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Abstract

A search is presented for direct top squark pair productidimal states with one isolated
electron or muon, jets, and missing transverse momentumotomp-proton collisions at a
center-of-mass energy of 7 TeV. The measurement is based ¢4 of data collected with
the ATLAS detector at the LHC. The top squarks are assumeddaydeach to a top quark
and the lightest supersymmetric particle (LSP). The dataf@aund to be consistent with
Standard Model expectations. Top squark masses betweean23@40 GeV are excluded
at 95% confidence for massless LSPs, and top squark massesl &@0 GeV are excluded
for LSP masses up to 125 GeV.
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1 Introduction

Weak scale Supersymmetry (SUSY)[[1-9] is an extension t&thadard Model (SM) that provides a
solution to the hierarchy problem by introducing supersyatrin partners of all SM particles. In the
framework of a generi®-parity conserving minimal supersymmetric extension ef$v (MSSM) [10-
14], SUSY patrticles are produced in pairs, and the lightegessymmetric particle (LSP) is stable and
can be a dark matter candidate. In a large variety of modedd, $P is the lightest neutralin;@‘l’,”which
only interacts weakly and thus escapes detection.

Light top squarks (stop) are suggested by naturalness amgsrfil5=18]. In this analysis, one stop
mass eigenstatet?l]i is assumed to be significantly lighter than the other squafksearch is presented
for directly pair-produced stops, which are each assume@tay to a top quark and the LSP. The final
state for such a signal is characterized by a top quark fiaproduced in association with large missing
transverse momentum (the magnitude of which is referred Ejg‘éf*% from the undetected LSPs.

Searches for direct stop pair production have been prdyioaported by the CDF and DO exper-
iments assuming fferent SUSY mass spectra and decay modes (see for exampld®eind [20]).
Searches for stops vigj production have been reported by the ATLASI[21-23] and CME 28] col-
laborations.

The ATLAS detector([26] has a solenoid, surrounding the linirecking detector (ID), and a barrel
and two endcap toroidal magnets supporting the muon speetes. The ID consists of silicon pixel,
silicon microstrip, and transition radiation detectorsl gmovides precision tracking of charged parti-
cles for pseudorapidityy] < 2.5 4. The calorimeter placed outside the solenoid coygrs 4.9 and
is composed of sampling electromagnetic and hadronic inadbers with either liquid argon (LAr) or
scintillating tiles as the active media. The muon specttenmgurrounds the calorimeters and consists of
a system of precision tracking chambersyjin< 2.7, and detectors for triggering n| < 2.4.

The analysis is based on data recorded by the ATLAS detat@011 corresponding to 4.7 thof
integrated luminosity with the LHC operating apa center-of-mass energy of 7 TeV. The data were col-
lected using a logical OR oflﬁfT“issand a single lepton (electron or muon) trigger. The combtrigders
reach plateaufiiciencies>98% for the chosen selection criteria BR'*®and the leptons. Requirements
that ensure the quality of beam conditions, detector perdoice and data are imposed.

2 Signal and Background Simulation

Monte Carlo (MC) event samples with full ATLAS detector silation [27] based on theant4 pro-
gram [28] are used to aid in the description of the backgroamd to model the SUSY signal. The
effect of multiple pp interactions per bunch crossing is also simulated. Pramtuct top quark pairs is
simulated withMC@NLO 4.01 [29,30], alternatively usingLPGEN 2.14 [31] andPowHeg HVQ patch

4 [32-£34]. The data modeling is improved for high jet muligjties by reweighting th&C@NLO sam-
ple to match the jet multiplicity distribution IALPGEN 2.14. AcerMC 3.7 [35] samples with various
parameter settings are used to assess the uncertaintasasss with initial and final state radiation
(ISR/FSR) [36]. A top quark mass of 132GeV is used consistentlyV and Zy* production in associa-
tion with jets are each modeled wit.PGEN. DibosonVV (WW, WZ, ZZ) production is simulated with
ALPGEN and cross-checked WIthERWIG 6.520 [37]. Single top production is modeled wiMC@NLO,
andtt events produced in association wEhW or WW (tt + V) are generated witMADGRAPH 5 [38].
Next-to-leading order (NLO) PDFRST10 [39] are used with all NLO MC samples. For all other sam-

