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We define and study the TT̄ deformation of a random matrix model: showing a consistent definition
requires the inclusion of both the perturbative and the nonperturbative solutions to the flow equation. The
deformed model is well defined for arbitrary values of the coupling, exhibiting a phase transition for the
critical value in which the spectrum complexifies. The transition is between a single- and a double-cut
phase, typically third order and in the same universality class as the Gross-Witten transition in lattice gauge
theory. The TT̄ deformation of a double scaled model is more subtle and complicated, and we are not able
to give a compelling definition, although we discuss obstacles and possible alternatives. Quantitative
comparisons with finite cutoff Jackiw-Teitelboim gravity are presented.
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I. INTRODUCTION

The TT̄ deformation was first introduced as a deforma-
tion of two-dimensional quantum field theories (QFTs) by
an irrelevant operator built from the stress tensor Tμν [1,2]
(see [3] for a review). It distinguishes itself from other
irrelevant deformations given that several observables of
the deformed theory (energy spectrum, partition function,
and S-matrix, among others) can be computed exactly and
unambiguously [1–8]. This is quite surprising, as general
arguments in renormalization theory imply observables in
the deformed theory are not well defined, as they require an
infinite number of counterterms. Encouraged by these
interesting results in two-dimensional QFTs, the TT̄
deformation has been generalized to other setups, including
higher dimensional QFTs [9–11], quantum mechanics
[12,13], spin chains [14–17], and holography [18–21].
This provides new perspectives from which to study certain
aspects of the TT̄ deformation that are not simple to
understand in its original formulation for two-dimensional
QFTs.
As an example, let us consider the TT̄ deformation of a

quantummechanical system characterized by aHamiltonian
operatorH. The deformation defined in [12] and reviewed in

Sec. II is implemented by deforming the Hamiltonian
operator H according to the following flow equation:

∂λHðλÞ¼ 2HðλÞ2
1−4λHðλÞ⇒H�ðλÞ¼

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8λH

p

4λ
; ð1:1Þ

where λ ∈ R is the deformation parameter. While there are
two branches H�ðλÞ that solve the flow equation, only the
negative branch is perturbatively connected to the unde-
formed theory, i.e., H−ðλ ¼ 0Þ ¼ H, meaning Hþ is the
nonperturbative branch.1 We immediately identify an issue
with this deformation, since nothing prevents the argument
in the square root going negative, resulting in a complex
energy spectrum of the deformed theory. This issue also
arises in the TT̄ deformation of two-dimensional QFTs,
and it is currently unclear how one should deal with it.
Should we restore unitarity by introducing a truncation of
the spectrum of H that ensures H†

� ¼ H�? If so, is this
procedure unique? Or maybe we should accept a nonuni-
tary deformed theory?
One of the goals of this work is to address these

questions by defining and studying the TT̄ deformation
in (perhaps) the simplest setup: a random matrix model. We
shall mainly focus on an ensemble of Hermitian square
matrices M of dimension N, weighted by a probability
measure determined by a potential VðMÞ according to

dMe−
N
γTrVðMÞ. The expectation value of any matrix observ-

able O is defined as
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1In both branches, the integration constant is fixed to the same
value so that the two solutions are smoothly connected.
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hOi≡ 1

Z

Z
dMOe−

N
γTrVðMÞ; Z≡

Z
dMe−

N
γTrVðMÞ; ð1:2Þ

where γ ∈ R. One of the central observables is the spectral
density

ρðEÞ ¼ 1

N

�XN
i¼1

δðE − αiÞ
�
; ð1:3Þ

which characterizes the average distribution of eigenvalues
αi ∈ R of the matrix M.
Starting from the flow equation in (1.1) we show in

Sec. III that in order to have a consistent definition of the
TT̄ deformation of a random matrix model we must
necessarily include the contribution from both the pertur-
bative and nonperturbative solutionsH�. We then show the
deformation is very naturally defined in terms of the
potential VðMÞ according to

TT̄ deformation : VλðMÞ ¼ cλVðM − 2λM2Þ; ð1:4Þ

where cλ ¼ 1=2 except for cλ¼0 ¼ 1. This provides the
perfect setup for studying the behavior of the system when
λ > λc. As we take λ across its critical value λc, we observe
a shift in the extrema of the potential VλðMÞ. This triggers a
phase transition in the largeN spectral density ρ0ðEÞ, which
goes from being supported in two disjoint intervals (dou-
ble-cut) to a single one (single-cut). This type of transition
is very familiar to random matrix models. Starting from a
typical potential VðMÞ the phase transition at λc is of third
order and in the same universality class as the Gross-Witten
transition in two-dimensional gauge theory [22]. Crucially,
there is no need to introduce a truncation of the spectrum or
any other ad hoc procedure, as the matrix model has the
appropriate structure to deal with the phase transition in a
unique and natural way. The reminder of Sec. III is devoted
to the study of additional features of the deformation (1.4).
This includes some remarkable stability considerations, the
deformation of critical potentials, and the definition of the
deformation for unitary matrix models [see Eq. (3.38)].
In Sec. IVA we study the TT̄ deformation of double

scaled random matrix models. A double scaled model is
obtained from a critical potential VðMÞ by simultaneously
taking the limit N → ∞ and γ → 1 in a particular way (see
[23,24] for reviews). This procedure has the effect of
“zooming in” to the edge of the eigenvalue spectrum
ρðEÞ, capturing universal physics while disregarding non-
universal features of ρðEÞ away from the edge.2 Defining
the deformation of a double scaled model turns out being
much more complicated than that of an ordinary matrix
model with no double scaling. The fundamental obstacle is

that applying the double scaling limit on a matrix model is
not an invertible procedure; i.e., given a double scaled
model there is not a unique potential VðMÞ associated with
it. This hinders the utility of the simple definition of the
deformation given in (1.4). That being said, we are still able
to give some partial definitions and study certain aspects of
the TT̄ deformation of double scaled models that we hope
can set the stage for future investigations.
Our interest in double scaled models arises from inter-

esting connections between the TT̄ deformation and finite
cutoff anti–de Sitter holography [18]. The thermal partition
function of the TT̄ deformation (1.1) of the Schwarzian
quantum mechanics has recently been reproduced from the
finite cutoff Jackiw-Teitelboim (JT) gravity disk partition
function [21] (see also [26]). Since higher topology con-
tributions in ordinary JT gravity are captured by a double
scaled model [27], is there a matrix model that captures
higher topology contributions in finite cutoff JT gravity? To
answer this question we can compute higher genus finite
cutoff partition functions using the decomposition of
surfaces with constant negative surfaces developed in
[27], in terms of the “trumpet” geometry. Using the finite
cutoff trumpet partition function of [21], in Sec. IV B we
calculate the leading genus two boundary partition function
and show it is not compatible with matrix model predic-
tions.3 This shows the (by now) standard approach for
computing higher genus Euclidean partition function of
[27] might not be useful when applied to finite cutoff JT
gravity, and instead a different procedure has to be
developed.

II. QUANTUM MECHANICS

In this section we start by reviewing the TT̄ deformation
proposed in [12] (see also [13,28]) for a quantum mechani-
cal system. This sets the stage for the definition of the
deformation of a random matrix model in the next section.
Consider a quantum mechanical system characterized by a
Hermitian Hamiltonian operator H that satisfies

HjψEi ¼ EjψEi; E ∈ SðHÞ; ð2:1Þ

where jψEi and SðHÞ are the eigenstates and spectrum of
H, respectively. Let us assume the spectrum of this system
is supported on the finite interval SðHÞ ∈ ½0; E0�. Our focus
is on the thermal partition function, defined as

ZðβÞ≡ Trðe−βHÞ ¼
Z

E0

0

dEρðEÞe−βE; ð2:2Þ

2Double scaled models can also be defined independently of
any matrix model, in terms of a topological expansion associated
with an algebraic curve [25].

