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We define and study the 77 deformation of a random matrix model: showing a consistent definition
requires the inclusion of both the perturbative and the nonperturbative solutions to the flow equation. The
deformed model is well defined for arbitrary values of the coupling, exhibiting a phase transition for the
critical value in which the spectrum complexifies. The transition is between a single- and a double-cut
phase, typically third order and in the same universality class as the Gross-Witten transition in lattice gauge
theory. The TT deformation of a double scaled model is more subtle and complicated, and we are not able
to give a compelling definition, although we discuss obstacles and possible alternatives. Quantitative
comparisons with finite cutoff Jackiw-Teitelboim gravity are presented.
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I. INTRODUCTION

The TT deformation was first introduced as a deforma-
tion of two-dimensional quantum field theories (QFTs) by
an irrelevant operator built from the stress tensor 7, [1,2]
(see [3] for a review). It distinguishes itself from other
irrelevant deformations given that several observables of
the deformed theory (energy spectrum, partition function,
and S-matrix, among others) can be computed exactly and
unambiguously [1-8]. This is quite surprising, as general
arguments in renormalization theory imply observables in
the deformed theory are not well defined, as they require an
infinite number of counterterms. Encouraged by these
interesting results in two-dimensional QFTs, the T7T
deformation has been generalized to other setups, including
higher dimensional QFTs [9-11], quantum mechanics
[12,13], spin chains [14-17], and holography [18-21].
This provides new perspectives from which to study certain
aspects of the TT deformation that are not simple to
understand in its original formulation for two-dimensional
QFTs.

As an example, let us consider the TT deformation of a
quantum mechanical system characterized by a Hamiltonian
operator H. The deformation defined in [12] and reviewed in
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Sec. II is implemented by deforming the Hamiltonian
operator H according to the following flow equation:
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(1.1)

where 4 € R is the deformation parameter. While there are
two branches H (4) that solve the flow equation, only the
negative branch is perturbatively connected to the unde-
formed theory, i.e., H_(4 = 0) = H, meaning H, is the
nonperturbative branch.' We immediately identify an issue
with this deformation, since nothing prevents the argument
in the square root going negative, resulting in a complex
energy spectrum of the deformed theory. This issue also
arises in the 7T deformation of two-dimensional QFTs,
and it is currently unclear how one should deal with it.
Should we restore unitarity by introducing a truncation of
the spectrum of H that ensures H, = H_? If so, is this
procedure unique? Or maybe we should accept a nonuni-
tary deformed theory?

One of the goals of this work is to address these
questions by defining and studying the 7T deformation
in (perhaps) the simplest setup: a random matrix model. We
shall mainly focus on an ensemble of Hermitian square
matrices M of dimension N, weighted by a probability
measure determined by a potential V(M) according to

dMe™™ M) The expectation value of any matrix observ-
able O is defined as

Tn both branches, the integration constant is fixed to the same
value so that the two solutions are smoothly connected.
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where y € R. One of the central observables is the spectral
density

p(E) =%<ia<E—ai>>, (13)

which characterizes the average distribution of eigenvalues
a; € R of the matrix M.

Starting from the flow equation in (1.1) we show in
Sec. III that in order to have a consistent definition of the
TT deformation of a random matrix model we must
necessarily include the contribution from both the pertur-
bative and nonperturbative solutions H_.. We then show the
deformation is very naturally defined in terms of the
potential V(M) according to

TT deformation : V,(M) = c,V(M —2.M?),  (1.4)
where ¢; = 1/2 except for ¢,y = 1. This provides the
perfect setup for studying the behavior of the system when
A > A.. As we take A across its critical value 4., we observe
a shift in the extrema of the potential V;(M). This triggers a
phase transition in the large N spectral density po(E), which
goes from being supported in two disjoint intervals (dou-
ble-cut) to a single one (single-cut). This type of transition
is very familiar to random matrix models. Starting from a
typical potential V(M) the phase transition at 4, is of third
order and in the same universality class as the Gross-Witten
transition in two-dimensional gauge theory [22]. Crucially,
there is no need to introduce a truncation of the spectrum or
any other ad hoc procedure, as the matrix model has the
appropriate structure to deal with the phase transition in a
unique and natural way. The reminder of Sec. III is devoted
to the study of additional features of the deformation (1.4).
This includes some remarkable stability considerations, the
deformation of critical potentials, and the definition of the
deformation for unitary matrix models [see Eq. (3.38)].

In Sec. IVA we study the TT deformation of double
scaled random matrix models. A double scaled model is
obtained from a critical potential V(M) by simultaneously
taking the limit N — oo and y — 1 in a particular way (see
[23,24] for reviews). This procedure has the effect of
“zooming in” to the edge of the eigenvalue spectrum
p(E), capturing universal physics while disregarding non-
universal features of p(E) away from the edge.” Defining
the deformation of a double scaled model turns out being
much more complicated than that of an ordinary matrix
model with no double scaling. The fundamental obstacle is

*Double scaled models can also be defined independently of
any matrix model, in terms of a topological expansion associated
with an algebraic curve [25].

that applying the double scaling limit on a matrix model is
not an invertible procedure; i.e., given a double scaled
model there is not a unique potential V(M) associated with
it. This hinders the utility of the simple definition of the
deformation given in (1.4). That being said, we are still able
to give some partial definitions and study certain aspects of
the 7T deformation of double scaled models that we hope
can set the stage for future investigations.

Our interest in double scaled models arises from inter-
esting connections between the 77 deformation and finite
cutoff anti—de Sitter holography [18]. The thermal partition
function of the TT deformation (1.1) of the Schwarzian
quantum mechanics has recently been reproduced from the
finite cutoff Jackiw-Teitelboim (JT) gravity disk partition
function [21] (see also [26]). Since higher topology con-
tributions in ordinary JT gravity are captured by a double
scaled model [27], is there a matrix model that captures
higher topology contributions in finite cutoff JT gravity? To
answer this question we can compute higher genus finite
cutoff partition functions using the decomposition of
surfaces with constant negative surfaces developed in
[27], in terms of the “trumpet” geometry. Using the finite
cutoff trumpet partition function of [21], in Sec. IVB we
calculate the leading genus two boundary partition function
and show it is not compatible with matrix model predic-
tions.” This shows the (by now) standard approach for
computing higher genus Euclidean partition function of
[27] might not be useful when applied to finite cutoff JT
gravity, and instead a different procedure has to be
developed.

