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Abstract

Non-perturbative phenomena have received much attention in string theory in the
last years. M-Theory and F-Theory are the two main frameworks in which it is possible

to explore such phenomena. This thesis focuses on aspects of both theories.

In the first part of this thesis we study F-Theory compactifications with additional
abelian gauge symmetries. This was motivated by problems affecting usual F-Theory
compactifications and 4-dimensional Grand Unified Theories such as the presence of
proton decay operators, which could in principle be resolved with additional abelian
symmetries. In the F-Theory context, this translated into the novel analysis of elliptic
fibrations with additional (two, in particular) rational sections. A systematic study of
the possible degenerations of such elliptic fibrations through the application of Tate’s
algorithm was carried out and provided new insight into the phenomenology of F-Theory

models with additional U(1) factors.

The second part of this thesis consists of the study of some aspects of membranes
in M-Theory. D-branes in string theory are well understood thanks to a perturbative
definition via open strings. On the contrary, membranes and fivebranes in M-Theory

lack such a description and their effective theories are not as well understood.

In particular the theory on parallel M5-branes, the so-called (2,0) theory, was studied
in some detail. Following a number of results and dualities in lower dimensional field
theories obtained in the last years starting from the (2,0) theory, the latter was compact-
ified on a 2-dimensional sphere to obtain a 4-dimensional sigma model into the moduli
space of monopoles. A supergravity background was turned on in order to preserve su-
persymmetry and an intermediate reduction to 5-dimensional N = 2 Super-Yang-Mills

theory was used by considering the two-sphere as a circle fibration over an interval.

Insight into the theory on parallel M5-branes was also gained by relating it to the
better known dynamics on coincident M2-branes. This followed a recent proposal for
the realization of the (2,0) algebra on a non-abelian tensor multiplet through the use
of 3-algebras. In this thesis we generalize this proposal and find an algebraic structure
which describes two parallel M5-branes or two parallel M2-branes depending on whether

a particular abelian three-form is turned on.
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Chapter 1

Introduction

String theory has been the main attempt in the quantum gravity program to try to
provide a unified description that would include both gravity and the known gauge in-
teractions described by the Standard Model. One of the appeals to string theory was
supposed to be that, through M-Theory, it was to be uniquely defined and therefore
expected to provide a single consistent description of the physics beyond the Standard
Model. As it turned out, this is not the case, since even if the theory in 11 dimensions
is unique, the theories resulting from compactifications down to 4 dimensions are in-
credibly numerous, thus creating an important problem in the extension of our physical
knowledge beyond the Standard Model. On the opposite end of trying to correctly re-
duce the higher dimensional theory to 4 dimensions to reproduce the Standard Model,
lies a yet not complete understanding of M-Theory in its own right. Indeed, the fact
that M-Theory only allows a non-perturbative regime created an obstacle into obtaining
insight into the full dynamics of the theory. Non-perturbative phenomena have therefore
been a very important aspect of research in the string theory program in the last years.
This thesis tries to give a contribution to the two main lines of research just detailed,
that is, the phenomenological reduction to 4 dimensions and the better understanding of
non-perturbative phenomena of string theory.

Before 1994, five 10-dimensional string theories were known, obtained by quantizing
the superstring and applying different projections for the states. The insight provided
by Witten ([2]) was then to understand the strong coupling regime of Type ITA string
theory as an 11-dimensional theory, then called M-Theory, whose circle reduction would

reproduce the perturbative regime of Type IIA. In particular the radius of the circle R

12



Chapter 1. Introduction 13

was related to the string coupling of Type IIA via
R = gsls, (1.0.1)

where [ is the string length. The existence of an 11-dimensional supergravity theory
which could serve as the low energy theory of M-Theory seemed to confirm such pro-
posal, thanks also to the fact that the circle reduction of 11-dimensional supergravity
correctly reproduces Type ITA supergravity. Nevertheless, the absence of a coupling con-
stant presented a major difficulty for the understanding the dynamics of the theory itself.
Such fact was actually signaling the absence of strings themselves as fundamental objects,
and it was soon understood that they were to be replaced by membranes and fivebranes,
the respectively two and five (spatial) dimensional BPS solutions of 11-dimensional su-
pergravity.

Even though the low energy theories describing parallel D-branes can now be under-
stood in detail, and can actually all be derived from 10-dimensional Super-Yang-Mills
theory, a simple generalization did not appear manifest for the case of membranes and
fivebranes. This was of course due to the absence of open strings themselves, which
allowed in the case of D-branes a perturbative definition via string scatterings. This
left an important theoretical gap in the understanding of the full structure of M-Theory
and how it encodes the full set of non-perturbative phenomena of 10-dimensional string
theories. Much work has been dedicated to gaining more insight into the description of
parallel branes in M-Theory, and significant progress has started to be achieved in the
last few years.

The first breakthrough was realized by the BLG model (]3,4]) which correctly re-
produced the dynamics of two coincident membranes, or M2-branes. Such a theory was
supposed to satisfy a number of requirements, such as preserving N’ = 8 supersymmetry
(M2-branes being half BPS objects of 11-dimensional supergravity), being a conformal
theory (since there is no characteristic length in M-Theory), correctly reproducing the
particular scaling of the entropy with the number N of parallel membranes (which was
known to be proportional to N3/ 2) and still allowing a non-trivial interaction between the
degrees of freedom of the theory. The BLG model successfully satisfied all such require-
ments. Surprisingly, it did so through the introduction of a novel gauge symmetry, which
relies on 3-algebras rather than conventional Lie algebras. Such algebraic structures are
characterised by a totally antisymmetric triple bracket which acts as a derivation on a
vector space, thus generalizing the conventional Lie bracket. Successively, a correct de-
scription was found for an arbitrary number of parallel M2-branes through the ABJM
model ([5]), albeit in an orbifold background C*/Z;.
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The low energy theory describing parallel fivebranes, or M5-branes, has instead pre-
sented more difficulties and a satisfactory description is still lacking. Nevertheless, the
(2,0) theory (the theory on parallel M5-branes), has produced a number of results in lower
dimensional field theories which are independent of the precise formulation of the theory.
In particular, different compactifications of the (2,0) theory have given rise to surprising
dualities between theories in different dimensions, therefore providing insight into such
field theories themselves. For what concerns a formulation of the non-abelian (2,0) theory
itself, progress has been made recently through the realization of a set of equations of
motion for a non-abelian tensor multiplet which is invariant under (2,0) supersymmetry
in 6 dimensions ([6]). As in the case of the BLG model, the gauge symmetry is based on a
3-algebra rather than usual Lie algebras and such proposal aims to correctly describe the
dynamics of two M5-branes. Among the difficulties in providing a Lagrangian description
lies nevertheless the presence of a self-dual three-form field strength, and it is believed
that such description is not actually possible.

Therefore, in the context of M-Theory, one of the main directions of research has
been to gain a full understanding of the dynamics of coincident branes and to shed light
on non-perturbative phenomena arising in string theory.

F-Theory (|7H9]) is a second framework in which non-perturbative phenomena can be
taken into account and which has served a great purpose for the geometric engineering of
4-dimensional theories obtained by compactifications. In 1996 Vafa ([7]) interpreted for
the first time the SL(2,7Z) invariance of Type IIB string theory as the modular group of
an auxiliary torus assigned to every point of the internal space-time. In particular, the
axiodilaton field 7 of Type IIB string theory was interpreted as the complex structure
of such torus, and compactifications in the presence of 7-branes were studied. At the
locus where the 7-branes are located, the axiodilaton is found to diverge and it therefore
followed that the torus described by such complex structure is not well defined, and is
actually singular. The picture which arises this way is that of a fibration of space-time
by complex tori, an elliptic fibration, which becomes singular at the location of the 7-
branes. This is not actually describing a physical theory in 12 dimensions, for which there
would be no low energy supergravity approximation, but rather a geometric framework
for taking into account the (non) perturbative effects arising in compactifications of type
IIB string theory in the presence of 7-branes. Note that F-Theory also allows definitions
through dualities with M-Theory or with Eg x Eg Heterotic string theory.

Therefore the study of the properties of the resulting compactification is translated
into the study of the geometric properties of the elliptic fibration, which represents the

internal space of the compactification and the two fictitious dimensions of the elliptic
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fiber. In particular, the gauge group, the matter content and the Yukawa couplings of
the 4-dimensional ' = 1 theory, which results from compactifying F-Theory on a Calabi
Yau four-fold, are nicely encoded in the singularity structure of the elliptic fibration in
codimension one, two and three respectively. From a phenomenological perspective, F-
Theory allows to geometrically engineer (that is, to model a theory based on the geometric
properties of the compactification manifold) a whole class of 4-dimensional supersymmet-
ric theories. Such a contribution fits into the study of Grand Unified Theories (GUTs),
a program which, independently from string theory, had tried to unify the known gauge
interactions of the Standard Model into a single gauge group of a supersymmtric theory.
Indeed, contrary to what happens in the Standard Model, in N/ = 1 supersymmetric the-
ories in 4 dimensions, such as the Minimal Supersymmetric Standard Model, the running
of the coupling constants under the RG flow results in the intersection in a single point
at an energy around 10'® GeV. This can be interpreted as the existence of a single gauge
group at higher energies which then breaks at 10'® GeV to the Standard Model gauge
group SU(3) x SU(2) x U(1). Therefore supersymmetric theories which could embed
the Standard Model gauge group as a maximal subgroup of a single gauge group started
to be proposed as models for the unifications of the known gauge interactions and are
known as GUTs.

Even though supersymmetric theories could solve a number of problems afflicting
the Standard Model and could also provide a surprising way in which the known gauge
interactions could be united, they were also afflicted by their own problems. It was
realized that unwanted operators could result by the embedding of the Standard Model
gauge group in a single group, which could not be reconciled in any way with empirical
observations. The main such case is represented by the proton decay operator which
arises in Grand Unified Theories and which predicts a non-zero half life for the proton.
This is in stark contrast with experiments which have ruled out such eventuality by
asserting that the half life of the proton cannot be smaller than the age of the universe.

Surprisingly F-Theory provides a way to obviate such a problem, again through geo-
metric properties of the compactification manifolds. Indeed, it can be shown that if the
elliptic fibrations admits extra rational sections (that is, extra divisors which are copies of
the base of the fibration), additional abelian gauge factors are introduced in the resulting
theory in 4 dimensions. Such abelian factors are fundamental in getting rid of proton
decay operators, as they can prevent them from being gauge invariant and therefore not
physically realized. Therefore F-Theory can be shown to be a successful framework in
which unwanted phenomena afflicting GUTs can be taken into account.

In this thesis the lines of research just detailed are expanded in more detail and
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tentative contributions to resolving such questions are presented as follows. In Chapter
an extended summary of F-Theory notions is presented, to serve as an introduction to
the results of (|10]). Chapter |3|is then largely based on the work carried out in ([10]),
where the singularity structure of a class of elliptic fibration with two additional rational
sections is studied through the so-called Tate’s algorithm. In the second part of this
thesis, the focus is switched to the study of some aspects of M-Theory. In Chapter [4]
we review known facts about M-Theory and its fundamental objects, membranes and
fivebranes. Chapter [5| presents the original results of (|11]), where a novel representation
of the (2,0) algebra in 6 dimensions was realized on a non-abelian tensor multiplet and was
found to be related to the BLG model describing two M2-branes by a natural dimensional
reduction. Finally, Chapter [6] presents some results arising from an early collaboration
toward the work realized in (|12]) and studies the reduction of the (2,0) theory describing
parallel M5-branes on a two-sphere, resulting in a sigma model into the moduli space of

centered SU(2) monopoles.



Chapter 2

Aspects of F-Theory

F-Theory is a geometric framework which takes into account the backreaction of 7-branes
on space-time in type IIB string theory. This will be our starting point in trying to
understand how F-Theory takes into account non-perturbative effects which need to be
considered in type IIB compactifications. Indeed, in ordinary compactifications of type
II string theories in the presence of branes, the backreaction of the latter on spacetime is
usually neglected. This is legitimate as long as the codimension of the brane is different
from two. One of the main reasons why F-Theory is necessary as a framework for studying
configurations of 7-branes can be traced to the different dependence of solutions to the
sourcing Poisson equation for 10-dimensional fields. In the presence of a brane the fields

are sourced by the backreaction of the brane on spacetime. In particular we have

AD(r) ~§(r) — (r) ~

~ -branes
—p p

AD(r) ~ §(r) — ®(r) ~log(r), T-branes, (2.0.1)

where @ is a generic space-time field and r is the distance from the brane. We see
that branes are sources for space-time fields, and solutions to the corresponding Poisson
equations scale accordingly to the type of brane we are looking at. Such a backreaction of
the branes on the space-time fields can be neglected as long as we are not considering 7-
branes. In that case, the approximation is not valid since the fields scale as ®(r) ~ log(r),
which does not become negligible as we move away from the brane.

Therefore we see that we have a fundamental problem in considering type IIB com-
pactifications in the presence of 7-branes, in as much as the perturbative regime is not
valid and we do not know how to gain full insight into the 4-dimensional theories arising
from such compactifications, which are of phenomenological interest. We gave a heuristic

explanation as to why a framework for taking into account non-perturbative effects of

17
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type IIB string theory is necessary.

In this chapter we provide a background understanding of F-Theory, including a
presentation of the mathematics behind it. We review concepts in the geometry of elliptic
fibrations and their singularities, in order to understand how F-Theory takes into account
non-perturbative effects of Type IIB string theory. Finally, we address the problem of
developing additional abelian factors in Grand Unified Theories through F-Theoretic

methods. This will turn out to be of relevance for phenomenological reasons.

2.1 SL(2,Z) and Type IIB String Theory

Recall the type IIB field content. We have the metric g,,, the Kalb-Ramond 2-form B,,,,
the dilaton ¢ and potentials C), for p even, denoting coupling to odd dimensional branes.

If we define the axiodilaton as
7= Co+ie?, (2.1.1)

the action can be written in the Einstein frame, where G, = e=%/2g,,, as ([13])

1 QurorT |G32 |F5?
Sip == [ dzy/—g|R- -~ - -
B = 92 A ( 2Im(7)?  2Im(r) 4
1 Cy NG3 N ég
2.1.2
* 8ik? / Im(7) ( )
where
H3 =dB,, Fpi1 =dC,, (2.1.3)
and the following combinations were also defined
F3=F3—Co A Hs
~ 1 1
Fy :F5—§C2/\H3+§F2/\F3
Gg :Fg—THg‘ (214)
We can then define SL(2,7Z) transformations represented by matrices
a b
M = , det(M)=1, {a,b,c,d}eZ. (2.1.5)
c d
The action on the axiodilaton is
oy OTHD (2.1.6)

cr+d’
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while the doublet (Cy = C),,,, Byy) transforms as

C a b Cu
N S (2.1.7)

B, c d B,,
The other fields are invariant under such transformations. The action is then
invariant under the group SL(2,7Z), and is actually invariant under the larger group
SL(2,R), but such a symmetry breaks at the quantum level to SL(2,Z). Let us look at
the generators of the group SL(2,Z). They are

11 0 1
SL(2,Z) = <T - , S = > (2.1.8)
01 -1 0
It will be relevant to look at how such generators act on the axiodilaton, which can be
re-written in terms of the string coupling as

gs = €2, T:C'o—i-i. (2.1.9)

Js
T transformations do not affect the string couplings and only operate a shift in Cy. On
the other hand, we see that under S transformations the axiodilaton transforms as

1
T —— (2.1.10)

-
The effect of such a transformation on the string coupling can be analysed in a simple
background with Cy = 0 to see that
1
gs = —, (2.1.11)

gs
therefore giving rise to a weak-strong duality. We will now see how these dualities come
into play in the presence of 7-branes.
Consider a compactification set up in type IIB string theory where we split space-
time into R'3 x Mg, where Mg is the internal manifold. Moreover, let a 7-brane wrap

RY3 x My, with My a four-cycle inside Mg, that is

Type IIB : RY x Mg
R M,y C M.

7-brane : RY3 x My

Let the complex coordinate z parametrize the transverse direction to the 7-brane in the
ambient space-time, and let the 7-brane be located at zy. As explained, the brane is a
source for the space-time fields, and in particular ([14]), Cs receives a correction through

the following Poisson equation

d+ Fy ~6%(z — z), Fy=dCxs. (2.1.12)
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Let us integrate this equation over the whole complex plane to find
/ dFy =1 Fy = xFy. (2.1.13)
C

We can then apply Stokes theorem to turn the left-hand side into a contour integral

about the position of the 7-brane

7{ dCp = 1. (2.1.14)
S’l
We can find a solution to this equation given by
(2) + L ( )+ (2.1.15)
7(2) = 10 + = log(z — e 1.
0 2ri g 0 )

where the ellipses denotes terms regular in z which do not contribute to the contour
integral. But this raises a problem, as in encircling the 7-brane in the transverse direction,

we see that 7 changes as
T—=T71+1 (2.1.16)

The presence of such a monodromy would turn 7 into a multivalued function, therefore
making it quite hard to interpet 7 as a space-time field. But as we have seen already,
the situation is saved by the SL(2,7Z) invariance of type IIB, so that the value of the
axiodilaton after encircling a 7-brane is the same up to a SL(2,Z) transformation.

We have seen how the SL(2,7Z) invariance of type IIB string theory plays an important
role in the presence of 7-branes, guaranteeing that we can make sense of the monodromy
arising from the backreaction of the brane on space-time. We will now see how the

SL(2,7) group arises in the description of complex tori.
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Figure 2.1: The fundamental domain associated to the torus with complex structure 7.

2.2 SL(2,Z) and F-Theory

The group SL(2,7Z) is better known in the mathematics literature for its relation to
complex tori in the definition of the modular parameter 7. We can always find for a
differentiable torus, that is a Riemann surface of genus one, a complex structure. To get
a more concrete insight into this statement, we can view a torus as the following quotient

of the complex plane
T? = C/A, (2.2.1)

where A is an integer lattice, that is A ~ Z&® Z = {aZ + bZ} C C. We can always rescale
such a lattice so that the first defining vector can be taken to be the unit vector and the
second defining vector can be taken to be 7, see Figure [2.1

It is not hard to see that sending
T: 71T—71+1, (2.2.2)

leaves the lattice unchanged. In a similar fashion, it can be shown that the transforma-

tions

1
R o — (2.2.3)
T

just flip the sides of the lattice and therefore do not affect the lattice describing the torus.
The modular group is the group generated by such transformations, which are seen to

obey

S?=1, (ST)®=1. (2.2.4)
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=

Figure 2.2: The elliptic fibration becomes singular at the locus z = 2y, where the 7-brane

is located.

and which can be represented by matrices

=" ") de) =1, fabed ez (2.2.5)
c d
Therefore we have a one-to-one correspondence between equivalent tori and conjugacy
classes of complex structures modulo the action of the modular group. This defines the
moduli space of complex tori as C/SL(2,Z), which is the usual fundamental region of
the upper complex plane.

What we are interested in here, though, is the fact that each complex number 7
defines the complex structure of a torus up to the action of the SL(2,Z) group. This
is exactly the situation that we found in analysing the axiodilaton 7 in type IIB string
theory in the presence of 7-branes. F-theory will take the hint from this appearance
of the modular group as both a symmetry group of type IIB string theory, and as the
mapping class group of complex tori, to give a new interpretation of the axiodilaton field.

Recall the situation described so far. We noted that type IIB string theory possesses
an SL(2,Z) invariance, and we also noted that the axiodilaton undergoes such transfor-
mations in the presence of 7-branes. Or equivalently, 7-branes generates monodromies
for 7 which can be reabsorbed by an SL(2,Z) transformation. On the other hand we
saw that the complex number 7 describes one and only one torus up to the action of the
SL(2,7) group, which is a symmetry of type IIB string theory. F-Theory (|7-9]) takes
this hint seriously and interprets the axiodilaton as the complex structure of a torus.
As the axiodilaton varies over space-time, so does the complex struture of the torus.

Effectively, we are associating to each point of space-time a torus, that is, we are fibering
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space-time with an elliptic fibration. At the location of the 7-brane something particular

happens. Recall that ((2.1.15])

Ar~ 2 log(z — z). (2.2.6)

T 2mi

We see that at the location zg of the brane, the complex structure of the torus diverges,
or equivalently, the torus becomes singular, see Figure In the next section we will
go in detail into the mathematics of elliptic fibrations and the possible singularities that
may occurr.

Such an elliptic fibration is not to be interpreted as a description of a 12-dimensional
theory, as there is no supergravity which could describe its low energy dynamics. It
should instead be understood as a bookkeeping device to study type IIB string theory
in its different regimes of coupling. Notice that, even though the complex structure
diverges at the location of the brane, the string coupling does not vanish there (|14]).
The ambiguity is due to the casting of the type IIB action in the Einstein frame, but as
usual the coupling of the brane theory is proportional to the volume of the cycle wrapped

by the brane.

2.3 Elliptic Curves

As we saw in the previous section, in order to understand 7-branes configurations, F-
Theory understands the axiodilaton as the varying complex structure of a torus associated
to each point of the internal space. This gives rise to an elliptic fibration, and in this
section we are going in some details into the mathematics describing such constructions.

An elliptic fibration is a fibration such that the generic fiber is an elliptic curve
(nevertheless we will be interested in the non-generic fiber, that is, in singular fibers).

We write this as

E <Y E = Elliptic curve
l Y = Total Space
B B = Base of the Fibration (2.3.1)

where E, the fiber, is an elliptic curve, Y is the total space of the fibration, which projects
onto the base B. First it will be necessary to spend some time describing elliptic curves,
their relations to complex tori and their expressions as subsets of projective spaces.
With this background we will then be able to approach elliptic fibrations and study the

conditions for which these are well defined, and their possible degenerations.
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An elliptic curve is an algebraic curve of genus one with a specified point O which
is non-singular and which is projective, that is, which can be described as a subset of
a projective space ([15]). Since we will be interested in elliptic curves over the complex
numbers, we will also make clear the relation between complex tori, C/A, and elliptic
curves over C, E/C. An elliptic curve E/C will turn out to have a standard form, called
the Weierstrass form, in which it is always possible to be cast. To this end recall the

definition of complex projective space P™ as the quotient
P" = C"/C*, (2.3.2)
where the action of C* defines the equivalence relation we mod out by as
(1, e sxn) ~ Y1y Yn) < (21, Tn) = ANY1, -+, Yn) A# 0. (2.3.3)
The Weierstrass form allows to cast every elliptic curve into the form
E: v =23+ fa+g, (2.3.4)

where we work in the affine patch of P2 = [z : y : 2] given by z = 1.

In the next section we will find two ways to bring an elliptic curve into the Weierstrass
form. Through one of these we will also show the equivalence of complex tori and
elliptic curves over the complex numbers. Through the second we will introduce algebro-

geometric methods that will be useful in the description of elliptic fibrations.

2.4 Weierstrass Form for Elliptic Curves

In order to cast an elliptic curve into Weierstrass form we will actually show the
equivalence between complex tori and elliptic curves over the complex numbers, so that
we will effectively get a twofold result. So let us start from a complex torus given by
T? = C/A; we would like to find a function to (an affine patch of) projective space which

is well defined and bijective
®: C/A +— E/C. (2.4.1)

Consider the first direction: we need to find a function which is well defined on the lattice
A, that is, a doubly periodic function. The function we will use goes back to Weierstrass

and can be written in the form

p(z) = ; + > <(z_1w)2 — ;2) : (2.4.2)

weN,w#0
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Through an expansion in Laurent series of p(z) and its derivative p/(z) it can be proved

that the following relation holds

p'(2)? = p(2)° + folz) + g, (2.4.3)

where we omit the expansion of f and ¢ in terms of Eisenstein series. Therefore we can

define the following map
d: C/A— P2
z— [p(2), ¢'(2),1] (2.4.4)

which is bijective and well defined between the complex torus and the codimension one

subset of P?[x : y : 2] defined by the relation
2 _ 3
y =2+ fr+g. (2.4.5)

Notice that the map ® is well defined as long as the right hand side of ([2.4.3) has different

roots, that is the discriminant of the equation

P4 frtg=0 (2.4.6)
is non-vanishing. This turns out to be a very important quantity in its own right

A =4f3 4+ 27¢% (2.4.7)

The subset identified by ® to be in bijective correspondence with a complex torus is
what we call an elliptic curve. This is indeed an algebraic projective curve of genus one
(since the torus is a Riemann surface of genus one), whose smoothness turns out to be
guaranteed by the non-vanishing of the discriminant, and which has a specified point.
This is the so-called point at infinity and is given by [1:1: 0].

Note that this is the case since the minimal way to homogenize the Weierstrass form
is by understanding it as a subset of the weighted projective space P?[x : y : 2] with
weights (2,3,1) (which we write as P?*1). Recall that weighted projective space P" with
weights (w1, ..., wy,) is the usual projective space where we modify the C* action to get

the equivalence relation between two points of C” given by

(1, sn) ~ Y1y Yn) € (21, -, Tn) = (A Y1, .., A Yn) A#0.  (24.8)

Then it is easily seen that the Weierstrass form can be homogenized to y? = z3+ fazt+¢2°
and the point at infinity is indeed a point on the elliptic curve. We have found a bijection

between a complex torus and what we defined as an elliptic curve over the complex



Chapter 2. Aspects of F-Theory 26

—
o =
—

—

Figure 2.3: A torus as a double sheeted cover of the Riemann sphere }P’}C branched over

four points.

numbers. We saw that in so doing we managed to cast the elliptic curve in the so-called
Weierstrass form. This allows another intuition into the equivalence that we showed.

Indeed we see that following from the rearranging
y=+vVr3+ fr+g (2.4.9)

we can have a hint of the topology of an elliptic curve over the complex numbers by noting
that the double-sheeted cover of has branch cuts joining (x1,z2) and (z3,Z = 00),
where {x1,x9,23} are the roots of the right-hand side of . Then we can glue two
copies of the Riemann sphere (that is of ]P’é) along the fattened branch cuts, that is we
glue two spheres with two disks cut out along the cuts. This gives a torus as in Figure
23

As anticipated we are now going to provide a second way to derive the Weierstrsass
form for an elliptic curve using the Riemann-Roch theorem for algebraic curves of genus
one. This will turn out to be useful both to introduce algebro-geometric methods which
play a role in elliptic fibrations and for generalizations to elliptic curves with multiple
points specified that will be studied in Chapter [3]

Let C be an algebraic curve and let £ be a line bundle over it. The Riemann-Roch
theorem relates the dimension of the space of global sections of the line bundle £ to the
degree of the line bundle £ and the genus of the algebraic curve C. In particular recall

that for a divisor

D=> npP (2.4.10)

on an algebraic curve C, we define the associated line bundle O(D) to be the vector space

of meromorphic functions with poles at worst of order np at P. Then the Riemann-Roch
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theorem states that
dim O(D) = deg(D) +1—g, (2.4.11)
where ¢ is the genus of the curve C and
deg(D jgjqu (2.4.12)
We see that in particular for an elliptic curve we find
dim O(D) = deg(D). (2.4.13)

Now let us consider the line bundle O(P), where P is the specified point on the elliptic
curve. As we saw, this is the space of meromorphic functions having at worst a simple
pole at P. By Riemann-Roch such a space is 1-dimensional and is spanned by a single
section, that we call z. Similarly O(2P) is seen to be generated by 2% and a new section
which we call x. Following this reasoning we see that

gen by

O(3P) "= {23, 22,9}

gen by

O(4P) "= {24 222, 2y, 4%}

gen by

O(5P) *==" {2°, 23, 2%y, 22, vy}
O(6P) ¥ py {28, 242, 22y, 222? %, 23, 2y}, (2.4.14)

but we immediately see that O(6P) has naively seven generators, while the Riemann-
Roch theorem states that it should be 6-dimensional. Therefore there must be a relation

between such generators
a1y? + asx® + a3z® + anztz + a523y + ag2x® + zzy = 0. (2.4.15)

If the characteristic of the field we are working over is different from 2 or 3, we can then
complete the square in y and the cube in x to turn the last equation into the Weierstrass

form
y? = a3 + fazt + g2b. (2.4.16)

We started from a smooth algebraic curve C of genus one with a specified point, that is
an elliptic curve, and applied the Riemann-Roch theorem on the line bundle O(P) over

C. This allowed to find three global sections {z,z,y} which can be considered as maps
{z,2,y} : C — P? (2.4.17)

that is they provide an embedding of the elliptic curve into projective space. The projec-
tive equation describing the elliptic curve is found to be the Weierstrass form ([2.4.16)).
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Figure 2.4: A representation of the group law & defined on the set of rational points
E(K) of an elliptic curve. If P and @ are rational points it follows by solving polynomial

equations that P & () is also rational.

2.5 Mordell-Weil Group

When considering elliptic curves over the complex numbers we saw that we could think
of them as Riemann surfaces of genus one. Therefore, since we have an obvious group
structure on the torus which descends from addition on C under the quotient by A,
we might wonder what is the corresponding group structure on the elliptic curve. As it
turns out, elliptic curves admit a group structure not only when defined over the complex
numbers, but over a generic field K. Let us now discuss such group structure in more
detail.

Let E(K) be the set of K-rational points of the elliptic curve E, that is the set of
points in P%- which belong to E. Then the Mordell-Weill theorem states that E(K) is a
group, and in particular it is a finitely generated abelian group (|15]). Every such group

is isomorphic to
E(K) ~ Z% & Gp, (2.5.1)

where Gr is the torsion part (of finite order). We call E(K') the Mordell-Weil group of E,
so that k, the dimension of the non-torsion part of E(K), is the rank of the t Mordell-Weil
group of the elliptic curve E. The statement that E(K) is a group means that there exist
a binary operation @ on the set E(K) of rational points of an elliptic curve such that the
identity element of the group is the specified point Z on the elliptic curve (which can be
taken to be the point at infinity). Then we have that

() PEQ=Q & P for all P,Q € E(K);
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(it)) P®Z = P for all P € E(K);
(i) (PO Q)®R=Po(QR) for all P,Q, R € E(K);
(iv) If P € E(K) then there exists @ € E(K) such that P® Q = I.

Even though from an F-Theory perspective we will be interested mainly in the rank
of the Mordell-Weil group, it turns out that there is a graphic description of the group
operation @ on E. For two generic rational points P and @ in E(K) we let R be the
third intersection of the line between P and () with the elliptic curve. Then we let P& Q
be equal to —R, i.e. the intersection of the line between the point at infinity and R, as
depicted in Figure [2.4] It is a property of polynomial equations that P @ @ is also a
rational point of E (the group law is not well defined if P @ @ is taken to be R). Notice
that the group structure on the elliptic curve is well defined because we have a specified

point to begin with, the identity of the group structure.

2.6 Elliptic Fibrations

Recall that we defined an elliptic fibration as

E <Y E = Elliptic curve
l Y = Total Space
B B = Base of the Fibration (2.6.1)

Such a variety has as fiber over each point of the base an elliptic curve described by a
Weierstrass form embedded in projective space P23, This is called an Eg fibration for
reasons that will become clear later; there also exist E; and Eg fibrations represented by
quartic equations in P2 and cubic equations in P? respectively ( in order to satisfy the
Calabi-Yau condition the homogeneous degree of the equation describing a projective
variety should equal the sum of the weights of the ambient projective space). Such
fibrations will have Mordell-Weil groups of different rank.

Now that we have a clear description of elliptic curves in terms of the Weierstrass
form we can start to understand elliptic fibrations. As to each point of the base of the
fibration B we want to associate an elliptic curve, we let the projective coordinates of
the Weierstrass form and the coefficients f, g depend on the base. Since the base could
be topologically non-trivial, rather than function, we should take f, g to be sections of
line bundles over the base and we define an ambient five-fold which is a projective bundle

over the base B

P(O,K5%, K5%). (2.6.2)
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The notation means that at each point of the base, the projective space associated to it
has, as coordinates, sections of the bundle of constant functions over the base, O, and

sections of powers of the canonical bundle of the base, p. Then if
re€ H(B,K?) yeHB,K* z¢eH' (B,0), (2.6.3)
the Weierstrass form
y? =a2° + fozt + g2f (2.6.4)

describes an elliptic fibration over the base B. In order for the Weierstrass equation to

have a homogeneous divisor class we require
feHYB,KY  ge HYB,K". (2.6.5)
We can associate a divisor class to the coordinate hyperplanes
[z]=a+2a [y=a+3ca []=« (2.6.6)
where « is the hyperplane class of P? and
7:Y =B ¢ =7"(ci(B)). (2.6.7)

The assignments of the divisor classes follow from the the coordinates being sections of
respective powers of the canonical bundle of the base (2.6.3)). The Weierstrass equation

is seen to be a section of Op2(3) and its divisor class is
[Y] = 3a+ 6¢;. (2.6.8)

In order to preserve N/ = 1 supersymmetry in 4 dimensions, we require the elliptic
fibration to be Calabi-Yau (this will become clear when discussing the F-Theory/M-
Theory duality). A variety is Calabi-Yau if its canonical bundle is trivial, if it is Ricci-
flat or, by the theorem proved by Yau, if its first Chern class vanishes. In order to
determine the Chern class of our elliptically fibered variety, we are going to make use of
the adjunction formula ([16]). Given an algebraic variety Y which is a subset of projective

space P we can write down a short exact sequence of bundles, given by
0— Ty — Tenly — Npnjy — 0, (2.6.9)

where 7.y is the tangent bundle of a variety and

Npnjy = Tenly [ Ty (2.6.10)
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is the normal bundle to Y in P". Note that by definition of NVpn /v the sequence (2.6.9) is
exact. Given an exact sequence we can take the determinant line bundles of the bundles

in the sequence to obtain another exact sequence
0 — det Ty — det Tpn|y — det Npn/y — 0. (2.6.11)
It follows from such an exact sequence that
det Tpn |y = det Ty @ det Npn /y-. (2.6.12)

By definition the determinant line bundle of the tangent bundle to a variety is the canon-
ical bundle to such variety K, while since we are considering hypersurfaces in P, the

normal bundle Npn/y is a line bundle and
det Npn /y = Npn )y (2.6.13)
Therefore we derive the adjunction formula
Ky = (Kpn ®N*n/y)]y. (2.6.14)
Equivalently in terms of divisor classes, this can be written as
[Ky] = ([Kpn] + Y]]y (2.6.15)

From the properties of Chern classes, it follows from the adjunction formula that the
Chern class of Y can be expressed in terms of the ambient space X as

_dX) ‘
1+ Y]y

e(Y) (2.6.16)

It can be checked that in the case of the Weierstrass fibration ¢(X) = 1+ 3a + 6¢1 + . ..
and using the class of Y ([2.6.8]) we see that ¢;(Y) indeed vanishes

_ 1+3a+6c+...

¥ |
oY) 1+3a+6e v

=14c(Y)+... (2.6.17)
The elliptic fibration becomes singular when the discriminant
A =4f3 4274 (2.6.18)

vanishes, which happens over a divisor in the base. Indeed we saw that an elliptic curve
is defined only when the discriminant is non-vanishing. In the case of elliptic fibrations,
the singularity can occur in the fiber (meaning only the tangent space to the fiber is
degenerate) or in the whole variety. We will spend some time describing singularities of

elliptic fibrations in the next section.
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2.7 Singularities of Elliptic Fibrations

We saw that elliptic fibrations develop singularities whenever the discriminant A vanishes.
From now on we will take the base of our fibration to be a Kahler three-fold by having in
mind a reduction to 4 dimensions in the F-Theory set up. Therefore the fibration becomes
singular over a codimension one locus in the base, that is over a complex surface. The
correct physical interpretation is that a stack of 7-branes wrap such a divisor in the base:
recall indeed that the complex structure-axiodilaton 7 diverges at the location of the
branes, and therefore the fibration degenerates.

Kodaira ([17]) classified all the possible singularities that an elliptic fibration over a
complex 1-dimensional base can develop, and such a classification mostly holds for higher
dimensional bases up to additional monodromies that we will discuss. In order to discuss
the classification of singular elliptic fibrations, we will need to introduce some concepts
in algebraic geometry. In particular, singular elliptic fibrations can be resolved, that is,
a birational map can be found between them and a non-singular variety.

The main such procedure is called blowing up. Let us discuss the simple example
of blowing up affine space A™ at a point to understand the main characteristics of this

transform. Blowing up A" at the origin means considering the variety given by

{(@1, - zn), (Y1, - Yn)| iy = Ty} C A™ x P71 (2.7.1)

Then we have a natural projection to the original variety given by
7 A" x PP A (2.7.2)

which is birational. In particular we see that such a map is not well defined at the point

where we blew up since
7 10) ~ P, (2.7.3)

that is we get the whole space of lines through the origin in the affine space A"™. We call
7~ 1(A™) the total transform of our affine space, while we call the closure of 7=1(A"/{0})
the proper transform. The exceptional locus 771(0) is called the exceptional divisor. We
can see why it can be a sensible thing to blow up a singular variety. Indeed, if a variety
is singular at a point, the tangent space is degenerate at such point, but this does not
have to be the case for the blown up variety, since the blown up point has been replaced
by the exceptional divisor.

