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Abstract

Non-perturbative phenomena have received much attention in string theory in the

last years. M-Theory and F-Theory are the two main frameworks in which it is possible

to explore such phenomena. This thesis focuses on aspects of both theories.

In the first part of this thesis we study F-Theory compactifications with additional

abelian gauge symmetries. This was motivated by problems affecting usual F-Theory

compactifications and 4-dimensional Grand Unified Theories such as the presence of

proton decay operators, which could in principle be resolved with additional abelian

symmetries. In the F-Theory context, this translated into the novel analysis of elliptic

fibrations with additional (two, in particular) rational sections. A systematic study of

the possible degenerations of such elliptic fibrations through the application of Tate’s

algorithm was carried out and provided new insight into the phenomenology of F-Theory

models with additional U(1) factors.

The second part of this thesis consists of the study of some aspects of membranes

in M-Theory. D-branes in string theory are well understood thanks to a perturbative

definition via open strings. On the contrary, membranes and fivebranes in M-Theory

lack such a description and their effective theories are not as well understood.

In particular the theory on parallel M5-branes, the so-called (2,0) theory, was studied

in some detail. Following a number of results and dualities in lower dimensional field

theories obtained in the last years starting from the (2,0) theory, the latter was compact-

ified on a 2-dimensional sphere to obtain a 4-dimensional sigma model into the moduli

space of monopoles. A supergravity background was turned on in order to preserve su-

persymmetry and an intermediate reduction to 5-dimensional N = 2 Super-Yang-Mills

theory was used by considering the two-sphere as a circle fibration over an interval.

Insight into the theory on parallel M5-branes was also gained by relating it to the

better known dynamics on coincident M2-branes. This followed a recent proposal for

the realization of the (2,0) algebra on a non-abelian tensor multiplet through the use

of 3-algebras. In this thesis we generalize this proposal and find an algebraic structure

which describes two parallel M5-branes or two parallel M2-branes depending on whether

a particular abelian three-form is turned on.
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Chapter 1

Introduction

String theory has been the main attempt in the quantum gravity program to try to

provide a unified description that would include both gravity and the known gauge in-

teractions described by the Standard Model. One of the appeals to string theory was

supposed to be that, through M-Theory, it was to be uniquely defined and therefore

expected to provide a single consistent description of the physics beyond the Standard

Model. As it turned out, this is not the case, since even if the theory in 11 dimensions

is unique, the theories resulting from compactifications down to 4 dimensions are in-

credibly numerous, thus creating an important problem in the extension of our physical

knowledge beyond the Standard Model. On the opposite end of trying to correctly re-

duce the higher dimensional theory to 4 dimensions to reproduce the Standard Model,

lies a yet not complete understanding of M-Theory in its own right. Indeed, the fact

that M-Theory only allows a non-perturbative regime created an obstacle into obtaining

insight into the full dynamics of the theory. Non-perturbative phenomena have therefore

been a very important aspect of research in the string theory program in the last years.

This thesis tries to give a contribution to the two main lines of research just detailed,

that is, the phenomenological reduction to 4 dimensions and the better understanding of

non-perturbative phenomena of string theory.

Before 1994, five 10-dimensional string theories were known, obtained by quantizing

the superstring and applying different projections for the states. The insight provided

by Witten ([2]) was then to understand the strong coupling regime of Type IIA string

theory as an 11-dimensional theory, then called M-Theory, whose circle reduction would

reproduce the perturbative regime of Type IIA. In particular the radius of the circle R

12



Chapter 1. Introduction 13

was related to the string coupling of Type IIA via

R = gsls, (1.0.1)

where ls is the string length. The existence of an 11-dimensional supergravity theory

which could serve as the low energy theory of M-Theory seemed to confirm such pro-

posal, thanks also to the fact that the circle reduction of 11-dimensional supergravity

correctly reproduces Type IIA supergravity. Nevertheless, the absence of a coupling con-

stant presented a major difficulty for the understanding the dynamics of the theory itself.

Such fact was actually signaling the absence of strings themselves as fundamental objects,

and it was soon understood that they were to be replaced by membranes and fivebranes,

the respectively two and five (spatial) dimensional BPS solutions of 11-dimensional su-

pergravity.

Even though the low energy theories describing parallel D-branes can now be under-

stood in detail, and can actually all be derived from 10-dimensional Super-Yang-Mills

theory, a simple generalization did not appear manifest for the case of membranes and

fivebranes. This was of course due to the absence of open strings themselves, which

allowed in the case of D-branes a perturbative definition via string scatterings. This

left an important theoretical gap in the understanding of the full structure of M-Theory

and how it encodes the full set of non-perturbative phenomena of 10-dimensional string

theories. Much work has been dedicated to gaining more insight into the description of

parallel branes in M-Theory, and significant progress has started to be achieved in the

last few years.

The first breakthrough was realized by the BLG model ([3, 4]) which correctly re-

produced the dynamics of two coincident membranes, or M2-branes. Such a theory was

supposed to satisfy a number of requirements, such as preserving N = 8 supersymmetry

(M2-branes being half BPS objects of 11-dimensional supergravity), being a conformal

theory (since there is no characteristic length in M-Theory), correctly reproducing the

particular scaling of the entropy with the number N of parallel membranes (which was

known to be proportional to N3/2) and still allowing a non-trivial interaction between the

degrees of freedom of the theory. The BLG model successfully satisfied all such require-

ments. Surprisingly, it did so through the introduction of a novel gauge symmetry, which

relies on 3-algebras rather than conventional Lie algebras. Such algebraic structures are

characterised by a totally antisymmetric triple bracket which acts as a derivation on a

vector space, thus generalizing the conventional Lie bracket. Successively, a correct de-

scription was found for an arbitrary number of parallel M2-branes through the ABJM

model ([5]), albeit in an orbifold background C4/Zk.
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The low energy theory describing parallel fivebranes, or M5-branes, has instead pre-

sented more difficulties and a satisfactory description is still lacking. Nevertheless, the

(2,0) theory (the theory on parallel M5-branes), has produced a number of results in lower

dimensional field theories which are independent of the precise formulation of the theory.

In particular, different compactifications of the (2,0) theory have given rise to surprising

dualities between theories in different dimensions, therefore providing insight into such

field theories themselves. For what concerns a formulation of the non-abelian (2,0) theory

itself, progress has been made recently through the realization of a set of equations of

motion for a non-abelian tensor multiplet which is invariant under (2,0) supersymmetry

in 6 dimensions ([6]). As in the case of the BLG model, the gauge symmetry is based on a

3-algebra rather than usual Lie algebras and such proposal aims to correctly describe the

dynamics of two M5-branes. Among the difficulties in providing a Lagrangian description

lies nevertheless the presence of a self-dual three-form field strength, and it is believed

that such description is not actually possible.

Therefore, in the context of M-Theory, one of the main directions of research has

been to gain a full understanding of the dynamics of coincident branes and to shed light

on non-perturbative phenomena arising in string theory.

F-Theory ([7–9]) is a second framework in which non-perturbative phenomena can be

taken into account and which has served a great purpose for the geometric engineering of

4-dimensional theories obtained by compactifications. In 1996 Vafa ([7]) interpreted for

the first time the SL(2,Z) invariance of Type IIB string theory as the modular group of

an auxiliary torus assigned to every point of the internal space-time. In particular, the

axiodilaton field τ of Type IIB string theory was interpreted as the complex structure

of such torus, and compactifications in the presence of 7-branes were studied. At the

locus where the 7-branes are located, the axiodilaton is found to diverge and it therefore

followed that the torus described by such complex structure is not well defined, and is

actually singular. The picture which arises this way is that of a fibration of space-time

by complex tori, an elliptic fibration, which becomes singular at the location of the 7-

branes. This is not actually describing a physical theory in 12 dimensions, for which there

would be no low energy supergravity approximation, but rather a geometric framework

for taking into account the (non) perturbative effects arising in compactifications of type

IIB string theory in the presence of 7-branes. Note that F-Theory also allows definitions

through dualities with M-Theory or with E8 × E8 Heterotic string theory.

Therefore the study of the properties of the resulting compactification is translated

into the study of the geometric properties of the elliptic fibration, which represents the

internal space of the compactification and the two fictitious dimensions of the elliptic
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fiber. In particular, the gauge group, the matter content and the Yukawa couplings of

the 4-dimensional N = 1 theory, which results from compactifying F-Theory on a Calabi

Yau four-fold, are nicely encoded in the singularity structure of the elliptic fibration in

codimension one, two and three respectively. From a phenomenological perspective, F-

Theory allows to geometrically engineer (that is, to model a theory based on the geometric

properties of the compactification manifold) a whole class of 4-dimensional supersymmet-

ric theories. Such a contribution fits into the study of Grand Unified Theories (GUTs),

a program which, independently from string theory, had tried to unify the known gauge

interactions of the Standard Model into a single gauge group of a supersymmtric theory.

Indeed, contrary to what happens in the Standard Model, in N = 1 supersymmetric the-

ories in 4 dimensions, such as the Minimal Supersymmetric Standard Model, the running

of the coupling constants under the RG flow results in the intersection in a single point

at an energy around 1016 GeV. This can be interpreted as the existence of a single gauge

group at higher energies which then breaks at 1016 GeV to the Standard Model gauge

group SU(3) × SU(2) × U(1). Therefore supersymmetric theories which could embed

the Standard Model gauge group as a maximal subgroup of a single gauge group started

to be proposed as models for the unifications of the known gauge interactions and are

known as GUTs.

Even though supersymmetric theories could solve a number of problems afflicting

the Standard Model and could also provide a surprising way in which the known gauge

interactions could be united, they were also afflicted by their own problems. It was

realized that unwanted operators could result by the embedding of the Standard Model

gauge group in a single group, which could not be reconciled in any way with empirical

observations. The main such case is represented by the proton decay operator which

arises in Grand Unified Theories and which predicts a non-zero half life for the proton.

This is in stark contrast with experiments which have ruled out such eventuality by

asserting that the half life of the proton cannot be smaller than the age of the universe.

Surprisingly F-Theory provides a way to obviate such a problem, again through geo-

metric properties of the compactification manifolds. Indeed, it can be shown that if the

elliptic fibrations admits extra rational sections (that is, extra divisors which are copies of

the base of the fibration), additional abelian gauge factors are introduced in the resulting

theory in 4 dimensions. Such abelian factors are fundamental in getting rid of proton

decay operators, as they can prevent them from being gauge invariant and therefore not

physically realized. Therefore F-Theory can be shown to be a successful framework in

which unwanted phenomena afflicting GUTs can be taken into account.

In this thesis the lines of research just detailed are expanded in more detail and
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tentative contributions to resolving such questions are presented as follows. In Chapter

2 an extended summary of F-Theory notions is presented, to serve as an introduction to

the results of ([10]). Chapter 3 is then largely based on the work carried out in ([10]),

where the singularity structure of a class of elliptic fibration with two additional rational

sections is studied through the so-called Tate’s algorithm. In the second part of this

thesis, the focus is switched to the study of some aspects of M-Theory. In Chapter 4

we review known facts about M-Theory and its fundamental objects, membranes and

fivebranes. Chapter 5 presents the original results of ([11]), where a novel representation

of the (2,0) algebra in 6 dimensions was realized on a non-abelian tensor multiplet and was

found to be related to the BLG model describing two M2-branes by a natural dimensional

reduction. Finally, Chapter 6 presents some results arising from an early collaboration

toward the work realized in ([12]) and studies the reduction of the (2,0) theory describing

parallel M5-branes on a two-sphere, resulting in a sigma model into the moduli space of

centered SU(2) monopoles.



Chapter 2

Aspects of F-Theory

F-Theory is a geometric framework which takes into account the backreaction of 7-branes

on space-time in type IIB string theory. This will be our starting point in trying to

understand how F-Theory takes into account non-perturbative effects which need to be

considered in type IIB compactifications. Indeed, in ordinary compactifications of type

II string theories in the presence of branes, the backreaction of the latter on spacetime is

usually neglected. This is legitimate as long as the codimension of the brane is different

from two. One of the main reasons why F-Theory is necessary as a framework for studying

configurations of 7-branes can be traced to the different dependence of solutions to the

sourcing Poisson equation for 10-dimensional fields. In the presence of a brane the fields

are sourced by the backreaction of the brane on spacetime. In particular we have

∆Φ(r) ' δ(r) −→ Φ(r) ' 1

r7−p , p-branes

∆Φ(r) ' δ(r) −→ Φ(r) ' log(r), 7-branes, (2.0.1)

where Φ is a generic space-time field and r is the distance from the brane. We see

that branes are sources for space-time fields, and solutions to the corresponding Poisson

equations scale accordingly to the type of brane we are looking at. Such a backreaction of

the branes on the space-time fields can be neglected as long as we are not considering 7-

branes. In that case, the approximation is not valid since the fields scale as Φ(r) ' log(r),

which does not become negligible as we move away from the brane.

Therefore we see that we have a fundamental problem in considering type IIB com-

pactifications in the presence of 7-branes, in as much as the perturbative regime is not

valid and we do not know how to gain full insight into the 4-dimensional theories arising

from such compactifications, which are of phenomenological interest. We gave a heuristic

explanation as to why a framework for taking into account non-perturbative effects of

17
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type IIB string theory is necessary.

In this chapter we provide a background understanding of F-Theory, including a

presentation of the mathematics behind it. We review concepts in the geometry of elliptic

fibrations and their singularities, in order to understand how F-Theory takes into account

non-perturbative effects of Type IIB string theory. Finally, we address the problem of

developing additional abelian factors in Grand Unified Theories through F-Theoretic

methods. This will turn out to be of relevance for phenomenological reasons.

2.1 SL(2,Z) and Type IIB String Theory

Recall the type IIB field content. We have the metric gµν , the Kalb-Ramond 2-form Bµν ,

the dilaton φ and potentials Cp for p even, denoting coupling to odd dimensional branes.

If we define the axiodilaton as

τ ≡ C0 + ie−φ, (2.1.1)

the action can be written in the Einstein frame, where Gµν = e−φ/2gµν , as ([13])

SIIB =
1

2k2

∫
d10x
√
−g

(
R− ∂µτ∂

µτ̄

2 Im(τ)2
− |G3|2

2 Im(τ)
− |F̃5|2

4

)

+
1

8ik2

∫
C4 ∧G3 ∧ G̃3

Im(τ)
(2.1.2)

where

H3 = dBµν Fp+1 = dCp, (2.1.3)

and the following combinations were also defined

F̃3 = F3 − C0 ∧H3

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
F2 ∧ F3

G3 = F3 − τH3. (2.1.4)

We can then define SL(2,Z) transformations represented by matrices

M =

a b

c d

 , det(M) = 1, {a, b, c, d} ∈ Z. (2.1.5)

The action on the axiodilaton is

τ → aτ + b

cτ + d
, (2.1.6)
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while the doublet (C2 ≡ Cµν , Bµν) transforms asCµν
Bµν

→
a b

c d

Cµν
Bµν

 . (2.1.7)

The other fields are invariant under such transformations. The action (2.1.2) is then

invariant under the group SL(2,Z), and is actually invariant under the larger group

SL(2,R), but such a symmetry breaks at the quantum level to SL(2,Z). Let us look at

the generators of the group SL(2,Z). They are

SL(2,Z) =
〈
T =

1 1

0 1

 , S =

 0 1

−1 0

〉. (2.1.8)

It will be relevant to look at how such generators act on the axiodilaton, which can be

re-written in terms of the string coupling as

gs = eφ, τ = C0 +
i

gs
. (2.1.9)

T transformations do not affect the string couplings and only operate a shift in C0. On

the other hand, we see that under S transformations the axiodilaton transforms as

τ → −1

τ
. (2.1.10)

The effect of such a transformation on the string coupling can be analysed in a simple

background with C0 = 0 to see that

gs →
1

gs
, (2.1.11)

therefore giving rise to a weak-strong duality. We will now see how these dualities come

into play in the presence of 7-branes.

Consider a compactification set up in type IIB string theory where we split space-

time into R1,3 ×M6, where M6 is the internal manifold. Moreover, let a 7-brane wrap

R1,3 ×M4, with M4 a four-cycle inside M6, that is
Type IIB : R1,3 ×M6

7-brane : R1,3 ×M4

, M4 ⊂M6.

Let the complex coordinate z parametrize the transverse direction to the 7-brane in the

ambient space-time, and let the 7-brane be located at z0. As explained, the brane is a

source for the space-time fields, and in particular ([14]), C8 receives a correction through

the following Poisson equation

d ? F9 ' δ2(z − z0), F9 = dC8. (2.1.12)
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Let us integrate this equation over the whole complex plane to find∫
C
dF1 = 1 F1 ≡ ?F9. (2.1.13)

We can then apply Stokes theorem to turn the left-hand side into a contour integral

about the position of the 7-brane ∮
S1

dC0 = 1. (2.1.14)

We can find a solution to this equation given by

τ(z) = τ0 +
1

2πi
log(z − z0) + . . . , (2.1.15)

where the ellipses denotes terms regular in z which do not contribute to the contour

integral. But this raises a problem, as in encircling the 7-brane in the transverse direction,

we see that τ changes as

τ → τ + 1. (2.1.16)

The presence of such a monodromy would turn τ into a multivalued function, therefore

making it quite hard to interpet τ as a space-time field. But as we have seen already,

the situation is saved by the SL(2,Z) invariance of type IIB, so that the value of the

axiodilaton after encircling a 7-brane is the same up to a SL(2,Z) transformation.

We have seen how the SL(2,Z) invariance of type IIB string theory plays an important

role in the presence of 7-branes, guaranteeing that we can make sense of the monodromy

arising from the backreaction of the brane on space-time. We will now see how the

SL(2,Z) group arises in the description of complex tori.
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Figure 2.1: The fundamental domain associated to the torus with complex structure τ .

2.2 SL(2,Z) and F-Theory

The group SL(2,Z) is better known in the mathematics literature for its relation to

complex tori in the definition of the modular parameter τ . We can always find for a

differentiable torus, that is a Riemann surface of genus one, a complex structure. To get

a more concrete insight into this statement, we can view a torus as the following quotient

of the complex plane

T2 = C/Λ, (2.2.1)

where Λ is an integer lattice, that is Λ ' Z⊕Z = {aZ+ bZ} ⊂ C. We can always rescale

such a lattice so that the first defining vector can be taken to be the unit vector and the

second defining vector can be taken to be τ , see Figure 2.1.

It is not hard to see that sending

T : τ → τ + 1, (2.2.2)

leaves the lattice unchanged. In a similar fashion, it can be shown that the transforma-

tions

S : τ → −1

τ
, (2.2.3)

just flip the sides of the lattice and therefore do not affect the lattice describing the torus.

The modular group is the group generated by such transformations, which are seen to

obey

S2 = 1, (ST )3 = 1. (2.2.4)
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Figure 2.2: The elliptic fibration becomes singular at the locus z = z0, where the 7-brane

is located.

and which can be represented by matrices

M =

a b

c d

 , det(M) = 1, {a, b, c, d} ∈ Z. (2.2.5)

Therefore we have a one-to-one correspondence between equivalent tori and conjugacy

classes of complex structures modulo the action of the modular group. This defines the

moduli space of complex tori as C/SL(2,Z), which is the usual fundamental region of

the upper complex plane.

What we are interested in here, though, is the fact that each complex number τ

defines the complex structure of a torus up to the action of the SL(2,Z) group. This

is exactly the situation that we found in analysing the axiodilaton τ in type IIB string

theory in the presence of 7-branes. F-theory will take the hint from this appearance

of the modular group as both a symmetry group of type IIB string theory, and as the

mapping class group of complex tori, to give a new interpretation of the axiodilaton field.

Recall the situation described so far. We noted that type IIB string theory possesses

an SL(2,Z) invariance, and we also noted that the axiodilaton undergoes such transfor-

mations in the presence of 7-branes. Or equivalently, 7-branes generates monodromies

for τ which can be reabsorbed by an SL(2,Z) transformation. On the other hand we

saw that the complex number τ describes one and only one torus up to the action of the

SL(2,Z) group, which is a symmetry of type IIB string theory. F-Theory ([7–9]) takes

this hint seriously and interprets the axiodilaton as the complex structure of a torus.

As the axiodilaton varies over space-time, so does the complex struture of the torus.

Effectively, we are associating to each point of space-time a torus, that is, we are fibering
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space-time with an elliptic fibration. At the location of the 7-brane something particular

happens. Recall that (2.1.15)

∆τ ' 1

2πi
log(z − z0). (2.2.6)

We see that at the location z0 of the brane, the complex structure of the torus diverges,

or equivalently, the torus becomes singular, see Figure 2.2. In the next section we will

go in detail into the mathematics of elliptic fibrations and the possible singularities that

may occurr.

Such an elliptic fibration is not to be interpreted as a description of a 12-dimensional

theory, as there is no supergravity which could describe its low energy dynamics. It

should instead be understood as a bookkeeping device to study type IIB string theory

in its different regimes of coupling. Notice that, even though the complex structure

diverges at the location of the brane, the string coupling does not vanish there ([14]).

The ambiguity is due to the casting of the type IIB action in the Einstein frame, but as

usual the coupling of the brane theory is proportional to the volume of the cycle wrapped

by the brane.

2.3 Elliptic Curves

As we saw in the previous section, in order to understand 7-branes configurations, F-

Theory understands the axiodilaton as the varying complex structure of a torus associated

to each point of the internal space. This gives rise to an elliptic fibration, and in this

section we are going in some details into the mathematics describing such constructions.

An elliptic fibration is a fibration such that the generic fiber is an elliptic curve

(nevertheless we will be interested in the non-generic fiber, that is, in singular fibers).

We write this as

E ↪→ Y E = Elliptic curvey Y = Total Space

B B = Base of the Fibration (2.3.1)

where E, the fiber, is an elliptic curve, Y is the total space of the fibration, which projects

onto the base B. First it will be necessary to spend some time describing elliptic curves,

their relations to complex tori and their expressions as subsets of projective spaces.