IATLAS uses a right-handed coordinate system with its origithe nominal interaction point in the centre of the detecto
and thez-axis along the beam pipe. Cylindrical coordinateg) are used in the transverse plagebeing the azimuthal
angle around the beam pipe. The pseudorapiglity defined in terms of the polar angleby n = —Intan@/2), andAR =

V(An)? + (A¢)?



ples, LO PDFs are usetRSTmcal [40] with HERWIG, andCTEQ6L1 [41] with ALPGEN andMADGRAPH.
Fragmentation and hadronisation for #1PGEN andMC@NLO samples are performed wWiHERWIG, using
JIMMY 4.31 [42] for the underlying event, and for tHADGRAPH samplePYTHIA 6.425 [43] is used.
Thett, single top andt + V production cross sections are normalized to approximatetoenext-to-
leading order (NNLO)[[44], next-to-next-to-leading-laglamic accuracy (NL@NNLL) [45H47] and
NLO [48] calculations, respectively. QCD NNLEEWZ [49] inclusive W andZ cross sections are used
for the normalization of th&V+jets andZ+jets processes. Expected diboson yields are normalizad usi
NLO QCD predictions obtained withCFM [50,/51].

Stop pair production is modeled usiBRWIG++ 2.5.2 [52]. A signal grid is generated with a
step size of 50 GeV both for the stop and LSP mass values. ISigss sections are calculated to NLO
in the strong coupling constant, including the resummatibeoft gluon emission at next-to-leading-
logarithmic accuracy (NL&NLL) [53H55]. The nominal cross section and the uncertaary taken
from an envelope of cross section predictions usirtedint PDF sets and factorisation and renormali-
sation scales, as described in Ref/[56].

3 Event Selection and Reconstruction

Events must pass basic quality criteria to reject deteaimerand non-collision backgrounds [57,58] and
are required to have 1 reconstructed primary vertex associated with five or mmaeks with transverse
momentumpr > 0.4 GeV. Events are retained if they contain exactly one mu@hwath || < 2.4 and

pr > 20 GeV or one electron passing ‘tight” [60] selection cidewith || < 2.47 andpt > 25 GeV.
Leptons are required to be isolated from other particlese Stalar sum of the transverse momenta
of tracks above 1 GeV within a cone of siaR < 0.2 around the lepton candidate is required to be
< 10% of the electrompr, and< 1.8 GeV for the muon. Events are rejected if they contain aofuti
leptons passing looser selection criterial [61]. Jets arenstructed from three-dimensional calorimeter
energy clusters using the amtijet clustering algorithm([62] with a radius parameter 0£.0The jet
energy is corrected for thefects of calorimeter non-compensation and inhomogendifiassing pr-
andn-dependent calibration factors based on MC simulationsvafidated with extensive test-beam
and collision-data studies [63]. To suppress jet backgtariginating from uncorrelated soft collisions,
> 75% of the summegr of all tracks associated to a jet must come from tracks aatemtto the selected
primary vertex. Events with four or more jets are selectetthwi < 2.5 andpr > 80,60,40,25 GeV,
respectively. At least one jet needs to be identified #sjet. Jets containing &-hadron decayh-
jets) are identified using the ‘MVI3-tagging algorithm[[64] which exploits both impact paraareand
secondary vertex information. An operating point is empbbyorresponding to an average 7%%
tagging dficiency and & 2% misidentification rate for light-quatdduon jets for jets withpr > 20 GeV
and|n| < 2.5 intt MC events.

Ambiguities between overlapping objects are resolved byaliing either jet or lepton candidates| [61]
based on their distanaeR. The measurement HTT“SSis based on the transverse momenta of all electron
and muon candidates, all jets after overlap removal, andaddirimeter energy clusters not associated
to such objects. The background is reduced by requitingi, > 0.8, whereA¢nmin is defined by the
minimum azimuthal separation between the two highmgsjets and the missing transverse momentum
direction. A selection on the jet-jet-jet masg;; of the hadronically decaying top quark is required to
specifically reject the dileptonitt background, where boW bosons from the top quarks decay lepton-
ically. The jet-jet pair having invariant mass60 GeV which has the smalleAR is selected to form the
hadronicW boson. The massj; is reconstructed from a third jet closestAR to the hadronidV boson
momentum vector and 130 Ge¥mjj; < 205 GeV is required.



