 0.014 0.014 0.032 0.009 0.000 0.002 0.039
1.76 0.005 0.016 0.008 0.009 0.000 0.004 0.021
1.84 0.002 0.016 0.017 0.009 0.000 0.007 0.030
1.92 0.032 0.015 0.031 0.009 0.000 0.024 0.056
2.00 0.011 0.015 0.003 0.009 0.000 0.009 0.024

Table 3.12: Contribution of different systematic error sources to the total
systematic error for g1 at Q2 = 0.34 GeV2/c2.
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W StrucFunc Dilution Rad Corr Resolution pions/e+e- TOTAL
1.12 0.050 0.027 0.182 0.010 0.000 0.191
1.20 0.062 0.027 0.032 0.032 0.000 0.081
1.28 0.041 0.022 0.034 0.019 0.000 0.061
1.36 0.002 0.020 0.057 0.009 0.000 0.062
1.44 0.005 0.010 0.018 0.006 0.000 0.022
1.52 0.011 0.013 0.017 0.008 0.001 0.025
1.60 0.005 0.017 0.017 0.001 0.002 0.024
1.68 0.001 0.011 0.008 0.005 0.003 0.015
1.76 0.000 0.001 0.009 0.005 0.002 0.011
1.84 0.001 0.002 0.011 0.001 0.007 0.013
1.92 0.001 0.000 0.011 0.006 0.002 0.013

Table 3.13: Contribution of different systematic error sources to the total
systematic error for A1 + ηA2 at Q2 = 0.53 GeV2/c2.

W StrucFunc A2 Dilution Rad Corr. Resolution pions/e+e- TOTAL
1.12 0.000 0.004 0.003 0.007 0.001 0.000 0.008
1.20 0.029 0.002 0.016 0.007 0.003 0.000 0.034
1.28 0.007 0.006 0.012 0.016 0.002 0.000 0.022
1.36 0.011 0.006 0.007 0.024 0.001 0.000 0.028
1.44 0.004 0.009 0.005 0.008 0.000 0.000 0.013
1.52 0.007 0.012 0.012 0.014 0.002 0.001 0.023
1.60 0.006 0.018 0.016 0.010 0.000 0.002 0.027
1.68 0.008 0.017 0.012 0.006 0.001 0.004 0.023
1.76 0.007 0.019 0.002 0.006 0.002 0.002 0.022
1.84 0.003 0.020 0.003 0.011 0.000 0.009 0.025
1.92 0.008 0.020 0.001 0.013 0.002 0.003 0.025

Table 3.14: Contribution of different systematic error sources to the total
systematic error for g1 at Q2 = 0.53 GeV2/c2.
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W StrucFunc Dilution Rad Corr Resolution pions/e+e- TOTAL
1.12 0.060 0.004 0.109 0.000 0.000 0.125
1.20 0.033 0.010 0.016 0.000 0.000 0.038
1.28 0.009 0.001 0.023 0.000 0.001 0.025
1.36 0.003 0.010 0.045 0.000 0.001 0.046
1.44 0.007 0.010 0.012 0.000 0.003 0.017
1.52 0.009 0.030 0.011 0.000 0.012 0.035
1.60 0.008 0.030 0.016 0.000 0.015 0.038
1.68 0.004 0.018 0.005 0.000 0.019 0.027
1.76 0.004 0.013 0.009 0.000 0.029 0.033

Table 3.15: Contribution of different systematic error sources to the total
systematic error for A1 + ηA2 at Q2 = 0.99 GeV2/c2.

W StrucFunc A2 Dilution Rad Corr. Resolution pions/e+e- TOTAL
1.12 0.002 0.001 0.004 0.002 0.005 0.000 0.007
1.20 0.004 0.002 0.003 0.003 0.001 0.000 0.006
1.28 0.003 0.002 0.001 0.005 0.001 0.000 0.007
1.36 0.003 0.005 0.002 0.010 0.004 0.000 0.013
1.44 0.004 0.007 0.003 0.004 0.002 0.001 0.010
1.52 0.008 0.010 0.016 0.004 0.001 0.007 0.022
1.60 0.007 0.014 0.016 0.006 0.001 0.009 0.025
1.68 0.006 0.015 0.011 0.003 0.002 0.015 0.025
1.76 0.005 0.018 0.010 0.004 0.003 0.025 0.033

