
Searching for gravitational waves from pulsars in

binary systems: an all-sky search

S. van der Putten1, H. J. Bulten1, J. F. J. van den Brand1, M.
Holtrop2

1Nikhef, Sciencepark 105, 1098 XG Amsterdam, The Netherlands
2Department of Physics, University of New Hampshire, Durham, N.H. 03824, USA

E-mail: sputten@nikhef.nl

Abstract. Non axisymmetrical neutron stars emit continuous gravitational waves. The
periodicity of the system allows for the improvement of the signal-to-noise ratio by integrating
the signal over time. Many of the known neutron stars are in binary systems and their orbital
movement will Doppler-shift the signal. When performing an all sky-search for such systems the
use of exact binary motion templates become unfeasible. The Doppler shifts causes the power
in the signal to be spread out over a large enough frequency band so that the gain of integrating
the signal over the observation time is negligible. Here, the principles of a new analysis method
for LIGO and Virgo data, called the polynomial search, will be presented together with first
tests on simulated data.

1. Introduction
Gravitational wave detectors like LIGO and Virgo have reached their design sensitivity and direct
detection of gravitational waves may become possible in the near future. Non axial-symmetric
rotating neutron stars, or pulsars (when they emit radio or X-ray pulses), are systems that emit
gravitational waves. The strain wave amplitude from such a system is calculated to be [1]
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where ε represents the ellipticity of the neutron star, Izz the z-component of the moment of
inertia, f the rotation frequency of the neutron star, G and c are the gravitational constant and
the speed of light, respectively.

Neutron stars can be found as either isolated objects or in a binary system. In the following
we discuss a new data analysis method termed the polynomial search, that enables an all-sky
search for gravitational waves from neutron stars in binary systems.

2. Motivation
Most of the current all-sky searches [2, 3, 4, 5, 6, 7] focus on isolated neutron stars. From
the ATNF pulsar catalog [8] it appears that the majority of the known pulsars with rotational
frequencies above 10 Hz are in binary systems (see Fig. 1). The corresponding gravitational
wave amplitude scales with f2 (Eq. 1). However, the Keplerian orbit of the pulsar will introduce
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Figure 1. The spin versus the rotational frequency the down for isolated pulsars (black squares)
and for pulsars in binary systems (red triangles). The data are taken from the ATNF pulsar
catalog (June 2009) [8].

a Doppler shift to the signal in addition to the Doppler shift from the detector motion. These
Doppler shifts cause the signal power to be spread out in frequency.

In order to take full advantage of the long integration times, templates must be matched
with the data and they must be coherent with the signal over as long a time as possible. When
attempting an all-sky coherent search for neutron stars in binary systems the number of required
signal templates was found to be so large that such a search would be unfeasible [9].

Another strategy which is used in all-sky searches for isolated neutron stars is the Hough
transform search [4]. This method uses shorter integration times so that the signal stays in a
single frequency bin. When applying this principle to neutron stars in binary systems [9] one
finds that the maximum coherent time for a signal Tcoh to stay in one frequency bin can be
written as

Tcoh ≤ 131.6

(
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where q = m2/mNS represents the ratio of the masses of the two objects, P the period of
the binary, mNS the mass of the neutron star and f the gravitational wave frequency. For an
example binary system with parameters m2 = mNS = 1.4 M�, P = 2 h and f0 = 1 kHz we
find Tcoh ≈ 20s. This coherent time is too short to gain any significant signal to noise ratio by
continuous observation.

The polynomial search is a hierarchical search that employs a limited number of filters and
aims to increase the possible coherent time by more than an order of magnitude compared to
the Hough transform search. Next, the first step of the hierarchical pipeline will be presented.

3. The polynomial search method
The Doppler shifts induced by the Kepler orbit of the neutron star will spread the signal over
many frequency bins. The parameter space can be represented by the 12+ s dimensional vector

~λ = (P, ap, e, ω0, h0, φ0, τ, f0, αns, δns, i, ψ, f
(1), ..., f (s)),

where P represents the period of the binary, ap the projected semi major axis, e the eccentricity of
the orbit, ω0 the longitude of the periastron, τ the time of periastron passage, h0 the gravitational
wave amplitude the signal has at the detector, φ0 the initial phase of the gravitational wave, f0
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the rotation frequency of the neutron star, αns and δns the right ascension and declination of
the source, i the angle between the rotation and propagation axis, ψ the polarization angle of
the gravitational wave and f (1) to f (s) the spin down parameters.