3Since the leading expectation value of double trace operators
in a matrix model are universal, i.e., independent of the particular
details of the model, the comparison can be made in full
generality.

FELIPE ROSSO PHYS. REV. D 103, 126017 (2021)

126017-2



where the spectral density ρðEÞ determines the degeneracy
of the eigenstates jψEi.
The TT̄ deformation proposed in [12] (obtained from

dimensional reduction of the original two-dimensional
deformation [1,2]) is defined from the flow equation for
the deformed Hamiltonian given in (1.1). There are two
distinct branches that solve the differential equation, so that
the deformed eigenvalues are given by

E�ðλ; EÞ ¼
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8λE
p

4λ
∈ R ⇔ λ ≤ λcðE0Þ≡ 1

8E0

:

ð2:3Þ

In this section we shall restrict to λ ≤ λc so that
E�ðλ; EÞ ∈ R. While the perturbative branch E−ðλ; EÞ
satisfies E−ð0; EÞ ¼ E, the nonperturbative branch
Eþðλ; EÞ diverges as λ → 0. Despite this singular behavior,
we shall see that both branches solving the flow equation
play a crucial role when defining the deformation for a
random matrix model. Note that the eigenstates jψEi are
not modified by the deformation.
We are interested in studying the effect of the deforma-

tion on the spectral density ρðEÞ appearing in the thermal
partition function (2.2). In doing so, we make the dis-
tinction between two different approaches that involve
considering a single or both branches in (2.3).
Single branch: The most naive approach is to ignore the

nonperturbative branch Hþ and only include the perturba-
tive solution H−. The deformed partition function in this
case is given by

ZλðβÞ≡ Trðe−βH−Þ ¼
Z

E0

0

dEρðEÞe−βE−ðλ;EÞ: ð2:4Þ

The density ρðEÞ appearing in (2.4) is the same as in the
undeformed theory since for any given value of E, the
eigenstates jψEi are unchanged. The deformed spectral
density ρλðEÞ is obtained by changing the variables of the
integral in (2.4) so that we get the standard Boltzmann
factor e−βE. Doing so, we find

ρλðEÞ¼ ð1−4λEÞρðE−2λE2Þ×1½0;E−ðλ;E0Þ�; λ≤ λc;

ð2:5Þ

where the indicator function is given by

1A ¼
�
1; E ∈ A;

0; E ∉ A;
ð2:6Þ

for any set A. The right edge of the spectrum is determined
by the negative branch E− in (2.3) evaluated at E0. Note the
prefactor ð1 − 4λEÞ in (2.5) is non-negative in the support
of ρλðEÞ.

Both branches: A second approach involves including
both branches that solve the flow equation (2.3), so that the
thermal partition function is given by

Z̃λðβÞ≡cλTrðe−βH− þe−βHþÞ

¼ cλ

Z
E0

0

dEρðEÞðe−βE−ðλ;EÞ þe−βEþðλ;EÞÞ; ð2:7Þ

where we add a tilde to differentiate from the previous
prescription. The normalization constant cλ is defined as

cλ ¼
�
1; λ ¼ 0;

1=2; λ ≠ 0;
ð2:8Þ

which ensures a proper normalization for all λ. The idea of
including both branches in this way was first explored in
[21] when studying JT gravity with a finite cutoff, with the
important difference that a different (and arbitrary) spectral
density ρþðEÞ was considered for the nonperturbative
branch Eþ. From our perspective, we have the undeformed
spectral density ρðEÞ for both branches since both traces in
(2.7) are computed with respect to the undeformed eigen-
states jψEi. Changing coordinates in each term so that we
get the standard Boltzmann factor, we identify the
deformed spectral density as

ρ̃λðEÞ¼ cλj1−4λEjρðE−2λE2Þ
× ½1½0;E−ðλ;E0Þ� þ1½Eþðλ;E0Þ;1=2λ��; λ≤ λc: ð2:9Þ

The absolute value in the prefactor j1 − 4λEj arises from
the different change of variables involved in each term
in (2.7).
Comparing with ρλðEÞ in (2.5) we see the spectral

density gets an additional contribution from the nonper-
turbative branch. The support of the spectral density is
much more interesting in this case, as can be seen from the
left diagram in Fig. 1. The green and blue regions indicate
the support of ρ̃λðEÞ arising from contributions of the
perturbative and nonperturbative branches, respectively. As
λ → 0 the contribution of the positive branch Eþ (blue in
Fig. 1) goes to zero, while the negative branch E− (green in
Fig. 1) goes to the undeformed density E ∈ ½0; E0�. As we
approach λc the square root in both branches (2.3) vanishes
and the spectral density becomes supported on a single
interval

ρ̃λcðEÞ ¼ cλc j1 − 4λcEjρðE − 2λcE2Þ × 1½0;4E0�: ð2:10Þ

This hints toward a phase transition, in which the spectral
density goes from a double- to a single-cut phase as λ ≥ λc.
While from the perspective of the quantum mechanics there
is no clear way of going beyond this transition, we shall
show how the matrix model is naturally equipped to deal
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with it. We will be able to continue ρ̃λðEÞ beyond λc and
find its support is given by the right diagram in Fig. 1.

III. RANDOM MATRIX MODELS

In this section we define and study the TT̄ deformation
of a random matrix model. Let us start with a short
introduction to random matrix models (for reviews see
[23,24,29]). Consider an ensemble of Hermitian matrices
M of dimension N, weighted by a probability measure

determined by a potential VðMÞ according to dMe−
N
γTrVðMÞ,

where dM is the UðNÞ invariant measure. The expectation
value of matrix model observables O are computed
according to (1.2). Two useful observables are the spectral
density ρðEÞ and resolvent RðzÞ, defined as

ρðEÞ≡ 1

N

�XN
i¼1

δðE − αiÞ
�
;

RðzÞ≡ 1

N

�XN
i¼1

1

z − αi

�
¼ 1

z
þOð1=z2Þ; ð3:1Þ

where αi are the eigenvalues of the matrixM and RðzÞ is an
analytic function in z ∈ Cnfsupp ρg. These two quantities
are related via the following transformations:

ρðEÞ ¼ lim
ϵ→0

RðE − iϵÞ − RðEþ iϵÞ
2πi

;

RðzÞ ¼
Z
supp ρ

ρðEÞ
z − E

dE: ð3:2Þ

We study observables in the large N limit, where we add
the subscript zero to differentiate from the finite N
quantities, e.g., R0ðzÞ≡ limN→∞ RðzÞ. In this limit the
resolvent satisfies a simple algebraic equation that can be
solved and written as (e.g., see Sec. 3 of [29])

R0ðzÞ ¼
1

2
½V 0ðzÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 0ðzÞ2 − 4P0ðzÞ

q
�: ð3:3Þ

Restricting ourselves to polynomial potentials, the
function P0ðzÞ is also a polynomial. Since the argument
in the square root in (3.3) is also a polynomial, we can
factorize it in terms of its even and odd zeros as
V 0ðzÞ2 − 4P0ðzÞ≡ hðzÞ2σðzÞ. We can then use (3.2) to
write the large N spectral density as

ρ0ðEÞ ¼
1

2π
jhðEÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðEÞ

p
× 1σðEÞ<0: ð3:4Þ

The support of the equilibrium spectral density is deter-
mined by the function σðEÞ that can be written as
σðEÞ ¼ Q

2s
i¼1ðE − aiÞ. The parameters ai ∈ R determine

the edges of the spectrum, which must be real since
the model is built from Hermitian matrices. The coefficients
ai together with the polynomial hðEÞ are determined
by the potential VðMÞ. For the single-cut case the spectral
density is supported in a single interval, so that
σðEÞ ¼ ðE − a−ÞðE − aþÞ. We can determine hðEÞ by
requiring the resolvent to have the appropriate large z limit
(3.1). This gives the following condition:

hðzÞ ¼ Pol

�
V 0ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − a−Þðz − aþÞ

p
�
; ð3:5Þ

where Pol½·� is the polynomial contribution in z obtained
from expanding around z → þ∞. The values of a� are
obtained from

V 0ðzÞ ¼ Pol½hðzÞ
ffiffiffiffiffiffiffiffiffi
σðzÞ

p
�;

Res
z¼þ∞

½hðzÞ
ffiffiffiffiffiffiffiffiffi
σðzÞ

p
� ¼ −2; ð3:6Þ

where the second condition is equivalent to requiring the
spectral density to be properly normalized.