With this background we will then be able to approach elliptic fibrations and study the

conditions for which these are well defined, and their possible degenerations.
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An elliptic curve is an algebraic curve of genus one with a specified point O which

is non-singular and which is projective, that is, which can be described as a subset of

a projective space ([15]). Since we will be interested in elliptic curves over the complex

numbers, we will also make clear the relation between complex tori, C/Λ, and elliptic

curves over C, E/C. An elliptic curve E/C will turn out to have a standard form, called

the Weierstrass form, in which it is always possible to be cast. To this end recall the

definition of complex projective space Pn as the quotient

Pn = Cn/C∗, (2.3.2)

where the action of C∗ defines the equivalence relation we mod out by as

(x1, . . . , xn) ∼ (y1, . . . , yn)⇔ (x1, . . . , xn) = λ(y1, . . . , yn) λ 6= 0. (2.3.3)

The Weierstrass form allows to cast every elliptic curve into the form

E : y2 = x3 + fx+ g, (2.3.4)

where we work in the affine patch of P2 = [x : y : z] given by z = 1.

In the next section we will find two ways to bring an elliptic curve into the Weierstrass

form. Through one of these we will also show the equivalence of complex tori and

elliptic curves over the complex numbers. Through the second we will introduce algebro-

geometric methods that will be useful in the description of elliptic fibrations.

2.4 Weierstrass Form for Elliptic Curves

In order to cast an elliptic curve into Weierstrass form (2.3.4) we will actually show the

equivalence between complex tori and elliptic curves over the complex numbers, so that

we will effectively get a twofold result. So let us start from a complex torus given by

T2 = C/Λ; we would like to find a function to (an affine patch of) projective space which

is well defined and bijective

Φ : C/Λ ←→ E/C. (2.4.1)

Consider the first direction: we need to find a function which is well defined on the lattice

Λ, that is, a doubly periodic function. The function we will use goes back to Weierstrass

and can be written in the form

℘(z) =
1

z2
+

∑
w∈Λ,w 6=0

(
1

(z − w)2
− 1

w2

)
. (2.4.2)



Chapter 2. Aspects of F-Theory 25

Through an expansion in Laurent series of ℘(z) and its derivative ℘′(z) it can be proved

that the following relation holds

℘′(z)2 = ℘(z)3 + f℘(z) + g, (2.4.3)

where we omit the expansion of f and g in terms of Eisenstein series. Therefore we can

define the following map

Φ : C/Λ −→ P2

z −→ [℘(z), ℘′(z), 1] (2.4.4)

which is bijective and well defined between the complex torus and the codimension one

subset of P2[x : y : z] defined by the relation

y2 = x3 + fx+ g. (2.4.5)

Notice that the map Φ is well defined as long as the right hand side of (2.4.3) has different

roots, that is the discriminant of the equation

x3 + fx+ g = 0 (2.4.6)

is non-vanishing. This turns out to be a very important quantity in its own right

∆ = 4f3 + 27g2. (2.4.7)

The subset identified by Φ to be in bijective correspondence with a complex torus is

what we call an elliptic curve. This is indeed an algebraic projective curve of genus one

(since the torus is a Riemann surface of genus one), whose smoothness turns out to be

guaranteed by the non-vanishing of the discriminant, and which has a specified point.

This is the so-called point at infinity and is given by [1 : 1 : 0].

Note that this is the case since the minimal way to homogenize the Weierstrass form

is by understanding it as a subset of the weighted projective space P2[x : y : z] with

weights (2, 3, 1) (which we write as P231). Recall that weighted projective space Pn with

weights (w1, . . . , wn) is the usual projective space where we modify the C∗ action to get

the equivalence relation between two points of Cn given by

(x1, . . . , xn) ∼ (y1, . . . , yn)⇔ (x1, . . . , xn) = (λw1y1, . . . , λ
wnyn) λ 6= 0. (2.4.8)

Then it is easily seen that the Weierstrass form can be homogenized to y2 = x3+fxz4+gz6

and the point at infinity is indeed a point on the elliptic curve. We have found a bijection

between a complex torus and what we defined as an elliptic curve over the complex
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Figure 2.3: A torus as a double sheeted cover of the Riemann sphere P1
C branched over

four points.

numbers. We saw that in so doing we managed to cast the elliptic curve in the so-called

Weierstrass form. This allows another intuition into the equivalence that we showed.

Indeed we see that following from the rearranging

y = ±
√
x3 + fx+ g (2.4.9)

we can have a hint of the topology of an elliptic curve over the complex numbers by noting

that the double-sheeted cover of (2.4.9) has branch cuts joining (x1, x2) and (x3, x̄ =∞),

where {x1, x2, x3} are the roots of the right-hand side of (2.4.9). Then we can glue two

copies of the Riemann sphere (that is of P1
C) along the fattened branch cuts, that is we

glue two spheres with two disks cut out along the cuts. This gives a torus as in Figure

2.3.

As anticipated we are now going to provide a second way to derive the Weierstrsass

form for an elliptic curve using the Riemann-Roch theorem for algebraic curves of genus

one. This will turn out to be useful both to introduce algebro-geometric methods which

play a role in elliptic fibrations and for generalizations to elliptic curves with multiple

points specified that will be studied in Chapter 3.

Let C be an algebraic curve and let L be a line bundle over it. The Riemann-Roch

theorem relates the dimension of the space of global sections of the line bundle L to the

degree of the line bundle L and the genus of the algebraic curve C. In particular recall

that for a divisor

D =
∑
P∈C

nPP (2.4.10)

on an algebraic curve C, we define the associated line bundle O(D) to be the vector space

of meromorphic functions with poles at worst of order nP at P . Then the Riemann-Roch
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theorem states that

dimO(D) = deg(D) + 1− g, (2.4.11)

where g is the genus of the curve C and

deg(D) =
∑
P

nP . (2.4.12)

We see that in particular for an elliptic curve we find

dimO(D) = deg(D). (2.4.13)

Now let us consider the line bundle O(P ), where P is the specified point on the elliptic

curve. As we saw, this is the space of meromorphic functions having at worst a simple

pole at P . By Riemann-Roch such a space is 1-dimensional and is spanned by a single

section, that we call z. Similarly O(2P ) is seen to be generated by z2 and a new section

which we call x. Following this reasoning we see that

O(3P )
gen. by−→ {z3, zx, y}

O(4P )
gen. by−→ {z4, z2x, zy, y2}

O(5P )
gen. by−→ {z5, z3x, z2y, x2z, xy}

O(6P )
gen. by−→ {z6, z4x, z3y, z2x2, y2, x3, zxy}, (2.4.14)

but we immediately see that O(6P ) has naively seven generators, while the Riemann-

Roch theorem states that it should be 6-dimensional. Therefore there must be a relation

between such generators

a1y
2 + a2x

3 + a3z
6 + a4z

4x+ a5z
3y + a6z

2x2 + zxy = 0. (2.4.15)

If the characteristic of the field we are working over is different from 2 or 3, we can then

complete the square in y and the cube in x to turn the last equation into the Weierstrass

form

y2 = x3 + fxz4 + gz6. (2.4.16)

We started from a smooth algebraic curve C of genus one with a specified point, that is

an elliptic curve, and applied the Riemann-Roch theorem on the line bundle O(P ) over

C. This allowed to find three global sections {z, x, y} which can be considered as maps

{z, x, y} : C ↪→ P2, (2.4.17)

that is they provide an embedding of the elliptic curve into projective space. The projec-

tive equation describing the elliptic curve is found to be the Weierstrass form (2.4.16).
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Figure 2.4: A representation of the group law ⊕ defined on the set of rational points

E(K) of an elliptic curve. If P and Q are rational points it follows by solving polynomial

equations that P ⊕Q is also rational.

2.5 Mordell-Weil Group

When considering elliptic curves over the complex numbers we saw that we could think

of them as Riemann surfaces of genus one. Therefore, since we have an obvious group

structure on the torus which descends from addition on C under the quotient by Λ,

we might wonder what is the corresponding group structure on the elliptic curve. As it

turns out, elliptic curves admit a group structure not only when defined over the complex

numbers, but over a generic field K. Let us now discuss such group structure in more

detail.

Let E(K) be the set of K-rational points of the elliptic curve E, that is the set of

points in P2
K which belong to E. Then the Mordell-Weill theorem states that E(K) is a

group, and in particular it is a finitely generated abelian group ([15]). Every such group

is isomorphic to

E(K) ' Z⊕k ⊕ GT , (2.5.1)

where GT is the torsion part (of finite order). We call E(K) the Mordell-Weil group of E,

so that k, the dimension of the non-torsion part of E(K), is the rank of the t Mordell-Weil

group of the elliptic curve E. The statement that E(K) is a group means that there exist

a binary operation ⊕ on the set E(K) of rational points of an elliptic curve such that the

identity element of the group is the specified point I on the elliptic curve (which can be

taken to be the point at infinity). Then we have that

(i) P ⊕Q = Q⊕ P for all P,Q ∈ E(K);
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(ii) P ⊕ I = P for all P ∈ E(K);

(iii)(P ⊕Q)⊕R = P ⊕ (Q⊕R) for all P,Q,R ∈ E(K);

(iv) If P ∈ E(K) then there exists Q ∈ E(K) such that P ⊕Q = I.

Even though from an F-Theory perspective we will be interested mainly in the rank

of the Mordell-Weil group, it turns out that there is a graphic description of the group

operation ⊕ on E. For two generic rational points P and Q in E(K) we let R be the

third intersection of the line between P and Q with the elliptic curve. Then we let P ⊕Q
be equal to −R, i.e. the intersection of the line between the point at infinity and R, as

depicted in Figure 2.4. It is a property of polynomial equations that P ⊕ Q is also a

rational point of E (the group law is not well defined if P ⊕Q is taken to be R). Notice

that the group structure on the elliptic curve is well defined because we have a specified

point to begin with, the identity of the group structure.

2.6 Elliptic Fibrations

Recall that we defined an elliptic fibration as

E ↪→ Y E = Elliptic curvey Y = Total Space

B B = Base of the Fibration (2.6.1)

Such a variety has as fiber over each point of the base an elliptic curve described by a

Weierstrass form embedded in projective space P123. This is called an E8 fibration for

reasons that will become clear later; there also exist E7 and E6 fibrations represented by

quartic equations in P112 and cubic equations in P2 respectively ( in order to satisfy the

Calabi-Yau condition the homogeneous degree of the equation describing a projective

variety should equal the sum of the weights of the ambient projective space). Such

fibrations will have Mordell-Weil groups of different rank.

Now that we have a clear description of elliptic curves in terms of the Weierstrass

form we can start to understand elliptic fibrations. As to each point of the base of the

fibration B we want to associate an elliptic curve, we let the projective coordinates of

the Weierstrass form and the coefficients f, g depend on the base. Since the base could

be topologically non-trivial, rather than function, we should take f, g to be sections of

line bundles over the base and we define an ambient five-fold which is a projective bundle

over the base B

P(O,K−2
B ,K−3

B ). (2.6.2)
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The notation means that at each point of the base, the projective space associated to it

has, as coordinates, sections of the bundle of constant functions over the base, O, and

sections of powers of the canonical bundle of the base, KB. Then if

x ∈ H0(B,K2) y ∈ H0(B,K3) z ∈ H0, (B,O), (2.6.3)

the Weierstrass form

y2 = x3 + fxz4 + gz6 (2.6.4)

describes an elliptic fibration over the base B. In order for the Weierstrass equation to

have a homogeneous divisor class we require

f ∈ H0(B,K4) g ∈ H0(B,K6). (2.6.5)

We can associate a divisor class to the coordinate hyperplanes

[x] = α+ 2c1 [y] = α+ 3c1 [z] = α (2.6.6)

where α is the hyperplane class of P2 and

π : Y → B c1 = π∗(c1(B)). (2.6.7)

The assignments of the divisor classes follow from the the coordinates being sections of

respective powers of the canonical bundle of the base (2.6.3). The Weierstrass equation

is seen to be a section of OP2(3) and its divisor class is

[Y ] = 3α+ 6c1. (2.6.8)

In order to preserve N = 1 supersymmetry in 4 dimensions, we require the elliptic

fibration to be Calabi-Yau (this will become clear when discussing the F-Theory/M-

Theory duality). A variety is Calabi-Yau if its canonical bundle is trivial, if it is Ricci-

flat or, by the theorem proved by Yau, if its first Chern class vanishes. In order to

determine the Chern class of our elliptically fibered variety, we are going to make use of

the adjunction formula ([16]). Given an algebraic variety Y which is a subset of projective

space Pn we can write down a short exact sequence of bundles, given by

0 −→ TY −→ TPn |Y −→ NPn/Y −→ 0, (2.6.9)

where T(·) is the tangent bundle of a variety and

NPn/Y ≡ TPn |Y
/
TY (2.6.10)
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is the normal bundle to Y in Pn. Note that by definition of NPn/Y the sequence (2.6.9) is

exact. Given an exact sequence we can take the determinant line bundles of the bundles

in the sequence to obtain another exact sequence

0 −→ det TY −→ det TPn |Y −→ detNPn/Y −→ 0. (2.6.11)

It follows from such an exact sequence that

det TPn |Y = det TY ⊗ detNPn/Y . (2.6.12)

By definition the determinant line bundle of the tangent bundle to a variety is the canon-

ical bundle to such variety K, while since we are considering hypersurfaces in Pn, the

normal bundle NPn/Y is a line bundle and

detNPn/Y = NPn/Y . (2.6.13)

Therefore we derive the adjunction formula

KY = (KPn ⊗N ∗Pn/Y )|Y . (2.6.14)

Equivalently in terms of divisor classes, this can be written as

[KY ] = ([KPn ] + [Y ])|Y . (2.6.15)

From the properties of Chern classes, it follows from the adjunction formula that the

Chern class of Y can be expressed in terms of the ambient space X as

c(Y ) =
c(X)

1 + [Y ]

∣∣∣
Y
. (2.6.16)

It can be checked that in the case of the Weierstrass fibration c(X) = 1 + 3α+ 6c1 + . . .

and using the class of Y (2.6.8) we see that c1(Y ) indeed vanishes

c(Y ) =
1 + 3α+ 6c1 + . . .

1 + 3α+ 6c1

∣∣∣
Y

= 1 + c2(Y ) + . . . (2.6.17)

The elliptic fibration becomes singular when the discriminant

∆ = 4f3 + 27g2 (2.6.18)

vanishes, which happens over a divisor in the base. Indeed we saw that an elliptic curve

is defined only when the discriminant is non-vanishing. In the case of elliptic fibrations,

the singularity can occur in the fiber (meaning only the tangent space to the fiber is

degenerate) or in the whole variety. We will spend some time describing singularities of

elliptic fibrations in the next section.
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2.7 Singularities of Elliptic Fibrations

We saw that elliptic fibrations develop singularities whenever the discriminant ∆ vanishes.

From now on we will take the base of our fibration to be a Kahler three-fold by having in

mind a reduction to 4 dimensions in the F-Theory set up. Therefore the fibration becomes

singular over a codimension one locus in the base, that is over a complex surface. The

correct physical interpretation is that a stack of 7-branes wrap such a divisor in the base:

recall indeed that the complex structure-axiodilaton τ diverges at the location of the

branes, and therefore the fibration degenerates.

Kodaira ([17]) classified all the possible singularities that an elliptic fibration over a

complex 1-dimensional base can develop, and such a classification mostly holds for higher

dimensional bases up to additional monodromies that we will discuss. In order to discuss

the classification of singular elliptic fibrations, we will need to introduce some concepts

in algebraic geometry. In particular, singular elliptic fibrations can be resolved, that is,

a birational map can be found between them and a non-singular variety.

The main such procedure is called blowing up. Let us discuss the simple example

of blowing up affine space An at a point to understand the main characteristics of this

transform. Blowing up An at the origin means considering the variety given by

{(x1, . . . , xn), (y1, . . . , yn)|xiyj = xjyi} ⊂ An × Pn−1. (2.7.1)

Then we have a natural projection to the original variety given by

π : An × Pn−1 → An, (2.7.2)

which is birational. In particular we see that such a map is not well defined at the point

where we blew up since

π−1(0) ' Pn−1, (2.7.3)

that is we get the whole space of lines through the origin in the affine space An. We call

π−1(An) the total transform of our affine space, while we call the closure of π−1(An/{0})
the proper transform. The exceptional locus π−1(0) is called the exceptional divisor. We

can see why it can be a sensible thing to blow up a singular variety. Indeed, if a variety

is singular at a point, the tangent space is degenerate at such point, but this does not

have to be the case for the blown up variety, since the blown up point has been replaced

by the exceptional divisor.

Let us look at the easiest hypersurface singularity, whose desingularization will be

the template for more complex singularities. Let the A1 singularity, the so-called simple
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double point, be described by the equation

P : x2
1 + x2

2 + x2
3 = 0 ⊂ A3(x1, x2, x3). (2.7.4)

We immediately see that the hypersurface is singular at the origin since

P |(0,0,0) = 0 dP |(0,0,0) = 0, (2.7.5)

where the first equation implies that the point (x1, x2, x3) = (0, 0, 0) does belong to the

hypersurface, while the second equation implies that the tangent spce at that point is

degenerate, and is equivalent to the condition that ∂iP |(0,0,0) = 0. In order to resolve

such singularity we blow up the origin of the affine space as just explained, to find

{x2
1 + x2

2 + x2
3 = 0, xiyj = xjyi} ⊂ A3 × P2, (2.7.6)

where [y0 : y1 : y2] are homogeneous coordinates on P2. We can then use the C∗ action

of P2 to fix yi ≡ 1 on the patch Ui given by yi 6= 0. Then we just substitute xj = yjxi in

the equation of the singular hypersurface to find, on each patch

U1 : x2
1(1 + y2

2 + y2
3) = 0

U2 : x2
2(y2

1 + 1 + y2
3) = 0

U3 : x2
3(y2

1 + y2
2 + 1) = 0 (2.7.7)

One can indeed check that the proper transform, given by the second branch in each

patch (since setting xi = 0 in Ui gives exactly the origin that we are blowing up), is

not singular any more. One can also check through algebraic techniques that the Euler

characteristic of the exceptional divisor is 2, that is we replaced the singular point on the

hypersurface by a P1 ' S2.

Resolving singularities in elliptic fibrations is for the most part similar to what we

discussed so far. One looks at geometric loci which satisfy simultaneously the equations

Q|x = 0, dQ|x = 0, (2.7.8)

where Q is the equation describing the fibration, and then repeatedly blows up the

singular locus. An important concept is that since we start with a Calabi-Yau variety

one might be worried that the resolved variety is not Calabi-Yau any more. This is a

legitimate concern, which gives rise to the concept of crepant resolution, that is those

resolutions which leave the canonical bundle of the variety unchanged (thus preserving

the Calabi-Yau condition). It can be proved that the proper transform arising from the
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blowing up procedure preserves the Calabi-Yau condition (and so do small resolutions

([18])).

In order to classify the possible singularities of elliptic fibrations, Kodaira classified

the exceptional divisors obtained by blowing up such singularities and studied how they

intersect. It turns out that the singular locus is replaced by a chain of P1s which intersect

according to an ADE classification. What that means is that the intersection matrices

of the exceptional divisors are the Cartan matrices associated to Dynkin diagrams of

type ADE. For example an A1 singularity once resolved will have as exceptional divisor

a single P1 which is represented in the affine Dynkin diagram by a single node. An A2

singularity, once resolved, will give rise to two P1s that will intersect in two points - which

translates into two nodes connected by a single line. And so on.

Kodaira then classified singularities in complex elliptic surfaces accordingly. Let us

expand the coefficients of the Weierstrass form in a power series in a local coordinate z

of the base, that is

f =
∑
i

fiz
i g =

∑
i

giz
i. (2.7.9)

Then the classification that Kodaira proposed associates ADE singularities to different

vanishing orders of f, g and the discriminant ∆, as reported in Table 2.1.

In a similar spirit, Tate proposed an algorithm ([19]) which allows to determine the

singularity of an elliptic curve/fibration starting from the vanishing orders of the coeffi-

cients {ai} of the so-called Tate form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.7.10)

which is equivalent to the Weierstrass form. Such analysis, consisting of enhancing the

vanishing order of the discriminant of the fibration by tuning the vanishing order of the

coefficients {ai}, was repeated for fibrations over higher dimensional bases ([20]) and it

was found that there are some subtle differences compared to complex surfaces, such as

singular fibers dual to F4 and G2 affine Dynkin diagrams, see Table 2.2. Moreover, in

([21]), a more thorough analysis was carried out so as to understand the possible ways

to increase the vanishing order of the discriminant by using the fact that the coefficients

of the Tate form belong to a unique factorization domain. Subtleties related to global

behaviour of the sections might arise, and such an analysis was repeated in ([22]) for the

elliptic fibration P112[4]. In Chapter 3 we will discuss instead Tate’s algorithm applied

to the elliptic fibration realized by a cubic equation embedded in P2.
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O(f) O(g) O(∆) Fiber Type Singularity Type

≥ 0 ≥ 0 0 smooth none

0 0 n In An−1

≥ 1 1 2 II none

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 2.1: The classification of singular fibers depending on the vanishing orders of f, g

and the discriminant ∆. Note both the Kodaira denomination of singular fibers and the

corresponding ADE singularity type.

2.8 F-Theory and Dualities

Now that we discussed elliptic fibrations and their singularities, let us go back to F-

Theory to discuss how the geometric properties of the fibration determine the physics

of the compactifications. So far we discussed F-Theory as a technique to study type

IIB compactificaitons in the presence of 7-branes. In order to understand the physics

underlying such compactifications it will turn out to be useful to relate F-theory to M-

Theory through a chain of dualities. Recall that M-Theory is the non-perturbative uplift

of type IIA string theory where one dimension decompactifies to obtain an 11-dimensional

theory whose low energy dynamics is 11-dimensional supergravity.