Instead of attempting to create templates in the 12 + s dimensional parameter space, the
polynomial search employs the empirical phase model given by

Φ(t; ~ξ) = 2π
(
φ0 + f0t+

α

2
t2 +

β

6
t3
)
, (3)

where the vector ~ξ = (φ0, f0, α, β) lives in a four dimensional filter parameter space. This phase
model has the advantage of a lower dimensionality of the parameter space and is a priori not
dependent on any (astro)physical assumptions. However, the model will only hold as long as
the coherent time is short enough or the Keplerian parameters are small enough in such a way
that the phase from Eq. (3) does not deviate more than a certain value from the real signal.
The filters

F (t; ~ξ) = sin
(
Φ(t; ~ξ)

)
(4)

are to be applied to the data in stretches of coherent time T . The maximal values for α and β can
be calculated from the Kepler orbits assuming that the dominant contribution in the frequency
dependence on time arises from the Doppler shifts. The values are calculated for a specific binary
by taking the maximal values for the first and second derivatives for αmax and βmax. 1 For the
previously introduced example binary, the values are αmax = 1.3 mHz/s and βmax = 1.1 µHz/s2.
Thus when applying the filters described in Eq. (4) and stepping in parameter space up to these
maxima, all binary systems will be covered by these filters if the binary parameters lead to
Doppler shifts smaller than the extreme case. The step size has been chosen by performing
Monte-Carlo simulations assuming that the higher order corrections are small. The stepsize
was chosen by computing the maximal distance of the true parameters to the nearest point in
parameter space which results in a phase difference of π/2 for the complete filter. The details of
these simulations will be presented in a future publication. The maximal coherent time, defined
as the maximal time that the filter stays in phase within 1 radian with the original signal, can
be calculated to be T = 500 s for this binary. Thus the polynomial search will gain a factor of
25 in coherent time over a Hough search.

The polynomial search is performed by stepping in the parameter space and creating a
collection of filters. The filters are then applied to the data by calculating the correlation
with the data D(t) and each filter F (t− τ) where τ represents the lag parameter which can be
interpreted as the time shift of the filter. This correlation C as a function of lag τ and filter with
parameters ~ξ is computed in the frequency domain for computational efficiency which, when
taking the noise level of the detector into account can be written as

C(τ ; ~ξ) = F−1

F [D(t)]F
[
F (t; ~ξ)

]∗√
2PFSn(ω)

 , (5)

where the operator F [] represents the operation of taking the Fourier transform, ∗ denotes the
complex conjugate, D(t) the data from the detector, F (t; ~ξ) the filter with parameters ~ξ, PF the
spectral power in the filter and Sn(ω′) the single-sided power spectral density of the data, which
is used to estimate the noise level of the detector. The resulting statistic can be considered
Gaussian distributed with unit variance2.
1 In practice, the choice for αmax and βmax will determine the maximum span of the binary parameter space one
would wish to search.
2 In this case, the correlation C can also be interpreted as a signal to noise ratio as can be found with the
Neyman-Pearson criterion
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Eq. (5) gives the correlation for each filter with the data, shifted with lag parameter τ . The
phase as a function of the lag can be written as

Φ(t− τ) = 2π


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From Eq. (6) it can be seen that the lag parameter creates an interdependency of the filter
parameters. This property can be exploited to avoid generating filters for each point in the
parameter space which will reduce the amount of CPU time and memory needed. In order to
use the lag parameter as a time shift it must be possible to shift the filter within the chunk of
data between 0 and T s. In our implementation the filters are zero-padded for t > T/2 and only
the lags 0 < τ < T/2 are considered.