Table 3.16: Contribution of different systematic error sources to the total
systematic error for g1 at Q2 = 0.99 GeV2/c2.
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Q2 StrucFunc A2 Dilution Rad Corr. Resolution pions/e+e- TOTAL
0.337 0.003 0.002 0.003 0.005 0.007 0.000 0.010
0.532 0.001 0.003 0.000 0.003 0.003 0.000 0.005
0.786 0.002 0.003 0.002 0.001 0.003 0.002 0.006
1.104 0.001 0.003 0.001 0.001 0.001 0.002 0.004

Table 3.17: Contribution of different systematic error sources to the total
systematic error for the integrals Γ1(Q

2).
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Chapter 4

Results

As described in the previous chapters, we extracted the asym-
metries A1(W,Q

2) + ηA2(W,Q
2) and the spin structure functions

g1(W,Q
2) and their integrals from our data. For the asymmetries

and spin structure functions, we combined our original 48 bins inW
(from 1.08 GeV to 2.04 GeV) into 12 larger bins of size ∆W = 0.08
GeV, weighing each individual bin by its proper statistical weight
(essentially the number of counts). We quote our results for each
of these bins at the W of the bin center.

We also combined our original 9 bins in Q2 into 3 new bins,
again using proper statistical weighting. We calculated the average
Q2 of each of these 3 bins by weighting the individual Q2 bins with
their total number of counts within the W region of interest. The
three bins had average Q2 of 0.34 GeV2/c2 (ranging from 0.27 to
0.39 GeV2/c2), 0.53 GeV2/c2 (ranging from 0.39 to 0.65 GeV2/c2)
and 1.0 GeV2/c2 (ranging from 0.65 to 1.3 GeV2/c2). The resulting
values for the asymmetries and spin structure functions can be
considered as averaged over the final W and Q2 bins.

On the other hand, for the integrals only averages over Q2 were
performed while the smaller bins in W were directly integrated. In
addition, the highest bin in Q2 was subdivided into two smaller
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W A1 + ηA2 Stat. Error Syst. Error
1.12 0.309 0.530 0.207
1.20 -0.273 0.208 0.061
1.28 -0.406 0.169 0.081
1.36 -0.223 0.191 0.069
1.44 -0.124 0.161 0.028
1.52 -0.077 0.131 0.017
1.60 -0.036 0.119 0.015
1.68 0.140 0.102 0.023
1.76 0.063 0.101 0.011
1.84 0.055 0.086 0.017
1.92 -0.254 0.080 0.028
2.00 -0.084 0.072 0.009

Table 4.1: The measured virtual photon asymmetry A1 +ηA2 for the deuteron
at Q2 = 0.34 GeV2/c2.

bins, with average Q2 of 0.79 GeV2/c2 (ranging from 0.65 to 0.92
GeV2/c2) and 1.1 GeV2/c2 (ranging from 0.92 to 1.3 GeV2/c2).
In the following, we will first present our results for A1(W,Q

2) +
ηA2(W,Q

2) and then those for g1(W,Q
2) and the integrals.

4.1 A1 + ηA2

The combination of photon asymmmetries A1+ηA2 extracted from
our data for three different Q2 bins are listed in Tables 4.1–4.3, to-
gether with their statistical and full systematic errors. We show the
results for our intermediate Q2 bin in Figure 4.1, together with pre-
vious data from SLAC and some model calculations. A comparison
of the three different Q2 bins can be found in Figure 4.2.

Since we didn’t measure the asymmetry with the target polar-
ization perpendicular to the electron beam (A⊥), we cannot directly
extract the asymmetry A1 or A2. The interference term A2 is lim-
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W A1 + ηA2 Stat. Error Syst. Error
1.12 -0.327 0.267 0.191
1.20 -0.411 0.109 0.081
1.28 -0.316 0.090 0.061
1.36 -0.070 0.101 0.062
1.44 0.086 0.085 0.022
1.52 0.144 0.068 0.025
1.60 0.147 0.063 0.024
1.68 0.061 0.054 0.015
1.76 0.006 0.053 0.011
1.84 0.024 0.050 0.013
1.92 -0.045 0.047 0.013

Table 4.2: The measured virtual photon asymmetry A1 +ηA2 for the deuteron
at Q2 = 0.53 GeV2/c2.