FIG. 1. On the left we plot the support of ρ̃λðEÞ in (2.9) for the quantum mechanics TT̄ deformation. Green and blue shaded regions
correspond to contributions coming from the perturbative and nonperturbative branches, respectively. Since the energy spectrum
complexifies, we are unable to go beyond λc. On the right, we show the corresponding diagram obtained by TT̄ deformation of the
matrix model studied in Sec. III A. In this case, we can go through and beyond the phase transition.
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A. Definition and phase transition

Let us now show how we can implement the TT̄
deformation of a random matrix model. Our starting point
is a potential VðxÞ associated with a single-cut spectral
density that without loss of generality we can take as

ρ0ðEÞ ¼
1

2π
jhðEÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE0 − EÞ

p
× 1½0;E0�: ð3:7Þ

The polynomial hðEÞ is related to the potential VðxÞ
through the first identity in (3.6). To write this explicitly,
we use the following large z expansion:

hðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz − E0Þ

p
¼

Xp
n¼0

hn
X∞
m¼0

�
1=2
m

	
ð−E0Þmznþ1−m;

ð3:8Þ

where hn are the coefficients of the polynomial hðEÞ of
order p. Using this in (3.6) we get

V 0ðzÞ ¼
Xp
n¼0

hn
Xnþ1

m¼0

�
1=2
m

	
ð−E0Þmznþ1−m: ð3:9Þ

This relation determines the potential necessary to generate
any single-cut large N spectral density given by (3.7). A
potential VðzÞ is said to be critical (see Sec. VI. 5 in [30]) if
the associated polynomial hðEÞ vanishes in the support of
the spectral density ρ0ðEÞ, which is called singular. For
(3.7) this corresponds to hðEÞ having a zero in the
region E ∈ ½0; E0�.
Singe branch: Let us start by considering the case in

which we only include the perturbative branch E−ðλ; EÞ, so
that the deformed spectral density for λ ≤ λc is given by
(2.5). Applying this to the matrix model large N density
(3.7) we find

ρλðEÞ ¼
1

2π
jhλðEÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σλðEÞ

p
× 1½0;E−ðλ;E0Þ�; λ ≤ λc;

ð3:10Þ

where we have identified

�
σλðEÞ¼ 4λ2EðE−E−ðλ;E0ÞÞðE−Eþðλ;E0ÞÞðE−1=2λÞ;
hλðEÞ¼ ð1−4λEÞhðE−2λE2Þ:

ð3:11Þ

Note that we can include ð1 − 4λEÞ inside the absolute
value since it is positive in the range E ∈ ½0; E−ðλ; E0Þ�. To
identify (3.10) as the leading order spectral density of a
matrix model it must take the general form given in (3.4).
While the functional form is appropriately given by the
functions hλðEÞ and σλðEÞ, there is an issue with the
support of the spectral density, given that the polynomial

σλðEÞ contains four roots instead of two. More precisely,
the issue arises due to the following discrepancy in the
indicator functions:

1σλðEÞ<0 ¼ 1½0;E−ðλ;E0Þ� þ 1½Eþðλ;E0Þ;1=2λ� ≠ 1½0;E−ðλ;E0Þ�:

ð3:12Þ

As a result, the deformed spectral density that only
incorporates the perturbative branch E−ðλ; EÞ cannot be
written in the form (3.4) and therefore interpreted as
coming from a random matrix model, i.e.,

ρλðEÞ ≠
1

2π
jhλðEÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σλðEÞ

p
× 1σλðEÞ<0: ð3:13Þ

Both branches: This suggests we study the deformation
of the spectral density given in (2.9) that includes both
branches E�ðλ; EÞ solving the flow equation (2.3).
Applying the deformation to the single-cut density in
(3.7) we find

ρ̃λðEÞ¼
1

2π
jh̃λðEÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ̃λðEÞ

p
× ½1½0;E−ðλ;E0Þ� þ1½Eþðλ;E0Þ;1=2λ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1σ̃λðEÞ<0

; λ≤ λc: ð3:14Þ

The crucial difference is in the indicator functions that in
this case appropriately combine to yield 1σ̃λðEÞ<0, where we
have defined

�
σ̃λðEÞ¼ 4λ2EðE−E−ðλ;E0ÞÞðE−Eþðλ;E0ÞÞðE−1=2λÞ;
h̃λðEÞ¼ cλð1−4λEÞhðE−2λE2Þ:

ð3:15Þ

Note the difference in the normalization constant cλ with
respect to (3.11). This shows that in order to define the TT̄
deformation of a randommatrix model we must necessarily
include the contributions from both branches, as including
a single one is inconsistent (3.13).
To provide a standard definition of the deformation to all

order in 1=N, we need to derive a formula for the potential
VλðxÞ. This can be obtained from the spectral density (3.14)
and the first relation in (3.6). To do so, we use the following
large z expansion:

h̃λðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
σ̃λðzÞ

p
¼ cλ

Xp
n¼0

hn
X∞
m¼0

�
1=2
m

	

× ð−E0Þmð1 − 4λzÞðz − 2λz2Þnþ1−m:

ð3:16Þ

Using this in (3.6) we find the following expansion for the
deformed potential:
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V 0
λðzÞ ¼ cλð1 − 4λzÞ

Xp
n¼0

hn
Xnþ1

m¼0

�
1=2
m

	

× ð−E0Þmðz − 2λz2Þnþ1−m: ð3:17Þ

While this expression is quite complicated, it greatly
simplifies after using the relation satisfied by the unde-
formed potential in (3.9). This results in the following
simple formula for the deformed potential

VλðxÞ ¼ cλVðx − 2λx2Þ; ð3:18Þ

where the prefactor ð1 − 4λzÞ in (3.17) arises from the
chain rule after taking the derivative. This provides a simple
and natural way of defining the TT̄ deformation of a
Hermitian random matrix model.
Let us analyze some general features of the deformation

formula for the potential. If the undeformed potential is
stable, i.e., if Vðx → �∞Þ ¼ þ∞, the deformed potential
is also stable for arbitrary real values of λ. This is quite
different from the definition of the deformation in quantum
mechanics, which only makes sense for λ ≤ λc. Even more,
if we start from an unstable potential whose leading
behavior is given by VðxÞ ¼ −x2nþ1 þ � � �, the TT̄ defor-
mation cures the instability since the large x behavior
changes to VλðxÞ ¼ ð2λxÞ4nþ2 þ � � �. We shall later con-
sider some examples where we observe this feature
explicitly.
Let us now assume the undeformed potential is stable

and has a single extremum at x ¼ xc that is also a
minimum. Since the equilibrium spectral density is sup-
ported on E ∈ ½0; E0�, the minimum must be located in the

same interval xc ∈ ½0; E0�. The critical points of the
deformed potential can be readily computed as

V 0
λðxÞ¼ 0⇔ x� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−8λxc
p
4λ

; x1¼
1

4λ
: ð3:19Þ

Using Vλð�∞Þ ¼ þ∞ together with the fact that x1 is
always in between the other critical points x�, we conclude
that when x� ∈ R the points x� correspond to local minima
and x1 to a maximum. However, when x� become complex,
x1 is the only real critical point which must therefore be a
minimum. The shift between these two regimes induces a
phase transition in the spectral density that for finite
positive λ goes from a double- to a single-cut phase.
Due to the breakdown of the formula for ρ̃λðEÞ in (3.14)
for λ > λc, we identify the location of the transition at
λc ¼ 1=8E0, so that the full spectral density is given by