Let us look at the easiest hypersurface singularity, whose desingularization will be

the template for more complex singularities. Let the A; singularity, the so-called simple
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double point, be described by the equation
.2 2 2 _ 3
P:azi+ax3+25=0 C A°(x1, 29, x3). (2.7.4)
We immediately see that the hypersurface is singular at the origin since
Plo,00) =0 dPl(0,0,0) =0, (2.7.5)

where the first equation implies that the point (z1,z2,z3) = (0,0,0) does belong to the
hypersurface, while the second equation implies that the tangent spce at that point is
degenerate, and is equivalent to the condition that 0;P| 00y = 0. In order to resolve

such singularity we blow up the origin of the affine space as just explained, to find
{z} 4+ 23 +23 =0, zy; = vy} C A3 x P2 (2.7.6)

where [y : y1 : 2] are homogeneous coordinates on P2. We can then use the C* action
of P? to fix y; = 1 on the patch U; given by y; # 0. Then we just substitute x; = yjx; in

the equation of the singular hypersurface to find, on each patch
Ur: z3(1+y3+y3) =0
Us: a3(yi +1+43) =0

Us: 22(yi+95+1)=0 (2.7.7)

One can indeed check that the proper transform, given by the second branch in each
patch (since setting x; = 0 in U; gives exactly the origin that we are blowing up), is
not singular any more. One can also check through algebraic techniques that the Euler
characteristic of the exceptional divisor is 2, that is we replaced the singular point on the
hypersurface by a P! ~ §2.

Resolving singularities in elliptic fibrations is for the most part similar to what we

discussed so far. One looks at geometric loci which satisfy simultaneously the equations

Qlx =0, dQ|x =0, (2.7.8)

where @) is the equation describing the fibration, and then repeatedly blows up the
singular locus. An important concept is that since we start with a Calabi-Yau variety
one might be worried that the resolved variety is not Calabi-Yau any more. This is a
legitimate concern, which gives rise to the concept of crepant resolution, that is those
resolutions which leave the canonical bundle of the variety unchanged (thus preserving

the Calabi-Yau condition). It can be proved that the proper transform arising from the
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blowing up procedure preserves the Calabi-Yau condition (and so do small resolutions
([9))-

In order to classify the possible singularities of elliptic fibrations, Kodaira classified
the exceptional divisors obtained by blowing up such singularities and studied how they
intersect. It turns out that the singular locus is replaced by a chain of P's which intersect
according to an ADE classification. What that means is that the intersection matrices
of the exceptional divisors are the Cartan matrices associated to Dynkin diagrams of
type ADE. For example an A; singularity once resolved will have as exceptional divisor
a single P! which is represented in the affine Dynkin diagram by a single node. An A,
singularity, once resolved, will give rise to two P1s that will intersect in two points - which
translates into two nodes connected by a single line. And so on.

Kodaira then classified singularities in complex elliptic surfaces accordingly. Let us
expand the coefficients of the Weierstrass form in a power series in a local coordinate z

of the base, that is
F=Y_f2 g=> g (2.7.9)

Then the classification that Kodaira proposed associates ADE singularities to different
vanishing orders of f, g and the discriminant A, as reported in Table

In a similar spirit, Tate proposed an algorithm ([19]) which allows to determine the
singularity of an elliptic curve/fibration starting from the vanishing orders of the coeffi-

cients {a;} of the so-called Tate form
v+ arzy + asy = 2 + asx® + asx + ag, (2.7.10)

which is equivalent to the Weierstrass form. Such analysis, consisting of enhancing the
vanishing order of the discriminant of the fibration by tuning the vanishing order of the
coefficients {a;}, was repeated for fibrations over higher dimensional bases (|20]) and it
was found that there are some subtle differences compared to complex surfaces, such as
singular fibers dual to Fy and G affine Dynkin diagrams, see Table Moreover, in
([21]), a more thorough analysis was carried out so as to understand the possible ways
to increase the vanishing order of the discriminant by using the fact that the coeflicients
of the Tate form belong to a unique factorization domain. Subtleties related to global
behaviour of the sections might arise, and such an analysis was repeated in (|22]) for the
elliptic fibration P'12[4]. In Chapter [3| we will discuss instead Tate’s algorithm applied
to the elliptic fibration realized by a cubic equation embedded in P?.
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O(f) | O(g) | O(A) || Fiber Type || Singularity Type
>0 >0 0 smooth none
0 0 n I, An—1
>1 1 2 II none
1 >2 3 117 Aq
>2 2 4 1V A
2 >3 | n+6 I Dryg
> 2 3 |n+6 I D14
>3 4 8 A% Eg
3 >5 9 117 Er
>4 | 5 10 7 Es

Table 2.1: The classification of singular fibers depending on the vanishing orders of f, g
and the discriminant A. Note both the Kodaira denomination of singular fibers and the

corresponding ADE singularity type.

2.8 F-Theory and Dualities

Now that we discussed elliptic fibrations and their singularities, let us go back to F-
Theory to discuss how the geometric properties of the fibration determine the physics
of the compactifications. So far we discussed F-Theory as a technique to study type
IIB compactificaitons in the presence of 7-branes. In order to understand the physics
underlying such compactifications it will turn out to be useful to relate F-theory to M-
Theory through a chain of dualities. Recall that M-Theory is the non-perturbative uplift
of type ITA string theory where one dimension decompactifies to obtain an 11-dimensional
theory whose low energy dynamics is 11-dimensional supergravity.

Let us consider M-Theory on R x T?, where we take the torus to be T? = Si‘ X S}B

with complex structure 7. Then we follow the next steps:

o We let the radius Ry of 5114 go to zero, so to regain the perturbative regime of type
ITA.

e We T-dualize using S}B to obtain type IIB string theory on R(1:8) x 5}9, where 5’}9

has radius proportional to 1/Rp.

e We let Rp — 0 to decompactify to type IIB string theory. We obtain this way a
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O(a1) | Oag) | O(as) | O(aq) | O(ag) | O(A) || Fiber Type || ADE Group
0 0 0 0 0 0 Iy —
0 0 1 1 1 1 I —
0 0 1 1 2 2 I SU(2)
0 0 2 2 3 3 13° unconven.
0 1 1 2 3 3 13 unconven.
0 0 n n 2n 2n 139 Sp(n)
0 1 n n 2n 2n I, SU(2n)
0 0 n+1l | n+l |2n+1 | 2n+1 157, unconven.
0 1 n n+1|2n+1|2n+1 I35 SU((2n + 1)
1 1 1 1 1 2 17 —
1 1 1 1 2 3 II7 SU(2)
1 1 1 2 2 4 vns unconven.
1 1 1 2 3 4 Ivs SU(3)
1 1 2 2 3 6 Igns Go
1 1 2 2 4 6 Izss SO(7)
1 1 2 2 4 6 I SO(8)*
1 1 2 3 4 7 Ims 50(9)
1 1 2 3 5 7 I S0(10)
1 1 3 3 5 8 I3 SO(11)
1 1 3 3 5 8 I SO(12)*
1 1 n n+1 2n 2n+3 e, SO(4k +1)
1 1 n n+1l|{2n+1|2n+3 Lp_q SO(4k +2)
1 1 n+1l | n+l |2n+1]| 2n+4 e, SO(4k + 3)
1 1 | n+l|n+l | 2041 ]|2n+4 I, SO(4k + 4)*
1 2 2 3 4 8 v=ns Fy
1 2 2 3 5 8 1v*s Es
1 2 3 3 5 9 117+ Er
1 3 4 5 10 17~ FEg
1 2 3 4 6 12 non-min —

Table 2.2: Tate’s Algorithm with the vanishing orders of the coefficients {a;} of the

Tate form.

Note in particular the appearance of singular fiber absent from Kodaira’s

Classification arising from the higher dimension of the base.
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duality between M-Theory on a torus of vanishing volume and type IIB which can

be lifted to F-Theory.

Such duality can be extended fiberwise over the base of the fibration, therefore creating
the set up of F-Theory. So we conclude that F-Theory on a Calabi-Yau fourfold is dual
to M-Theory on the fourfold in the limit of vanishing fiber volume.

We can now use this duality to gain insight into the physics of F-Theory. We saw
following Kodaira’s classification that the singular elliptic fibration can be resolved to
obtain a smooth variety, where the singular locus has been replaed by a tree I'; of Pls
intersecting as in the dual affine Dynkin diagram. We can then reduce the Cs form of

M-Theory along these cycles to obtain the abelian gauge degrees of freedom A;

Ai:/ Cs. (2.8.1)
r;

These degrees of freedom will form the Cartan subalgebra of our gauge symmetry. The
non-abelian degrees of freedom are instead obtained by letting M2-branes wrap chains of

P's given by
Sij =T; Ul U---U Fj, (2.8.2)

provided that I'y and I'y41 intersect. We obtain the degrees of freedom exactly to realize
the gauge group indicated by the singularity type of the elliptic fibration. Therefore
we see that F-Theory provides a completely geometric framework to study type IIB
compactifications. In particular it lends itself easily to the realization of Grand Unified
Theories since we can engineer 4-dimensional models by studying the singularities of
elliptic fibrations. These are N' = 1 supersymmetric theories in 4 dimensions which have
desirable phenomenological properties and that we will discuss in the next section.

We note here, without going into detail, that F-Theory also admits a duality to
Heterotic string theory, although restricted to a smaller class of theories. In particular
the duality states that F-Theory on an elliptically fibered K3 surface is dual to the

Heterotic theory on T2. We can extend this duality fiberwise to relate

F-Theoryon X : K3 — B
&
Heteroticon Y : E — B, (2.8.3)

but we see that since the K3 surface is itself elliptically fibered

K3: E— P!, (2.8.4)
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we must have on the F-Theory side a base B’ which admits a P! fibration, thus restricting
the class of theories on which the duality can apply.

Let us now go back to the study of F-Theory compactifications and try to understand
how the matter content and the couplings of the compactifications are encoded in the
geometry of the fibration. So far we saw that the codimension one singularity structure
of the fibration determines the gauge group of the 4-dimensional theory. Nevertheless,
since the base of our fibration is not just one complex dimensional, we see that different
phenomena might happen in higher codimension. In particular for the case of compact-
ifications to 4 dimensions, the base is a complex threefold and we have codimension 2
and codimension 3 singularity at our disposal (that is singularities specified locally by
respectively 2 or 3 equations).

In brane set ups, matter is found at the intersection of (stacks of) branes as open
string excitations stretching between the two branes. In F-Theory context we might have
m 7-branes wrapping a four cycle My in the base and n 7-branes wrapping a different
four cycle Mj. Then since codimensions add, we see that generically the two stacks of

branes intersect over a complex curve ¥ in the base, that is

m T-branes on R"3 x M,
L RY x 2 RY x M. (2.8.5)

n 7-branes on R x M)

If gauge symmetrise G, and Gy are associated to the two stacks of 7-branes, and at the
intersection we have an enhanced G, symmetry we find matter in the representation
(R, U,) under the breaking of the adjoint of G, — G4 X Gy ([14])

Gap — Go X Gy,
adGab - (adGav 1) D (17 adGb) S Z(Rx, U:p) (286)

For example enhancements from SU(5) to SO(10) allow matter in the 10 (10) following
the decomposition of the adjoint of SO(10)

45 — 249 + 102 + 10_5 + 1o. (2.8.7)

2.9 Abelian Symmetries in F-Theory

It should now be clear that F-Theory is an excellent framework for studying string com-
pactifications and geometrically engineer supersymmetric 4-dimensional theories. This
turned out to be useful in order to realise Grand Unified Theories in which the funda-

mental gauge interactions of the Standard Model are united in a single gauge group,
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typically SU(5) or SO(10), which then at some energy scale (around 10'6 GeV) breaks
to the Standard Model gauge group. Such theories captured a lot of attention in the past
since it was possible to embed the Standard Model gauge group as a maximal subgroup of
a unified group, thus providing the unification of the known interactions which was con-
firmed by the running of the couplings under the RG flow. Even though supersymmetry
potentially allows to solve problems afflicting the Standard Model (Dark Matter, Hier-
archy Problem, etc), Grand Unified Theories suffer themselves from phenomenological
difficulties.

In particular the adjoint of SU(5) under the breaking to the Standard Model gauge
group

SU(5) — SU3) x SU(2) x U(1) (2.9.1)
decomposes as follows
24 — (8,1)0® (1,3)0® (1,1)0 @ (3,2)_5 @ (3,2)s, (2.9.2)

where the first three terms reproduces correctly the content of the Standard Model, but we
see the appearance of additional gauge bosons. The main threat comes from the fact that
such bosons are able to induce proton decays operators. Protons have experimentally
been shown to possess a half-life which is greater than the life of the universe, so we
see that the presence of proton decay operators in Grand Unified Theories presents a
considerable problem to the unification program.

One way out of this impasse was found to rely on the existence of additional abelian
factors in the unified gauge group. Ideally one would like to find an additional factor
U(1)™ such that the U(1) charges would allow operators such as the Top Yukawa coupling
103,10,,55, but prevent the proton decay operator 10,;,103,53; by deeming it not gauge
invariant.

We saw that in F-Theory we can only engineer theories with a gauge group of ADE
type and there does not seem to be room for additional abelian factors. It turns out
that the correct way to solve this problem is to look at elliptic fibrations which admit
extra rational sections. Recall that the Weierstrass model embedded in P23 = [z : x : y]

admitted one rational point given by
[1:1:0] € {y? =23+ faz' + g25}, (2.9.3)

and by fibering over the base this implied the existence of a global section of the elliptic
fibration. Consider now the existence of additional rational points on an elliptic curve

and therefore the existence of additional sections of the elliptic fibration. Then such
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sections are divisors in the Calabi-Yau fourfold and we can consider their Poincare Dual
(1,1)-forms w®. Tt is clear that we can use these to reduce the C3 form in the M-Theory

framework to obtain abelian degrees of freedom A;
C3=Ai AW +.... (2.9.4)

We therefore find a gauge field for an abelian U(1) factor for each extra section of the
elliptic fibrations. Now that we know how to engineer additional abelian gauge degrees of
freedom in F-Theory, let us see how we can calculate the U(1) charges of matter arising

from codimension two singularities. We define the Shioda map ([23])
S : Mordell-Weil Group — H'!(Yy), (2.9.5)

which associates to each section generating the Mordell-Weill group a divisor of the
elliptic Calabi-Yau Y. The U(1) charge of a matter curve ¥ associated to a section o; is
found to be the intersection ¥ -y, S(03).

In order to have an elliptic curve with an extra rational point (that will become an
extra section upon fibering over the base) we need to embed it in the weighted projective

space PM2[w : z : y] by the equation ([23])
cow* + s + cow?s? + cywr® = y? + bya’y, (2.9.6)

and the two rational points are seen to be
o1=[0:1:0] o9 =[0:1:—bg]. (2.9.7)

The study of the possible singularities occurring in an elliptic fibration with an extra
rational section was carried out in ([22]). Similarly an elliptic curve with two extra

rational sections can be realized as a cubic equation in projective space P? ([1}24-26])
s1w3 + sow?x + sswr? + ssw?y + sgwzy + s7a’y + sgwy? + sory® = 0, (2.9.8)
with the three rational points
o1 =1[0:0:1] op=[0:1:0] o3 =1[0:s9:—s7] (2.9.9)

In Chapter |3| we will study the possible singularities of such an elliptic fibration through
the application of Tate’s algorithm.



Chapter 3

Tate’s Algorithm for F-theory
GUTs with two U(1)s

As outlined in Chapter [2] the compactification of F-Theory on elliptically fibered Calabi-
Yau manifolds has proven to be a successful framework to realize supersymmetric non-
abelian gauge theories, in particular Grand Unified Theories (GUTSs) ([27H29]). Although
GUTs are an appealing framework for supersymmetric model buildingﬂ it is well known
that they can suffer from fast proton decay, which, however, can be obviated by having
additional discrete or continuous symmetries. In this chapter we consider F-theory com-
pactifications that give rise to GUTs with two additional U(1)s, which can potentially be
used to suppress certain proton decay operatorsﬂ In F-theory abelian gauge factors have
their genesis in geometric properties of the compactification manifold, namely in the ex-
istence of additional rational sections of the elliptic fibration. We carry out a systematic
procedure to constrain which such fibrations can give rise to gauge groups G x U(1)2.
It has been known for many years that abelian gauge symmetries in F-theory are
characterized by the Mordell-Weil group of the elliptically fibered Calabi-Yau compact-
ification space ([8,9]), which is the group formed by the rational sections of the fibra-
tion. In recent years abelian gauge factors have been much studied in the context of
4-dimensional GUTs arising from F-theory compactifications. In local F-theory models
U(1)s have a realization in terms of factored spectral covers as shown in ([37-44]). Global
models with one U(1) were studied in ([22,23,|45{52]), however phenomenologically one
U(1) factor is not sufficient to forbid all dangerous couplings ([53]). It is then well moti-

'See ([144[30L[31]) for some nice reviews of GUT model building in F-theory.
?Discrete symmetries have been studied in local and global F-theory model building in, e.g. (|32}36]).

41
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vated to consider elliptic fibrations with multiple U(1) factors, the constuction of which
was initiated in ([1,24-26,54-58]), with the realization of the SU(5) x U(1)? models in
these papers primarily based on constructions from toric tops ([59]).

It is natural to ask whether there is a systematic way to explore the full range of
possible low-energy theories with two additional abelian gauge factors which have an
F-theory realization. One approach to address this question is to apply Tate’s algorithm
([19-21]) to elliptic fibrations with two additional rational sections. This is the approach
that we take in this chapter and indeed we show that there is a large class of new
elliptic fibrations with phenomenologically interesting properties not seen from the top
constructions. While Tate’s algorithm is a comprehensive method to obtain the form
of any elliptic fibration with two rational sections there is a caveat that it is sometimes
difficult in practice to proceed with the algorithm without making simplifications at the
cost of generality.

The starting point for the application of Tate’s algorithm in this context is the re-
alization of the elliptic fiber as a cubic in P? ([1,[24H26]). Tate’s algorithm involves the
study of the discriminant of this cubic equation, which captures the information about
the singularities of the fiber. The singular fibers of an elliptic surface were classified
by Kodaira (|60,61]) and Néron ([62]), and they belong to an ADE-type classification;
Tate’s algorithm is a systematic procedure to determine the type of singular fiber. The
ADE type of the singular fiber determines the non-abelian part of the gauge symmetry.

Tate’s algorithm was applied to the Weierstrass form for an elliptic fibration where
there are generically no U(1)s in ([20,21]), and in ([22]) to the quartic equation in P(1:1:2)
which realizes a single U(1) (|23]). The application of the algorithm to the cubic in P?
will constrain the form of the fibrations which realize a G x U(1)? symmetry, for some
non-abelian gauge group G, which are phenomenologically interesting for model building.

As a result of Tate’s algorithm we find a collection of elliptic fibrations which real-
ize the gauge symmetry SU(5) x U(1)? where the non-abelian symmetry is the minimal
simple Lie group containing the Standard Model gauge group. The fibrations found en-
compass all of the SU(5) models with two U(1)s in the literature which we are aware
of, and includes previously unknown models which, in many cases, have exciting phe-
nomenological features, such as having multiple, differently charged, 10 matter curves.
We also determine fibrations that lead to Eg and SO(10) gauge groups with two U(1)s.

Our results are not restricted to F-theoretic GUT model building, and we hope that
they are also useful in other areas of F-theory, for example in direct constructions of the
Standard Model ([63,/64]), in the determination of the network of resolutions of elliptic

fibrations ([65-69]), or in the recent relationship drawn between elliptic fibrations with
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U(1)s and genus one fibrations with multisections ([70-72]).

In section |3.1] we present a summary where we highlight the fibrations found in the
application of Tate’s algorithm to the cubic equation, up to fibers realizing SU(5). We
also present a table of a particularly nice kind of realizations for Kodaira fibers I, and I.
In section we recap the embedding of the elliptic fibration as a cubic hypersurface in
a P? fibration and give details of the resolution and intersection procedures. Section
contains Tate’s algorithm proper, up to the I5, or SU(5), singular fibers. In section
the U(1) charges of the various 10 and 5 matter curves that appear in the models from
the SU(5) singular fibers are determined. In section Tate’s algorithm is continued
from where it was left off in section [3.3] and we obtain fibrations that have a non-abelian

component corresponding to an exceptional Lie algebra.

3.1 Overview and Summary

For the reader’s convenience, the key results are summarized in this section. For those
interested simply in the new SU(5) models we refer to section

An elliptic fibration with two additional rational sections, which gives rise to a gauge
theory with two additional U(1)s, can be realized as a hypersurface in a P? fibration, as

in ([1,24-26]), given by the equation
3 2 2 2 2 2 2 _
s1w” + Sowx + S3wx” + S5w Y + sewry + s7r°Y + sSswy” + sgxry” =0, (3.1.1)

where [w : = : y] are projective coordinates on the P2. This fibration has three sections

which have projective coordinates
p:[0:0:1], 39:[0:1:0], X1:[0:89:—s7]. (3.1.2)

The application of Tate’s algorithm involves enhancing the singularity of this elliptic
fibration, where the particular enhancements are determined by the discriminant. As the
coefficients of the fibration are sections of holomorphic line bundles over the base, one can
look at an open neighbourhood around the singular locus in the base with coordinate z
such that the singular locus is above z = 0, and consider the expansion in the coordinate

z of the s;
oo

5= sij2. (3.1.3)

§=0
Often the pertinent information from the equation (3.1.1)) is just the vanishing orders of

the s; in z, which we will refer to through

n; = ordz(si) . (314)
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A shorthand for the equation will be the tuple of positive integers (n1, n2, ng, ns, ng, ny, ng, ng)
representing the vanishing orders. It will not always be possible to express a fibration
just through a set of vanishing orders, but there will also be non-trivial relations among
the coefficients of the equation. We will refer to fibrations of this form as non-canonical
models. This will be the result of solving in full generality the polynomials which appear

in the discriminant as a necessary condition for enhancing the singular fiber. In particu-

lar the fact that the coefficients of our fibration belong to a unique factorization domain
([21,|73]) will be used. Schematically we will refer to these fibrations via the shorthand
notation

(n1, ng, n3, ns, ne, N7, N8, N9)

net - )
[Sl,nl y $2,n2553,n35 S5,n55 S6,n65 S7,n75 S8 ng>» Sg,ng]

(3.1.5)

where the term in square brackets denotes any specialization of the leading non-vanishing
coefficients in the expansion of the s;, and the I represents the Kodaira fiber type.
Often, for ease of reading, a dash will be inserted to indicate that a particular coefficient
is unspecialized. The exponent of the index nc will signal how many non-canonical
enhancements of the discriminant were used in order to obtain the singular fiber, that
is, how many times solving a polynomial in the discriminant did not require just setting
some of the expansion coefficients to zero, but also some additional cancellation.

There is a last piece of notation that needs to be explained before the results can be
presented. Since the elliptic fibration has three sections, it will be seen in section [3.3]
where the algorithm is studied in detail, that the discriminant will reflect the fact that
the sections can intersect the components of the resolved fiber in multiple different ways.
Thus, a number of (non-)canonical forms for each Kodaira singular fiber will be obtained
depending on which fiber component each of the sections intersects. To represent this,

17(1012) the case where all the three sections intersect the same fiber component,

IT(LO|”1V”2)

denote by
and then introduce separation of the sections by means of the notation , where
the number of slashes will signal the distance between the fiber components that the

corresponding sections intersect. Consider the two examples:

o 0112

wne2  Will represent a Kodaira singular fiber I, obtained through two non-canonical

enhancements of the discriminant. The sections X, Yo will intersect one of the fiber
components, while ¥; will sit on an adjacent fiber component (i.e. one which in-
tersects the previous component). Depicting the P! components of the singular

(01[2)

fiber as lines, and the sections as nodes, the fiber I can be represented by the

diagram
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s(01]|2)
° I5,nc3

coefficients of our equation three times, such that the fiber component intersected
I§(01II2) is

will represent an I5 found upon imposing non-canonical conditions on the

by ¥ and X1 does not intersect the component that 3o intersects. This

represented pictorially as

We refer to section for more details about the notation for representing singular fibers
corresponding to other types of Kodaira singular fibers.

All of the fibers found and determined are presented in the following summary ta-
bles, where the fibers are grouped first by the Kodaira type and then by the degree of

canonicality:

e In table we list the singular fibers up to vanishing order ord,(A) = 3. These
include fibers of type Iy,1s,I5, I, and I11.

e In table[3.2) we list the singular fibers at vanishing order ord,(A) = 4. These include
both type I4 and type I'V Kodaira fibers.

e In table [3.3] we list the I singular fibers.

For each of the I singular fibers obtained through the algorithm the U(1) charges
are calculated and the results are presented in section along with the comparison
with the U(1) charges of the known SU(5) toric tops ([1,24,/51}54,59]).

Tate-like (that is, canonical) forms for generic Kodaira singular fibers were also de-
termined and they are presented in table Appendix includes explicit details of

the resolutions of these forms.
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Singular Fiber Vanishing Orders and Non-canonical Data
" (1,1,0,1,0,0,0,0)
" (2,1,0,1,0,0,0,0)
" (1,1,1,0,0,0,0,0)
(1102) (17 1,0, 1’0707050)
I27nc
[—, —, 0205, —, 0204 + 0305, 0102, 0304, 0103]
1,1,0,1,0,0,0,0
70012) ( )
[_7 ) /,LO'%, ) 2/““730-87 ) /1’0%7 _]
pe(012) (3,2,0,2,0,0,0,0)
;012 (2,1,1,1,0,0,0,0)
som (1,1,1,1,0,0,1,0)
5(012) (37 1,0, 170707();0)
I3,nc
[—,0102,0205, 0103, 0204 + 0305, —, 0304, —|
2,1,1,0,0,0,0,0
o | |
[—,0102,0103, 0205, 0204 + 0305, 0304, —, —|
2,1,0,1,0,0,0,0
A ( |
[—, —, 0205, —, 0204 + 0305, 0102, 0304, 0103]
. (1,1,1,0,0,0,0,0)
I3,nc
[—, —, —, 0205, 0204 + 0305,0304,0102, 0103]
2,1,0,1,0,0,0,0
UL(L%H) ( )
[_7 ) /Jo-ga > 2M0-3O-87 ] MOg? _]
1,1,1,0,0,0,0,0
1170 ( )
[_7 ) MJE%? 2/'L0—50—77 MU% ) _]
1,1,0,1,0,0,0,0
%M ( )
[_7 ) 5%547 ) 25263547 0-1627 632)547 0-163]

Table 3.1: Singular fibers where ord,(A) < 3.
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Singular Fiber

Vanishing Orders and Non-canonical Data

;O (4,2,0,2,0,0,0,0)
750 (3,2,1,1,0,0,0,0)
e (2,2,2,0,0,0,0,0)
R (2,1,1,1,0,0,1,0)
4,2,0,2,0,0,0,0
1o ( )
[75 — 0103, —,0102 + 0304, —,0204, 7}
2,1,1,1,0,0,0,0
g | )
[0304,0103, —, 0204 + 0305, 0102, —, 0205, —]
3,2,0,2,0,0,0,0
e ( )
[—, —, 0205, —, 0204 + 0305,0102, 0304, 0103]
5(01]]2) (25 2,2,0,0,0,0, O)
I4,nc
[—, — —, 0103,0102 + 0304, 0204, —, —|
s(011]2) (271717170707070)
I4,nc
[_7 0102,0103, —,0204,0304, —, _]
s(1]0]2) (171717170707170)
I4,nc
(0205, 0204 + 0305,0304, —,0102,0103, —, —]
Is(O2|1) (37 2,0,2,0,0,0, 0)
4,nc?
[—, —, 036182, —, 0261& + 038183, E264, §18302, E3€4]
15(0\1|2) (1’]‘717070705070)
4,nc?
(6384, §26a + €385, 265, €305, §304 + £2055, 8304, 0163, 0162]
Is(1\0|2) (1,1,1,0,0,0,0,0)
4,nc?
(€384, €284 + €385, 6285, 026183, 026183, 026182 + 038163, 0381€2, 0102, 0103]
TV/s(01]2) (2,1,1,1,1,0,0,0)
Tvs0I112) (1,1,1,1,1,0,1,0)
2,1,0,1,0,0,0,0
IV:C‘;(OIQ) ( )
[—, &85, 13, &1&a, 21083, —, 13, —|
) 1,1,1,0,0,0,0,0
Ivic(guz) ( )
(€285, E28a + €385, &34, €3, 2p&als, €3, —, —]
) 2,1,0,1,0,0,0,0
IV:C(SQH) ( )

[—, =, &4&3, —, 262€584, 012, €463, 01 &3]

IV;C(SH‘?)

(1,1,1,0,0,0,0,0)
[_7 Ty T M§§7 2/1/52537 M§§7 52547 5354]

Tv°012)

ne3

(2,1,0,1,0,0,0,0)
(6204, &3(6102 + 0504), 610583, £2(0102 + 8304), 261058285, —, 0103E3, —]

Table 3.2: Singular fibers where ord,(A) = 4.
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Singular Fiber

Vanishing Orders and Non-canonical Data

1re012) (5,3,0,3,0,0,0,0)
13012 (4,2,1,2,0,0,0,0)
r2(O0Mi2) (3,2,2,1,0,0,0,0)
a01) (3,2,1,1,0,0,1,0)
2O (2,2,2,1,0,0,1,0)
r3(012) (572?07270707070)
’ [—,0102,0905,0103,0204 + 0305, —, 0304, —]
Is(01|2) (372v 1, 170707()’0)
’ (0205, 0204 + 0305,0304,0102,0103, —, —, —]
Is(02|1) (472?0’270707070)
5,nc
[—,—,0304,—,0204 + 0305,0103,0205,0102]
I;(0\1|2) (27171a170703170)
’ [010370102a_7030470204a_7_7_}
I;(1\0|2) (3727 1u 170707070)
7 [_7_a_a_7010270103a0204a0’304}
20D (2,2,2,0,0,0,0,0)
7 [—, —, —,0205,0204 + 0305,0304,0102,0103]
I;(OHHQ) (2,1,1,1,0,071,0)
7 [—70102701037 —,0204,0304, —, —]
IS(O2|1) (472703270707070)
5,nc?
[—, —, 0382, —, 02& + 03E3, £264, 02E3, £3¢4]
15(012||2) (27 1,1,1,0,0,0, O)
5,nc
(€384, 023, 0383, E2bs + £385, 0282, 0382, §285, —]
I;(012”2) (27 2,2,0,0,0,0, O)
o (€384, E2ba + €385, &85, 0383, 0283 + 0382, 0282, —, —]
I;(1\2|2) (271?17170707070)
,nc
(0304, 036183, —, 0204 + 036182, 0261€3, §384, 026182, £284]
5(0‘2”2) (271,1,1,07070,0)
5,nc
[—, 0183, 0182, —, 0483, 0482, £384, §2€4]
72020 (1,1,1,1,0,0,1,0)
o [€3848586, 048586 + 03E384, 0304, 38587 + £4&6€s, 1838586, 03813, £7€8, £186E8]
s(0]1]12) (1,1,1,0,0,0,0,0)
IS,nCS

[€30304, 640382 + 02€3), 20204, E3103, 01 (0263 + 03&2), 010282, 01&3, 01&2]

Table 3.3: Singular fibers where ord,(A) = 5.
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3.2 Setup

In this section the general setup for the discussion of singular elliptic fibrations with a
rank two Mordell-Weil group is provided. First it is explained in more detail that such a
fibration can be embedded into a P? fibration via a cubic hypersurface equation. This is
done in section |3.2.1] In section the symmetries of this cubic equation are detailed
and it is demonstrated how they lead to a redundancy of singular fiber types. Some
constraints are chosen, listed at the head of section to eliminate this redundancy.
All the properties of the construction used in the resolution and study of the singular

fibers found are documented in section 3.2.3

3.2.1 Embedding

By the algebro-geometric construction in ([1,[23-26]), an elliptic fibration with rank two

Mordell-Weil group can be embedded into a P? fibration by the hypersurface equation
3 2 2 2 2 2 2 _
S1W° + sow T + ss3wxr” + sswy + sewxy + s7ry + sswy” + sgxy” =0, (3.2.1)

as seen in the previous section. Some explanation of this construction is given in appendix
Here [w : x : y] are the projective coordinates of the fibration and the s; are elements
of the base coordinate ring, R. It can be seen that this has three marked points, where
w,z, and y take values in the fraction field, K, associated to R. Specifically the three
marked points are

0:0:1], [0:1:0], [0:s9:—s7], (3.2.2)

which we label as ¥, >3, and ¥; respectively.

We will work in an open neighbourhood in the base, around the singular locus, which
has coordinate z such that the singular locus will occur at the origin of this open neigh-
bourhood. In such a local patch we can specify the s; as expansions in z,

e}

$; = Z SiJZj . (323)

j=0
We also introduce the simplifying notation

00
5,k = Z si,jzj_k . (324)
j=k

3.2.2 Symmetries and Lops

In this section note is made of the symmetries inherent in the cubic equation (3.1.1)), and

a strategy is devised to remove the redundant multiplicity of fiber types that occurs due
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to these symmetries. One finds that the following sets of vanishing orders give rise to

fibrations which have codimension one singular fibers that are related by a relabelling of

the coefficients of
(nl,ng,ng,n5,n6,n7,ng,n9) < (nl,n5,n8,n2,n6,n9,n3,n7)
(n1 4 2,n9 + 1,n3,n5 + 1, ng, n7,ng, ng) <> (n1,n2,n3,ns, ng,n7 + 1,ng,ng + 1)
(n1 4+ 1,n9 + 1,n3 + 1, ns5, ng, n7,ng, ng) <> (n1,n2,n3, ns, ng, n7,ng + 1,n9 + 13.2.5)

and any composition thereof. In the analysis of Tate’s algorithm for the quartic equation
in P(L12) ([22]) these kind of symmetries were called lops. The first of these relations
will be referred to as the Zs symmetry, and the second and third relations, respectively,
will be called lop

one and lop two.

These lop relations and the Zo symmetry generate a family of equivalences by apply-
ing them repeatedly and in different orders. To choose an appropriate element of each

equivalence class the procedure shall be as follows:

e Use the Zs symmetry to fix ng > ny.

e Apply lop one to reduce n; to 0.

e Apply lop two to reduce the least valued of ng and ng — ny to zero.
e Apply the Zs symmetry.

In this way one can often choose a representative of a particular lop-equivalence class
where n7 = ng = 0. In the application of Tate’s algorithm enhancements which move a
form out of this lop-equivalence class will not be considered. In this way the redundancies
inherent in the cubic equation shall be removed. The remainder of this subsection
shall be devoted to showing that these relations hold.