Let us consider M-Theory on R1,8×T2, where we take the torus to be T2 = S1
A×S1

B

with complex structure τ . Then we follow the next steps:

• We let the radius RA of S1
A go to zero, so to regain the perturbative regime of type

IIA.

• We T-dualize using S1
B to obtain type IIB string theory on R(1,8) × S̄1

B, where S̄1
B

has radius proportional to 1/RB.

• We let RB → 0 to decompactify to type IIB string theory. We obtain this way a
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O(a1) O(a2) O(a3) O(a4) O(a6) O(∆) Fiber Type ADE Group

0 0 0 0 0 0 I0 —

0 0 1 1 1 1 I1 —

0 0 1 1 2 2 I2 SU(2)

0 0 2 2 3 3 Ins3 unconven.

0 1 1 2 3 3 Is3 unconven.

0 0 n n 2n 2n Ins2k Sp(n)

0 1 n n 2n 2n Is2k SU(2n)

0 0 n+ 1 n+ 1 2n+ 1 2n+ 1 Ins2k+1 unconven.

0 1 n n+ 1 2n+ 1 2n+ 1 Is2k+1 SU(2n+ 1)

1 1 1 1 1 2 II —

1 1 1 1 2 3 III SU(2)

1 1 1 2 2 4 IV ns unconven.

1 1 1 2 3 4 IV s SU(3)

1 1 2 2 3 6 I∗ns0 G2

1 1 2 2 4 6 I∗ss0 SO(7)

1 1 2 2 4 6 I∗s0 SO(8)∗

1 1 2 3 4 7 I∗ns1 SO(9)

1 1 2 3 5 7 I∗s1 SO(10)

1 1 3 3 5 8 I∗ns2 SO(11)

1 1 3 3 5 8 I∗s2 SO(12)∗

1 1 n n+ 1 2n 2n+ 3 I∗ns2k−3 SO(4k + 1)

1 1 n n+ 1 2n+ 1 2n+ 3 I∗s2k−3 SO(4k + 2)

1 1 n+ 1 n+ 1 2n+ 1 2n+ 4 I∗ns2k−2 SO(4k + 3)

1 1 n+ 1 n+ 1 2n+ 1 2n+ 4 I∗s2k−2 SO(4k + 4)∗

1 2 2 3 4 8 IV ∗ns F4

1 2 2 3 5 8 IV ∗s E6

1 2 3 3 5 9 III∗ E7

1 2 3 4 5 10 II∗ E8

1 2 3 4 6 12 non-min —

Table 2.2: Tate’s Algorithm with the vanishing orders of the coefficients {ai} of the

Tate form. Note in particular the appearance of singular fiber absent from Kodaira’s

Classification arising from the higher dimension of the base.
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duality between M-Theory on a torus of vanishing volume and type IIB which can

be lifted to F-Theory.

Such duality can be extended fiberwise over the base of the fibration, therefore creating

the set up of F-Theory. So we conclude that F-Theory on a Calabi-Yau fourfold is dual

to M-Theory on the fourfold in the limit of vanishing fiber volume.

We can now use this duality to gain insight into the physics of F-Theory. We saw

following Kodaira’s classification that the singular elliptic fibration can be resolved to

obtain a smooth variety, where the singular locus has been replaed by a tree Γi of P1s

intersecting as in the dual affine Dynkin diagram. We can then reduce the C3 form of

M-Theory along these cycles to obtain the abelian gauge degrees of freedom Ai

Ai =

∫
Γi

C3. (2.8.1)

These degrees of freedom will form the Cartan subalgebra of our gauge symmetry. The

non-abelian degrees of freedom are instead obtained by letting M2-branes wrap chains of

P1s given by

Sij = Γi ∪ Γi+1 ∪ · · · ∪ Γj , (2.8.2)

provided that Γk and Γk+1 intersect. We obtain the degrees of freedom exactly to realize

the gauge group indicated by the singularity type of the elliptic fibration. Therefore

we see that F-Theory provides a completely geometric framework to study type IIB

compactifications. In particular it lends itself easily to the realization of Grand Unified

Theories since we can engineer 4-dimensional models by studying the singularities of

elliptic fibrations. These are N = 1 supersymmetric theories in 4 dimensions which have

desirable phenomenological properties and that we will discuss in the next section.

We note here, without going into detail, that F-Theory also admits a duality to

Heterotic string theory, although restricted to a smaller class of theories. In particular

the duality states that F-Theory on an elliptically fibered K3 surface is dual to the

Heterotic theory on T 2. We can extend this duality fiberwise to relate

F-Theory on X : K3→ B

&

Heterotic on Y : E→ B, (2.8.3)

but we see that since the K3 surface is itself elliptically fibered

K3 : E→ P1, (2.8.4)
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we must have on the F-Theory side a base B′ which admits a P1 fibration, thus restricting

the class of theories on which the duality can apply.

Let us now go back to the study of F-Theory compactifications and try to understand

how the matter content and the couplings of the compactifications are encoded in the

geometry of the fibration. So far we saw that the codimension one singularity structure

of the fibration determines the gauge group of the 4-dimensional theory. Nevertheless,

since the base of our fibration is not just one complex dimensional, we see that different

phenomena might happen in higher codimension. In particular for the case of compact-

ifications to 4 dimensions, the base is a complex threefold and we have codimension 2

and codimension 3 singularity at our disposal (that is singularities specified locally by

respectively 2 or 3 equations).

In brane set ups, matter is found at the intersection of (stacks of) branes as open

string excitations stretching between the two branes. In F-Theory context we might have

m 7-branes wrapping a four cycle M4 in the base and n 7-branes wrapping a different

four cycle M ′4. Then since codimensions add, we see that generically the two stacks of

branes intersect over a complex curve Σ in the base, that ism 7-branes on R1,3 ×M4

n 7-branes on R1,3 ×M ′4

∩−→ R1,3 × Σ ⊂ R1,3 ×M6. (2.8.5)

If gauge symmetrise Ga and Gb are associated to the two stacks of 7-branes, and at the

intersection we have an enhanced Gab symmetry we find matter in the representation

(Rx, Ux) under the breaking of the adjoint of Gab → Ga ×Gb ([14])

Gab → Ga ×Gb

adGab → (adGa ,1)⊕ (1, adGb)⊕
∑

(Rx, Ux). (2.8.6)

For example enhancements from SU(5) to SO(10) allow matter in the 10 (1̄0) following

the decomposition of the adjoint of SO(10)

45→ 240 + 102 + 1̄0−2 + 10. (2.8.7)

2.9 Abelian Symmetries in F-Theory

It should now be clear that F-Theory is an excellent framework for studying string com-

pactifications and geometrically engineer supersymmetric 4-dimensional theories. This

turned out to be useful in order to realise Grand Unified Theories in which the funda-

mental gauge interactions of the Standard Model are united in a single gauge group,
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typically SU(5) or SO(10), which then at some energy scale (around 1016 GeV) breaks

to the Standard Model gauge group. Such theories captured a lot of attention in the past

since it was possible to embed the Standard Model gauge group as a maximal subgroup of

a unified group, thus providing the unification of the known interactions which was con-

firmed by the running of the couplings under the RG flow. Even though supersymmetry

potentially allows to solve problems afflicting the Standard Model (Dark Matter, Hier-

archy Problem, etc), Grand Unified Theories suffer themselves from phenomenological

difficulties.

In particular the adjoint of SU(5) under the breaking to the Standard Model gauge

group

SU(5)→ SU(3)× SU(2)× U(1) (2.9.1)

decomposes as follows

24→ (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3, 2̄)−5 ⊕ (3̄,2)5, (2.9.2)

where the first three terms reproduces correctly the content of the Standard Model, but we

see the appearance of additional gauge bosons. The main threat comes from the fact that

such bosons are able to induce proton decays operators. Protons have experimentally

been shown to possess a half-life which is greater than the life of the universe, so we

see that the presence of proton decay operators in Grand Unified Theories presents a

considerable problem to the unification program.

One way out of this impasse was found to rely on the existence of additional abelian

factors in the unified gauge group. Ideally one would like to find an additional factor

U(1)n such that the U(1) charges would allow operators such as the Top Yukawa coupling

10M10M5H , but prevent the proton decay operator 10M10M5M by deeming it not gauge

invariant.

We saw that in F-Theory we can only engineer theories with a gauge group of ADE

type and there does not seem to be room for additional abelian factors. It turns out

that the correct way to solve this problem is to look at elliptic fibrations which admit

extra rational sections. Recall that the Weierstrass model embedded in P123 = [z : x : y]

admitted one rational point given by

[1 : 1 : 0] ∈ {y2 = x3 + fxz4 + gz6}, (2.9.3)

and by fibering over the base this implied the existence of a global section of the elliptic

fibration. Consider now the existence of additional rational points on an elliptic curve

and therefore the existence of additional sections of the elliptic fibration. Then such
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sections are divisors in the Calabi-Yau fourfold and we can consider their Poincare Dual

(1,1)-forms ωi. It is clear that we can use these to reduce the C3 form in the M-Theory

framework to obtain abelian degrees of freedom Ai

C3 = Ai ∧ ωi + . . . . (2.9.4)

We therefore find a gauge field for an abelian U(1) factor for each extra section of the

elliptic fibrations. Now that we know how to engineer additional abelian gauge degrees of

freedom in F-Theory, let us see how we can calculate the U(1) charges of matter arising

from codimension two singularities. We define the Shioda map ([23])

S : Mordell-Weil Group −→ H1,1(Y4), (2.9.5)

which associates to each section generating the Mordell-Weill group a divisor of the

elliptic Calabi-Yau Y4. The U(1) charge of a matter curve Σ associated to a section σi is

found to be the intersection Σ ·Y4 S(σi).

In order to have an elliptic curve with an extra rational point (that will become an

extra section upon fibering over the base) we need to embed it in the weighted projective

space P112[w : x : y] by the equation ([23])

c0w
4 + c1w

3x+ c2w
2x2 + c3wx

3 = y2 + b0x
2y, (2.9.6)

and the two rational points are seen to be

σ1 = [0 : 1 : 0] σ2 = [0 : 1 : −b0]. (2.9.7)

The study of the possible singularities occurring in an elliptic fibration with an extra

rational section was carried out in ([22]). Similarly an elliptic curve with two extra

rational sections can be realized as a cubic equation in projective space P2 ([1, 24–26])

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0, (2.9.8)

with the three rational points

σ1 = [0 : 0 : 1] σ2 = [0 : 1 : 0] σ3 = [0 : s9 : −s7]. (2.9.9)

In Chapter 3 we will study the possible singularities of such an elliptic fibration through

the application of Tate’s algorithm.



Chapter 3

Tate’s Algorithm for F-theory

GUTs with two U(1)s

As outlined in Chapter 2, the compactification of F-Theory on elliptically fibered Calabi-

Yau manifolds has proven to be a successful framework to realize supersymmetric non-

abelian gauge theories, in particular Grand Unified Theories (GUTs) ([27–29]). Although

GUTs are an appealing framework for supersymmetric model building1, it is well known

that they can suffer from fast proton decay, which, however, can be obviated by having

additional discrete or continuous symmetries. In this chapter we consider F-theory com-

pactifications that give rise to GUTs with two additional U(1)s, which can potentially be

used to suppress certain proton decay operators2. In F-theory abelian gauge factors have

their genesis in geometric properties of the compactification manifold, namely in the ex-

istence of additional rational sections of the elliptic fibration. We carry out a systematic

procedure to constrain which such fibrations can give rise to gauge groups G× U(1)2.

It has been known for many years that abelian gauge symmetries in F-theory are

characterized by the Mordell-Weil group of the elliptically fibered Calabi-Yau compact-

ification space ([8, 9]), which is the group formed by the rational sections of the fibra-

tion. In recent years abelian gauge factors have been much studied in the context of

4-dimensional GUTs arising from F-theory compactifications. In local F-theory models

U(1)s have a realization in terms of factored spectral covers as shown in ([37–44]). Global

models with one U(1) were studied in ([22, 23, 45–52]), however phenomenologically one

U(1) factor is not sufficient to forbid all dangerous couplings ([53]). It is then well moti-

1See ([14,30,31]) for some nice reviews of GUT model building in F-theory.
2Discrete symmetries have been studied in local and global F-theory model building in, e.g. ([32–36]).
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vated to consider elliptic fibrations with multiple U(1) factors, the constuction of which

was initiated in ([1, 24–26, 54–58]), with the realization of the SU(5) × U(1)2 models in

these papers primarily based on constructions from toric tops ([59]).

It is natural to ask whether there is a systematic way to explore the full range of

possible low-energy theories with two additional abelian gauge factors which have an

F-theory realization. One approach to address this question is to apply Tate’s algorithm

([19–21]) to elliptic fibrations with two additional rational sections. This is the approach

that we take in this chapter and indeed we show that there is a large class of new

elliptic fibrations with phenomenologically interesting properties not seen from the top

constructions. While Tate’s algorithm is a comprehensive method to obtain the form

of any elliptic fibration with two rational sections there is a caveat that it is sometimes

difficult in practice to proceed with the algorithm without making simplifications at the

cost of generality.

The starting point for the application of Tate’s algorithm in this context is the re-

alization of the elliptic fiber as a cubic in P2 ([1, 24–26]). Tate’s algorithm involves the

study of the discriminant of this cubic equation, which captures the information about

the singularities of the fiber. The singular fibers of an elliptic surface were classified

by Kodaira ([60, 61]) and Néron ([62]), and they belong to an ADE-type classification;

Tate’s algorithm is a systematic procedure to determine the type of singular fiber. The

ADE type of the singular fiber determines the non-abelian part of the gauge symmetry.

Tate’s algorithm was applied to the Weierstrass form for an elliptic fibration where

there are generically no U(1)s in ([20,21]), and in ([22]) to the quartic equation in P(1,1,2)

which realizes a single U(1) ([23]). The application of the algorithm to the cubic in P2

will constrain the form of the fibrations which realize a G × U(1)2 symmetry, for some

non-abelian gauge group G, which are phenomenologically interesting for model building.

As a result of Tate’s algorithm we find a collection of elliptic fibrations which real-

ize the gauge symmetry SU(5)× U(1)2 where the non-abelian symmetry is the minimal

simple Lie group containing the Standard Model gauge group. The fibrations found en-

compass all of the SU(5) models with two U(1)s in the literature which we are aware

of, and includes previously unknown models which, in many cases, have exciting phe-

nomenological features, such as having multiple, differently charged, 10 matter curves.

We also determine fibrations that lead to E6 and SO(10) gauge groups with two U(1)s.

Our results are not restricted to F-theoretic GUT model building, and we hope that

they are also useful in other areas of F-theory, for example in direct constructions of the

Standard Model ([63, 64]), in the determination of the network of resolutions of elliptic

fibrations ([65–69]), or in the recent relationship drawn between elliptic fibrations with
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U(1)s and genus one fibrations with multisections ([70–72]).

In section 3.1 we present a summary where we highlight the fibrations found in the

application of Tate’s algorithm to the cubic equation, up to fibers realizing SU(5). We

also present a table of a particularly nice kind of realizations for Kodaira fibers In and I∗n.

In section 3.2 we recap the embedding of the elliptic fibration as a cubic hypersurface in

a P2 fibration and give details of the resolution and intersection procedures. Section 3.3

contains Tate’s algorithm proper, up to the I5, or SU(5), singular fibers. In section 3.4

the U(1) charges of the various 10 and 5 matter curves that appear in the models from

the SU(5) singular fibers are determined. In section 3.5 Tate’s algorithm is continued

from where it was left off in section 3.3 and we obtain fibrations that have a non-abelian

component corresponding to an exceptional Lie algebra.

3.1 Overview and Summary

For the reader’s convenience, the key results are summarized in this section. For those

interested simply in the new SU(5) models we refer to section 3.4.

An elliptic fibration with two additional rational sections, which gives rise to a gauge

theory with two additional U(1)s, can be realized as a hypersurface in a P2 fibration, as

in ([1, 24–26]), given by the equation

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (3.1.1)

where [w : x : y] are projective coordinates on the P2. This fibration has three sections

which have projective coordinates

Σ0 : [0 : 0 : 1] , Σ2 : [0 : 1 : 0] , Σ1 : [0 : s9 : −s7] . (3.1.2)

The application of Tate’s algorithm involves enhancing the singularity of this elliptic

fibration, where the particular enhancements are determined by the discriminant. As the

coefficients of the fibration are sections of holomorphic line bundles over the base, one can

look at an open neighbourhood around the singular locus in the base with coordinate z

such that the singular locus is above z = 0, and consider the expansion in the coordinate

z of the si

si =

∞∑
j=0

si,jz
j . (3.1.3)

Often the pertinent information from the equation (3.1.1) is just the vanishing orders of

the si in z, which we will refer to through

ni = ordz(si) . (3.1.4)
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A shorthand for the equation will be the tuple of positive integers (n1, n2, n3, n5, n6, n7, n8, n9)

representing the vanishing orders. It will not always be possible to express a fibration

just through a set of vanishing orders, but there will also be non-trivial relations among

the coefficients of the equation. We will refer to fibrations of this form as non-canonical

models. This will be the result of solving in full generality the polynomials which appear

in the discriminant as a necessary condition for enhancing the singular fiber. In particu-

lar the fact that the coefficients of our fibration belong to a unique factorization domain

([21, 73]) will be used. Schematically we will refer to these fibrations via the shorthand

notation

Inci :

 (n1, n2, n3, n5, n6, n7, n8, n9)

[s1,n1 , s2,n2 , s3,n3 , s5,n5 , s6,n6 , s7,n7 , s8,n8 , s9,n9 ]

 , (3.1.5)

where the term in square brackets denotes any specialization of the leading non-vanishing

coefficients in the expansion of the si, and the I represents the Kodaira fiber type.

Often, for ease of reading, a dash will be inserted to indicate that a particular coefficient

is unspecialized. The exponent of the index nc will signal how many non-canonical

enhancements of the discriminant were used in order to obtain the singular fiber, that

is, how many times solving a polynomial in the discriminant did not require just setting

some of the expansion coefficients to zero, but also some additional cancellation.

There is a last piece of notation that needs to be explained before the results can be

presented. Since the elliptic fibration has three sections, it will be seen in section 3.3,

where the algorithm is studied in detail, that the discriminant will reflect the fact that

the sections can intersect the components of the resolved fiber in multiple different ways.

Thus, a number of (non-)canonical forms for each Kodaira singular fiber will be obtained

depending on which fiber component each of the sections intersects. To represent this,

denote by I
(012)
n the case where all the three sections intersect the same fiber component,

and then introduce separation of the sections by means of the notation I
(0|n1|m2)
n , where

the number of slashes will signal the distance between the fiber components that the

corresponding sections intersect. Consider the two examples:

• Is(01|2)
4,nc2

will represent a Kodaira singular fiber I4, obtained through two non-canonical

enhancements of the discriminant. The sections Σ0, Σ2 will intersect one of the fiber

components, while Σ1 will sit on an adjacent fiber component (i.e. one which in-

tersects the previous component). Depicting the P1 components of the singular

fiber as lines, and the sections as nodes, the fiber I
s(01|2)
4 can be represented by the

diagram
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• Is(01||2)
5,nc3

will represent an I5 found upon imposing non-canonical conditions on the

coefficients of our equation three times, such that the fiber component intersected

by Σ0 and Σ1 does not intersect the component that Σ2 intersects. This I
s(01||2)
5 is

represented pictorially as

We refer to section 3.5 for more details about the notation for representing singular fibers

corresponding to other types of Kodaira singular fibers.

All of the fibers found and determined are presented in the following summary ta-

bles, where the fibers are grouped first by the Kodaira type and then by the degree of

canonicality:

• In table 3.1 we list the singular fibers up to vanishing order ordz(∆) = 3. These

include fibers of type I1,I2,I3, II, and III.

• In table 3.2 we list the singular fibers at vanishing order ordz(∆) = 4. These include

both type I4 and type IV Kodaira fibers.

• In table 3.3 we list the I5 singular fibers.

For each of the I5 singular fibers obtained through the algorithm the U(1) charges

are calculated and the results are presented in section 3.4, along with the comparison

with the U(1) charges of the known SU(5) toric tops ([1, 24,51,54,59]).

