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Ruelle Zeta Function from Field Theory

Charles Hadfield, Santosh Kandel and Michele Schiavina

Abstract. We propose a field-theoretic interpretation of Ruelle zeta func-
tion and show how it can be seen as the partition function for BF theory
when an unusual gauge-fixing condition on contact manifolds is imposed.
This suggests an alternative rephrasing of a conjecture due to Fried on the
equivalence between Ruelle zeta function and analytic torsion, in terms
of homotopies of Lagrangian submanifolds.
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Introduction

Quantum field theory is a useful tool in many areas of pure and applied mathe-
matics. It provides a number of precise answers, often involving insight coming
from statements that are theorems in finite dimensions, and that need to be
appropriately checked and generalised in infinite dimensions.

A positive example of this is the interpretation by Schwarz of the Ray–
Singer analytic torsion in terms of a partition function for a degenerate func-
tional [56,57]. The main ingredient in Schwarz’s construction is a topological
field theory involving differential forms, which enjoys a symmetry given by the
shift of closed forms by exact ones [8,19,28]. This is known nowadays with the
name of BF theory.

From a field-theoretic point of view, such symmetry needs to be removed,
or gauge fixed, as it represents a fundamental redundancy in the description.
One possible way to do this is by choosing a reference metric g and enforcing a
g-dependent condition on fields.1 It allows to compute the partition function of
the theory—the starting point for quantum considerations on the system—and
one is left to show that the choice of metric is immaterial. The proof that such
choice of metric is irrelevant was given by Schwarz for the partition function of
abelian BF theory, and it is tantamount to the statement of independence of
the analytic torsion on the metric used to define a Laplacian on the underlying
manifold.

There are several ways of encoding a choice of gauge fixing within the
framework of field theory, starting from the original idea of Faddeev and Popov
[35], later understood in terms of Lie algebra cohomology by Becchi, Rouet,
Stora and Tyutin [13–15,61]. A more general approach follows the ideas of
by Batalin and Vilkovisky [16,17] and implements the choice of a gauge as
the choice of a Lagrangian submanifold in an appropriate (graded)-symplectic
manifold of fields F . In this context, gauge-fixing independence is phrased
in terms of isotopies of embedded Lagrangian submanifolds and needs to be
proved in some appropriate regularisation scheme. In finite dimensions, this
is a theorem: the partition function for an action functional S that satisfies
the quantum master equation (a differential condition on S) does not depend
on the choice of a particular Lagrangian submanifold inside a smooth family
Lt ⊂ F . Observe that this statement can be phrased as local constancy of the
partition function w.r.t a parametrisation of the Lagrangian homotopy.

1This is often called Lorenz gauge fixing.
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Leaving field theory aside for a moment, consider a closed manifold M
endowed with an Anosov vector field (Definition 15). The flow associated with
the vector field is a typical example of a dynamical system displaying “hard
chaos” [43]. An important example of such a dynamical system is obtained
from a Riemannian manifold (Σ, g) whose sectional curvature is negative; then,
M = S∗

gΣ, the unit cotangent bundle of Σ (a sphere bundle), is such that the
Reeb vector field X associated with the natural contact structure is an Anosov
vector field and its flow coincides with the geodesic flow.

If an Anosov flow (generated by the vector field X) admits closed or-
bits, one defines a (dynamical) Ruelle zeta function ζX(λ) to count lengths of
closed orbits associated with the flow in a similar spirit to how the Riemann
zeta function counts prime numbers [54,55]. The zeta function also may be
defined in the presence of a representation ρ of π1(M) which provides a flat
vector bundle over M ; this leads to a twisted zeta function. The chaotic na-
ture of the dynamical system ensures that the zeta function is well defined for
Re(λ) � 1; however, some work is required to show that the function extends
meromorphically to the whole complex plane [41]. Conjecture 21, due to Fried
[37], proposes that when M = S∗

gΣ, the Ruelle zeta function (evaluated at
zero) exactly computes the analytic torsion of the associated sphere bundle.
To connect this to field theory, we observe that this means Ruelle zeta func-
tion is expected to compute—in Schwarz’s terms—the partition function of
BF theory in a given (metric dependent) gauge fixing.

Fried’s conjecture has received considerable attention recently. The pro-
posed equality was confirmed in [37] for Σ a hyperbolic manifold and con-
jectured in [38] that it also holds for compact locally symmetric spaces with
nonpositive curvature. Conjecture 21, as we state it, appears in [39]. A more
precise version for locally symmetric manifolds has been proved in [58] follow-
ing [52]. In the variable curvature case, a perturbative result has been obtained
in [32] and extended in [20]. A surprising result in the case of surfaces with
variable negative curvature, but without reference to an acyclic representation,
showed the zeta function at zero is determined by the topology of the surface
[34]. This has been extended to the case of surfaces with boundary [45] and to
higher-dimensional closed manifolds perturbatively close to hyperbolic space
[47]. However, Fried’s conjecture, along with its three star bounty [65, Section
3, footnote 6], remains open.

What to Expect from This Paper

We present a new class of gauge fixings for BF theory on contact manifolds
based on the Reeb vector field associated with the contact structure; we call
this the contact gauge in Definition 34. We then go on to show that, on sphere
bundles with an Anosov–Reeb vector field, the Ruelle zeta function can be
interpreted as an appropriately regularised determinant for the Lie derivative
operator LX on k-forms in the kernel of the contraction ιX . Taking this regu-
larised determinant as the definition for the partition function of BF theory
in the contact gauge allows us to conclude that this coincides with the Ruelle
zeta function. This point of view is analogous to Schwarz’s calculation of the
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partition function of BF theory (in the metric gauge), whose output is the an-
alytic torsion, and to the recent proof of Chern–Gauss–Bonnet theorem that
has been given with similar techniques in [9] (see also [23]).

As a consequence, we relate the expected gauge-fixing independence of
the partition function of BF theory to Fried’s conjecture; in particular, we
show how modern proofs of the conjecture for certain classes of manifolds (see
[32]) can be taken as a proof of gauge-fixing independence. On the other hand,
we believe that the field-theoretic presentation of the Ruelle zeta function
provided in this paper will allow the problem to be tackled from a different
angle: by means of homotopies of Lagrangian submanifolds.

To this aim, we set up a convenient construction to compare Anosov
vector fields that are related to a choice of a metric on a base manifold Σ
(Sect. 5). By means of a natural construction for sphere bundles, we map
smooth paths of metrics into smooth paths of Anosov vector fields, effectively
constructing an isotopy between their associated Lagrangian submanifolds.
This, together with the crucial local constancy results of [32], allows us to
test our approach to the known case of 2d surfaces—Theorem 47 provides an
alternative proof of Fried’s conjecture on surfaces—and interprets it as gauge-
fixing independence for BF theory.

From the point of view of algebraic topology, this result suggests that,
under certain assumptions, ιX can be made into a chain contraction for the de
Rham complex; namely, one can construct ηX = (LX)−1ιX with the appro-
priate conditions of nondegeneracy of LX . This interpretation appears to be
related to the notion of a dynamical torsion introduced in [20]. There appears
to be a sweet spot at the intersection of Anosov and Reeb vector fields where
the independence of the “torsion” of the de Rham complex on the choice of a
chain contraction and independence of the partition function of BF theory on
a choice of gauge fixing appear to be aspects of the same statement, expressed
by Fried’s conjecture.

This work is mostly addressed to the mathematical physics community
working with or closely related to field theory in the Batalin–Vilkovisky for-
malism, but it is also aimed at the community interested in the microlocal
analysis of Anosov/geodesic flows and Fried’s conjecture. Therefore, we will
present some basic background on field theory with symmetries to set the stage,
terminology and expectations, but we will not present a complete treatment
of the mathematics behind it. Results and constructions that will be some-
what assumed in this exposition of field theory can be found, for example, in
[4,24,30,31].

Our main goal is to present a novel link between field theory and geo-
metric and microlocal analysis that will hopefully allow to import techniques
across research fields, and stimulate fruitful interaction between scientific com-
munities.

In Sect. 1, we give an overview on Lagrangian field theory aimed at
introducing the Batalin–Vilkovisky formalism and the problem of gauge fixing.
It sets the stage for the field-theoretic interpretations that will follow.
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In Sect. 2, we establishe the geometric conventions and notations, clar-
ifying what incremental/alternative data one needs at different stages, and
briefly describes the analytic torsion and Anosov dynamics.

In Sect. 3, we introduce Ruelle zeta function and its k-form decomposi-
tion, and state Fried’s conjecture. We interpret the zeta function as a regu-
larised (super)determinant.

In Sect. 4, we describe a field theory called BF theory, and we summarise
the famous interpretation (due to Schwarz) of the analytic torsion in terms of
the partition function of BF theory and introduce a new gauge-fixing condition
on contact manifolds. We show how, with that gauge fixing, the partition
function of BF theory computes the Ruelle zeta function of the associated
geodesic/Anosov flow.

Finally, in Sect. 5 we interpret Fried’s conjecture in terms of gauge-fixing
independence of BF theory in the BV formalism and suggest a construction for
sphere bundles that allows to present explicit homotopies between Lagrangian
submanifolds.