II. QUANTUM MECHANICS

In this section we start by reviewing the 77 deformation
proposed in [12] (see also [13,28]) for a quantum mechani-
cal system. This sets the stage for the definition of the
deformation of a random matrix model in the next section.
Consider a quantum mechanical system characterized by a
Hermitian Hamiltonian operator H that satisfies

Hlyg) = Elyg).  E€S(H), (2.1)

where |y ) and S(H) are the eigenstates and spectrum of
H, respectively. Let us assume the spectrum of this system
is supported on the finite interval S(H) € [0, E,). Our focus
is on the thermal partition function, defined as

Z(B) =Tr(e ) = AEO dEp(E)e™PE,  (2.2)

3Since the leading expectation value of double trace operators
in a matrix model are universal, i.e., independent of the particular
details of the model, the comparison can be made in full
generality.
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where the spectral density p(E) determines the degeneracy
of the eigenstates |y ).

The TT deformation proposed in [12] (obtained from
dimensional reduction of the original two-dimensional
deformation [1,2]) is defined from the flow equation for
the deformed Hamiltonian given in (1.1). There are two
distinct branches that solve the differential equation, so that
the deformed eigenvalues are given by

| +VI—8IE !
SEVI O Re A< A(E) = —.
a7 ER <A< A(E) =g

(2.3)

EL(AE) =

In this section we shall restrict to 4 <41, so that
E. (A, E) € R. While the perturbative branch E_(4, E)
satisfies E_(0,E) = E, the nonperturbative branch
E (A, E) diverges as A — 0. Despite this singular behavior,
we shall see that both branches solving the flow equation
play a crucial role when defining the deformation for a
random matrix model. Note that the eigenstates |y ) are
not modified by the deformation.

We are interested in studying the effect of the deforma-
tion on the spectral density p(E) appearing in the thermal
partition function (2.2). In doing so, we make the dis-
tinction between two different approaches that involve
considering a single or both branches in (2.3).

Single branch: The most naive approach is to ignore the
nonperturbative branch H, and only include the perturba-
tive solution H_. The deformed partition function in this
case is given by

Z,(B) = Tr(e™PH-) = A " dEp(E)e PE-GE)  (2.4)

The density p(E) appearing in (2.4) is the same as in the
undeformed theory since for any given value of E, the
eigenstates |y) are unchanged. The deformed spectral
density p,(E) is obtained by changing the variables of the
integral in (2.4) so that we get the standard Boltzmann
factor e#F. Doing so, we find

Pi(E) = (1=4AE)p(E=20E*) x Yo k_ngy))s A< e
(2.5)
where the indicator function is given by
1, E€A,
1, = { (2.6)
0, E¢A,

for any set A. The right edge of the spectrum is determined
by the negative branch E_ in (2.3) evaluated at E,. Note the
prefactor (1 —4AFE) in (2.5) is non-negative in the support

of py(E).

Both branches: A second approach involves including
both branches that solve the flow equation (2.3), so that the
thermal partition function is given by

Z,(p) = c;Tr(ePH- 4 e7Mh)

E
= cﬂ/ 0 dEﬂ(E)(e—ﬂEf(l-E) + e‘ﬂE*u’EU’ (2.7)
0

where we add a tilde to differentiate from the previous
prescription. The normalization constant ¢, is defined as

(0
“= )2,

which ensures a proper normalization for all A. The idea of
including both branches in this way was first explored in
[21] when studying JT gravity with a finite cutoff, with the
important difference that a different (and arbitrary) spectral
density p,(E) was considered for the nonperturbative
branch E, . From our perspective, we have the undeformed
spectral density p(E) for both branches since both traces in
(2.7) are computed with respect to the undeformed eigen-
states [y¢). Changing coordinates in each term so that we
get the standard Boltzmann factor, we identify the
deformed spectral density as

A=0,

120 (2.8)

PA(E) = ¢;|1 ~44E|p(E~21E?)

x Mo (e + Vi, (e 120 AS A (2.9)
The absolute value in the prefactor |1 — 44E| arises from
the different change of variables involved in each term
in (2.7).

Comparing with p;(E) in (2.5) we see the spectral
density gets an additional contribution from the nonper-
turbative branch. The support of the spectral density is
much more interesting in this case, as can be seen from the
left diagram in Fig. 1. The green and blue regions indicate
the support of p,(E) arising from contributions of the
perturbative and nonperturbative branches, respectively. As
A — 0 the contribution of the positive branch E, (blue in
Fig. 1) goes to zero, while the negative branch E_ (green in
Fig. 1) goes to the undeformed density E € [0, Ey]. As we
approach 4. the square root in both branches (2.3) vanishes
and the spectral density becomes supported on a single
interval

P (E) = ¢, |1 = 44, E|p(E = 2 %) x gy (2.10)
This hints toward a phase transition, in which the spectral
density goes from a double- to a single-cut phase as 4 > 4...
While from the perspective of the quantum mechanics there
is no clear way of going beyond this transition, we shall
show how the matrix model is naturally equipped to deal
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FIG. 1.

Matrix Model

On the left we plot the support of p,(E) in (2.9) for the quantum mechanics 77 deformation. Green and blue shaded regions

correspond to contributions coming from the perturbative and nonperturbative branches, respectively. Since the energy spectrum
complexifies, we are unable to go beyond .. On the right, we show the corresponding diagram obtained by 77 deformation of the
matrix model studied in Sec. III A. In this case, we can go through and beyond the phase transition.

with it. We will be able to continue p,(E) beyond 4. and
find its support is given by the right diagram in Fig. 1.

III. RANDOM MATRIX MODELS

In this section we define and study the 77 deformation
of a random matrix model. Let us start with a short
introduction to random matrix models (for reviews see
[23,24,29]). Consider an ensemble of Hermitian matrices

M of dimension N, weighted by a probability measure
determined by a potential V(M) according to dM ¢TIV,
where dM is the U(N) invariant measure. The expectation
value of matrix model observables O are computed
according to (1.2). Two useful observables are the spectral

density p(E) and resolvent R(z), defined as

%<lZN;5(E— ai)>,

R(Z)E%<Z : >_%+0(1/z2>, (3.1)

im1 < %

p(E)

where @; are the eigenvalues of the matrix M and R(z) is an
analytic function in z € C\{suppp}. These two quantities
are related via the following transformations:

R(E —ie) — R(E + i¢)

p(E) =lim 2zi ’
R(z) = / PE) g (3.2)
suppp 2 — E

We study observables in the large N limit, where we add
the subscript zero to differentiate from the finite N
quantities, e.g., Ry(z) =limy_ R(z). In this limit the
resolvent satisfies a simple algebraic equation that can be
solved and written as (e.g., see Sec. 3 of [29])