Tate-like (that is, canonical) forms for generic Kodaira singular fibers were also de-

termined and they are presented in table 3.4. Appendix A.3 includes explicit details of

the resolutions of these forms.
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Singular Fiber Vanishing Orders and Non-canonical Data

I
(012)
1 (1, 1, 0, 1, 0, 0, 0, 0)

I
(012)
2 (2, 1, 0, 1, 0, 0, 0, 0)

I
(01|2)
2 (1, 1, 1, 0, 0, 0, 0, 0)

I
(1|02)
2,nc

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

II
(012)
nc

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ2
1,−, 2µσ3σ8,−, µσ2

8,−]

I
ns(012)
3 (3, 2, 0, 2, 0, 0, 0, 0)

I
s(01|2)
3 (2, 1, 1, 1, 0, 0, 0, 0)

I
s(0|1|2)
3 (1, 1, 1, 1, 0, 0, 1, 0)

I
s(012)
3,nc

(3, 1, 0, 1, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

I
s(01|2)
3,nc

(2, 1, 1, 0, 0, 0, 0, 0)

[−, σ1σ2, σ1σ3, σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−,−]

I
s(02|1)
3,nc

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

I
s(0|1|2)
3,nc

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

III
(012)
nc

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ2
3,−, 2µσ3σ8,−, µσ2

8,−]

III
(01|2)
nc

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, µσ2
5, 2µσ5σ7, µσ

2
7,−,−]

III
(02|1)
nc2

(1, 1, 0, 1, 0, 0, 0, 0)

[−,−, ξ2
2ξ4,−, 2ξ2ξ3ξ4, σ1ξ2, ξ

2
3ξ4, σ1ξ3]

Table 3.1: Singular fibers where ordz(∆) ≤ 3.
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Singular Fiber Vanishing Orders and Non-canonical Data

I
ns(012)
4 (4, 2, 0, 2, 0, 0, 0, 0)

I
s(01|2)
4 (3, 2, 1, 1, 0, 0, 0, 0)

I
ns(01||2)
4 (2, 2, 2, 0, 0, 0, 0, 0)

I
s(0|1|2)
4 (2, 1, 1, 1, 0, 0, 1, 0)

I
s(012)
4,nc

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ1σ3,−, σ1σ2 + σ3σ4,−, σ2σ4,−]

I
s(01|2)
4,nc

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ1σ3,−, σ2σ4 + σ3σ5, σ1σ2,−, σ2σ5,−]

I
s(02|1)
4,nc

(3, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

I
s(01||2)
4,nc

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ1σ3, σ1σ2 + σ3σ4, σ2σ4,−,−]

I
s(01||2)
4,nc

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

I
s(1|0|2)
4,nc

(1, 1, 1, 1, 0, 0, 1, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−, σ1σ2, σ1σ3,−,−]

I
s(02|1)
4,nc2

(3, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3ξ1ξ2,−, σ2ξ1ξ2 + σ3ξ1ξ3, ξ2ξ4, ξ1ξ3σ2, ξ3ξ4]

I
s(0|1|2)
4,nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, ξ3σ5, ξ3σ4 + ξ2σ5, ξ3σ4, σ1ξ3, σ1ξ2]

I
s(1|0|2)
4,nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ2ξ1ξ3, σ2ξ1ξ3, σ2ξ1ξ2 + σ3ξ1ξ3, σ3ξ1ξ2, σ1σ2, σ1σ3]

IV s(01|2) (2, 1, 1, 1, 1, 0, 0, 0)

IV s(0|1|2) (1, 1, 1, 1, 1, 0, 1, 0)

IV
ns(012)
nc2

(2, 1, 0, 1, 0, 0, 0, 0)

[−, ξ1ξ3, µξ23 , ξ1ξ2, 2µξ2ξ3,−, µξ22 ,−]

IV
s(01|2)
nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ2ξ5, ξ2ξ4 + ξ3ξ5, ξ3ξ4, µξ
2
2 , 2µξ2ξ3, µξ

2
3 ,−,−]

IV
s(02|1)
nc2

(2, 1, 0, 1, 0, 0, 0, 0)

[−,−, ξ4ξ22 ,−, 2ξ2ξ3ξ4, σ1ξ2, ξ4ξ23 , σ1ξ3]

IV
s(0|1|2)
nc2

(1, 1, 1, 0, 0, 0, 0, 0)

[−,−,−, µξ22 , 2µξ2ξ3, µξ23 , ξ2ξ4, ξ3ξ4]

IV
s(012)
nc3

(2, 1, 0, 1, 0, 0, 0, 0)

[δ2δ4, ξ3(δ1δ2 + δ3δ4), δ1δ3ξ
2
3 , ξ2(δ1δ2 + δ3δ4), 2δ1δ3ξ2ξ3,−, δ1δ3ξ22 ,−]

Table 3.2: Singular fibers where ordz(∆) = 4.
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Singular Fiber Vanishing Orders and Non-canonical Data

I
ns(012)
5 (5, 3, 0, 3, 0, 0, 0, 0)

I
s(01|2)
5 (4, 2, 1, 2, 0, 0, 0, 0)

I
s(01||2)
5 (3, 2, 2, 1, 0, 0, 0, 0)

I
s(0|1|2)
5 (3, 2, 1, 1, 0, 0, 1, 0)

I
s(0|1||2)
5 (2, 2, 2, 1, 0, 0, 1, 0)

I
s(012)
5,nc

(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

I
s(01|2)
5,nc

(3, 2, 1, 1, 0, 0, 0, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3,−,−,−]

I
s(02|1)
5,nc

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

I
s(0|1|2)
5,nc

(2, 1, 1, 1, 0, 0, 1, 0)

[σ1σ3, σ1σ2,−, σ3σ4, σ2σ4,−,−,−]

I
s(1|0|2)
5,nc

(3, 2, 1, 1, 0, 0, 0, 0)

[−,−,−,−, σ1σ2, σ1σ3, σ2σ4, σ3σ4]

I
s(0|1||2)
5,nc

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

I
s(0|1||2)
5,nc

(2, 1, 1, 1, 0, 0, 1, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

I
s(02|1)
5,nc2

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3ξ2,−, σ2ξ2 + σ3ξ3, ξ2ξ4, σ2ξ3, ξ3ξ4]

I
s(01||2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[ξ3ξ4, σ2ξ3, σ3ξ3, ξ2ξ4 + ξ3ξ5, σ2ξ2, σ3ξ2, ξ2ξ5,−]

I
s(01||2)
5,nc2

(2, 2, 2, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ3ξ3, σ2ξ3 + σ3ξ2, σ2ξ2,−,−]

I
s(1|0|2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ3ξ1ξ3,−, σ2σ4 + σ3ξ1ξ2, σ2ξ1ξ3, ξ3ξ4, σ2ξ1ξ2, ξ2ξ4]

I
s(0|1||2)
5,nc2

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

I
s(0|2||1)
5,nc2

(1, 1, 1, 1, 0, 0, 1, 0)

[ξ3ξ4ξ5ξ6, σ4ξ5ξ6 + σ3ξ3ξ4, σ3σ4, ξ3ξ5ξ7 + ξ4ξ6ξ8, ξ1ξ3ξ5ξ6, σ3ξ1ξ3, ξ7ξ8, ξ1ξ6ξ8]

I
s(0|1||2)
5,nc3

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ3, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

Table 3.3: Singular fibers where ordz(∆) = 5.
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3.2 Setup

In this section the general setup for the discussion of singular elliptic fibrations with a

rank two Mordell-Weil group is provided. First it is explained in more detail that such a

fibration can be embedded into a P2 fibration via a cubic hypersurface equation. This is

done in section 3.2.1. In section 3.2.2 the symmetries of this cubic equation are detailed

and it is demonstrated how they lead to a redundancy of singular fiber types. Some

constraints are chosen, listed at the head of section 3.2.2, to eliminate this redundancy.

All the properties of the construction used in the resolution and study of the singular

fibers found are documented in section 3.2.3.

3.2.1 Embedding

By the algebro-geometric construction in ([1, 23–26]), an elliptic fibration with rank two

Mordell-Weil group can be embedded into a P2 fibration by the hypersurface equation

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (3.2.1)

as seen in the previous section. Some explanation of this construction is given in appendix

A.4. Here [w : x : y] are the projective coordinates of the fibration and the si are elements

of the base coordinate ring, R. It can be seen that this has three marked points, where

w, x, and y take values in the fraction field, K, associated to R. Specifically the three

marked points are

[0 : 0 : 1] , [0 : 1 : 0] , [0 : s9 : −s7] , (3.2.2)

which we label as Σ0, Σ2, and Σ1 respectively.

We will work in an open neighbourhood in the base, around the singular locus, which

has coordinate z such that the singular locus will occur at the origin of this open neigh-

bourhood. In such a local patch we can specify the si as expansions in z,

si =
∞∑
j=0

si,jz
j . (3.2.3)

We also introduce the simplifying notation

si,k =

∞∑
j=k

si,jz
j−k . (3.2.4)

3.2.2 Symmetries and Lops

In this section note is made of the symmetries inherent in the cubic equation (3.1.1), and

a strategy is devised to remove the redundant multiplicity of fiber types that occurs due
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to these symmetries. One finds that the following sets of vanishing orders give rise to

fibrations which have codimension one singular fibers that are related by a relabelling of

the coefficients of (3.1.1)

(n1, n2, n3, n5, n6, n7, n8, n9)↔ (n1, n5, n8, n2, n6, n9, n3, n7)

(n1 + 2, n2 + 1, n3, n5 + 1, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7 + 1, n8, n9 + 1)

(n1 + 1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1),(3.2.5)

and any composition thereof. In the analysis of Tate’s algorithm for the quartic equation

in P(1,1,2) ([22]) these kind of symmetries were called lops. The first of these relations

will be referred to as the Z2 symmetry, and the second and third relations, respectively,

will be called lop

one and lop two.

These lop relations and the Z2 symmetry generate a family of equivalences by apply-

ing them repeatedly and in different orders. To choose an appropriate element of each

equivalence class the procedure shall be as follows:

• Use the Z2 symmetry to fix n9 ≥ n7.

• Apply lop one to reduce n7 to 0.

• Apply lop two to reduce the least valued of n8 and n9 − n7 to zero.

• Apply the Z2 symmetry.

In this way one can often choose a representative of a particular lop-equivalence class

where n7 = n9 = 0. In the application of Tate’s algorithm enhancements which move a

form out of this lop-equivalence class will not be considered. In this way the redundancies

inherent in the cubic equation (3.1.1) shall be removed. The remainder of this subsection

shall be devoted to showing that these relations hold.

There is a Z2 symmetry that comes from the interchange

(n1, n2, n3, n5, n6, n7, n8, n9)↔ (n1, n5, n8, n2, n6, n9, n3, n7) . (3.2.6)

One can see this by observing that the equations for each form,

s1,n1w
3 + s2,n2w

2x+ s3,n3wx
2 + s5,n5w

2y+ s6,n6wxy+ s7,n7x
2y+ s8,n8wy

2 + s9,n9xy
2 = 0 ,

(3.2.7)

and

s1,n1w
3 + s2,n5w

2x+ s3,n8wx
2 + s5,n2w

2y+ s6,n6wxy+ s7,n9x
2y+ s8,n3wy

2 + s9,n7xy
2 = 0 ,

(3.2.8)
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have identical vanishing orders up to the redefinition x ↔ y. This symmetry can be

removed by only considering forms where, in order of preference,

n7 ≥ n9

n3 ≥ n8

n2 ≥ n5 . (3.2.9)

Furthermore there are symmetries that can occur in the partially resolved forms. One

such, which was referred to as lop one above, is an equivalence between the vanishing

orders

(n1 + 2, n2 + 1, n3, n5 + 1, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7 + 1, n8, n9 + 1) . (3.2.10)

To see this consider first the geometry of the LHS after resolving the singularity at the

point x = y = z1 = 0 by the blow up (x, y, z1; ζ1)3. It is clear that one can always do such

a blow up as the ni are, by definition, non-negative. The partially resolved geometry is

s1,n1+2w
3zn1+2

1 ζn1
1 + s2,n2+1w

2xzn2+1
1 ζn2

1 + s3,n3wx
2zn3

1 ζn3
1 + s5,n5+1w

2yzn5+1
1 ζn5

1

+ s6,n6wxyz
n6
1 ζn6

1 + s7,n7x
2yzn7

1 ζn7+1
1 + s7,n7+1x

2yzn7+1
1 ζn7+2

1

+ s8,n8wy
2zn8

1 + s9,n9xy
2zn9

1 ζn9+1
1 + s9,n9+1xy

2zn9+1
1 ζn9+2

1 = 0 ,

(3.2.11)

with the Stanley-Reiser ideal

{wxy,wζ1, xyz1} . (3.2.12)

Similarly one can consider the RHS geometry after performing the small resolution

(w, z2; ζ2) to separate the reducible divisor z2. The geometry is

s1,n1w
3zn1

2 ζn1+2
2 + s1,n1+1w

3zn1+1
2 ζn1+3

2 + s1,n1+2w
3zn1+2

2 ζn1+4
2 + s2,n2w

2xzn2
2 ζn2+1

2

+ s2,n2+1w
2xzn2+1

2 ζn2+2
2 + s3,n3wx

2zn3
2 ζn3

2 + s5,n5w
2yzn5

2 ζn5+1
2 + s5,n5+1w

2yzn5+1
2 ζn5+2

2

+ s6,n6wxyz
n6
2 ζn6

2 + s7,n7+1x
2yzn7+1

2 ζn7
2 + s8,n8wy

2zn8
2 + s9,n9+1xy

2zn9+1
2 ζn9

2 = 0 ,

(3.2.13)

with Stanley-Reiser ideal

{wxy,wz2, xyζ2} . (3.2.14)

Under the identification z1 ↔ ζ2 and ζ1 ↔ z2 it is observed that these equations and

SR ideals are equivalent. Any multiplicity arising from this redundancy in (3.1.1) can

3The notation of ([74]) is used to spectify blow ups throughout this chapter.
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be removed by combining it with one of the earlier constraints from the Z2 symmetry

(3.2.9), n7 ≥ n9, so as to choose to consider only forms which have n9 = 0.

There is another relation among the partially resolved geometries, which was referred

to as lop two,

(n1 + 1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9)↔ (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1) . (3.2.15)

Again this is seen by studying the partially resolved geometry explicitly. If (n1 +

1, n2 + 1, n3 + 1, n5, n6, n7, n8, n9) is resolved by the small resolution (y, z1; ζ1) the blown

up geometry is given by the equation

s1,n1+1w
3zn1+1

1 ζn1
1 + s1,n1+2w

3zn1+2
1 ζn1+1

2 + s2,n2+1w
2xzn2+1

1 ζn2
1 + s2,n2+2w

2xzn2+2
1 ζn2+1

1

+ s3,n3+1wx
2zn3+1

1 ζn3
1 + s3,n3+2wx

2zn3+2
1 ζn3+1

1 + s5,n5w
2yzn5

1 ζn5
1 + s6,n6wxyz

n6
1 ζn6

1

+ s7,n7x
2yzn7

1 ζn7
1 + s8,n8wy

2zn8
1 ζn8+1

1 + s9,n9xy
2zn9

1 ζn9+1
1 = 0 ,

(3.2.16)

with SR-ideal

{wxy, yz1, wxζ1} . (3.2.17)

On the other side if (n1, n2, n3, n5, n6, n7, n8 + 1, n9 + 1) is resolved by the resolution

(w, x, z2; ζ2) the geometry is then given as the vanishing of the hypersurface polynomial

s1,n1w
3zn1

2 ζn1+1
2 + s2,n2w

2xzn2
2 ζn2+1

2 + s3,n3wx
2zn3

2 ζn3+1
2 + s5,n5w

2yzn5
2 ζn5

2

+ s6,n6wxyz
n6
2 ζn6

2 + s7,n7x
2yzn7

2 ζn7
2 r + s8,n8+1wy

2zn8+1
2 ζn8

2 + s8,n8+2wy
2zn8+2

2 ζn8+1
2

+ s9,n9+1xy
2zn9+1

2 ζn9
2 + s9,n9+2xy

2zn9+2
2 ζn9+1

2 = 0 , (3.2.18)

with SR-ideal

{wxy,wxz2, ζ2y} . (3.2.19)

These two geometries describe the same partially resolved space, and can be related by

the interchange

z1 ↔ ζ2 , ζ1 ↔ z2 . (3.2.20)

3.2.3 Resolutions, Intersections, and the Shioda Map

To determine the Kodaira type, including the distribution of the marked points, of the

codimension one singularity in the fibration specified by (3.1.1) one often explicitly con-

structs the resolved geometry via a sequence of algebraic resolutions. In the context of

elliptic fibrations such resolutions have been constructed in ([18,48,65,68,69,74–78]). In
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this section we set up the framework to discuss the resolved geometries and the intersec-

tion computations, for example of U(1) charges of matter curves, that are carried out as

part of the analysis of the singular fibers found. In particular details are given about the

embedding of the fibration as a hypersurface in an ambient fivefold, the details of how

the intersection numbers between curves and fibral divisors are computed, and on the

construction of the U(1) charge generators.

Consider the ambient fivefold X5 = P2(O⊕O(α)⊕O(β)) which is the projectivization

of line bundles over a base space B3. The elliptically fibered Calabi-Yau fourfold will be

realized as the hypersurface in this X5 cut out by the cubic equation (3.1.1). The terms

in the homogeneous polynomial are then sections of the following line bundles

Section Bundle

w O(σ)

x O(σ + α)

y O(σ + β)

z O(SG)

s1,j O(c1 + α+ β − jSG)

s2,j O(c1 + β − jSG)

s3,j O(c1 − α+ β − jSG)

s5,j O(c1 + α− jSG)

s6,j O(c1 − jSG)

s7,j O(c1 − α− jSG)

s8,j O(c1 + α− β − jSG)

s9,j O(c1 − β − jSG)

(3.2.21)

Here c1 is a shorthand notation for π∗c1(B3). In practice, the first step in any explicit

determination of a singular fiber is to blow up the P2 fibration to a dP2 fibration by the

substitution w → l1l2w, x → l1x, and y → l2y and taking the proper transform, as was

also the procedure in ([1, 24–26]).

The geometry is then specified by the equation

s1l
2
1l

2
2w

3 +s2l
2
1l2w

2x+s3l
2
1wx

2 +s5l1l
2
2w

2y+s6l1l2wxy+s7l1x
2y+s8l

2
2wy

2 +s9l2xy
2 = 0 ,

(3.2.22)

in dP2. After these blow ups the fiber coordinates in this equation are sections of the
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line bundles

Section Bundle

w O(σ − F1 − F2)

x O(σ + α− F1)

y O(σ + β − F2)

l1 O(F1)

l2 O(F2)

(3.2.23)

As can be seen from the blow ups which mapped P2 to dP2 the marked point [0 : 0 : 1]

has been mapped to the exceptional divisor l1, similarly for [0 : 1 : 0] and l2. As such the

marked points Σ0, Σ1, and Σ2 have been related to the divisors l1, w, and l2 respectively.

As the marked points form sections they are restricted to intersect, in codimension

one, only a single multiplicity one component of the singular fiber ([79]).

The dP2 intersection ring is not freely generated due to the projective relations which

hold in dP2. These relations are, using standard projective coordinate notation,

[wl1l2 : xl1 : yl2] , [w : x] , [w : y] . (3.2.24)

These correspond to the relations in the intersection ring

σ · (σ + α) · (σ + β) = 0

(σ − F1 − F2) · (σ − F1) = 0

(σ − F1 − F2) · (σ − F2) = 0 . (3.2.25)

The strategy, as it was in ([74,77]), will be to choose a basis of the intersection ring and

repeatedly apply these relations, including any that come from exceptional divisor classes

introduced in the resolution. In this way the intersection numbers between curves and

fibral divisors can be computed. In this chapter the resolutions and intersections were

carried out using the Mathematica package Smooth ([80]).

Given an elliptic fibration with multiple rational sections there remains the construc-

tion of the generators of the U(1) symmetries, that is the generators of the Mordell-Weil

group. The Mordell-Weil group is a finitely generated abelian group ([81])

Z⊕ · · · ⊕ Z⊕ G , (3.2.26)

where G is some finite torsion group4. There is a map, known as the Shioda map, which

constructs from rational sections the generators of the Mordell-Weil group. This map is

discussed in detail in ([23,84,85]).

4We shall not concern ourselves with G in this chapter, but some investigations are ([82,83]).
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The Shioda map associates to each rational section, σi, a divisor s(σi) such that

s(σi) · Fj = 0

s(σi) ·B = 0 , (3.2.27)

where Fj are the exceptional curves and B is the dual to the class of the base B3.

Reduction on the Fj gives rise to gauge bosons which should be uncharged under the

abelian gauge symmetry. This is ensured by the conditions (3.2.27).

The charge of a particular matter curve C with respect to the U(1) generator as-

sociated to the rational section σi is given by the intersection number s(σi) · C. The

constraints (3.2.27) determine the U(1) charges from s(σi) up to an overall scale. We

shall always consider the zero-section to be the rational section associated with the in-

troduction of the l1 in the blow up to dP2.

As was alluded to in section 3.2.1 it is not always the case that a fibration that

arises from the algorithm can be specified purely in terms of the vanishing orders of

the coefficients. Sometimes it is necessary to also include some specialization of the

coefficients in the z-expansion of the coefficients of the equation. Consider a discriminant

of the form

∆ = (AB − CD)zn +O(zn+1) . (3.2.28)

An enhancement that would enhance this singularity would be where AB − CD = 0.

The solution of this polynomial cannot in general be specified in terms of the vanishing

order of A, B, C, and D. In appendix A.1 we collect the solutions to several polynomials

of this form which come up repeatedly in the application of Tate’s algorithm to (3.1.1).

The solution to this particular polynomial is

A = σ1σ2

B = σ3σ4

C = σ1σ3

D = σ2σ4 , (3.2.29)

where the pairs (σ1, σ4) and (σ2, σ3) are coprime. It is not generally possible to perform

some shift of the coordinates in (3.1.1) to return this solution to an expression involving

just vanishing orders. This is notably different from Tate’s algorithm as carried out on the

Weierstrass equation in ([21]); there the equation includes monic terms unaccompanied by

any coefficient, which often allows one to shift the variables to absorb these non-canonical

like solutions into higher vanishing orders of the model.
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3.3 Tate’s Algorithm

In this section we will proceed through the algorithm ([20, 21]), considering the dis-

criminant of the elliptic fibration order by order in the expansion in terms of the base

coordinate z. By enhancing the fiber of our elliptic fibration, we will see under which

conditions on the sections si the order of the discriminant will enhance and then study

the resulting singular fibers. This will be done systematically up to singular I5 fibers for

phenomenological reasons and in section 3.5 we will provide details for some of the ex-

ceptional singular fibers. In a step-by-step application of Tate’s algorithm to the elliptic

fibration (3.1.1) we find the various different types of Kodaira singular fibers decorated

with the information of which sections intersect which components. The discriminant

reflects the different ways in which the sections can intersect the multiplicity one fiber

components (as explained in section 3.2.3), thus giving rise to an increased number of

singular fibers over fibrations with fewer rational sections. The analysis will be carried

out in parallel both for canonical models (determined only by the vanishing orders of the

sections) and for non-canonical models (which require additional specialization arising

from solving polynomials in the discriminant.)