1. Lagrangian Field Theory, the Batalin–Vilkovisky Formalism
and Regularised Determinants

In this section, we will review the basics of the Batalin–Vilkovisky (BV) for-
malism [16,17] for Lagrangian field theories and how it handles gauge fixing.
We will use a particular kind of regularisation based on the notion of flat
traces to define determinants of operators and partition functions of quadratic
functionals.

1.1. Classical Field Theory, Symmetries and Quantisation

The standard framework for Lagrangian field theories is as follows. To a com-
pact manifold M , possibly endowed with extra geometric data, like a Rie-
mannian metric or a contact structure, we associate a space of classical fields
FM , which is usually modelled on the space of sections of some vector bundle2

E → M , together with a local functional SM , called action functional. Local
here means that it has the form of an integral over M of a density-valued
functional of the fields and a finite number of jets:3

SM =
∫

M

LM [φ, ∂Iφ], (1)

where I is a finite multi-index and LM is called Lagrangian density. For simplic-
ity, we will consider compact manifolds without boundary, although it is possi-
ble to adapt the construction to noncompact ones or manifolds with boundary
(see, for example, [24,36]).

2More generally, a sheaf.
3There is an equivalent formulation of this in the variational bi-complex [4,31], where the
full jet bundle is taken into account.
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The dynamical content of the theory is encoded in the Euler–Lagrange
locus EL[SM ], the space of solution of the Euler–Lagrange equations coming
from the variational problem for SM . In other words, the Euler–Lagrange locus
is the set of critical points of SM .

The action functional might enjoy a symmetry. That is, it might be in-
variant under some transformation of the fields, for example when considering
Lie algebra actions on fields taking values in Lie algebra modules. Symmetries
are usually described by a (smooth) distribution DM ⊂ TFM , and they make
the critical points of the action functional degenerate4 and will become an is-
sue when dealing with perturbative quantisation of the theory (see below). In
what follows, we will only consider symmetry distributions that are involutive.

Quantisation, loosely speaking, is meant to replace the (commutative)
algebra of functions over the space of physical configurations of the system
with some (noncommutative) algebra of operators over a suitable vector space,
also called the space of quantum states. Without delving too much into how
this is achieved in general, for our purposes it will be important to mention
that one possible procedure starts by making sense of the following expression:

Z =
∫

exp
(

i

�
SM

)
, (2)

usually called the partition function, where the integral sign should ideally
represent actual integration over FM , with some measure. However, an ap-
propriate integration theory for such (infinite-dimensional) spaces of fields is
generally not available, and one defines the previous expression as a formal
power series expansion in the parameter �. This approach, however, requires
the critical points of SM to be isolated, as it involves a saddle point or station-
ary phase approximation around critical points. It therefore automatically fails
in the presence of symmetries, unless appropriate prescriptions are enforced.

We choose to deal with this problem by means of the Batalin–Vilkovisky
(BV) formalism.

1.2. Cohomological Approach and the BV Complex

Degenerate functionals are usually accompanied by involutive (symmetry) dis-
tributions DM , and the space of inequivalent field configurations is the quotient
EL[SM ]/DM . Most of the times the quotient is singular, and one looks for a
replacement for it.

A resolution of EL[SM ]/DM is given by a complex (C•, dC) such that5

for all i > 0

H−i(C•) = 0, H0(C•) � C∞(EL[SM ]/DM ). (3)

One way to obtain a resolution is by first localising to the submani-
fold EL[SM ] constructing the Koszul–Tate complex and then following the
Chevalley–Eilenberg procedure to describe DM -invariant functions on it (see

4We will only be concerned with continuous symmetries.
5In some practical cases, the vanishing of the negative cohomology is not guaranteed. We
will anyway not need this condition in what follows.
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[59] for a “geometric” jet-bundle explanation of this and [36] for a more “al-
gebraic” one).

The Batalin–Vilkovisky formalism is essentially the interpretation of said
complex as the space of functions over a (−1)-symplectic graded manifold
(FBV ,ΩBV ) [24,25,29,46,59], whose degree-0 part coincides with the origi-
nal space of fields FM , endowed with an odd vector field of degree-1 Q ∈
C∞(FBV , T [1]FBV ) such that6 [Q,Q] = 0 and a degree-0 functional SM :
FBV → R satisfying

ιQιQΩBV = {SM ,SM}ΩBV
= 0, (4)

with {·, ·}ΩBV
the Poisson bracket associated with the symplectic structure

ΩBV , and the compatibility condition

ιQΩBV = dSM . (5)

Remark 1. In infinite dimensions, one models FBV on some appropriate space
of sections of the jet bundle of a vector bundle E → M . Then, the de Rham
differential in Eq. (5) is replaced with δ, the variation operator interpreted as
the vertical differential on local functionals over FBV (see [4]). Observe that
we could take Eq. (4) as a definition of Poisson brackets in infinite dimensions.

On C∞(FBV ), one constructs another (second order) differential (Δ2
BV =

0) called BV-Laplacian and defines gauge fixing to be the choice of a La-
grangian submanifold L ⊂ FBV . The main results are as follows:

Theorem 2. Let (FBV ,ΩBV ) be a finite-dimensional (−1)-symplectic graded
manifold, with a measure μ and the BV Laplacian Δμ, a coboundary operator
defined on C∞(FBV ) such that for all f ∈ C∞(FBV ) we have

Δμf = −1
2
divμ(Xf ) (6)

with Xf the Hamiltonian vector field of f with respect to ΩBV . Assuming that
ΔμBV

f = 0 and g = ΔμBV
h, with f, g, h ∈ C∞(FBV ) then:

• for any Lagrangian submanifold L ⊂ FBV∫

L

g μBV |L = 0; (7)

• given a continuous family of Lagrangian submanifolds Lt

d

dt

∫

Lt

f μBV |Lt
= 0. (8)

Remark 3. The definition of the BV Laplacian in (6) implies the relations

Δμ(fg) = (Δμf)g + (−1)|f |f(Δμg) + (−1)|f |{f, g}ΩBV
(9)

Δμ{f, g}ΩBV
= {Δμf, g}ΩBV

+ (−1)|f |+1{f,Δμg}ΩBV
, (10)

making the tuple (C∞(FBV ), · , {·, ·}ΩBV
,Δμ) into a BV algebra [21].

6Q is essentially the derivation dC interpreted as a vector field.
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Remark 4. Theorem 2 is stated for finite-dimensional manifolds. In this case,
Δμ always exists. On infinite-dimensional manifolds, a number of complica-
tions arise. One needs an appropriate regularisation of Δμ, and the correspond-
ing adaptations of statements in Theorem 2 must be checked. In this paper, we
are interested in abelian BF theory, which is a noninteracting topological field
theory whose partition function (cf. Eq. (2)) is expected to be independent of
the gauge fixing, and has been computed to be the Reidermeister (or equiv-
alently) analytic torsion of the de Rham complex [56,57]. More recent work
generalised the BV theorem for certain classes of field theories (and gauge fix-
ings) [22,27], while a perturbative approach has been shown to work for the
theory at hand in the presence of boundaries [25], and with a regularisation
coming from cellular decompositions in [26].

Remark 5. Notice that the notion of Lagrangian submanifold has to be ap-
propriately adapted in infinite dimensions and when dealing with Z-grading.
The Lagrangian submanifolds L we will consider in this paper are such that,
locally, the symplectic space looks like L ⊕ K, with the symplectic form given
by a nondegenerate pairing between L and K. This notion of a Lagrangian
submanifold coincides with the one used in [18]. Often L can be seen as the
vanishing locus of a Poisson subalgebra I of the Poisson algebra of functions
on FBF , which is also isotropic, i.e. ΩBF |L = 0. This means that L is isotropic
and coisotropic.7 For a more in-depth analysis of Lagrangian submanifolds in
infinite dimensions and the symplectic category, we refer to [64], building on
[63].

Remark 6. For concreteness, in what follows we will discuss field theories where
fields are given by differential forms on a manifold. If needed, one can think of
the space of fields as a Fréchet vector space, but indeed this specification will
not be necessary for our purposes.

1.3. Partition Functions

If we look at the quadratic part of the action functional, we can interpret the
partition function as a (formal) Gaussian integral. We assume from now on
that the action functional is at most quadratic.

In finite dimensions, the result of said integral would be the determinant
of the operator featured in the action functional SM . In infinite dimensions,
this requires defining an appropriate regularisation of determinants.

The standard approach to partition functions for degenerate quadratic
functionals follows from Schwarz [56,57], where the resolution of (the kernel
of) an elliptic differential operator on a closed Riemannian manifold is pre-
sented, which outputs a (co)chain complex, and the partition function is given
in terms of products of (regularised) determinants of operators associated with
the resolving complex. The explicit example for BF theory is given in Sect. 4.1.
In short, the insights from Schwarz allow us to interpret partition functions of
quadratic degenerate functionals as (a product of) regularised determinants,

7This notion coincides with requiring L to be maximal isotropic.
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provided a suitable resolution can be found such that the regularised determi-
nants of the associated operators exist.