Ro(z) =5 V/(2) = VP = 4Po2)].  (33)
Restricting ourselves to polynomial potentials, the
function Py(z) is also a polynomial. Since the argument
in the square root in (3.3) is also a polynomial, we can
factorize it in terms of its even and odd zeros as
V'(z)? — 4Py(z) = h(z)*c6(z). We can then use (3.2) to
write the large N spectral density as

po(E) = 5 H(E)[V/=0E) X Lo (3.4
The support of the equilibrium spectral density is deter-
mined by the function o(E) that can be written as
o(E) =[]%,(E — a;). The parameters a; € R determine
the edges of the spectrum, which must be real since
the model is built from Hermitian matrices. The coefficients
a; together with the polynomial h(E) are determined
by the potential V(M). For the single-cut case the spectral
density is supported in a single interval, so that
o(E)=(E—-a_)(E—a,). We can determine h(E) by
requiring the resolvent to have the appropriate large z limit
(3.1). This gives the following condition:

V'(z)
V- a)-a)
where Pol[] is the polynomial contribution in z obtained

from expanding around z — 4oo0. The values of a, are
obtained from

h(z) = Pol (3.5)

V'(z) = Pol[h(z)\/o(z)],
Res [h(z)\/o(z)] = -2,

7=+

(3.6)

where the second condition is equivalent to requiring the
spectral density to be properly normalized.
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A. Definition and phase transition

Let us now show how we can implement the TT
deformation of a random matrix model. Our starting point
is a potential V(x) associated with a single-cut spectral
density that without loss of generality we can take as

JWE(Ey = E) X 1o g,

The polynomial A(E) is related to the potential V(x)
through the first identity in (3.6). To write this explicitly,
we use the following large z expansion:

h(Z)m = Z i(l/z) mZnJrl—m’

n=0

po(E) = —Ih (3.7)

(3.8)

where h, are the coefficients of the polynomial A(E) of
order p. Using this in (3.6) we get

:ih n+1 <1/2>

n=0 m=0

mzn+1—m .

(3.9)

This relation determines the potential necessary to generate
any single-cut large N spectral density given by (3.7). A
potential V(z) is said to be critical (see Sec. VI. 5 in [30]) if
the associated polynomial i(E) vanishes in the support of
the spectral density po(E), which is called singular. For
(3.7) this corresponds to h(E) having a zero in the
region E € [0, Ey].

Singe branch: Let us start by considering the case in
which we only include the perturbative branch E_(J, E), so
that the deformed spectral density for A < 1. is given by
(2.5). Applying this to the matrix model large N density
(3.7) we find

PAE) = 5= |m(E)|V —01(E) X Yo £_(1Ey))s A=< e,

(3.10)

where we have identified
{ 0'/1<E ) =
hy(E) =

Note that we can include (1 —4AFE) inside the absolute
value since it is positive in the range E € [0, E_(4, E;)]. To
identify (3.10) as the leading order spectral density of a
matrix model it must take the general form given in (3.4).
While the functional form is appropriately given by the
functions h,;(E) and o,(E), there is an issue with the
support of the spectral density, given that the polynomial

4PE(E-E_(3. E))(E—E. (AEo))(E-1/24).
(1—4AE)h(E—21E?).
(3.11)

0,(E) contains four roots instead of two. More precisely,
the issue arises due to the following discrepancy in the
indicator functions:

1o,)<0 = Yjo.£_1.E0)) + LiE, (1.E0).1/22) F L0.E_(1E,)]-
(3.12)

As a result, the deformed spectral density that only
incorporates the perturbative branch E_(4, E) cannot be
written in the form (3.4) and therefore interpreted as
coming from a random matrix model, i.e.,

E)|\/=0,(E) X 15,)<0

Both branches: This suggests we study the deformation
of the spectral density given in (2.9) that includes both
branches E.(4,E) solving the flow equation (2.3).
Applying the deformation to the single-cut density in
(3.7) we find

pE) # (3.13)

pA(E) = Iy (E)

X [I[O,E_(/LEO)] + 1[E+(/1,EO),1/2/1]]’

—6,(E)

A<h.  (3.14)

15, (5)<0
The crucial difference is in the indicator functions that in
this case appropriately combine to yield 1; (z) o, where we
have defined

{@(E) =4 E(E-E_(ALE))(E-E(4.Ep))(E~1/22),
hy(E) = c,(1—4AE)h(E —21E?).
(3.15)

Note the difference in the normalization constant ¢; with
respect to (3.11). This shows that in order to define the TT
deformation of a random matrix model we must necessarily
include the contributions from both branches, as including
a single one is inconsistent (3.13).

To provide a standard definition of the deformation to all
order in 1/N, we need to derive a formula for the potential
V,(x). This can be obtained from the spectral density (3.14)
and the first relation in (3.6). To do so, we use the following
large z expansion:

h(2)V6,(2) = ¢; Xp: i i (1;2)

n=0 m=0

(3.16)

Using this in (3.6) we find the following expansion for the
deformed potential:
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Vi(z2) = ¢;(1 — 44z) Zh "§+:‘<1/2>

X (—Ey)™(z — 2Az%)nt1=m, (3.17)
While this expression is quite complicated, it greatly
simplifies after using the relation satisfied by the unde-
formed potential in (3.9). This results in the following
simple formula for the deformed potential

V(x) = ¢,V(x = 24x?), (3.18)
where the prefactor (1 —44z) in (3.17) arises from the
chain rule after taking the derivative. This provides a simple
and natural way of defining the TT deformation of a
Hermitian random matrix model.

Let us analyze some general features of the deformation
formula for the potential. If the undeformed potential is
stable, i.e., if V(x - +o0) = 400, the deformed potential
is also stable for arbitrary real values of A. This is quite
different from the definition of the deformation in quantum
mechanics, which only makes sense for 4 < 4. Even more,
if we start from an unstable potential whose leading
behavior is given by V(x) = —x?"*! + ... the TT defor-
mation cures the instability since the large x behavior
changes to V,(x) = (2Ax)**2 +.... We shall later con-
sider some examples where we observe this feature
explicitly.