ρ̃λðEÞ ¼
1

2π
×

8<
:

jh̃λðEÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ̃λðEÞ

p
× ½1½0;E−ðλ;E0Þ� þ 1½Eþðλ;E0Þ;1=2λ��; λ ≤ λc;

jh̄λðEÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE − a−Þðaþ − EÞp

× 1½a−;aþ�; λ ≥ λc:
ð3:20Þ

The single-cut spectral density after the transition is
characterized by the polynomial h̄ðEÞ and the end points
a�. As we shall shortly show in an example, these are
easily computed from the deformed potential VλðxÞ using
the conditions in (3.5) and (3.6). Overall, the matrix
model is naturally equipped to deal with the phase
transition in a unique way, from a double- to a single-
cut phase. Other methods one could consider, such as
truncating the spectrum in order to restore unitarity, are
easily shown to be inconsistent from the matrix model
perspective.
The phase diagram in the parameter space

ðλ; E0Þ is sketched in Fig. 2, where the two
phases are divided by the curve λc ¼ 1=8E0. It is
interesting to study the spectral density at criticality that
is given by

ρ̃λcðEÞ ¼
cλ
4π

jhðE − 2λcE2Þj

×

�
E − 2E0

2E0

	
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð4E0 − EÞ
p

× 1½0;4E0�: ð3:21Þ

Due to the factor ðE − 2E0Þ2 this spectral density vanishes in
the middle of its support, meaning ρ̃λcðEÞ is singular and
VλcðxÞ is a critical potential. This is an interesting feature that
gives rise to universal physics that we shall study more
closely in the next subsection. Before doing that, let us work
out the deformation of a simple example explicitly.

1. Deforming the Gaussian ensemble

Let us consider the simplest Hermitian matrix model,
obtained from a Gaussian potential VðxÞ,

FIG. 2. Phase diagram in parameter space ðλ; E0Þ showing the
transition at λc ¼ 1=8E0 between the single- and double-cut
spectral densities ρ̃λðEÞ in (3.20).
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VðxÞ ¼ 8xðx − E0Þ
E2
0

;

ρ0ðEÞ ¼
ð4=E0Þ2

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE0 − EÞ

p
× 1½0;E0�: ð3:22Þ

The equilibrium spectral density ρ0ðEÞ is nothing more
than Wigner’s semicircle law centered at E0=2. It is
straightforward to verify the conditions in (3.5) and (3.6)
are satisfied by this potential and spectral density. The TT̄
deformation of this model is defined from the potential in
(3.18) that in this case is given by

VλðxÞ ¼
8cλ
E2
0

xð1 − 2λxÞ½xð1 − 2λxÞ − E0�: ð3:23Þ

The spectral density in the double-cut phase is obtained
from (3.14),

ρ̃λ≤λcðEÞ ¼ cλ
ð4=E0Þ2

2π
j1 − 4λEj

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1 − 2λEÞ½E0 − Eð1 − 2λEÞ�

p
× ½1½0;E−ðλ;E0Þ� þ 1½Eþðλ;E0Þ;1=2λ��; ð3:24Þ

while in the single-cut phase it is computed from (3.5) as

ρ̃λ≥λcðEÞ ¼
½2ð1 − 4λEÞ2 þ 8ða2− þ a2þÞλ2 þ 8E0λ − 3�

πE2
0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − a−Þðaþ − EÞ

p
× 1½a−;aþ�: ð3:25Þ

The end points a� are computed from the conditions in
(3.6) and given by

a�ðλ; E0Þ ¼
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 24λE0 þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ð1 − 16λE0Þ2

pq
12λ

:

ð3:26Þ

In Fig. 3 we plot the resulting spectral densities and
deformed potential (3.23) for several values of λ, the
shaded regions in green and blue corresponding to the
contributions from the branches E− and Eþ, respectively.

After the transition we get the single-cut spectral density
(3.25) in orange, where the distinction between the
branches is no longer sensible. The support of the spectral
density as a function of λ is plotted in the right diagram
of Fig. 1.

B. Critical behavior

We now study the critical behavior of the deformed
system as λ → λc. Let us start by considering the simple
Gaussian example (3.22), which is certainly not a critical
system since hðEÞ does not vanish in the support of ρ0ðEÞ.
However, after deforming the model and taking λ ¼ λc, the
spectral density becomes (3.21)

ρ̃λcðEÞ ¼
cλc
4π

ð4=E0Þ2
�
E − 2E0

2E0

	
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð4E0 − EÞ
p

× 1½0;4E0�:

ð3:27Þ

Since it vanishes at the interior point 2E0 where the two
cuts merge (see Fig. 3), the potential VλcðxÞ (3.23) is
critical. This type of behavior in a Hermitian matrix model
was first studied long ago in [31], where the transition
between single- and double-cut phases was shown to be
third order. The universal physics associated with the
critical behavior is obtained from a standard double scaling
limit [23,24], first applied to (3.27) in [32].4 Physical
observables are determined from a solution to a differential
equation usually referred as a “string equation” that in this
case is given by Painleve II.
The universal characteristics of the system do not depend

on the precise details of the model, but only on the rate at
which the spectral density vanishes at 2E0, quadratic in this
case (3.27). The same behavior can be obtained by
deforming a different matrix model, as long as the spectral
density at λc (3.21) satisfies hðE0 − 2λcE2

0Þ ¼ hðE0Þ ≠ 0. It
is in this sense that the double scaling captures universal
features of the transition. What is more, the same critical
behavior can be obtained from a different class of matrix
model built from unitary instead of Hermitian matrices

FIG. 3. Equilibrium spectral density obtained by applying the TT̄ deformation on Wigner’s semicircle law for several values of λ. The
green and blue shaded regions correspond to contributions coming from the perturbative and nonperturbative branches, respectively.
After the transition we observe a single-cut phase in which there is no longer a distinction between the two branches. The dotted line
corresponds to the potential VλðxÞ in (3.23).

4See [33] for a more recent analysis of the double scaling limit
which generalizes to nonsymmetric cases.
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[32,34,35]. In particular, the transition obtained from
deforming the Gaussian model (3.22) is in the same
universality class as the Gross-Witten third order phase
transition in two-dimensional gauge theory [22].
This analysis raises the question as to whether we can

obtain more general critical behavior, corresponding to
ρ̃λcðEÞ vanishing at a different rate in the interior point 2E0.
To do so, let us consider a matrix model for which the
function hðEÞ that determines the spectral density (3.7) is
given by

hkðEÞ¼ bk

�
E0−E
E0

	
k−1

; bk ¼
2πðkþ1Þ!

Γð3=2ÞΓðkþ1=2ÞE2
0

;

ð3:28Þ

where bk is a normalization constant and k ∈ N. While for
k ¼ 1 we recover the Gaussian example in (3.22), when
k > 1 the system is already critical since ρ0ðEÞ is supported
on E ∈ ½0; E0� and hkðE0Þ ¼ 0. The double scaling of this
family of models was first explored in [36–38], where the
string equation was shown to be related to the Korteweg-de
Vries (KdV) hierarchy. The potential that generates this
spectral density is obtained from (3.9)

VðkÞðxÞ ¼ bk
Xk−1
n¼0

�
k − 1

n

	Xnþ1

m¼0

�
1=2
m

	 ð−E0Þm−n

ðnþ 2 −mÞ x
nþ2−m:

ð3:29Þ

Note that its leading order behavior is given by VðkÞðxÞ ∝
ð−xÞkþ1 þ � � � with a positive proportionality constant.
While this means the system is unstable for k even, it still
makes sense as a formal matrix model (see [29]).
Interestingly, when applying the TT̄ deformation we find
the associated potential is actually stable for all values of k

VðkÞ
λ ðxÞ ¼ cλV

ðkÞ
λ¼0ðx − 2λx2Þ

¼ cλbkð2λÞkþ1

ðkþ 1ÞEk−1
0

x2ðkþ1Þ þ � � � : ð3:30Þ

This gives a nice example in which the deformation cures
the inherent instability of the model we started from. The
deformed spectral density in the double-cut phase λ ≤ λc is
obtained from h̃λðEÞ in (3.14), which as we approach λ →
λc becomes (3.21)

ρ̃ðkÞλc
ðEÞ ¼ cλc

4π
bk

�
E − 2E0

2E0

	
2k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð4E0 − EÞ
p

× 1½0;4E0�:

ð3:31Þ

This gives the critical behavior we were after. The spectral
density vanishes at the interior point 2E0 at a rate 2k,
generalizing (3.27) beyond quadratic order. The double

scaling of these models for arbitrary k was studied in [39],
where the string equation was shown to be given by the
modified KdV hierarchy (mKdV). This is again in the same
universality class as critical models built from unitary
matrix models [34,35]. All things considered, applying
the TT̄ deformation and tuning λ → λc we get a physical
mapping between critical models in the KdV and mKdV
hierarchies.