For the purposes of this paper, instead of the standard zeta function
regularisation, we will use the notion of a flat determinant, based on flat traces,
inspired by Atiyah and Bott’s constructions [2,3]. Details on the definition of
flat traces and determinant can be found in several places: [17, Definition 3.12],
a microlocal version in [33, Section 2.4], and a mollifier approach in [7, Section
3.2.2]. Since we will not be concerned with the microlocal analysis of operators,
we will avoid discussing the necessary tools to define flat traces, and will only
work up to the requirements that they exist for the operators we will consider.
In this spirit, we give the following definition.

Definition 7. Let A : V → V be an operator on an appropriate inner product
space, such that the flat trace tr�(exp(−t(A + λ))) exists for λ ∈ C. We define
the flat determinant of A + λ to be

log det �(A + λ) := − d

ds

∣∣∣∣
s=0

⎡
⎣ 1

Γ(s)

∞∫

0

ts−1 tr�(exp (−t(A + λ)) − Πλ)dt

⎤
⎦
(11)

where Πλ is the spectral projector on the kernel of (A + λ), whenever the
integrals converge.

Remark 8. Observe that if A is such that e−t(A+λ) is trace class,
then tr(e−t(A+λ)) = tr�(e−t(A+λ)). As a consequence, if the zeta-regularised de-
terminant of A+λ exists, it coincides with the flat determinant: det�(A+λ) =
det(A + λ). See, for example, [7, Proposition 6.8] for details.

Let A = diag(B,C) be a graded, degree-preserving (block-diagonal) lin-
ear map on a finite-dimensional graded vector space. A graded Gaussian inte-
gral for exp (−〈y,Ax〉) returns sdet(A)−1 = det(C)

det(B) . More generally, if Ak is the
kth component of A acting on a graded space with a finite number of nonzero
components, each Ak acting on vectors of degree k, we get8

sdet(A) =
n∏

k=0

det(A)(−1)k .

For an introduction to Berezinians and odd integration, see, for example, [51,
Section 3.8] and [62], while the original notion was introduced in [10,11].

In infinite dimensions, to an operator A on a graded space we can as-
sociate a regularised superdeterminant in the same way, but replacing the
determinants on the block operators with their flat-regularised versions. We
will use this notion to define the partition function of a degenerate quadratic
functional, as follows:

8Observe that we are considering parities modulo 2. In principle, a graded determinant

would return
∏n

k=0 det(A)k(−1)k . We will not make such a distinction in what follows.
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Definition 9. Let S : V → R of the form S = 1
2

∫
M

(x,Ax) for some operator
A : V → V , with V a (possibly graded) vector space endowed with an inner
product (·, ·). We define the partition function Z of S to be the square root of
the flat (super)determinant of the (graded) operator A:

Z(S) =
∫

V

eiSM := |sdet�(A)|− 1
2 . (12)

When the field theory has symmetries, we assume that V is further endowed
with a (−1) symplectic form. A choice of a Lagrangian submanifold L ⊂ V
will be called gauge fixing, and we define the partition function of S in the
gauge fixing L to be

Z(S, L) := Z(S|L). (13)

Remark 10. To obtain a true generalisation of finite-dimensional Gaussian in-
tegrals, one should append to formula (12) the phase factor exp(−iπ

4 sg(A))
where sg(A) is the signature of the operator A, appropriately regularised.
Since in what follows we will not discuss the phase of partition functions, we
will omit this term from the definition.

Remark 11. Observe that often one encounters the situation in which SM =∫
M

(y,Bx) for some operator B and x, y ∈ V ′ for some space V ′. Define9

V = V ′ ⊕ V ′ and

A =
(

0 B
Bt 0

)

so that (y,Bx) = 1
2 (z,Az) with z = (x, y) ∈ V . Then Z = |sdet�(A)|− 1

2 =
|sdet�(B)|−1.

Remark 12. Let V be a graded vector space and V [k] its k-shift, so that
(V [k])i := V i+k. In particular, if z ∈ V [1] is a homogeneous element of degree
k it will be parametrised by homogeneous elements in V of opposite parity. In
particular, if A is a graded linear map on V , the Gaussian integral∫

V [1]

e− 1
2 (z,A,z) := |sdet�(A)| 1

2 . (14)

2. Geometric Setting

This section establishes the geometry and notations. In the following three
sections, we progressively introduce more structure to our initial set-up of a
flat vector bundle over a manifold, whose twisted cohomology is trivial. The
plainest setting involves a differentiable manifold endowed with a flat vector
bundle. On top of that, we consider the introduction of either a Riemannian
structure or a contact structure. The intersection of the two will require the
base manifold to display Anosov dynamics.

9Note that the V ′ components in V are not considered to have different degrees, i.e. A is an
even matrix of graded operators.
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It is useful to distinguish between these geometric settings as when we will
only need certain geometric properties when discussing different field theories.
This distinction between geometric data with which a differentiable manifold
is endowed reflects the practice of complementing topological theories with
additional geometric structures (e.g. Riemannian or contact) for the sake of
gauge fixing.

2.1. Flat Vector Bundle

Let M be an N -dimensional compact manifold without boundary which is ori-
ented and connected. Let ρ : π1(M) → U(Cr) denote a unitary representation.
This representation endows M with a Hermitian vector bundle (E, h) of rank
r with flat connection ∇. We collectively denote these data by (M,E).

Let Ω•(M ;E) denote the space of (smooth) differential forms on M taking
values in E, and let

d∇ ≡ dk : Ωk(M,E) → Ωk+1(M,E) (15)

be two notations for the twisted de Rham differential. We denote by H•(M ;E)
the cohomology associated with the twisted de Rham complex (Ω•(M ;E), d∇),
with Betti numbers βk := dimHk(M ;E).

From now on, we will assume that (M,E) is such that its twisted de
Rham complex is acyclic, i.e. βk = 0 for all 0 ≤ k ≤ N .

2.2. Riemannian Structure and Analytic Torsion

Suppose (M,E) is supplemented with a Riemannian metric gM . We collectively
denote these data (M,E, gM ). Let dVol denote the associated volume form
and let 〈·, ·〉 be the inherited inner product on

∧•
T ∗M . The Hodge star � :∧k

T ∗M → ∧N−k
T ∗M is defined through

u ∧ �v = 〈u, v〉dVol (16)

for u, v ∈ ∧k
T ∗M . This lifts to E-valued forms by identifying E with its dual

via the Hermitian metric h. An inner product is then placed on Ω•(M ;E) by
declaring

(u, v) =
∫

M

[u ∧ �v]top (17)

for u, v ∈ Ω•(M ;E) with top refers to only taking the top-form (degree N)
part of u ∧ �v.

The de Rham differential has an adjoint

d∗
∇ ≡ d∗

k : Ωk+1(M,E) → Ωk(M,E) (18)

which provides the twisted Laplace–de Rham operator (henceforth simply
Laplacian)

Δk := (d∗
∇ + d∇)2 : Ωk(M ;E) → Ωk(M ;E). (19)

When acting on L2(M ;
∧k

T ∗M ⊗E), the Laplacian has nonnegative eigenval-
ues λn ≥ 0. Denote by Πλ the L2 spectral projector onto the kernel of Δk +λ,
and consider the function
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FΔk
(λ, s) :=

1
Γ(s)

∫ ∞

0

ts−1tr�
(
e−t(Δk+λ) − Πλ

)
dt. (20)

The (flat)-regularised determinant of the operator Δk + λ is

log det�(Δk + λ) = − ∂

∂s

∣∣∣∣
s=0

FΔk
(λ, s). (21)

We also write fΔk
(s) := FΔk

(0, s) and observe that fΔk
(s) =

∑
λj>0 λj

−s.

Definition 13. The analytic torsion of M [53] is defined to be

τρ(M) :=
N∏

k=1

det�(Δk)
k
2 (−1)k+1

. (22)

Alternatively, we can write

2 log τρ(M) =
N∑

k=1

(−1)kk
d

ds

∣∣∣∣
s=0

fΔk
(s). (23)

The Hodge decomposition provides an orthogonal decomposition of L2(M ;∧•
T ∗M ⊗ E) into exact and coexact forms. (No harmonic forms are present

due to acyclicity.) Introducing d∗
kdk := Δk|coexact, we can also write the ana-

lytic torsion as [57] (see also [26,50])

τρ(M) =
N−1∏
k=0

det�(d∗
kdk)

1
2 (−1)k , (24)

which alternatively reads

2 log τρ(M) =
N−1∑
k=0

(−1)k+1 d

ds

∣∣∣∣
s=0

fd∗
kdk

(s). (25)

2.3. Contact Structure

Suppose that (M,E) is supplemented with a contact form α ∈ Ω1(M), and
dim(M) = N = 2n + 1. We will denote dVol = α ∧ (dα)n. Let X be the
associated Reeb vector field, defined by the relations

ιXα = 1, ιXdα = 0. (26)

We collectively denote these data (M,E,X).
Denote by T ∗

0 M the 2n-rank subbundle of T ∗M defined as the conormal
of X, so that pointwise T ∗M = Rα + T ∗

0 M . Transferring this to the space of
E-valued differential forms, we write

Ωk(M,E) = Ωk
0(M,E) ⊕ α ∧ Ωk−1

0 (M,E), (27)

where Ωk
0(M,E) = ker ιX |Ωk(M).
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2.3.1. Contact Riemannian Structure. Let (M,E,X) as above and introduce
a metric gM on M of the form gM = α2 + g0 such that T ∗M = Rα + T ∗

0 M
becomes an orthogonal decomposition. Let � and �0 denote the Hodge stars
associated with (T ∗M, gM ) and (T ∗

0 M, g0), respectively. We may choose g0

such that �α = (dα)n = �01 whence the Hodge star behaves nicely with
respect to the splitting of T ∗M . Specifically, we have maps

� : Ωk
0(M,E) → α ∧ ΩN−k−1

0 (M,E) � : α ∧ Ωk
0(M,E) → ΩN−k−1

0 (M,E)
(28a)

ϕ �→ (−1)kα ∧ �0ϕ α ∧ ψ �→ �0ψ (28b)

Moreover, noting that 〈α∧ϕ,α∧ϕ〉 = 〈ϕ,ϕ〉 on Ω•
0(M,E) we conclude (ιX)T =

α∧. When a metric is chosen in this way, compatible with the contact structure,
we collectively denote these data (M,E,X, gM ).