3.3.1 Starting Points

In the following we will assume that the fibration develops a singularity along the locus

z = 0 in the base. A singularity can be characterized by one of the following two criteria:

• The leading order of the discriminant as a series expansion in z must vanish.

• The derivatives of D|z=0 in an affine patch must vanish along the z = 0 locus,

where D is the equation for the fibration.

Since the leading order of the discriminant is a complicated and unenlightening expres-

sion, we will not present it here and instead study the derivatives of the equation of the

fibration. This will turn out to be significantly simpler and we will see that the discrim-

inant will enhance upon substitution of the conditions found by the derivative analysis.

On the other hand, throughout our study of higher order singularities we will look only

at the discriminant ignoring the derivative approach.

Let us then study the equation for the elliptic fibration in the affine patch with

coordinates (x, y), that is, where we can scale such that w = 1. Along the locus z = 0 we

assume that the fiber becomes singular at the point (x0, y0) and require the derivatives
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to vanish

D|z=0 =s1,0 + s2,0x0 + s3,0x
2
0 + s5,0y0 + s6,0x0y0 + s7,0x

2
0y0 + s8,0y

2
0 + s9,0x0y

2
0 = 0

∂xD|z=0 =s2.0 + 2s3,0x0 + s6,0y0 + 2s7,0x0y0 + s9,0y
2
0 = 0

∂yD|z=0 =s5,0 + s6,0x0 + s7,0x
2
0 + 2s8,0y0 + 2s9,0x0y0 = 0 .

(3.3.1)

We can solve for s2,0 and s5,0 from the last two equations

s2,0 =− 2s3,0x0 − y0(s6,0 + 2s7,0x0 + s9,0y0)

s5,0 =− x0(s6,0 + s7,0x0)− 2(s8,0 + s9,0x0)y0 .

(3.3.2)

Upon substitution in the first equation we can solve for s1,0

s1,0 = s3,0x
2
0 + y0(s8,0y0 + x0(s6,0 + 2s7,0x0 + 2s9,0y0)) . (3.3.3)

When s1,0, s2,0 and s5,0 satisfy the above requirements the discriminant indeed enhances

to first order. We can bring the equation of the fibration in a canonical form, depending

only on the vanishing orders of the coefficients, by performing the following coordinate

shift  x

y

→
 x− x0w

y − y0w

 . (3.3.4)

We see that the singularity now sits at the origin of the affine patch and has generic

coefficients in addition to {s1,0 = s2,0 = s5,0 = 0}. This is an I1 singular fiber, which

is the only fiber at vanishing order ordz(∆) = 1 in Kodaira’s classification. That this

is indeed an I1 fiber can also be seen by performing a linear approximation around the

singular point and noting that we obtain two distinct tangent lines, which shows that

this is indeed an ordinary double point. Since there is only one fiber component, all the

three sections will intersect it, and we will denote the singular fiber

I
(012)
1 : (1, 1, 0, 1, 0, 0, 0, 0) . (3.3.5)

This does not exhaust the possible ways to solve the three equations in (3.3.1). Indeed,

we can look at the affine subspace y = 0 and see that we can find additional solutions.

Note that we will not consider here the case x = 0 as this is related by the Z2 symmetry

discussed in section 3.2.2. The partial derivatives now read

D|z=y=0 =s1,0 + s2,0x0 + s3,0x
2
0 = 0

∂xD|z=y=0 =s2,0 + 2s3,0x0 = 0

∂yD|z=y=0 =s5,0 + s6,0x0 + s7,0x
2
0 = 0 .

(3.3.6)
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We see that if we require {s1,0 = s2,0 = s3,0 = 0} the three equations are satisfied for

the two solutions of the quadratic equation {s5,0 + s6,0x0 + s7,0x
2
0 = 0}, which are the

two singular points of an I2 Kodaira fiber as the discriminant enhances to vanishing

order ∆(z2). Indeed, looking at the equation of the fiber, we see that this splits in two

components

D1 : z = y = 0

D2 : z = s5,0w
2 + s6,0wx+ s7,0x

2 + (s8,0w + s9,0x)y = 0 .

(3.3.7)

The two components indeed intersect in two different points, thus showing that this is an

I2 singular fiber. One of the sections intersects one component, while the two remaining

sections intersect the other, so we will denote this fiber as

I
(01|2)
2 : (1, 1, 1, 0, 0, 0, 0, 0) . (3.3.8)

These two fibers represent the starting points for the analysis to be carried out in the

remainder of this section. Given the equation for the fibration, we can ask whether

z divides any of the coefficients si. Then we can conclude, inside our preferred lop-

equivalence class, the following:

• If z - s1 and z - s2 then the fiber over the locus {z = 0} is smooth.

• If z | s1, z | s2 and z | s3 then we can carry on the analysis as in the next section

and check whether the singularity is simply I
(01|2)
2 or some other enhanced kind.

• If z | s1, z | s2 and z | s5 we will instead start our analysis from an I
(012)
1 singular

fiber. It is important to notice that in this part of the algorithm we will not let

z | s3 as this case is covered in the previous branch.

3.3.2 Enhancements from ordz(∆) = 1

From the previous section we have found exactly one starting point for the algorithm

which has a discriminant linear in z: (1, 1, 0, 1, 0, 0, 0, 0). In this section we shall study

the various ways that this I1 singular fiber can enhance. The discriminant of the

(1, 1, 0, 1, 0, 0, 0, 0) fibration is

∆ = s1,1s3,0s8,0(s2
6,0 − 4s3,0s8,0)(s2

7,0s8,0 − s6,0s7,0s9,0 + s3,0s
2
9,0)z +O(z2) , (3.3.9)

up to numerical factors. The discriminant factors into five distinct terms which will

enhance the discriminant, and thus the singular fiber, when they vanish. As this set

of vanishing orders is specifying a fibration where z - s3 then we cannot consider the
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Figure 3.1: The type I2 and type III singular fibers with the possible locations of the

three marked points denoted by the blue nodes. Respectively these are I
(ijk)
2 , I

(i|jk)
2 ,

II(ijk) and II(i|jk) fibers.

situation where s3,0 = 0. Equivalently, because of the Z2 symmetry explained in section

3.2.2, we cannot consider s8,0 vanishing.

First let us consider the simple case where s1,1 = 0, which is equivalent to stating that

z2 | s1. Then z2 | ∆ and the singular fiber type, determined by resolving the singularity

explicitly as explained in section 3.2.3, is I2. The three rational sections all intersect one

of the two components of the I2 fiber

I
(012)
2 : (2, 1, 0, 1, 0, 0, 0, 0) , (3.3.10)

listed in table 3.1.

The discriminant can also be enhanced in order by allowing z to divide either of

the two polynomials in (3.3.9). Let us first consider the situation where s2
6,0 − 4s3,0s8,0

vanishes. The solution to this equation over this unique factorization domain is given in

appendix A.1 and states that

s6,0 = µσ3σ8

s3,0 = µσ2
3

s8,0 = µσ2
8 . (3.3.11)

The discriminant then enhances so that z2 | ∆. To determine the type of singular fiber

here let us consider the equation of the single component of the I1 fiber which is being

enhanced

(s3,0x
2 + s6,0xy + s8,0y

2) + xy(s7,0x+ s9,0y) = 0 . (3.3.12)

If s2
6,0− 4s3,0s8,0 = 0 then the quadratic part of the equation factors into a square which

does not divide the cubic terms; this is exactly the form of the equation for a cusp, which
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is a type II fiber. Therefore we have observed the fiber

II(012)
nc :

 (1, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ2
3,−, 2µσ3σ8,−, µσ2

8,−]

 , (3.3.13)

from table 3.1.

Finally we can consider the singular fiber that occurs when the second polynomial in

∆ vanishes: s2
7,0s8,0− s6,0s7,0s9,0 + s3,0s

2
9,0 = 0. Appendix A.1 lists four generic solutions

of this polynomial, three canonical and one non-canonical, which are:

s7,0 = s9,0 = 0

s7,0 = s3,0 = 0

s8,0 = s9,0 = 0

s7,0 = σ1σ2 , s9,0 = σ1σ3 , s8,0 = σ3σ4 , s3,0 = σ2σ5 , s6,0 = σ2σ4 + σ3σ5 .

(3.3.14)

Any of the three canonical solutions will remove us from our preferred lop-equivalence

class and so we do not consider them as they will give rise to a redundancy of singular

fiber types. The only solution to consider therefore is the non-canonical one. The fiber

found at this locus is another I2 fiber, which can be written as

I2,nc :

 (1, 1, 0, 1, 0, 0, 0, 0)

[−,−, σ2σ5,−, σ2σ4 + σ3σ5, σ1σ2, σ3σ4, σ1σ3]

 , (3.3.15)

Table 3.1 is then complete up to second order, once we also include the I
(01|2)
2 which was

found in the previous section as one of the alternate starting points in the z | s3 branch.

3.3.3 Enhancements from ordz(∆) = 2

We will now consider the enhancement of the four previously found fibrations which have

a discriminant with vanishing order two in z. In this section we shall include the details

only of those enhancements that have some non-standard behaviour.

The fibrations (2, 1, 0, 1, 0, 0, 0, 0) and (1, 1, 1, 0, 0, 0, 0, 0) can contain, respectively, in

their discriminants polynomials with five and seven terms. These are not polynomials

that are discussed in appendix A.1 as their solutions are not known in full generality. In

lieu of a complete solution we consider non-generic but canonical type solutions which

allow us to obtain singular fibers of a particular type which would be unobtainable

without determining a full, generic solution to these polynomials.



Chapter 3. Tate’s Algorithm for F-theory GUTs with two U(1)s 62

Figure 3.2: The type I3 singular fibers with the locations of the three marked points

denoted by the blue nodes. Respectively these are I
(ijk)
3 , I

(ij|k)
3 and I

(i|j|k)
3 fibers.

3.3.4 Polynomial enhancement in the z - s3 branch

The discriminant of the equation for the (2, 1, 0, 1, 0, 0, 0, 0) singular fiber contains the

polynomial

P = s8,0s
2
2,1 − s5,1s6,0s2,1 + s1,2s

2
6,0 + s3,0

(
s2

5,1 − 4s1,2s8,0

)
. (3.3.16)

As the most general solution for this five-term polynomial is not known we propose here

two specific solutions. The first is a canonical solution obtained by setting s1,2 = s2,1 =

s5,1 = 0. As a consequence z3 | ∆ and we find an I
ns(012)
3 singular fiber

I
ns(012)
3 : (3, 2, 0, 2, 0, 0, 0, 0) . (3.3.17)

Recalling the split/non-split monodromy distinction in Tate’s algorithm, we see only

two components in this singular fiber. One of the fiber curves decomposes when the

component of the discriminant, s2
6,0−4s3,0s8,0 has the form of a perfect, non-zero square.

The second non-general solution to the five-term polynomial we consider here is found

by canonically setting s1,2 = 0, and then the five term polynomial reduces to

P |(s1,2=0) = s2
2,1s8,0 − s2,1s6,0s5,1 + s2

5,1s3,0 . (3.3.18)

We notice that we cannot set s3,0 to zero because we are in the z - s3 part of the algorithm

(and by Z2 symmetry we cannot set to zero s8,0 either). Moreover we just considered the

canonical solution given by setting s2,1 = s5,1 = 0. We are then left with imposing the

non-canonical solution given in appendix A.1

s2,1 = σ1σ2 , s5,1 = σ1σ3 , s8,0 = σ3σ4 , s3,0 = σ2σ5 , s6,0 = σ2σ4 +σ3σ5 . (3.3.19)

The resulting singular fiber is then an I
s(012)
3,nc

I
s(012)
3,nc :

 (3, 1, 0, 1, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

 , (3.3.20)
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3.3.5 Polynomial enhancement in the z | s3 branch

The other relevant details we will provide concern enhancements from the singular I
(01|2)
2

which has vanishing orders (1, 1, 1, 0, 0, 0, 0, 0). The discriminant contains a seven-term

polynomial

P = s2
3,1s

2
5,0 + s7,0(s2

2,1s5,0 − s1,1s2,1s6,0 + s2
1,1s7,0)+

+ s3,1(−s2,1s5,0s6,0 + s1,1(s2
6,0 − 2s5,0s7,0)) .

(3.3.21)

Since a generic solution is not known for this polynomial, we again take advantage of a

simple canonical solution given by s1,1 = s2,1 = s3,1 = 0. We see that z4 | ∆ and we

observe a singular I
ns(01||2)
4

I
ns(01||2)
4 : (2, 2, 2, 0, 0, 0, 0, 0) . (3.3.22)

As in the previous case, we notice that the component of the discriminant s2
6,0− 4s5,0s7,0

provides the condition for the split/non-split distinction. If this quantity is a perfect,

non-zero square, then applying the solution given in appendix A.1 we have a split I
s(01||2)
4,nc

I
s(01||2)
4,nc :

 (2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ1σ3, σ1σ2 + σ3σ4, σ2σ4,−,−]

 , (3.3.23)

As in the previous subsection, we notice that if we only require s1,1 = 0 the seven

term polynomial reduces to the usual three-term one

P |(s1,2=0) = s5,0(s2
3,1s5,0 − s3,1s6,0s2,1 + s2

2,1s7,0) . (3.3.24)

The solution involving setting s5,0 to zero in addition to s1,2 would give the fibration

defined by the vanishing orders (2, 1, 1, 1, 0, 0, 0, 0) which is an I
s(01|2)
3 fiber

I
s(01|2)
3 : (2, 1, 1, 1, 0, 0, 0, 0) . (3.3.25)

We can also apply the non-canonical solution of appendix A.1 to the three-term compo-

nent

s2,1 = σ1σ2 , s3,1 = σ1σ3 , s7,0 = σ3σ4 , s5,0 = σ2σ5 , s6,0 = σ2σ4 +σ3σ5 . (3.3.26)

Upon substitution we find an I
s(01|2)
3,nc singular fiber

II(012)
nc :

 (1, 1, 0, 1, 0, 0, 0, 0)

[−,−, µσ2
3,−, 2µσ3σ8,−, µσ2

8,−]

 , (3.3.27)

I
s(01|2)
3,nc : (2, 1, 1, 0, 0, 0, 0, 0) , [−, σ1σ2, σ1σ3, σ2σ5, σ2σ4 + σ3σ5, σ3σ4,−,−] . (3.3.28)
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Figure 3.3: The I4 singular fibers and the decorations detailing where the rational sections

can intersect. The fibers shown are I
(ijk)
4 , I

(ij|k)
4 , I

(ij||k)
4 and I

(i|j|k)
4 fibers.

3.3.6 Enhancements from ordz(∆) = 3

We now proceed to consider enhancements of the discriminant starting from the fibers

with ordz(∆) = 3, listed in table 3.1, and we report here the cases that deserve mention

due to some peculiarity. In particular we will consider distinctions between split and

non-split singular fibers and an instance where we will need to consider the structure of

the algorithm in order not to reproduce singular fibers already obtained.

3.3.7 Split/non-split distinction

We recall that in the previous section we found an I
ns(012)
3 singular fiber and we now

determine the enhancements of this fiber. The discriminant takes the form

∆ = s1,3s3,0s8,0(s2
6,0 − 4s3,0s8,0)(s2

7,0s8,0 − s6,0s7,0s9,0 + s3,0s
2
9,0)z3 +O(z4) . (3.3.29)

The simple enhancement s1,3 = 0 will produce an I
ns(012)
4 singular fiber

I
ns(012)
4 : (4, 2, 0, 2, 0, 0, 0, 0) . (3.3.30)

As already observed, the discriminant component s2
6,0−4s3,0s8,0 indicates that when this

quantity is a perfect, non-zero square, we obtain the split version of the singular fiber.

Applying the solution in appendix A.1 we then find the singular I
s(012)
4,nc

I
s(012)
4,nc : (4, 2, 0, 2, 0, 0, 0, 0) , [−,−, σ1σ3,−, σ1σ2 + σ3σ4,−, σ2σ4,−] . (3.3.31)

Another instance where the split/non-split distinction arises is in the case of type IV

fibers. Consider the singular III
(012)
nc listed in table 3.1. This has discriminant

∆ = µ6σ3σ8(s5,1σ3 − s2,1σ8)(s9,0σ3 − s7,0σ8)z3 +O(z4) . (3.3.32)

We remark that this was obtained in the algorithm by an application of the non-canonical

solution to s2
6,0 − 4s3,0s8,0 = 0 and therefore σ3 and σ8 are coprime. Enhancing the
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Figure 3.4: The IV fibers. We denote by the blue nodes the components of the fiber

which are intersected by the sections. In the order, the fiber shown are IV (ijk), IV (i|jk)

and IV (i|j|k) fibers.

discriminant by solving non-canonically the first of the two-term polynomials requires

setting

s5,1 = ξ1ξ2, σ3 = ξ3, s2,1 = ξ1ξ3, σ8 = ξ2 . (3.3.33)

Where coprimality of (σ3, σ8) was used in order to set ξ4 = 1. The singular fiber corre-

sponding to this enhancement is a type IV
ns(012)
nc2

IV
ns(012)
nc2

: (2, 1, 0, 1, 0, 0, 0, 0) , [−, ξ1ξ3, µξ
2
3 , ξ1ξ2, 2µξ2ξ3,−, µξ2

2 ,−] . (3.3.34)

Then the discriminant indicates the quantity that needs to be a perfect square in order

for the fiber to become a split type IV
s(012)
nc3

. This is ξ2
1−4µs1,2, and applying the solution

in appendix A.1 we find

IV
s(012)
nc3

: (2, 1, 0, 1, 0, 0, 0, 0) , [δ2δ4, ξ3(δ1δ2+δ3δ4), δ1δ3ξ
2
3 , ξ2(δ1δ2+δ3δ4), 2δ1δ3ξ2ξ3,−, δ1δ3ξ

2
2 ,−] .

(3.3.35)

3.3.8 Commutative enhancement structure of the algorithm

We consider enhancements from the III
(1|02)
nc2

fiber type. This was found by applying

twice the solutions in appendix A.1. Schematically

I
(012)
1 −→ I

(1|02)
2,nc −→ III

(1|02)
nc2

. (3.3.36)

Noting that in the last step a coprimality condition had to be imposed, the discriminant

of this singular fiber takes the form

∆ = (s3
1,1ξ

6
2ξ

6
3ξ

6
4)z3 +O(z4) . (3.3.37)

We see that requiring the vanishing of any of the ξi would imply setting to zero two

among s7,0, s9,0, s3,0, s8,0, but we are not allowing the vanishing of any of the those sec-

tions to remain in our lop equivalence class or because we are in the z - s3 branch of
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Figure 3.5: The I5 singular fibers. The possible intersections of the sections with the

singular fibers are denoted by the positions of the blue nodes. The fibers shown in the

first row are I
(ijk)
5 , I

(ij|k)
5 and I

(ij||k)
5 , whereas the fibers shown in the second row are,

respectively, I
(i|j|k)
5 and I

(i|j||k)
5 .

the algorithm. Moreover, we have considered the case s1,1 = 0 in another part of the

algorithm (specifically in going I
(012)
1 → I

(012)
2 ). We can therefore conclude that all the

enhancements would just reproduce singular fibers found in other parts of the algorithm.

The order in which the enhancements are carried out is of no importance, but it is cru-

cial, in particular with non-canonical fibers, to keep track of which enhancements would

reproduce fiber types already obtained.

3.3.9 Enhancements from ordz(∆) = 4

In this section we will proceed with the algorithm by again mentioning only enhancements

which require comment. In particular we will deal with the structure of obstructions to

full generality due to the complexity of polynomials in the discriminant, we will encounter

the distinction between split and semi-split fibers for I∗0 and we will provide details for

one of the I5,nc3 , obtained by solving non-canonically polynomials in the discriminant

three times.

3.3.10 Obstruction from polynomial enhancement

At vanishing order of the discriminant ordz(∆) = 4 we find again the two obstructions

to full generality encountered at ordz(∆) = 2, i.e. the same five-term and seven-term

polynomials. These come up respectively in the discriminant of the singular fibers I
ns(012)
4
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and I
ns(01||2)
4 , and will in fact be present at every even vanishing order in the discriminants

of I
ns(012)
2n and I

ns(01|n2)
2n . We therefore review the singular fibers that we obtain from the

enhancements. More details can be found in section 3.3.3.

The discriminant of the singular fiber I
ns(012)
4 : (4, 2, 0, 2, 0, 0, 0, 0) contains a compo-

nent

∆ ⊃ P = s8,0s
2
2,2 − s5,2s6,0s2,2 + s1,4s

2
6,0 + s3,0

(
s2

5,2 − 4s1,4s8,0

)
. (3.3.38)

As in section 3.3.3 we consider two specific solutions. The first one consists of setting

s1,4 = s2,2 = s5,2 = 0. This gives the singular fiber I
ns(012)
5

I
ns(012)
5 : (5, 3, 0, 3, 0, 0, 0, 0) . (3.3.39)

Upon imposing the perfect square condition s2
6,0−4s3,0s8,0 = p2 we find the singular fiber

I
s(012)
5 . Alternatively, we set s1,4 = 0 and we solve non-canonically, as in appendix A.1,

the resulting three-term polynomial polynomial

P |(s1,4=0) = s2
2,2s8,0 − s2,2s6,0s5,2 + s2

5,2s3,0 . (3.3.40)

This gives the non-canonical singular fiber I
s(012)
5,nc

I
s(012)
5,nc : (5, 2, 0, 2, 0, 0, 0, 0) , [−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−] . (3.3.41)

The second obstruction that we encounter is, again, the seven-term polynomial in the

discriminant of the singular I
ns(01||2)
4

∆ ⊃ P = s2
3,2s

2
5,0 + s7,0(s2

2,2s5,0 − s1,2s2,2s6,0 + s2
1,2s7,0)+

+ s3,2(−s2,2s5,0s6,0 + s1,2(s2
6,0 − 2s5,0s7,0)) .