There is a Zo symmetry that comes from the interchange
(n1,n2,n3, M5, N6, N7, N8, N9 ) <+ (N1, N5, N, N2, N6, N9, N3, N7) - (3.2.6)
One can see this by observing that the equations for each form,

3 2 2 2 2 2 2
61,70 W + 82 np WL + 63 5 WL + 65 s WY + 66 g WTY + 57 7 T7Y + 858 ng WY~ + 59 ngry” = 0,
(3.2.7)

and

3 2 2 2 2 2 2
51, W+ 52 ns W T + 63 ng WL + 55 no WY + 56 ngWITY + S7ngT Y + 58 na WY~ + 69 n, XY = 0,
(3.2.8)
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have identical vanishing orders up to the redefinition z > y. This symmetry can be

removed by only considering forms where, in order of preference,

n9 > ns . (3.2.9)

Furthermore there are symmetries that can occur in the partially resolved forms. One
such, which was referred to as lop one above, is an equivalence between the vanishing

orders
(n1+2,m2+1,n3,n5+1,n6, 17,18, N9) <+ (N1, N2,n3, N5, M6, 17 + 1,18, 09 +1) . (3.2.10)

To see this consider first the geometry of the LHS after resolving the singularity at the
point x = y = z; = 0 by the blow up (z,y, 21; Cl)ﬂ It is clear that one can always do such

a blow up as the n; are, by definition, non-negative. The partially resolved geometry is

3. n1+2n no+1 ns+1
51y 12w 27 T + 5y 1w m 22T 4 83 0w 2T + 85 g 1wy 20T
n, n7+1 nr+1 n7+42

+ 56,06 WTYZ (L + 87,87y A s7 a2y TG

+ 58,n8wy22?8 + 89,n9$y2z?9ﬁ?9+1 + 5919 1 12Y Zn9+1Cn9+2 -0,
(3.2.11)
with the Stanley-Reiser ideal
{wry, wli, vyz1} . (3.2.12)

Similarly one can consider the RHS geometry after performing the small resolution

(w, z2; (2) to separate the reducible divisor z3. The geometry is

n1+2 3 n1+1<-n1+3
2 2

3. n1+2,n1+4 2 _..n9no+1
T S1,n+1W" 2 2 G2 2

ni
$1 mw 29" Cy + 51,m,42W" 2 + 852, W T2,

no+1 n2+2 2

1
+ 59 nQHw 2y + 83 w252 Cy° + 557n5w yzy° n5+

+ 85 g 1wy zye Tt

n7+l

ng+1
+ 56,06 WTY 25 (3" +57n7+1$ Yzo 57 + sg ngwy 2y® + 89 n9+193y 23257 =0,

(3.2.13)

with Stanley-Reiser ideal
{wxva'z?v‘ryCQ} . (3214)

Under the identification z; <+ {3 and (1 <> 23 it is observed that these equations and

SR ideals are equivalent. Any multiplicity arising from this redundancy in (3.1.1)) can

3The notation of ([74]) is used to spectify blow ups throughout this chapter.
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be removed by combining it with one of the earlier constraints from the Zs symmetry
(13.2.9), n7 > mng, so as to choose to consider only forms which have ng = 0.
There is another relation among the partially resolved geometries, which was referred

to as lop two,
(n1+1,n2+1,n3+1,ns5,ng, n7, N8, N9) <> (N1, n2,n3, N5, N6, N7, Ng+1,ng+1). (3.2.15)

Again this is seen by studying the partially resolved geometry explicitly. If (n; +
1,n9+ 1,n3 + 1, ns, ng, n7, ng, ng) is resolved by the small resolution (y, z1; (1) the blown

up geometry is given by the equation

3 mi+1 3 mi+2 141 +1 +2,nat1
SLn 10”21 T 81 w2 TGy S 12

+ s2 n2+1w Tz + 59 n2+2w T2y

+ 33,n3+1UJQ;2 n3+1<n3 + s3 n3+2’wx2 ?3+2C?3+1 +557n5w2y2?5c?5 +56,n6wxy2’1 C
+ s7 n7l y2’17C1 + 53 ngwy22?8Cn8+l + 59 LY z'{ZQ ng+1l _
(3.2.16)
with SR-ideal
{way,yz1, wai}. (3.2.17)

On the other side if (n1,n9,ns,ns,ng,ny,ng + 1,n9 + 1) is resolved by the resolution

(w, z, z2; (2) the geometry is then given as the vanishing of the hypersurface polynomial

1 1 1 5
S1,m, W z?%nﬁ +52,n2w2xz;‘2 ;2+ + 53 p, W 233C"3+ —|—557n5w yzy° (5"
2 +1 2 +2 +1
+ 86,16 WTYZY (S + 570 02 Y25 YT 4 88 ngr 1wy 28T + 8 g 0wy 28 TS
1 2 2 1
+ 89 mg+12Y 2252 T + 59 pg r2my? 2 T2 = 0, (3.2.18)
with SR-ideal
{wzy, wrze, 2y} . (3.2.19)

These two geometries describe the same partially resolved space, and can be related by

the interchange
z1 < CQ, Cl <~ 29. (3.2.20)

3.2.3 Resolutions, Intersections, and the Shioda Map

To determine the Kodaira type, including the distribution of the marked points, of the
codimension one singularity in the fibration specified by (3.1.1]) one often explicitly con-
structs the resolved geometry via a sequence of algebraic resolutions. In the context of

elliptic fibrations such resolutions have been constructed in ([18.|48}65,68./69./74-78]). In
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this section we set up the framework to discuss the resolved geometries and the intersec-
tion computations, for example of U(1) charges of matter curves, that are carried out as
part of the analysis of the singular fibers found. In particular details are given about the
embedding of the fibration as a hypersurface in an ambient fivefold, the details of how
the intersection numbers between curves and fibral divisors are computed, and on the
construction of the U(1) charge generators.

Consider the ambient fivefold X5 = P2(O®O(a)®O(3)) which is the projectivization
of line bundles over a base space Bs. The elliptically fibered Calabi-Yau fourfold will be
realized as the hypersurface in this X5 cut out by the cubic equation . The terms

in the homogeneous polynomial are then sections of the following line bundles

Section Bundle
w O(o)
x O(o + )
y O(o + )
z O(S¢q)

s1; | Olcr+a+B—34Sq)
92,5 O(e1+ 8 —jSa) (3.2.21)

s3; | Ot —a+p—jSq)

85, O(c1 +a—jSq)
56,5 O(c1 — jSa)
57,4 O(Cl - — jSG)

sg; | Oci+a—B—jSq)
89 ; O(e1 — B —jSq)

Here ¢; is a shorthand notation for 7*¢;(Bs). In practice, the first step in any explicit
determination of a singular fiber is to blow up the P? fibration to a dP; fibration by the
substitution w — l1low, © — [z, and y — lsy and taking the proper transform, as was
also the procedure in ([1,[24-26]).

The geometry is then specified by the equation

sll%lguﬁ +52l%l2w2:ﬂ +53l%wx2 +55l1l§w2y + sglilowzy +57l1x2y +58l§wy2 +59l2xy2 =0,
(3.2.22)

in dP,. After these blow ups the fiber coordinates in this equation are sections of the
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line bundles

Section Bundle

w O(c — F1 — F»)
x O(oc 4+ a— Fy)

(3.2.23)
Y Oo + 3 — F»)
l1 O(Fy)
lo O(Fy)

As can be seen from the blow ups which mapped P? to dP» the marked point [0 : 0 : 1]
has been mapped to the exceptional divisor Iy, similarly for [0 : 1 : 0] and /2. As such the
marked points g, 21, and Y5 have been related to the divisors l1, w, and l5 respectively.
As the marked points form sections they are restricted to intersect, in codimension
one, only a single multiplicity one component of the singular fiber ([79]).
The dPs intersection ring is not freely generated due to the projective relations which

hold in dP». These relations are, using standard projective coordinate notation,
[whis : zly = ylo], [w:z], [w:y]. (3.2.24)
These correspond to the relations in the intersection ring
o-(c+a) - (c+p)=0
(0 —Fy —F)-(0—F1)=0
(0 —Fy — Fy) - (0 — Fy) =0. (3.2.25)

The strategy, as it was in ([74,/77]), will be to choose a basis of the intersection ring and
repeatedly apply these relations, including any that come from exceptional divisor classes
introduced in the resolution. In this way the intersection numbers between curves and
fibral divisors can be computed. In this chapter the resolutions and intersections were
carried out using the Mathematica package Smooth (]80]).

Given an elliptic fibration with multiple rational sections there remains the construc-
tion of the generators of the U(1) symmetries, that is the generators of the Mordell-Weil
group. The Mordell-Weil group is a finitely generated abelian group ([81])

2% --0L0G, (3.2.26)

where G is some finite torsion groulﬂ There is a map, known as the Shioda map, which
constructs from rational sections the generators of the Mordell-Weil group. This map is

discussed in detail in (]23,/84,85]).

“We shall not concern ourselves with G in this chapter, but some investigations are ([82,/83]).
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The Shioda map associates to each rational section, o;, a divisor s(o;) such that
S(O’Z‘) . F} =0
s(o;)-B=0, (3.2.27)

where F} are the exceptional curves and B is the dual to the class of the base Bs.
Reduction on the Fj gives rise to gauge bosons which should be uncharged under the
abelian gauge symmetry. This is ensured by the conditions .

The charge of a particular matter curve C' with respect to the U(1) generator as-
sociated to the rational section o; is given by the intersection number s(o;) - C. The
constraints determine the U(1) charges from s(o;) up to an overall scale. We
shall always consider the zero-section to be the rational section associated with the in-
troduction of the /1 in the blow up to dPs.

As was alluded to in section [3.2.1] it is not always the case that a fibration that
arises from the algorithm can be specified purely in terms of the vanishing orders of
the coefficients. Sometimes it is necessary to also include some specialization of the
coefficients in the z-expansion of the coefficients of the equation. Consider a discriminant
of the form

A= (AB - CD)z" + O(z"). (3.2.28)

An enhancement that would enhance this singularity would be where AB — CD = 0.
The solution of this polynomial cannot in general be specified in terms of the vanishing
order of A, B, C', and D. In appendix we collect the solutions to several polynomials
of this form which come up repeatedly in the application of Tate’s algorithm to (3.1.1)).

The solution to this particular polynomial is

A=o0109
B = o304
C = o103
D = o904, (3.2.29)

where the pairs (01, 04) and (09, 03) are coprime. It is not generally possible to perform
some shift of the coordinates in to return this solution to an expression involving
just vanishing orders. This is notably different from Tate’s algorithm as carried out on the
Weierstrass equation in (|21]); there the equation includes monic terms unaccompanied by
any coefficient, which often allows one to shift the variables to absorb these non-canonical

like solutions into higher vanishing orders of the model.
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3.3 Tate’s Algorithm

In this section we will proceed through the algorithm ([20}21]), considering the dis-
criminant of the elliptic fibration order by order in the expansion in terms of the base
coordinate z. By enhancing the fiber of our elliptic fibration, we will see under which
conditions on the sections s; the order of the discriminant will enhance and then study
the resulting singular fibers. This will be done systematically up to singular I5 fibers for
phenomenological reasons and in section [3.5| we will provide details for some of the ex-
ceptional singular fibers. In a step-by-step application of Tate’s algorithm to the elliptic
fibration we find the various different types of Kodaira singular fibers decorated
with the information of which sections intersect which components. The discriminant
reflects the different ways in which the sections can intersect the multiplicity one fiber
components (as explained in section , thus giving rise to an increased number of
singular fibers over fibrations with fewer rational sections. The analysis will be carried
out in parallel both for canonical models (determined only by the vanishing orders of the
sections) and for non-canonical models (which require additional specialization arising

from solving polynomials in the discriminant.)

3.3.1 Starting Points

In the following we will assume that the fibration develops a singularity along the locus

z = 0 in the base. A singularity can be characterized by one of the following two criteria:
e The leading order of the discriminant as a series expansion in z must vanish.

e The derivatives of D|,—¢ in an affine patch must vanish along the z = 0 locus,

where ® is the equation for the fibration.

Since the leading order of the discriminant is a complicated and unenlightening expres-
sion, we will not present it here and instead study the derivatives of the equation of the
fibration. This will turn out to be significantly simpler and we will see that the discrim-
inant will enhance upon substitution of the conditions found by the derivative analysis.
On the other hand, throughout our study of higher order singularities we will look only
at the discriminant ignoring the derivative approach.

Let us then study the equation for the elliptic fibration in the affine patch with
coordinates (x,y), that is, where we can scale such that w = 1. Along the locus z = 0 we

assume that the fiber becomes singular at the point (z¢,yo) and require the derivatives
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to vanish
D _ 2 2 2 2 _ o
|2=0 =51,0 + 52,0T0 + 53,027 + 55,090 + 56,0T0Y0 + S7,0T5Y0 + 58,0Y) + 59,0T0Y; =
2
02D =0 =52.0 + 253,020 + S6,0Y0 + 257,0Z0Y0 + S9,0y5 = 0

0yD |20 =850 + 86,00 + S7,075 + 288,0Y0 + 259,0T0Y0 = 0.

(3.3.1)
We can solve for s3 o and s5 o from the last two equations
$2,0 = — 253070 — Yo(S6,0 + 257,070 + $9,040)
(3.3.2)
$5,0 = — Z0(56,0 + 57,020) — 2(s8,0 + 59,0Z0)Y0 -
Upon substitution in the first equation we can solve for s g
s1,0 = 53,020 + Yo (58,090 + T0(56,0 + 257,070 + 250,040)) - (3.3.3)

When s1 0, 52,0 and s5 o satisfy the above requirements the discriminant indeed enhances
to first order. We can bring the equation of the fibration in a canonical form, depending
only on the vanishing orders of the coefficients, by performing the following coordinate
shift

T T — row
— . (3.3.4)

Yy Y — Yow
We see that the singularity now sits at the origin of the affine patch and has generic
coefficients in addition to {s19 = s20 = s5,0 = 0}. This is an I; singular fiber, which
is the only fiber at vanishing order ord,(A) = 1 in Kodaira’s classification. That this
is indeed an I; fiber can also be seen by performing a linear approximation around the
singular point and noting that we obtain two distinct tangent lines, which shows that
this is indeed an ordinary double point. Since there is only one fiber component, all the

three sections will intersect it, and we will denote the singular fiber
1. (1,1,0,1,0,0,0,0). (3.3.5)

This does not exhaust the possible ways to solve the three equations in (3.3.1)). Indeed,
we can look at the affine subspace y = 0 and see that we can find additional solutions.
Note that we will not consider here the case x = 0 as this is related by the Zy symmetry

discussed in section The partial derivatives now read
D|,—y—0 =510 + 52,020 + 53025 = 0
8x@|zzy:o =890 + 283010 =0 (3.3.6)

2
Oy®|.—y—0 =55,0 + 56,070 + 7,005 = 0.
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We see that if we require {s19 = s29 = s30 = 0} the three equations are satisfied for
the two solutions of the quadratic equation {sso + s¢0x0 + 377037(2) = 0}, which are the
two singular points of an I Kodaira fiber as the discriminant enhances to vanishing
order A(z?). Indeed, looking at the equation of the fiber, we see that this splits in two
components

Dy z=y=0
(3.3.7)

2 2
D : z = 550w + sgowx + s7,02° + (sg 0w + S90x)y =0.

The two components indeed intersect in two different points, thus showing that this is an
I singular fiber. One of the sections intersects one component, while the two remaining

sections intersect the other, so we will denote this fiber as
1 (1,1,1,0,0,0,0,0). (3.3.8)

These two fibers represent the starting points for the analysis to be carried out in the
remainder of this section. Given the equation for the fibration, we can ask whether
z divides any of the coefficients s;. Then we can conclude, inside our preferred lop-

equivalence class, the following;:
o If 2 {s; and z 1 sy then the fiber over the locus {z = 0} is smooth.

o If z | 51,2 | 52 and z | s3 then we can carry on the analysis as in the next section

12(01|2)

and check whether the singularity is simply or some other enhanced kind.

I§Ol2) singular

o If 2 | 51,2 | 52 and z | 55 we will instead start our analysis from an
fiber. It is important to notice that in this part of the algorithm we will not let

z | 83 as this case is covered in the previous branch.

3.3.2 Enhancements from ord,(A) =1

From the previous section we have found exactly one starting point for the algorithm
which has a discriminant linear in z: (1,1,0,1,0,0,0,0). In this section we shall study
the various ways that this [; singular fiber can enhance. The discriminant of the
(1,1,0,1,0,0,0,0) fibration is

A= 317183’08870(8270 — 483@8&0)(8%08870 — 86,057,059,0 + 83708370)2 -+ 0(22) , (3.3.9)

up to numerical factors. The discriminant factors into five distinct terms which will
enhance the discriminant, and thus the singular fiber, when they vanish. As this set

of vanishing orders is specifying a fibration where z 1 s3 then we cannot consider the
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X X

Figure 3.1: The type I» and type III singular fibers with the possible locations of the

three marked points denoted by the blue nodes. Respectively these are Iéij k), Iéi‘j k),

I110k) and 170135 fibers.

situation where s3 9 = 0. Equivalently, because of the Zy symmetry explained in section
m we cannot consider sg o vanishing.

First let us consider the simple case where s1; = 0, which is equivalent to stating that
22 | 51. Then 22 | A and the singular fiber type, determined by resolving the singularity
explicitly as explained in section is Is. The three rational sections all intersect one

of the two components of the I, fiber
1% 1 (2,1,0,1,0,0,0,0), (3.3.10)

listed in table B.11

The discriminant can also be enhanced in order by allowing z to divide either of
the two polynomials in . Let us first consider the situation where 3%70 — 4530580
vanishes. The solution to this equation over this unique factorization domain is given in
appendix and states that

86,0 = HO308

83,0 = ,UU?%

580 = JI0% . (3.3.11)
The discriminant then enhances so that z? | A. To determine the type of singular fiber
here let us consider the equation of the single component of the I; fiber which is being

enhanced

(3370952 + s6,0TY + Sg7oy2) + zy(s70z + s90y) = 0. (3.3.12)

If 8%70 — 4530530 = 0 then the quadratic part of the equation factors into a square which

does not divide the cubic terms; this is exactly the form of the equation for a cusp, which
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is a type I fiber. Therefore we have observed the fiber

1,1,0,1,0,0,0,0
17012) ( ) : (3.3.13)

[_7 R uggu B 2,“'0_30—87 BE Mo—gv _]
from table [B.11
Finally we can consider the singular fiber that occurs when the second polynomial in
A vanishes: 5%05870 — 56,057,059,0 + 53708370 = 0. Appendix lists four generic solutions

of this polynomial, three canonical and one non-canonical, which are:
s7,0 = 89,0 =10
s70=530=0
s8,0 = S9,0 =0

87,0 = 0102, 890 = 0103, 880 = 0304, S30 = 0205, 860 = 0204+ 0305.

(3.3.14)

Any of the three canonical solutions will remove us from our preferred lop-equivalence
class and so we do not consider them as they will give rise to a redundancy of singular
fiber types. The only solution to consider therefore is the non-canonical one. The fiber
found at this locus is another I fiber, which can be written as

(1,1,0,1,0,0,0,0)
Ipme : , (3.3.15)

[—, —, 0205, —, 0204 + 0305,0102, 0304, 0103]

Table is then complete up to second order, once we also include the I2(01|2) which was

found in the previous section as one of the alternate starting points in the z | s3 branch.

3.3.3 Enhancements from ord,(A) =2

We will now consider the enhancement of the four previously found fibrations which have
a discriminant with vanishing order two in z. In this section we shall include the details
only of those enhancements that have some non-standard behaviour.

The fibrations (2,1,0,1,0,0,0,0) and (1,1,1,0,0,0,0,0) can contain, respectively, in
their discriminants polynomials with five and seven terms. These are not polynomials
that are discussed in appendix [AT] as their solutions are not known in full generality. In
lieu of a complete solution we consider non-generic but canonical type solutions which
allow us to obtain singular fibers of a particular type which would be unobtainable

without determining a full, generic solution to these polynomials.
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Figure 3.2: The type I3 singular fibers with the locations of the three marked points

denoted by the blue nodes. Respectively these are I. éij k), [?Eij ®) and I éi‘j *) fibers.

3.3.4 Polynomial enhancement in the z {s; branch

The discriminant of the equation for the (2,1,0,1,0,0,0,0) singular fiber contains the

polynomial
2 2 2
P = 58,0521 — 55,156,052,1 + 51,2560 + S3.0 (85’1 — 481728870) . (3316)

As the most general solution for this five-term polynomial is not known we propose here
two specific solutions. The first is a canonical solution obtained by setting s12 = s21 =

I;’LS(OIQ)

s51 = 0. As a consequence z3 | A and we find an singular fiber

1712 . (3,2,0,2,0,0,0,0) . (3.3.17)

Recalling the split/non-split monodromy distinction in Tate’s algorithm, we see only
two components in this singular fiber. One of the fiber curves decomposes when the
component of the discriminant, 3%70 —4s3058,0 has the form of a perfect, non-zero square.

The second non-general solution to the five-term polynomial we consider here is found

by canonically setting s12 = 0, and then the five term polynomial reduces to
_ 2 2
P|(5172:0) = 53158,0 — 52,156,055,1 + 85153,0 - (3.3.18)

We notice that we cannot set s3 ¢ to zero because we are in the z { 53 part of the algorithm
(and by Z symmetry we cannot set to zero sg o either). Moreover we just considered the
canonical solution given by setting sg 1 = s51 = 0. We are then left with imposing the

non-canonical solution given in appendix

S21 = 0102, S51 = 0103, S80 = 0304, S30= 0205, S0 = 0204+0305. (3.3.19)

(012)

The resulting singular fiber is then an I ;nc

Is(012) . (37 1,0,1,0,0,0, 0)
3,nc ’
[—,0102,0205,0103,0204 + 0305, —, 0304, —|

(3.3.20)
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3.3.5 Polynomial enhancement in the z | 53 branch

The other relevant details we will provide concern enhancements from the singular I2(01|2)

which has vanishing orders (1,1,1,0,0,0,0,0). The discriminant contains a seven-term
polynomial

2 2 2 2
P = 831550+ 57,0(53,1550 — $1,152,186,0 + 51,157,0)+
(3.3.21)

2
+ 53,1(—52,155,086,0 + 51,1(55,0 — 255,057,0)) -
Since a generic solution is not known for this polynomial, we again take advantage of a
simple canonical solution given by s11 = s21 = s31 = 0. We see that 24 | A and we

. 01][2
observe a singular IZS( 12)

1O 22.2.0,0,0,0,0). (3.3.22)

As in the previous case, we notice that the component of the discriminant s3 , — 4s5 07,0

provides the condition for the split/non-split distinction. If this quantity is a perfect,
(01]]2)

;nc

non-zero square, then applying the solution given in appendix |A.1{we have a split [ Z

o1)2) | (2,2,2,0,0,0,0,0)
,nc : ’
[—,—,—,0103,0102 + 0304, 0204, —, —|

I (3.3.23)
As in the previous subsection, we notice that if we only require s;; = 0 the seven

term polynomial reduces to the usual three-term one

P|(81’2:0) = 8570(83718570 — 837186708271 + 83718770) . (3.3.24)

The solution involving setting s5o to zero in addition to s12 would give the fibration

defined by the vanishing orders (2,1,1,1,0,0,0,0) which is an I§(01\2) fiber

(01]2)

I : (2,1,1,1,0,0,0,0) . (3.3.25)

We can also apply the non-canonical solution of appendix [A-I] to the three-term compo-

nent

S21 = 0102, 831 = 0103, 870 = 0304, S50 = 0205, 860 = 0204+0305. (3.3.26)

(01]2)

Upon substitution we find an Ig e

singular fiber

1,1,0,1,0,0,0,0
17012) ( ) , (3.3.27)

[_7 ) MU§a —, 240308, _7M0—§7 _]

75(01[2)

Sme (2,1,1,0,0,0,0,0), [—,0102,0108,0205,0904 + 0305,0304, —, —| . (3.3.28)
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HEHH

Figure 3.3: The I singular fibers and the decorations detailing where the rational sections

can intersect. The fibers shown are Ifjk), Iiij‘k), Iiijuk) and Ifmk) fibers.

3.3.6 Enhancements from ord,(A) =3

We now proceed to consider enhancements of the discriminant starting from the fibers
with ord,(A) = 3, listed in table and we report here the cases that deserve mention
due to some peculiarity. In particular we will consider distinctions between split and
non-split singular fibers and an instance where we will need to consider the structure of

the algorithm in order not to reproduce singular fibers already obtained.

3.3.7 Split/non-split distinction

ns(012)

We recall that in the previous section we found an I singular fiber and we now

determine the enhancements of this fiber. The discriminant takes the form

A = 51,333,038,0(3(25,0 — 483’08870)(8%08870 — 86,057,059,0 + 83708370)2’3 + 0(24) . (3.3.29)

5(012) singular fiber

The simple enhancement s 3 = 0 will produce an IZ
112 (4,2.0,2,0,0,0,0) . (3.3.30)

As already observed, the discriminant component 5370 —4s3,05g8,0 indicates that when this

quantity is a perfect, non-zero square, we obtain the split version of the singular fiber.

Applying the solution in appendix [A.1| we then find the singular IZ}T(L);Q)
L) . (4,2,0,2,0,0,0,0), [, —, 0103, —, 0102 + 0304, —, 0204, —] . (3.3.31)

Another instance where the split/non-split distinction arises is in the case of type IV
fibers. Consider the singular 17 19" listed in table m This has discriminant

A= M60308(857103 — 827108)(89’003 — 877008)23 + O(Z4> . (3.3.32)

We remark that this was obtained in the algorithm by an application of the non-canonical

solution to 5(230 — 4530580 = 0 and therefore 03 and og are coprime. Enhancing the
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Figure 3.4: The IV fibers. We denote by the blue nodes the components of the fiber
which are intersected by the sections. In the order, the fiber shown are [ y gk) -y (ilik)

and IV (ilk) fibers.

discriminant by solving non-canonically the first of the two-term polynomials requires

setting
s51 = 162, o3 = &3, 521 = 183, og = &2 (3.3.33)

Where coprimality of (o3, 0g) was used in order to set & = 1. The singular fiber corre-

sponding to this enhancement is a type [ VTZSQ(OH)

V') (2,1,0,1,0,0,0,0), [, 6165, w3, €160, 2ubabs, — péd, —]. (3.3.34)

Then the discriminant indicates the quantity that needs to be a perfect square in order

for the fiber to become a split type 1 Vig 12)

in appendix we find

. This is €2 —4ps1,2, and applying the solution

TV 2 (2,1,0,1,0,0,0,0), [6264, E3(5182+6304), 610363, E2(8182+6304), 281 63E0€3, —, 610363, —]
(3.3.35)

3.3.8 Commutative enhancement structure of the algorithm

We consider enhancements from the 11 17216\202)

twice the solutions in appendix Schematically

fiber type. This was found by applying
™ — 1M Y (3.3.36)

Noting that in the last step a coprimality condition had to be imposed, the discriminant

of this singular fiber takes the form
A = (s3,6565¢D)2° + 0(2"). (3.3.37)

We see that requiring the vanishing of any of the & would imply setting to zero two
among 57,0, 59,0, 53,0, 58,0, but we are not allowing the vanishing of any of the those sec-

tions to remain in our lop equivalence class or because we are in the z { s3 branch of
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Figure 3.5: The I5 singular fibers. The possible intersections of the sections with the

singular fibers are denoted by the positions of the blue nodes. The fibers shown in the

first row are [, éij k), Iéij *) and T, éij Hk), whereas the fibers shown in the second row are,

respectively, Iéilﬂk) and Iéiljl\k).

the algorithm. Moreover, we have considered the case si;; = 0 in another part of the
algorithm (specifically in going I 5012) — 15012)). We can therefore conclude that all the
enhancements would just reproduce singular fibers found in other parts of the algorithm.
The order in which the enhancements are carried out is of no importance, but it is cru-
cial, in particular with non-canonical fibers, to keep track of which enhancements would

reproduce fiber types already obtained.

3.3.9 Enhancements from ord,(A) =4

In this section we will proceed with the algorithm by again mentioning only enhancements
which require comment. In particular we will deal with the structure of obstructions to
full generality due to the complexity of polynomials in the discriminant, we will encounter
the distinction between split and semi-split fibers for /j and we will provide details for
one of the I .3, obtained by solving non-canonically polynomials in the discriminant

three times.

3.3.10 Obstruction from polynomial enhancement

At vanishing order of the discriminant ord,(A) = 4 we find again the two obstructions

to full generality encountered at ord,(A) = 2, i.e. the same five-term and seven-term

polynomials. These come up respectively in the discriminant of the singular fibers IZS(OIQ)
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and 17012

of 135(012) and 155(01\’12). We therefore review the singular fibers that we obtain from the

, and will in fact be present at every even vanishing order in the discriminants

enhancements. More details can be found in section B.3.3

ns(012)

The discriminant of the singular fiber I, :(4,2,0,2,0,0,0,0) contains a compo-

nent
A P = 2 - + 2 + 2 —_ 4 3 3 38
) 38,032,2 55,256,052,2 81,456,0 53,0 (55,2 51,458,0) . ( +J. )

As in section [3.3.3] we consider two specific solutions. The first one consists of setting

51,4 = 822 = S52 = 0. This gives the singular fiber Igs(ou)

112 . (5,3.0,3,0,0,0,0) . (3.3.39)

Upon imposing the perfect square condition 5%’0 —4530880 = p? we find the singular fiber

1 55(012). Alternatively, we set s1 4 = 0 and we solve non-canonically, as in appendix

the resulting three-term polynomial polynomial

2 2
P|(sl’4:0) = 559580 — 52,256,055,2 + 55253,0 - (3340)

(012)

This gives the non-canonical singular fiber 1 ;nc

75(012)

5nc - (5,2,0,2,0,0,0,0), [—,0102,0’20’5,0’103,020’4—i-0'30'5,—7030'4,—]. (3.3.41)

The second obstruction that we encounter is, again, the seven-term polynomial in the

discriminant of the singular IZS(OIHQ)

2 2 2 2
A D P =8359850+ 57,0(52,2550 — 51,282,286,0 + 57 257,0)+
(3.3.42)

+ 53.2(—52,285,086,0 + 51,2(58.0 — 285,057,0)) -

The canonical solution that we consider requires s12 = s22 = s32 = 0. This gives a
singular Igs(01\||2)
1R (3.3.3,0,0,0,0,0) . (3.3.43)

The split version Ig(mlHQ)

is found upon imposing that 3270 —45s5 057,0 is a perfect, non-zero
square. We can also consider the solution where 512 = 0 and the three-term polynomial
component of the resulting polynomial is solved non-canonically. This enhancement now

produces an 502 750L12)

5me » but this is just a non-generic specialization of one of the 5nc?

fibers also found in the algorithm and so we do not consider it further.
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3.3.11 Split/semi-split Distinction

The split/semi-split distinction arises for singular fibers of Kodaira type 5. The example
we provide concerns the possible enhancement of the canonical type I Vs0L2)  which was
found schematically by

" — O pys12) (3.3.44)

The discriminant takes a rather simple form
A= 82,1577088,024 + 0(25) . (3.3.45)

The enhancement we will consider here is when sp 1 = 0. As a consequence 22 | 59 and

2% | A. This way we have found the semi-split ISSS(OHQ)

;O 2.9.1,1,1,0,0,0). (3.3.46)

xs5(01]2)

In order for one of the curves of the I, to split into two separate non-intersecting

components, we need to satisfy a perfect square condition for the quantity 5%71 —451,2580-

Following appendix [A.1| we find the split Igjfglm

*s(01]2)
IO,nc

: (2,2,1,1,1,0,0,0), [0103, —, —, 0102 + 0304, —, —, 0204, —| . (3.3.47)

3.3.12 A thrice non-canonical 5

In this section we provide details for an I, ; (T?(E,,HQ). This singular fiber is observed in the
algorithm by schematically enhancing
HOUD O s, o), (3.3.48)

All the three arrows represent non-canonical enhancements. In particular enhancing from
1501|2) to Iss(oll\?)

e . Tequires solving a three-term polynomial present in the discriminant.

Thisis A D (5% 057,0 — 58,056,059,0 + sg 055,0), which is solved by requiring

580 = 0102, 890 = 0103, S7,0 = 0304, S50 = 0205, 860 = 0204+ 0305. (3.3.49)

(0[1]2)

nc

Note that this solution implies that (o2,03) are coprime. This gives an I3 . Look-
ing at the discriminant of this singular fiber we see that one of the components is
A D (O‘%SLl — 0203521 + 055371). We apply again the same solution to this three-term

polynomial

o3 =28, 02=28, s11=2E88, s31=2E88, s21=E8E8+EE. (3.3.50)

Where we used that (o2,03) are coprime to set £ = 1. We have now enhanced the
(0[1]2)

ez - To obtain the thrice non-canonical I5 we now consider the

singular fiber to an Ij
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two-term polynomial contained in the discriminant at fourth order: A D (04&4 — 05&5).

Applying the non-canonical solution in appendix

04 = 51(52, 54 = 53(54, o5 = 51(53, §5 = 0904 . (3.3.51)

(0[1[[2)

We have now reached the singular fiber I ; B

ORI (1,1,1,0,0,0,0,0)

(3.3.52)
[£30304, 04(0382 + 02€3), £20204, 30103, 01 (0283 + 03€2), 0162&2, 01&3, 01&2] .

3.4 U(1) Charges of SU(5) Fibers

In section [3.3] a variety of different, canonical and non-canonical, I5 type singular fibers
were found, and are listed in table As elliptic fibrations with SU(5) singular fibers
are phenomenologically interesting in this section the U(1) charges of the matter loci
are determined for the Iy fibers obtained, which lie in the chosen lop-equivalence class.
The U(1) charges are calculated from the intersection number of the matter curve with
the Shioda mapped rational section, as explained in section [3.2.3] For the canonical I
singular fibers we find, as expected, the same results that were found from the study
of toric tops. Details of the relationship between the canonical models and the SU(5)
top models and their charges as found in ([1]) are given. In the algorithm a number
of non-canonical models which, as far as the authors are aware have not been seen
before, were found, some of which are can realize two or even three distinctly charged 10
matter curves, potentially a desirable feature, also some models realize as many as seven

differently charged 5 matter curves, which are of some interest in light of (]53]).

3.4.1 Canonical I5; Models

The U(1) charges of the canonical models are found in table Models with these
particular U(1) charges are well-studied in the literature. In this subsection we pro-
vide a short comparison to the known toric constructions from tops (|59]) , which were
constructed with two extra sections in ([1524,51}54]).

The toric tops as extracted from (]1]) are also given by vanishing orders of the coeffi-
cients of the cubic polynomial and are related to what we called canonical models.
In order to see this we need to perform a series of lop transformations to bring them to
the equivalence class of singular fibers considered in this chapter. Section [3.2.2| contains
the details of the lop transformations. All the tops were found as part of the algorithm

and exhaust the canonical models. The U(1) charges of the matter content matched the
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results found here identically for what was called tops 1 and 2, whereas for tops 3 and
4 a different linear combination of the U(1) charges was used. The details of this linear

combination are given in terms of our choice of U(1) generators.

Fiber Model Matter Locus Matter
51,2 531D 5_3_1
56,0 1012 P 101 2
S7.0 53, _4®5 34
s(0]1][2) ’ ’ ’
15 (272527170705170) 5 g
59,0 3,6 D936
56,0588,1 — $5,159,0 5_21®52_1
2 2 =
$3,256,0 — 52,256,057,0 T 51,2570 5 2 _4@524
56,0 10_1,0® 1010
57,0 52, _1®5_21
$8.0 5_5_1D531
s(01]]2) , , ,
IS (372527170705070) 5 @g
$1,3586,0 — 52,255,1 2,0 —2.0
53,2586,0 — $2,257,0 5_3,0®P 53,0
56,059,0 — 57,058,0 52105 21
53,1 5_3,1® 53,1
56,0 10_12® 10,2
57,0 5o, _4®5 24
s(0[1]2) ’ ’ ’
15 (372517170705170) 5 g
59,0 260926
55,159,0 — 56,058,1 521 D5 2 _1
2 2 =
83,1551 — 52,285,156,0 + 51,356,0 5_3_4@534
$3,1 54,0 D 5-4,0
56,0 10_2,0® 1020
S7.0 51,1 ®51,-1
5(01]2) , , ,
]5 (472517270707070) 5 g
58,0 41 D D41
56,059,0 — 57,058,0 5_ 1,19 51,1
2 2 =
$1,456,0 — 52,255,256,0 + 52,258,0 5_1,0D510

Table 3.5: U(1) charges of the canonical /5 models from table

In table[3.6)the tops are listed with the numbering and vanishing orders as in appendix
A of ([1])(polygon 5), the lop equivalent models as found in Tate’s algorithm and details
for the linear combination of the U(1) charges for top 3 and top 4.
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Top Fiber | Vanishing Orders | Lop-equivalent model | U(1) Linear Combination
Top 1 | ;" 1 (2,2,2,0,0,1,0,0) | (3,2,1,1,0,0,1,0) -
Top 2 | ;M 1(1,2,3,0,0,1,0,0) | (2,2,2,1,0,0,1,0) -
Uy = —w
Top 3 | 22 | (1,1,2,0,0,2,0,0) | (3,2,2,1,0,0,0,0) ! !
up = £(wy — wp)
Uy = —wW
Top 4 | O | (1,1,1,0,0,2,0,1) | (4,2,1,2,0,0,0,0) ' '
up = $(wa — wy)

Table 3.6: The lop-equivalent models of the four tops from ([1]). The linear combination
of the U(1) charges gives the charges found in table uy and ug, in terms of the U(1)
charges of the top model, w; and wo. The reason the charges of tops 3 and 4 differ is
because the lop translation involves the Zs symmetry, which exchanges two of the marked

points.

3.4.2 Non-canonical /5 Models

Listed in tables to are the U(1) charges of the, respectively once, twice, and
thrice, non-canonical I5 models found in the algorithm. The U(1) charge generators are
given by the Shioda map, as described in section where the zero-section of the
fibration corresponds to the divisor Iy = 0 after the P? fibration ambient space has been
blown up into dP,. As opposed to the canonical models the majority of the models
tabulated in this section were previously unknown. Some of these models appear to have
interesting properties for phenomenology, such as the above noted multiple differently
charged 10 and 5 curves.