C. Unitary matrices

Since the TT̄ deformation in quantum mechanics is
defined in terms of the Hamiltonian operator (which is
Hermitian), we have been able to give a natural definition
of the deformation for Hermitian random matrices.
Generalizing to other matrix ensembles is an interesting
question that we address in this subsection. We use a duality
[40,41] between the Hermitian and unitary ensembles to
define the TT̄ deformation of a unitary matrix model.
The duality between Hermitian and unitary matrices was

first noticed in [40] for the double scaled models and later
generalized in [41]. Let us start by showing how the relation
works at the level of the matrix partition function. We first
write Z in (1.2) for the Hermitian matrix model in terms of
the eigenvalues αi ∈ R of the matrix M. After diagonal-
izing the matrix M, standard arguments allow us to write
the integral as5

ZHermitian ¼
YN
i¼1

Z þ∞

−∞
dαiΔðαÞ2e−

N
γVðαiÞ;

where ΔðαÞ ¼
Y

1≤i<j≤N
ðαj − αiÞ ð3:32Þ

is the Vandermonde determinant arising from the Jacobian
obtained from diagonalization. Changing the integration
variable to αi ¼ tanðθi=2Þ with θi ∈ ð−π; π�, ΔðαÞ2 trans-
forms in the following way:

ΔðαÞ2 ¼ jΔðeiθÞj2
2NðNþ1Þ

YN
i¼1

cosðθi=2Þ−2ðN−1Þ: ð3:33Þ

Using this, the partition function of the Hermitian matrix
model becomes

ZHermitian

¼ 1

2NðNþ2Þ
YN
i¼1

Z
π

−π
dθijΔðeiθÞj2e−

N
γ ½Vðtanðθi=2ÞÞþγ ln½cos2ðθi=2Þ��

≡ Zunitary

2NðNþ2Þ ; ð3:34Þ

5Here and below we are omitting an overall factor of
VolðUðNÞÞ that plays no role in our discussion.
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where we have defined the partition function of a unitary matrix model built from U† ¼ U−1 as

Zunitary ¼
Z

dUe−
N
γWðUÞ; where WðUÞ≡ V

�
i
�
1 − U
1þU

	�
þ γ ln

�ð1þUÞ2
4U

�
: ð3:35Þ

This simple identity allows us to relate the expectation values of observables in each theory. For instance, the spectral
density ϱðφÞ characterizing the eigenvalues θk in the unitary model can be written as

ϱðφÞ≡
�
1

N

XN
k¼1

δðφ − θkÞ
�

unitary
¼ Z−1

unitary

Z
dUe−

N
γWðUÞ 1

N

XN
k¼1

δðφ − θkÞ

¼ Z−1
Hermitian

YN
i¼1

Z þ∞

−∞
dαiΔðαÞ2e−

N
γVðαiÞ 1

N

XN
k¼1

δðφ − 2 arctanðαkÞÞ

¼ h1N
P

N
k¼1 δðtanðφ=2Þ − αiÞihermitian

2cos2ðφ=2Þ ¼ ρðtanðφ=2ÞÞ
2cos2ðφ=2Þ ; ð3:36Þ

where ρð·Þ is the spectral density of the Hermitian
matrix model. In the first line we have used the definition
of the expectation value in the unitary matrix model. In the
second we used (3.34), written with the matrixU integral in
terms of its eigenvalues eiθi and changed variables to
αi ¼ tanðθi=2Þ. In the last line we have used the compo-
sition rule of the Dirac delta and reinterpreted in terms of
the Hermitian matrix model expectation value. All things
considered, we get a simple relation between the spectral
densities of each model. Other observables can be related in
a similar fashion.
Let us now use this duality to define the TT̄ deformation

for a unitary matrix model. Using the formula for the
deformation of the Hermitian model potential (3.18) and
the relation in (3.35), we find

WλðUÞ ¼ cλV

�
i

�
1 − U
1þU

	
þ 2λ

�
1 − U
1þU

	
2
�

þ γ ln½ð1þUÞ2
4U

�
: ð3:37Þ

To write the deformation without needing to refer to the
potential VðMÞ in the Hermitian model, we can rewrite the
right-hand side using (3.35)

WλðUÞ¼cλWðfðUÞÞ

þγ

�
ln

�ð1þUÞ2
4U

�
−cλ ln

�ð1þfðUÞÞ2
4fðUÞ

��
; ð3:38Þ

where we have defined

fðyÞ≡ ð1þ yÞ2
ð1þ yÞ − iλð1 − yÞ2 − 1: ð3:39Þ

This defines the deformation of the unitary matrix model.
Note that when λ ¼ 0we have cλ¼0 ¼ 1, fðUÞ ¼ U and the
additional terms in (3.38) drop out.
As a simple example, we can take the Gaussian ensemble

in the Hermitian matrix model (3.22) and study its TT̄
deformation from the perspective of the unitary matrix
model. Using (3.37) and (3.36) we compute and plot the
equilibrium density and potential in Fig. 4 for several
values of λ. The overall behavior is analogous to that of the
Hermitian matrix model, shown in Fig. 3, with the differ-
ence that φ ∈ ½−π; π�.

IV. DISCUSSION

In this final section we study the TT̄ deformation of
double scaled matrix models, as well as perform some

FIG. 4. Equilibrium spectral density and potential obtained by TT̄ deforming the unitary matrix model dual to the Gaussian Hermitian
matrix model in (3.22). The spectral density ϱðφÞ is defined in the compact domain φ ∈ ½−π; π�. The overall behavior of the model is
analogous to the Hermitian matrix model in Fig. 3.
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quantitative comparisons between matrix models and finite
cutoff JT gravity results.

A. Double scaled models

To illustrate how a double scaled model can be obtained
from a matrix model, let us start by considering the simple
Gaussian example in (3.22). The double scaled model is
completely characterized by its spectral density ρdsðEÞ,
which can be obtained from ρ0ðEÞ in (3.22) from the
following limit:

ρdsðEÞ≡ lim
E0→þ∞

E3=2
0 ρ0ðEÞ ¼ ð8=πÞ

ffiffiffiffi
E

p
× 1½0;þ∞Þ; ð4:1Þ

where the power E3=2
0 is chosen so as to pick up the leading

order behavior in the E0 expansion. This limit corresponds
to zooming to the edge of the spectral density ρ0ðEÞ at
E ¼ 0.6 Since ρdsðEÞ is not normalizable, the essential
feature in (4.1) is its square root behavior with respect to the
energy. This simple double scaled model, sometimes called
the “Airy model,” belongs to a larger family characterized
by ρdsðEÞ ∝ Ek−1=2 for k ≥ 1, obtained from double scaling
the critical matrix models studied in Sec. III B.
While for any matrix model there is a single associated

double scaled model, the inverse is not true. There are an
infinite number of matrix models that give rise to the same
double scaled model. This is particularly clear from (4.1),
as one can easily construct other matrix model spectral
densities ρ0ðEÞ which have the single square root leading
order behavior in the large E0 limit. In short, there is no
universal way of reversing the double scaling limit. This
implies that in order to define the TT̄ deformation of a
double scaled model, using the definition for the matrix
model studied in Sec. III and given by (1.4) is not
particularly useful, as the result would be by construction
nonuniversal. Therefore, we must start again from the
quantum mechanical definition in Sec. II. In particular,
we can use the expression for the deformed spectral density
in (2.5) or (2.9), apply them to ρdsðEÞ, and study the
deformation from there.
This is the approach we take here. In doing so, there are

several issues and ambiguities we must deal with. While we
are not able to provide definite answers to all of the
problems, we discuss and provide partial answers that we
hope are valuable for future investigations on this subject.
We shall drop the notation ρdsðEÞ, understanding that if the
support of a spectral density is unbounded, it corresponds
to a double scaled model.