Definition 14. Considering the maps

α∧ : Ω•
0(M,E) → α ∧ Ω•

0(M,E), ιX : α ∧ Ω•
0(M,E) → Ω•

0(M,E), (29)

we set

sdet�(α∧) = sdet�(ιX) :=
∣∣∣sdet�(ιX ◦ α∧)

1
2

∣∣∣ = 1. (30)

2.4. Anosov Dynamics

Suppose M is supplemented with a flow ϕt : M → M for t ∈ R. We will reuse
X ∈ C∞(M ;TM) to denote the vector field which generates ϕt.

Definition 15. The flow is Anosov if there exists a dϕt-invariant continuous
splitting of the tangent bundle:

TxM = En(x) ⊕ Es(x) ⊕ Eu(x), En(x) = RXx, (31)

and for a given norm ‖ · ‖ on TM , there exist constants C, λ > 0 so that for
all t ≥ 0,

∀v ∈ Es(x), ‖dϕt(x)v‖ ≤ Ce−λt‖v‖,

∀v ∈ Eu(x), ‖dϕ−t(x)v‖ ≤ Ce−λt‖v‖. (32)

The subbundles En, Es and Eu are, respectively, called neutral, stable and
unstable.

Remark 16. We will prefer to work with the cotangent bundle T ∗M due to
the Lie derivative acting naturally on differential forms. The cotangent bundle
also has a decomposition T ∗

x M = E∗
n(x) ⊕ E∗

s (x) ⊕ E∗
u(x) whose stable and

unstable bundles are understood through the action of (dϕ−t)
T (rather than

dϕt).

Henceforth, we will always assume that the stable and unstable bundles
are orientable and each have rank n.
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2.4.1. A Guiding Example. We provide an example of the geometric setting
discussed in the previous subsections. Let (Σ, g) be a compact manifold without
boundary which is oriented, connected and of dimension n+1. Suppose that Σ
has sectional curvature which is everywhere strictly negative. Let M := S∗

gΣ
be the unit cotangent bundle of Σ. Set α ∈ Ω1(M) to be the pullback of the
canonical one form on T ∗Σ. Then (M,α) is a contact manifold, and the Reeb
vector field Xg ∈ C∞(M ;TM) generates the geodesic flow ϕt which is Anosov
[1,5,6].

If we consider M = S∗
gΣ within the geometric setting (M,E) of Sect. 2.1

(in particular the representation ρ is unitary and ∇ is flat), we denote the
resulting contact, Anosov, Riemannian data on S∗

gΣ by

(M = S∗
gΣ, E,Xg, g).

Remark 17. M → Σ is an S
n-bundle, and if n ≥ 2, then π1(Sn) = 0 whence

representations of π1(Σ) are in one-to-one correspondence with representations
of π1(M).

Remark 18. Observe that in the case of a unitary representation and a flat
vector bundle, and when n ≥ 2, the preceding remark implies that τρ(M) =
(τρ(Σ))2 [37, Section 1, p. 526]. For the rest of this article, particularly the
announcements of theorems and conjectures, we have chosen to emphasise the
role of M = S∗

gΣ rather than Σ.

3. Ruelle Zeta Function

Consider the geometric data (M,E,X) of Sect. 2.3 and assume the flow ϕt

associated with X is Anosov (see Sect. 2.4). We denote by P the set of primitive
orbits of the flow ϕt and by �(γ) the period of any given γ ∈ P.

Definition 19. The Ruelle zeta function (associated with the trivial represen-
tation of π1(M)) is defined as

ζ(λ) :=
∏
γ∈P

(1 − e−λ�(γ)) (33)

whose convergence is assured for Re λ � 1. The Ruelle zeta function twisted
by an arbitrary representation ρ is

ζρ(λ) :=
∏
γ∈P

det(I − ρ([γ])e−λ�(γ)), (34)

whose convergence is again assured for Re λ � 1.

Here, [γ] represents the conjugacy class of γ in π1(M). It has been shown
that the zeta functions continue meromorphically to C [12,33,41,48]. We have
the following:
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Theorem 20 ([37]). Let (M,E,X, g) be the geometric data of Sect. 2.4.1, where
M = S∗

gΣ, with Σ a closed, oriented hyperbolic manifold Σ = Γ\H
n+1, and

g the induced hyperbolic metric. Then, the Ruelle zeta function, defined for
Re(s) > n by Eq. (34), extends meromorphically to C and

|ζρ(0)|(−1)n = τρ(M).

This fact has inspired a conjecture [38]:

Conjecture 21 (Fried). Let (M,E,X, g) be the geometric data of Sect. 2.4.1
with dim(M) = 2n + 1. Then the (twisted) Ruelle zeta function computes the
analytic torsion:

|ζρ(0)|(−1)n = τρ(M). (35)

3.1. Differential Forms Decomposition

This section shows how the (twisted) Ruelle zeta function may be written as
an alternating product of zeta functions associated with

(∧k
T ∗

0 M
)

⊗ E for
0 ≤ k ≤ 2n.

Given a closed orbit γ, of length �(γ) and a point x ∈ M in the orbit, let
P (γ, x) denote the linearised Poincaré map on the fibre of T ∗

0 M above x:

P (γ, p) :=
(
dϕ−�(γ)

)T : T ∗
0 M(x) → T ∗

0 M(x). (36)

This map is conjugate to P (γ, x′) for other x′ in the same orbit γ, and as we
need only evaluate this map’s trace and determinant, we will refer to all maps
as P (γ). Recall T ∗

0 M is the subbundle of T ∗M conormal to the vector field X.
We start with the basic linear algebra identity

det(I − A) =
m∑

k=0

(−1)k tr(∧kA)

for an endomorphism A on an m-dimensional vector space and the observation
that P (γ) has precisely n eigenvalues greater than 1 (where n is the rank of
E∗

u). Therefore, for j ≥ 1

(−1)n|det(I − P (γ)j)| =
2n∑

k=0

(−1)k tr(∧kP (γ)j). (37)
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Using identity (37) to obtain equality (38c), we derive

log ζρ(λ) =
∑
γ∈P

tr log(I − ρ([γ])e−λ�(γ)) (38a)

= −
∑
γ∈P

tr
∞∑

j=1

1
j
e−λj�(γ)ρ([γ])j (38b)

= −
∑
γ∈P

∞∑
j=1

1
j
e−λj�(γ) tr(ρ([γ])j)

(
(−1)n

2n∑
k=0

(−1)k tr(∧kP (γ)j)
|det(I − P (γ)j)|

)

(38c)

= (−1)n
2n∑

k=0

(−1)k log ζρ,k(λ). (38d)

Equation (38d) in the preceding display defines implicitly the Ruelle zeta func-
tion twisted by ρ upon restriction to k-forms

ζρ,k(λ) := exp

⎛
⎝−

∑
γ∈P

∞∑
j=1

1
j

e−λj�(γ) tr(ρ([γ])j) tr(∧kP (γ)j)
|det(I − P (γ)j)|

⎞
⎠ (39)

so in the form of a compact equality, we have

ζρ(λ)(−1)n =
2n∏

k=0

ζρ,k(λ)(−1)k . (40)

3.2. Ruelle Zeta Function as Regularised Determinant

We aim to link the function ζρ,k with the operator LX,k acting on Ωk
0(M ;E).