While Tate’s algorithm provides a generic procedure there are some caveats that were
introduced in the application of it studied in this chapter. There are situations where
we were not able to solve for the enhancement locus in the discriminant to a reasonable
degree of generality. In these cases we have sometimes, as discussed in section used a
less generic solution where it was obtainable in such a way that it did not lead to obvious
irregularities with the model. In cases where no such solution was obtained we have left
that particular subbranch of the Tate tree unexplored.

Throughout the application of Tate’s algorithm the fibrations have remained inside
the chosen lop-equivalence class and so each each model in these tables then represents an

entire lop-orbit of fibrations. The Zy symmetry which acts inside this orbit interchanges



Chapter 3. Tate’s Algorithm for F-theory GUTs with two U(1)s 72

two of the three marked points of the fibration, which correspond, in the d P> hypersurface,
to the exchange of I; and ly. As the U(1) charges are computed from a Shioda map
where the zero-section is taken to be I3 = 0 the U(1) charges are rewritten as a linear
combination under this symmetry in an identical manner to the linear combinations
occurring in the tops in table [3.6

One may point out the surprising paucity of non-minimal matter loci in these mod-
els with highly specialised coefficients. In the fibrations which are at least twice non-
canonical there can occur polynomial enhancement loci where some of the terms in the
solutions (as given in appendix are fixed by a coprimality condition coming from a
previously solved polynomial. Were these terms not fixed to unity by the algorithm then
they would contribute non-minimal loci to the fibrations.

In ([1,/51]) there were listed tops corresponding to an SU(4) non-abelian singularity
with two additional rational sections, and it was noted that one expects multiple 10
matter curves where these tops are specialized with some non-generic coefficients of the
defining polynomial, and such a model, which realizes multiple 10 curves, was constructed
there from the SU(4) tops. Included in table |3.7| are the relations (via the lops) between
these SU(4) tops and the SU(4) canonical models which underlie the once non-canonical

SU(5) models obtained in the algorithm.

Top Model | Fiber | Vanishing Orders | Lop-equivalent Model
Top1 | 1" 1 (1,1,2,0,0,1,0,0) | (2,1,1,1,0,0,1,0)
Top2 | 1™ 1(0,1,2,0,0,2,0,0) | (2,2,2,1,0,0,0,0)
Top3 | 1" | (1,1,1,0,0,1,0,1) | (3,2,1,1,0,0,0,0)
Top4 | 1™ 1(0,1,2,0,0,1,0,1) | (2,2,2,1,0,0,0,0)
Tops5 | I 1(0,0,1,0,0,2,0,1) | (3,2,1,1,0,0,0,0)

Table 3.7: The SU(4) tops associated to polygon 5 in appendix B of ([1]) are related to

the canonical I models listed in table by lop-equivalence.

Note that for SU(4) top 4 is lop equivalent to top 2 and top 5 is lop equivalent top
3, and their U(1) charges, as listed in appendix B of ([1]), can be written as a linear

combination of the lop-equivalent model.
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Fiber Model Matter Locus Matter
o1 5_35,_6 D b3
o3 52, _6®b_26
o4 5_354® 534
155(0'1"2) 2.2,2,0,0,0,0,0) 0204 — 0305 10_1, 2 @TU1,2
-, —,—,0205,0204 + 0305,0304,0102,0103] _
A.2.1 5_3_1®53,1
A.2.2 52,1 5_21
A.2.3 524D 5_2,_4
o2 101, 2®10_12
o4 10:3 @TO_1,—3
57,0 5_24®52,_4
155(0‘1‘2) (2,1,1,1,0,0,1,0) 500 5 5 @500
[o103,0102, —, 0304, 0204, —, —, —| _
0483,1 — 0187,0 53,1 D 5-31
0288,1 — 0359,0 534 @ 5_3_4
A.2.4 5 2 _1®52,1
o2 10_1,_2®10:1 2
o3 5_34®b3_4
o4 10_,3®10;, 3
[58(0|1H2) (2,1,1,1,0,0,1,0) 9.0 5 3 _6®b3s
[—,0102,0108, —,0204,0304, —, —| _
0481,2 — 0185,1 5_3,-1@ 53,1
020488,1 — 55,159,0 524®5_2_4
A.2.5 55,1 ®5-2,1
o1 10_22 ® 1022
o2 1032 ®10_3 2
o3 5_16®b51,-6
Ig(l‘om (3:2,1,1,0.0,0.0) 04 546® 54,6
[——,—,—,0102,0103,0204,0304] _
83,1 54,1 ® 54,1
A.2.6 5_11® 51,1
A.2.7 5_1,-4® 514

Table 3.8: U(1) charges of the once non-canonical I5 models from table
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Fiber Model Matter Locus Matter
o1 1020 @ 10_2
o3 10 30 © 103
o) 54,0 ® 540
o (3,2,1,1,0,0,0,0) - o5,
(0205, 0204 + 0305, 0304, 0102,0103, —, —, —] B
88,0 541D 541
010359,0 — 57,058,0 5,1D5 11
A.2.8 51,05 5-1,0
o1 50,6 ® 50,6
op) 5160516
o3 5118511
0 (4,2,0,2,0,0,0,0) o4 5115 1 1
[—, —, 0304, —, 0204 + 0305, 0103, 0205, 0102] 05 5 1_4®514
0204 — 03075 1002 ¢ 1002
A.2.9 50,—4 B 504
A.2.10 50,1 D 50,1
09 5_1,0® 510
o3 511®5_11
04 5_11®511
Ig(om) (5,2,0,2,0,0,0,0) o 510D5_10
[—,0102,0205,0103,0204 + 0305, —, 0304, —| 0204 — 0305 10,0 ® 1009
0387,0 — 02590 50,1 ® 50,1
0487,0 — 05590 50,1 D 50,1
A.2.11 50,0 @BO,O

Table 3.9: U(1) charges of the once non-canonical I5 models from table (continued).
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Fiber Model Matter Locus Matter
& 53,1 ®b_31
o2 5_21®52-1
0263 — 032 10:0®10_1,
155(01H2) (2,2,2,0,0,0,0,0) 0284 — 035 53,0 @ 5-3,0
[€384, 8284 + €385, €285, 0383, 0283 + 0382, 0282, —, —] _
£258,0 — £359,0 531 ®5_3_1
0288,0 — 0359,0 5 5_1®b21
A.2.12 52,0 ® 520
& 52,6 ® b5 26
&3 101, 2 ® 1012
&4 5_3_6®b36
o (2,1,1,1,0,0,0,0) N 10120 T0 4
[—, 01€3,01&2, —, 0483, 04€2, €384, €284 _
A4.2.13 521 @5 21
A.2.14) 5_3,-1® 53,1
A.2.15 524 ®5-2,-4
& 1011 ©10_1,_4
&s 531 ®5_3,1
o2 5_21®52_1
o (2,1,1,1,0,0,0,0) .. 10106010
(€364, 0263, 03E3, E2€a + €385, 0282, 0382, E2&5, —] -
&28502 — 03590 5 2_1®52,1
A.2.16 53,0 ®5-3,0
A.2.17 5_2,0 ® 52,0
& 1032 ¢ 10_3 2
& 546®5-4,-6
£ 10_22 ® 1022
) (2,1,1,1,0,0,0,0) 2 51,6 ® 51,6
[0304,0381&3, —, 0204 + 03€1€2, 02&€1€3, 384, 02€1€2, E2&4] o2 102 _3® 1023
&3€403 — 02831 541 ®5_41
A.2.18 5.1,-4® 514
A.2.19 5_1,1® 51,1
&3 1051 ©10_3;
&y 542®5_4,_2
(1,1,1,1,0,0,1,0) & 10540100,
155(0'2"1) [€2€38586,E38604 + &28503, 0304, S 1004 € iojsﬁél
&s 547D 54,7
Eabebr + £38485, £1626386, 618203, €467, E1€364] _
o3 54, 3®5 43
A.2.20 5.1,-3@ 513
A.2.21 5.12® 51,2

Table 3.10: U(1) charges of the twice non-canonical Is models from table
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Fiber Model Matter Locus Matter

o1 101,39 10_13

02 53,_4®b_34

(1,1,1,0,0,0,0,0) © P20 @520

EOM | (66080, 64(5s6s + 6a€s), E26264, o Ps0 @800
€205 — €403 | 1012 @101 s

30104, 01(0283 4 0382), 010282, 01&3, 01&2] 4,999 5 01 ® 5

A.2.23 531 ®5_3,1

A.2.24) 5_2,-4® 524

Table 3.11: U(1) charges of the single thrice non-canonical I5 model from table

3.5 Exceptional Singular Fibers

In this section the algorithm is continued up to the exceptional singular fibers. In de-
termining the exceptional fibers we recall that the sections can only intersect the fiber
components of multiplicity one, which means that there is a very restricted number of
singular fibers.

For what concerns the type IV* singular fiber there are three different ways in
which the sections can intersect the multiplicity one components. These are the types
Tv*012) 1y7+(0112) and 7V *O12) - As can be seen from ﬁgurethe three multiplicity one
components of the I'V* singular fiber appear symmetrically, and so sections separated by
a slash merely indicates that they do not intersect the same multiplicity one component.

Regarding the singular I11* fibers, the possible ways the sections can intersect the
components restrict the range of singular fibers to I17*(°12) and 177*O42) The different
singular fibers can be seen in figure [3.7]

Finally it is clear that the only type II* fiber one could find (since there is only one
multiplicity one component) is the IT *(012) " This fiber is also shown in figure

It was also possible to obtain the singular fibers corresponding to gauge groups Go

and Fy which come from, respectively, the non-split singular fiber types Igns(OlQ) and

Iv*ns(012).

Proceeding through these subbranchs of the Tate tree will involve the I} fibers corre-
sponding to Dynkin diagrams of D-type in the split case. There fibers are composed of a
chain of multiplicity two nodes with two multiplicity one nodes connected to each end of

the chain. As the rational sections can only intersect the multiplicity one nodes they are
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Figure 3.6: The type IV*® fibers. The sections, which intersect the components of
the IV*® fiber represented by the blue nodes, are seen to intersect only the external,
multiplicity one components. Because of the S5 symmetry we write these as IV*$(7k)

Tv*s(ilk) and TV*s(ilk) respectively.

constrained to lie of these outer legs. The notation of these fibers shall be (01) represents
two sections on the same leg, (0|1) represents two section intersecting two of the outer
legs attached to the same end of the chain, and (0||1) will represent two sections sitting

on multiplicity one component separated by the length of the chain.

3.5.1 Canonical Enhancements to Exceptional Singular Fibers

The starting point for the enhancements to the possible canonical exceptional singular
fibers is the 1885(01‘2) :(2,2,1,1,1,0,0,0). Recall that one of the fiber components will
split only if the condition 3%1 — 4812880 = p? is satisfied for some p. The discriminant

at sixth order takes the form

A =57 gs30(531 — 4512880) (51,2570 — 831851570 + 531580)7)2° + O(z") . (3.5.1)
First let z | sg and the resulting fiber is of type Ils(omll). The discriminant at seventh
order reads

A = 82713%0(837185,1 — 81,28770)2337027 + O<Z8) . (3.5.2)

Now let 22 | s5 and the first exceptional singular fiber is found; it is of type I y*(0112)

TvOI2) . (9.2.1.2.1,0,1,0). (3.5.3)

This subbranch of the tree does not continue because the discriminant now takes the

form A = 31,2377039,028 + O(2?) and the only possible enhancement that remains inside
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Figure 3.7: The type I1T* and IT* fibers. Shown are the two type I11*(9%) and I17*(1k)
fibers where the sections are distributed over the two multiplicity one components, and
the single type IT*(%%) fiber, which has all three sections intersecting the single multi-

plicity one component.

the lop-equivalence class, the vanishing of s1 2, is a non-minimal enhancement.
Looking back at the Ij starting point, the discriminant can instead be enhanced by
letting the three-term polynomial vanish, through the canonical solution s12 = s31 = 0.

Iiks(01||2)

This gives an singular fiber. The discriminant at seventh order takes the form

A= 83728;18?08%7027 +0O(2%). (3.5.4)

The discriminant is enhanced further by letting s5; = 0. This gives the second excep-

tional singular fiber, that is a type I1V*(012)

V02 . (32.2.2.1,0,0,0). (3.5.5)
Proceeding in this subbranch, the discriminant now reads
A = 53,557 05807° + O(27). (3.5.6)

The only enhancement which is possible (as all the others are non-minimal enhancements)
is s39 = 0. The canonical excpetional singular fiber that arises from this enhancement
is 117*(0112)

11O . (3,3,2,2,1,0,0,0). (3.5.7)

Every further enhancement in this subbranch is a non-minimal fibration.

3.5.2 Non-canonical Enhancements to Exceptional Singular Fibers

In this section the remaining exceptional fibers are obtained through non-canonical en-

(012)

hancements of the discriminant. The starting point is the singular I;L s given by the
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vanishing orders (3,2,0,2,0,0,0,0). The discriminant contains A D (3%70 — 453058,0)-

Following appendix [A.1] it can be solved non-canonically to find a non-split Ig;ﬂom)
associated to gauge group G
L) (3,2,0,2,0,0,0,0) [, —, po?, -, 2u0s0s, —, po?, . (3.5.8)

The next exceptional singular fiber is found through the following series of enhancements

#ns(012)  {s1,3,52,2,55,2=0} *ns(012)  P=0 *n.s(012)
IOJTC Il,nc ? IVncz

(3.5.9)
P = (O’%Sg,l — 030856,1 + U%S&l) .

Where the non-canonical solution to the three-term polynomial was applied to find a
V*ns(OlZ)

nc?

singular [ with gauge group Fj

1V 1 (4,3,0,3,0,0,0,0) [, —, pu&+E6s7, —, 2ubabat(Eabatbals)z, — n+6s€az, -]
(3.5.10)
It was also necessary to specialize terms linear in z in the expansion of the coefficients.

From this singular fiber the remaining two fiber types can be reached through

IV*ns(OlQ) Sﬁo HI:(om) CEQ H.*(om)

nc? c? ned

(3.5.11)
Q = (8538 — 52,383) -

The singular fibers obtained this way are type 11 I;‘;f:‘;”)

8. (5,3,0,3,0,0,0,0) [, —, p€f+&bsz, — 2uéabat(Eabattals)z, — uEi+Es€az, ],
(3.5.12)

. #(012)
and the singular fiber type I
' (5,3,0,3,0,0,0,0)

(3.5.13)

[—, 6103, 1103 + 6352, 6102, 210203 + (634 + 02&5)2, —, 1165 + dalsz, —].



Chapter 4

Aspects of M-Theory

In Chapter [2| we encountered M-Theory through a chain of dualities relating it to F-
Theory. In this chapter we are going to study it in its own right, as the non-perturbative
limit of Type ITA string theory, whose low energy limit is 11-dimensional supergravity. In
([2]) Witten was then able to relate the known string theories to a single 11-dimensional
theory, then called M-Theory. The perturbative limit could be re-obtained by compact-
ifying M-Theory on a circle, whose radius was found to be proportional to the string
coupling g of Type ITA string theory. Through T-duality and S-duality, and thanks to
the statement that the low energy limit of M-Theory compactified on an interval S!/Zs
is found to be the Heterotic Fg x Fg string theory ([86]), it was possible to relate all the
known string theories to one higher dimensional theory.

Nevertheless, very little was known about M-Theory and still today a great part of it
remains unexplored. The reason behind this, is that perturbation theory has no access
to it due to the absence of the string coupling. This fact is indeed signalling that the
fundamental string is not part of the theory any more, but is replaced by membranes and
fivebranes, also known as M2 and Mb-branes. However, the dynamics of such branes is
not inferable from that of D-branes exactly for the lack of fundamental strings. While the
worldvolume theories on stacks of D-branes can be extracted from open string scatterings,
the same does not hold for M-branes. Indeed, M5-branes interact through M2-branes,
but the scattering of the latter has not yielded the same results of strings scattering.
As a consequence, M-Theory has only a non-perturbative regime, into which it has been
hard to gain insight. However, it has provided a unified perspective which has helped to
understand many aspects of 10-dimensional string theories and lower dimensional field
theories.

In particular, the worldvolume theories on stacks of M2 and M5-branes have been

80
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two of the problems of the string theory program which have received most attention in
the last years. In this chapter, we review recent progress in the understanding of such
theories. The dynamics on parallel M2-branes has advanced considerably in the last years,
while the one on parallel M5-branes is still largely unexplored. Both the BLG (Bagger-
Lambert-Gustavvson)(]34]) and the ABJM (Aharony-Bergman-Jafferis-Maldacena) ([5])
models allowed to gain great insight into the theories of coincident M2-branes. On the
other hand, a framework in which progress has been achieved towards theories of multiple
Mb5-branes in M-Theory, is the one of higher gauge theory, see e.g. (|87-90]). Such
theories are a ‘categorification’ of usual gauge theory, where the latter are described by
a principle bundle over space-time, allowing to define the parallel transport of point-
particles. This can be understood in the D-brane picture as the parallel transport of the
end-points of the strings through which D-branes interact. However, the mirror picture
for membranes in M-Theory requires the parallel transport of string-like objects (since
interactions are through M2-branes, whose boundaries are 1-dimensional). It turns out
that taking into account the parallel transport of strings requires the ‘categorification’ to
higher gauge structures, i.e. one needs to consider 2-bundles (or higher structures) rather
than usual vector bundles. This means considering a functor between two categories
rather than a morphism between two objects of a category, i.e. the usual vector bundles
in gauge theory. We will not investigate further this direction, but the BLG, ABJM
models and the Lambert-Papageorgakis model for M5-branes, which we will discuss later,
have been shown to be expressible in the framework of higher gauge theory ([91,92]).
Nevertheless, the theory on coincident M5 has produced, through different compact-
ifications, a number of results and dualities in lower dimensional field theories that we

also review in the following.

4.1 M-Theory and M-Branes

M2 and M5-branes are half BPS solution of 11-dimensional supergravity, the low energy
theory describing M-Theory. Recall the field content of 11d supergravity. We have the
metric (graviton) g,.(z), p,v = 0,1,...,10 which constitutes 44 degrees of freedom
on shell, being a symmetric traceless tensor. The other 84 bosonic degrees of freedom
is represented by a three form C3 = C),,». The super-partner of the graviton is the
gravitino V¥ ,,, transforming in a tensor product representation of a space-time vector
and a spinor. On shell, the gravitino contributes indeed the 128 degrees of freedom
needed for supersymmetry. The action for 11-dimensional supergravity turns out to be

unique and it was found in the seminal paper by Cremmer, Julia and Scherk and its
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bosonic part is ([931/94])

1 1
Si1 D /dna:\/]g]R— (2F/\*F+ 503 /\F/\F> : (4.1.1)

where F' is the field strength of the potential C's and R is the Ricci scalar of space-time.

The relationship between 11-dimensional supergravity and the 10-dimensional super-
gravity theories has been elucidated in a number of papers ([95-97]). The 10-dimensional
theory turns out to be recovered in the limit in which the 11-dimensional one is studied
on a space of the form M0 x S, and the radius R of the circle vanishes. Such relation
between supergravity theories was finally interpreted in the seminal papers by Townsend
([98]) and Witten ([2]). Type IIA string theory, being the UV completion of Type ITA su-
pergravity, is understood as the compactification of a new theory, then called M-Theory,
on a circle. In particular, the relation between the radius of the circle and the coupling

constant g, is found to be
R = gsls, (4.1.2)

where [, is the string length. We see that upon reducing on the circle the perturba-
tive limit in g, is restored, but in the decompactification limit M-theory results to be the
strongly coupled regime of type IIA string theory. In particular we see that in the strongly
coupled phase of type IIA an extra dimension opens up. However, 11-dimensional su-
pergravity, and therefore M-theory, do not have a dimensionless parameter about which
it would be possible to expand. It follows that, without any perturbative access to it,
M-Theory remains greatly unexplored. In the following, we will look at the fundamental
objects of M-Theory, which will turn out to be membranes rather than strings.

In order to find the BPS solutions one looks at the gravitino supersymmetry variation

(194))

00 o = Dy(w)e + ﬁ (F”‘m‘; - srkmaz) Fororwe =0 (4.1.3)

where D, (w) is the covariant derivative depending on the spin connection. Solutions were
found describing half BPS objects which are now known as M2 and M5-branes. Without
going into the details of the actual supergravity solutions, we can get a hint as to why
we must have such solutions by looking at the superalgebra associated to 11-dimensional
supergravity

1

= (T2 Y Z o (4.1.4)

_ Lo
{Qa: Qs} = "C NapPu+ 5O apZpn +

The presence of the central charges Z,, and Z,,),, signal the existence of respectively

two and five dimensional object in space. A similar argument follows from the potential



Chapter 4. Aspects of M-Theory 83

three-form C5 which couples electrically to the worldvolume S of M2-branes through
/ sC3= f s Cupndz? N dx” A dz*, where we pull-back the C3 form to the worldvolume of
the M2-brane. Similarly we find the magnetic coupling by applying Hodge duality to the
field strength of C3

C3 — Fy = Fy — Cg. (4.1.5)

Then we can pull-back Cg to the worldvolume W of Mb5-branes via fW Ce to obtain the
correct coupling. As we saw, reducing on a circle we recover the perturbative limit of
type ITA string theory, which means that by reducing the M2 and the M5-branes we
should recover the D-branes present in type ITA (see e.g. (|98H100]) for a more complete
discussion). This is indeed the case and we can see that we must have that the M2-brane
reduces to the fundamental string F1 when it wraps the M-Theory circle, or to the D2-
brane when the worldvolume is transverse to the M-Theory circle S}, (see (|[101H103])
for a discussion in the case of the BLG model). Similarly, the M5-brane reduces to the
D4-brane when wrapping S}, (see (|104,105]) for a more accurate discussion) and to
the NS5-brane when its worldvolume is transverse to SJI\/[' Obtaining DO and D6 branes
is more complicated, but it turns out that the former correspond to momentum modes
along the M-Theory circle ([98]) which indeed needs to be quantised. D6-branes, which
are related by electric-magnetic duality to D0O-branes (which couple in type ITA to the
Ramond-Ramond gauge field A,,)

A, — B = Fy — O, (4.1.6)

lift to Kaluza-Klein monopoles ([98]) in M-Theory, that is supergravity solutions of the
form RY7 x TB where 7B is the multi-centered Taub-NUT space.

Therefore from M-Theory we can recover all the D-branes of Type II string theories,
by first compactifying on the M-Theory circle and taking the low energy limits of the
worldvolume theories on stacks of M2 and Mb-branes, and then by possibly T-dualizing
to obtain the D-branes of Type IIB string theory ([106]).

4.2 Degrees of Freedom on Parallel M-Branes

Whereas the theories on a stack of D-branes are all related by dimensional reduction and
can be obtained from 10-dimensional maximally supersymmetric Yang-Mills Theory, an
equally simple description is not available for M-branes. Without a coupling constant,
M-Theory allows only a non-perturbative regime and the theories of M2 and M5-branes

cannot be obtained from open string scatterings such as in the case of D-branes.
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A first puzzle about the M2 and M5 worldvolume theories was related to the degrees
of freedom of the two theories. Gauge theories on the worldvolume of N coincident D-
branes were known to have a number of degrees of freedom proportional to N2, which
is in accord with the degrees of freedom of U(N) gauge theories or equivalently with
the number of Chan-Paton factors for an open string ending on a stack of N D-branes.
However, when such degrees of freedom were investigated for the worldvolume theories of
N coincident M2 and Mb-branes, the degrees of freedom were found to be proportional
to N3/2 and N? respectively (|107]). The origin of such degrees of freedom is still not
well understood, but the candidate theories describing such theories should correctly
reproduce such scaling of the degrees of freedom (in a sense the N scaling for the M5
theories can be understood from the existence of a BPS state in which the M2-brane
has three disconnected boundaries (like a higher dimensional pair of pants) and since
Mb5-branes are supposed to interact through M2-branes the analogy with D-branes and
open strings is clear).

In the following we will focus in turn on both the theory describing N coincident Mb5-
branes and N coincident M2-branes. Both theories are supposed to be superconformal
field theories (due to the absence of a characteristic length in M-Theory) in 3 and 6
dimensions respectively, and should preserve 16 supercharges, being half BPS object of
11-dimensional supergravity. A considerable progress has been made in the past 10 years
in the description of coincident M2-branes. First through the BLG model, which correctly
reproduces the dynamics of two M2-branes and successively through the ABJM model
describing an arbitrary number of coincident M2-branes in an orbifold background C/Zj,
(where k appears as the level of the Chern-Simons term of the ABJM model). The theory
describing coincident M5-branes, known as the (2,0) theory, has instead remained more
elusive, but it nevertheless gave rise to a series of results and dualities between quantum

field theories in different dimensions.

4.3 M2-Branes

The BLG model provides a correct description of a pair of M2-branes satisfying all the
properties required: superconformal invariance, existence of 16 supercharges and of an
SO(8) R-symmetry, N3/2 scaling of the degrees of freedom and presence of non-trivial
interactions. What came as a surprise was that the gauge symmetry is realized through a
so-called 3-algebra rather than through usual Lie algebras. The hint that a different gauge
structure was needed to describe parallel M2-branes came from the work of Basu and

Harvey (|108]), who first proposed an equation describing coincident M2-branes ending
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on a single M5-brane.
Recall the similar situation in the case of Dp-D(p+2) branes, where we look at a D1-

D3 system as in Table The three scalars X’ parametrizing the directions of motion

D3 | x| x| x| X

Dl | x| - | - | - | X

Table 4.1: The D1-D3 system described by Nahm’s equation.

of the D1-strings transversal to the D3-brane (since the boundary of the D1-strings is
codimension three inside the D3-brane), satisfy the following Nahm equation ([109])

dxXt 1 .., .
= —glikxi xk 4.3.1
=3 (X7, X", (4.3.1)

where t is a coordinate on the longitudinal direction parametrizing the distance from the
D3-brane. As it is well known a solution is provided by a fuzzy sphere S?, whose radius

diverges at the location of the D3-brane, given by ([109H111])
X'=_—o" (4.3.2)

where o are the generators of SU(2) and satisfy the usual commutation relations. Basu
and Harvey ([|108]) tried to lift such a configuration to M-Theory and describe coincident
M2-branes ending on a single M5-brane, as in Table [4.2]

Mb | X | X | x| x| x| X

M2 | x| x| - | -] - |+ |X

Table 4.2: The M2-M5 system described by the Basu-Harvey equation.

Now the four scalars X which parametrize the degrees of freedom of the boundary

of the M2-branes inside the M5, need to satisfy the following equation ([108])

axe k
— Esabcd[G, X x¢, x4 =0, (4.3.3)
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where k is a constant and G is a fixed matrix which satisfies G> = 1. It turns out
that a solution is given by a fuzzy S, but most importantly we see the appearance of a
multi-linear bracket which will be fundamental in the description of the BLG model. In

particular the Basu-Harvey equation can be recast in the form

dxe 1
——+ Iga”cd[X", X X9 =0, (4.3.4)

where [, , ] is the bracket of a 3-algebra. We now turn to the study of such algebraic

structures.

4.4 3-Algebras and the BLG Model

Recall that in Super-Yang-Mills theories (on parallel D-branes) a global gauge transfor-

mation for a field ® is given by
00 = [o, D], (4.4.1)

where both « and ® are matrices in some Lie algebra. In particular the fields were
expanded in a vector space with basis {7} such that ® = &,7% Then the gauge

structure followed from the antisymmetric product
b b
[T, T = o T°, (4.4.2)

where fa

as derivations

. are antisymmetric in the upper indices. Then imposing that variations act

0([X,Y]) =[0X, Y]+ [X,0Y], (4.4.3)
we find the Jacobi identity
[X,Y],Z]+[[Z,X], Y]+ [[Y, Z],X] = 0. (4.4.4)

In order to lift the gauge structure to a 3-bracket, we again expand the field in some

basis of a vector space {7}, but we define global transformations as
00 = [a, 5, D). (4.4.5)

The antisymmetric triple product can be expanded in a basis of the vector space through

the structure constants

(7%, T, T¢ = £, 7% (4.4.6)
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which are antisymmetric in the upper indices. Then requiring the derivation property

imposes a Jacobi-like identity, known as the fundamental identity
(X1, Xo, [X3, X4, X5]] = [[X1, X2, X3], Xy, X5] + [ X3, [X1, X2, X4], X5]
+ (X3, X4, [X1, X, X5]]. (4.4.7)

Therefore we can define a 3-algebra as a vector space endowed with a totally antisym-
metric 3-bracket which satisfies the fundamental identity. As for the case of metric Lie

algebras, we require the existence of a symmetric inner product
he® = (T, T"). (4.4.8)
Requiring invariance of the inner product imposes
(W, X,Y], 2) = (W, [X,Y, Z]), (4.4.9)

or equivalently the structure constants must be totally antisymmetric when all the indices

are raised
fabcd _ f[abcd}_ (4.4.10)

It turns out that the existence of a positive definite metric 3-algebra is a very strict
requirement, and there exists only one such 3-algebra, see ([112,/113]) for proofs, up
to taking direct sums, which is called A4. It is a 4-dimensional 3-algebra, with four

generators T, with the 3-bracket defined by

abed __ 27 abed
e

is the totally antisymmetric Levi-Civita tensor and k is a constant.

(4.4.11)

where gabcd

We can now formulate BLG model ([3,4]). Let the Lorentz symmetry be broken as
SO(1,10) — SO(1,2) x SO8)r (4.4.12)

and let X' (I =3,4,...,10) be eight scalars parametrizing the transverse fluctuations to
the branes worldvolume. In order to have supersymmetry we then need eight fermionic
degrees of freedom, which are realized from the 32 degrees of freedom of an 11-dimensional

Majorana spinor 1, upon which we impose the following projection condition

Poie =€ Toeyp = =1, (4.4.13)

(where € is the supersymmetry parameter) which reduces the degrees of freedom to 16.
Then on shell we have a match of bosonic and fermionic degrees of freedom. We assume

canonical dimensions of the fields in 3 dimensions

X]=1/2 [W]=1 |[=-1/2 (4.4.14)
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We promote the derivatives to covariant derivatives through the introduction of a gauge

field (A4,)% in the following way
Duq)a = 8M(I)a - (Au)l:lq)by (4415)

where = 0,1,2 and ® is a generic field. As discussed, we already have a match of
bosonic and fermionic degrees of freedom, which seems to not allow the introduction of
a new gauge field. It will turn out that the gauge field will contribute no additional
degrees of freedom and will enter the theory through a Chern-Simons term but without

a canonical kinetic term. We can then define the field strength as
[D,,D,]) = Fp.. (4.4.16)

We can now write down the supersymmetry transformations, keeping in mind that since
1 and € have opposite chirality under I'g;o we must have an odd number of transverse

gamma matrices. The variations of the BLG model are ([3])
oxT = ierly
6 =TI D, X e — %F”K[XI, X7, XK
5A,(-) = iel, DI XT 4, ], (4.4.17)

where (-) represents an arbitrary field. By requiring closure of the algebra it is found
that the 3-bracket needs to satisfy the fundamental identity, meaning that the fields are
valued in a 3-algebra. The algebra closes on shell through the following equations of

motion for the fields ([3])
0=D2x" + %[[XI,XJ,XK],XJ,XK] + %[@,r”w,xﬂ
0 =T*Dyt) + %F”[z/;,XI,XJ]
0 =Fop(-) + €apy ([XJ, DX’ ]+ %[«E,rw, -]) . (4.4.18)

These equations of motions are invariant under the supersymetry variations (4.4.17)). We

can derive the equations of motion from the following Lagrangian
L = Lyin + Lint + Lpot + Los. (4.4.19)
We have the kinetic terms for the bosonic and fermonic degrees of freedom

1 .
Loir = §<DHXI,D“XI> + %@/), T D), (4.4.20)
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followed by an interaction term of the form
A
Eint = _Z<[¢7X17Xj]arljw>a (4421)

and a potential term

1

Lpot = 5735

(X7, X7, X5, (X7, X7, XK)). (4.4.22)
Finally the Chern-Simons term can be written as

1 2
Cos = 52  £A)u0(AN)ea + 5 18 TP (A ) Aot s ) (1429

where (A,)% = f%® (A,)ca. As previously mentioned, there is only one Euclidean 3-
algebra, the so-called A4. Two different groups correspond to this algebra, SO(4) and
Spin(4). An interpretation of the BLG model was found by studying the vacua of the

theory, which are obtained by minimising the potential, i.e.
X!, x7 xK]=o. (4.4.24)

It turns out that the brane interpretation depends on the level k of the Chern-Simons

term. In particular ([114-116]) we have a brane interpretation only in the following cases

k=1 Gauge Group = SO(4) — 2 M2-branes in R3

k=2 Gauge Group = Spin(4) — 2 M2-branes in R8/Z (4.4.25)

k=4 Gauge Group = SO(4) — 2 M2-branes in R8/Zs,

where in the last case a discrete torsion is present for the background four-form.

4.5 Mb5-Branes

The possible existence of a 6-dimensional superconformal theory first followed from
Nahm'’s classification (|117]) of superconformal algebras, which showed that they ex-
isted only for space-time dimensions equal to and lower than six. In particular two
possible 6-dimensional superconformal algebras were shown to exist, the so-called (1,0)
and (2,0) algebras. They differ in the amount of supersymmetry, 8 supercharges and 16
supercharges (the maximal amount in 6 dimensions) respectively, and on the R-symmetry
group, SU(2) for the (1,0) theory and SO(5) for the (2,0) theory.

From now on we will only focus on the latter, but interestingly progress has been

made recently on the former through F-Theoretic methods ([118]).
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The existence of the (2,0) algebra in itself does not show that there must be an actual
field theoretic representation on 6-dimensional fields, or at least it does not demand the
existence of a field theory in the way we are used to think about it. Concrete evidence
for the existence of such a theory was brought forward by Witten (|119]) a few years
later. In particular, Witten looked at type IIB string theory on a space of the form
R'3 x K3 at particular points of the moduli space of K3 surfaces. It is known that
at such points, a set of two-spheres in the K3 surfaces shrinks to zero size and they
follow an ADE classification depending on the number and the intersections of the two-
spheres in the K3 surface. In ([119]) it was argued that upon compactification of type IIB
string theory on K3 surfaces developing singularities at these points of the moduli space,
a superconformal field theory in 6-dimensions could be realized. Nevertheless, it was
realized that it could not have a simple perturbative description in terms of string states,
since by wrapping D3-branes along the two cycles of the K3 surface, strings were obtained
whose tension was proportional to the area of the cycles themselves. Therefore in the
singular limit in which the (2,0) theory was realized and the two-spheres shrank to zero
size, such strings would become tension-less. The (2,0) theories, which as we saw admit
an ADE classification, still lack a satisfying description, but they have nevertheless been
useful for numerous results and dualities for lower dimensional supersymmetric theories
related by a web of compactifications.

Following the work of Nahm ([117]), the (2,0) supersymmetry can be realized on an
abelian tensor multiplet consisting of five scalars X!, a self dual three-form H v and
the fermionic super-partners W. The fields tranform under the Lorentz group SO(1,5)
and the R-symmetry group SO(5)r ~ Sp(4)r. Moreover we can take the dimensions of
the fields to be

X]=2, [¥]=5/2, [H]=3 (4.5.1)

This tensor multiplet describes a single M5-brane, where the five scalars parametrize the
transverse fluctuations to the brane in 11-dimensional space-time. We can write down

the supersymmetry variations of the fields in the following form ([6])
§X' = iel"¥
§Hu = 3iel ), Dy W
5@:WWQJ%+£§MMWWQ (4.5.2)

where p,v =0,1,...,5and 7,5 = 6,7,...,10. The gamma matrices are 32 X 32 matrix
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representations of the Clifford algebra in 11 dimensions and the H field is self dual

1
Hul/)\ = gg,uu)\UTwHUTw- (453)

The fermionic degrees of freedom ¥ and the supersymmetry parameter € are 32 compo-

nents and satisfy the following chirality conditions
Fo12345€ = € F012345\I/ = -0, (4.5.4)

The following equations of motion are invariant under the (2,0) supersymmetry described

by the variations (4.5.2])

D2X' =0
T“D,¥ =0
H=%H dH=0. (4.5.5)

Note that we could write a Lagrangian for the scalar fields X*
Syi = / dSz D, X'DFX" (4.5.6)
and for the Fermionic degrees of freedom
Sy = / dSz UTHD, . (4.5.7)
Nevertheless we see that the usual action that we would write down for the H field
Sy = H AxH, (4.5.8)
RL,5
is of no use since H is self-dual and H AxH = H AN H = 0. A similar inconsistency in
deriving an action, pointed out in ([120]), is that if we consider the (2,0) theory on a
product manifold Ms x ST we see that in the low energy limit the theory on Ms should be
proportional to R~! (where R is the radius of the circle S') due to conformal invariance
in 6 dimensions, but at the same time it is clear that integrating over the circle direction
would give a factor of R in the low energy theory on M5 coming from ,/g in the action.