1. Negative deformation coupling

Let us start by considering the deformation of double
scaled models with a negative deformation coupling λ < 0.
In this regime we do not have to deal with the complex-
ification of energy eigenvalues, which occurs at λ > λc ¼
1=8E0 ¼ 0 since E0 → ∞. From the quantum mechanical
analysis we can define the deformed double scaled model
by considering either a single (2.5) or both branches (2.9)
that solve the flow equation

Single branch∶ ρλðEÞ¼ ð1−4λEÞρ0ðE−2λE2Þ×1½0;þ∞Þ;

Both branches∶ ρ̃λðEÞ¼ cλj1−4λEjρ0ðE−2λE2Þ
× ½1½0;þ∞Þ þ1ð−∞;1=2λ��: ð4:2Þ

While the spectral density ρλðEÞ has the usual support on
the positive real line, ρ̃λðEÞ is instead nonzero in two
disjoint semi-infinite segments, which makes it harder to
interpret as a double scaled model.7 Since ρλðEÞ in (4.2) has
the standard support on the positive real line, we shall
explore the TT̄ deformation defined from including the
single branch, using the description of the model as a
particular combination of multicritical models. We shall not
review the basics of this formalism but point the interested
reader to the reviews in [23,24] and the more recent
applications in [42–49].
The double scaled models can be studied in a perturba-

tive expansion for a small parameter ℏ that plays the same
role as the 1=N in the ordinary matrix model expansion.
The spectral density ρðEÞ to all orders in ℏ can be
computed as [23,36,50]

ρðEÞ¼
Z

0

−∞
dxjψEðxÞj2; H½u� ¼−ℏ2∂2

xþuðxÞ; ð4:3Þ

where HψEðxÞ ¼ EψEðxÞ. The central object in this
formalism is the potential uðxÞ that is determined from a
differential equation called the string equation, which for a
single-cut Hermitian matrix model is given by

R≡X∞
k¼1

tkR̃k½u� þ x ¼ 0: ð4:4Þ

Here R̃k½u� is a kth order polynomial in uðxÞ, and its
derivatives are defined by Gel’fand-Dikii but normalized so
that the coefficient uk is unity.8 The double scaled model is
essentially defined by the coefficients tk appearing in R
(4.4). Once these are fixed, we can solve the differential
equation R ¼ 0 for uðxÞ, compute the spectrum of the
operator H½u� in (4.3), and obtain the full spectral density
ρðEÞ. This means that in order to define the TT̄ deformation
of the model we must find the following map:6The limit in (4.1) is a simple way of obtaining the spectral

density of the double scaled model. However, we should keep in
mind that the appropriate way of taking the double scaling limit
of a matrix model involves a precise procedure; see [23,24] for
reviews on the methods.

7It might be possible to study ρ̃λðEÞ from the more abstract
topological expansion of [25].

8See [51] for more details and explicit expressions.
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TT̄deformation∶ tk → tkðλÞ: ð4:5Þ

To leading order in ℏ, the string equation R0 ¼
limℏ→0R is related to ρ0ðEÞ through the following relation
derived in [49]:

R0 ¼
X∞
k¼1

tkuk0 þ x ¼ 2ℏ
Z

u0

0

dEffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 − E

p ρ0ðEÞ þ x: ð4:6Þ

Using that the deformed spectral density is given in the first
line of (4.2) we get

R0ðλÞ≡2ℏ
Z

u0

0

dEffiffiffiffiffiffiffiffiffiffiffiffi
u0−E

p ð1−4λEÞρ0ðE−2λE2Þþx: ð4:7Þ

For any particular model we can solve the integral, expand
in a power series in u0 and identify the deformed coef-
ficients tkðλÞ. To do so, let us assume the undeformed
spectral density can be expanded in the following way:

ρ0ðEÞ ¼
1

2πℏ

X∞
q¼1

aqEq−1=2; ð4:8Þ

for some coefficients aq ≥ 0. Inserting this in (4.7) we can
exchange the integral with the series, since all the terms that
are being integrated are non-negative. Each of the integrals
can be solved to give a hypergeometric function, so that we
get the following expansion for R0ðλÞ:

R0ðλÞ ¼
X∞
q¼1

2ð2q − 1Þ!
4qq!ðq − 1Þ! aqu

q
02F1

×

�
1þ 2q
−2

;
3þ 2q

2
; 1þ q; 2λu0

�
þ x: ð4:9Þ

Since λ < 0 and u0 ≥ 0 the hypergeometric functions in
each term are real. This is not the case if we were to naively
take λ positive in this expression.
To identify the deformed coefficients tkðλÞwe must write

R0ðλÞ as a power series expansion in u0, as done in (4.6).
When doing so we encounter an issue, since the series
expansion of the hypergeometric function has a finite
radius of convergence, given by u0 < 1=j2λj. This is a
problem, as the coefficients tkðλÞ obtained in this way are
not going to describe the physics for arbitrarily high
energies, but up to a maximum energy EmaxðλÞ given by

EmaxðλÞ ¼
1

2jλj : ð4:10Þ

While for higher energies the leading string equation in
(4.9) is still well defined through analytic continuation, the
coefficients tkðλÞ are not. It is interesting that although for
λ < 0 there is no issue with the complexification of the

spectrum (2.3), a very different phenomenon forces us to
introduce a truncation in the energy.
Keeping this in mind, we can compute tkðλÞ using the

standard expansion of the hypergeometric function around
the origin, together with the Cauchy product for infinite
series:

tkðλÞ ¼ tkð0Þðkþ 1=2Þ
Xk−1
q¼0

ð−2λÞq
q!

ak−q
ak

Γðkþ 1=2 − qÞ
Γðkþ 3=2 − 2qÞ ;

ð4:11Þ

where the undeformed coefficients are

tkð0Þ ¼
2akð2k − 1Þ!
4kk!ðk − 1Þ! : ð4:12Þ

This transformation defines the TT̄ deformation of the
double scaled model.
Airy model: Let us start by considering the simple Airy

model, in which the leading spectral density is given by
ρ0ðEÞ ¼

ffiffiffiffi
E

p
=2πℏ. The deformed coefficients tkðλÞ in

(4.11) are easily computed and given by

tkðλÞ ¼
ð−2λÞk−1
2k!ðk − 1Þ!

Γðkþ 3=2Þ
Γð7=2 − kÞ : ð4:13Þ

While for λ ¼ 0 the only non-vanishing coefficient is t1,
when we turn on the deformation we have an infinite
number of higher order contributions. The leading string
equation is given by

R0ðλÞ ¼
X∞
k¼1

tkðλÞuk0 þ x

¼ 1

2
u02F1

�
−
3

2
;
5

2
; 2; 2λu0

�
þ x ¼ 0: ð4:14Þ

JT gravity: A more interesting example is obtained from
the double scaled model that describes JT gravity. The
leading spectral density in this case is given by [27]

ρ0ðEÞ¼
sinhð2π ffiffiffiffi

E
p Þ

4π2ℏ
¼ 1

2πℏ

X∞
q¼1

ð2πÞ2ðq−1Þ
ð2q−1Þ! E

q−1=2: ð4:15Þ

Identifying the coefficients aq we can compute tkðλÞ in
(4.11) and find it can be written in terms of a hyper-
geometric function

tkðλÞ¼
π2ðk−1Þ

2k!ðk−1Þ! 3F0

�
1−k;

2kþ1

−4
;
2k−1

−4
; ;
8λ

π2

�
: ð4:16Þ

When λ ¼ 0 the hypergeometric function goes to one and
we identify the prefactor as the undeformed coefficients of
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JT gravity [42,46]. For nonzero λ and fixed k the hyper-
geometric function is a simple polynomial in λ of
order (k − 1).