This is done with the help of the Atiyah–Bott–Guillemin trace formula [42].
We use the notation

e−tLX,k = ϕ−t
∗ : L2(M ;

k∧
T ∗

0 M ⊗ E) → L2(M ;
k∧

T ∗
0 M ⊗ E). (41)

and write the Schwartz kernel Kk(t, ·, ·) such that

(e−tLX,kψ)(x) =
∫

M

Kk(t, x, y)ψ(y)dy. (42)

Due to the microlocal structure of Kk we may take its flat trace, which leads
to the Atiyah–Bott–Guillemin trace formula:

tr� e−tLX,k =
∑
γ∈P

∞∑
j=1

�(γ)δ(t − j�(γ))
tr(ρ([γ])j) tr(∧kP (γ)j)

|det(I − P (γ)j)| (43)

as a distribution on R+. Integrating this distribution against the function
−t−1e−tλ provides an integral representation of ζρ,k(λ):

log ζρ,k(λ) = −
∫ ∞

0

t−1e−tλ tr� e−tLX,k dt. (44)
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Consider now the following function, dependent on two variables:

FLX,k
(λ, s) :=

1
Γ(s)

∫ ∞

0

ts−1 tr� e−t(LX,k+λ)dt. (45)

This function is holomorphic for small s (near s = 0) and for Re(λ) � 1 (see
Sect. 3.3). Naively, at s = 0 the integrand poses a problem due to the t−1

structure as t → 0; however, the trace formula (Eq. (43)) provides a natural
cut-off in small t so that we avoid this problem. Moreover, for small s we
expand 1/Γ(s) = s + O(s2) showing

∂s|s=0 FLX,k
(λ, s) =

(
∂s|s=0

1
Γ(s)

)
·
∫ ∞

0

ts−1 tr� e−t(LX,k+λ)dt

∣∣∣∣
s=0

(46)

= − log ζρ,k(λ). (47)

Recalling Definition 7 for the flat determinant of an operator now indicates
that, for Reλ � 1

log det�(LX,k + λ) ≡ − ∂s|s=0 FLX,k
(λ, s) = log ζρ,k(λ). (48)

Since ζρ,k(λ) has a meromorphic extension to the complex plane, so does the
function det�(LX,k + λ). Assuming there are no poles at λ = 0, we sensibly
have det�(LX,k) as the value at zero of the meromorphic extension of the Ruelle
zeta function (restricted to k-forms) at zero:

det�(LX,k) = ζρ,k(0). (49)

The decomposition in Eq. (40) of the Ruelle zeta function now gives an oper-
ator interpretation of the Ruelle zeta function:

ζρ(λ)(−1)n =
2n∏

k=0

det�(LX,k + λ)(−1)k . (50)

Remark 22. Notice that, due to the decomposition (40) and the trace formula
(43), we can consider ζρ as directly dependent on an Anosov vector field X.
To stress this fact, we will use the notation ζ(X,λ) (resp. ζk(X,λ)) instead of
ζρ(λ) (resp. ζρ,k(λ)).

3.3. Meromorphic Extension of the Resolvent

In the preceding section, we related the resolvent (LX,k + λ)−1 to ζρ,k(λ) for
λ � 1. Here, we announce a more precise statement for the meromorphic
extension of (LX,k + λ)−1 [33].

The operator norm of e−tLX,k is bounded by eC0t for some C0 > 0.
Therefore, the resolvent (LX,k +λ)−1, as an operator on L2 sections, exists for
Re λ > C0 and is given by the formula

(LX,k + λ)−1 =
∫ ∞

0

e−t(LX,k+λ)dt. (51)

The restricted resolvent

Rk(λ) = (LX,k + λ)−1 : C∞(M ;
k∧

T ∗
0 M ⊗ E) → D′(M ;

k∧
T ∗

0 M ⊗ E) (52)
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has a nowhere-vanishing meromorphic continuation to C whose poles are of
finite rank, and are called Pollicott–Ruelle resonances. For each λ0 ∈ C, we
have the expansion

Rk(λ) = RH
k (λ) +

J(λ0)∑
j=1

(−1)j−1(LX,k + λ0)j−1Πλ0

(λ − λ0)j
(53)

where RH
k is holomorphic near λ0 and Πλ0 : C∞

(M ;
∧k

T ∗
0 M ⊗ E) → D′(M ;

∧k
T ∗

0 M ⊗ E) is a finite rank projector. The
range of Πλ0 defines (generalised) resonant states. They are characterised as

Range Πλ0 =

{
ϕ∈D′

(
M,

k∧
T ∗

0 M ⊗ E

)
: WF(u) ⊂ E∗

u, (LX,k+λ0)
J(λ0) ϕ=0

}
,

(54)

where WF refers to the wave front of a distribution (or current), E∗
u is the

unstable bundle referenced in Remark 16 and J(λ0) denotes the multiplicity.
The adjective “generalised” refers to the possibility that the pole may not be
simple (and is superfluous in the case J(λ0) = 1).

Finally, the poles of the meromorphic continuation Rk(λ) correspond to
zeros of the zeta function ζk(λ) (which is entire for each k), and the rank of
the projector Πλ equals the multiplicity of the zero.

4. BF Theory on Contact Manifolds

In this section, we will analyse a field theory that goes under the name of
BF theory,10 in the Batalin–Vilkovisky (BV) formalism. Consider the basic
geometric data (M,E) of Sect. 2.1. The classical version of abelian BF theory
(i.e. without BV Formalism) is given by the following assignment:

Definition 23. Define the space of classical fields to be FBF := Ω1(M,E) ⊕
ΩN−2(M,E), and the BF action functional:

SBF =
∫

M

B ∧ d∇A. (55)

Then we call BF theory the assignment (M,E) � (FBF , SBF ).

Remark 24. Recall that Sect. 2.1 equips E with a Hermitian metric h. This
metric has been implicitly used to couple B and A. Specifically, both B and
d∇A take values in E whence h must be used so that B ∧ d∇A ∈ ΩN (M).

10The name BF comes from the tradition of denoting fields with B and A, and the
Lagrangian density with B ∧ FA.
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Remark 25. It is easy to see that shifting either B or A by a d∇-exact form
leaves the action functional unchanged.11 This goes under the name of re-
ducible symmetry, and it is conveniently treated by means of the BV formal-
ism.

Let us consider the space of differential forms Ω−•(M,E) as a Z-graded
vector space, such that homogeneous forms ω(k) ∈ Ωk(M,E) will have degree
|ω(k)| := −k. We define the space of Batalin–Vilkovisky fields for BF theory
to be the graded vector space

FBF := Ω−•(M,E)[1] ⊕ Ω−•(M,E)[N − 2] � (A, B) (56)

where the degree shift means that a k-form in Ω−•(M,E)[1] will have degree
|A| = 1 − k. The symplectic structure reads

ΩBF =
∫

M

[δBδA]top, (57)

and we define an action functional on FBF as

SBF =
∫

M

[Bd∇A]top. (58)

Observe that |SBF | = 0 and |ΩBF | = −1.

Remark 26. We stress that, although the functional form of SBF in Eq. (55)
and SBF in (58) is the same, in the latter B and A are inhomogeneous forms
with an additional shift in degree. Such a degree shift effectively switches the
total parity of inhomogeneous forms, so that, if N is odd, even forms will have
odd parity and vice versa. This will have a crucial impact in the partition
function interpretation of quantities such as the analytic torsion and Ruelle
zeta function.

Definition 27. The assignment (M,E) � (FBF ,ΩBF , SBF , QBF ), with

QBF B = d∇B, QBF A = d∇A (59)

is called BF theory in the Batalin–Vilkovisky formalism.

4.1. Analytic Torsion from Resolutions of de Rham Differential

In this section, we will discuss the relation of analytic torsion with degenerate
action functionals, following Schwarz [56,57]. This is related to BF, as we will
highlight in what follows. In Sect. 4.2, we will interpret this relation in terms
of a gauge fixing for BF theory in the Batalin–Vilkovisky framework.

Consider the geometric data (M,E, gM ) of Sect. 2.2. Note that the only
importance of the vector bundle is to ensure acyclicity of the twisted de Rham
complex. This requirement will be necessary in Sect. 5; however, what we will
say here can be extended to nontrivial cohomology along the lines of [25,26].

11Strictly speaking this is true only up to boundary terms. We will assume that M has no
boundary, but otherwise the analysis of boundary terms is relevant, and can be performed
with a version of the BV formalism [25].