Let us now assume the undeformed potential is stable
and has a single extremum at x = x. that is also a
minimum. Since the equilibrium spectral density is sup-
ported on E € (0, E,|, the minimum must be located in the

|

1 |hy(E)|\/~&,(E

PAE) = 5— X

Single-cut

Double-cut

Double-cut

™ > A\

Single-cut

FIG. 2. Phase diagram in parameter space (4, E,) showing the
transition at A, = 1/8E, between the single- and double-cut
spectral densities p,(E) in (3.20).

same interval x. € [0, Ey]. The critical points of the
deformed potential can be readily computed as

1+£/1-84 1
0¢>Xi:7xc, xlzﬁ'

o (3.19)

Vi(x) =
Using V,(+o0) = +oo together with the fact that x; is
always in between the other critical points x_, we conclude
that when x,. € R the points x_ correspond to local minima
and x; to a maximum. However, when x_; become complex,
x; is the only real critical point which must therefore be a
minimum. The shift between these two regimes induces a
phase transition in the spectral density that for finite
positive 4 goes from a double- to a single-cut phase.
Due to the breakdown of the formula for p,(E) in (3.14)
for A > 1., we identify the location of the transition at
. = 1/8E, so that the full spectral density is given by

Yog () + Ve (uEg)1/20]s 4 < e (3.20)

2n |y (E)\/(E

The single-cut spectral density after the transition is
characterized by the polynomial /(E) and the end points
a.. As we shall shortly show in an example, these are
easily computed from the deformed potential V,;(x) using
the conditions in (3.5) and (3.6). Overall, the matrix
model is naturally equipped to deal with the phase
transition in a unique way, from a double- to a single-
cut phase. Other methods one could consider, such as
truncating the spectrum in order to restore unitarity, are
easily shown to be inconsistent from the matrix model

perspective.

The phase diagram in the parameter space
(A, Ey) is sketched in Fig. 2, where the two
phases are divided by the curve A.=1/8E,. It is

interesting to study the spectral density at criticality that
is given by

+ = E) X Xjg_a,

|

- C)
E)=-"=|h(E -

P/L,( ) 4ﬂ| (

E —2Ey\2
x< 7 0) E(4Ey — E) x Ljg4z,. (3.21)
0

2.E?)]

Due to the factor (E — 2E,)? this spectral density vanishes in
the middle of its support, meaning p, (E) is singular and
V,_(x)isacritical potential. This is an interesting feature that
gives rise to universal physics that we shall study more
closely in the next subsection. Before doing that, let us work
out the deformation of a simple example explicitly.

1. Deforming the Gaussian ensemble

Let us consider the simplest Hermitian matrix model,
obtained from a Gaussian potential V(x),

126017-6
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i ﬁ)\(E) 1 ﬁk(E) | ﬁ)‘(E)

FIG. 3.

Equilibrium spectral density obtained by applying the 7T deformation on Wigner’s semicircle law for several values of 1. The

. AAA(E) . Pa(E) ,
I \ I /
I \ ! \ /
/ \ I \
\ \A _ m \ X s
~N

N / 0|\ ,
\ /7

/
\
N /

green and blue shaded regions correspond to contributions coming from the perturbative and nonperturbative branches, respectively.
After the transition we observe a single-cut phase in which there is no longer a distinction between the two branches. The dotted line

corresponds to the potential V,(x) in (3.23).

8x(x —
Vi) = LS
2
oo(E) = YOS VBB T B x 1. (322

2

The equilibrium spectral density po(E) is nothing more
than Wigner’s semicircle law centered at E,/2. It is
straightforward to verify the conditions in (3.5) and (3.6)
are satisfied by this potential and spectral density. The TT
deformation of this model is defined from the potential in
(3.18) that in this case is given by

Vilx) = SE—ng(l —22x)[x(1 = 24x) — Ey]. (3.23)

The spectral density in the double-cut phase is obtained
from (3.14),

~ 4/E)’
proi () = ¢, V1 i

x \/E(1 = 2E)[Ey — E(1 = 2AE)]

X [No.e_ ey + VE, (1Ey).1 /2] (3.24)

while in the single-cut phase it is computed from (3.5) as

[2(1 —4AE)? 4 8(a* + a%)A* 4+ 8EyA — 3]
nE}

- E) X l[a_.a+]-

Pisi (E) =

x /(E=a_)(a,

The end points a, are computed from the conditions in
(3.6) and given by

(3.25)

34+ \/6 —240Ey +3+/3 + (1 — 16AE,)?
124 ‘

a.(A, Ey) =

(3.26)

In Fig. 3 we plot the resulting spectral densities and
deformed potential (3.23) for several values of A, the
shaded regions in green and blue corresponding to the
contributions from the branches E_ and E ., respectively.

After the transition we get the single-cut spectral density
(3.25) in orange, where the distinction between the
branches is no longer sensible. The support of the spectral
density as a function of A is plotted in the right diagram
of Fig. 1.

B. Critical behavior

We now study the critical behavior of the deformed
system as 4 — 4.. Let us start by considering the simple
Gaussian example (3.22), which is certainly not a critical
system since A(E) does not vanish in the support of py(E).
However, after deforming the model and taking 1 = A, the
spectral density becomes (3.21)

. c) E—-2E,\?
i 8) = e (P VB = B) % Loy

(3.27)

Since it vanishes at the interior point 2E, where the two
cuts merge (see Fig. 3), the potential V, (x) (3.23) is
critical. This type of behavior in a Hermitian matrix model
was first studied long ago in [31], where the transition
between single- and double-cut phases was shown to be
third order. The universal physics associated with the
critical behavior is obtained from a standard double scaling
limit [23,24], first applied to (3.27) in [32].4 Physical
observables are determined from a solution to a differential
equation usually referred as a “string equation” that in this
case is given by Painleve II.

The universal characteristics of the system do not depend
on the precise details of the model, but only on the rate at
which the spectral density vanishes at 2E,, quadratic in this
case (3.27). The same behavior can be obtained by
deforming a different matrix model, as long as the spectral
density at A (3.21) satisfies h(Ey — 24.E}) = h(Ey) # 0.1t
is in this sense that the double scaling captures universal
features of the transition. What is more, the same critical
behavior can be obtained from a different class of matrix
model built from unitary instead of Hermitian matrices

“See [33] for a more recent analysis of the double scaling limit
which generalizes to nonsymmetric cases.
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[32,34,35]. In particular, the transition obtained from
deforming the Gaussian model (3.22) is in the same
universality class as the Gross-Witten third order phase
transition in two-dimensional gauge theory [22].