2. Positive deformation coupling

Let us now consider the TT̄ deformation for positive
coupling λ, which turns out being quite different. Consider
the simplest family of double scaled models obtained from
multicritical potentials labeled by k ∈ N,

ρ0ðEÞ ¼ Ek−1=2 × 1½0;þ∞Þ: ð4:17Þ

Deforming this spectral density according to (2.5) or (2.9)
is not as straightforward as for λ negative, as in this
case we have to deal with the complexification of the
spectrum. Moreover, double scaled models do not seem to
have the structure that allowed us in Sec. III to deal with
this issue in a natural and unique way through a phase
transition. Due to the lack of a better procedure, we shall
introduce a truncation in the spectrum of (4.17), given by
EmaxðλÞ ¼ 1=4λ. Doing so, the deformed spectral density
including either a single (2.5) or both branches (2.9) is
given by

Singlebranch∶ρλðEÞ¼
�
2kþ1

a2kþ1

	
ða−EÞ½Eð2a−EÞ�k−1

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð2a−EÞ

p
×1½0;a�;

Bothbranches∶ ρ̃λðEÞ¼
�
2kþ1

2a2kþ1

	
ja−Ej½Eð2a−EÞ�k−1

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð2a−EÞ

p
×1½0;2a�; ð4:18Þ

where we have defined a ¼ 1=4λ. Both of these expres-
sions have been rescaled in order to yield a normalized
spectral density supported on a finite interval.
The expressions in (4.18) are quite interesting, as they

seem to correspond to the large N spectral densities of a
matrix model without double scaling. As we have pre-
viously explained, inverting the double scaling is a non-
universal procedure, meaning there are an infinite number
of ways of doing so. Still, the TT̄ deformation is selecting a
particular way of inverting the double scaling limit in
(4.17). This resonates with the effect of the deformation on
two-dimensional QFTs by an irrelevant operator, as in that
case the deformation also picks a particular trajectory in the
renormalization group flow, among many possibilities.
With this in mind, let us inspect more closely the two

expressions in (4.18), whose main difference is their
support. We first compare with the spectral density of a
general large N matrix model with polynomial potential,
given in (3.4). Note that only ρ̃λðEÞ in (4.18) has the
appropriate structure, and we can easily identify the
polynomials h̃λðEÞ and σ̃λðEÞ that characterize the model.
Due to the indicator function, this is not the case for ρλðEÞ

in (4.18). The next natural step is to use the general
conditions in (3.6) to compute the potential VλðxÞ that
generates the spectral density ρ̃λðEÞ, similarly as done
previously in Sec. III. However, we stumble into a problem,
since the second relation in (3.6) can never be satisfied, i.e.,

Res
z¼þ∞

½h̃λðzÞ
ffiffiffiffiffiffiffiffiffiffiffi
σ̃λðzÞ

p
�

¼ 2π

�
2kþ 1

2a2kþ1

	
Res
z¼þ∞

½ða − zÞ½zð2a − zÞ�k−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðz − 2aÞ

p
�

¼ 0 ≠ −2: ð4:19Þ

Recall that this constraint comes from requiring the simple
condition that the resolvent RðzÞ in (3.1) behaves as RðzÞ ¼
1=zþ � � � for large z. The vanishing of the residue in (4.19)
implies the leading behavior 1=z vanishes. Overall, this
means that even though ρ̃λðEÞ has the appropriate structure,
it does not arise from the large N limit of a matrix model
with a polynomial potential VλðxÞ.
What about nonpolynomial potentials? It is still possible

the spectral densities in (4.18) correspond to a matrix model
with a more complicated potential. To determine this, we
can use the following expression that relates the potential
VðxÞ of a matrix model with its equilibrium density:

V 0ðxÞ ¼ 2

Z
�

supp ρ

ρ0ðEÞ
x − E

dE; for x ∈ suppρ; ð4:20Þ

where the integral is computed in the principal value
regularization. This follows from the saddle point analysis
of the partition function [52] and only assumes the potential
VðxÞ is a well behaved function so that the matrix integral
converges (see Sec. III.2 in [52]). As an example, it is
straightforward to consider ρ0ðEÞ in the Gaussian example
(3.22), solve the integral, and find

V 0
GaussianðxÞ ¼

16

πE2
0

Z
�

E0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE0 − EÞp
x − E

dE ¼ 8ð2x − E0Þ
E2
0

;

ð4:21Þ

which gives the known answer given in (3.22). Note that
even though the formula (4.20) only determines the
potential in the region x ∈ suppρ, in this case the expres-
sion is naturally extended to the whole real line x ∈ R.
Let us now consider the TT̄ deformed spectral densities

in (4.18). For any value of k the integral can also be solved
explicitly, although the final answer is much more com-
plicated. As an example, let us consider ρλðEÞ in (4.18)
with k ¼ 1. The potential obtained from (4.20) is given by
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Vðk¼1Þ
λ ðxÞ ¼ −πx̄3 þ ð2þ 3πÞx̄2 − 1

2
ð8þ 3πÞx̄

− 1þ 4½x̄ð2 − x̄Þ�3=2arccoth½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=x̄ − 1

p
�

þ 2 lnð1 − x̄Þ; ð4:22Þ

where x̄ ¼ x=a. This expression is clearly quite compli-
cated and not polynomial. Moreover, while for x ∈ ½0; a�
the potential is real (as required), it cannot be extended to
the whole real line x ∈ R, as done for the simple Gaussian
case (4.21), since (4.22) becomes complex for x > a.
Overall, it is unclear whether the deformed spectral
densities in (4.18) can be made sense of as a random
matrix model.

B. Finite cutoff JT gravity

As mentioned in the Introduction, recent work has shown
interesting connections between the TT̄ deformation with
positive coupling λ and finite cutoff holography [18]. For
two-dimensional JT gravity this was explored in [21],
where the finite cutoff disk partition function was com-
puted and matched with the TT̄ deformation of the
Schwarzian quantum mechanics [12]. Since higher top-
ology contributions in ordinary JT gravity are captured by a
double scaled Hermitian matrix model [27], is there a
deformed matrix model that captures higher topology
contributions of finite cutoff JT gravity?
To answer this, let us consider the matrix expectation

value of double trace operators in the large N limit, which
take a universal and particularly simple form. The con-
nected expectation value of two resolvent insertions,

R0ðz1; z2Þ≡ lim
N→∞

1

N2

�
Tr

1

z1 −M
Tr

1

z2 −M

�
c
; ð4:23Þ

for a single-cut matrix model only depends on the end
points of the interval ða−; aþÞ where the spectral density is
supported. It is given by [29]

R0ðz1; z2Þ ¼
−1

2ðz1 − z2Þ2

×

�
1þ ða− þ aþÞðz1 þ z2Þ=2 − ða−aþ þ z1z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz1 − a−Þðz1 − aþÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz2 − a−Þðz2 − aþÞ
p

�
;