3854 C. Hadfield et al. Ann. Henri Poincaré

We can define the partition function associated with abelian BF theory
as follows. We first need a resolution of the kernel of the operator featuring
in the action functional, represented then as the 0th cohomology of a chain
complex. For abelian BF theory, it is given by the following:

0 → VN−2
TN−2−−−→ VN−1

TN−1−−−→ . . .
T3−→ V2

T2−→ V1
T1−→ V0

T−→ V0 → 0 (60)

where

V0 = Ω1(M) ⊕ ΩN−2(M), T =
[

0 �dN−2

�d1 0

]
; (61a)

V1 = Ω0(M) ⊕ ΩN−3(M), T1 =
[
d0 0
0 dN−3

]
; (61b)

V2 = ΩN−4(M), T2 =
[

0
dN−4

]
; (61c)

Vk = ΩN−(k+2)(M), Tk = dN−(k+2) (61d)

for 3 ≤ k ≤ N − 2. This implies TkT ∗
k = dN−(k+2)d

∗
N−(k+2) and

T 2 =
[
d∗
1d1 0
0 d∗

N−2dN−2

]
, T1T

∗
1 =

[
d0d

∗
0 0

0 dN−3d
∗
N−3

]
,

T2T
∗
2 =

[
0 0
0 dN−4d

∗
N−4

]
. (62)

In fact, denoting C := (A,B) ∈ V0, the operator T allows us to rewrite

SBF =
∫

M

B ∧ dA =
1
2

(C, TC) (63)

where ( , ) is the inner product (17) on V0 as discussed in Sect. 2.2. Then, the
partition function of the degenerate action functional (63), with respect to the
resolution (60), is defined by Schwarz in [57] to be:

ZSch[T, Ti] := det�(T 2)− 1
4

N−2∏
k=1

det�(TkT ∗
k )(−1)k+1 1

2 . (64)

Remark 28. The procedure outlined above recursively produces spaces Vk at
every stage in order to parametrise the relevant quotients Vk/ker(Tk), on which
integration makes sense. Indeed, said quotients coincide with coker(Tk+1) �
ker(T ∗

k+1), and the localisation to the correct integration subspaces is obtained
by restriction to ker(T ∗

k ). Thus, Schwarz’s definition of the partition function
goes through an extension to a larger space of fields, and the choice of a
subspace where integration is well defined: the kernel of the map T := ⊕N−2

j=1 T ∗
j .

Notice that this construction produces a resolution in the sense of Eq. (3).

In the case of abelian BF theory, this leads to

ZSch[T, Ti] = det�(d∗
1d1)− 1

4 det�(d∗
N−2dN−2)− 1

4 det�(d∗
0d0)

1
2

×det�(d∗
N−3dN−3)

1
2

N−2∏
k=2

det�(dN−(k+2)d
∗
N−(k+2))

(−1)k+1

2 . (65)
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It is possible rewrite the expression for the partition function in a familiar
form using the following lemma.

Lemma 29. Let (M,E,∇, ρ) be as in Sect. 2.1, then the following holds:

(1) det�(d∗
kdk) = det�(dkd∗

k)
(2) det�(dk−1d

∗
k−1) = det�(d∗

N−kdN−k)
(3) det�(Δk) = det�(dk−1d

∗
k−1)det�(d∗

kdk) = det�(d∗
k−1dk−1)det�(d∗

kdk).

Proof (Sketch of proof). The proof is immediate from the analysis of the spec-
tra of the operators under the consideration. More precisely, note that in this
case det�s are spectral invariants as they are the usual zeta-regularised deter-
minants.

(1) follows from the fact that the operators d∗
kdk and dkd∗

k are isospectral,
a property one can check by acting with d on a coexact eigenform of Δ.

Similarly, we observe that (∗N−k)−1 ◦ dk−1d
∗
k−1 ◦ ∗N−k = d∗

N−kdN−k,
which implies that dk−1d

∗
k−1 and d∗

N−kdN−k are isospectral and (2) follows as
well.

Finally (3) follows from the observation that the spectrum of Δk = d∗
kdk+

dk−1d
∗
k−1 is the union of spectrum of dk−1d

∗
k−1 and d∗

kdk. �

Thanks to the previous lemma, we get:

Proposition 30. The partition function ZSch[T, Ti] for the resolution (60) yields

ZSch[T, Ti] = τρ(M). (66)

Proof. From (1) and (2) of Lemma 29, we have

det�
(
dN−(k+2)d

∗
N−(k+2)

)
= det�(d∗

k+1dk+1).

Using this relation and Lemma 29 again, we can rewrite (65) as

ZSch[T, Ti] = det�(d∗
1d1)− 1

4 det�(d∗
N−2dN−2)− 1

4 det�(d∗
0d0)

1
2

det�(d∗
N−3dN−3)

1
2

N−2∏
k=2

det�(d∗
k+1dk+1)

(−1)k+1

2 . (67)

Now, we know again by Lemma 29 that det�(d∗
1d1) = det�(d∗

N−2dN−2) and
det�(d∗

N−3dN−3) = det�(d∗
2d2).

Finally, using (3) of the Lemma 29, we can write
N−1∏
k=0

det�(d∗
kdk)(−1)k 1

2 =
N∏

k=1

det�(Δk)(−1)k+1 k
2

In summary, we have

ZSch[T, Ti] =
N∏

k=1

det�(Δk)(−1)k+1 k
2 ,

showing that the partition function ZSch[T, Ti] for the resolution (60) of the
operator d coincides with the analytic torsion τρ(M) of Definition 13. �
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4.2. BV Interpretation: Metric Gauge for BF Theory

We would like to phrase the procedure outlined in Sect. 4.1 in the Batalin–
Vilkovisky framework.

First of all, we need to observe that, when the complex is acyclic, the
submanifold

Lg : {d�
∇B = d�

∇A = 0} (68)

is Lagrangian in the space of BV fields FBF (see Remark 5), and can be there-
fore used as a gauge fixing for BF theory. This is a consequence of Hodge
decomposition (on closed manifolds without boundary). In fact, one can easily
check that the images of d and d∗ are both isotropic in FBF , and complemen-
tary due to Hodge decomposition. We refer to this gauge fixing as the metric
gauge.

Due to the vanishing of the cohomology of Ω•(M,E), the metric gauge
Lagrangian submanifold Lg can be parametrised as follows. The condition
d∗

∇B = 0 can be equivalently written as B = d∗
∇η, and if we specify the form

degree of the various fields with a subscript, we write BN−k−1 = d∗
∇ηN−k.

Finally, writing ηN−k = �τk, together with the inner product given in Eq. 17
provides the following formula:

SBF |Lg
≡
∫

M

[Bd∇A]top
Lg

=
N−1∑
k=0

∫

M

�d∇τkd∇Ak|d∗A=0 =
N∑

k=1

(τk, d∗
∇d∇|coexactAk) . (69)

Remark 31. We consider an interpretation of Eq. 66 in terms of the BV con-
struction we just outlined.12 We will see how the analytic torsion can be seen
as a way of making sense of the (super)determinant of the (graded) operator
d : Ω•

coexact → Ω•+1
exact. Let us define first

sdet�(d∗
∇) ≡ sdet�(d∇) := sdet�(d∗

∇d∇)
1
2 . (70)

Definition 9 interprets partition functions of quadratic functionals in
terms of the superdeterminant of the operator that features in the func-
tional. However, when an explicit gauge fixing is considered, one needs to
take into account the parametrisation of the gauge-fixing Lagrangian. In our
case this introduces a “Jacobian superdeterminant” for the change of coor-
dinates B = d∗

∇η. Moreover, one should pay attention to the shift in degree
Ω−•(M,E)[1] and Ω−•(M,E)[N −2]. As a matter of fact, in this circumstance
the change of variables operator d∗ is acting on k-forms of parity k +1 mod 2
(instead of k mod 2), so that the Jacobian superdeterminant will appear with
the “opposite” power. For the same reason, recalling Remark 12, the output
of a Gaussian integration over a 1-shifted graded vector space will yield the
superdeterminant of the relevant operator (instead of its inverse).

12The authors would like to thank P. Mnev and A.S. Cattaneo for valuable insight into this
interpretation.
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Hence, one recovers the analytic torsion formally as a Gaussian integral
on an supervector space by defining the partition function for gauge-fixed
BF theory to be a flat-regularised Berezinian/superdeterminant, times the
Jacobian (super)determinant sdet�(d∗)−1 of the change of variables operator:

Z(SBF , Lg) =
∫

Lg

eiSBF |Lg
= |sdet�(d∗

∇)|−1

∫
exp

(
i

N−1∑
k=0

(τk, (d∗
kdk)Ak)

)

(71a)

:= |sdet�(d∇)|−1
∣∣∣sdet�(d∗

∇d∇)
∣∣∣ =

∣∣∣sdet�(d∗
∇d∇)

∣∣∣
1
2

(71b)

=
N−1∏
k=0

det�(d∗
kdk)(−1)k 1

2 = τρ(M), (71c)

which, comparing with (70), means (cf. [26, Lemma 5.5])

sdet�(d∇) ≡ sdet�(d∗
∇) := τρ(M).

Observe that, as mentioned in Remark 10, our definition of partition function
discards a potential phase factor in Eq. (70), which depends on the signature
of the operator. However, as observed in [26, Proposition 5.7 and Remarks
5.8, 5.9], in the case of acyclic complexes the phase drops out. The analysis of
the partition function of BF theory in the metric gauge fixing is discussed in
detail in [26], where BF theory is cast on triangulated manifolds with boundary
(cellular decompositions of cobordisms) and its partition function is shown to
coincide with the Reidermeister torsion. The triangulation of a manifold can
also be seen as a way of regularising the infinite-dimensional BV Laplacian
ΔBV , of which SBF is a cocycle.

Remark 32. In Schwarz’s formalism, the computation of the partition function
is done by performing integration over ker(T) ⊂ ⊕N−2

j=0 Vj (see Remark 28).
It is tantamount to the 0-th Koszul–Tate cohomology, i.e. the resolution pre-
sented in Eq. (3). This can be compared with the metric gauge in the BV
interpretation, where FBF � T ∗[−1]

⊕N−2
k=0 Vk[k]. In order to represent in-

tegration over ker(T) within the BV formalism, one considers Lg, which is
essentially the same condition—i.e. restriction to coclosed forms—extended to
the shifted cotangent bundle.