3.1 Signal Regions

Five signal regions (SR A - E) are defined in order to optimieegensitivity for diferent stop and LSP
masses. For increasing stop mass and increasing ntteygedce between stop and LSP the requirements
are tightened orE”“'SS on the ratloEm'SS/ vHt, whereHr is the scalar sum of the momenta of the four
selected jets, and on the transverse nna;sE as shown in Tablel1l. The numbers of observed events in
each signal region after applying all selection criteragiven in Tabl€2.

Table 1: Selection requirements defining the SR A - E.

Requirement SRA SRB SRC SRD SRE
ET'sS[GeV] > 150 150 150 225 275
EMss/ VHy [GeVY?] > 7 9 11 11 11

mr [GeV] > 120 120 120 130 140

The product of the kinematic acceptance and detedfmiency A - €) varies between 5% and 1%
for SR A and between 3% and 0.1% for SR E as the stop-LSP miiegsedice varies between 600 and
300 GeV.

3.2 Background Modeling

The dominant background arises from dileptottievents in which one of the leptons is not identified,
is outside the detector acceptance, or is a hadronicallgyilegr lepton. In all these cases, thtedecay
products include two or more higbr neutrinos, resulting in IargE?iss andmy. Three control regions
enriched in dileptonidt events 2-lep TR, single-leptonidt events L-lep TR, andW-+jets events1-lep
WR) are designed to normalize the corresponding backgrousidg data. Th&-lep TRdiffers from the
signal regions by selecting events with exactly two leptapplying no requirements onr, E?‘Ss/ VHT
andmyj;, and by requiring=T"** > 125 GeV. Thel-lep TRand1-lep WRhave selection criteria identical
to SR A, except for theny requirement which is changed to 60 GeVmy < 90 GeV. Thel-lep WR
also has d-jet veto instead of &-jet requirement. Top production accounts $000% of events in the
top control regions andlV+jets production for> 50% in theW control region. The maximum signal
contamination is< 10%.

A simultaneous fit to the numbers of observed events in theethontrol regions and one signal
region at a time is performed to normalize thandW-+jets background estimates as well as determine
or limit a potential signal contribution. Thelepand2-lep TRhavett normalizations that float indepen-
dently and that are found to be in good agreement. The ntlaiekground which mainly originates from
jets misidentified as leptons is estimated using the mateshod [61]. Other background contributions
(VV, tt +V, single top) are estimated using MC simulation normalizethé theory cross sections. The
Z+jets background is found to be negligible. Systematic uaa#ies are treated as nuisance parameters
with Gaussian probability density functions.

Good agreement is observed between data and the SM predietfore the fit as shown in Figuré 1
for the Ef"* distributions in the2-lep TR and themy distribution for the looser requireme™ss >
40 GeV and no requirements &'/ vHr andm;j;, as well as for thé&"s distribution in SR A.

my is defined as® = 2p$pET”“SS(1—cos@¢)), whereAg is the azimuthal angle between the lepton and missing mament
direction.
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Figure 1: Top: Em'SSdlstrlbutlons for the2-lep TR Center:my distribution for looser requirements (see
text). Bottom: EmISS distributions for SR A. All plots show the combined electramd muon channels.
Hatched areas |nd|cate the combined uncertainjy due to kiStits and the jet energy scale.



Table 2: Numbers of observed events in the five signal regimalsthree background control regions,

as well as their estimated values and all (statistic andeByestic) uncertainties from a fit to the control

regions only, for the combined electron and muon channdig. ekpected numbers of signal events for
g, = 400 GeV (500 GeV) andn);g = 1 GeV for benchmark points 1 (2) are listed for comparison.
The central values of the fitted sum of backgrounds in therobrgégions agree with the observations

by construction. Furthermorgp-values and 95% Cd.observed (expected) upper limits on beyond-SM
events, obtained from fits to each signal regions and theaamegions, are given.