(3.3.42)

The canonical solution that we consider requires s1,2 = s2,2 = s3,2 = 0. This gives a

singular I
ns(01|||2)
6

I
ns(01|||2)
6 : (3, 3, 3, 0, 0, 0, 0, 0) . (3.3.43)

The split version I
s(01|||2)
6 is found upon imposing that s2

6,0−4s5,0s7,0 is a perfect, non-zero

square. We can also consider the solution where s1,2 = 0 and the three-term polynomial

component of the resulting polynomial is solved non-canonically. This enhancement now

produces an I
s(01||2)
5,nc , but this is just a non-generic specialization of one of the I

s(01||2)
5,nc2

fibers also found in the algorithm and so we do not consider it further.



Chapter 3. Tate’s Algorithm for F-theory GUTs with two U(1)s 68

3.3.11 Split/semi-split Distinction

The split/semi-split distinction arises for singular fibers of Kodaira type I∗0 . The example

we provide concerns the possible enhancement of the canonical type IV s(01|2), which was

found schematically by

I
(01|2)
2 −→ I

s(01|2)
3 −→ IV s(01|2) . (3.3.44)

The discriminant takes a rather simple form

∆ = s2,1s7,0s8,0z
4 +O(z5) . (3.3.45)

The enhancement we will consider here is when s2,1 = 0. As a consequence z2 | s2 and

z6 | ∆. This way we have found the semi-split I
∗ss(01|2)
0

I
∗ss(01|2)
0 : (2, 2, 1, 1, 1, 0, 0, 0) . (3.3.46)

In order for one of the curves of the I
∗ss(01|2)
0 to split into two separate non-intersecting

components, we need to satisfy a perfect square condition for the quantity s2
5,1−4s1,2s8,0.

Following appendix A.1 we find the split I
∗s(01|2)
0,nc

I
∗s(01|2)
0,nc : (2, 2, 1, 1, 1, 0, 0, 0) , [σ1σ3,−,−, σ1σ2 + σ3σ4,−,−, σ2σ4,−] . (3.3.47)

3.3.12 A thrice non-canonical I5

In this section we provide details for an I
s(0|1||2)
5,nc3

. This singular fiber is observed in the

algorithm by schematically enhancing

I
(01|2)
2 −→ I

s(0|1|2)
3,nc −→ I

s(0|1|2)
4,nc2

−→ I
s(0|1||2)
5,nc3

. (3.3.48)

All the three arrows represent non-canonical enhancements. In particular enhancing from

I
(01|2)
2 to I

s(0|1|2)
3,nc requires solving a three-term polynomial present in the discriminant.

This is ∆ ⊃ (s2
8,0s7,0 − s8,0s6,0s9,0 + s2

9,0s5,0), which is solved by requiring

s8,0 = σ1σ2, s9,0 = σ1σ3, s7,0 = σ3σ4, s5,0 = σ2σ5, s6,0 = σ2σ4 + σ3σ5 . (3.3.49)

Note that this solution implies that (σ2, σ3) are coprime. This gives an I
s(0|1|2)
3,nc . Look-

ing at the discriminant of this singular fiber we see that one of the components is

∆ ⊃ (σ2
3s1,1 − σ2σ3s2,1 + σ2

2s3,1). We apply again the same solution to this three-term

polynomial

σ3 = ξ2, σ2 = ξ3, s1,1 = ξ3ξ4, s3,1 = ξ2ξ5, s2,1 = ξ2ξ4 + ξ3ξ5 . (3.3.50)

Where we used that (σ2, σ3) are coprime to set ξ1 = 1. We have now enhanced the

singular fiber to an I
s(0|1|2)
4,nc2

. To obtain the thrice non-canonical I5 we now consider the
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two-term polynomial contained in the discriminant at fourth order: ∆ ⊃ (σ4ξ4 − σ5ξ5).

Applying the non-canonical solution in appendix A.1

σ4 = δ1δ2, ξ4 = δ3δ4, σ5 = δ1δ3, ξ5 = δ2δ4 . (3.3.51)

We have now reached the singular fiber I
s(0|1||2)
5,nc3

I
s(0|2||1)
5,nc3

: (1, 1, 1, 0, 0, 0, 0, 0) ,

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4, ξ3δ1δ3, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2] .

(3.3.52)

3.4 U(1) Charges of SU(5) Fibers

In section 3.3 a variety of different, canonical and non-canonical, I5 type singular fibers

were found, and are listed in table 3.3. As elliptic fibrations with SU(5) singular fibers

are phenomenologically interesting in this section the U(1) charges of the matter loci

are determined for the I5 fibers obtained, which lie in the chosen lop-equivalence class.

The U(1) charges are calculated from the intersection number of the matter curve with

the Shioda mapped rational section, as explained in section 3.2.3. For the canonical I5

singular fibers we find, as expected, the same results that were found from the study

of toric tops. Details of the relationship between the canonical models and the SU(5)

top models and their charges as found in ([1]) are given. In the algorithm a number

of non-canonical models which, as far as the authors are aware have not been seen

before, were found, some of which are can realize two or even three distinctly charged 10

matter curves, potentially a desirable feature, also some models realize as many as seven

differently charged 5 matter curves, which are of some interest in light of ([53]).

3.4.1 Canonical I5 Models

The U(1) charges of the canonical models are found in table 3.5. Models with these

particular U(1) charges are well-studied in the literature. In this subsection we pro-

vide a short comparison to the known toric constructions from tops ([59]) , which were

constructed with two extra sections in ([1, 24,51,54]).

The toric tops as extracted from ([1]) are also given by vanishing orders of the coeffi-

cients of the cubic polynomial (3.1.1) and are related to what we called canonical models.

In order to see this we need to perform a series of lop transformations to bring them to

the equivalence class of singular fibers considered in this chapter. Section 3.2.2 contains

the details of the lop transformations. All the tops were found as part of the algorithm

and exhaust the canonical models. The U(1) charges of the matter content matched the
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results found here identically for what was called tops 1 and 2, whereas for tops 3 and

4 a different linear combination of the U(1) charges was used. The details of this linear

combination are given in terms of our choice of U(1) generators.

Fiber Model Matter Locus Matter

I
s(0|1||2)
5 (2, 2, 2, 1, 0, 0, 1, 0)

s1,2

s6,0

s7,0

s9,0

s6,0s8,1 − s5,1s9,0

s3,2s
2
6,0 − s2,2s6,0s7,0 + s1,2s

2
7,0

53,1 ⊕ 5−3,−1

101,2 ⊕ 10−1,−2

53,−4 ⊕ 5−3,4

53,6 ⊕ 5−3,−6

5−2,1 ⊕ 52,−1

5−2,−4 ⊕ 52,4

I
s(01||2)
5 (3, 2, 2, 1, 0, 0, 0, 0)

s6,0

s7,0

s8,0

s1,3s6,0 − s2,2s5,1

s3,2s6,0 − s2,2s7,0

s6,0s9,0 − s7,0s8,0

10−1,0 ⊕ 101,0

52,−1 ⊕ 5−2,1

5−3,−1 ⊕ 53,1

52,0 ⊕ 5−2,0

5−3,0 ⊕ 53,0

52,1 ⊕ 5−2,−1

I
s(0|1|2)
5 (3, 2, 1, 1, 0, 0, 1, 0)

s3,1

s6,0

s7,0

s9,0

s5,1s9,0 − s6,0s8,1

s3,1s
2
5,1 − s2,2s5,1s6,0 + s1,3s

2
6,0

5−3,1 ⊕ 53,−1

10−1,2 ⊕ 101,−2

52,−4 ⊕ 5−2,4

52,6 ⊕ 5−2,−6

52,1 ⊕ 5−2,−1

5−3,−4 ⊕ 53,4

I
s(01|2)
5 (4, 2, 1, 2, 0, 0, 0, 0)

s3,1

s6,0

s7,0

s8,0

s6,0s9,0 − s7,0s8,0

s1,4s
2
6,0 − s2,2s5,2s6,0 + s22,2s8,0

54,0 ⊕ 5−4,0

10−2,0 ⊕ 102,0

5−1,1 ⊕ 51,−1

54,1 ⊕ 5−4,−1

5−1,−1 ⊕ 51,1

5−1,0 ⊕ 51,0

Table 3.5: U(1) charges of the canonical I5 models from table 3.3.

In table 3.6 the tops are listed with the numbering and vanishing orders as in appendix

A of ([1])(polygon 5), the lop equivalent models as found in Tate’s algorithm and details

for the linear combination of the U(1) charges for top 3 and top 4.
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Top Fiber Vanishing Orders Lop-equivalent model U(1) Linear Combination

Top 1 I
s(0|1|2)
5 (2, 2, 2, 0, 0, 1, 0, 0) (3, 2, 1, 1, 0, 0, 1, 0) -

Top 2 I
s(0|1||2)
5 (1, 2, 3, 0, 0, 1, 0, 0) (2, 2, 2, 1, 0, 0, 1, 0) -

Top 3 I
s(01||2)
5 (1, 1, 2, 0, 0, 2, 0, 0) (3, 2, 2, 1, 0, 0, 0, 0)

u1 = −w1

u2 = 1
5(w2 − w1)

Top 4 I
s(01|2)
5 (1, 1, 1, 0, 0, 2, 0, 1) (4, 2, 1, 2, 0, 0, 0, 0)

u1 = −w1

u2 = 1
5(w2 − w1)

Table 3.6: The lop-equivalent models of the four tops from ([1]). The linear combination

of the U(1) charges gives the charges found in table 3.5, u1 and u2, in terms of the U(1)

charges of the top model, w1 and w2. The reason the charges of tops 3 and 4 differ is

because the lop translation involves the Z2 symmetry, which exchanges two of the marked

points.

3.4.2 Non-canonical I5 Models

Listed in tables 3.9 to 3.11 are the U(1) charges of the, respectively once, twice, and

thrice, non-canonical I5 models found in the algorithm. The U(1) charge generators are

given by the Shioda map, as described in section 3.2.3, where the zero-section of the

fibration corresponds to the divisor l1 = 0 after the P2 fibration ambient space has been

blown up into dP2. As opposed to the canonical models the majority of the models

tabulated in this section were previously unknown. Some of these models appear to have

interesting properties for phenomenology, such as the above noted multiple differently

charged 10 and 5 curves.

While Tate’s algorithm provides a generic procedure there are some caveats that were

introduced in the application of it studied in this chapter. There are situations where

we were not able to solve for the enhancement locus in the discriminant to a reasonable

degree of generality. In these cases we have sometimes, as discussed in section 3.3, used a

less generic solution where it was obtainable in such a way that it did not lead to obvious

irregularities with the model. In cases where no such solution was obtained we have left

that particular subbranch of the Tate tree unexplored.

Throughout the application of Tate’s algorithm the fibrations have remained inside

the chosen lop-equivalence class and so each each model in these tables then represents an

entire lop-orbit of fibrations. The Z2 symmetry which acts inside this orbit interchanges
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two of the three marked points of the fibration, which correspond, in the dP2 hypersurface,

to the exchange of l1 and l2. As the U(1) charges are computed from a Shioda map

where the zero-section is taken to be l1 = 0 the U(1) charges are rewritten as a linear

combination under this symmetry in an identical manner to the linear combinations

occurring in the tops in table 3.6.

One may point out the surprising paucity of non-minimal matter loci in these mod-

els with highly specialised coefficients. In the fibrations which are at least twice non-

canonical there can occur polynomial enhancement loci where some of the terms in the

solutions (as given in appendix A.1) are fixed by a coprimality condition coming from a

previously solved polynomial. Were these terms not fixed to unity by the algorithm then

they would contribute non-minimal loci to the fibrations.

In ([1, 51]) there were listed tops corresponding to an SU(4) non-abelian singularity

with two additional rational sections, and it was noted that one expects multiple 10

matter curves where these tops are specialized with some non-generic coefficients of the

defining polynomial, and such a model, which realizes multiple 10 curves, was constructed

there from the SU(4) tops. Included in table 3.7 are the relations (via the lops) between

these SU(4) tops and the SU(4) canonical models which underlie the once non-canonical

SU(5) models obtained in the algorithm.

Top Model Fiber Vanishing Orders Lop-equivalent Model

Top 1 I
(0|1|2)
4 (1, 1, 2, 0, 0, 1, 0, 0) (2, 1, 1, 1, 0, 0, 1, 0)

Top 2 I
(01||2)
4 (0, 1, 2, 0, 0, 2, 0, 0) (2, 2, 2, 1, 0, 0, 0, 0)

Top 3 I
(01|2)
4 (1, 1, 1, 0, 0, 1, 0, 1) (3, 2, 1, 1, 0, 0, 0, 0)

Top 4 I
(01||2)
4 (0, 1, 2, 0, 0, 1, 0, 1) (2, 2, 2, 1, 0, 0, 0, 0)

Top 5 I
(01|2)
4 (0, 0, 1, 0, 0, 2, 0, 1) (3, 2, 1, 1, 0, 0, 0, 0)

Table 3.7: The SU(4) tops associated to polygon 5 in appendix B of ([1]) are related to

the canonical I4 models listed in table 3.2 by lop-equivalence.

Note that for SU(4) top 4 is lop equivalent to top 2 and top 5 is lop equivalent top

3, and their U(1) charges, as listed in appendix B of ([1]), can be written as a linear

combination of the lop-equivalent model.
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Fiber Model Matter Locus Matter

I
s(0|1||2)
5

(2, 2, 2, 0, 0, 0, 0, 0)

[−,−,−, σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3]

σ1

σ3

σ4

σ2σ4 − σ3σ5

(A.2.1)

(A.2.2)

(A.2.3)

5−3,−6 ⊕ 53,6

52,−6 ⊕ 5−2,6

5−3,4 ⊕ 53,−4

10−1,−2 ⊕ 101,2

5−3,−1 ⊕ 53,1

52,−1 ⊕ 5−2,1

52,4 ⊕ 5−2,−4

I
s(0|1|2)
5

(2, 1, 1, 1, 0, 0, 1, 0)

[σ1σ3, σ1σ2,−, σ3σ4, σ2σ4,−,−,−]

σ2

σ4

s7,0

s9,0

σ4s3,1 − σ1s7,0

σ2s8,1 − σ3s9,0

(A.2.4)

101,−2 ⊕ 10−1,2

101,3 ⊕ 10−1,−3

5−2,4 ⊕ 52,−4

5−2,−6 ⊕ 52,6

53,−1 ⊕ 5−3,1

53,4 ⊕ 5−3,−4

5−2,−1 ⊕ 52,1

I
s(0|1||2)
5

(2, 1, 1, 1, 0, 0, 1, 0)

[−, σ1σ2, σ1σ3,−, σ2σ4, σ3σ4,−,−]

σ2

σ3

σ4

s9,0

σ4s1,2 − σ1s5,1

σ2σ4s8,1 − s5,1s9,0

(A.2.5)

10−1,−2 ⊕ 101,2

5−3,4 ⊕ 53,−4

10−1,3 ⊕ 101,−3

5−3,−6 ⊕ 53,6

5−3,−1 ⊕ 53,1

52,4 ⊕ 5−2,−4

52,−1 ⊕ 5−2,1

I
s(1|0|2)
5

(3, 2, 1, 1, 0, 0, 0, 0)

[−,−,−,−, σ1σ2, σ1σ3, σ2σ4, σ3σ4]

σ1

σ2

σ3

σ4

s3,1

(A.2.6)

(A.2.7)

10−2,2 ⊕ 102,−2

103,2 ⊕ 10−3,−2

5−1,6 ⊕ 51,−6

54,6 ⊕ 5−4,−6

54,1 ⊕ 5−4,−1

5−1,1 ⊕ 51,−1

5−1,−4 ⊕ 51,4

Table 3.8: U(1) charges of the once non-canonical I5 models from table 3.3.
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Fiber Model Matter Locus Matter

I
s(01|2)
5

(3, 2, 1, 1, 0, 0, 0, 0)

[σ2σ5, σ2σ4 + σ3σ5, σ3σ4, σ1σ2, σ1σ3,−,−,−]

σ1

σ3

σ4

s7,0

s8,0

σ1σ3s9,0 − s7,0s8,0

(A.2.8)

102,0 ⊕ 10−2,0

10−3,0 ⊕ 103,0

5−4,0 ⊕ 54,0

51,−1 ⊕ 5−1,1

5−4,−1 ⊕ 54,1

51,1 ⊕ 5−1,−1

51,0 ⊕ 5−1,0

I
s(1|02)
5

(4, 2, 0, 2, 0, 0, 0, 0)

[−,−, σ3σ4,−, σ2σ4 + σ3σ5, σ1σ3, σ2σ5, σ1σ2]

σ1

σ2

σ3

σ4

σ5

σ2σ4 − σ3σ5

(A.2.9)

(A.2.10)

50,6 ⊕ 50,−6

51,6 ⊕ 5−1,−6

5−1,1 ⊕ 51,−1

51,1 ⊕ 5−1,−1

5−1,−4 ⊕ 51,4

100,2 ⊕ 100,−2

50,−4 ⊕ 50,4

50,1 ⊕ 50,−1

I
s(012)
5

(5, 2, 0, 2, 0, 0, 0, 0)

[−, σ1σ2, σ2σ5, σ1σ3, σ2σ4 + σ3σ5,−, σ3σ4,−]

σ2

σ3

σ4

σ5

σ2σ4 − σ3σ5

σ3s7,0 − σ2s9,0

σ4s7,0 − σ5s9,0

(A.2.11)

5−1,0 ⊕ 51,0

51,1 ⊕ 5−1,−1

5−1,−1 ⊕ 51,1

51,0 ⊕ 5−1,0

100,0 ⊕ 100,0

50,−1 ⊕ 50,1

50,1 ⊕ 50,−1

50,0 ⊕ 50,0

Table 3.9: U(1) charges of the once non-canonical I5 models from table 3.3 (continued).
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Fiber Model Matter Locus Matter

I
s(01||2)
5

(2, 2, 2, 0, 0, 0, 0, 0)

[ξ3ξ4, ξ2ξ4 + ξ3ξ5, ξ2ξ5, σ3ξ3, σ2ξ3 + σ3ξ2, σ2ξ2,−,−]

ξ2

σ2

σ2ξ3 − σ3ξ2

σ2ξ4 − σ3ξ5

ξ2s8,0 − ξ3s9,0

σ2s8,0 − σ3s9,0

(A.2.12)

53,−1 ⊕ 5−3,1

5−2,1 ⊕ 52,−1

101,0 ⊕ 10−1,0

53,0 ⊕ 5−3,0

53,1 ⊕ 5−3,−1

5−2,−1 ⊕ 52,1

5−2,0 ⊕ 52,0

I
s(0|1||2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[−, σ1ξ3, σ1ξ2,−, σ4ξ3, σ4ξ2, ξ3ξ4, ξ2ξ4]

ξ2

ξ3

ξ4

σ4

(A.2.13)

(A.2.14)

(A.2.15)

52,−6 ⊕ 5−2,6

10−1,−2 ⊕ 101,2

5−3,−6 ⊕ 53,6

10−1,3 ⊕ 101,−3

52,−1 ⊕ 5−2,1

5−3,−1 ⊕ 53,1

52,4 ⊕ 5−2,−4

I
s(01||2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[ξ3ξ4, σ2ξ3, σ3ξ3, ξ2ξ4 + ξ3ξ5, σ2ξ2, σ3ξ2, ξ2ξ5,−]

ξ2

ξ5

σ2

σ3

ξ2ξ5σ2 − σ3s9,0

(A.2.16)

(A.2.17)

101,1 ⊕ 10−1,−1

53,1 ⊕ 5−3,−1

5−2,1 ⊕ 52,−1

101,0 ⊕ 10−1,0

5−2,−1 ⊕ 52,1

53,0 ⊕ 5−3,0

5−2,0 ⊕ 52,0

I
s(1|0|2)
5

(2, 1, 1, 1, 0, 0, 0, 0)

[σ3σ4, σ3ξ1ξ3,−, σ2σ4 + σ3ξ1ξ2, σ2ξ1ξ3, ξ3ξ4, σ2ξ1ξ2, ξ2ξ4]

ξ1

ξ2

ξ3

ξ4

σ2

ξ3ξ4σ3 − σ2s3,1

(A.2.18)

(A.2.19)

103,2 ⊕ 10−3,−2

54,6 ⊕ 5−4,−6

10−2,2 ⊕ 102,−2

5−1,6 ⊕ 51,−6

10−2,−3 ⊕ 102,3

54,1 ⊕ 5−4,−1

5−1,−4 ⊕ 51,4

5−1,1 ⊕ 51,−1

I
s(0|2||1)
5

(1, 1, 1, 1, 0, 0, 1, 0)

[ξ2ξ3ξ5ξ6, ξ3ξ6σ4 + ξ2ξ5σ3, σ3σ4,

ξ2ξ6ξ7 + ξ3ξ4ξ5, ξ1ξ2ξ3ξ6, ξ1ξ2σ3, ξ4ξ7, ξ1ξ3ξ4]

ξ3

ξ4

ξ5

ξ6

ξ8

σ3

(A.2.20)

(A.2.21)

103,−1 ⊕ 10−3,1

54,2 ⊕ 5−4,−2

103,4 ⊕ 10−3,−4

103,4 ⊕ 10−3,−4

54,7 ⊕ 5−4,−7

54,−3 ⊕ 5−4,3

5−1,−3 ⊕ 51,3

5−1,2 ⊕ 51,−2

Table 3.10: U(1) charges of the twice non-canonical I5 models from table 3.3.
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Fiber Model Matter Locus Matter

I
s(0|1||2)
5

(1, 1, 1, 0, 0, 0, 0, 0)

[ξ3δ3δ4, δ4(δ3ξ2 + δ2ξ3), ξ2δ2δ4,

ξ3δ1δ4, δ1(δ2ξ3 + δ3ξ2), δ1δ2ξ2, σ1ξ3, σ1ξ2]

δ1

δ2

ξ2

σ1

ξ2δ3 − ξ3δ2

(A.2.22)

(A.2.23)

(A.2.24)

101,−3 ⊕ 10−1,3

53,−4 ⊕ 5−3,4

5−2,6 ⊕ 52,−6

53,6 ⊕ 5−3,−6

101,2 ⊕ 10−1,−2

5−2,1 ⊕ 52,−1

53,1 ⊕ 5−3,−1

5−2,−4 ⊕ 52,4

Table 3.11: U(1) charges of the single thrice non-canonical I5 model from table 3.3.