W A1 + ηA2 Stat. Error Syst. Error
1.12 -0.529 0.223 0.125
1.20 -0.299 0.101 0.038
1.28 -0.106 0.083 0.025
1.36 -0.005 0.091 0.046
1.44 0.139 0.078 0.017
1.52 0.340 0.067 0.035
1.60 0.307 0.061 0.038
1.68 0.195 0.054 0.027
1.76 0.184 0.056 0.033

Table 4.3: The measured virtual photon asymmetry A1 +ηA2 for the deuteron
at Q2 = 0.99 GeV2/c2.
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Figure 4.1: A1 + ηA2 versus W for the Q2 = 0.53 GeV2/c2 bin. Our data
points are indicated as triangles with statistical errors only. The size of the
systematic error is indicated by the shaded band at the bottom of the graph.
Previous data from SLAC E143 are shown as light circles with statistical and
systematic errors combined. The positions of several prominent resonances are
indicated by the labeled arrows. The solid line is our model parametrization
of the world data and the dashed line is the resonant contribution to A1 from
the AO parametrization.
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Figure 4.2: Our Data for three different bins in Q2, together with statistical
errors. (Systematic errors are highly correlated between different Q2 bins and
should have only minor effects on the observed Q2-dependence). The long–
dashed line shows our model parametrization for Q2 = 1.0 GeV2/c2 and the
short–dashed line shows our model for Q2 = 0.34 GeV2/c2.

73



ited by |A2| <
√
R where the value of R is around 0.1 - 0.3 at

Q2 = 0.5 GeV2 and the typical size of η for our experiment ranges
from 0.1 at W = 2 GeV to 1.2 right at pion threshold (W = 1.08
GeV) at Q2 = 0.5 GeV2. Correspondingly, the asymmetry A2 could
contribute as much as 0.07 (high W ) to 0.15 (at threshold) to the
asymmetries shown in Figs.[4.1–4.2]. However, according to our
model (see Section 3.11) this contribution should be more typically
of order 0.02.

With this caveat, one can conclude that the data shown in
Fig.[4.1] indeed exhibit the expected behavior for the asymmetry
A1. In the region of the Delta(1232) resonance, the asymmetry is
strongly negative, and fully compatible with the naive expectation
A1 = −0.5. We also show the predicted full asymmetry from our
model and a prediction for the resonance contribution to A1 alone.
The latter is based on the code “AO”, which uses a fit of exclusive
pion electro- and photoproduction data to parametrize resonant
and non-resonant transition amplitudes. Beyond W = 1.4 GeV,
the asymmetry becomes positive, indicating that A1/2 transition
amplitudes begin to dominate even at this rather low Q2. How-
ever, even in the region of the S11 resonance the asymmetry is
markedly smaller (around 0.15) than for the proton (around 0.4,
see Ref. 63), indicating that for the neutron alone the A3/2 ampli-
tude may still be larger. In general, our data agree fairly well with
model predictions and the existing SLAC data, while improving
significantly on the statistical errors and the resolution in W as
well as the coverage down to lower Q2 of the latter.

A comparison of our results for different Q2, Fig.[4.2], shows a
general trend to more positive asymmetries for higherQ2, especially
in the region of the S11 and D11 resonances. This is in agreement
with the expected transition from A3/2 dominance at low Q2 (and
especially at the photon point, where it yields the negative value
for the GDH sum rule), and A1/2 dominance at higher Q2. In the
limit of very large Q2, the asymmetry A1 in the resonance region
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should become close to 1, as predicted by pQCD as well as modern
quark models (Isgur) and duality arguments. A similar behavior is
observed for the proton asymmetries.

Our data together with the corresponding proton results should
in principle allow us to separate the different isospin contribu-
tions to the resonant and non-resonant asymmetries. However,
the first run of EG1 analyzed here did not yield enough statistics
to make a direct separation of proton and neutron contributions to
the deuteron asymmetry feasible. In the meantime, the complete
EG1 data set has been collected, which will yield a nearly tenfold
improvement in statistics and a wider coverage towards both lower
and higher Q2 and higher W .

4.2 Spin Structure Function g1 and its First Moment

The spin structure function g1(W,Q
2) was calculated from the pho-

ton asymmetry A1 + ηA2 for each bin using

gD
1 (W,Q2) = τ

1+τ

(

A1(W,Q
2) + 1√

τ
A2(W,Q

2)
)

FD
1 (W,Q2)

= τ
1+τ

(

A1(W,Q
2) + ηA2(W,Q

2) +
(

1√
τ
− η

)

A2(W,Q
2)
)

FD
1 (W,Q2).