This analysis raises the question as to whether we can
obtain more general critical behavior, corresponding to
p,.(E) vanishing at a different rate in the interior point 2E,.
To do so, let us consider a matrix model for which the
function A(E) that determines the spectral density (3.7) is
given by

_E\ k-1
hk(E)—bk<E0 E> ’ bk:F 2r(k+1)! .
(3/2)T'(k+1/2)Ej

(3.28)

where b, is a normalization constant and k € N. While for
k =1 we recover the Gaussian example in (3.22), when
k > 1 the system is already critical since p,(E) is supported
on E € [0, Ey] and hy(Ey) = 0. The double scaling of this
family of models was first explored in [36-38], where the
string equation was shown to be related to the Korteweg-de
Vries (KdV) hierarchy. The potential that generates this
spectral density is obtained from (3.9)

ACRD (21 > () s

n=0 m=0
(3.29)

Note that its leading order behavior is given by V%) (x) «
(=x)**1 ... with a positive proportionality constant.
While this means the system is unstable for k even, it still
makes sense as a formal matrix model (see [29]).
Interestingly, when applying the 7T deformation we find
the associated potential is actually stable for all values of k

VI (x) = Vi (x = 22%)
. Cﬂbk(ZA)kJrl o

= (k n ])Eg—l (k1) 4o

(3.30)

This gives a nice example in which the deformation cures
the inherent instability of the model we started from. The
deformed spectral density in the double-cut phase 4 < 4. is
obtained from /,(E) in (3.14), which as we approach 1 —
A. becomes (3.21)

(k Cic E—2E)\ %
P;,)(E) = Ebk( 0) VE@E) - E) X g,

2E,

(3.31)

This gives the critical behavior we were after. The spectral
density vanishes at the interior point 2E, at a rate 2k,
generalizing (3.27) beyond quadratic order. The double

scaling of these models for arbitrary k was studied in [39],
where the string equation was shown to be given by the
modified KdV hierarchy (mKdV). This is again in the same
universality class as critical models built from unitary
matrix models [34,35]. All things considered, applying
the TT deformation and tuning A — A. we get a physical
mapping between critical models in the KdV and mKdV
hierarchies.

C. Unitary matrices

Since the TT deformation in quantum mechanics is
defined in terms of the Hamiltonian operator (which is
Hermitian), we have been able to give a natural definition
of the deformation for Hermitian random matrices.
Generalizing to other matrix ensembles is an interesting
question that we address in this subsection. We use a duality
[40,41] between the Hermitian and unitary ensembles to
define the 7T deformation of a unitary matrix model.

The duality between Hermitian and unitary matrices was
first noticed in [40] for the double scaled models and later
generalized in [41]. Let us start by showing how the relation
works at the level of the matrix partition function. We first
write Z in (1.2) for the Hermitian matrix model in terms of
the eigenvalues a; € R of the matrix M. After diagonal-
izing the matrix M, standard arguments allow us to write
the integral as’

N
zo Tt Al etV @)
Hermitian — H a; (a) e’ ’

where A(a) = H (aj — ;)

1<i<j<N

(3.32)

is the Vandermonde determinant arising from the Jacobian
obtained from diagonalization. Changing the integration
variable to a; = tan(0;/2) with 9; € (—x, z], A(@)? trans-
forms in the following way:

IOl

2
Ala)” =Ny

cos(6,;/2)~2N=1), (3.33)

i=1

Using this, the partition function of the Hermitian matrix
model becomes

ZHermitian
1 ﬂ/ﬂde |A( je)|2 —Y[v(tan(0;/2))+rn[cos?(0;/2)]]
= i e e r ! !
IN(N+2) e
_ Zunitary
THN(N+2)” (3.34)

Here and below we are omitting an overall factor of
Vol(U(N)) that plays no role in our discussion.
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ox(y) ’ ox(¥) ox(p)

FIG. 4. Equilibrium spectral density and potential obtained by 77 deforming the unitary matrix model dual to the Gaussian Hermitian
matrix model in (3.22). The spectral density ¢(¢) is defined in the compact domain ¢ € [—x, z]. The overall behavior of the model is

analogous to the Hermitian matrix model in Fig. 3.

where we have defined the partition function of a unitary matrix model built from UT = U~! as

1-U 1+ U)?
Z mitary = /dUe_¥W(U), where W(U) = V[i<1 n U)] +7In {%}

(3.35)

This simple identity allows us to relate the expectation values of observables in each theory. For instance, the spectral
density ¢(¢) characterizing the eigenvalues 6, in the unitary model can be written as

o) = <%kz: (o — 9k)>

unitary

- lenlitary/dUe_

1 N
0 LS 5 - 0,
N k=1

N +o0 1 N
= Z;Iérmitian H / daiA<a)2e_¥V(a[) N Z 5((P -2 arctan(ak))
i=17%® k=1

<% Zi\,:l 5(taﬂ((p/2) - ai)>hermitian

_ pltan(e/2))

2co0s?(p/2)

where p(-) is the spectral density of the Hermitian
matrix model. In the first line we have used the definition
of the expectation value in the unitary matrix model. In the
second we used (3.34), written with the matrix U integral in
terms of its eigenvalues e and changed variables to
a; = tan(6;/2). In the last line we have used the compo-
sition rule of the Dirac delta and reinterpreted in terms of
the Hermitian matrix model expectation value. All things
considered, we get a simple relation between the spectral
densities of each model. Other observables can be related in
a similar fashion.

Let us now use this duality to define the 7T deformation
for a unitary matrix model. Using the formula for the
deformation of the Hermitian model potential (3.18) and
the relation in (3.35), we find

W,(U) = ¢,V {’G ; Z) 2 GJ:—Z) 2}

] (3.37)

To write the deformation without needing to refer to the
potential V(M) in the Hermitian model, we can rewrite the
right-hand side using (3.35)

~ 2co0s(p/2) (3:36)

[
W, (U)=c,W(f(U))

+y{ln [(11_5)2} —c;In [%(UU)))T } (3.38)

where we have defined

(14y)?
(1+y)—i(l-y)?

fy) = - 1. (3.39)

This defines the deformation of the unitary matrix model.
Note that when A = O we have ¢;_q = 1, f(U) = U and the
additional terms in (3.38) drop out.

As a simple example, we can take the Gaussian ensemble
in the Hermitian matrix model (3.22) and study its 7T
deformation from the perspective of the unitary matrix
model. Using (3.37) and (3.36) we compute and plot the
equilibrium density and potential in Fig. 4 for several
values of 1. The overall behavior is analogous to that of the
Hermitian matrix model, shown in Fig. 3, with the differ-
ence that ¢ € [—x, 7].

IV. DISCUSSION

In this final section we study the T7T deformation of
double scaled matrix models, as well as perform some
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quantitative comparisons between matrix models and finite
cutoff JT gravity results.

A. Double scaled models

To illustrate how a double scaled model can be obtained
from a matrix model, let us start by considering the simple
Gaussian example in (3.22). The double scaled model is
completely characterized by its spectral density pq(E),
which can be obtained from py(E) in (3.22) from the
following limit:

pas(E) = EolifEmEg/on(E) = (8/7)VE x 1o ) (41)

where the power ES/ % is chosen so as to pick up the leading
order behavior in the E expansion. This limit corresponds
to zooming to the edge of the spectral density py(E) at
E=0.° Since pas(E) is not normalizable, the essential
feature in (4.1) is its square root behavior with respect to the
energy. This simple double scaled model, sometimes called
the “Airy model,” belongs to a larger family characterized
by pas(E) o« E*='/2 for k > 1, obtained from double scaling
the critical matrix models studied in Sec. III B.