Nevertheless actions for a single M5-brane have been written down, see ([121-126]). We

now turn to the possible application of 3-algebras to the study of parallel M5-branes.
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4.6 3-Algebras and Mb5-branes

In (]6]) the authors proposed a set of equations of motion for a non-abelian tensor mul-
tiplet in 6 dimensions invariant under (2,0) supersymmetry. In a similar fashion to the
construction of the BLG model, the authors proposed a non-abelian extension of the free
equations of motion, such that the fields are required to live in a generic vector space
endowed with an antisymmetric triple product. Closure of the supersymmetry algebra
then requires that the vector space be actually a 3-algebra, or equivalently that the triple
bracket should satisfy the fundamental identity . We will now look at the specifics
of such equations of motions and how the gauge symmetry is realized through 3-algebras
rather than usual Lie algebras. As in the BLG model, the introduction of a gauge field

covariantize the derivatives ([6])
Dy, = 0, P4 — (A)5 0, (4.6.1)

where @ is a generic field which has been expanded in a basis {7} of the 3-algebra as
d = ¢, 7% A fundamental difference to the BLG model is the necessary introduction
of a new field, a vector Y* which will turn out not to transform under supersymmetry.
It is then possible to express the supersymmetry transformations which realize the (2,0)
algebra as follows, where we state again that the 3-algebra structure actually follows from

closure of the algebra on the non-abelian tensor multiplet ([6])
6X" = qel" v
Y =0
. ‘ 1 1 y o
§U =P D, X'e + 2‘—?)!Iﬂmrf”e — STl [, X7, X ]e
SH wx = i€l DV + iel'T n, [Y7, X7, U]
0A, (") =iel, YV, ¥, - ]. (4.6.2)
The conventions are the same of the previous section, where we presented the free tensor
multiplet. The Fermionic degrees of freedom satisfy the chirality conditions (4.5.4) and
a dot (-) represents an arbitrary field. Note that the gauge field can be taken to have

canonical dimension [A,] = 1, and it follows that the vector field Y# has dimensions

[Y#] = —1. These supersymmetry transformations close on the tensor multiplet if the
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following equations of motion and constraints are satisfied ([6])

0= DX'— J[Y/ ¥, T, 0] — [Y#, X, [¥,, X7, X]
1
O — D[“HV/\p + Z

0= T“D,U +THTY,, X', ¥

Euvipor [YUa Xi» DTXl] + é?uukpa’r [YU, \iJ’ FT\I]]

0= Fu() =" Hux, -]
0= D,Y'=[Y"Y" ]=[Y" Du() ] (4.6.3)

Note that the constraint F,,(-) = [Y*, H,,, -] can be interpreted as the vanishing of
the so-called fake curvature in higher gauge theories. In that context, in order to have
a consistent parallel transport of 1-dimensional objects, such quantity needs to vanish
(see ([91,/127]) for an interpretation of the Lambert-Papageorgakis model discussing such
aspects). Moreover it was shown in ([6]) that it is not possible to consistently define a
potential B, for the field strength H,, ). Since the vector Y'* is covariantly constant,
we can single out a direction in space-time and in the gauge algebra and study the set
of equations around a particular expectation value.

Recall that a Lorentzian 3-algebra can be constructed starting from a Lie algebra G

by adding two generators T+ and defining the structure constants of the 3-algebra as
f—l—abc — fa,bC fabc = fabc’ (464)

where f%¢ are the structure constants of the Lie algebra. It turns out (|6]), that for a

Lorentzian 3-algebra, expanding around a particular value of Y#
(Y = g oo (4.6.5)

reduces the equations (4.6.3) to those of 5-dimensional Super-Yang-Mills (SYM) the-
ory (and two abelian free tensor multiplet). Similarly, for the Euclidean 3-algebra Ay,

expanding around a particular value of Y*
(Y1) = goLa, (4.6.6)

reproduces 5-dimensional Super-Yang-Mills theory and only one abelian free multiplet.
In fact, one could have engineered the algebra starting from 5-dimensional Super-
Yang-Mills theory by suitably identifying the fields, in a similar fashion as it was done
for the case of M2-branes in ([128]). One could then argue that the equations of motion
here presented are just a reformulation of the theory on D4-branes in a language of 3-

algebras and where conformal invariance is manifest. However the analysis carried out
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in (|129]) seems to confirm another proposal for the dynamics on coincident M5-branes.
The authors give a null expectation value to the vector Y# and show that the system of
equations reduces to motion on the instanton moduli space. By quantising such system
the proposal of (|130}131]) for a light-cone description of the (2,0) theory is recovered, thus
suggesting that the 6-dimensional (2,0) algebra of ([6]) is more than just a reformulation
of the theory on D4-branes. Indeed, depending on the expectation value of Y* it is
possible to reduce the (2,0) algebra to either 5-dimensional Super-Yang-Mills theory or
to quantum mechanics on the instanton moduli space, and both of these theories are
known to capture some aspects of the dynamics on parallel M5 branes. In this thesis we
try to bring forward more evidence for such proposal by extending it and relating it to
the BLG model describing two M2-branes.

In Chapter |5 we extend the construction of ([6]). By introducing an abelian three-
form C),, into the algebra, we find an extended representation on a 6- dimensional
non-abelian tensor multiplet. Requiring closure of the algebra on the tensor multiplet
provide new equations of motion and constraints for the fields, which reduce to (4.6.3))
in the case in which the three-form is switched off. In the case in which C,,\ # 0,
solving the constraints for the fields naturally makes a reduction to the BLG model in
3 dimensions manifest. Therefore the extended (2,0) algebra that we propose reduces
to the description of two coincident M2-branes when the three-form is switched on, and

thus corroborates the proposal for a description of parallel M5-branes of ([6]).
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4.7 Mb5-Branes and Dualities

Even though the exact formulation of the (2,0) theory is not clear in 6 dimensions, it is
possible to obtain a number of results in lower dimensional field theory by making use
of the few facts which are known about the (2,0) theory. In particular, thanks to it, it is
possible to find a web of unexpected dualities between quantum field theories in different
dimensions, which can receive an interpretation thanks to different compactification limits
of the (2,0) theory. In this section we are going to see a few examples in which lower
dimensional quantum field theories are interpreted as such compactifications, and we
will see that specific quantities in such theories can then be interpreted as geometric
properties of the compactification manifold. We then proceed to discuss how different
compactifications of the (2,0) theory can be related to produce dualities thanks to the
conformal invariance of the (2,0) theory.

The main result needed to understand such dualities follows from the reduction of
the (2,0) theory on a circle. It is found that in the limit in which the radius of the circle
vanishes, we can recover 5-dimensional N' = 2 Super-Yang-Mills theory. Such theory has
the maximal amount of supersymmetry in 5-dimensions, and a field content consisting
of 5 scalars X*, a gauge field A,, (with field strength F},,) and fermionic super-partners

V. It is possible to write down an action, which reads

1 1 .. 1 L .
S¥a = — 5 /dsiﬂ (ZFMFW + §D;LXZD“XZ — %‘I/F“DP\I/
954
1o 1 -
SOOI X W] — = S XT XY 2) 47.1
+ U - S N), n)

where 1,7 =0,1,...,4and 4,5 = 6,7,...,10. In particular we see that the reduction of
the self-dual H,,,  field to the field strength F},, allows a usual gauge theoretic description
of the theory in contrast to what happened in 6-dimensions. Such theory is otherwise
obtained by dimensional reduction of the AN/ = 1, 10-dimensional Super-Yang-Mills the-
ory. Such reduction can be interpreted in the string theory context, by recalling that
in going from M-Theory to type ITA string theory, M5-branes wrapping the M-Theory
circle are understood to be described by parallel D4-branes, whose low-energy theory is
indeed 5-dimensional Super-Yang-Mills theory. We refer to (|[104]) for a more thorough
discussion.

The coupling constant of 5-dimensional Super-Yang-Mills theory is given, in terms of

the radius R of the circle on which we compactify the (2,0) theory, by

g2, =R. (4.7.2)
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Therefore we can consider the (2,0) theory as the UV fixed point of the theory on co-
incident D4-branes. We see a relation similar to the one defining the string coupling in
Type ITA string theory and the radius of the M-Theory circle. In the limit in which
the radius goes to zero we gain a perturbative understanding in terms of 5-dimensional
Super-Yang Mills theory, but at strong coupling a new dimension opens up. 5-dimensional
Super-Yang-Mills theory is naively power counting non-renormalizable, implying that a
quantum theory is not well defined without additional degrees of freedom. In fact it
was argued ([104,|105]) that 5-dimensional Super-Yang-Mills theory contains all the de-
grees of freedom of the (2,0) theory on a circle S' and in particular that the instantons
of the 5-dimensional theory are exactly Kaluza-Klein states coming from the (2,0) the-
ory. Indeed, instantons in 5-dimensional Super-Yang-Mills theory are string-like uplifts
of the usual magnetic monopoles of 4-dimensional theories which can be thought of as
the strings arising from M2-branes ending on M5-branes. This was argued to be the case
by matching the super-algebras {Qq, Qs} of the (2,0) theory on S! and of 5-dimensional
Super-Yang-Mills theory ([104]).

Once we understand the statement that the (2,0) theory on a circle reduces to 5-
dimensional N' = 2 Super-Yang-Mills theory, we can start to gain insight into lower di-
mensional compactifications, and in particular into the geometric interpretations which
arise in such cases. Reducing further on a second circle, following what we said so far,
will produce 4-dimensional ' = 4 Super-Yang-Mills theory. This statement is well un-
derstood both in the reduction of maximally supersymmetric Super-Yang-Mills theories
and in the parallel brane picture where D4-branes are known to reduce to D3-branes
when wrapping a vanishing circle. This is the simplest set up in which the 6-dimensional
(2,0) theory can provide us with valuable geometric interpretations. In particular, recall
that the the coupling constant e and the 6 parameter of N' =4 SYM are usually coupled

as

0 47

27

- 4.7.3
27 e ( )

T =

in order to study S-duality transformations. In particular 4-dimensional N' = 4 Super-

Yang-Mills theory is invariant under shift 7 — 7 + 1 and is conjectured ([132]) to be

invariant under S-duality transformations sending 7 — —%. What the (2,0) theory

affords is to think the S-duality group generated by such transformations as modular
transformations of the complex structure of the torus that was used to reduce form 6

to 4 dimensions to obtain the 4-dimensional Super-Yang-Mills theory. It follows that

at+b

the invariance under transformations which send 7 — ortd

is nothing but the modular

invariance of the complex structure of the torus upon which we reduce the (2,0) theory
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(see section for a full discussion). Reduction of the (2,0) theory on different and
higher dimensional manifolds leads to a number of dualities and results which we will
now briefly survey.

An important breakthrough in this direction was realized by Gaiotto ([133]) with
the engineering of a whole new class of superconformal theories in 4 dimensions with 16
supercharges. These theories, called theories of class SEL were realized as the low energy
limit of the (2,0) theory on a Riemann surface of genus g ¥, , with possibly a number
of punctures. These are point-like defects at which the fields develop prescribed singu-
larities. We will see again how thinking of such 4-dimensional theories as obtained from
the 6-dimensional (2,0) theory allows us to interpret important quantities as geometric
properties of the compactification manifolds.

In particular the (2,0) theory associated to the lie algebra g, denoted T'[g], admits
a brane interpretation in M-Theory for the two series A,, and D,, (while the Eg,F; and
Eg theories do not admit such a description). The A, series represents (n + 1) parallel
Mb5-branes, while the D,, series is associated to the description of 2n Mb5-branes on top
of an orientifold singularity obtained by an action on the five transverse directions to the
worldvolume of the branes. Class S theories for the A,, series are obtained by topologically
twisting the (2,0) theory on a Riemann surface ¥,, ;. The topological twisting carried out
allows to preserve supersymmetry on a non-flat space which would otherwise allow no
covariantly constant spinors, needed for supersymmetry. In particular, in 6 dimensions
we have a Lorentz group SO(1,5) and an R-symmetry group Sp(4), ~ SO(5)r. When
we consider the (2,0) theory on a product space of the form My x ¥, 4, as it is the case

for class S theories, these symmetry groups break to
SO(1,5) — SO(1,3) x SO(2)g

SO(5)r — SO(3)g x SO(2)g, (4.7.4)

where SO(2)y represents the holonomy group of the 2-dimensional manifold ¥, ;. Such
an holonomy represents exactly the obstacle to have covariantly constant spinors, since

we see that
D,e = (0, +wy) €, (4.7.5)

where w,, is a non-trivial spin connection contributing to the covariant derivative D,,.
In order to solve this problem, we carry out a topological twist, that is, we look for a

way to get rid of the unwanted spin connection. The way to do this is to redefine the

1S as in six.
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Lorentz group on Y, , in such a way that the spinor parameter does not transform in
a Fermion representation any more, but as a scalar (which will allow to take it to be
covariantly constant). In particular the supercharges of the (2,0) theory transform in the
(4 ® 4) representation of SO(1,5) & SO(5)r. Once we break the symmetry groups, the

representation decomposes to ([133])

((2, D1®(1,2) 1®(2:1 0 2,%)> : (4.7.6)

1
2
So as to have supercharges which transform as scalars on ¥, 4, we redefine the Lorentz

group as
SO(2) = SO(2) x SO(2)kdiag: (4.7.7)

that is we take the diagonal subgroup of SO(2) x SO(2)r (which can be done by ei-
ther adding or subtracting the U(1) charges). As a consequence the supercharges now

transform as
(2,1,2); ®(2,1,2)0 @ (2,2,2)0 @ (1,2,2)_1, (4.7.8)

and we see that half of the supercharges now transform as scalars on ¥,, ;. Therefore 16
supercharges are preserved in the 4-dimensional theory, thus giving N' = 2 supersymme-
try. Indeed, we see that the symmetry group of the 4-dimensional theory obtained by

shrinking I, 4 to zero size is
SO(1,3) x SU(2)rg, (4.7.9)

which agrees with the symmetry group of N' = 2 supersymmetric gauge theories in 4
dimensions. In fact, theories of class S are actually super-conformal. What effectively
happened is that we introduced an R-symmetry gauge field A, which corrects the covari-

ant derivative on the spinor
Dye= (0, +wu +A4,) € (4.7.10)

and which can be tuned to cancel the contribution from the spin connection, thus allowing
for covariantly constant spinors. It turns out that through Gaiotto’s construction the
Seiberg-Witten curve for the theories of class S are nothing other than n-sheeted covers
of the Riemann surfaces ¥,, ; that were used to reduce the (2,0) theory to 4 dimensions.

The geometries of the compactification manifolds give insight into the 4-dimensional
theory, as the space of exactly marginal deformations (preserving supersymmetry and
conformal symmetry) can be identified with the complex structure moduli space of Rie-

mann surfaces X, 4. A whole dictionary was worked out translating between gauge theory
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6d (2,0) Theory

) g

4d N=R Theory of Class S 2d Toda Theory

Figure 4.1: The two compactifications giving rise to the AGT correspondence. Equat-
ing the partition functions allows the non-trivial identification of quantities in the two

different theories.

aspects such as couplings, matter and global symmetries on one side and operations on
the geometries such as cutting and gluing on the other side. Importantly, many of the
theories of class § do not admit a Lagrangian description. Drawing from the work of
Gaiotto, Alday, Tachikawa and Gaiotto himself ([134]), went on to discover a surprising
duality between theories of class S and 2-dimensional Toda theories, where the latter are
non-supersymmetric conformal field theories which also admit an ADE classification. In
particular the following set up was used, see Figure The (2,0) theory is compactified
first on a Riemann Surface ¥,, ; and the partition function is calculated on S* by making
use that the latter is conformally flat. Or the order of compactification is reversed thanks

to the factorization of the partition function
Z[Sng x SY = Z[Sng) x Z[SY. (4.7.11)

Note that the conformal invariance of the (2,0) theory allows to scale either side of the

compactifiction and we find that
Z[8Y = Z[¥], (4.7.12)
where
Z[SY = Z[Sng X Svaim)m0 28] = Z[Enyg x S vois1)—o- (4.7.13)

We can then calculate the partition function of the Toda theory of type g, where g is the
algebra associated to the initial 6-dimensional (2,0) theory. By equating the two parti-
tion functions, of the 4-dimensional theory on S*, and of the 2-dimensional theory on
Y9, the AGT correspondence allows to identify non-trivial quantity in the two different
theories.

Following the AGT conjecture a number of dualities were proposed in the same spirit

in order to relate different compactifications of the (2,0) theory. In ([135]) the author
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6d (2,0) Theory

N

3d N=2 Theories 5d N=2 Super Yang Mills

24 N=(,R) Theories

Figure 4.2: The two compactifications giving rise to the 3d-3d correspondence. In par-
ticular, via 5-dimensional Super-Yang-Mills theory the moduli space of supersymmetric

vacua of T'[M3] is identified with the space of complex flat connections on Ms.

proposed for the first time a 3d-3d correspondence, relating 3-dimensional ' = 2 theories
and complex Chern-Simons theory on a three-manifold Ms. The 3-dimensional super-
symmetric theories were obtained again from compactifying the (2,0) theory on M3 and
topologically twisting away the SO(3) holonomy of the manifold in order to obtain a
supersymmetric theory. It was argued that when such theories were studied on a space-
time of the form R? x S!, as in Figure the moduli space of supersymmetric vacua
could be identified with the space of complex flat connections on Ms, that is ([136])

MSUsy(T[Mg,G]) = Mﬁat(Mg;,G(C) (4.7.14)

where T[Ms, G| is the 3-dimensional N' = 2 theory obtained by compactifying the (2,0)
theory of type g = Lie(G) on Ms. This can be deduced by reversing the order of
compactification ([137]) through the known reduction of the (2,0) theory on S! to 5-
dimensional Super-Yang-Mills theory.

Similarly, in (|138]), the authors proposed a correspondence, as depicted in Figure
between 2d N = (2,0) theories labelled by four-manifolds (that is, obtained by
compactifying the (2,0) theory on a four-manifold) and defined on a two-torus 72, with 4-
dimensional ' = 4 Super-Yang-Mills theory (obtained by compactifying the (2,0) theory
on T?) defined on the four-manifold. In order to preserve supersymmetry, a topological
twist is necessary on the side of the compactification which leads to the 2d theory since a
generic four-manifold has an SO(4) holonomy which does not admit covariantly constant

spinors. On the other hand the reduction on the flat two-torus does not need any twisting.
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6d (2,0) Theory

T? M,
4d N=4 Super Yang Mills R4 N=(2,0) Theories

Figure 4.3: The two compactifications giving rise to the 2d-4d correspondence. The
elliptic genus of the 2d theory can then be identified with the partition function of the

4-dimensional theory after performing a Vafa-Witten twist.

Then by identifying the partition functions an equality was proposed between the
elliptic genus of the 2d theory and the partition function of 4-dimensional N' = 4 Super-
Yang-Mills theory as defined by the Vafa-Witten twist, ([139]).

In Chapter [6] we will extend this line of ideas, by reducing the (2,0) theory on a two-
sphere S2. This analysis was not included in the AGT construction, as the theory thus
obtained is not a theory of class S and in particular is not conformal ([140]). Note that
since the two-sphere is not flat, a topological twisting is necessary to allow for covariantly
constant spinors, or equivalently, an R-symmetry gauge field needs to be turned on to

cancel the spin connection arising from the curvature of the two-sphere.
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M2-Branes And The (2,0)

Superalgebra

Dp-branes are all related to each other in a straightforward way using T-duality which is
valid microscopically in the open string description and also is manifest in the low energy
Yang-Mills effective actions ([141]), although of course the quantum behaviour of these
theories drastically depends on their dimension. Mathematically this occurs because all
Super-Yang-Mills theories on D-branes are constructed by dimensional reduction of the
10-dimensional Super-Yang-Mills theory with A/ = 1 supersymmetry.

While the field theories for multiple M2-branes are now known ([4,5,142]) (for a
review see ([143])) the M5-brane remains mysterious and believed to be non-lagrangian.
Although there are various proposals for Mb-brane dynamics that use a lagrangian but
which require some specific limit to be taken (]104,105,1304144]). One still expects there
to be some form of T-duality, inherited from string theory, that relates Mb-branes to
M2-branes. Even though there is no microscopic picture of these theories analogous to
open strings one may still expect to see some universal structure in their field theory
descriptions.

One attempt to relate the M2-branes to Mb-branes using T-duality was given in
([145]). The simple translational orbifold approach used in (|141]) fails as translations
are not a symmetry of the M2-brane Lagrangian. Nevertheless the modified approach
of ([145]) leads from the periodic array of M2-branes to a variation of 5-dimensional
Super-Yang-Mills as a description of M5-branes.

There have also been papers which show that maximally supersymmetric M2-brane

Lagrangian with a Nambu bracket for the 3-algebra leads to an abelian M5-brane ([146-

102
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148]). It might be possible to view the results here in a complimentary context: start-
ing from the non-abelian (2, 0) superalgebra associated to multiple M5-branes and then
obtaining M2-branes.

In this chapter we will generalise the 6-dimensional (2,0) superalgebra construction of
([6]) by including a non-dynamical abelian background three—formﬂ Setting this to zero
reproduces the previous results which have been proposed as a description of two M5-
branes (here we specialise to the case of a positive definite Lie-3-algebra). In particular
there is a covariantly constant vector which imposes constraints that require there to be
an isometry along one direction which leads to 5-dimensional super-Yang-Mills in the
spacelike case ([6]), 5-dimensional euclidean Super-Yang-Mills in the timelike case ([144])
and quantum mechanics on instanton moduli space in the null case ([129]). These have all
been argued to provide a description of the quantum (2,0) theory (|104}/105,(130%/144]).
We then show that turning on the background three-form allows some components of
the vector to be dynamical but also forces a dimensional reduction to 3 dimensions
leading to the maximally supersymmetric field theory of two M2-branes ([4,/142]). Thus
this generalized (2,0) superalgebra provides a structure that contains aspects of both
multiple M2-branes and Mb5-branes.

The structure of the chapter is as follows. In section [5.1] we propose a generalization
of the algebra through the introduction of an abelian three-form C),, 5, close the algebra
and derive the constraints and equations of motion for the fields. In section [5.2| we
find the central charges and the energy-momentum tensor associated to the generalized
(2,0) algebra. In section we relate our construction to the maximally supersymmetric

model describing two M2-branes and carry out the reduction.

5.1 Closure of the Algebra

Recall the discussion in section In ([6]) a (2,0) algebra was realised on a non-abelian
6-dimensional tensor multiplet. In order to realise the algebra, it was necessary to require
the existence of a gauge field A, and a spacetime vector Y#. The fields were assumed to
live in a generic vector space endowed with an antisymmetric triple bracket; similarly to
what happens for the BLG model, closure of the algebra required the fields to actually
take values in a 3-algebra. Closure also determined the equations of motion for the fields
of the tensor multiplet and constraints for the additional fields. The aim of this chapter
is to generalise this algebra by including an abelian non-dynamical three-form C),,\ with

mass dimension [C] = —3.

!Using such a three-form has also been considered by A. Gustavsson ([149]).
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We consider the following extension of the (2,0) algebra
§X' =il
T . A
oY H zﬁef,\p(]“ '
; ; 1
o0 =T"T"D, X'e + HHMFW%
— §FMF” [YF X' X]e+ gcwrﬂ”xrwk[x@, X7, X*e

§H uyx =3i€l,, Dy + i€l Ty, [YP, X', U]

-
+ iy e(xC) a9 (X7, X7, 0] + %EFUM o CP7 AT X X, 0]
A, () =iel,, [YV, U, -]+ %gc“prwprl[xaqz, 1, (5.1.1)

where «a, 8,7,7',0 are constants to be determined and a dot () denotes an arbitrary
field. There are additional terms that one could consider however the rationale behind
this choice of algebra will become clear upon showing how a natural reduction to the
M2-branes arises. In this section we will show that the superalgebra closes on shell and
we will derive the equations of motion and the constraints that the fields need to satisfy.

Before we consider the closure of the algebra we first observe that the fermion equation

of motion can be obtained by imposing self-duality of §H. We find that
SHu — (R0H )y = i€\ (0P D, W + T,I VP, X7, W] + %PWCP”FU X7, X7, 0))
(5.1.2)

provided that v/ = 3~ (otherwise one does not find a single expression on the right hand

side). Thus we see that the Fermion equation of motion is

"D,V + T, T Y, X' U] + %FPUTCWPU (X', X7, 0] =0. (5.1.3)

5.1.1 Closure on X*

We now proceed to close the algebra on the scalar fields X?. We see that the algebra

closes up to a translation and a gauge transformation, that is
[61,09) X" = vV D, X" + A(X") (5.1.4)
with
vt = —2i(eTeq)
A() = =2i(&T\Mey)[YY, X7, - ] —iB(&l il *e ) CHA X XF . (5.1.5)

We note that a new term, proportional to C,, now contributes to the definition of

gauge transformation compared to the one defined in ([6]).
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5.1.2 Closure on Y#

Next we look at closing supersymmetry on Y*. The expected form of the closure is
[01,02]YH# = 0" D, YH + A(YH) , (5.1.6)

with v* and A(-) as defined in (5.1.5)). Explicit calculation leads to

. 9 ' '
[51, (52]Y“ = — %(EQFV€1) C’u)‘pH,,)\p + % (621“,,1“’61) cHo D X"
- % (€T apoTer) CP¥?[Y, X1, X]

+ WSB (EQFATwFijkel) CM/\pCpTw[Xiv Xj7Xk] : (5.1.7)

We see that imposing the constraint
D,Y* — % CHMH,p, =0, (5.1.8)

turns the first term of the closure into a translation. Similarly, with the help of the

constraint

3

CM" D X"+ =YY, X]=0, (5.1.9)
(0%

the second term of the closure represents the first part of a gauge transformation. We
see that both these constraints are generalizations of ones found in ([6]).

In order for the third line to turn into the part of a gauge transformation parametrized
by C°™ we need

64

CHY (6T 3T e1) Y7 = =07 (&l yr TV eq ) Y . (5.1.10)
«

It is easily checked that if o = 188 this condition is simply reduced to
CANY =0. (5.1.11)

We will find that the condition a = 1873 also arises for closure on the other fields. Note
that in the condition (5.1.11f), Y* lives in a 3-algebra, while C does not. A generic choice
of C and Y* is not immediately compatible with supersymmetry, and condition
is here interpreted as the requirement that Y live in the space orthogonal to C with
respect to the wedge product. Work is in progress in order to determine which solutions
are consistent with supersymmetry and to understand the form of the (2,0) algebra in
such cases.

We require the fourth term to vanish as it parametrizes neither a translation nor a

gauge transformation and hence

C[#VTC)\]TP =0. (5.1.12)
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Note that this means that the components of C,,» can be identified with the structure
constants of a Lie-algebra. Since u,v,... = 0,1,2,...5 this leads to only two possible

choices: su(2) and so0(4) = su(2) @ su(2).

5.1.3 Closure on A,

From closing supersymmetry on the gauge field A, we expect to find
[61,02) A, = =0 Fy + DA (5.1.13)
Using the relations and constraints found so far, we find after some calculations that
[01,02] Ay = = v <[Y% Hyuns 1+ 8(:C)ua[ X, DAXY, ] 4 55 () [0, TV, ])
+ DA+ 2i (6T, Mer) ([YY, DX, -] = (6/6)CO™ [Hyrw, X', - ])
+2i(B +8/6) (@D T et ) CupruY, [X7, X7, X5), -]

30
_‘_7

— (&l el er) ([Y”, Yo, X', X7, -] [Y¥ [ye, X! X7, - ]) .
«

(5.1.14)

We see that in order for the first term to represent a translation we must require the

identification
A A 5 _
Fu() =YY Hyn, -]+ 6(xC) [ X, DAXY, -}+%(*C)W[\I/,FM1/, 1, (5.1.15)

which generalizes the constraint in (4.6.3). By looking at the form the closure needs to
take, we require the last three terms to vanish. This imposes the correction to the known

constraint

9
6

as well as the relations between the coefficients

Y, D, X", -] — = C ™ [Hyry,, X*, -] =0, (5.1.16)

§=—68, a=-36. (5.1.17)

5.1.4 Closure on H,,)

Closing the algebra on H,, ) is somewhat more lengthy, and in the process we found the
Mathematica GAMMA package quite helpful ([150]). Supersymmetry should close up to

a translation and a gauge transformation

[51, (52]HMV)\ = UPDPHW,/\ + A(HMV/\) . (5118)
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Since the calculation is quite involved we will not provide the full details here. Rather
we note that in order to close the algebra numerous terms are required to vanish as they
parametrize neither a translation, nor a gauge transformation. This is the case if the

following relations among the coefficients hold
v = 3, 7 = 98, 0=—2v. (5.1.19)
Then the remaining terms, making use of the constraints found so far, take the form
(01, 82) Hywr =v°DyH,pn — 2i(€20,T 1) [V, X7, Hppol
—iB (@loreTer) CTY[X", X7, Hyph

1 o i Ty i v T
+ 4o” <D[)\H,uup} + Zg,uzz)\pch[Y , XL DX } _7(*0)[/11//\[)( 7Xj7 [Yp]vX 7XJ]]

i _ , o A
+ gEmapor[Y 7 T — iy () [XE, 0, Fp}rqu]> : (5.1.20)

We see that the first three terms represent a translation and a gauge transformation.

The algebra then closes on shell and we find the equation of motion for H,,

D[)\H = _zgyy)\paT[YaleaDTXl] +’Y(*C)[MVA[XZ7X]7 [Yp}aleX]H
1

85W,\paT[Y",\TI,FT\II] + iy (xC) [ X', U, T T (5.1.21)

5.1.5 Closure on ¥

Closure of supersymmetry on the fermion ¥ should be obtained up to a translation and

a gauge transformation
[(51, (52]\11 = ’Upr\I/ + A(\If) . (5.1.22)

An explicit calculation, making use of the Gamma package (|150]) and the constraints

found so far, gives

[(51, (52]\11 ZUPDP\I/ + A(\I/)

31

+ S (@loe)” ("D w Ty, X W)

S Dpor CPT DX X, \Il])

— (@l e)I7TY (r*Dyw + 1,0y, X W]

S Dpor CPT DX, X, qf]) .

(5.1.23)

We see that in order to close the algebra the terms other than the translation and
the gauge transformation need to vanish. This is achieved upon imposing the Fermion
equation of motion, which agrees with (/5.1.3]).
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5.1.6 Bosonic Equations of Motion

We can vary the Fermion equation of motion ([5.1.3) to find the equations of motion for

X%and H - We find, making use of the constraints found so far, the following variation

(D2Xi _ %[YU,@,FUFiW] + [YU’Xj’ [mej’Xz'H

+ %CUT“’[@,FUWF“\P,X” + 5’YCUWCUW[[Xi,Xj,Xk],Xj,Xk])Fie

* %(D“HW + %HWUT[Y”» X4 DX = y(xC) [ X, X, [V, X, X))

+ éswpaT[Y”, U, T70) — iy (%C) n [ X, 0, rpri\pruuApe —0. (5.1.24)

We see that the equation of motion for H,, ) agrees with the one found by requiring
closure of the algebra ([5.1.21)). Moreover, we find the equation of motion for X*

DX — %[Y”, U, T, T — [Y7, X7, [Yy, X7, X7]]
— S O7 M Do D90, X7) = BAC7 Cor X7, X7, X¥), X0, X¥) . (5.1.25)

Therefore we have determined the equations of motion for all the degrees of freedom of

the (2,0) tensor multiplet.

5.1.7 Summary

We have shown that the (2,0) algebra (5.1.1) we proposed closes on shell. We found
corrections to the equations of motion and constraints (4.6.3)), which we list here for
convenience. Since we are free to rescale C,,\ we can, without loss of generality, set the

coefficients of the (2,0) algebra to the specific values
a=3 B=1/31 ~=1/2 s=-1 5 =3/2, (5.1.26)

which respect the relations found in the closure of the algebra. The equations of motion
for the fields of the tensor multiplet are
0=D2X"— %[Y", U, 0,000 + [Y7, X7 [Y,, X7, X7
n ﬁC”TW[@,FUTWFij\IJ,Xj} + %&CUT”CW[[X", X7, XM, X7, X"
0= DpHyu, + i&‘#u,\pw Y7, X', DTX"] —

[

5(*0)[;11/)\[Xi) Xju [Yp]7 Xiv XJH

i _ i o .
+ gemrpor [V T = S (O [ X7, ¥, T, 10
0=TYD,¥ +T,I"[Y*, X' V] + 2'—?),r,mc*/mrij (X7, X7, 0] , (5.1.27)
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while the additional constraints for the algebra to close on shell are
0= Ep(-) = [Y) Hyn, - |+ Q) [X', DX, -] 4 %(*C)W[\iz,rm .
0=D,Y"— %C’W)HMP
0=C"Dy,(-)+ [YH,Y", -]
0=V, Dy, 4 33 O Hyr, - ]
0=CAY . (5.1.28)

The equations of motion ([5.1.27)) are invariant under the (2,0) supersymmetry realised

by the variations

6X' = el W

BYH = Se, O

. ) 1
6U =THT"D, X' + ﬁﬂwrwe
1ijuij 1 uATijkr i vi vk
— 5Tl [VH X' X ]6—!—3?0“,,)\1“ DUk[XT X7, XF)e
§Huwx = 3i€l [, DV + iel'T n, [YV7, X7, U]
+ %E(*C) T [X7 X7 0]+ ZZEF[#W o CP7 \TH X X7, 0]

§A,(-) = iel,, [Y”, U, -] — %gcwrwpri[xi,\p, . (5.1.29)

5.2 Conserved Currents

In this section we construct the supercurrent S# and energy-momentum tensor 7),, as-
sociated to the supersymmetry algebra realised in (5.1.1). We can then deduce the form
of the superalgebra including the central charges.

The supercurrent can be easily computed by
ESH = 2mi (5. W, THD) . (5.2.1)

Note the pre-factor of 27 which is needed to produce the correct energy-momentum tensor

and will be justified in due course. Explicitly we find

SH = — 27i(D, X", T"T"THT) + %Hm, To™THY) — mi([Y,, X*, X7], T*TUTHD)
+ o (X, X, XM, TR TRy | (5.2.2)

3-3!
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The supercurrent is indeed found to be conserved on shell.
Next we construct the energy-momentum tensor, which after some trial and error,
reads
Ty =21(D, X", D, XY — mn,, (DAXY, DX 4+ ([ X", X7, Y,], [ X", X7.Y,])
T 7r
2 X
—im (0, T, D, U) + im0, (U, TA DY) — imn,,, ([0, YA, X, T\ T00)

M (X% XT3, (X5 X7, YY) + = (Hpsp, H)¥) — in(9,T,D, V)

T S S 1
+ gqxz X7, X*), X X9 XM (CrC, 7 — imw(J?)

™ A i i vk i i vk i oTW /T, ij i i
+ gCM,\p(*C),, p([X , X7, X ],[X , X7, X ]) — gnw,C ([\II,I‘UWF M/),X],X]> .

(5.2.3)

The energy-momentum tensor is found to satisfy 0#7),, = 0 using the equations of motion
and constraints for the fields derived in the previous section. Although we note that the
bosonic part is not symmetric for a general choice of three-form due to the C,, Ap(*C),,)‘p
term (as well as the more familiar asymmetry arising from the fermions). The 27 pre-
factor was justified in ([151]) to agree with charge quantization and also in ([144]) to
reproduce the correct energy density for M2-branes ending on Mb5-branes. It also leads
to the correct matching of instanton-solitons with KK tower modes ([144]).