(4.1)
Here, FD

1 ≈ F p
1 + F n

1 stands for the unpolarized structure func-
tion of the deuteron (not normalized). Because of the partial can-

cellation of the two terms in
(

1√
τ
− η

)

, g1 is less sensitive to the

asymmetry A2 than A1 alone. We list our results for gD
1 with their

statistical and full systematic errors in Tables [4.4 - 4.6].
For the remainder of our presentation, we have divided all

deuteron structure functions (FD
1 , gD

1 ) by 2 to follow standard con-
ventions (the structure functions are taken per nucleon in the tar-
get). In Fig. 4.3, we show our results for all three values of Q2,
plotted against the Nachtmann scaling variable ξ = Q2/m(ν + q).
This variable corresponds to Bjorken x at high Q2 while it takes
target nucleon mass corrections into account and therefore reduces
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W g1 Stat. Error Syst. Error
1.12 0.065 0.116 0.084
1.20 -0.230 0.160 0.058
1.28 -0.343 0.148 0.065
1.36 -0.159 0.134 0.043
1.44 -0.117 0.134 0.029
1.52 -0.079 0.155 0.020
1.60 -0.043 0.146 0.025
1.68 0.223 0.148 0.039
1.76 0.115 0.150 0.021
1.84 0.095 0.130 0.030
1.92 -0.404 0.132 0.056
2.00 -0.140 0.131 0.024

Table 4.4: The measured spin structure function g1 for the deuteron at Q2 =
0.34 GeV2/c2.

W g1 Stat. Error Syst. Error
1.12 -0.050 0.035 0.008
1.20 -0.176 0.050 0.034
1.28 -0.166 0.047 0.022
1.36 -0.016 0.046 0.028
1.44 0.048 0.048 0.013
1.52 0.150 0.057 0.023
1.60 0.160 0.056 0.027
1.68 0.091 0.059 0.023
1.76 0.031 0.061 0.022
1.84 0.055 0.060 0.025
1.92 -0.032 0.061 0.025

Table 4.5: The measured spin structure function g1 for the deuteron at Q2 =
0.53 GeV2/c2.
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W g1 Stat. Error Syst. Error
1.12 -0.043 0.015 0.007
1.20 -0.057 0.022 0.006
1.28 -0.019 0.021 0.007
1.36 0.006 0.022 0.013
1.44 0.047 0.025 0.010
1.52 0.172 0.032 0.022
1.60 0.178 0.032 0.025
1.68 0.144 0.035 0.025
1.76 0.163 0.042 0.033

Table 4.6: The measured spin structure function g1 for the deuteron at Q2 =
0.99 GeV2/c2.

“kinematical higher twist” scaling-violating effects at lower Q2. To-
gether with our data, we also show as reference the prediction for
g1(ξ, Q

2 = 10 GeV2) from our model. The assumption of local
quark-hadron duality predicts that structure functions like F1 and
g1 should, on average, approach a universal scaling curve if plot-
ted versus the variable ξ, even in the resonance region. This is
confirmed down to rather low Q2 in the case of the unpolarized
structure function F p

2 . Apparently, local duality does not work as
well for the polarized structure function g1 at high values of ξ where
the asymmetry is dominated by the Delta resonance and therefore
is negative. Overall, the approach to the “asymptotic value” for
Q2 = 10 GeV2 seems to be relatively slow; only our highest Q2

bin shows fairly good agreement beyond the region of the Delta
resonance.

We integrated our results for g1(x,Q
2) over the (ordinary) Bjorken

variable x for four different values of Q2, beginning at quasi–free
pion production threshold (W = 1.08 GeV) up to the kinematic
limit of our data. We expect that these integrals are close to
an incoherent average over the individual nucleons (proton and
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Figure 4.3: The spin structure function g1 for the deuteron at 3 different values
of Q2, plotted against the Nachtmann variable ξ together with an extrapolation
of a fit to the deep inelastic data at Q2 = 10 GeV2. Following standard
conventions, all values have been divided by 2 to normalize to the number of
nucleons in deuterium. The error bars are statistical only, while the shaded
bands indicate systematic error bars for the three data sets.
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Q2 Wmax Meas. Γ1 Stat. Error Syst. Error Full Γ1 Syst. Error
0.34 2.00 -0.027 0.012 0.005 -0.034 0.007
0.53 2.00 -0.008 0.004 0.002 -0.013 0.006
0.79 1.96 0.008 0.003 0.003 0.009 0.006
1.10 1.80 0.007 0.003 0.002 0.016 0.005

Table 4.7: The first moments of the spin structure function g1 of the deuteron.
Following standard convention, the integral is normalized to the number of
nucleons in deuterium.

neutron) in deuterium, reduced by the D-state correction factor
(1 − 3/2PD). The results are shown in the third column of Ta-
ble 4.7 and the upper kinematic limits for W are listed in the
second column. These upper W bounds correspond to lower limits
of x = (0.1, 0.15, 0.21, 0.32) for the 4 Q2 bins, respectively. We use
our model to estimate the contribution to the integral below these
limits and show the resulting “full” integrals and their systematic
errors in the last two columns of Table 4.7. These systematic errors
include a contribution from the uncertainty of this extrapolation
to x = 0. To estimate this uncertainty, we studied the variation of
the low–x contribution due to different model assumptions; also,
since there are no high-precision data below x = 0.02, we added a
systematic error equal to the value of the integral from x = 0 up
to 0.02.