4.3. Contact Gauge Fixing for BF Theory

This subsection shows that if BF theory is cast on a manifold that admits a
contact structure, it is possible to find an alternative gauge-fixing condition.
Adopting the same point of view on the partition function, we show how one
recovers the Ruelle zeta function.

Consider the geometric data13 from Sect. 2.3, (M,E,X), and consider
BF theory cast in the Batalin–Vilkovisky formalism as in Definition 27.

13Again, the importance of E is to ensure acyclicity.
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Proposition 33. The submanifold

LX := {(A, B) ∈ FBF | ιXB = 0; ιXA = 0}
is Lagrangian in FBF .

Proof. We show that the condition LX : ιXB = ιXA = 0 defines an isotropic
submanifold with an isotropic complement. Indeed, in virtue of the splitting in
Eq. (27), we can decompose Ω•(M) = ker(ιX)⊕ker(α∧), so that A = ϕ+α∧η
and B = ψ + α ∧ ξ. We observe that η = ξ = 0 on LX , and defining L

⊥
X :=

{(A, B) ∈ FBF | α ∧ A = α ∧ B = 0}, also that ψ = φ = 0 on L
⊥
X . Then we

have (we understand the top-form part of all the integrands)

ΩBF |LX
=
∫

M

[δψδ(α ∧ η) + δ(α ∧ ξ)δϕ]
LX

≡ 0 (72)

ΩBF |
L

⊥
X

=
∫

M

[δψδ(α ∧ η) + δ(α ∧ ξ)δϕ]
L

⊥
X

≡ 0. (73)

This shows that both LX and L
⊥
X are isotropic. �

Definition 34. We shall refer to the choice of gauge fixing proposed in Propo-
sition 33 for BF theory as the contact gauge.

Theorem 35. Consider the geometric data (M,E,X). Suppose that the Ruelle
zeta function for X has a meromorphic extension which does not vanish at zero.
Then, the Ruelle zeta function at zero ζρ(0) computes the partition function
of BF theory in the contact gauge:

Z(SBF , LX) = |ζρ(0)|(−1)n+1
. (74)

Proof. We want to compute Z(SBF , LX) ≡ Z(SBF |LX
). Because of the de-

composition (27), we have that ιXB = 0 ⇐⇒ B = (−1)|τ |+1ιXτ , for some τ ;
hence,

SBF |LX
=
∫

M

[Bd∇A]top
LX

=
∫

M

[(−1)|τ |ιXτd∇A]topιXA=0 (75)

=
∫

M

[τιXd∇A]topιXA=0 =
∫

M

[τLX |Ω•
0
A] (76)

Observe that τ and A are inhomogeneous forms in α ∧ Ω•
0(M,E)[N − 2] and

Ω•
0(M,E)[1], respectively. Then, according to Definition 9, recalling that LX

acts on a 1-shifted graded vector space and referring to Definition 14 for
sdet�(ιX), we have

Z(SBF , LX) =
∣∣∣sdet�LX |Ω•

0

∣∣∣ =

∣∣∣∣∣
N−1∏
k=0

(
det�LX,k|Ωk

0

)(−1)k
∣∣∣∣∣ . (77)

This, compared with Eqs. (40) and (50), allows us to conclude the proof. �
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Remark 36. We would like to stress how the crucial element in both metric
and contact gauges is the existence of a “Hodge decomposition” for the space
of k-forms. In the metric case, it is given, in particular, by the kernel of the de
Rham differential and its dual, but truly it can be considered independently
of it, as in the contact case, where the maps ιX and α∧ define the splitting.

Remark 37. It is tempting to consider a field theory with action functional
SX :=

∫
M

[φLXψ]top on differential forms φ, ψ ∈ Ω•(M), and call it Ruelle
theory. Observe that this is what one gets out of Theorem 35, but with a
nontrivial shift in degree. This is akin to considering the theory

∫
M

[BdA]top,
for unshifted inhomogeneous differential forms A,B ∈ Ω•, but—to the best of
our knowledge—that does not seem to have a clear interpretation up to now.

5. Lagrangian Homotopies, Fried’s Conjecture and Gauge-fixing
Independence

In this section, we outline a strategy to interpret the recent results of [32] on
Fried’s conjecture as invariance of gauge fixing in the BV formalism, and vice
versa. We will set up a general geometric framework to discuss perturbation of
the Anosov vector field as an argument for the Ruelle zeta function, and argue
how this can be used to construct homotopies for Lagrangian submanifolds.
Indeed, consider the following:

Claim 38. Assume Theorem 2 holds on FBF for some appropriate choice of
BV Laplacian ΔBV , and assume there exists a Lagrangian homotopy between
LX and Lg for any X contact and Anosov. Then, up to phase,

τρ(M) = Z(SBF , Lg) = Z(SBF , LX) = |ζρ(0)|(−1)n , (78)

which is the statement of (Fried’s) Conjecture 21.

Remark 39. We stress here that a universal generalisation of Theorem 2 to
infinite dimensions, i.e. one that works independently of the details of the field
theory (and gauge fixing), is currently not yet available. The results of [26]
suggest that one possible regularisation scheme for the BV Laplacian might
arise as a limit of finite-dimensional cellular analogues. The works of [27] and
[40,44] assume instead a somewhat different set-up, which would also need
to be adapted to the case at hand. Ideally, a scheme should be found that
makes the regularisation of the BV Laplacian compatible with the context of
Definition 7. Observe that the recent results of [20] suggest that a number of
subtleties might arise, already in acyclic cases.

The central notions for this section, and the main theorem we will need
are as follows.

Definition 40. Let X be an Anosov vector field on a manifold M . We will say
that X is regular whenever the restricted resolvents Rk(λ) = (λX,k + λ)−1 of
Eq. (52) do not have poles at λ = 0 for all 0 ≤ k ≤ N − 1.
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Recalling Remark 22, we report now a result by Dang, Guillarmou,
Rivière and Shen on the properties of Ruelle zeta function seen as a func-
tion on Anosov vector fields:

Theorem 41 ([32]). Let (M,E) denote the geometric data of Sect. 2.1. Con-
sider the set U ⊂ C∞(M,TM) of regular smooth Anosov vector fields X.
Then this set is open, and the map ζ : U → C, sending X to ζ(X, 0), is locally
constant and nonzero.

5.1. A Sphere Bundle Construction

Let Σ be a compact manifold. We denote by R(Σ) the space of all Riemannian
metrics on Σ, by R<(Σ) the space of negative sectional curvature metrics, and
by Rh(Σ) the space of hyperbolic metrics.

Definition 42. Let us fix a reference metric g0. We denote the sphere bundle
associated with g0 by S∗

0Σ := S∗
g0

Σ. Moreover, let g, g̃ ∈ R(Σ) and consider
the diffeomorphism

σg̃
g : S∗

gΣ −→ S∗
g̃Σ (79)

obtained by rescaling lengths in TΣ. Then, we denote the diffeomorphisms
σg : S∗

gΣ → S∗
0Σ, with σg := σg0

g for all g ∈ R(Σ). Denoting by ϕg the geodesic
flow on S∗

gΣ, and by Xg the associated vector field. One can transfer the
geodesic flow ϕg to S∗

0Σ by ϕ0
g = σg ◦ϕg ◦σ−1

g ; we denote the associated vector
field on S∗

0Σ by X0
g .

Since we are interested in computing the Ruelle zeta function on sphere
bundles, we would like to ensure that the geodesic (Reeb) vector field Xg is
Anosov in S∗

gΣ. This would not be true in general, but it will be true for
metrics of negative sectional curvature R<. The map σg allows us to consider
all Anosov geodesic vector fields on the same reference space S∗

0Σ.

Lemma 43. The Anosov property of is preserved under pushforward by σg.

Proof. This is an adaptation of a result proved in [49]. Given S∗
gΣ with Anosov

flow ϕg and associated vector field Xg, we also have a decomposition

T (S∗
gΣ) = RXg + Es(Xg) + Eu(Xg) (80)

with constants Cg, λg so that for all vs ∈ Es(Xg), vu ∈ Eu(Xg) and all t > 0:

‖dϕg,tvs‖g ≤ Cge−λgt‖vs‖g, ‖dϕg,−tvu‖g ≤ Cge−λgt‖vu‖g. (81)

Using dσg, we push the decomposition of T (S∗
gΣ) to T (S∗

0Σ) providing

T (S∗
0Σ) = RX0

g + Es(X0
g ) + Eu(X0

g ) (82)

where Es(X0
g ) := dσg(Es(Xg)) and Eu(X0

g ) := dσg(Eu(Xg)). Now dσg and
dσ−1

g are both bounded so for v0
s ∈ Es(X0

g ), there is vs ∈ Es such that dσgvs =
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v0
s , whence for t > 0:

‖dϕ0
g,tv

0
s‖0

= ‖dσgdϕg,tvs‖0 ≤ ‖dσg‖‖dϕg,tvs‖g ≤ ‖dσg‖Cge−λgt‖vs‖g (83)

= ‖dσg‖Cge−λgt‖dσ−1
g v0

s‖g ≤ ‖dσg‖‖dσ−1
g ‖Cge−λgt‖v0

s‖0 = C ′
ge

−λgt‖v0
s‖0.
(84)

A similar result holds for vectors in Eu(X0
g ). �

Definition 44. We define the assignment:

X : R(Σ) −→ C∞(S∗
0Σ;T (S∗

0Σ)); X(g) = dσgXg = X0
g (85)

where Xg is the geodesic vector field induced by g on S∗
gΣ.