In order to derive the super-algebra we make use of the the chain of identities

ie{Qa, Qp} = i{eQ,Qa} = 6.Qa = / &z (5.5% , (5.2.4)
where
Q= /d5sc S0 (5.2.5)
Since by construction {Q 4, @p} is symmetric in A, B, we can extract the momentum
P, = /d%TO,, , (5.2.6)

and the central charges (Zf“ Z"

/w>\) following the expansion

. , 1
{Qa,Qp} =2(T"C ") apPy + (T'T'C~ ") apZ, + 5731

In case of vanishing Fermions, we find the following central charges. For ZZ we find

(Ful/)\rijc—l)ABZij

Y- (5.27)

Zi :47r/d5:c ([Yo, X", X7], D°X7) — ([Yy, X', X7], D" X7) (5.2.8)
7z :47r/d5a: (Y0, X7, X7], DX + (Y, X7, X7], DOX)

<[Xj7Xk’Xl]’D1)Xm>8ijklm

o
+ (Hopw, D" X") + gcotw

—Ct

O/LZ/<[X27XJ7Xk]7[viXJ7Xk]> ) (529)
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while ZZ/A reads (all the expressions should be taken to be anti-symmeterized in 7, j and

U, A where dotted indices only run over spatial coordinates [, = 1,2,...,5.)
Zgiw —47r/d5ac 2([Vy, X, XM, [Ye, X*, X)) — ([Yy, X*, X1, Dy X)e'dkim
4 (Hoos [Y X0, X71) = 3 (Hyog [V, X, X0) = 2(D,X°, Dy X0)
— ((Cuppy DP X 4 Copp Do X F), [ X, X7, XH))
+ %<(pr,j[Yf’, X*, X" — Cous[Y0, X*, X7)), [ X!, X™, XT])e MM
— g (X X1 X, (2C0sHy, + CoprH L)) (5.2.10)
75 =t [ @0 L (B30 00, X1 X0) — S B [, 7, X7
— ((Cy3 Do X" + 3Cos D5 X ), [X7, X7, X])
- %((CWA[YO, X™, X" + 3Cou (Y, X™, X)), [XF, X!, X"])tdktm
<(CWPH CO)\pH,uy) [XkaleXmDEijklm : (5.2.11)

5.3 From (2,0) to 2 M2’s

As recalled in section 2 previous work has examined the dynamical systems that arise
from the above system when C),,\ vanishes ([6,(129,/144]). To this end let us split up
spacetime into the directions «, 5 =0,1,2 and a,b = 3,4,5 and fix

Cabc = l3 Eabe 5 (531)

where [ has dimension of length. This breaks to the SO(1,5) Lorentz symmetry to
SO(1,2) x SO(3). We will see that this SO(3) enhances the SO(5) R-symmetry to
SO(8).

Recall the constraints found upon closing the (2,0) algebra on the tensor
multiplet

. ) i _
0=Fu()— Y Hux, -]+ (*0)ua[ X, DX, -]+ 5(*C)WA[\IJ,FMIJ, -]
1
0=D,Y" =2 CH " H,z,
0=C"°Dy(-)+ [Y“ YV, -]
0= [viD : ] + CUTUJ[ oTw: J ] . (532)
We now look at the third constraint

C* Dy (-) + [Y*, YV, -]1=0, (5.3.3)
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The simplest way to solve this constraint is to take the fields independent of the the z®

spatial directions: J,(-) = 0. Then the constraint is solved for

Au() = 2;3%0[1/6 ve, -], (5.3.4)

Next we look at the last constraint
[YI/’DU - ] Carw[ rws s g ] =0 , (5'3_5)
and we see that a solution is given by

1
_ﬁ[ya,n, Y., (5.3.6)

where to obtain the last relation we used the fundamental identity. Note that the second

Y*=0 Heape =

constraint is also solved by (/5.3.6)). Finally the first constraint is satisfied if in addition
we have

1
Eabe DY (5.3.7)

Hoap =
We note that similar expressions for H,, appeared in ([147]). We also find that

73

1 . . 2l _
Fa,@(') = _ﬁgaﬁV[YaaD’yya7 : ] - lgga,B’Y[XZ7DFYXl7 : ] - 7€a,3’7[\:[171_w\1/7 : ] . (538)

To summarise, we found a solution to the constraints given by

Ba() =Y =0
Aa) = eapn[Y?, Y4, -]
a 2l35abc
1 . 4 i3 _

Fag() = _ﬁgam[ya,mya, ] = Begsy [ X', DVX, .]—%eam[\p,rw, ]

Habc - 16 [Ym}/byY]

1
Hoay = F52abeDaY* (5.3.9)

with the other components of H,,, 5 fixed by self-duality. We now wish to implement the
solution to the constraints that we found into the algebra (5.1.29)). We see that since
the fields are required to be independent of the three spatial directions, a dimensional
reduction naturally arises.

Let us now look at the supersymmetry transformations and apply the solution to
the constraints (5.3.9). We find, noting that the fields now depend only on x®, for the
fermions

U =TT D, X' + ﬁrabr%rl[w VP Xie —
3rarcr345D Y — rarij[ya,Xi,Xﬂ']e

Wrabc [V, Y Ve

1‘3451“”’“[X’ X7, XMe, (5.3.10)

l 313



Chapter 5. M2-Branes And The (2,0) Superalgebra 113

and for the bosons
6X" = iel" W
§Y* = i3l "T'345 ¥
6Au () = i@ IOV, U, - ] — ilBel Tags T X W, -] . (5.3.11)
We can now discuss how the degrees of freedom of the two theories are related. The
eight scalars parametrizing fluctuations in the directions transverse to the M2-branes

worldvolume will consist of the five scalars X* of the (2,0) tensor multiplet and the three

remaining scalars Y®. Therefore we can define the 3-dimensional scalars:
X' =3Py PRxY) (5.3.12)

where now I, J = 3,4, 5, ...,10. Note that no other bosonic degrees of freedom are present
since H,,, is fixed by the constraints (5.3.9).
Next we explain how the fermionic degrees of freedom of the two theories are related.

Let us define

Q= \}5 + \21“345 , (5.3.13)
then Q2 = I'sys and we see that
Lo12Q = Q g1 . (5.3.14)
A consequence of this is that if we define
=0 U =P"20, (5.3.15)
then
Loioe’ =€ LoV = -0, (5.3.16)

and hence €’ can be thought of as parametrizying the supersymmetries preserved by an
M2-brane along z¢.

The supersymmetry transformations now read
o0 =T1°T!D, X1 — %P”K[XI, X7 x5
oXT =ie'Thy
§AL() = e T N[ XT 0, - ]. (5.3.17)

These are exactly the variations of the maximally supersymmetric M2-brane model ([4,
142]). Moreover, we see that the constraint ((5.3.9) for the field strength F,z

Fop() = —capy (X1, DVXT, ] - %eam[@',rw’, 1, (5.3.18)
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is precisely the equation of motion for the field strength of the maximally supersymmetric
M2-brane model. Similarly, the remaining equations of motion reduce to the correct
equations of motion:
1 P
0 =D2X" + X7, X7, XN, X7, X K] + S [0, 770, x)
1

0 =T"D, ¥V + il“lj[\I/,XI, X7 . (5.3.19)
Therefore we showed that upon imposing the solution of the constraints ([5.3.9) on the
(2,0) algebra (5.1.29) we obtain the maximally supersymmetric model describing two
M2-branes.

Let us briefly mention what happens if we instead take
Copy = Peapy - (5.3.20)

This is essentially just a double Wick rotation so that the equations are obtained by a
suitable Wick rotation. Thus we arrive at a euclidean field theory in 3 dimensions. An
inspection of the equations shows that this has an SO(2,6) R-symmetry. We thus obtain
a non-abelian 3-dimensional euclidean theory which is suitable to describe an euclidean

M2-brane in (5 + 6)-dimensional spacetime, as appears in the work of ([152]).



Chapter 6

M5-branes on S?

The results of this chapter have their origin in an early collaboration towards the paper
([12]). I would like to thank the authors for allowing part of the results of ([12]) to appear
in this thesis, and for acknowledging the collaboration in the paper itself.

Chapter [4| provided some motivation as to why compactifications of the (2,0) theory
to lower dimensions might be of interest. Recall that a number of important results were
obtained by relating theories living in different dimensions, by considering their origins
as compactifications of the (2,0) theory on some manifolds. The AGT correspondence
([134]), was the first such relation to be found. It relates quantities in 4-dimensional, N' =
2 theories to quantities in 2d-dimensional Toda theories, which are non-supersymmetric
conformal field theories. Indeed, a class of 4-dimensional N = 2 theories can be obtained
as compactification of the (2,0) theory on a Riemann surface %, 4 of genus g with possibly
puncture defects (so called theories of class S), while Toda theories of type ADE can
be obtained by compactifying the (2,0) theory of type ADE on a four-sphere S*. The
partition function of the (2,0) theory on the product manifold %, ;, x S* (or the equivalent
replacement of S* with an Q background) then allows to identify quantities in the two
theories through the factorization of the partition function and the scaling of the volume
of either compactification manifolds thanks to conformal invariance.

Following the AGT correspondence, other results followed relating other compactifi-
cations of the (2,0) theory on different manifolds. In particular, in Chapter |4 the 3d-3d
correspondence of ([135]) and the 4d-2d correspondence of (|138]) were recalled. The
latter is the start of a program involving the compactification of the (2,0) theory on
arbitrary four-manifolds My (more precisely those which can be seen as coassociative
four-cycles in G5 manifolds). On the other side of the compactification, the authors of

([138]) consider a two-torus T2 which produces N = 4 Super-Yang-Mills theory on the

115
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four-manifold M,. In this chapter, we extend such analysis and we study the (2,0) the-
ory on a two-sphere S2. The resulting theory is a sigma model from R* into the moduli
space of k centered SU(2) monopoles, where k is the number of parallel M5-branes. In
order to obtain this result, the two-sphere is seen as a circle fibration of an interval, such
that the radius of the fiber vanishes at the two endpoints of the interval. This allows to
reduce the (2,0) theory on the circle fiber and successively on the interval. The first step
realizes 5-dimensional N' = 2 Super-Yang-Mills theory on the space R* x I, where I is
the interval. The vanishing of the radius of the fiber at the two endpoints provide specific
boundary condditions. The further reduction of 5-dimensional Super-Yang-Mills theory
on an interval I does not produce a superconformal field theory, as it is instead the case
for theories of class §. In this case the volume of the sphere, or equivalently the length
of the interval in our setup, will set the scale of the underlying theory. In particular, the
latter will arise by localizing on the fields configurations that preserve supersymmetry
along the interval I. These are found to be those configurations for which the three
scalars out of the five of the (2,0) theory which transform under the s0(3)g resulting
from the breaking of the total R-symmetry group, satisfy Nahm equations. Indeed the
moduli space of Nahm equations with particular boundary conditions is known to be
isomorphic to the moduli space of k centered SU(2) monopoles (|153]). Therefore, by us-
ing the intermediate reduction to 5-dimensional Super-Yang-Mills theory allowed by the
circle fibration of the interval, it is possible to identify the supersymmetric configurations
as those which satisfy Nahm equations on the interval. In this chapter such analysis is
carried out, by embedding the (2,0) in an appropriate supergravity background which
allows to preserve supersymmetry on the two-sphere. The analysis follows closely the
one carried out in (|12]), arising from an early collaboration. In ([12]) the authors go on
to study the reduction for a generic four-manifold My, while here we only study the case
of flat R%.

The structure of this chapter is the following. In section [6.I]we study the supergravity
background preserving supersymmetry on the curved two-sphere. In section we carry
out the circle reduction from 6 dimensions to Super-Yang-Mills theory in 5 dimensions,

and in section [6.3] we reduce to 4 dimensions by shrinking the size of the interval to zero.

6.1 Supergravity Backgrounds and Twists

This section serves two purposes: firstly to explain the possible twists of the 6-dimensional
N = (0,2) theory on a two-sphere S?, and secondly, to determine the supergravity

background associated to the topological half-twist on S2.
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6.1.1 Twisting on S?

The R-symmetry and Lorentz algebra of the M5-brane theory are

sp(4)g B s0(6)r .

(6.1.1)

The supercharges transform in the (4,4) spinor representation (the same representation

as the fermions in the theory). The product structure of the space-times implies that we
decompose the Lorentz algebra as

50(6), — so(4)p ®so(2)p =su(2), ®su(2), dso(2)r. (6.1.2)

Consider the decomposition of the R-symmetry as

sp(d)rp  — su(2)gr dso(2)r

(6.1.3)
For our analysis we first consider the theory on S? x R* and the twist along S2. The

Lorentz and R-symmetry groups reduce again as in (6.1.2) and (6.1.3). The twist is
implemented by identifying s0(2)r with s0(2);, and we denote it $0(2)wist = W(1)wist-

As we have seen this is compatible with the twist 1, discussed in the last subsection.
Twist 52 :

50(6)L®sp(A)r = Gres = su(2)pDsu(2), ®su(2) gdu(1)pyise . (6.1.4)
The residual symmetry group and decomposition of the supercharges and fermions is
then

s0(6) dsp(d)p —

Ores = 5u(2)g ) 5u(2)7» D 5u(2)R ) u(l)twist
44 —

(6.1.5)
(2) ]—7 2)—2 D (2’ ]—7 2)0 D (17 25 2)0 2] (15 27 2)+2 .

There are eight supercharges transforming as singlets on S? and transforming as Weyl
spinors of opposite chirality on M4 and doublets under the remaining R-symmetry

The fields of the 6-dimensional (2,0) theory decompose as follows

50(6)r DsP(4)r — Gres = s5u(2); ®su(2), ®su(2)rdu(l)r du(l)g
oo .

Prm

(175) - (17171)0,2@ (151’1)0,—2 2] (1’173)0,0
(471) — (17 27 2)+1,+1 @ (17 2) 2)—1,+1 @ (27 ]-7 2)-}—1,—1 S (27 ]-7 2)—17—1
BAE .

(15, 1) — (1, 1, 1)070 D (3, 1, 1)070 D (1, 3, 1)070 D (2, 2, 1)270 D (2, 2, 1)_2 0

(6.1.6)

After the twist of the u(1) symmetries, note that this is not the standard transformation
of the 4-dimensional ' = 2 hypermultiplet. Twisting with the su(2), Lorentz with the
remaining su(2)g, i.e.

SU(2)ppist =2 5u(2), @ su(2)p

(6.1.7)
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the resulting topological theory has the following matter content

50(6)L @ 5P(4)R — Gres = 5u(2)g D 5u<2)twist 5> u(l)twist

pmn . (1,5) — (1,1)2@(1,1)2®(1,3) 6.9)
pm . (4,4) — (1,193)22(1,193)3(2,2)09(2,2)_2 -
BAB . (15,1) — (1,1)0®(3,1)0® (1,3)0 @ (2,2)2 @ (2,2)_2.

6.1.2 Supergravity Background Fields

Before describing the details of the reduction, we should summarize our strategy. Our
goal is to determine the dimensional reduction of the 6-dimensional (2,0) theory with
non-abelian A, gauge algebra. For the abelian theory, the dimensional reduction is
possible, using the equations of motions in 6 dimensions ([154,(155]). However, for the
non-abelian case, due to absence of a 6-dimensional formulation of the theory, we have
to follow an alternative strategy. Our strategy is much alike to the derivation of com-
plex Chern-Simons theory as the dimensional reduction on an S2 in ([156]). First note,
that the 6-dimensional theory on S' gives rise to 5-dimensional N' = 2 Super-Yang-
Mills theory. More generally, the dimensional reduction of the 6-dimensional theory on
a circle-fibration gives rise to a 5-dimensiona Super-Yang-Mills theory in a supergravity
background ([|157]) (for earlier references see ([158,/159])). This theory has a non-abelian
extension, consistent with gauge invariance and supersymmetry, which is then conjec-
tured to be the dimensional reduction of the non-abelian 6-dimensional theory.

More precisely, this approach requires first to determine the background of the 6-
dimensional abelian theory as described in terms of the N' = (2, 0) conformal supergravity
theory ([160,|161]). The 5-dimensional background is determined by reduction on the
circle fiber, and then non-abelianized. We can then further reduce the theory along the
remaining compact directions to determine the theory in 4-dimensional. For S3, there
is the Hopf-fibration, used in ([156]) to derive the Chern-Simons theory in this two-step
reduction process. Here, for the S?, we will fiber the S! over an interval, and necessarily,
the fibers will have to become singular at the end-points.

In the following we will prepare the analysis of the supergravity background. By re-
quiring invariance under the residual group of symmetries g,..s preserved by the topolog-
ical twist on S?, we derive ansitze for the background fields in 6-dimensional A" = (0, 2)
off-shell conformal supergravity fields. In the next section we will consider the Killing

spinor equations and fix the background fields completely.
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Label Field sp(4)r Properties
eﬁ Frame 1
Vfé R-symmetry Gauge Field 10 Vfé = —VAGB
T[g@] Auxiliary Three-form 5 TA= 574
D(AB) Auxiliary Scalar 14 D;s=Dgj, Dé =0

Table 6.1: Bosonic background fields for the 6-dimensional (2,0) conformal supergravity.

To begin with, the 6-dimensional metric on S? x R?* is given by
ds? = dsii+12d0% + 0(0)* do? (6.1.9)

with ¢(0) = rsin(f) for the round two-sphere. More generally, ¢(6) can be a function,

which is smooth an interpolates between

—~~f, for -0, E(f)mr—e, for 0 — 7. (6.1.10)

et = da?t, e =rdf, S =10(0)dgp. (6.1.11)

The corresponding non-vanishing components of the spin connection are

/
W = 5 = O d. (6.1.12)
r

In the following the index conventions are such that all hatted indices are R-symmetry,
all unhatted Lorentz indices. All our conventions are summarized in appendix The
background fields for the off-shell gravity multiplet are summarized in table

Before setting up the ansétze note the following decompositions of representations,

that the background fields transform under, first for the Lorentz symmetry,

s50(6), — su(2);dsu(2), du(l)L
A: 6 — (272)0@(]#1)2@(171)*2
(6.1.13)
[BCDI™: 10 = (2,2)0®(3,1)2@ (1,3) 2

[BC]: 15 —  (2,2)2$(2,2)28(3,1)0® (1,3)0 D (1,1)0
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and for the R-symmetry

so(b)r — su2)pdu(l)r
A 5 — 30®12901_2
(6.1.14)
[BC]: 10 — 30®32@3_2@1p
(BC): 14 — 50333303 201201 2P 1g.

The bosonic supergravity fields of 6-dimensional off-shell conformal maximal supergravity

([157,/158,160-162]) are summarized in appendix are the frame eﬁ and

Tpomar  Vapey— @upen: Dap»  ba— (d)up,  (6.1.15)

where dV and db denote the field strength of the R-symmetry and dilatation gauge fields

respectively. Furthermore T, 7 is anti-self-dual E| and D( iB) is traceless
_ AB B
Tpopa =Tipep)+a 07Dz =0. (6.1.16)

We shall now decompose these in turn under the residual symmetry group gr.s and

determine the invariant components.

L. TE[BCD]

by:

The decomposition under g,.s (that is, after performing the twist) is given

(10,5) —(2,2,3)(2) ©(3,1,3)(2) @ (1,3,3)(—2) © (2,2,1)(12) © (3,1, 1) (4

SP) (3, 1, 1)(0) (S5) (1, 3, 1)(0) S (1, 3, 1)(_4) .
(6.1.17)

This tensor product does not contain any singlet under g,.s, so the backgrounds

we consider have Ty 5, = 0.
2. VA[ BEY We are looking for components of the field strength (dV)[ AB] (G invariant
under g,.s. The decomposition of (dV)[AB] (D] is:
(15’ 10) —>(2’ 2, 3)(:|:2) D (3a 1, 3)(0) ® (17 3, 3)(0) ® (17 1, 3)(0) @ (23 2, 3)(:|:4)
©2x (25 2, 3)(0) ©® (3v 1, 3)(i2) ©® (17 3, 3)(i2) ©® (17 1, 3)(i2)

D (27 2, 1)(:t2) D (37 1, 1)(0) D (17 3, 1)(0) D (17 1, 1)(0) :
(6.1.18)

'In Euclidean signature, T[BCD]E can be complexified and taken to satify T' =i T
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We see that we have a singlet that corresponds to turning on a flux on the S? and
an ansatz for V is given by

v(0) €35 - (6.1.19)

N | —

Vozg =

Q)

where Z,7 run over the components E, = 4,5, and the other components of V'

vanish.
3. ba The field strength (db);4p] decomposes under g;s as
(15,1) = (2,2,1)(x2) @ (3,1,1)(0) ® (1,3,1)(0) @ (1,1,1)(g) - (6.1.20)

There is a singlet, which corresponds to turning on a field strength on the S2. In
the following we will not consider this possibility. Note that any other choice can
always be obtained by a conformal transformation with K, which shifts b4 (|161]).
In the following we thus set

by =0. (6.1.21)

4. D( AB) The decomposition under g,.s is given by

(17 14) - (17 1, 5)(0) @ (13 1, 3)(:|:2) ©® (15 1, 1)(:|:2) ©® (15 1, 1)(0) . (6122)

There is one singlet corresponding to the ansatz:

3

with other components vanishing. The relative coefficients are fixed by the trace-

lessness condition on D iB

6.1.3 Killing spinors

With the ansétze for the supergravity background fields we can now determine the con-
ditions on the coefficients v and d, to preserve supersymmetry. The background on
6-dimensional supergravity is summarized in section [6.1.2] and the Killing spinor equa-

tions (B.2.1) and (B.2.7) are solved in appendix In summary the background with

t = b = 0 preserves half the supersymmetries if

o) =57 (6.1.24)
6.1.2
3 00
46) = 27«26((9)) |

where for the round two-sphere [(#) = rsin(f), and the Killing spinor ¢ is constant and

satisfies the following constraint

(D) e o6 — (6.1.25)
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For the round two-sphere ¢(6) = rsin(0).
The value of the R-symmetry gauge field V56 = —MTG)qu = w0 and the fact that
the preserved supersymmetries are generated by constant spinors indicates that this

supergravity background realizes the topological twist on S2, as expected.

Finally, recall that we chose a gauge for which b, = 0. Note that the background
field b, can be fixed to an arbitrary other value by a special conformal transformation
(see ([161])). The special conformal transformation does not act on the other background
fields (they transform as scalars under these transformations), nor on the spinor ™ how-
ever it changes the spinor 7™ parametrizing conformal supersymmetry transformations.
Indeed one can show that the Killing spinor equations , are solved for an

arbitrary b, by the same solution e™ together with
_ 1 _
nm = —§bérésm . (6.1.26)

In this way one can recover the gauge choice b, = a9, (with o = 1/¢ in our conven-
tions) of ([157]), although we will keep our more convenient choice b, = 0. For our gauge

choice, the dimensional reduction to 5 dimensions is rederived in appendix

6.2 From 6-dimensional (2,0) on S? to 5-dimensional Super-

Yang-Mills theory

We now proceed with the dimensional reduction of the 6-dimensional ' = (2,0) theory
on S! to obtain 5-dimensional A = 2 Super-Yang-Mills theory, as in ([157,/158]). Note
that the reduction of the (2,0) theory on S is well known, also for circle fibrations ([163])
and in the case in which a supergravity background is turned on ([157]). However, we
proceed to a new analysis of the reduction. We find that a different solution to the Killing-
Spinor equations compared to the one found in ([157]) is possible, which corresponds to
the gauge in which b, = 0. This, together with , implies that ™ = 0. We find
this gauge to be much more suitable to work with, in particular in the following step of
the reduction to 4 dimensions.

We should remark on an important point in the signature conventions: the reduction
to the 5-dimensiona Super-Yang-Mills theory is accomplished in Lorentzian signature,
R* — R, where fields admit 6-dimensional reality conditions, however it would go
through in Euclidean signature upon complexifying the fields in 6 dimensions and then
imposing reality conditions in 5d. This amounts to Wick-rotating the Lorentzian 5-
dimensional theory. In later sections, when we study the 5-dimensional theory on a

generic My, we adopt the Euclidean signature, which is compatible with the twist on Mjy.
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6.2.1 The 6-dimensional (2,0) Theory

The abelian 6-dimensional N' = (0,2) theory contains a tensor multiplet, which is com-
prised of a two-form B with field strength H = dB, five scalars ®™"  and four Weyl
spinors p@ of negative chirality, which are symplectic Majorana. the scalars satisfy
P = — P and QP = 0. The equations of motion ar

_ 1
Hyy — 2<I>MT/7;§ =0
1 1
PPons — g PRt BT =0 (6:2.1)
D™ — ET;]},;‘FW" 5 = 0.

Here H* = 1/2(H +%H) and the R-symmetry indices of the background fields have been
transformed A — Mmn using the Gamma matrices as in li The covariant derivatives

are defined as follows

i 5 1 m_ loma
D,p™ = (8“ — Ebﬁ—i_ 4wFAB> P = 5 Vim
D&Qmﬁ:(qi_QQOQmﬁ+¢ﬂ?@m? (6.2.2)
_ Res
D2 _ (a 3b* +w B )DA(I)mn + V plm D (I)n]r 6d 116d gymn

Here Rg4is the 6-dimensional Ricci scalar. These equations are invariant under the su-

persymmetry transformations

55’#,, = d‘Wp
5D s = —de™p?l — Qe (6.2.3)
op™ @HIWF“” "+ 175@”” — "y

In appendix we reduce the equations of motion and obtain a 5-dimensional Super-
Yang-Mills in a general background, but for our gauge choice b, = 0, which is a different
gauge choice from e.g. ([157]). In this section we specify to the background R* x S? and
couple this theory to the background supergravity fields of Section [6.1} Using the index

convetions in appendix |B.1| the 6-dimensional fields are decomposed in the following way
H— F=dA

P (6.2.4)

(bmn — q)mn ,

*We will use the conventions of ([161)).
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while the frame is decomposed as follows

/
I ey eﬁ' =Cu

i — (6.2.5)

!
ek =0 egza

The action of abelian 5-dimensional Super-Yang-Mills theory in a general background is
Ssq = SF + Sscalar + Sp, (6.2.6)
where
Sp = —/tr[aFA*5dF+C’/\F/\F]
Secalar = — / &5z /g o (D W OTDA P ATy TAB @mﬁ(M@%%?g)

Sy = [ dav/Igla s (D10 + (1,20

(6.2.7)
with all the mass matrices defined in appendix and F defined as
- 1 .
F=F— —®z;1™". (6.2.8)
a

6.2.2 5-dimensional Super-Yang-Mills theory in the Supergravity Back-

ground

We now determine the 5-dimensional Super-Yang-Mills theory in the background, which
corresponds to the 6-dimensional (2,0) theory on S?, by performing the dimensional
reduction along the circle fiber. As shown in section the only background fields
for the 5-dimensional Super-Yang-Mills theory, which are compatible with the symmetry
group, were Dg‘gﬁ and V(f‘ﬁ. In this section we use the results from appendix to
derive the action with only the background fields D;}" and S™" switched on, in the
gauge b, = 0.

For our background the metric, graviphoton, C4/, and the dilaton, «, are given by
ds? = dsk, +7%d0?, Ca =0, a=-—, 0<60<m, (6.2.9)

which means that G = dC' = 0. Imposing these conditions and turning on only the
background fields Df;ﬁ and S™" the full action is given b

S = SF + Sscalar + S,U + Sint 5 (6210)

3The numerical prefactors are determined by supersymmetry.
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where
S ——1/1Tr(F/\>k F)
1 . . o
Sucatar = +17¢ | & /191 4(6) Tr (€77 D205z + 7 (M) 55 (6.2.11)

Sp=— / d°x \/|g] £(0) T (ipmfﬁﬂbﬁ P 4 P (M) ™7 it ) :
Here, we non-abelianized the theory, and the covariant derivatives and mass matrices

Z),u/(I)mﬁ = a,, + [AM/, (I)mﬁ]

oo / ~~ (0 P PN
DQq)mn — 9 Da/(I)mn + ( ) Dg‘bmn + [AH/76;¢ (I)mn] + [A,U 7 [A ,I)mn]]

r20(0)
Dyp™ = M/pm—i-[Aul,pm] (6.2.12)
wm _ 20(00) s s A of L #n
(Mo)7s" = Ww)% ( —5¢ S“H) 5D
I R S z(e) ,
M ymrm' .~  Z gmngm’ 4 an 5 )

where the 5-dimensional Ricci scalar vanishes because we have a flat metric on the inter-

val. In the non-abelian case we can add the following interaction terms

3 A~ o~ o~ A~
Sint — d5x |g|TI' 6(6) [@'fﬁﬁa @TLT‘] [q)?g’ (I,sm] + @Sfﬁﬁ@mr [q)’rw" @%\]
64 24 (6.2.13)

— U0 pra [ @™, )
where the non-vanishing background fields take the following values

S2 — —rl(6)(1%)2

6.2.14)
N N P N RN P B (

o D)) — 6 — QM

] GO G AR =)

a

where ¢ and ¢” denote first and second derivatives of £ with respect to 6. The action is

invariant under the following supersymmetry transformations
0A, =L(0) emywp™
FOM = 44l 7]
i

o P, L Jm Al ) PR e
op" = 80(0) I '7 @ 7t ms[ o 8£(9)Qﬁ?[(1) , 0" ez
(6.2.15)

Note that the Killing spinor e%' satisfies the relation (6.1.25)) which now reads

(CBYPAED" = i) (6.2.16)
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So far we have kept the sp(4) g R-symmetry indices explicit. However the background
breaks the R-symmetry to su(2) p®so(2)r. To make the symmetry of the theory manifest,
we decompose the scalar fields @™ into a triplet of scalars %, transforming in the 3¢ of
su(2)gr @ s0(2) g, and the complex field ¢, which is singlet 11, which can be achieved as
follows

¢ = %(I‘a)mﬁ@m”, a=1,2,3
1
4

(6.2.17)

The spinors pg decompose into the two doublets p],(;) , pg), transform in the (2)1 ®(2)_1,

as detailed in appendix We also split the gauge field (singlet of the R-symmetry)
into the components A, along R* and the component Ay along the interval.

The spinor €; parametrizing supersymmetry transformations decompose under the

R-symmetry subalgebra su(2)r @ s0(2)g into two su(2)r doublets of opposite s0(2)g
(1)

2 . . .
charge: €7 — & @6](3) (see appendix |B.1.3). The projection condition (6.2.16)) becomes
1 5 (1) _ (2) 5.(2) _
& —1eg =0, ¢ +7°¢ =0. (6.2.18)

For any 5-dimensional spinor y we define

1
Xz =5(x+ 7°X), (6.2.19)

as the 4-dimensional chirality. The action for the gauge field is

1 1
SF = —g /dsﬂf ‘g‘ @ Tr (FMVF'LLV + 2FM9F#0> . (6220)

The action for the scalars is

Sscalar

1 ;o , B 1 ~ 1 _ _
= ~1 /d5x £(0)Tr (DN @“Du’@& + DH ngM/gp + ﬁDewaDewa + T—ZDggngga + micpga)
(6.2.21)

where the mass term is

U'(0)* — £(0)¢"(9)
r20(0)?

= cot(6)?/r? and diverges at the endpoints

m¢(9)2 =

(6.2.22)

2
@

of the interval. We will return to this matter when discussing the boundary conditions.

which for the round sphere reduces to m

The action for the fermions is
Sp = —2i/d5:L‘\/|g| £(0) Tr (pf#v“Dup(_Q)p + P,(a_)V“Dqu)p

1 ;1 ;
+ ;p;l_ngpf)p - ;pf)z)@p“)p) : (6.2.23)
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and the interaction terms become
Syukawa = —/d5x\/ma9)2 Tr [2(ad)ﬁ‘3p§_) [%,p((;_)} + Q(O-d)ﬁquz [%’p((jﬂ
+i (o) [0.020] + 6 [2. 80 = 62 [0, 2P] = 05 [0, 47] )]

Squartic = —i/d%\/EE(GP Tr <[§Dfla (P] [(p&v @] + %[Qp&v 90(;] [90&7 908] - %[@, @] [% @])

Scubic = é/d5$\/@£(0)f/(9) 6di)éT‘r (@d[@[}v @é]) .
(6.2.24)

The complete 5-dimensional action is
S54 = SF + Sscalar + Sp + Syukawa + Squartic + Scubic, (6-2~25)

and the supersymmetry variations for this action, decomposed with regards to the R-
symmetry, are summarized in appendix [B.4] The action above should be supplemented
with appropriate boundary terms, which ensure that supersymmetry is preserved and
that the action is finite. We will address this issue after we have taken the cylinder limit
of the metric.

We need to determine the boundary conditions of the 5-dimensional fields at the
endpoints of the 0 interval.

To proceed we first notice that the complex scalar ¢ has a mass term m(#)? which
diverges at the boundaries 6 = 0, 7: E|

m(9)* ~ w020 (6.2.26)

ﬁ y 0%71'.

Finiteness of the action requires that ¢ behaves as

0(9) , 06—0,
o= (6.2.27)
Orn—-0) , 6—m.

The boundary conditions on the other fields are most easily determined by the require-
(1) (2

ment to preserve supersymmetry under the transformations generated by € and &
presented in appendix B4 We obtain at § = 0:
1 2
P =000), o =00).
(6.2.28)

AN = 0(92) )

and the counterpart at 0 = .

4This follows from the regularity conditions on f: f(6) ~ 0 at @ = 0 and f(0) ~ 7w — 6 at 6 = =.
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The fields %, Ay are constrained to obey generalized Nahm equations as they ap-

proach the boundaries. The generalized Nahm equations take the form
1 S
Dpp” — grﬂ(e)eagagobtpc =0. (6.2.29)

These equations reduce to standard Nahm’s equations upon setting r¢(6) = ]ElThese
equations are compatible with a singular boundary behaviour of the fields at the endpoints
of the 6 interval. For simplicity let us assume the gauge Ag = 0 in a neighbourhood of
0 = 0, then the above modified Nahm’s equation are compatible with the polar behaviour
at =0

= 2&;(;) L o). (6.2.30)
where
o0:su(2) — u(k) (6.2.31)

denotes an embedding of su(2) into u(k), see e.g. in ([140,/164]) and 7% are related to the
Pauli matrices 0@ as follows '

7= %aa. (6.2.32)
Moreover the order O(1) term is constrained to be in the commutant of ¢ in u(k). The
reduction that we study, from a smooth two-sphere to the interval, correspond to ¢ being
an irreducible embedding ([140]).

More generaly the Nahm pole boundary condition is compatible with any
embedding o and is associated with the presence of 'punctures’ — or field singularities
— at the poles of the two-sphere in the 6-dimensional non-abelian theory ([133]). An
embedding o can be associated to a decomposition of the fundamental representation (k)
under su(2) and can be recast into a partition [n1, ng, - - -] of k. The irreducible embedding
is associated to the partition ¢ = [k] and corresponds to the absence of puncture in 6d.
The boundary conditions at § = 7w are the mirror of the one at # = 0 and are also
characterized by Nahm pole behaviour with irreducible embedding o = [k].

(_1), pf) appear in the supersymmetry variations of ¢® and
hence are of order O(1) at §# =0

The remaining fermions p

p =0, P2l =0(), (6.2.33)

and similarly at 6 = .

5After a redefinition of 6, these equations are simply a different form of the usual Nahm’s equations.
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6.2.3 Cylinder Limit

For general hyperbolic Riemann surfaces, the dimensional reduction depends only on
the complex structure moduli ([133]). The two-sphere has no complex structure moduli,
however, there will be a metric-dependence in terms of the area of the sphere, which
enters as the function ¢(f), except through the area of the sphere. This can be checked
by explicitly performing the reduction keeping ¢(6) arbitrary. However, for simplicity
we consider here the special limiting case, when the two-sphere is deformed to a thin
cylinder capped with two half-spheres. This corresponds to taking the metric factor £(6)

to be be constant

(@) =0 =const. fore<f<m—e,

£(0) — smooth caps forf <e, m—e<86. (6.2.34)

and taking the limit ¢ — 0. The limit is singular at the endpoints of the #-interval. The
boundary conditions in 5 dimensions can then be fixed by preserving supersymmetry and

the symmetry group of the twisted theory. We rescale the fields as follows

a 1 a 1 1 1 2 I
ot et e e, P Ep;), o2 = o (6.2.35)

The action in this limit simplifies to

Sp=—

2 e dod*z \gm< F,, F* + Q(aﬂAe — DpA,, + [A#,Ag])2>

Secalar = — 4 e dods |g|"[&“(D“'@&DH/%—FD“'@DH/@)

Sp = g dfd*z+/1g] TY(/) 1D p P 4 p DD, p?
1 1
+ pi,ﬁl? 7 - pl(,,)D 27 )

Svukawa = ~ 35 / dod*z/1g1Tx (205 |77, 0] + 2007 |07, 0}

1 (,0;) [@’ pzi( )} +pI()1JZ [%pgjr(l)} p( ) [@,p’i@)} p( ) [907P+(2)])>

1 a b a Lo >
S = =57 | /T (Sl lle®, 7]+ [ o1l 6] - 1ol )
(6.2.36)
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The supersymmetry variations in appendix [B:4]in the cylinder limit reduce to

1 (2) (1)
0A, = — ;(() VuPy— + 2P fyupﬁJr)
649 = — (V7p) — e@7,())
5o = (6(1)13(0. )pqp((ﬂ)r @ 5(o%)P ,0((112) (6.2.37)
bp = —2£1)P p](glJ)r

55 = 4227,

for the bosonic fields and for the fermions

5 = S Fun ey - EDMQO’Y#G(B) + %Dwgef{) - 8*170 (™ la, o3l (00) 2 = ile, Flel)
ops) = iFuev"e&) + 4Du<p el + = Dopel) 41 [, T

e LT C I R A ALt

opy) = %Fuv weld 1+ 2D, oy + 41TDe<Pg€%2) - % (™ lpa, pl(00) 2 + ile, 2lel)

(6.2.38)
The theory we obtain is nothing else than the ' = 2 Super-Yang-Mills theory in 5d. A
similar reduction of the 6-dimensional (0,2) theory on a cigar geometry was considered
in ([164]). The 5-dimensional Super-Yang-Mills theory is defined on a manifold with
boundaries, which are at the end-points of the #-interval and half of the supersymmetries
are broken by the boundary conditions. It is key to study the boundary terms and

boundary conditions in detail, which will be done in the next subsection.