Regions SRA SRB SRC SRD SRE 2lepTR 1-lepTR 1-lepWR
tt 36+5 27+ 4 11+ 2 49+13 13+06 109+10 364+23 59+19
tt+ V, single top 20+07 25+ 06 1603 09+03 04+01 72+13 18+3 61+16
V+jets,VV 25+13 17+0.8 04+01 03+01 01+01 16+08 38+11 162+23
Multijet O.4j8;2 0.3j8;§ 0.3j8;§ 0.3j8;§ 0.0jg;g 0.0jg;g 17+17 08=+08
Total background 42 6 31+4 13+ 2 64+14 18+0.7 118+10 421+20 228+15
Signal benchmark 1 (2) 25(88) 230(81) 175(69) 135(62) 71(45) 17(06) 23(06) 04(01)
Observed events 38 25 15 8 5 118 421 228
po-values 05} 05 0.32 024 Q015 -

Obs. (exp)Noeyonasw < 151 (172) 101 (138) 108(92) 84(7.0) 82 (46)

4 Systematics

The dominant sources of systematic uncertainties in treglfitbackground estimate arise from theoreti-
cal and MC modeling uncertainties. They are determined mgudifferent generator$IC@NLO, PowHeg
and ALPGEN), different showering model$IERWIG andPYTHIA) and by varying ISR-SR parameters,
and amount to 10%-30% on the extrapolation from the contrtiie¢ various signal regions. Electroweak
single top production is associated with an 8% theory unueyt [45-:47] andt + V background with a
30% uncertainty([48]. The flierence betweeALPGEN andHERWIG is used to assess the uncertainty on
the diboson background, and the uncertainty on the mulitgekground is based on the matrix method.
Both are assigned an uncertainty of 100%.

Experimental uncertaintiedfact the signal and background yields estimated from MC svend
are dominated by the uncertainties in jet energy scalengigy resolution and-tagging. Uncertainties
related to the trigger and lepton reconstruction and ifleation (momentum and energy scales, reso-
lutions and éiciencies) give smaller contributions. Other small ungeties are due to modeling of
multiple pp interactions, the integrated luminosity (3.9%][65, 66f)dadhe limited MC and data statis-
tics. As the stop-LSP massfi#irence varies between 600 and 300 GeV the uncertain#y -anvaries
between 7% and 20%.

5 Results

Table[2 shows the results of the background fit to the congigibns, extrapolated to the signal regions.
The fittedW+jets andtt backgrounds are compatible with MC predictions. To asdessaireement
between SM expectation and observation in the signal regiosimultaneous fit including signal and
control regions is performed. Thay-values obtained are given in Talile 2. No significant excéss o
events is found.

One-sided exclusion limits are derived using the;@iethod [67], based on the same simultaneous
fit (including signal and control regions) but taking the gioted signal contamination in the control



regions into account. To obtain the best expected combireldston limit, a mapping in the stop-LSP
mass plane is constructed by selecting the signal regidntint lowest expected Glvalue for each grid
point. The expected and observed 95%s@kclusion limits are displayed in Figuré 2. Stop masses are
excluded between 230 and 440 GeV for massless LSPs, and ssgesnaround 400 GeV are excluded
for LSP masses up to 125 GeV. This significantly extends pusvstop mass limits.

Limits on beyond-SM contributions are derived from the saimeultaneous fit but without signal
model-dependent inputs (i.e. without signal contamimatiothe control regions, and without experi-
mental and theoretical signal systematic uncertainti€bg resulting limits are shown in the bottom of
Table[2.

6 Conclusion

In summary, a search for stop pair production is presentédadhstates with one isolated lepton, jets, and
missing transverse momentum ifs = 7 TeV pp collisions corresponding to.Afb~! of ATLAS 2011
data. The stops are assumed to decay each to a top quark amgtlavéal undetected neutral particle.
No significant excess of events above the rate predictedeb@tdmndard Model is observed and 95%;CL
upper limits are set on the stop mass in the stop-LSP mass, @amificantly extending previous stop
mass limits.
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A Additional plots

Figurel3 shows the exclusion limits as obtained per sigrgabne The mapping of signal region to signal
model is illustrated in Figurig 4.

Figuredb td_I0 show additional comparisons between datdackfround expectations. The sim-
ulation is normalized as described in the text above. Thehledtarea in each of the plots indicates the
combined uncertainty due to MC statistics and the jet enscgle.
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Figure 3: Expected and observed exclusion 95%, €xclusion limits for the five individual signal
regions (the excluded region is under the curve). Note th&R E there is no observed exclusion limit
due to an excess in data.
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