While for any matrix model there is a single associated
double scaled model, the inverse is not true. There are an
infinite number of matrix models that give rise to the same
double scaled model. This is particularly clear from (4.1),
as one can easily construct other matrix model spectral
densities po(E) which have the single square root leading
order behavior in the large E( limit. In short, there is no
universal way of reversing the double scaling limit. This
implies that in order to define the 7T deformation of a
double scaled model, using the definition for the matrix
model studied in Sec. III and given by (1.4) is not
particularly useful, as the result would be by construction
nonuniversal. Therefore, we must start again from the
quantum mechanical definition in Sec. II. In particular,
we can use the expression for the deformed spectral density
in (2.5) or (2.9), apply them to py(E), and study the
deformation from there.

This is the approach we take here. In doing so, there are
several issues and ambiguities we must deal with. While we
are not able to provide definite answers to all of the
problems, we discuss and provide partial answers that we
hope are valuable for future investigations on this subject.
We shall drop the notation py(E), understanding that if the
support of a spectral density is unbounded, it corresponds
to a double scaled model.

®The limit in (4.1) is a simple way of obtaining the spectral
density of the double scaled model. However, we should keep in
mind that the appropriate way of taking the double scaling limit
of a matrix model involves a precise procedure; see [23,24] for
reviews on the methods.

1. Negative deformation coupling

Let us start by considering the deformation of double
scaled models with a negative deformation coupling 4 < 0.
In this regime we do not have to deal with the complex-
ification of energy eigenvalues, which occurs at 1 > 4, =
1/8E, = 0 since E;, — co. From the quantum mechanical
analysis we can define the deformed double scaled model
by considering either a single (2.5) or both branches (2.9)
that solve the flow equation

Single branch: p;(E) = (1 —41E)py(E —2AE*) x 1) ).
Both branches: 5,(E) = ¢;|1 —4AE|py(E —2AE?)

X [1j0 +00) + L(—o0.1/24]]- (4.2)
While the spectral density p,(E) has the usual support on
the positive real line, p,(E) is instead nonzero in two
disjoint semi-infinite segments, which makes it harder to
interpret as a double scaled model.” Since p;(E) in (4.2) has
the standard support on the positive real line, we shall
explore the TT deformation defined from including the
single branch, using the description of the model as a
particular combination of multicritical models. We shall not
review the basics of this formalism but point the interested
reader to the reviews in [23,24] and the more recent
applications in [42-49].

The double scaled models can be studied in a perturba-
tive expansion for a small parameter £ that plays the same
role as the 1/N in the ordinary matrix model expansion.
The spectral density p(E) to all orders in # can be
computed as [23,36,50]

pl(E) = / Y xR Ml = 7202+ u(x).

[Se]

(4.3)

where Hyy(x) = Ewg(x). The central object in this
formalism is the potential u(x) that is determined from a
differential equation called the string equation, which for a
single-cut Hermitian matrix model is given by

R=) tuRfu] +x=0. (4.4)
k=1

Here R([u] is a kth order polynomial in u(x), and its
derivatives are defined by Gel’fand-Dikii but normalized so
that the coefficient u* is unity.8 The double scaled model is
essentially defined by the coefficients #; appearing in R
(4.4). Once these are fixed, we can solve the differential
equation R =0 for u(x), compute the spectrum of the
operator H[u] in (4.3), and obtain the full spectral density
p(E). This means that in order to define the 77 deformation
of the model we must find the following map:

"It might be possible to study 7,(E) from the more abstract
topological expansion of [25].
¥See [51] for more details and explicit expressions.
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TTdeformation: #;, — t;(4). (4.5)

To leading order in £, the string equation Ry =
limy,_,y R is related to py(E) through the following relation
derived in [49]:

v (4.6)

o dE
Ro= Y tuuk+x=2h1 | ————=py(E)+ x.

Using that the deformed spectral density is given in the first
line of (4.2) we get

o dE
=2h 1 —41E)py(E—21E? . (47
For any particular model we can solve the integral, expand
in a power series in u, and identify the deformed coef-

ficients #;(4). To do so, let us assume the undeformed
spectral density can be expanded in the following way:

1 [s]
po(E) = —> a, ET"'2 (4.8)
271?1; 4

for some coefficients a, > 0. Inserting this in (4.7) we can
exchange the integral with the series, since all the terms that
are being integrated are non-negative. Each of the integrals
can be solved to give a hypergeometric function, so that we
get the following expansion for Ry(4):

= 2(2¢g—1)!
= ————a 02F1
;4%1!( -1
" 14+2g 3+2¢
-2 2

Ro(4)

A+, 2u| +x. (4.9)

Since 4 < 0 and uy > 0 the hypergeometric functions in
each term are real. This is not the case if we were to naively
take A positive in this expression.

To identify the deformed coefficients 7, (1) we must write
Ro(4) as a power series expansion in u, as done in (4.6).
When doing so we encounter an issue, since the series
expansion of the hypergeometric function has a finite
radius of convergence, given by uy < 1/|24|. This is a
problem, as the coefficients 7,(4) obtained in this way are
not going to describe the physics for arbitrarily high
energies, but up to a maximum energy E,,.(4) given by

1

Epax(4) = m (4.10)

While for higher energies the leading string equation in
(4.9) is still well defined through analytic continuation, the
coefficients #;(4) are not. It is interesting that although for
A < 0 there is no issue with the complexification of the

spectrum (2.3), a very different phenomenon forces us to
introduce a truncation in the energy.

Keeping this in mind, we can compute #;(1) using the
standard expansion of the hypergeometric function around
the origin, together with the Cauchy product for infinite
series:

o (224)? @y T(k+1/2 - q)
q! ay T(k+3/2-2q)

() = 1,(0)(k+ 1/2)

q=0
(4.11)
where the undeformed coefficients are
2a;(2k—1)!
(0) = —F———>. 4.12
«(0) 4k (k= 1)1 (4.12)

This transformation defines the 77 deformation of the
double scaled model.