3.5 Exceptional Singular Fibers

In this section the algorithm is continued up to the exceptional singular fibers. In de-

termining the exceptional fibers we recall that the sections can only intersect the fiber

components of multiplicity one, which means that there is a very restricted number of

singular fibers.

For what concerns the type IV ∗ singular fiber there are three different ways in

which the sections can intersect the multiplicity one components. These are the types

IV ∗(012), IV ∗(01|2) and IV ∗(0|1|2). As can be seen from figure 3.6 the three multiplicity one

components of the IV ∗ singular fiber appear symmetrically, and so sections separated by

a slash merely indicates that they do not intersect the same multiplicity one component.

Regarding the singular III∗ fibers, the possible ways the sections can intersect the

components restrict the range of singular fibers to III∗(012) and III∗(01|2). The different

singular fibers can be seen in figure 3.7.

Finally it is clear that the only type II∗ fiber one could find (since there is only one

multiplicity one component) is the II∗(012). This fiber is also shown in figure 3.7.

It was also possible to obtain the singular fibers corresponding to gauge groups G2

and F4 which come from, respectively, the non-split singular fiber types I
∗ns(012)
0 and

IV ∗ns(012).

Proceeding through these subbranchs of the Tate tree will involve the I∗n fibers corre-

sponding to Dynkin diagrams of D-type in the split case. There fibers are composed of a

chain of multiplicity two nodes with two multiplicity one nodes connected to each end of

the chain. As the rational sections can only intersect the multiplicity one nodes they are
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Figure 3.6: The type IV ∗s fibers. The sections, which intersect the components of

the IV ∗s fiber represented by the blue nodes, are seen to intersect only the external,

multiplicity one components. Because of the S3 symmetry we write these as IV ∗s(ijk),

IV ∗s(ij|k), and IV ∗s(i|j|k) respectively.

constrained to lie of these outer legs. The notation of these fibers shall be (01) represents

two sections on the same leg, (0|1) represents two section intersecting two of the outer

legs attached to the same end of the chain, and (0||1) will represent two sections sitting

on multiplicity one component separated by the length of the chain.

3.5.1 Canonical Enhancements to Exceptional Singular Fibers

The starting point for the enhancements to the possible canonical exceptional singular

fibers is the I
∗ss(01|2)
0 : (2, 2, 1, 1, 1, 0, 0, 0). Recall that one of the fiber components will

split only if the condition s2
5,1 − 4s1,2s8,0 = p2 is satisfied for some p. The discriminant

at sixth order takes the form

∆ = s2
7,0s

2
8,0(s2

5,1 − 4s1,2s8,0)(s1,2s
2
7,0 − s3,1s5,1s7,0 + s2

3,1s8,0)2)z6 +O(z7) . (3.5.1)

First let z | s8 and the resulting fiber is of type I
s(0|2||1)
1 . The discriminant at seventh

order reads

∆ = s3
5,1s

3
7,0(s3,1s5,1 − s1,2s7,0)2s2

9,0z
7 +O(z8) . (3.5.2)

Now let z2 | s5 and the first exceptional singular fiber is found; it is of type IV ∗(0|1|2)

IV ∗(0|1|2) : (2, 2, 1, 2, 1, 0, 1, 0) . (3.5.3)

This subbranch of the tree does not continue because the discriminant now takes the

form ∆ = s1,2s7,0s9,0z
8 +O(z9) and the only possible enhancement that remains inside
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Figure 3.7: The type III∗ and II∗ fibers. Shown are the two type III∗(ijk) and III∗(ij|k)

fibers where the sections are distributed over the two multiplicity one components, and

the single type II∗(ijk) fiber, which has all three sections intersecting the single multi-

plicity one component.

the lop-equivalence class, the vanishing of s1,2, is a non-minimal enhancement.

Looking back at the I∗0 starting point, the discriminant can instead be enhanced by

letting the three-term polynomial vanish, through the canonical solution s1,2 = s3,1 = 0.

This gives an I
∗s(01||2)
1 singular fiber. The discriminant at seventh order takes the form

∆ = s2
2,2s

3
5,1s

5
7,0s

2
8,0z

7 +O(z8) . (3.5.4)

The discriminant is enhanced further by letting s5,1 = 0. This gives the second excep-

tional singular fiber, that is a type IV ∗(01|2)

IV ∗(01|2) : (3, 2, 2, 2, 1, 0, 0, 0) . (3.5.5)

Proceeding in this subbranch, the discriminant now reads

∆ = s4
2,2s

4
7,0s

4
8,0z

8 +O(z9) . (3.5.6)

The only enhancement which is possible (as all the others are non-minimal enhancements)

is s2,2 = 0. The canonical excpetional singular fiber that arises from this enhancement

is III∗(01|2)

III∗(01|2) : (3, 3, 2, 2, 1, 0, 0, 0) . (3.5.7)

Every further enhancement in this subbranch is a non-minimal fibration.

3.5.2 Non-canonical Enhancements to Exceptional Singular Fibers

In this section the remaining exceptional fibers are obtained through non-canonical en-

hancements of the discriminant. The starting point is the singular I
ns(012)
3 given by the
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vanishing orders (3, 2, 0, 2, 0, 0, 0, 0). The discriminant contains ∆ ⊃ (s2
6,0 − 4s3,0s8,0).

Following appendix A.1 it can be solved non-canonically to find a non-split I
∗ns(012)
0,nc

associated to gauge group G2

I
∗ns(012)
0,nc : (3, 2, 0, 2, 0, 0, 0, 0) [−,−, µσ2

3,−, 2µσ3σ8,−, µσ2
8,−] . (3.5.8)

The next exceptional singular fiber is found through the following series of enhancements

I
∗ns(012)
0,nc

{s1,3,s2,2,s5,2=0}
−→ I

∗ns(012)
1,nc

P=0−→ IV
∗ns(012)
nc2

P = (σ2
8s3,1 − σ3σ8s6,1 + σ2

3s8,1) .

(3.5.9)

Where the non-canonical solution to the three-term polynomial was applied to find a

singular IV
∗ns(012)
nc2

with gauge group F4

IV
∗ns(012)
nc2

: (4, 3, 0, 3, 0, 0, 0, 0) [−,−, µξ2
2+ξ2ξ5z,−, 2µξ2ξ3+(ξ2ξ4+ξ3ξ5)z,−, µξ2

3+ξ3ξ4z,−] .

(3.5.10)

It was also necessary to specialize terms linear in z in the expansion of the coefficients.

From this singular fiber the remaining two fiber types can be reached through

IV
∗ns(012)
nc2

s1,4=0
−→ III

∗(012)
nc2

Q=0−→ II
∗(012)
nc3

Q = (s5,3ξ2 − s2,3ξ3) .

(3.5.11)

The singular fibers obtained this way are type III
∗(012)
nc2

III
∗(012)
nc2

: (5, 3, 0, 3, 0, 0, 0, 0) [−,−, µξ2
2+ξ2ξ5z,−, 2µξ2ξ3+(ξ2ξ4+ξ3ξ5)z,−, µξ2

3+ξ3ξ4z,−] ,

(3.5.12)

and the singular fiber type II
∗(012)
nc3

II
∗(012)
nc3

: (5, 3, 0, 3, 0, 0, 0, 0)

[−, δ1δ3, µδ
2
3 + δ3ξ5z, δ1δ2, 2µδ2δ3 + (δ3ξ4 + δ2ξ5)z,−, µδ2

2 + δ2ξ4z,−] .

(3.5.13)



Chapter 4

Aspects of M-Theory

In Chapter 2 we encountered M-Theory through a chain of dualities relating it to F-

Theory. In this chapter we are going to study it in its own right, as the non-perturbative

limit of Type IIA string theory, whose low energy limit is 11-dimensional supergravity. In

([2]) Witten was then able to relate the known string theories to a single 11-dimensional

theory, then called M-Theory. The perturbative limit could be re-obtained by compact-

ifying M-Theory on a circle, whose radius was found to be proportional to the string

coupling gs of Type IIA string theory. Through T-duality and S-duality, and thanks to

the statement that the low energy limit of M-Theory compactified on an interval S1/Z2

is found to be the Heterotic E8 ×E8 string theory ([86]), it was possible to relate all the

known string theories to one higher dimensional theory.

Nevertheless, very little was known about M-Theory and still today a great part of it

remains unexplored. The reason behind this, is that perturbation theory has no access

to it due to the absence of the string coupling. This fact is indeed signalling that the

fundamental string is not part of the theory any more, but is replaced by membranes and

fivebranes, also known as M2 and M5-branes. However, the dynamics of such branes is

not inferable from that of D-branes exactly for the lack of fundamental strings. While the

worldvolume theories on stacks of D-branes can be extracted from open string scatterings,

the same does not hold for M-branes. Indeed, M5-branes interact through M2-branes,

but the scattering of the latter has not yielded the same results of strings scattering.

As a consequence, M-Theory has only a non-perturbative regime, into which it has been

hard to gain insight. However, it has provided a unified perspective which has helped to

understand many aspects of 10-dimensional string theories and lower dimensional field

theories.

In particular, the worldvolume theories on stacks of M2 and M5-branes have been

80
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two of the problems of the string theory program which have received most attention in

the last years. In this chapter, we review recent progress in the understanding of such

theories. The dynamics on parallel M2-branes has advanced considerably in the last years,

while the one on parallel M5-branes is still largely unexplored. Both the BLG (Bagger-

Lambert-Gustavvson)([3,4]) and the ABJM (Aharony-Bergman-Jafferis-Maldacena) ([5])

models allowed to gain great insight into the theories of coincident M2-branes. On the

other hand, a framework in which progress has been achieved towards theories of multiple

M5-branes in M-Theory, is the one of higher gauge theory, see e.g. ([87–90]). Such

theories are a ‘categorification’ of usual gauge theory, where the latter are described by

a principle bundle over space-time, allowing to define the parallel transport of point-

particles. This can be understood in the D-brane picture as the parallel transport of the

end-points of the strings through which D-branes interact. However, the mirror picture

for membranes in M-Theory requires the parallel transport of string-like objects (since

interactions are through M2-branes, whose boundaries are 1-dimensional). It turns out

that taking into account the parallel transport of strings requires the ‘categorification’ to

higher gauge structures, i.e. one needs to consider 2-bundles (or higher structures) rather

than usual vector bundles. This means considering a functor between two categories

rather than a morphism between two objects of a category, i.e. the usual vector bundles

in gauge theory. We will not investigate further this direction, but the BLG, ABJM

models and the Lambert-Papageorgakis model for M5-branes, which we will discuss later,

have been shown to be expressible in the framework of higher gauge theory ([91,92]).

Nevertheless, the theory on coincident M5 has produced, through different compact-

ifications, a number of results and dualities in lower dimensional field theories that we

also review in the following.

4.1 M-Theory and M-Branes

M2 and M5-branes are half BPS solution of 11-dimensional supergravity, the low energy

theory describing M-Theory. Recall the field content of 11d supergravity. We have the

metric (graviton) gµν(x), µ, ν = 0, 1, . . . , 10 which constitutes 44 degrees of freedom

on shell, being a symmetric traceless tensor. The other 84 bosonic degrees of freedom

is represented by a three form C3 = Cµνλ. The super-partner of the graviton is the

gravitino Ψµα, transforming in a tensor product representation of a space-time vector

and a spinor. On shell, the gravitino contributes indeed the 128 degrees of freedom

needed for supersymmetry. The action for 11-dimensional supergravity turns out to be

unique and it was found in the seminal paper by Cremmer, Julia and Scherk and its
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bosonic part is ([93,94])

S11 ⊃
∫
d11x

√
|g|R−

(
1

2
F ∧ ?F +

1

6
C3 ∧ F ∧ F

)
, (4.1.1)

where F is the field strength of the potential C3 and R is the Ricci scalar of space-time.

The relationship between 11-dimensional supergravity and the 10-dimensional super-

gravity theories has been elucidated in a number of papers ([95–97]). The 10-dimensional

theory turns out to be recovered in the limit in which the 11-dimensional one is studied

on a space of the form M10 × S1, and the radius R of the circle vanishes. Such relation

between supergravity theories was finally interpreted in the seminal papers by Townsend

([98]) and Witten ([2]). Type IIA string theory, being the UV completion of Type IIA su-

pergravity, is understood as the compactification of a new theory, then called M-Theory,

on a circle. In particular, the relation between the radius of the circle and the coupling

constant gs is found to be

R = gs ls, (4.1.2)

where ls is the string length. We see that upon reducing on the circle the perturba-

tive limit in gs is restored, but in the decompactification limit M-theory results to be the

strongly coupled regime of type IIA string theory. In particular we see that in the strongly

coupled phase of type IIA an extra dimension opens up. However, 11-dimensional su-

pergravity, and therefore M-theory, do not have a dimensionless parameter about which

it would be possible to expand. It follows that, without any perturbative access to it,

M-Theory remains greatly unexplored. In the following, we will look at the fundamental

objects of M-Theory, which will turn out to be membranes rather than strings.

In order to find the BPS solutions one looks at the gravitino supersymmetry variation

([94])

δΨµα = Dµ(ω)ε+
i

288

(
Γνλστωµ − 8Γλστωδνµ

)
Fνλστωε ≡ 0 (4.1.3)

where Dµ(ω) is the covariant derivative depending on the spin connection. Solutions were

found describing half BPS objects which are now known as M2 and M5-branes. Without

going into the details of the actual supergravity solutions, we can get a hint as to why

we must have such solutions by looking at the superalgebra associated to 11-dimensional

supergravity

{Qα, Qβ} = (ΓµC−1)αβPµ +
1

2
(ΓµνC−1)αβZµν +

1

5!
(ΓµνλρσC−1)Zµνλρσ. (4.1.4)

The presence of the central charges Zµν and Zµνλρσ signal the existence of respectively

two and five dimensional object in space. A similar argument follows from the potential
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three-form C3 which couples electrically to the worldvolume S of M2-branes through∫
S C3 ≡

∫
S Cµνλdx

µ ∧ dxν ∧ dxλ, where we pull-back the C3 form to the worldvolume of

the M2-brane. Similarly we find the magnetic coupling by applying Hodge duality to the

field strength of C3

C3 −→ F4
?−→ F7 −→ C6. (4.1.5)

Then we can pull-back C6 to the worldvolume W of M5-branes via
∫
W C6 to obtain the

correct coupling. As we saw, reducing on a circle we recover the perturbative limit of

type IIA string theory, which means that by reducing the M2 and the M5-branes we

should recover the D-branes present in type IIA (see e.g. ([98–100]) for a more complete

discussion). This is indeed the case and we can see that we must have that the M2-brane

reduces to the fundamental string F1 when it wraps the M-Theory circle, or to the D2-

brane when the worldvolume is transverse to the M-Theory circle S1
M (see ([101–103])

for a discussion in the case of the BLG model). Similarly, the M5-brane reduces to the

D4-brane when wrapping S1
M (see ([104, 105]) for a more accurate discussion) and to

the NS5-brane when its worldvolume is transverse to S1
M . Obtaining D0 and D6 branes

is more complicated, but it turns out that the former correspond to momentum modes

along the M-Theory circle ([98]) which indeed needs to be quantised. D6-branes, which

are related by electric-magnetic duality to D0-branes (which couple in type IIA to the

Ramond-Ramond gauge field Aµ)

Aµ −→ F2
?−→ F8 −→ C7, (4.1.6)

lift to Kaluza-Klein monopoles ([98]) in M-Theory, that is supergravity solutions of the

form R1,7 × T B where T B is the multi-centered Taub-NUT space.

Therefore from M-Theory we can recover all the D-branes of Type II string theories,

by first compactifying on the M-Theory circle and taking the low energy limits of the

worldvolume theories on stacks of M2 and M5-branes, and then by possibly T-dualizing

to obtain the D-branes of Type IIB string theory ([106]).

4.2 Degrees of Freedom on Parallel M-Branes

Whereas the theories on a stack of D-branes are all related by dimensional reduction and

can be obtained from 10-dimensional maximally supersymmetric Yang-Mills Theory, an

equally simple description is not available for M-branes. Without a coupling constant,

M-Theory allows only a non-perturbative regime and the theories of M2 and M5-branes

cannot be obtained from open string scatterings such as in the case of D-branes.



Chapter 4. Aspects of M-Theory 84

A first puzzle about the M2 and M5 worldvolume theories was related to the degrees

of freedom of the two theories. Gauge theories on the worldvolume of N coincident D-

branes were known to have a number of degrees of freedom proportional to N2, which

is in accord with the degrees of freedom of U(N) gauge theories or equivalently with

the number of Chan-Paton factors for an open string ending on a stack of N D-branes.

However, when such degrees of freedom were investigated for the worldvolume theories of

N coincident M2 and M5-branes, the degrees of freedom were found to be proportional

to N3/2 and N3 respectively ([107]). The origin of such degrees of freedom is still not

well understood, but the candidate theories describing such theories should correctly

reproduce such scaling of the degrees of freedom (in a sense the N3 scaling for the M5

theories can be understood from the existence of a BPS state in which the M2-brane

has three disconnected boundaries (like a higher dimensional pair of pants) and since

M5-branes are supposed to interact through M2-branes the analogy with D-branes and

open strings is clear).

In the following we will focus in turn on both the theory describing N coincident M5-

branes and N coincident M2-branes. Both theories are supposed to be superconformal

field theories (due to the absence of a characteristic length in M-Theory) in 3 and 6

dimensions respectively, and should preserve 16 supercharges, being half BPS object of

11-dimensional supergravity. A considerable progress has been made in the past 10 years

in the description of coincident M2-branes. First through the BLG model, which correctly

reproduces the dynamics of two M2-branes and successively through the ABJM model

describing an arbitrary number of coincident M2-branes in an orbifold background C/Zk
(where k appears as the level of the Chern-Simons term of the ABJM model). The theory

describing coincident M5-branes, known as the (2,0) theory, has instead remained more

elusive, but it nevertheless gave rise to a series of results and dualities between quantum

field theories in different dimensions.

4.3 M2-Branes

The BLG model provides a correct description of a pair of M2-branes satisfying all the

properties required: superconformal invariance, existence of 16 supercharges and of an

SO(8) R-symmetry, N3/2 scaling of the degrees of freedom and presence of non-trivial

interactions. What came as a surprise was that the gauge symmetry is realized through a

so-called 3-algebra rather than through usual Lie algebras. The hint that a different gauge

structure was needed to describe parallel M2-branes came from the work of Basu and

Harvey ([108]), who first proposed an equation describing coincident M2-branes ending
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on a single M5-brane.

Recall the similar situation in the case of Dp-D(p+2) branes, where we look at a D1-

D3 system as in Table 4.1. The three scalars Xi parametrizing the directions of motion

0 1 2 3 4 5 6 7 8 9

D3 × × × × · · · · · ·

D1 × · · · × · · · · ·

Table 4.1: The D1-D3 system described by Nahm’s equation.

of the D1-strings transversal to the D3-brane (since the boundary of the D1-strings is

codimension three inside the D3-brane), satisfy the following Nahm equation ([109])

dXi

dt
=

1

2
εijk[Xj , Xk], (4.3.1)

where t is a coordinate on the longitudinal direction parametrizing the distance from the

D3-brane. As it is well known a solution is provided by a fuzzy sphere S2, whose radius

diverges at the location of the D3-brane, given by ([109–111])

Xi =
1

2t
σi, (4.3.2)

where σi are the generators of SU(2) and satisfy the usual commutation relations. Basu

and Harvey ([108]) tried to lift such a configuration to M-Theory and describe coincident

M2-branes ending on a single M5-brane, as in Table 4.2.

0 1 2 3 4 5 6 7 8 9 10

M5 × × × × × × · · · · ·

M2 × × · · · · × · · · ·

Table 4.2: The M2-M5 system described by the Basu-Harvey equation.

Now the four scalars Xa which parametrize the degrees of freedom of the boundary

of the M2-branes inside the M5, need to satisfy the following equation ([108])

dXa

dt
+
k

4!
εabcd[G,Xb, Xc, Xd] = 0, (4.3.3)
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where k is a constant and G is a fixed matrix which satisfies G2 = 1. It turns out

that a solution is given by a fuzzy S3, but most importantly we see the appearance of a

multi-linear bracket which will be fundamental in the description of the BLG model. In

particular the Basu-Harvey equation can be recast in the form

dXa

dt
+

1

4!
εabcd[Xb, Xc, Xd] = 0, (4.3.4)

where [ , , ] is the bracket of a 3-algebra. We now turn to the study of such algebraic

structures.