6.2.4 Nahm Equations and Boundary Considerations

The boundary conditions at the two ends of the 6 interval can be worked out in the same
way as in section In the cylinder limit of the two-sphere ¢(f) — ¢ the mass term
m(6)? goes to zero everywhere on the @ interval except at the endpoints § = 0, 7 where is
diverges, forcing the scalar ¢ to vanish at the boundary. The other boundary conditions
can be worked out by requiring supersymmetry under the eight supercharges. This leads

to letting the scalars ¢® obey standard Nahm equations close to the boundaries
a_la 5 @
Doy — 5egle”, ¢ = 0. (6.2.39)

Explicitly we obtain, in the gauge Ag =0, at § = 0:
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Y = 0(9) > Au = 0(9) )
a_o™
P = + ¢y +0(0),
0 © (6.2.40)
A =0, P =0(),

A =000, p =00).
where ¢ : su(2) — u(k) is an irreducible embedding of su(2) into u(k), with 7 as in
1} and there are identical boundary conditions at # = 7. The constant term 4,0?0)
in the ¢%-expansion is constrained to be in the commutant of the embedding ¢. The
maximally supersymmetric configurations are vacua of the theory preserving the eight
supercharges and are given by the BPS equations

1
Dy® — 56“53[95’7 ¢1=0

p=¢p="F,=Fup=0 (6.2.41)
'Dutpé =0.

and vanishing fermions. Moreover there is the additional constraint that the scalars (%
have poles at 6§ = 0,7 both characterized by the partition ¢ = [k]. The first equation in
is the Nahm equation for the fields (¢, Ag) and the boundary behaviour of ¢®
are standard Nahm poles.

The Nahm pole boundary condition introduces two difficulties: the supersymmetry
variation of the action results in a non-vanishing boundary term and the polar behaviour
of the scalar fields make the action diverge. These two problems are cured by the addition

of the following boundary term
A ! oo
bdry =~ T [ e/ lgl | e 0"t
1 a7
= _6r2€Tr/d4xd9\/mag (eagagz)“(pbgoc) .

The second line gives Spqry a total f-derivative and we shall take this as the definition of

(6.2.42)

Spary- This additional term ensures supersymmetry and makes the 5-dimensional action

finite. We have in particular

& 1 i b 2 5 &
—Tr/d9d4$ lq] (Deso Do + 5 [va wlle ,wb]) — 3Tr/d4xd9\/|g|80 (%Ea@ . )

1 G ’
= Tr/d‘*a:de\/!g! (Da% - §eagg[<pb,<p ]) :

(6.2.43)
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which is the square of Nahm’s equations. The 5-dimensional action is finite since the
scalar fields ¢® obey Nahm’s equations at the boundaries. We even find a stronger result:
the 5-dimensional action is minimized when the scalars 4,05 obey Nahm’s equations on
the whole 6 interval.

Finally we can comment of generalizations of the Nahm pole boundary conditions
to two arbitrary partition g, and o, for the scalars fields at the two boundaries 6§ =
0,7 as described in ([140]). These boundary conditions preserve the same amount of
supersymmetry and admit global symmetry groups Hy x H; C SU(k) x SU(k) acting by
global gauge transformations on the fields. Hy and H, are the commutant of g, and o,
in SU(NE), defined as the subgroup of SU(k) which leaves the p boundary conditions
invariant. The general (gg, o) Nahm pole boundary condition corresponds to inserting
singularities or punctures at the two poles of the two-sphere in the 6-dimensional (2,0)
theory (see ([140])). All our results can be directly generalized to having general Nahm

poles at the boundaries of the 6 interval.

6.3 4-dimensional Sigma-Model and Nahm’s Equations

In the last section we have seen that the 5-dimensiona Super-Yang-Mills theory in the
background corresponding to the S? reduction of the 6-dimensional (2,0) theory requires
the scalars ¢® to satisfy Nahm’s equations, and the supersymmetric boundary condi-
tions require them to have Nahm poles at the boundaries of the interval. The
4-dimensional theory is therefore dependent on solutions to Nahm’s equations. To di-
mensionally reduce the theory, we pass to a description in terms of of coordinates on
the moduli space My, of solutions to Nahm’s equations. In this section we will find the
theory to be a 4-dimensional sigma model into My, where the bosonic degrees of freedom

XTI =1,2,... 4k, are coordinates on the moduli space
XMy — My, (6.3.1)

while the fermionic degrees of freedom & () § = 1,2, are Grassman-valued sections of the

pull-back of the tangent bundle to M
1?2 e N(X*TM @ 8*), (6.3.2)

where S* is the spin bundle on My. The sigma-model for M, = R?* is supersymmetric,
with A/ = 2 supersymmetry in 4 dimensions. The coupling constant for the sigma-model
is proportional to the area of the two-sphere as anticipated. We now proceed to the

derivation of the sigma model.
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6.3.1 Poles and Monopoles

Before studying the dimensional reduction to 4 dimensions, we summarize a few well-
known useful properties of the moduli space M. The moduli space My of solutions
to Nahm’s equations, on an interval with Nahm pole boundary conditions given by the
irreducible embedding p = [k], is well-known to be isomorphic to the moduli space of
(framed) su(2) magnetic monopoles of charge k ([165[166]), which is 4k-dimensional and
has a Hyper-Kahler structure. Let us recall the monopole moduli space and the Nahm
equations moduli space.

Magnetic monopoles can be understood as solutions to the Bogomolny equations
([167]). Let A, be a connection on a principal G-bundle over a 3-dimensional manifold
Ms. Moreover, let ¢ be a section of the associated adjoint bundle, the so-called Higgs
field. The Bogomolny equation for the pair (A, ¢) is then (|167])

F = D¢, (6.3.3)

where F' is the field strength of the connection, D is the covariant derivative defined
by A, and x is the 3-dimensional Hodge operator. Moreover, it can be proved that the

following action ([166])

1

5=4 /M3 (F,F) + (Do, Do), (6.3.4)

where (, ) is the Lorentz invariant inner product, is minimised when the couple (A4, ¢)
satisfies the Bogomolny equations. In addition, in that case (|166]), S = 4wk, where
k is then defined as the monopole magnetic charge. The solutions to such Bogomolny
equations describe the monopole moduli space of charge k.

On the other hand, as we saw, Nahm equations read as follows

dr; 1 )
@ — §€ij[]}7Tk] = 0, 1 = 1, 27 3’ (635)

where T; are matrix valued, depending on 6 € [0, 7| and have simple poles at the endpoints
of the interval, the residues of which define representations of su(2). In particular the

residue is specified by an embedding
p:su(2) — u(k), (6.3.6)

which is determined by a partition [k] of k. This is because such embedding is specified
by the image of the nilpotent matrix o= = o' + i0? in u(k) (where o; are the Pauli
matrices), which corresponds to a partition of & following the decomposition into Jordan

normal form (see e.g. ([168])).
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Hitchin showed the equivalence of the moduli space of su(2) monopoles of charge k
with the moduli space of Nahm’s equations with boundary conditions specified by the
embedding p = [k] ([153]).

The metric of spaces My, is not known in explicit form, other than for the cases
M; ~R3 x S! and for the case
f;l X /V4,4}{

~ R3
MQ X Z2

(6.3.7)

where M 4 is the Atiyah-Hitchin manifold ([166]). For general k the moduli space takes

the form ([166])
St x MY
Zy

A particularly useful characterization of the reduced Nahm moduli space Mg is in terms

My, ~R3 x (6.3.8)

of Slodowy-slices. Bielawski showed in (|169}/170]), that the moduli space of solutions

with Nahm pole boundary conditions for k-centered su(2) monopoles is given in terms of
MO ~ {(g, X) S su(N)C X su(N)C; X e SW U g_lS[k]g C T*SU(k)C} (6.3.9)
where the Slodowy slice for an embedding p : su(2) — u(k) is

S, ={p(t") + z € su(k)c; [p(t7),z] = 0} (6.3.10)

+

Here o* = 0! £ i0? are the raising/lowering operators of su(2).

6.3.2 Reduction to the 4-dimensional Sigma-Model

To proceed with the reduction on the 6§ interval to 4 dimensions, we take the limit of small
7 (the size of the interval). The terms in the action (6.2.36)) are organized in powers of r.

The divergent terms which are of order r="

, n = 2,3, must vanish separately. The terms
of order r~! contain the four-dimensional kinetic terms and lead to the 4-dimensional
action. The terms of order ™, n > 0 are subleading and can be set to zero. To perform

this reduction we must expand a generic field A in powers of r,
A=A+ A+ Dor® 4., (6.3.11)

and compute the contribution at each order. We find that only the leading term Ag

contributes to the final 4-dimensional action for each field, except for the ‘massive’ scalars

CNC))
+p'P—p

dimensional action will arise with the overall coupling i.

p,p, and spinors p whose leading contribution arise at order r. The final 4-
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Let us now proceed with detailing the dimensional reduction. We substitute the
expansion (6.3.11)) in the action (6.2.36]) and study the terms at each order in powers of

r. At order r—3 we find the term

1

— 4
S,-3 = — 130 dod*z+/ g
15 2 n 1
T | (D0 - 365061+ lea el 91 +DowDo — 1l 5l
(6.3.12)

This term is minimized (and actually vanishes) up to order O(r~!) corrections, upon

imposing the following constraints: ¢, @ vanish at order r°,
o=¢=0(r), (6.3.13)
and the fields ¢® and Ay obey Nahm’s equations, up to order O(r) corrections,

1~
Doy —56 [go o] =0, (6.3.14)

with Nahm pole behaviour ¢ = [k]| at the two ends of the interval. The 4-dimensional
theory will then localize onto maps X : R* — My, where M, is the moduli space of
u(k) valued solutions of Nahm’s equations on the interval with g-poles at the boundaries.

Furthermore we choose the gauge fixing
OpAg = 0. (6.3.15)
The terms at O(r~?2) vanish by imposing p(ﬁ)r,p( ) to have no O(r?) term
P =0(r), P2 =0(). (6.3.16)

The kinetic term of these spinors become of order r and can be dropped in the small r
limit. The fermions p( ) ( ) become Lagrange multipliers and can then be integrated

b+ P
out, leading to the constramts on the fermions p(A) ,pg}r

(2) )
Dop's) +ileh, pia] =0
R (6.3.17)

(1) 1)
D@p + l[QOq, ] 0 )
which correspond to the supersymmetric counterparts to Nahm’s equations (6.2.39). We
will use these localizing equations below to expand the fermionic fields in terms of vectors
in the tangent space to the moduli space of Nahm’s equations Mj.

Finally we drop the order r kinetic terms of the 4-dimensional gauge field and scalars

©, @ (which contribute only at order r), and we are left with the terms of order % which
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describe the 4-dimensional action
1

= —_- — 4 l’/ a (DA 12
Sp—1 ™ dod*z+/|g| Tr (D 0" Dyrpg + 0 AgaHA9>

0 " (6.3.18)
_ = 4 1 (2)p
; dod*z+/|g| Tr(pﬁ_v“Dﬂp p).

The remaining task is to express this action in terms of the fields X = {X'} and the
massless fermionic degrees of freedom, and to integrate out the 4-dimensional components
of the gauge field A, and the scalars ¢, p, which appear as auxiliary fields in the 4-
dimensional action. The subleading terms (at order r) in the ©® expansion can similarly
be integrated out without producing any term in the final 4-dimensional action, so we

ignore these contributions in the rest of the derivation.

6.3.3 Scalars

We will now describe the 4-dimensional theory in terms of ‘collective coordinates’, simi-
lar to the approach taken in e.g. (|[171-173]) for dimensional reduction of 4-dimensional
Super-Yang-Mills theories on a Riemann surface. The resulting theory is a (supersym-
metric) sigma-model (6.3.1]), where we will consider My = R*. Let X! be coordinates
on the moduli space M. The three scalar fields @z and Ay in terms of these collective

coordinates are expanded as follows

6ot =Ti5x1
(6.3.19)
54y =195 x1,
where I = 1,...,4k, where we expanded in a basis of the cotangent bundle of My, which
up to gauge transformations is
T .
v7 = 9y
oA (6.3.20)
0
T? = W - DGEfa

where Ej defines a connection V; = 97 + [Ef, -] on Mj. So we see that the expansion
(6.3.19)) is just the usual variation of fields on My, e.g. dp% = V¢ X!. To guarantee,
that the fields % and Ay satisfy the Nahm equations, the sections of the cotangent bundle
to M, have to solve

D3 + {T?,gﬁ} = e [T 2 o] (6.3.21)

The metric on My, can be expressed in terms of these one-forms as

Gry=— / dO Tr(Y9Y 5 + 1979 . (6.3.22)
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Similarly we can write down an expression for the three symplectic forms (see e.g.

([168])) A
wld; = /d@ Tr(eabETIgTJE—i‘ ISV ER AR (6.3.23)

These provide the hyper-Kéhler structure of the moduli space M. In the appendix
we collect various useful properties for these structures. Thanks to the gauge fixing

condition

DpT + [% Tﬂ =0, (6.3.24)

by substituting the expansions in collective coordinates (6.3.19) and (6.3.20) into the
bosonic part of the action (|6.3.18)) we obtain

1 .
Sscatars = =75 / d*zdf+/|g| Tr (8]A93 7 Ag + (9190“8]903) ouxTorx’.  (6.3.25)

The terms additional to the usual kinetic term vanish after integrating out the gauge
field.

6.3.4 Fermions

The fermions satisfy the equation (|6.3.17]), which is the supersymmetry variation of the
Nahm equations. The spinors therefore take values in the cotangent bundle to the moduli
space M}, and we can therefore expand them in the basis that we defined in (6.3.20)),
1 3 g .
pl) = THoa) A g a ™!

(6.3.26)

2 a q i .
P2 = T5(05)IADE 4§ AT

where AW A@) are spacetime spinors, valued in TMj. The identities 1} imply

that the fermionic fields obey the constraints

W M = i(oMINDT, (6.3.27)

2
The expansion in (|6.3.26]) can be seen to satisfy the equation of motion for the spinors
(6.3.17) by making use of (6.3.21)) and the gauge fixing condition (6.3.24)). Then substi-

tuting the expansions in collective coordinates (6.3.26)) in the fermionic part of the action

[6:3.18) we find

81
Spkin = ﬁ

(2)J
P

d*z/|g| [Gu)\(l)lﬁ'y“au)\

. / O T (T%JT&K +T§8JT§(> ADIPyupBG 7|
(6.3.28)
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6.3.5 4-dimensional Sigma-Model Action and Symmetries

Finally, we need to integrate out the gauge field and the scalars ¢, @, which is done in
appendix The conclusion is that, in addition to giving the standard kinetic term
for the scalars, this covariantizes the fermion action and results in a quartic fermion
interaction that depends on the Riemann tensor of the moduli space. In summary we

find the action

1 1 ) 5 2)J
Su=— /M4 d*a\/|g4] [ZGU(aﬂXfa#x%sm“ﬂpaﬂpuA;) )
_ M Ipy(1)JIy (2)Kgy(2)L
82R i AP ADKTBL ]
(6.3.29)
where = = =04 AL . e hnal step 1s to decompose the spinors
here DAL = 92D+ ADTL 9, XK. The final step is to d he spi
A9 as explained in appendix into 4-dimensional Weyl spinors
1
wmr_ 1(& @r_ 170
)\ﬁ = 4< 0 ) )\1/5 =1 5}(?2) , (6.3.30)
obeying the reality conditions
€y =67, (€@ =g, (6.3.31)

The 4-dimensional sigma-model action from flat M, into the monopole moduli space My,

is then given by

1 5 1 5 G
Sia = m/ d41’\/ |g4| |:GIJ (3HXI X7 — 27:6(1)11)0_;1,2)“51(?2”) — §R1JKL§(1)Ip§;1)J£(2)qué~2)L
My

(6.3.32)
The supersymmetry transformations become
I_ (. @pMI (1)p(2)]
0X*' = Z(E pﬁﬁ +€ p§ﬁ )
nr 1 ) .4 G 1 DK
551(7) =1 (6MX10“61%) —iw Ij(aa)%ﬁuX‘]a“e((?)) — ka,éX‘]{]%) (6.3.33)

1 R _
551(72)1 =1 ((%Xla'“eg) — iw“IJ(Ua)%ﬁuX‘]c?“eg)) - I‘;kéX‘Jgg)K.

We have thus shown, that the Mb5-brane theory reduced on an S? gives rise to a 4-
dimensional sigma-model with N = 2 supersymmetry, based on maps from R* into the

moduli space My, of Nahm’s equations (with p = [k] boundary conditions).



Chapter 7

Conclusion

In this thesis aspects of both F-Theory and M-Theory were investigated. The main
alm was to gain insight into non-perturbative phenomena in string theory which can be
accessible from these two frameworks.

In the F-Theory context, we saw how to properly take into account configuration
of 7-branes in Type IIB compactifications. The low energy dynamics of the resulting
compactification turns out to be encoded in the geometry of an elliptically fibered Calabi
Yau. In particular, in order to produce a non-abelian gauge group in the resulting theory,
the Calabi Yau manifold needs to develop geometric singularities. Up to subtleties in
higher codimension in the base, we saw that an ADE classification determines both the
singularity type in codimension one and the gauge group of the theory obtained upon
compactification.

When considering compactifications to 4 dimensions, resulting in A/ = 1 supersymme-
try, we saw that phenomenological reasons led us to consider additional abelian factors
to the ADE gauge group. Indeed, if the gauge group of the Standard Model can be
embedded into SU(5) or SO(10) in Grand Unified Theories, it is also the case that addi-
tional gauge bosons are predicted which would give rise, for example, to unwanted proton
decay operators. Such a problem can be solved by requiring the existence of additional
abelian factors in the gauge group of the resulting theory, through which the proton
decay operators result to be not gauge invariant.

The principle of geometric engineering is of use in this case as well. The existence
of additional sections of the elliptic fibration results exactly in U(1) factors through the
following mechanism: via F-Theory/M-Theory duality the Cs form of M-Theory can
be decomposed along the forms which are Poincare dual to the sections of the fibration

(which are divisors of the total variety), thus resulting in a gauge field for each additional
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rational section. A classical analysis through the application of Tate’s algorithm allows
to determine the singularities of the elliptic fibration. In this thesis, Tate’s algorithm
was applied to an elliptic fibration with two additional rational sections. The analysis
resulted in a thorough classification of such elliptic fibrations, making use of the fact that
the coefficients of the fibration belong to a unique factorization domain.

On the other hand, in the context of M-Theory, aspects connected to the theory on
parallel membranes were investigated. M2 and M5-branes in M-Theory are half BPS
solutions to 11-dimensional supergravity and their low energy dynamics is governed by,
respectively, three and 6-dimensional superconformal field theories. Such theories have
been elusive for many years, even though recently, following the breakthrough of the BLG
model (followed by the ABJM one), the worldsheet theory on coincident M2-branes has
been better understood.

The theory on parallel M5-branes, instead, still remains unknown, and aspects of it
have been the focus of this thesis. A first line of research consisted in the extension
of a previously proposed model ([6]), which similarly to what happens for the BLG
model, realised the (2,0) supersymmetry of the 6-dimensional theory describing M5-
branes through a gauge symmetry depending on a 3-algebra, rather than a usual Lie
algebra. In this thesis, such realization of the (2,0) algebra was extended through the
introduction of an abelian 3-form. After showing that such algebra closes on shell, it
was seen that by solving the constraints for the fields that arise from closure, a natural
dimensional reduction to 3 dimensions arises. Remarkably, upon solving such constraints,
the (2,0) theory reduces to the BLG model. Therefore, the algebraic structure here
proposed seems to include details of the dynamics of both parallel M2 and M5-branes.

The second line of research followed in the M-Theory context tried to extend a web of
dualities which arises from the compactification of the theory on coincident M5-branes,
the (2,0) theory. Indeed, even if a satisfying description of the (2,0) theory is not avail-
able, a number of results has been obtained by relating different compactifications to lower
dimensions. In particular, through the breakthrough of the AGT correspondence, quan-
tities of 4-dimensional N/ = 2 theories were related to quantities in non-supersymmetric
Toda theories in 2 dimensions. Dualities in other dimensions were then proposed follow-
ing a similar reasoning. In this thesis, we begin the investigation of a new set of dualities,
which would relate 2-dimensional theories obtained by compactifying the (2,0) theory on
four-manifolds with the theory obtained by reducing the (2,0) theory on a two-sphere.
Such dimensional reduction is here carried out to obtain a 4-dimensional sigma model

into the moduli space of magnetic monopoles.



Appendix A

Appendices to Chapter 3

A.1 Solving Polynomial Equations over UFDs

In this appendix details are included of how to solve polynomial equations in the sections
s; given that they belong to a unique factorization domain [73]. These solutions were
repeatedly used in the algorithm to enhance the vanishing order of the discriminant. For
convenience a part of this section will be a summary of the details given in the appendix
A of [22], however there are polynomials specific to the case of two additional rational
sections and the derivation of the solution for these is provided here. For more details
on polynomial equations over UFDs that arise in the application of Tate’s algorithm the
reader is referred to appendix B of |21].

In [22] solutions were obtained for a three-term polynomial of the form
5759 — 515354 + 8385 = 0. (A.1.1)

Four solutions were found, three of which involve setting pairs of terms to zero, which
are what we refer to as canonical solutions of the polynomials, and one other solution
which we refer to as the non-canonical solution. The canonical solutions were found to

be the pairs

s1=s3=0
so=s53=0.

141



Appendix A. Appendices to Chapter 3 142

The non-canonical solution is when

§1 = 0102
S§9 = 0304
S3 = 0103 (Al?))

S4 = 0904 + 0305

S5 = 0205,
where oy and o3 are coprime over this UFD.

The non-canonical solution of a two-term polynomial was also needed
(

81 = 0102
S9 — 0304
5189 — 8384 = 0 : (A.1.4)
S§3 — 0103
S4 = 0904 .

With this solution o9 and o3 are coprime, and so are o1 and oy.

A.1.1 Two Term Polynomial
We now look at the polynomial

P =57 — 45953 (A.1.5)
Setting P = 0 imposes the following conditions:

e There is an equality between the irreducible components of s? and the product of

the irreducibles of sy and s3.
e Write i for the irreducible components common to all the three terms.
e Write o1 for the irreducible components common to s; and so.

e Write o9 for the irreducible components common to s; and ss.
Note that no conclusion is drawn about irreducibles shared only by s and s3. Then the
most general solution takes the form
S1 = QMU 1092

57 — 48953 =0 : So = puo? (A.1.6)

— 52
53 = |03 .
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Since p is the greatest common divisor of so and s3 we have that o1 and o9 are coprime.

A.1.2 Perfect Square Polynomial
The first perfect square polynomial is given by

57 — 48953 = p°. (A.1.7)
This can be reformulated as

(s1+p) (s1—p) = 4s2s3, (A.1.8)

which can be solved in general by applying the solution of the two-term polynomial

(A.1.4)). In this case, it reads

S1 —p= 20102

s1+p= 20304

(A.1.9)
S2 = 0103
83 = 0904 .
From the first two of these equations, one finds the generic form of s1
81 = 0109 + 0304 . (A.l.lO)
So the general solution to the perfect square condition is
§1 = 0102 + 0304
2 4 — 2. Al1.11
51 8283 =P So = 0103 ( - )

83 = 09204 .

It follows from the solution of (A.1.4]) that o9 and o3 are coprime, as are o1 and oy4.

A.1.3 Three Term Polynomial

The three-term polynomial
P = 3%3233 — 518485 + 3%36 , (A.1.12)

appears in the algorithm. By imposing P = 0 it is seen that sq | s%s(;, since it divides the

other two terms in the equation. In the same way s5 | 8%8283. Decompose s5 = o109 and
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s1 = 0103, where o1 = (s1,s5) is the greatest common divisor of the two terms, so that

o9 and o3 have no common irreducibles. Then the equation of the polynomial becomes
03 (5605 — 540203 + s25305) = 0. (A.1.13)

Applying the same reasoning it is now seen that o3 | sgog, but since o2 and o3 have no
common irreducibles one can conclude that o3 | s¢. In the same way it can be deduced

that o2 | s2s3. This can be expressed as
86 = 0403, 8983 = KO3, (A.1.14)

where & is some constant of proportionality. The two-term solution (A.1.4) can be applied

to the second of these equations to obtain
So = 050¢, 83 = 0708, K = 0507, 09 = 0g0g. (A.1.15)
Then the initial polynomial reduces to
02030608(030507 + 040608 — 54) = 0, (A.1.16)

from which can be solved for s4. Then there is a non-canonical solution

§1 = 0103
S9 = 0504
9 9 83 = 0708
5715283 — 515485 + 8556 =0 ¢ (A.1.17)

S4 = 030507 + 040608

§5 = 010608

S6 = 0304,

\

where the pairs (o5,03), (06,07), and (03,0608) are all coprime. There are also four

different canonical solutions
c1=0: s1=55=0
o3=0: s1=5=0
(A.1.18)

cg=0: s9o=s55=0

0'8:0: 83285:0.
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A.2 Matter Loci of SU(5) Models

In this appendix we list the matter loci of the I5 fibers whose U(1) charges are studied
in section [3.41

032)5172 — 0203822 + 035372 (A.Q.l)
0'28172 — 0405822 + 052)83,2 (A.2.2)
01(032,8571 — 020356,1 + 0387,1) — (02(74 — 0305>(0289’1 — 038871> (A.2.3)

0’:?04(0483,1 —0157,0) + 0’%(0’281,3 — 0104852 + 0%58,1) - 0203(0252,2 — 010486,1 + 0%89,0)
(A.2.4)

0504(0481’2 — 0185,1> + 0304(0483’2 — 0187,1) — 0203(0382’2 — 0104861 + J%ngo) (A.2.5)
0'%035173 — 0102522851 + 83718271 (A.2.6)
— 01033045571 — 0'20'3(0'28371 — 0104561 + 0%5871) + 0103(—0487,1 +0159,1) (A.2.7)

0103(03514—020352 30383 2)+01(0204—0305) (0385 2—020356.1+03570)+03(0204—0305)% 850

(A.2.8)
0'1(0'38371 — 0'20-356,1 + 0%8871) - (0’20’4 — 0'30'5)(0’257’1 - 0'38971) (A29)
(0204 — 0305)%s1,4 + 020555 5 — (0204 — 0305) 52,2852 + 030455 5 (A.2.10)

(0204—0305)8175—01 (0'204—030'5)(O’285,3—0332,3)4-0%(038371—02038671—%0%88,1) (A.Q.ll)

(é302 — &203) (63513 — Eab3s0,3+E€553,3) + (£26a — €385) (E385.1 — Ealssen +E557.1) (A.2.12)

38407 — 0104851 + 01512 (A.2.13)

£5(0185,1 — 0451,2) + E283(04820 — 0186,1) + E3(0187,1 — T483.2) (A.2.14)
264551 + Ea83(0488.1 — Ea456,1) + &5 (4871 — 0459.1) (A.2.15)
2(—£209520 + 203532 + 309561 — 30357,1) — E502800 (A.2.16)

€3(0351.3 — €452.2) +E5€3(E580.0 — 03850 + E456.1) + E3€550.0 — €263 (€556.1 — 03581 + Ea59.0)
(A.2.17)

616384831 + E263(E3 04 — E1€4561 + Efoasty) + €165 (4581 — E10259.1) (A.2.18)
(&16203—0204)%531+E3(E16003—0904) (E1025220—E10356,1+E40304)+E1E5 (05 51,3— 020385 9+0558.1)
(A.2.19)
E463€304 — E365€3(E58700 — 512+ €456.1)

+ 36685 (Ea&rlsos — E5es5,2 + E5brse + Ealséeso1) — E3E5(E3Es03 — E5€Gss.2 + E5€6€759.1)
(A.2.20)
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E36467073 — 56330307 + E386(E3EG 53,2 + 03 (s1,2 — €use.1) — E503(E70304 + Ees2,2 — Eaest1))

+ &36504(6488035 + E5 (03561 — E5€657,1))

)

01(E351,2 — £o€3800 + €353.2) — 0a(E3851 — Ealsse + E557.1) (A.2.22)

€3 (01851 — 010388.1) + &5 (0287.1 — 610289.1) + Eas(—0186,1 + 0102881 + 010389.1) (A.2.23)
)

52(5201 ((5253 —5352) —5—5%(5531,2 —(525382,2 +(532,8372) —5154(5%55,1 —52(5386’1 +(5§S7,1) (A.2.24

A.3 Resolution of Generic Singular Fibers

In section a table (table of canonical forms for many of the different fiber types
as originally denoted by Kodaira was presented. In this section is is shown by explic-
itly constructing the resolution that each of the forms is the stated fiber. Given the
set of resolutions and the canonical vanishing orders, the resolved geometry is uniquely
determined and the form of the resolved geometry will not be written explicitly. For
the Cartan divisors the equations are given after the resolution process and they will

intersect according to the fiber type of the singularity under consideration.

A31 LT sm <)

The generic form for the singular I;,(ﬂjl‘mm is (2k+1—(n+m), k—n, m, k+1—m,0,0,n,0),

provided that (m 4+ n < k). The resolution process involves several steps. First perform

the following blow ups
(2,y,2:¢1), (2,9,C:Ce1)  1<i<min{k—nk+1—m}. (A.3.1)
If n #£ 0 then the following small resolutions can be applied
(z,2:6), (2, &;&iv1) 1<i<n. (A.3.2)
Similarly if m # 0 the small resolutions,
(y,2;01),  (y,05;0541) 1<j<m, (A.3.3)

are possible. If both n # 0 and m # 0 we need to use both sets of resolutions are applied.
The next step depends on the sign of the quantity m —n — 1. We call (4, the last
exceptional divisor introduced in the initial blow ups, and from now on the index will be

used as max = min{k — n,k + 1 —m} If it is positive then the resolutions,

(Ys Cmazs X1)s  (Ys X Xr41) 1<r<m-n-1, (A.3.4)
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are used. Whereas if negative then the resolutions are
(T, Cmaz; ), (@, Q4+1) 1<r<—(m-n-1). (A.3.5)

If the term is exactly zero then we do neither set. Finally the process can be completed
with the resolutions

(Y, Cs3 s) 1 < s < max. (A.3.6)

The Cartan divisors are listed, assuming that n —m — 1 > 0,

Exceptional Divisor Fiber Equation
z l1lawse,o + l259,0C101 + 1157,0C161
Gi<maz 56,0
Cmaz 56,0 + 85k+1-mGmaz—1
dj<m l2s6,0 + s7,0C1
Om layseo + ys7.00101 + 83.m 010t
i<n l156,0 + 89,0C1
én lixseo + 1 (2890 + 58.0C7 Hn)
Xr<m—n—1 86,0 + 85 k+1—mGCmaz—1
Y(256,0 + 55,k+1-mCmaz—1¥maz—1)+
Xm—n—1
a1 ﬂgf_ﬂl(évszk—n + 51,2k+1-n-mCmaz—1Vmaz—1) Xm—n—2
VYs<maz 56,09

Then the ordered set (Za 51» T a§n7 Cl? e 7Cma:):a X155y Xm—n—1, Q/Jmaza o 771}157717 e
gives an 125’2(17{1|mz) fiber, where the divisors are listed in the canonical ordering for the

Dynkin diagram. One gets the analogous result when n —m — 1 < 0.

A3.2 LTk <ntm < |[22k+1)))

The generic form for the singular fibers of type I;,ﬂzl'mz) with section separation of the

form m +n < L%(2k + 1)J is given by (2k +1 — (m + n),m,m,n,0,0,n,0), where it is
assumed that m > n. In order to resolve the geometry the following set of resolutions is

used

751)
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(z,2;61), (x,&i5&i41) 1<i<n

(y,2;01), (¥,05:0541)  1<j<m
(A.3.7)

($a6r§XT) 1<r<m

(2, Xm; 1), (7, 0s3s41) 1<s<2k—2m—n.

Notice that the first three set of resolutions (together with z) produce 2m+n+1 Cartan
divisors. The fourth set of resolutions is only necessary if 2k — 2m — n > 0. Then the

Cartan divisors in the most general case are

Exceptional Divisor Fiber Equation
z lilowse g + 1259001 + l157,0&1
o1 I256,0 + 5706165 - - £ xa
Si<m l286,0 + 57,0X-1X;
Om l2(y56,0 + 52,m0m—1Xm—1) + Xm—1Y57,0 + 53,mOm—1Xm—1)Xm
Si<n l156,0 + 89,001
&n lLiseo + £59,001X1 + 1185007 En—1XT " + 83,007 En1 X}
Xr<m 56,0
Xm Y56,0 T S2,mXm—1
Ys<2k—2m—n YS6,0 + S2,mXm—1
Yok—2m—n TYS6,0 + T52.mXm—1 + 51.2k+1-m—n¥2k—2m-—n—1X 4

The ordered set (Z, ‘517 to 7§TL7 X1, 5 Xm—1, ¢2k72m7n7 U 7w17 Xm 5m7 to 751) gives
5O11m2)

oht1 singular fiber.

A.3.3 ];,gmnl‘mm (n+m<k, m<k)

The generic form for the singular fiber of type I;}gmnumz)’ where m 4+ n < k, is given by

(2k — (n+m),k —n,m,k —m,0,0,n,0). The analysis follows closely that carried out

for Is(0|n1|m2)

oht1 where more details can be found. In order to resolve the geometry perform

the resolutions
(@,9,2:¢), (29,6 G1) 1 <i<min{k—n,k—m}
(z,26), (z,&:&iv1) 1<i<n (A.3.8)

(y,2;61), (y,05;0541) 1<j<m.
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Then the sign of the quantity m — n and then use the according set of small resolutions,
where the index in (4, again means the last exceptional divisor introduced in the blow

ups, that is, max = min{k —n,k — m}

(Y, Gmaz; X1), (U Xr3 Xrt1) 1<r<m-n

(A.3.9)
(x7<ma$391)7 (xﬂgT;QT-f—l) 1<r< —(m—n).
Finally the resolution process is completed with
(¥, Cs3 ¥s) 1 <s< max. (A.3.10)

The Cartan divisors are, assuming m —n > 0,

Exceptional Divisor Fiber Equation
z lilawse o + l259,0¢101 + 1157011
Gi<maz 56,0
Cmaz 86,0 + 35,k7mCmam—1
Sj<m l286,0 + 87,0¢1
Om loyse,o + ys7,0C191 + 83,00 0m19] !
i<n l186,0 + 59,0¢1
én liwseo + C1(289.0 + S8, &)
Xr<m-—n 56,0 + SB,k—mCma:rfl
y(stG,O + 35,k7mCmam—1wmam—1)+
men
I (259, 5—n + S1,2k—m—nCmaz—1Vmaz—1) Xm—n—1
Vs<maz 56,09

Then the ordered set (27517 o 7£n> Cl? e 7Cma:r7X17 e 7men717¢maza o 711)17 5m> T
gives an I;,ﬂzl‘mm, and again analogously for m —n < 0. Notice that if m =k andn =0
(01]"2)

the vanishing orders (k, k, k,0,0,0,0,0) specify the singular fibers I;L,: as listed in

table The k small resolutions that resolve the singularity are
(y, z;01), (y,9550541) 1<j<k. (A.3.11)

The resolved geometry has £+ 1 Cartan divisors, k —1 of which will split if 5%70 —455,057,0

is a perfect, non-zero, square.

761)
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A3.4 LN g pm < | 2k)

The generic form for the singular fibers of type I;]E:o|"1|m2) with section separation such

that m+n < L%kJ is given by (2k — (m+n),m, m,n,0,0,n,0), where it is assumed that

m > n. In order to resolve the geometry the following set of resolutions is used
(x,2:61),  (2,&§;&6+1) 1<i<n

(y72;51)7 (y76]75]+1) 1 S] <m
(A.3.12)

(xyérQXr) 1<r<m

(2, Xm; V1), (2,53 0sp1) 1<s<2k—2m—n—1.