Airy model: Let us start by considering the simple Airy
model, in which the leading spectral density is given by
po(E) = VE/2zh. The deformed coefficients 7,(1) in
(4.11) are easily computed and given by

(=208 T(k+3/2)
t(4) = 2k!(k = 1)IT(7/2 - k)

(4.13)

While for 4 = 0 the only non-vanishing coefficient is #;,
when we turn on the deformation we have an infinite
number of higher order contributions. The leading string
equation is given by

D=3t + x
k=1

35
22

1

= 5”02F1 |: 2 22«1/!0:| + X = O (414)
JT gravity: A more interesting example is obtained from

the double scaled model that describes JT gravity. The

leading spectral density in this case is given by [27]

sinh(2rvE) _ 1 x@m2h

E)= - N 4.15
B =— % 2ah 2 (2g—1)! (4.15)

Identifying the coefficients a, we can compute #;(1) in
(4.11) and find it can be written in terms of a hyper-
geometric function

2k+1 2k—1 84
1-k———— 4.16
125 2ERE] e

When 4 = 0 the hypergeometric function goes to one and
we identify the prefactor as the undeformed coefficients of
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JT gravity [42,46]. For nonzero 1 and fixed k the hyper-
geometric function is a simple polynomial in A of
order (k —1).

2. Positive deformation coupling

Let us now consider the TT deformation for positive
coupling A, which turns out being quite different. Consider
the simplest family of double scaled models obtained from
multicritical potentials labeled by k € N,

po(E) = ES'2 x 1 o). (4.17)
Deforming this spectral density according to (2.5) or (2.9)
is not as straightforward as for A negative, as in this
case we have to deal with the complexification of the
spectrum. Moreover, double scaled models do not seem to
have the structure that allowed us in Sec. III to deal with
this issue in a natural and unique way through a phase
transition. Due to the lack of a better procedure, we shall
introduce a truncation in the spectrum of (4.17), given by
Emax () = 1/44. Doing so, the deformed spectral density
including either a single (2.5) or both branches (2.9) is
given by

2k+1
Singlebranch: p;(E) = (I;]:l)(a—E)[E(Za—E)]k‘l

AV E(2a—E) Xl[O,a]’

2k+1 ~
2kH)|a—E|[E(2a—E)}’< !

1/ E(ZQ—E) X 1[0,211]’

where we have defined a = 1/41. Both of these expres-
sions have been rescaled in order to yield a normalized
spectral density supported on a finite interval.

The expressions in (4.18) are quite interesting, as they
seem to correspond to the large N spectral densities of a
matrix model without double scaling. As we have pre-
viously explained, inverting the double scaling is a non-
universal procedure, meaning there are an infinite number
of ways of doing so. Still, the 77 deformation is selecting a
particular way of inverting the double scaling limit in
(4.17). This resonates with the effect of the deformation on
two-dimensional QFTs by an irrelevant operator, as in that
case the deformation also picks a particular trajectory in the
renormalization group flow, among many possibilities.

With this in mind, let us inspect more closely the two
expressions in (4.18), whose main difference is their
support. We first compare with the spectral density of a
general large N matrix model with polynomial potential,
given in (3.4). Note that only p;(E) in (4.18) has the
appropriate structure, and we can easily identify the
polynomials /,(E) and &,(E) that characterize the model.
Due to the indicator function, this is not the case for p,(E)

X
Bothbranches: p,(E (
X

(4.18)

in (4.18). The next natural step is to use the general
conditions in (3.6) to compute the potential V,(x) that
generates the spectral density p,;(E), similarly as done
previously in Sec. III. However, we stumble into a problem,
since the second relation in (3.6) can never be satisfied, i.e.,

Res [14(2)V/3 )
— 203y Resl(o - 20— ) Vo= 4]
—0#-2 (4.19)

Recall that this constraint comes from requiring the simple
condition that the resolvent R(z) in (3.1) behaves as R(z) =
1/z + - - - for large z. The vanishing of the residue in (4.19)
implies the leading behavior 1/z vanishes. Overall, this
means that even though p, (E) has the appropriate structure,
it does not arise from the large N limit of a matrix model
with a polynomial potential V,(x).

What about nonpolynomial potentials? It is still possible
the spectral densities in (4.18) correspond to a matrix model
with a more complicated potential. To determine this, we
can use the following expression that relates the potential
V(x) of a matrix model with its equilibrium density:

Vi(x) =2 ][ 2o
suppp

where the integral is computed in the principal value
regularization. This follows from the saddle point analysis
of the partition function [52] and only assumes the potential
V(x) is a well behaved function so that the matrix integral
converges (see Sec. III.2 in [52]). As an example, it is
straightforward to consider py(E) in the Gaussian example
(3.22), solve the integral, and find

dE, for x € suppp, (4.20)

, ()_16 fo\/E(Ey = E) o 8(2x—FEy)

Gaussian e E2 X — EO

(4.21)

which gives the known answer given in (3.22). Note that
even though the formula (4.20) only determines the
potential in the region x € suppp, in this case the expres-
sion is naturally extended to the whole real line x € R.
Let us now consider the 7T deformed spectral densities
in (4.18). For any value of k the integral can also be solved
explicitly, although the final answer is much more com-
plicated. As an example, let us consider p,(E) in (4.18)
with k = 1. The potential obtained from (4.20) is given by
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_ 1
VI (x) = =28 + (2 4 37)%2 - 5 (84 3m)

— 1+ 4[x(2 — x)]¥/?arccoth[y/2/x — 1]
+2In(1 —X), (4.22)
where X = x/a. This expression is clearly quite compli-
cated and not polynomial. Moreover, while for x € [0, d]
the potential is real (as required), it cannot be extended to
the whole real line x € R, as done for the simple Gaussian
case (4.21), since (4.22) becomes complex for x > a.
Overall, it is unclear whether the deformed spectral
densities in (4.18) can be made sense of as a random
matrix model.

B. Finite cutoff JT gravity

As mentioned in the Introduction, recent work has shown
interesting connections between the 77 deformation with
positive coupling A and finite cutoff holography [18]. For
two-dimensional JT gravity this was explored in [21],
where the finite cutoff disk partition function was com-
puted and matched with the 7T deformation of the
Schwarzian quantum mechanics [12]. Since higher top-
ology contributions in ordinary JT gravity are captured by a
double scaled Hermitian matrix model [27], is there a
deformed matrix model that captures higher topology
contributions of finite cutoff JT gravity?

To answer this, let us consider the matrix expectation
value of double trace operators in the large N limit, which
take a universal and particularly simple form. The con-
nected expectation value of two resolvent insertions,

1 1 1
Ro(Zl, Z2) E[\;I_I’)Iolo—<Ter Trzz —M> s (423)

N? -M

for a single-cut matrix model only depends on the end
points of the interval (a_, a, ) where the spectral density is
supported. It is given by [29]

_—1
2(z) — Zz>2
(a_+a,)(z+2)/2-(a_a; + z120)

\/(Zl —a_)(z - a+)\/(12 —a_)(z - a+) ’
(4.24)

Ry(z1.22) =

X |1+

which in the coincident limit z; = z, = z becomes

(a,—a )’

Roleed) =166 —a -

(4.25)

This provides a simple expression that we can use to
compare with finite cutoff JT gravity results.