ð4:24Þ

which in the coincident limit z1 ¼ z2 ¼ z becomes

R0ðz; zÞ ¼
ðaþ − a−Þ2

16ðz − aþÞ2ðz − a−Þ2
: ð4:25Þ

This provides a simple expression that we can use to
compare with finite cutoff JT gravity results.
To do so, we use the dictionary that allows us to translate

gravitational to matrix model observables [27]. The

gravitational partition function in JT gravity ZðβÞ with a
single asymptotic boundary of renormalized length β is
identified with the following operator insertion in the
matrix model

hTre−βMi ↔ ZðβÞ: ð4:26Þ
Adding more boundaries to the gravitational path
integral corresponds to additional insertions of Tre−βM.
Using this, we have the following identification with
R0ðz1; z2Þ in (4.23)

R0ðz1; z2Þ ↔
Z þ∞

0

dβ1dβ2Zcylinderðβ1; β2Þeβ1z1þβ2z2 ;

ð4:27Þ
where Zcylinderðβ1; β2Þ is the leading genus contribution to
the gravitational path integral with two asymptotic boun-
daries, i.e., cylinder topology. The integral transform in βi
is required in order to change the insertion of the expo-
nential matrices e−βM in (4.26) to resolvents (4.23).
To compute the right-hand side, we use some finite

cutoff results obtained in [21]. Using the decomposition of
multiboundary surfaces developed in [27], the cylinder
partition function is constructed from the trumpet partition
function Ztrumpet that contains a geodesic boundary of
length b and a boundary of finite length L,9

Ztrumpet ¼ e−LϕbLϕb
J1ðϕb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − L2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − L2
p

¼ e−LϕbðLϕb=bÞ
X∞
n¼0

�
L2ϕb

2b

�
n Jnþ1ðbϕbÞ

n!
; ð4:28Þ

where ϕb is the value of the dilaton at the boundary and in
the second equality we have used the identity in Eq. (8.515)
of [53]. Instead of working with the parameters ðϕb; LÞ it is
convenient to use ða; βÞ with a ¼ 1=4λ, where λ would be
the TT̄ deformation parameter of the matrix model. We can
translate between these quantities using the identifications
given in [21] ðϕb; LÞ ¼

ffiffiffiffiffiffiffiffi
a=2

p ð1; 2βÞ, which ensures the
matching between the disk partition function and the TT̄
deformation of the Schwarzian quantum mechanics.
To compute the cylinder partition function we must take

two different values of β1 and β2 while a1 ¼ a2 ¼ a, since
from the boundary perspective the matrix model is
deformed by the single parameter λ. The cylinder partition
function is then obtained by gluing two trumpets and
integrating over all possible values of b ∈ Rþ using the
Weil-Petersson measure dbb [27]

9This is obtained from Eq. (4.8) in [21] after including the
boundary counterterm e−Lϕb and rescaling by an overall factor so
that we recover the trumpet partition function of ordinary JT
gravity [27] in the appropriate limit. Below we comment on some
subtle aspects regarding the derivation of this result.
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Zcylinderða; β1; β2Þ ¼
Z þ∞

0

dbbZtrumpetðb; a; β1ÞZtrumpetðb; a; β2Þ

¼ 1

2
e−ðβ1þβ2Þa

X∞
n;m¼0

ðβ1aÞ2nþ1

n!2n
ðβ2aÞ2mþ1

m!2m

Z þ∞

0

dy
Jnþ1ð ffiffiffi

y
p Þ

y
nþ1
2

Jmþ1ð ffiffiffi
y

p Þ
y
mþ1
2

¼ e−aðβ1þβ2Þ
X∞
n;m¼0

2β2nþ1
1 β2mþ1

2

ðn!m!Þ2ð1þ nþmÞ
�
a
2

	
2ðnþmþ1Þ

; ð4:29Þ

where we have changed integration variables to b ¼ ffiffiffiffiffiffiffiffiffiffi
2y=a

p
and used the series representation in (4.28) to solve the

integral. We should be careful with this expression, as we have carelessly exchanged the integral and infinite series. To
check that no issue arises from this technicality, we can take β1 ¼ β2 where the series can be solved and written in terms of
modified Bessel functions

Zcylinderða; β; βÞ ¼
1

2
e−2aβðaβÞ2½I0ðaβÞ2 − I1ðaβÞ2� ≥ 0: ð4:30Þ

This agrees with the result obtained from directly solving the b integral in (4.29) after using Ztrumpet as written in the first
expression in (4.28). For β1 ≠ β2 we have directly solved the integral numerically, compared with the truncated series
(4.29), and found agreement to arbitrary precision. Overall, this means we can trust the series expansion in (4.29) for the
cylinder partition function.
We can now insert Zcylinder in (4.27) and compute the integral for each of the terms in the series. Exchanging the series

with the integral is fully justified in this case, as each term in the series is non-negative. In this way, we can write (4.27) as

R0ðz1; z2Þ ↔
X∞
n;m¼0

ð2nþ 1Þ!ð2mþ 1Þ!
ðn!m!Þ2ð1þmþ nÞ

2ða=2Þ2ðnþmþ1Þ

ða − z1Þ2ðnþ1Þða − z2Þ2ðmþ1Þ ; ð4:31Þ

where R0ðz1; z2Þ is given in (4.24). The comparison of these quantities is simpler when z1 ¼ z2 ¼ z, where the series can be
solved and we find

R0ðz; zÞ ¼
ðaþ − a−Þ2

16ðz − aþÞ2ðz − a−Þ2
↔

a2

4z2ð2a − zÞ2
�
2 −

a2

ða − zÞ2
�
: ð4:32Þ

As a check, both sides match perfectly for the ordinary JT
gravity after taking a ¼ 1=4λ → ∞ and ða−; aþÞ ¼ ð0;∞Þ.
However, for finite cutoff JT gravity (corresponding to a
finite), there are no values of a� we can take so that both
expressions agree. This shows the computation of the finite
cutoff observables using the decomposition of the surfaces
developed in [27] does not yield a result compatible with a
randommatrix model. A different approach must instead be
developed for computing higher genus finite cutoff ob-
servables in JT gravity.
Some readers might think this conclusion is too abrupt.

For instance, one can consider the possibility that finite
cutoff JT gravity is described by a multicut instead of a
single-cut matrix model. However, this does not seem to be
possible, since it is well known large observables of
multicut matrix models do not have a well defined large
N limit [54]. For instance, while R0ðz1; z2Þ can still be
computed explicitly for a double-cut matrix model, the
answer depends on N nonanalytically; i.e., it depends on
whether N is even or odd [see Eq. (3.18) in [54] ].

One can also look more closely at the computation of the
trumpet partition function (4.28), obtained from solving the
Wheeler–de Witt equation [21]. In a similar way as there
are two branches E�ðλ; EÞ solving the TT̄ flow equa-
tion (1.1), there are two independent solutions to the
Wheeler–de Witt equation. The trumpet partition function
in (4.28) is obtained by taking a particular combination
between these two solutions, corresponding to the follow-
ing two terms in the integral:

Ztrumpet¼
Z

ϕ2
b

0

dE
cosðb ffiffiffiffi

E
p Þ

2π
ffiffiffiffi
E

p

× ½e−L½ϕb−
ffiffiffiffiffiffiffiffiffi
ϕ2
b−E

p
�−e−L½ϕbþ

ffiffiffiffiffiffiffiffiffi
ϕ2
b−E

p
��; ð4:33Þ

which is equivalent to (4.28). While in [21] this particular
combination is well motivated, it seems reasonable to
explore other combinations, which essentially means
replacing the minus in the second term (4.33) by an
arbitrary parameter q. However, when doing so and using
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the result to compute the cylinder partition function as the
first line in (4.29), one finds Zcylinder is finite only when
q ¼ −1. This supports the expression for the trumpet
partition function (4.28), as computed in [21].
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Note added.—Recently, Ref. [55] appeared. That work
studies the TT̄ deformation of two-dimensional large N
Yang-Mills theory and also finds a phase transition
by accounting for the nonperturbative branch solving the
flow equation. Given the relation between large N gauge
theory and matrix models [22], perhaps a connection
can be made between the results in this work and [55]
(see also [56,57]).
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