Proposition 45. Let us denote by A(Σ) the set of Anosov vector fields on S∗
0Σ,

and by R<(Σ) the space of negative sectional curvature metrics on Σ. Then

A<(Σ) := Im
(
X|R<(Σ)

) ⊂ A(Σ). (86)

Proof. This follows from the general fact that all negative sectional curvature
metrics have Anosov geodesic flows, and application of Lemma 43. �

Lemma 46. For Σ a two-dimensional surface of negative Euler characteristic
χ(Σ) < 0, the image of X restricted to Rh(Σ), the space of hyperbolic metrics
on Σ, is a deformation retract of A<(Σ).

Proof. On two-dimensional surfaces, the space of negative sectional curvature
metrics coincides with the space of negative Ricci curvature metrics, which is a
contractible subset of R. In fact, via the Ricci flow one canonically deforms any
metric g into a hyperbolic one, and in particular, negatively curved metrics are
deformed in such a way along a path of negatively curved metrics [60]. Thus,
the space of hyperbolic metrics on Σ is a deformation retract of the space of
all negatively curved metrics R<(Σ), and so will be its image under X with
respect to the space A<(Σ). �

Theorem 47. Consider the contact Anosov–Riemannian structure (M,E,Xg, g)
of Sect. 2.4.1, where M = S∗

gΣ with dim(Σ) = 2, the Euler characteristic
χ(Σ) < 0, and g ∈ R<(Σ). Then,

|ζ(Xg, 0)| = τρ(M)−1. (87)

Proof. In virtue of Lemma 46, there exists a smooth path X(t) of Anosov
vector fields in A<(Σ) connecting Xg to Xgh

for some gh hyperbolic, where
Theorem 20 holds: let g(t) be a retraction such that g(0) = g0 and g(1) = g,
and set X(t) = X(g(t)). If we can show that each X(t) is regular, then local
constancy of the zeta function at zero (Theorem 41) provides the result.

The idea for showing regularity is essentially in [34] even though that
setting is using the trivial representation, so that the de Rham complex is not
acyclic. A more explicit version which adapts the spirit of [34] is in [32]. Below
we cite the necessary results of [32] to conclude that X(t) is regular.
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Since g ∈ R<(Σ), its associated geodesic vector field Xg on S∗
gΣ is Anosov

[1,5,6]. For regularity, one shows that no k-form resonant states ϕ(k) associated
with the spectral parameter λ = 0 exist for k ∈ {0, 1, 2} (recall Eq. (54)). By
[32, Lemma 7.4], 0-form resonant states ϕ(0) are closed and smooth in this
setting so may be identified with degree-0 de Rham cohomology. Acyclicity
implies such states are necessarily the 0-section. For 2-form resonant states
ϕ(k), there is an isomorphism with 0-form resonant states upon wedging with
dα [32, Lemma 7.2]. Effectively ϕ(2) = ϕ(0)dα so in this case also, no such
resonant states exist. Finally, for 1-form resonant states, we require degree-
1 cohomology to vanish and appeal to [32, Lemma 7.2 Hypothesis (1)] to
conclude no nontrivial resonant states exist. �
Corollary 48. Under the assumptions of Theorem 47, denoting by

LX = {(A, B) ∈ FBF | ιX(g)A = ιX(g)B = 0}
the Lagrangian submanifold defined by the Anosov vector field X(g), we have

Z(SBF , LX) = τρ(M)−1, (88)

for every g ∈ R<(Σ).

Proof. This follows from Theorems 35 and 47. �
Remark 49. Observe that the above construction can be generalised to some
extent. In general, the space of negative sectional curvature metric will not be
path connected, so let us consider the connected components that contain a
hyperbolic metric. The image under X of the disjoint union of such connected
components in A(Σ) will be a union of islands of Anosov vector fields, path
connected to an Anosov vector fields in Im(X|Rh

). In a neighbourhood of a
hyperbolic metric Anosov vector field, the requirements of Theorem 41 are
satisfied, and Fried’s conjecture might be extended to open subsets of A<(Σ).
We defer the development of such a generalisation to a subsequent work.

Remark 50. The spirit of gauge-fixing homotopies is that of replacing an ill-
defined integral with a well-defined one, and can be considered as providing
a family of integral representations of the same quantity, only some of which
are directly computable. From this point of view, the Ruelle zeta function at
zero might not be computable for a generic (Anosov) vector field, but it will
be once deformed away from an invalid point in A(Σ).

We wish to interpret this result in terms of homotopies of Lagrangian
submanifolds in FBF and gauge-fixing independence for BF theory.

Theorem 51. Consider the geometric data (M,E,Xg, g) of Sect. 2.4.1, a smooth
path gt : [0, 1] → R(Σ) such that X(g0) is regular, and let

Lt := {(A, B) ∈ FBF | ιX(gt)A = ιX(gt)B = 0}
be the associated smooth family of Lagrangian submanifolds in FBF . Then,
Z(SBF , L0) �= 0 and

d

dt

∣∣∣
t=0

Z(SBF , Lt) = 0. (89)
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Moreover, if g0 is hyperbolic, we have that

Z(SBF , L0) = τρ(M). (90)

Proof. Lemma 43 ensures that X(gt) = dσgt
Xgt

is a smooth path of Anosov
vector fields in S∗

0Σ, and in virtue of Theorem 35, we have that

Z(SBF , Lt) ≡ Z(SR|Lt
) = |ζ(X(gt), 0)|(−1)n .

By assumption, at g0 the kth Ruelle zeta factors ζk(X(g0), 0) are well defined
and different from zero. Then, in virtue of Theorem 41 ζ(X(g0), 0) is constant
in a open neighbourhood of X(g0); hence, it is on the whole path gt for t ∈ [0, T )
for some appropriately chosen T , and in particular, its derivative at t vanishes.
If we choose g0 hyperbolic, using Theorem 20 we can conclude that

Z(SBF , L0) = |ζ(X(g0), 0)|(−1)n ≡ |ζρ(M)|(−1)n = τρ(M).

�
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Gauthier-Villars (1967); (English translation: Ergodic problems in classical me-
chanics) New York (1968)

[2] Atiyah, M.F., Bott, R.: Notes on the Lefschetz Fixed Point Theorem for Elliptic
Complexes. Harvard University, Cambridge (1964)

[3] Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes:
II. Applications. Ann. Math. 88, 451–491 (1968)

[4] Anderson, I.M.: Introduction to the variational bicomplex. Contemp. Math. 132,
51 (1992)

[5] Anosov, D.V.: Geodesic flows on closed Riemannian manifolds of negative cur-
vature. Trudy Mat. Inst. Steklov 90(5), 3–210 (1967)

[6] Anosov, D.V., Sinai, Y.G.: Some smooth ergodic systems. Russ. Math. Surv.
22(5), 103 (1967)

[7] Baladi, V.: Dynamical Zeta Functions and Dynamical Determinants for Hyper-
bolic Maps. Springer, Berlin (2018)

[8] Birmingham, D., Blau, M., Rakowski, M., Thompson, G.: Topological field the-
ory. Phys. Rep. 209(4), 129–340 (1991)

[9] Berwick-Evans, D.: The Chern–Gauss–Bonnet theorem via supersymmetric Eu-
clidean field theories. Commun. Math. Phys. 335(3), 1121–1157 (2015)

[10] Berezin, F.A.: Introduction to Algebra and Analysis with Anticommuting Vari-
ables. Moscow University, Moscow (1983)

[11] Berezin, F.A., Leites, D.A.: Supermanifolds. Doklady Akademii Nauk 224, 505–
508 (1975)

[12] Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and sta-
bility. J. Mod. Dyn. 1(2), 301–322 (2007)

[13] Becchi, C., Rouet, A., Stora, R.: The abelian Higgs Kibble model, unitarity of
the s-operator. Phys. Lett. B 52(3), 344–346 (1974)

[14] Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs–Kibble
model. Commun. Math. Phys. 42(2), 127–162 (1975)

[15] Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys.
98(2), 287–321 (1976)

[16] Batalin, I.A., Vilkovisky, G.A.: Quantization of gauge theories with linearly de-
pendent generators. Phys. Rev. D 28(10), 2567 (1983)

[17] Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Quantum Grav-
ity, pp. 463–480. Springer, Berlin (1984)

[18] Cattaneo, A.S., Contreras, I.: Split canonical relations (2018). arXiv:1811.10107

[19] Cattaneo, A.S., Cotta-Ramusino, P., Fröhlich, J., Martellini, M.: Topological BF
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