To do so, we use the dictionary that allows us to translate
gravitational to matrix model observables [27]. The

gravitational partition function in JT gravity Z(f) with a
single asymptotic boundary of renormalized length f is
identified with the following operator insertion in the
matrix model

(Tre™ ™) < Z(p). (4.26)

Adding more boundaries to the gravitational path
integral corresponds to additional insertions of Tre M.
Using this, we have the following identification with
Ry(z1,2) in (4.23)

+o0
RO(ZI7Z2) <> \/O' dﬁldﬂzzcylinder<ﬁl7ﬂ2)eﬂlzl+ﬂzzz,
(4.27)

where Zyjinger (f1, f>) is the leading genus contribution to
the gravitational path integral with two asymptotic boun-
daries, i.e., cylinder topology. The integral transform in f;
is required in order to change the insertion of the expo-
nential matrices e M in (4.26) to resolvents (4.23).

To compute the right-hand side, we use some finite
cutoff results obtained in [21]. Using the decomposition of
multiboundary surfaces developed in [27], the cylinder
partition function is constructed from the trumpet partition
function Zmpe that contains a geodesic boundary of
length b and a boundary of finite length L’

Ji(ppyVb* - L?
Ztrumpet = e_L¢bL¢b%
= e Lt (Lep,/b) f: {L;fb] " "“rgf’d’b) . (4.28)
n=0 :

where ¢, is the value of the dilaton at the boundary and in
the second equality we have used the identity in Eq. (8.515)
of [53]. Instead of working with the parameters (¢, L) it is
convenient to use (a, #) with a = 1/44, where A would be
the 7T deformation parameter of the matrix model. We can
translate between these quantities using the identifications

given in [21] (¢, L) = \/a/2(1,2f), which ensures the
matching between the disk partition function and the TT
deformation of the Schwarzian quantum mechanics.

To compute the cylinder partition function we must take
two different values of f#, and 3, while a; = a, = a, since
from the boundary perspective the matrix model is
deformed by the single parameter A. The cylinder partition
function is then obtained by gluing two trumpets and
integrating over all possible values of b € R, using the
Weil-Petersson measure dbb [27]

This is obtained from Eq. (4.8) in [21] after including the
boundary counterterm e~“%» and rescaling by an overall factor so
that we recover the trumpet partition function of ordinary JT
gravity [27] in the appropriate limit. Below we comment on some
subtle aspects regarding the derivation of this result.
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+o0
chlinder(“? ﬂlvﬂZ) = / dbbztrumpet(b’ a, ﬂl)Ztrumpet(b’ a, ﬂ2)

0
_ L tpipa i (Pra)"*! (Pra)*! /+°° dy Tt V) Imi (V)
2 =0 n!2" m2™m 0 y% ymTH

0 2n+1 g2m+1 2(n+m+1)
= )y 2P (“> , (4.29)

o (n'm)>(1 4+ n+m) \2
where we have changed integration variables to » = 1/2y/a and used the series representation in (4.28) to solve the
integral. We should be careful with this expression, as we have carelessly exchanged the integral and infinite series. To
check that no issue arises from this technicality, we can take f#; = f#, where the series can be solved and written in terms of
modified Bessel functions

chlinder(a’ ﬂv ﬂ) = % e—2a/)’(aﬂ)2 [IO(aﬁ)z - Il (aﬁ)z] > 0. (430)
This agrees with the result obtained from directly solving the b integral in (4.29) after using Zmpe; as written in the first
expression in (4.28). For f; # f, we have directly solved the integral numerically, compared with the truncated series
(4.29), and found agreement to arbitrary precision. Overall, this means we can trust the series expansion in (4.29) for the
cylinder partition function.

We can now insert Zyjinger in (4.27) and compute the integral for each of the terms in the series. Exchanging the series
with the integral is fully justified in this case, as each term in the series is non-negative. In this way, we can write (4.27) as

Ro(z1.22) < Z

®. (204 1)1(2m + 1)!

2<a/2)2(n+m+ 1)

n,m=0

(nm)*(1 4+ m+ n) (a — z,)>"+)(a — z,)2m+D’

(4.31)

where Ry(z1, 2) is given in (4.24). The comparison of these quantities is simpler when z; = z, = z, where the series can be

solved and we find

(ay —a )

2 2

Ro(z,2) =

As a check, both sides match perfectly for the ordinary JT
gravity after taking a = 1/44 - oo and (a_,a, ) = (0, ).
However, for finite cutoff JT gravity (corresponding to a
finite), there are no values of a. we can take so that both
expressions agree. This shows the computation of the finite
cutoff observables using the decomposition of the surfaces
developed in [27] does not yield a result compatible with a
random matrix model. A different approach must instead be
developed for computing higher genus finite cutoff ob-
servables in JT gravity.

Some readers might think this conclusion is too abrupt.
For instance, one can consider the possibility that finite
cutoff JT gravity is described by a multicut instead of a
single-cut matrix model. However, this does not seem to be
possible, since it is well known large observables of
multicut matrix models do not have a well defined large
N limit [54]. For instance, while Ry(z;,z,) can still be
computed explicitly for a double-cut matrix model, the
answer depends on N nonanalytically; i.e., it depends on
whether N is even or odd [see Eq. (3.18) in [54] ].

16(z—a,2(z—a ) 422(2a - 2) {2 “(a- z)J '

(4.32)

One can also look more closely at the computation of the
trumpet partition function (4.28), obtained from solving the
Wheeler—de Witt equation [21]. In a similar way as there
are two branches E. (4, E) solving the TT flow equa-
tion (1.1), there are two independent solutions to the
Wheeler—de Witt equation. The trumpet partition function
in (4.28) is obtained by taking a particular combination
between these two solutions, corresponding to the follow-
ing two terms in the integral:

#; E
Ztrumpet = / ’ dECOZS([i/\/E»)
T

x [ VEEl _ o LbtBE](4.33)

which is equivalent to (4.28). While in [21] this particular
combination is well motivated, it seems reasonable to
explore other combinations, which essentially means
replacing the minus in the second term (4.33) by an
arbitrary parameter g. However, when doing so and using
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the result to compute the cylinder partition function as the
first line in (4.29), one finds Z;jinger 18 finite only when
g = —1. This supports the expression for the trumpet
partition function (4.28), as computed in [21].
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Note added.—Recently, Ref. [55] appeared. That work
studies the TT deformation of two-dimensional large N
Yang-Mills theory and also finds a phase transition
by accounting for the nonperturbative branch solving the
flow equation. Given the relation between large N gauge
theory and matrix models [22], perhaps a connection
can be made between the results in this work and [55]
(see also [56,57]).
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