Our results of the first moment Γ1(Q
2) of the spin structure

function g1 are also shown in Fig. 4.4. The solid line at higher Q2

is a fit to the world’s data extrapolated down to lower Q2 using
pQCD corrections up to second order. The dotted line indicates
the slope for the integral at Q2 = 0 predicted by the GDH sum rule.
The dashed line (the bottom line) is the AO calculation for the con-
tribution from the nucleon resonances only. The code AO is based
on a parametrization of measured pion electro- and photoproduc-
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Figure 4.4: The first moment of the spin structure function g1 of the deuteron
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tion amplitudes. The other line labeled as Burkert/Ioffe (the top
line) is the AO calculation plus a term that depends smoothly on
Q2 and interpolates between the part that is missing at Q2 = 0 to
saturate the GDH sum rule and the full value of Γ1 in the high Q2

limit. Fig. 4.4 also shows the prediction from the model by Soffer
and Teryaev 29. They use an interpolation of the integral over the
structure function gT = g1 + g2 which converges to Γ1 at high Q2

and remains positive down to the photon point where its slope is
given by a combination of the GDH sum rule and elastic nucleon
form factors. They subtract the contribution from the integral
over g2 (which is related to nucleon form factors via the Burkard-
Cottingham sum rule) to obtain the integral Γ1 alone. The solid
triangles are based on EG1 data alone and the open triangles in-
clude the estimated contribution to the integral from beyond our
kinematic limits. The inner error bars are statistical and the outer
error bars represent the systematic errors added in quadrature.
They include the uncertainty on the estimated low-x contribution
for the full integrals (open triangles).

The first conclusion one can draw from Fig. 4.4 is that the
integral over our measured region (essentially the resonance re-
gion) is in rather good agreement with the prediction of the AO
parametrization for resonance contributions only. The data follow
the predicted trend from negative values at small Q2, where the
Delta resonance contributes most of the integral and most other
resonances are also dominated by the A3/2 transition amplitude,
to positive values at higher Q2, where the A1/2 amplitude begins
to take over and the importance of the Delta is diminished. Since
we did not include Born terms or other non-resonant terms in the
curve labeled “AO”, one can conclude that these terms must con-
tribute relatively little to the integral over the resonance region in
the case of the deuteron. This may be due to a partial cancellation
between the asymmetry of the proton (which is likely positive for
these terms) and that of the neutron.

81



Extrapolating the integral down to x = 0 seems to change the
results only moderately (in the negative direction at low Q2 and
towards more positive values at higher Q2). This can be under-
stood again as a cancellation between a strongly negative-going
trend of the structure function gn

1 (x) as x goes to zero and a more
positive trend for gp

1(x), according to existing DIS data and NLO
analyses. However, this extrapolation is rather uncertain today (as
it is in the DIS region), and the error bars on our open triangles
may be an underestimation of that uncertainty. The evolution of
our knowledge of the low–x behavior of spin structure functions
over the past five years is also partially responsible for the mild
discrepancy between our quoted results and those from the E143
experiment at SLAC – if we replace the published values for the
full integrals with present-day extrapolations for the unmeasured
region, all SLAC data points would move down by about 0.003
to 0.006. With this proviso, our data are (marginally) consistent
with the SLAC data, but have much improved statistical errors
and cover lower Q2. Our data are also (marginally) consistent with
both predictions for the full integral shown in Fig. 4.4, although
they lie consistently below both curves (and in particular that by
Burkert and Ioffe). Correspondingly, they seem to indicate a slower
transition from the negative values near the photon point to the
positive asymptotic value at high Q2. The zero–crossing appears
to occur somewhere between Q2 = 0.5 GeV2 and Q2 = 0.8 GeV2,
significantly later than in the case of the proton.

Clearly, neither the kinematic reach (in W and Q2) nor the sta-
tistical precision of the present data set allow a definite statement
about the validity of (or the approach towards) the GDH sum rule
limit. The vastly larger data set of the recently completed second
run of EG1 will help dramatically in this respect. However, our
data confirm the general trend required of any theory that aims
to describe the spin structure of the nucleon over the full range of
length scales, from the real photon point to the scaling limit.
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