The filters are produced in a frequency band ∆f and are compared to the data by shifting the
spectrum of the filter which is equivalent to heterodyning the data. When discetizing the filter
N = ∆fT values of the correlation C(τ, ~ξ) for the lags between 0 and T/2 are obtained, where
Eq. (6) shows the dependency of the parameters on the lag. In order to reduce the number
of correlations to process, only the maximum correlation and corresponding values for τ, f0, α
and β are recorded3 for each applied filter F (t; ~ξ).

Since the correlation is normalized to the power spectral density, a threshold in terms of the
estimated noise level of the detector can be set. When applying such a threshold to the collection
of maxima the resulting numbers are called hits. These hits can be displayed by plotting the
frequency as a function of time,

f(t− τ) =
1
2π

dΦ(t− τ ; ~ξhit)
dt

, (7)

where ~ξhit represents the parameters of the filters for which the correlation exceeds the threshold.

4. Sensitivity
The probability that, given a threshold and in absence of a signal, at least one filter will give a
hit is called the false alarm probability. For the assumption of Gaussian noise and statistically
independent filters, the false alarm probability can be written as

pfa(x > xthr) = 1 −
(

1 + erf(xthr√
2

)

2

)NF

, (8)

where x is the correlation of a single filter with parameters φ(τ), f0(τ) , α(τ) and β(τ) has with
the data, xthr the threshold normalized to the estimated noise level of the data and NF is the
total number of applied filters.

The false dismissal probability for a signal of a certain strength is defined as the probability
that no correlation between filter and data passes a given threshold. The false dismissal
probability for a given signal can be calculated if the correlations κi of all filters with the
signal with amplitude h0 and Sn are known. The expression is given by

pfd(x < xthr) = ΠNF−1
i=0

1 + erf
(

xthr−κiχ√
2

)
2

 , (9)

3 The value for φ0 has been fixed to 0. Note, that by considering all lag parameters τ all values of φ(τ) are
sufficiently covered.
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where and χ = h0

√
T
Sn

.
The false alarm and false dismissal rates are calculated for an example scan with parameters

T = 1200 s, ∆f = 8 Hz, α = ±10−3 Hz/s and β = ±10−5 Hz/s2,

where T represents the integration time, fF the sample frequency of the filters, ∆f the bandwidth
of the data which has been used for the polynomial search, α and β give the range of both
parameters which have been used in this search. For this particular set of parameters the
amount of explicitly computed filters nf is 105. Using these parameters one finds that the
number of distinct applied filters per Hz of searched data NF = Nnf = 1.2 × 108 filters/Hz.

The false alarm probability as a function of the threshold can be calculated directly with Eq.
(8) and the number of applied filters. On the other hand the false dismissal probability depends
on the value of the correlation of each filter with the signal. This means that the false dismissal
probability can be estimated by using simulations.

The false dismissal probability was estimated for the parameters stated above. In the
calculation of the false dismissal probability, only the filters which had κi > 0.5 were taken
into account due to the large number of filters with smaller correlations. In this manner, the
product in Eq. (9) runs over a subset of filters4 and the calculation of the false dismissal rate
as a function of signal strength can be done in a timely manner.

Fig. 2 shows the false alarm (left panel) and false dismissal (right panel) probability per Hz
as a function of the threshold and of χ, respectively. For a given signal strength h = χ

√
T
Sn

and
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Figure 2. The left panel shows the false alarm probability per Hz searched bandwidth which has
been computed using the parameters given in the text. The right panel show the false dismissal
probability as a function of the signal strength. A threshold of 6.4, corresponding to a 1% false
alarm probability has been used.

a given number of data chunks the probability for k hits in n data chunks is

P (k) =
n!

k!(n− k)!
pn−k

fd (1 − pfd)n, (10)

where pfd is the false dismissal probability as shown in Eq. (9) and in Fig. 2. The corresponding
false alarm probability can be computed similarly.

5. Simulations
In order to illustrate the effectiveness of the polynomial search a binary system has been
simulated with parameters

P = 0.1 d, ap = 2 ls, e = 0.1, f0 = 600 Hz, h0 = 10−27,

4 Of the 9.6 × 108 filters in the search band only about 500 have a κi > 0.5.
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where P represents the period of the binary in days, ap the projected semi major axis in light
seconds, e the eccentricity of the orbit, f0 the frequency of the gravitational wave emitted by
the neutron star and h0 the emitted amplitude of the gravitational wave. The beam pattern
function of the interferometer has not been taken into account. The total simulation contained
6 hours of data sampled at 4 kHz and 35 overlapping FFTs (Fast Fourier Transforms) were
made from this data. The polynomial search was performed with the parameters shown in the
previous section.