Notice that the first three sets of resolutions produce 2m + n + 1 Cartan divisors. The
fourth set of resolutions is then necessary if 2k — 2m —n — 1 # 0. The Cartan divisors

in the most general case are

Exceptional Divisor Fiber Equation
z lilowse o + 1259001 + l157,0&1
3t las60 + 5706165 - EMx1
dj<m l256,0 + S7,0Xj—1X;
Om l2(ys6,0 + S2,m0m—1Xm—1) + Xm-1(¥57,0 + 53mOm—1Xm—1)Xm
Si<n l156,0 + 89,001
&n 12560 + £59,001X1 + 155,007 En1X1 " + 58007 En1XT
Xr<m 56,0
Xm Y56,0 T 52,mXm—1
Vs<2k—2m—n—1 YS6,0 + S2,mXm—1
Yok —2m-n—1 TYS6,0 + TS2,mXm—1 + 51.2k—m—nV2%k—2m—n—2X 0 3

The Ordered set (z7£1a e 7£n7 X1, 7melaw2k’—2m—n—la e a¢1axma 5m7 e 751) giVGS

an I;;(.COm'mQ) type singular fiber.

A3.5 10

The generic form for I;L,:iollz) is (2k+1,k+1,0,k+1,0,0,0,0). The geometry is singular

at x = y = z = 0 and it can be resolved by performing a blow up (x,y,z;¢1). This
process can be repeated k times, with the i*? resolution being (z,y, (;_1;¢). The Cartan

divisors are then
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Exceptional Divisor Fiber Equation
z l1w$(l1$83,0 + l2y8670) + l%’waSg’o + .%'y(ll.CESZO + leSg’(])Cl
Gi<k 2?8350 + TYse0 + y>58,0

It is easily seen by considering the projective relations introduced by the resolutions
the ordered set (z,(1,- -+, () of Cartan divisors intersects in an Ig,jfrolm). Notice that if
séo — 453,058, is a perfect square, each of the fiber components along {¢; = 0} splits into

two, thus giving the split version I;](CTIQ ),

A3.6 100

The generic form for I;L,f(om) is (2k, k,0,k,0,0,0,0). The singular geometry can be blown

up k times with the i*" resolution being (z,y,¢;_1;¢;). The Cartan divisors are

Exceptional Divisor Fiber Equation
z hwz(lizsz o + layseo) + Bwy?ss o + xy(lixsyo + l2yse0)Ci
Gi<k 2?5530 + 2yse0 + yss0
Ck 22530 + xyseo + y2sso + Cr—1TS2 % + Ck—lySS,ksl,chlgfl

(012) If, in

addition, 8%70 — 4530830 is a perfect square the (k — 1) Cartan divisors along ¢; split into

The ordered set of (k + 1) Cartan divisors (z,(1,---, (k) gives an I,
two, giving an I;,(cow) fiber.

A3.7 R
The generic forms for the singular fibers of type 152581\1”2) are characterized by the van-
ishing orders (k + 2,k + 2,k +1,1,1,0,1,0). In order to resolve the geometry perform

the resolutions

(x>y’Z;C1)7 (Z>C1;C2)7 (.%,Z;gg), (y,z;§4), (yag2;(51)

(v, 033 0i41) 1<i<2k.

(A.3.13)

The Cartan divisors are
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Exceptional Divisor Fiber Equation
z l157,0C3 + 1289,0C4
G1 YS5,1
G2 55,12C4 + (1 (257,0¢3 + 59,00401)
€ w890 + 2(l185,1 + 58,1C2)
@ YS7,0
di<ok 57,061 + 85,1C4
02k 41 y(s7.0C1 + $51C) 4+ CFCE (s3,041C1 + 515428402k
The ordered set of divisors (z, (3, (2,01, -+ ,d2k+1,C1, C4) sSpecifies an I;;ﬂlm) fiber in
the canonical ordering.
A.3.8 1;OMP)
The generic forms for the singular fibers of type I;zﬂlH?) are given by the vanishing

orders (k + 2,k + 1,k + 1,1,1,0,1,0). In order to resolve the geometry the following

resolutions are used

(J"’ywz;gl)) (ngl;CQ)v (‘rvz;Ci%)? (y,z;44), (yac%(sl)

(y, 03 0i41) 1<4<2k—1.

(A.3.14)

The Cartan divisors are listed, where, as always, all coordinates that are constrained to

be non-zero by the projective relations have been scaled to one,

Exceptional Divisor Fiber Equation
z l187,0C3 + 259,04
G Yss,1
G2 s5,12C4 + 2C1(257,0¢3 + 59,0C401)
3 xs9,0 + 2(l155,1 + 58,1C2)
Ca Ys7,0
di<ok 57,0C1 + 85,1C4
dak Ys7,0C1 + Y8518 + S2,541CF CF0ap1

Then the ordered set (z, (3, (2,01, ,02k,C1,C4) is an I;z(o‘lllz) fiber.
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A.3.9 10N

The standard forms for the I;Zfll 12) type of singular fibers are given through the vanishing

orders (k+3,k+2,k+2,1,1,0,0,0). In order to resolve the geometry use the resolutions

(‘Tvyaz;cl)v (yaz;CQ)a (C17C2;43)7 (y7C1;<4)7 (y7 C3;61)

(A.3.15)
(4,05 0i01)  1<i<2k.
The Cartan divisors are
Exceptional Divisor Fiber Equation
z Lia?sy0C1 + 12Ga(lawss o + 259,0(1C3)
G1 8512 + 88,0C4
G2 YS7,0
€ $5,12G2 + Ca(87,0C1 + 58,06261)
Ca Yss5,1
di<ok 57,004 + 55,1C2
O2k+1 ys5.1Ca + ys7.0Ca + S2.542C5T1CE o
Then the ordered set (z, (1, (3,01, ,02k+1, (2, (4) intersects in an I;,’:Sfllm) type fiber.

A.3.10 101

xs(01(]2)
Loy

The generic forms for singular fibers of type are given by the vanishing orders

(k+2,k+2,k+1,1,1,0,0,0). The geometry is non-singular after the resolutions

(‘Tvyaz;cl)v (yaz;CZ)v (CLC?;CS)? (y7C1;<4)7 (y7 C3;61)

(y,5i;5i+1) 1§i§2k‘—1.

(A.3.16)

The Cartan divisors after these resolutions take the form



Appendix A. Appendices to Chapter 3

154

Exceptional Divisor

Fiber Equation

z
G
©)
€
@

i<k

Dok,

The set of divisors (z, (1, (3,01, - -

an [;z(oﬂ\?) fiber.

A311 0

The generic forms for the singular fibers of type

lia?s7 ¢ + laCa(lawss g + 259,0C1¢3)
8512 + 88,0C4
YS7,0
$5,12G2 + Ca(87,0C1 + 58,06201)
YSs,1
57.0C4 + 851C2

y(s5,1C2 + 57,0C4) + CF G (s1,842C2 + 83, 5+1C1)d2k1

-, 02k, C2, C4) then has the intersection structure of

I*ns(01|2)

ohtl are given by the vanishing

orders (2k + 3,k + 2,1,k + 2,1,0,0,0). In order to resolve the geometry perform the

resolutions
(x7yaz;gl)7 (x>y7Ci;Ci+1) 1 S 7 g k
(y,2;61), (Y, Gi3 0i41) 1<i<k+1
(A.3.17)
(G,05:8)  1<j<k+1

The Cartan divisors are

Exceptional Divisor

(Ct1, 23 X) -

Fiber Equation

z
i<k
01
Ok42
&1
i<kt

X

Then the set (2,61, &1, (1, &2, (2, - - -

Liz?s7,0C1 + 1261 (lawss o + x89,0(1€1)
dit1
5312 + Ys7,002
22531 + 252 k1 20k1Ek4+1 + 51264307161
5312C1 + (57,0C1 + 58,001)02
53,1C-1G5 + $8,0050541

58,00k+2 + Chog1 (22531 + 82k 28kt1 + 51,204+38041)

*ns(01]2)

s Gl Ekt15 X5 Ok y2) B8 an Iy 'y fiber. Notice that
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if 5% ko — 4812k+3831 1s a perfect, non zero square then the Cartan divisor dxyo splits

into two and the fiber is an I;zflm).

A.3.12 R

(0112)

The standard forms for the singular fibers of type I;,ZLS are expressed through the

vanishing orders (2k + 2,k + 2,1,k +1,1,0,0,0). The space is resolved by the following

sequence of resolutions
(7,y,2:¢1), (2,9, Giv1) 1<i<k
(y, 25 01), (v, Gis 6it1) 1<i<k (A.3.18)
(G 053&) 1<j<k+1.

The Cartan divisors in the resolved geometry are then

Exceptional Divisor Fiber Equation
z lha?s7C1 + 1261 (lawss o + 259.0(11)
Ci<k Oit1
Cht1 Y2580 + Y55 k+1Ck + 51,2642CF
51 83,12 + Y87,002
&1 5312C1 + 62(58,001 + 57,0¢1)
Ei<k §3,1Gj—-1Gj + 88,000,541
Ekt1 $3,1CkCk+1 + (Y2580 + YS5.k41Ck + 51,26+2CF ) Okt

The ordered set (Z? 01,€1,C1,82,C2, -, Ck, gk-}—la Ck‘-i-l) represents an I;ZS(Olp) fiber.
We note that if s?) k2 — 4512642880 18 & perfect, non-zero square then the Cartan divisor

Cr+1 splits into two and the fiber is an I;Z(Om) fiber.

A.4 Determination of the Cubic Equation

In this appendix a non-singular elliptic curve with three marked points is constructed
following [15/174] and it is embedded into the projective space P2. This non-singular
elliptic curve is then fibered over some arbitrary base, Bs, to create a non-singular elliptic
fibration.

Begin by considering a genus one algebraic curve, X, with three marked divisors P, @,

and R. The line bundle O(P + @ + R) is identified with the vector space of meromorphic
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functions on X, with poles of at worst order one at the points P, @), and R, and regular
elsewhere. The Riemann-Roch theorem for algebraic curves fixes the dimension of such
vector spaces. Any divisor in an algebraic curve X can be written as a formal sum
over the points of X: D = " p_yxnpP, where np = 0 for all by finitely many P. The

Riemann-Roch theorem then states that for any such divisor
dim O(D) =deg(D)+1—g, (A.4.1)

where deg(D) is the sum over the np associated to D. Thus it follows that the vector
space O(P + @Q + R) has dimension 3. Let the three generators of this space be denoted
by the functions 1, z, and y. We can determine the pole structure of these functions.
Consider first the vector space O(P), which has dimension 1 for any P € X, and which
must contain the 1-dimensional space of constant functions. As it has dimension 1 it can
only contain these holomorphic functions, and therefore there are no functions with a
pole of order one at any single point of X. The pole structure of 1, x, and y can then be

determined to be as given in table up to linear combinations.

Similarly one can consider the vector space O(2(P+ Q +
R)) which has degree, and thus dimension, 6. Clearly 1, Function Order
x, and y are generators of half this space, and the other PlQIR
three generators can be written as x2, y?> and zy, which 1 0010
have the pole structures given in table Finally consider T 11110
O@3(P + Q + R)) which has dimension nine. Out of the ) ol
six generators for O(2(P + @ + R)) one can construct ten
meromorphic functions inside O(3(P + @ + R)), which must Ty 211
be linearly dependent for the space to be of dimension nine. z? 21210
We write this relation as y? 210
Ay + Agx + Asy+Augzy + Asz® + Agy® + A7’y (A.4.2) %y 31211
+Agzy? + Aga® + Ajpy® = 0. Y ]2
z? 31310
The right-hand side of this equation is the zero function, % 30013

which does not have poles anywhere. It must then be the

case that the left-hand side must not have any poles for such a relation to hold. There
are two terms with poles of order three at the points @, R, which are the 23 and 33
terms respectively. There is no other term which contributes a pole of these orders and
so could be tuned to cancel it off, therefore the only solution is to set the coefficients, Ag

and Aqg, to zero.
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This leaves exactly two terms with a pole of order three at P and, by the same
argument as above, if either of these coefficients vanish then the other must also vanish.
Let us follow this line of argument and demonstrate that it leads to a contradiction. If
A7 = Ag = 0 then it is clear that both As; = 0 and Ag = 0 as these are the only terms
remaining with a pole of order two in (), R. Further if these terms are vanishing the
arguments above lead us to conclude that Ay = A3 = Ay = A; = 0. If this is the case
then this is not a non-trivial relation among these ten meromorphic functions, and so the
relation cannot have either of A7 or Ag vanishing.

After the embedding of the elliptic curve into projective space the relation defines the

curve by a hypersurface equation which we write as
3 2 2 2 2 2 2 _
S1w° + Sow T 4 S3wx” + S5W Y + Sgwry + S7x°Y + sgwy” + sgry” =0, (A.4.3)

where [z : y : w] are the coordinates of a P? and s; lie in some base coordinate ring R.
This will be taken as the defining equation of our elliptic fibration.

The cubic equation can always be mapped into the form of a Weierstrass
model using Nagell’s algorithm [175,|176]. For the convenience of the reader we write
here only the f and g of the corresponding Weierstrass model. The complete derivation
of the Weierstrass model from the cubic is given in [1,24-26] and we do not repeat

it here. The Weierstrass equation is
V=2 +fI+yg, (A.4.4)

where f and g are given in terms of the coefficients of (3.1.1) as

f :@(—52} + 85% (8567 + 5358 + 65260) — 2466(526768 + §35559 + 515759)
+ 16(—5?53 + 3515358 - 5353 + 59635859 — 5553 + 3515353 + 5557(5358 + 5254 N)4.5)
I 6 4 3

g = (56 — 1256(5557 + 5358 + 5259) -+ 3656(525758 + 535559 + 515759)

864
+ 2452(25252 + 25252 + 59835859 + 26554 + 5557(5358 + 5259) — 351 (5265 + §352))
+ 8(—85355 — 7281535252 — 85555 + 27555250 — 7251526855 — 85550

+ 35%58(95%8 + 45353) + 65557(6515358 + 25%5% + 59635569 + 25%53 - 3515353)
+ 65950 (—3515258 + 25352 + 6515352) + 352 (4535258 + 4595289 + 95352) )

- 14456(53575859 + 59 (51555$ + 5%5558 + 5358 (5% — 5s5153))

+ 52(s55258 + 535752 + 515753))) - (A.4.6)
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Appendices to Chapter 6

B.1 Conventions and Spinor Decompositions

B.1.1 Indices

Our index conventions, for Lorentz and R-symmetry representations, which are used
throughout Chapter [6] are summarized in the following tables. Note that R-symmetry
indices are always hatted. Note that m = 1,--- |8, however only four components are

independent for Weyl spinors in 6d.

Lorentz indices 6d 5d 4d 3d  2d
Curved vector v w v [, V
Flat vector A B A, B A, B a,b Y
Spinors m,n m',n’ P, Dy
(4of su(4)r) (4ofsp(4)r) (2 of su(2)r; su(2)y)

Table B.1: Spacetime indices in various dimensions.

so(5)r sp(4)r s0(3)r su(2)r s0(2)r ~u(l)r

)
)
)

Index for fundamental | A, B m,n a, D, q T,y

Table B.2: R-symmetry indices.

158
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B.1.2 Gamma-matrices and spinors: 6d, 5d and 4d
We work with the mostly + signature (—,+,---,+). The gamma matrices I'4 in 6

dimensions, 4" in 5 dimensions and 74 in 4 dimensions, respectively, are defined as

follows:

I'N=1t®1,®0 = Qo

o= 01®01®01 = 12Q0;
IM'3= 01®02®01 = 301
IlN'j= o1®03®01 = u®o1

I's= —03®12®01 = 15001

I'e= 12012 ® 09, (Bll)
with the Pauli matrices
0 1 0 —i 1
o1 = , o9 = ) o3 = (B.1.2)
10 i 0 0
The 6-dimensional gamma matrices satisfy the Clifford algebra
{T'a,I'p} =2naB, (B.1.3)
and similarly for the 5-dimensional and 4-dimensional gamma matrices.
Futhermore we define
1
AlA, LA p[AAA A A A
1—‘—1—2 Ln = F[—I—Q —n] — ﬁ Z (_l)wl—’fw(l) F—w(2) . 'F—w(n) , (B14)
’wESn
and similarly for all types of gamma matrices.
The chirality matrix in 4 dimensions is 75 = —o3 ® 19 and in 6 dimensions is defined
by
[;=T?...T% = L1, ®o3. (B.1.5)

The charge conjugation matrices in 6 dimensions, 5 dimensions and 4 dimensions are

defined by

Cea)=03R00200y =C

C(5d)= C(4d) = —jo3R0oy =C.

(B.1.6)
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They obey the identities

(fyA’)T = oyMeTt, A =1, 5.
(' = cyiot, A=1,-- 4 (B.1.7)
To define irreducible spinors we also introduce the B-matrices
Bga) = 101 ® 02 ® 03
Biay = Buay = 101®o02, (B.1.8)
which satisfy

(I4)" = Beal*By .

(7)) = “Bea Bk, A =15

(") = —Bua By, A=1--- .4 (B.1.9)

The 6-dimensional Dirac spinors have eight complex components. Irreducible spinors
have a definite chirality and have only four complex components. For instance a spinor p
of positive chirality satisfies I'"p = p. Similarly Dirac spinors in 4 dimensions have four
complex components and Weyl spinors obey a chirality projection, for instance y5¢ = ¥
for positive chirality, and have two complex components. The components of positive,
resp. negative, chirality spinors in 4 dimensions are denoted with the index p = 1,2,

resp. p=1,2.

The indices of Weyl spinors in 6 dimensions can be raised and lowered using the
SW/NE (South-West/North-Est) convention:

P = pnC™™, pm = Crpp™, (B.1.10)

with (C™"*) = (C,,,) = C. There is a slight abuse of notation here: the indices m,n go
from 1 to 8 here (instead of 1 to 4), but half of the spinor components are zero due to
the chirality condition. We indices are omitted the contraction is implicitly SW/NE. For

instance

pp = pmp™, pI=p = pp(I')*mp™ (B.1.11)

with (T'4)2,, the components of T4 as given above.

The conventions on 5-dimensional and 4-dimensional spinors are analogous: indices

are raised and lowered using the SW/NE convention with (C™"™) = (Cpyrr) = C in 5
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dimensions and with the epsilon matrices €’? = ¢,, = Pl = €pg, With €2 = 1. They are

contracted contracted using the SW/NE convention.
We also introduce Gamma matrices ' for the sp(4)r = 50(5)p R-symmetry

rt =01Q®03 , F2=UQ®03 , F3=(73®03 R F4=12®02 , F5=12®01
(B.1.12)
For the R-symmetry indices we use the opposite convention compare to the Lorentz

indices, namely indices are raise and lowered with the NW /SE convention:

P =pP"Qm, pU= Qmﬁpﬁ, (B.1.13)
with (Qma) = (Q™") = igy ®o1. When unspecified, R-symmetry indices are contracted
with the NW/SE convention, so that we have for instance pp = pﬁﬁ%.

A collection of Weyl spinors pg in 6 dimensions transforming in the 4 of sp(4)r can
further satisfy a Symplectic-Majorana condition (which exist in Lorentzian signature,

but not in Euclidean signature)

(pm)" = Bgayp™ - (B.1.14)

In 5 dimensions the Symplectic-Majorana condition on spinors is similarly

(pm)" = Bayp™ - (B.1.15)

In 4 dimensions the Weyl spinors are irreducible, however 4-dimensional Dirac spinor can
obey a Symplectic-Majorana condition identical to (B.1.15)).

B.1.3 Spinor Decompositions

6d to 5d :

A Dirac spinor in 6 dimensions decomposes into two 5-dimensional spinors. A 6-dimensional
spinor p = (p™) (eight components) of positive chirality reduces to a single 5-dimensional

spinor p = (p"), with the embedding

p=p® <(1)) . (B.1.16)

For a 6-dimensional spinor of negative chirality, the 5-dimensional spinor is embedded
in the complementary four spinor components. The 6-dimensional Symplectic-Majorana
condition (B.1.14) on p_ reduces to the 5-dimensional Symplectic-Majorana condition
(B.1.15)) on pg if P has positive chirality, or reduces to the opposite reality condition
(extra minus sign in the rhs of (B.1.15)) if p, has negative chirality.
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5d to 4d :

A 5-dimensional spinor p = (p™') decomposes into two 4-dimensional Weyl spinors 1, 1_

of opposite chiralities, with the embedding

o= (Yovs (Yor - (%) B

If p™ obeys the 5-dimensional Symplectic-Majorana condition (B.1.15)), the spinors ME, P
are not independent. They form four-component spinors which obey a 4-dimensional

Symplectic-Majorana condition:

(in) =2 (ice) @38

With these conventions, we obtain for two 5-dimensional spinors p, p the decomposi-

tion of bilinears
pp = PP = byl — VP =y —
PV = i (V)™ " = ey + U = by + i
PYB = (TP g (PPt = pyrh Ty (B.1.19)

Wlth (7—177-277—377—4) - (_12701702703) a’nd (77—1777—2777—3777—4) - (_12? —01, —02, _03)'

R-symmetry reduction :

In Chapter [6] we considered the reduction of the R-symmetry group
sp(d)rp — su(2)p Pso(2)r. (B.1.20)

The fundamental index 7 of (4)p decomposes into the index (5, Z) of su(2)r ® s0(2)g.
A (collection of) spinors pg in any spacetime dimension can be gathered in a column

four-vector p with each components being a full spinor. The decomposition is then

p= p(l) ® <(1)) +,0(2) ® ((1)> ’ (B.1.21)

with pM) = (pV5) transforming in the (2)41 of su(2)g @ so(2)g and p? = (p(2)ﬁ)
transforming in the (2)_;. So the four spinors pz get replaced by the four spinors

p(l)ﬁ, p(2)ﬁ. From the sp(4)p invariant tensor Qz7;, with = € ® o1, and the explicit

gamma matrices (B.1.12)) we find the bilinear decompositions. For instance

P b = pPpy + p P ps (B.1.22)

prp = p™ (5" pn = p@P <oa>ﬁ%,§3) — pP (o%%g?) = pPo®p1) — pNot 5
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Furthermore, there is a useful identity

(OH™ (T 3)ps = 40175075 — Q1 Qs (B.1.23)

B.2 Killing spinors for the S? background

In this appendix we determine the solutions to the Killing spinor equations for the S?

background in section [6.1.2

B.2.1 &7 =0

The supersymmetry transformations are parametrized by two eight-component spinors
€™, ™ with an index 7 transforming in the 4 of sp(4)g. The first Killing spinor equation

reduces with our anséatze to

1

0= 09 = Dac™ + i (T EEDT o pT ae™ + T an™ (B.2.1)
with
m mo L m o 1-pc w_ Llom _m
Dye™ = 0™ + §bue + ZWTF&ZE - §V“ AE
- - - - - (B.2.2)
(I)Z?fB = QeZ[Aﬁ[MeZ}B] — eﬂ[éeﬁ]gegagei + QeLAbﬁ] = wﬁ‘fB + Qe%bﬁ] ,
where the background fields have been converted to sp(4)r representations with
Vit = Vupa@P) TEED = Tapep@H)™ . D™ = Dap(TH) ™ (TP)ss .
(B.2.3)
We choose to set n = 0. After plugging our ansatz, in particular TglgD =bs =0, we
obtain: ) )
0= dpe™ — —L'(B) T6™ — ~p(g) (TH) ™"
2r 2 (B.2.4)
0= Qﬂfm ;o =at 2?23, 2h 0,

We find solutions for constant spinors ™ satisfying:

0 = —I%6cm 4 (pBym o (B.2.5)
with )
v(0) = ! SAH) . (B.2.6)

The condition (B.2.5) projects out half of the components of a constant spinor, leav-
ing eight real supercharges in Lorentzian signature, or eight complex supercharges in

Euclidean signature.
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B.2.2 6™ =0

The second Killing spinor equation is given by

0= 5X@ﬁ
_ DT BoppA__ Vppoplin a1 pan s 5T PBCD,
- AT, BCD === BC#E 75€ BCD — traces,
32 16 4 8
(B.2.7)
with
DuThdp = 0 THEp + 3@ [BTCD]E by BCD+V[m g](?D
(B.2.8)

MR ( n)

Here, ‘traces’ indicates terms proportional to invariant tensors Qmﬁﬁ?, (5?. Again the
background ﬁelds are converted to sp(4)r representations using (B.2.3)).

With T 'B¢p = 0, we obtain the simpler conditions

15 L
0= 7 FBCR%CT 7 DM e’ — traces . (B.2.9)

The R-symmetry field strength has a single non-vanishing component, corresponding to

a flux on S2:

i i ') 35w
Ry = Ry = — ( )(r45) . (B.2.10)

r

In flat space indices this becomes

i i ') 15w
56 — 465 :—TQZ(Q) (D)™, (B.2.11)

Moreover our ansatz for D 75 (6.1.23)) can be re-expressed in sp(4)r indices as:
D — d[5(rzg)[ﬁl?(rz5\)ﬁ]g _ olmgil. Q’%QM] : (B.2.12)

where the two last terms lead only to “traces” contributions in (B.2.9) and hence drop

from the equations. We obtain

15 £"(0)
T2 r20(0)

56(FZ§)[@?€ﬁ] _ 5d(F13)[ﬁl?(ng)ﬁ]§5§ ) (B.2.13)

Using (B.2.5)), we solve the equations without further constraints on ™ for

3 0"(6)

=3 r20(0)

(B.2.14)

The background we found corresponds to the twisting u(1); @ u(1)g — u(1) on S2.
It preserves half of the supersymmetry of the flat space theory.
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B.3 6d to 5d Reduction for b, =0

In this appendix we detail the reduction of the 6-dimensional equations of motion on an
S'. This is done following ([157,/158]) however we choose to gauge fix by = 0, which is
possible without loss of generality.

We start by decomposing the 6-dimensional frame:
e = : (B.3.1)

where the 5-dimensional indices are primed. We work in the gauge b, = 0, which is
achieved by fixing the special conformal generators, K 4. Note that this choice is different
from the gauge fixing of b, in ([157,158]), in particular a is not covariantly constant in this
case. Furthermore, we fix the conformal supersymmetry generators to ensure ¥5 = 0,
which means that eg = 0 is invariant under supersymmetry transformations. For a

general background the bosonic supergravity fields descend to 5-dimensional fields as

. mng 46
Vit — o (B.3.2)
ST a=6

Tifc = Thpe = Thrp: -

The components of the spin connection along the ¢ direction are given by

1 1 1
w£/6 — A o, wiA? = — —GqABT A = — oA "y (B.3.3)
Oé2 H @ Oé2 M o ®

where G = dC and can be derived from the 6-dimensional vielbein using

w&Aj _ QGE[A%% - eB[Aeﬁlﬁegape -C- (B.3.4)

B.3.1 Equations of Motion for B

In order to reduce the equation of motion for the H field we proceed as in the 6d-4d
reduction and decompose the field as:
1 I ! !/ 1 / !
H= gHA’B’C’eA AeB Al —|—§HD/E/6€D Aef A€l (B.3.5)
The 6-dimensional equation of motion reduces to

dH =0
(B.3.6)

N
Hype = 5®mnTige = 0.
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From this and the second equation in (B.3.6) we can express the two components of H
as
Hype=alFap

1 YA nli o
Hypcr = sen s P F (aFpp — ®aaTim),

(B.3.7)

where F),,/ is a two-form in 5 dimensions. Substituting this into the expansion of H and

reducing to 5-dimensional we obtain
H = o x5q (F — écmemﬁ) +FAC+F Ady, (B.3.8)
The equation of motion dH = 0 implies
dF =0, FAdC+ d(a*sg F — ®snT™) (B.3.9)

which can be integrated to the action in 5d

SF:—/tr[aF/\*g)dF—i—C/\F/\F}, (B.3.10)
where
. 1 .
F=F— —o5;17™". (B.3.11)
«

Together with the constraint dFF = 0, which identifies F' with the field strength of a

5-dimensional connection A, given by F},» = 0y Ay — 0 Ay

B.3.2 Equation of Motion for the Scalars

Reducing the equation of motion down to 5-dimensional we find
D2O™ 4 2F g TAL 4 (My)ZPd™ =0, (B.3.12)

where

Dy @™ = 9y — VRO 4 [4,0, ™7

D™ = (04 + wEA)D 4 @™ — VD o
Req
5

1

(M) = >

meal Lo M Al
653 + ~C" 9asl e +

s

m o 7 ol A 1 - PPN
C"?(Sjﬁ g]_SéstL 5?})_T5D%m§n—T%B W -
(B.3.13)

This equation of motion can be integrated to

S = — / &z /gl (DA@%DA’@m ATy TAB cpmﬁ(MQ)%ﬁqﬁ) .
(B.3.14)
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B.3.3 Equation of Motion for the Spinors

We decompose the 6-dimensional field to

P : (B.3.15)

iPp™ ™ + (M)t p" ™ =0, (B.3.16)
where

5 1 1! ~ 1 ~ o~
Dyp™™ = <au’ + 1"";?’3 VA/B’) pm " — 9 wah"

1.2 1 - / 1 1! YA 7 1Al /o
T = o (~SPO + gaa G 6PN OF = 56X B0l oF )
1 i ! ! 1 o~ A/ ! !
+ @(7“ Y )t CrOprax + iTX}B’ﬁ(’Y B
(B.3.17)
From this we obtain the action
S, = —/dSZL’ lg] a_lpmm (zﬁnmpm?‘ + (Mp)z%ﬁ‘p”ﬁ> . (B.3.18)

B.4 Supersymmetry Variations of the 5-dimensional Ac-
tion

The supersymmetry variations (6.2.14)), which leave the action S in section invariant,
can be decomposed with respect to the R-symmetry of the 5-dimensional action, following

the rules of appendix The scalar and gauge field variations are then

0A, = —£(0) (e(l)ﬁ'yup(g) + E(Q)ﬁfyupng

D—

§Ag = —r0(0) (VP _ (20,1
S ) (B.A1)
58051 =1 (6(1)ﬁ(0'a)pqu(1\2j_ . E(Q)f;‘(Ua)pqpé\lZ)

Sp = _26(1)23\%(?13_, 0p = 26(2)17[)1(321
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and for the fermions

W _ i v (1) 1 @ Lo gm0 (@, iond D) i o0
0p5y = 8€(0)F‘“”7M & _ZDMO'VM% +47»D9(pﬁ€«? ~ 5 (e [ea, p3l(oe)zes” — ilo, Ple; )

W_ 0 pouw® Ly a0 EO) N o) O
5pp— 47’6(0)F/L0’Y Ep + 4DH<)0pry 6q + 471 IDGSO TE(G)SO €p 4 [(p?(pp]ﬁq
!
l

@ _ i @ Lo g @ i (o O N @ L8, a0
Spp 4M(9)Fuev & 1 Pwepte — 4 (Dew 00)7) P T (2, v5lez
) i i@ _ 0 ( G @) @)

B o @) by ) L g2 U8 oare N o=
opy. = 85(0)F“” & 3 Dupey’ + Do — —¢ (6 [pa, e3l(oe)zes” + il ey ) :

where 57 = Y- 0% (0%)57.

B.5 Aspects of the 4-dimensional Sigma-Model

In this appendix we summarize properties of the sigma-model defined in section and

provide details on integrating out the gauge field and the scalars ¢ and .

B.5.1 Useful Relations

The three symplectic structures of the hyper-Kéhler target can be used to define the

three complex structures w?(l = wa}( JGJ I which satisfy

wa[‘]wa]K = —563(5%( + eaEwaK. (B.5.1)

The complex structures exchange T? and T(Ie) in the following fashion

AT =T (B.5.2)
Wil = §a () 4 ey

Here, we made use of the completeness relations (|173])

G O) T (r) + 3 W ()P () = 5767 §(6 — 7)

PP (r) + 3w 0w (r) = 6295(6 — 1) (B.5.3)

)

GO P (r) + 3w ) (r) = o,

Here «, 8 are indices labelling generators of the gauge algebra. These functions satisfy

the orthogonality conditions

/ Ao (0) TP (9) =0, / a9 0)w\" (9) = 0. (B.5.4)

7
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B.5.2 Integrating out Fields

In this appendix we discuss how the scalars ¢, ¢ and the 4-dimensional gauge field A,

are integrated out in the sigma-model reduction. The equations of motion for ¢, » and

A, are derived from the action ((6.2.36]
D2 + [¢a, [, ¢l] = —dir[p"), 7]
_ a - . 2 2)p-
D¢ + [pa, [¢%, @] = 4ir[p?), o]

D3 A, + [ |#% Au] | = 40,0140 9,XT + [ 05, 016% | 0, X" — ailp"), 7T
(B.5.5)
where in the equation of motion for A, we made use of the expansion and
(6.3.20). We adopt a convenient gauge for the connection Ef

Dy Y7 + s, YT =0, (B.5.6)
which can be re-expressed as
DgEI + [@a, [9067 EIH = [A97 8IA6'] + [@av algpa] ) (B57)

where we have used the gauge fixing condition dgAy = 0. We evaluate the spinors bilinear

in to give
PP = —a ([, ga] + [ 2P]) AN
97— ([t ] o [0 T 0
P27 = —a ([0, Toa] + [ 1] ) AA@IP
We note that the curvature
15 =1[Vr1, V], (B.5.9)
where V; = 07 + [Ey, -], satisfies the equation
D3y + [va [¢%, @1]) = 2 (111, 75 + 07, 1)) (B.5.10)
It can be used to solve the equations of motion by
Y= 82'7‘<I>1J)\g)])\(l)‘]73
p = —8ir® AP NP (B.5.11)

Ay = E19, X" + 8i 2Ny, A7,
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Inserting this back in the action the terms with ¢, ¢ result in

16 - " _
Se = [ d0d*a/1gal Te(Dy®1,Do@scs, + (@17, ") [@rcr, al) AV PAL ADET\2E

(B.5.12)
Integrating out the gauge filed we obtain three types of terms. The first type are
terms such that X! appear quadratically

1 ~
S =—— [ d*zdfTr <D9E]D9EJ — 201 AgDyEy + 2010% [EJ, (pa]

M, typel Arf

(B.5.13)
+[ErL ¢"|[Ey, wa]) o xTorx’.

These terms combine with terms in the scalar action (6.3.25)) to give the sigma-model

kinetic term
1

™ d*z+\/]ga| G170, X 0" X7, (B.5.14)

Sscalars + SA,L,typel =

Terms of the second type are linear in X! and covariantise the kinetic terms of the spinor
44 ~ -~
Sapmpez = = | d*ed0/[gal Tr(20F[E;, Y cal + 27 (B, TONADIPp A DKy, X,
(B.5.15)

The terms involving the connection E; are promoted to covariant derivatives V; when
combined with the terms in the spinor action (|6.3.28)). Using the identities

~ ST _
ViYs =T5T% + i[q)u, ©%]

] (B.5.16)
v T - Loy,
where
Lrjwx =~ / df Tr (T%VUTJ)a + T(,?v(ﬂf,?) : (B.5.17)

the kinetic term in the spinor action is covariantised. Lastly, the terms of type 3 give

rise to the quartic fermion interaction. Using ([B.5.10)) these terms simplify to

16 .
S Ay rypes = —M/d%d@ 9| Te(Do®1Do®Pr 1 + (P17, %] [PKL, Pal)

(B.5.18)
x (AN AT A2E).
Using various identities, including Fierz-type identities,
()\(1);311)\(3)«1])(}\(2)5{K)\(A2)L]) — 2()\(1)ﬂ1>\(1)J]a)(}\(})[K)\(})L])
7 q iz q
(B.5.19)

ViP5 = v 10 (o) I

VT Vi YAl A" = 39,79, 7 19 ADL A0

q q
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it can be shown that this quartic fermion interaction combines with the term (B.5.12)) to

make the Riemann tensor of the target space appear

32 . _
S A, types T Sp,e = _rl/d4x Vaal Ry QAWIPADTy (A DET )Ty, (B.5.20)

P q
where the Riemann tensor is given by

Rrjxr = — / do TI“(ZV[]T%V[KTLT@ + V[IT?{]V[JTL]& - V[IT%}V[JTK]a)

+ 2V, YDV 1 + v v )

1 .
=1 / df Tr(2Dg @1 ;Do Pk 1 + 2[®ry, ¢*|[ @KL, va] + DoPrxDe® 1

~ Vv, r@)
oz K] (B.5.21)
+ (@15, 9@ L, pa) — Da®1r D@k — (@11, 0[Pk, ©al) s

Combining all the terms we obtain the final sigma model ((6.3.29]).
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