Fig. 3 shows the frequency evolution of the signal in a time-frequency diagram where the
color coding shows the strain of the signal. It can be seen that per FFT the power is spread
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Figure 3. The frequency-time diagram of the simulated signal without noise.

out over a number frequency bins depending on the phase of the Keplerian orbit of the neutron
star.

Gaussian noise has been added to the signal in the time domain with different amplitudes.
The top left panel of Fig. 4 shows the frequency time diagram just like in Fig. 3 but with
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(a) f-t diagram: noise amplitude 10−25.
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(b) hitmap: noise amplitude 10−25.
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(d) hitmap: noise amplitude 2 × 10−25.

Figure 4. The frequency-time diagram of the simulated signal and the hit maps coming from
the polynomial search which are made with a threshold of 6.4.
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added noise with an amplitude of 10−25 in the time domain. Given the 1200 s coherent time5,
this corresponds to a SNR in amplitude of 0.35. The top right panel shows the result of the
polynomial search. This plot is made using the filters which exceed the threshold of 6.4. The
filters are written in the form shown in Eq. (7) and drawn as a function of time.

The bottom left plot shows the same signal, but with a noise amplitude of 2 × 10−25 and
bottom right shows the result coming from the polynomial search. Fig. 4 demonstrates the
effectiveness of the polynomial search in terms of improved signal to noise ratio.

6. Conclusion and outlook
An algorithm for performing an all-sky search for gravitational waves from neutron stars in
binary systems, called the polynomial search, has been presented and the first step in an
hierarchical pipeline has been discussed. The polynomial search uses an empirical phase model
which can describe the phase evolution up to third order in time, or the frequency evolution up
to second order in time. Using this method, the Doppler shifts of the gravitational wave signals
from neutron stars in binary systems can be dealt with and the coherent length of the individual
data segments can be increased. The false alarm and false dismissal probability of the method
have been presented giving a theoretical sensitivity of the search applied to a single stretch of
data.

The sensitivity of any coherent continuous wave search scales as
√
T where T is the observation

time for a single chunk of data. The coherent part of a Hough search demands that the change
in frequency of the signal cannot exceed one frequency bin. The first step of the polynomial
search enables the use of observation times more than a factor of 25 longer with respect to a
Hough search for a single data stretch. This allows for a factor of 5 in signal to noise gain.

The polynomial search is designed for performing an all-sky search for gravitational waves
coming from neutron stars in binary systems. It has been shown that the polynomial search
can follow gravitational waves with high Doppler shifts and stay coherent for longer than
103 s. The polynomial search has been shown to be able to search a large volume of the
parameter space with a limited set of filters. In the simulation discussed in this paper 1.2× 108

filters per Hertz bandwidth of data were sufficient to cover all frequency derivatives up to∣∣∣dfdt

∣∣∣ ≤ 2 mHz/s and
∣∣∣d2f

dt2

∣∣∣ ≤ 10 µHz/s2. The resulting hitmaps demonstrate that the polynomial
search is able to recover the phase evolution of the signal from a neutron star in a binary
system.

The computation of the hitmaps is fast; the entire search of a band of 8 Hz of data took
≈ 5 CPUh. Since the software makes use of large computing infrastructures like the GRID, a
search over all data and all frequencies up to 2 kHz can be performed in real-time with ≈ 100
nodes.

The polynomial search as presented in this paper will be applied to the LIGO and Virgo data
in the future. Using the computed false alarm rates upper limits can be set on the gravitational
wave emission from neutron stars in binary systems. Furthermore, the polynomial search will
be extended with a second step that links the hits in the hitmaps together and fits the physical
parameters to the resulting signal.
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5 The SNR would increase with
√

T if the signal would stay in one bin. Since the Doppler shift prevents this,
the SNR increase would be less then

√
T
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