4.4 3-Algebras and the BLG Model

Recall that in Super-Yang-Mills theories (on parallel D-branes) a global gauge transfor-

mation for a field Φ is given by

δΦ = [α,Φ], (4.4.1)

where both α and Φ are matrices in some Lie algebra. In particular the fields were

expanded in a vector space with basis {T a} such that Φ = ΦaT
a. Then the gauge

structure followed from the antisymmetric product

[T a, T b] = fab c T
c, (4.4.2)

where fab c are antisymmetric in the upper indices. Then imposing that variations act

as derivations

δ([X,Y ]) = [δX, Y ] + [X, δY ], (4.4.3)

we find the Jacobi identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0. (4.4.4)

In order to lift the gauge structure to a 3-bracket, we again expand the field in some

basis of a vector space {T a}, but we define global transformations as

δΦ = [α, β,Φ]. (4.4.5)

The antisymmetric triple product can be expanded in a basis of the vector space through

the structure constants

[T a, T b, T c] = fabcd T
d, (4.4.6)
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which are antisymmetric in the upper indices. Then requiring the derivation property

imposes a Jacobi-like identity, known as the fundamental identity

[X1, X2, [X3, X4, X5]] = [[X1, X2, X3], X4, X5] + [X3, [X1, X2, X4], X5]

+ [X3, X4, [X1, X2, X5]]. (4.4.7)

Therefore we can define a 3-algebra as a vector space endowed with a totally antisym-

metric 3-bracket which satisfies the fundamental identity. As for the case of metric Lie

algebras, we require the existence of a symmetric inner product

hab = 〈T a, T b〉. (4.4.8)

Requiring invariance of the inner product imposes

〈[W,X, Y ], Z〉 = 〈W, [X,Y, Z]〉, (4.4.9)

or equivalently the structure constants must be totally antisymmetric when all the indices

are raised

fabcd = f [abcd]. (4.4.10)

It turns out that the existence of a positive definite metric 3-algebra is a very strict

requirement, and there exists only one such 3-algebra, see ([112, 113]) for proofs, up

to taking direct sums, which is called A4. It is a 4-dimensional 3-algebra, with four

generators T a, with the 3-bracket defined by

fabcd =
2π

k
εabcd, (4.4.11)

where εabcd is the totally antisymmetric Levi-Civita tensor and k is a constant.

We can now formulate BLG model ([3, 4]). Let the Lorentz symmetry be broken as

SO(1, 10)→ SO(1, 2)× SO(8)R (4.4.12)

and let XI (I = 3, 4, . . . , 10) be eight scalars parametrizing the transverse fluctuations to

the branes worldvolume. In order to have supersymmetry we then need eight fermionic

degrees of freedom, which are realized from the 32 degrees of freedom of an 11-dimensional

Majorana spinor ψ, upon which we impose the following projection condition

Γ012ε = ε Γ012ψ = −ψ, (4.4.13)

(where ε is the supersymmetry parameter) which reduces the degrees of freedom to 16.

Then on shell we have a match of bosonic and fermionic degrees of freedom. We assume

canonical dimensions of the fields in 3 dimensions

[X] = 1/2 [ψ] = 1 [ε] = −1/2. (4.4.14)
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We promote the derivatives to covariant derivatives through the introduction of a gauge

field (Aµ)ba in the following way

DµΦa = ∂µΦa − (Aµ)baΦb, (4.4.15)

where µ = 0, 1, 2 and Φ is a generic field. As discussed, we already have a match of

bosonic and fermionic degrees of freedom, which seems to not allow the introduction of

a new gauge field. It will turn out that the gauge field will contribute no additional

degrees of freedom and will enter the theory through a Chern-Simons term but without

a canonical kinetic term. We can then define the field strength as

[Dµ, Dν ] ≡ Fµν . (4.4.16)

We can now write down the supersymmetry transformations, keeping in mind that since

ψ and ε have opposite chirality under Γ012 we must have an odd number of transverse

gamma matrices. The variations of the BLG model are ([3])

δXI = iε̄ΓIψ

δψ = ΓµΓIDµX
Iε− 1

3!
ΓIJK [XI , XJ , XK ]ε

δAµ(·) = iε̄ΓµΓI [XI , ψ, ·], (4.4.17)

where (·) represents an arbitrary field. By requiring closure of the algebra it is found

that the 3-bracket needs to satisfy the fundamental identity, meaning that the fields are

valued in a 3-algebra. The algebra closes on shell through the following equations of

motion for the fields ([3])

0 =D2XI +
1

2
[[XI , XJ , XK ], XJ , XK ] +

i

2
[ψ̄,ΓIJψ,XJ ]

0 =ΓαDαψ +
1

2
ΓIJ [ψ,XI , XJ ]

0 =Fαβ(·) + εαβγ

(
[XJ , DγXJ , ·] +

i

2
[ψ̄,Γγψ, ·]

)
. (4.4.18)

These equations of motions are invariant under the supersymetry variations (4.4.17). We

can derive the equations of motion from the following Lagrangian

L = Lkin + Lint + Lpot + LCS . (4.4.19)

We have the kinetic terms for the bosonic and fermonic degrees of freedom

Lkin =
1

2
〈DµX

I , DµXI〉+
i

2
〈ψ̄,ΓµDµψ〉, (4.4.20)
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followed by an interaction term of the form

Lint = − i
4
〈[ψ̄,XI , XJ ],ΓIJψ〉, (4.4.21)

and a potential term

Lpot =
1

2 · 3!
〈[XI , XJ , XK ], [XI , XJ , XK ]〉. (4.4.22)

Finally the Chern-Simons term can be written as

LCS =
1

2
εµνλ

(
fabcd(Aµ)ab∂ν(Aλ)cd +

2

3
f cdagf

efgb(Aµ)ab(Aν)cd(Aλ)ef

)
, (4.4.23)

where (Aµ)ba = f cdba(Aµ)cd. As previously mentioned, there is only one Euclidean 3-

algebra, the so-called A4. Two different groups correspond to this algebra, SO(4) and

Spin(4). An interpretation of the BLG model was found by studying the vacua of the

theory, which are obtained by minimising the potential, i.e.

[XI , XJ , XK ] = 0. (4.4.24)

It turns out that the brane interpretation depends on the level k of the Chern-Simons

term. In particular ([114–116]) we have a brane interpretation only in the following cases
k = 1 Gauge Group = SO(4) −→ 2 M2-branes in R8

k = 2 Gauge Group = Spin(4) −→ 2 M2-branes in R8/Z2

k = 4 Gauge Group = SO(4) −→ 2 M2-branes in R8/Z2,

(4.4.25)

where in the last case a discrete torsion is present for the background four-form.

4.5 M5-Branes

The possible existence of a 6-dimensional superconformal theory first followed from

Nahm’s classification ([117]) of superconformal algebras, which showed that they ex-

isted only for space-time dimensions equal to and lower than six. In particular two

possible 6-dimensional superconformal algebras were shown to exist, the so-called (1, 0)

and (2,0) algebras. They differ in the amount of supersymmetry, 8 supercharges and 16

supercharges (the maximal amount in 6 dimensions) respectively, and on the R-symmetry

group, SU(2) for the (1,0) theory and SO(5) for the (2,0) theory.

From now on we will only focus on the latter, but interestingly progress has been

made recently on the former through F-Theoretic methods ([118]).
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The existence of the (2,0) algebra in itself does not show that there must be an actual

field theoretic representation on 6-dimensional fields, or at least it does not demand the

existence of a field theory in the way we are used to think about it. Concrete evidence

for the existence of such a theory was brought forward by Witten ([119]) a few years

later. In particular, Witten looked at type IIB string theory on a space of the form

R1,3 × K3 at particular points of the moduli space of K3 surfaces. It is known that

at such points, a set of two-spheres in the K3 surfaces shrinks to zero size and they

follow an ADE classification depending on the number and the intersections of the two-

spheres in the K3 surface. In ([119]) it was argued that upon compactification of type IIB

string theory on K3 surfaces developing singularities at these points of the moduli space,

a superconformal field theory in 6-dimensions could be realized. Nevertheless, it was

realized that it could not have a simple perturbative description in terms of string states,

since by wrapping D3-branes along the two cycles of the K3 surface, strings were obtained

whose tension was proportional to the area of the cycles themselves. Therefore in the

singular limit in which the (2,0) theory was realized and the two-spheres shrank to zero

size, such strings would become tension-less. The (2,0) theories, which as we saw admit

an ADE classification, still lack a satisfying description, but they have nevertheless been

useful for numerous results and dualities for lower dimensional supersymmetric theories

related by a web of compactifications.

Following the work of Nahm ([117]), the (2,0) supersymmetry can be realized on an

abelian tensor multiplet consisting of five scalars XI , a self dual three-form Hµνλ and

the fermionic super-partners Ψ. The fields tranform under the Lorentz group SO(1, 5)

and the R-symmetry group SO(5)R ' Sp(4)R. Moreover we can take the dimensions of

the fields to be

[X] = 2 , [Ψ] = 5/2 , [H] = 3. (4.5.1)

This tensor multiplet describes a single M5-brane, where the five scalars parametrize the

transverse fluctuations to the brane in 11-dimensional space-time. We can write down

the supersymmetry variations of the fields in the following form ([6])

δXi = iε̄ΓiΨ

δHµνλ = 3iε̄Γ[µνDλ]Ψ

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε, (4.5.2)

where µ, ν = 0, 1, . . . , 5 and i, j = 6, 7, . . . , 10. The gamma matrices are 32 × 32 matrix
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representations of the Clifford algebra in 11 dimensions and the H field is self dual

Hµνλ =
1

6
εµνλστωH

στω. (4.5.3)

The fermionic degrees of freedom Ψ and the supersymmetry parameter ε are 32 compo-

nents and satisfy the following chirality conditions

Γ012345ε = ε Γ012345Ψ = −Ψ. (4.5.4)

The following equations of motion are invariant under the (2,0) supersymmetry described

by the variations (4.5.2)

D2Xi = 0

ΓµDµΨ = 0

H = ?H dH = 0. (4.5.5)

Note that we could write a Lagrangian for the scalar fields Xi

SXi =

∫
d6x DµX

iDµXi (4.5.6)

and for the Fermionic degrees of freedom

SΨ =

∫
d6x Ψ̄ΓµDµΨ. (4.5.7)

Nevertheless we see that the usual action that we would write down for the H field

SH =

∫
R1,5

H ∧ ?H, (4.5.8)

is of no use since H is self-dual and H ∧ ?H = H ∧ H = 0. A similar inconsistency in

deriving an action, pointed out in ([120]), is that if we consider the (2,0) theory on a

product manifold M5×S1 we see that in the low energy limit the theory on M5 should be

proportional to R−1 (where R is the radius of the circle S1) due to conformal invariance

in 6 dimensions, but at the same time it is clear that integrating over the circle direction

would give a factor of R in the low energy theory on M5 coming from
√
g in the action.

Nevertheless actions for a single M5-brane have been written down, see ([121–126]). We

now turn to the possible application of 3-algebras to the study of parallel M5-branes.
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4.6 3-Algebras and M5-branes

In ([6]) the authors proposed a set of equations of motion for a non-abelian tensor mul-

tiplet in 6 dimensions invariant under (2,0) supersymmetry. In a similar fashion to the

construction of the BLG model, the authors proposed a non-abelian extension of the free

equations of motion, such that the fields are required to live in a generic vector space

endowed with an antisymmetric triple product. Closure of the supersymmetry algebra

then requires that the vector space be actually a 3-algebra, or equivalently that the triple

bracket should satisfy the fundamental identity (4.4.7). We will now look at the specifics

of such equations of motions and how the gauge symmetry is realized through 3-algebras

rather than usual Lie algebras. As in the BLG model, the introduction of a gauge field

covariantize the derivatives ([6])

DµΦa = ∂µΦa − (Aµ)baΦb, (4.6.1)

where Φ is a generic field which has been expanded in a basis {T a} of the 3-algebra as

Φ = ΦaT
a. A fundamental difference to the BLG model is the necessary introduction

of a new field, a vector Y µ which will turn out not to transform under supersymmetry.

It is then possible to express the supersymmetry transformations which realize the (2,0)

algebra as follows, where we state again that the 3-algebra structure actually follows from

closure of the algebra on the non-abelian tensor multiplet ([6])

δXi = iε̄ΓiΨ

δY µ = 0

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε− 1

2
ΓµΓij [Y µ, Xi, Xj ]ε

δHµνλ = 3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, Xi,Ψ]

δAµ(·) = iε̄Γµν [Y ν ,Ψ, · ]. (4.6.2)

The conventions are the same of the previous section, where we presented the free tensor

multiplet. The Fermionic degrees of freedom satisfy the chirality conditions (4.5.4) and

a dot (·) represents an arbitrary field. Note that the gauge field can be taken to have

canonical dimension [Aµ] = 1, and it follows that the vector field Y µ has dimensions

[Y µ] = −1. These supersymmetry transformations close on the tensor multiplet if the
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following equations of motion and constraints are satisfied ([6])

0 = D2Xi − i

2
[Y µ, Ψ̄,ΓµΓiΨ]− [Y µ, Xj , [Yµ, X

j , Xi]]

0 = D[µHνλρ +
1

4
εµνλρστ [Y σ, Xi, DτXi] +

i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ]

0 = ΓµDµΨ + ΓµΓi[Yµ, X
i,Ψ]

0 = Fµν(·)− [Y λ, Hµνλ, · ]

0 = DµY
ν = [Y µ, Y ν , ·] = [Y µ, Dµ(·), ·′]. (4.6.3)

Note that the constraint Fµν(·) = [Y λ, Hµνλ, · ] can be interpreted as the vanishing of

the so-called fake curvature in higher gauge theories. In that context, in order to have

a consistent parallel transport of 1-dimensional objects, such quantity needs to vanish

(see ([91,127]) for an interpretation of the Lambert-Papageorgakis model discussing such

aspects). Moreover it was shown in ([6]) that it is not possible to consistently define a

potential Bµν for the field strength Hµνλ. Since the vector Y µ is covariantly constant,

we can single out a direction in space-time and in the gauge algebra and study the set

of equations around a particular expectation value.

Recall that a Lorentzian 3-algebra can be constructed starting from a Lie algebra G
by adding two generators T± and defining the structure constants of the 3-algebra as

f+ab
c = fabc fabc − = fabc, (4.6.4)

where fabc are the structure constants of the Lie algebra. It turns out ([6]), that for a

Lorentzian 3-algebra, expanding around a particular value of Y µ

〈Y µ
a 〉 = g δµ5 δ

+
a (4.6.5)

reduces the equations (4.6.3) to those of 5-dimensional Super-Yang-Mills (SYM) the-

ory (and two abelian free tensor multiplet). Similarly, for the Euclidean 3-algebra A4,

expanding around a particular value of Y µ

〈Y µ
a 〉 = g δµ5 δ

4
a (4.6.6)

reproduces 5-dimensional Super-Yang-Mills theory and only one abelian free multiplet.

In fact, one could have engineered the algebra (4.6.2) starting from 5-dimensional Super-

Yang-Mills theory by suitably identifying the fields, in a similar fashion as it was done

for the case of M2-branes in ([128]). One could then argue that the equations of motion

here presented are just a reformulation of the theory on D4-branes in a language of 3-

algebras and where conformal invariance is manifest. However the analysis carried out
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in ([129]) seems to confirm another proposal for the dynamics on coincident M5-branes.

The authors give a null expectation value to the vector Y µ and show that the system of

equations reduces to motion on the instanton moduli space. By quantising such system

the proposal of ([130,131]) for a light-cone description of the (2,0) theory is recovered, thus

suggesting that the 6-dimensional (2,0) algebra of ([6]) is more than just a reformulation

of the theory on D4-branes. Indeed, depending on the expectation value of Y µ, it is

possible to reduce the (2,0) algebra to either 5-dimensional Super-Yang-Mills theory or

to quantum mechanics on the instanton moduli space, and both of these theories are

known to capture some aspects of the dynamics on parallel M5 branes. In this thesis we

try to bring forward more evidence for such proposal by extending it and relating it to

the BLG model describing two M2-branes.

In Chapter 5 we extend the construction of ([6]). By introducing an abelian three-

form Cµνλ into the algebra, we find an extended representation on a 6- dimensional

non-abelian tensor multiplet. Requiring closure of the algebra on the tensor multiplet

provide new equations of motion and constraints for the fields, which reduce to (4.6.3)

in the case in which the three-form is switched off. In the case in which Cµνλ 6= 0,

solving the constraints for the fields naturally makes a reduction to the BLG model in

3 dimensions manifest. Therefore the extended (2,0) algebra that we propose reduces

to the description of two coincident M2-branes when the three-form is switched on, and

thus corroborates the proposal for a description of parallel M5-branes of ([6]).
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4.7 M5-Branes and Dualities

Even though the exact formulation of the (2,0) theory is not clear in 6 dimensions, it is

possible to obtain a number of results in lower dimensional field theory by making use

of the few facts which are known about the (2,0) theory. In particular, thanks to it, it is

possible to find a web of unexpected dualities between quantum field theories in different

dimensions, which can receive an interpretation thanks to different compactification limits

of the (2,0) theory. In this section we are going to see a few examples in which lower

dimensional quantum field theories are interpreted as such compactifications, and we

will see that specific quantities in such theories can then be interpreted as geometric

properties of the compactification manifold. We then proceed to discuss how different

compactifications of the (2,0) theory can be related to produce dualities thanks to the

conformal invariance of the (2,0) theory.

The main result needed to understand such dualities follows from the reduction of

the (2,0) theory on a circle. It is found that in the limit in which the radius of the circle

vanishes, we can recover 5-dimensional N = 2 Super-Yang-Mills theory. Such theory has

the maximal amount of supersymmetry in 5-dimensions, and a field content consisting

of 5 scalars Xi, a gauge field Aµ (with field strength Fµν) and fermionic super-partners

Ψ. It is possible to write down an action, which reads

S5d
SYM = − 1

g2
5d

∫
d5x

(1

4
Fµ̇ν̇F

µ̇ν̇ +
1

2
Dµ̇X

iDµ̇Xi − i

2
Ψ̄Γµ̇Dµ̇Ψ

+
1

2
Ψ̄Γ5Γi[Xi,Ψ]− 1

4

∑
i,j

[Xi, Xj ]2
)
, (4.7.1)

where µ̇, ν̇ = 0, 1, . . . , 4 and i, j = 6, 7, . . . , 10. In particular we see that the reduction of

the self-dual Hµνλ field to the field strength Fµν allows a usual gauge theoretic description

of the theory in contrast to what happened in 6-dimensions. Such theory is otherwise

obtained by dimensional reduction of the N = 1, 10-dimensional Super-Yang-Mills the-

ory. Such reduction can be interpreted in the string theory context, by recalling that

in going from M-Theory to type IIA string theory, M5-branes wrapping the M-Theory

circle are understood to be described by parallel D4-branes, whose low-energy theory is

indeed 5-dimensional Super-Yang-Mills theory. We refer to ([104]) for a more thorough

discussion.

The coupling constant of 5-dimensional Super-Yang-Mills theory is given, in terms of

the radius R of the circle on which we compactify the (2,0) theory, by

g2
5d = R. (4.7.2)
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Therefore we can consider the (2,0) theory as the UV fixed point of the theory on co-

incident D4-branes. We see a relation similar to the one defining the string coupling in

Type IIA string theory and the radius of the M-Theory circle. In the limit in which

the radius goes to zero we gain a perturbative understanding in terms of 5-dimensional

Super-Yang Mills theory, but at strong coupling a new dimension opens up. 5-dimensional

Super-Yang-Mills theory is naively power counting non-renormalizable, implying that a

quantum theory is not well defined without additional degrees of freedom. In fact it

was argued ([104, 105]) that 5-dimensional Super-Yang-Mills theory contains all the de-

grees of freedom of the (2,0) theory on a circle S1 and in particular that the instantons

of the 5-dimensional theory are exactly Kaluza-Klein states coming from the (2,0) the-

ory. Indeed, instantons in 5-dimensional Super-Yang-Mills theory are string-like uplifts

of the usual magnetic monopoles of 4-dimensional theories which can be thought of as

the strings arising from M2-branes ending on M5-branes. This was argued to be the case

by matching the super-algebras {Qα, Qβ} of the (2,0) theory on S1 and of 5-dimensional

Super-Yang-Mills theory ([104]).

Once we understand the statement that the (2,0) theory on a circle reduces to 5-

dimensional N = 2 Super-Yang-Mills theory, we can start to gain insight into lower di-

mensional compactifications, and in particular into the geometric interpretations which

arise in such cases. Reducing further on a second circle, following what we said so far,

will produce 4-dimensional N = 4 Super-Yang-Mills theory. This statement is well un-

derstood both in the reduction of maximally supersymmetric Super-Yang-Mills theories

and in the parallel brane picture where D4-branes are known to reduce to D3-branes

when wrapping a vanishing circle. This is the simplest set up in which the 6-dimensional

(2,0) theory can provide us with valuable geometric interpretations. In particular, recall

that the the coupling constant e and the θ parameter of N = 4 SYM are usually coupled

as

τ =
θ

2π
+

4πi

e2
, (4.7.3)

in order to study S-duality transformations. In particular 4-dimensional N = 4 Super-

Yang-Mills theory is invariant under shift τ → τ + 1 and is conjectured ([132]) to be

invariant under S-duality transformations sending τ → − 1
τ . What the (2,0) theory

affords is to think the S-duality group generated by such transformations as modular

transformations of the complex structure of the torus that was used to reduce form 6

to 4 dimensions to obtain the 4-dimensional Super-Yang-Mills theory. It follows that

the invariance under transformations which send τ → aτ+b
cτ+d is nothing but the modular

invariance of the complex structure of the torus upon which we reduce the (2,0) theory
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(see section 2.2 for a full discussion). Reduction of the (2,0) theory on different and

higher dimensional manifolds leads to a number of dualities and results which we will

now briefly survey.

An important breakthrough in this direction was realized by Gaiotto ([133]) with

the engineering of a whole new class of superconformal theories in 4 dimensions with 16

supercharges. These theories, called theories of class S1, were realized as the low energy

limit of the (2,0) theory on a Riemann surface of genus g Σn,g with possibly a number

of punctures. These are point-like defects at which the fields develop prescribed singu-

larities. We will see again how thinking of such 4-dimensional theories as obtained from

the 6-dimensional (2,0) theory allows us to interpret important quantities as geometric

properties of the compactification manifolds.

In particular the (2,0) theory associated to the lie algebra g, denoted T [g], admits

a brane interpretation in M-Theory for the two series An and Dn (while the E6,E7 and

E8 theories do not admit such a description). The An series represents (n + 1) parallel

M5-branes, while the Dn series is associated to the description of 2n M5-branes on top

of an orientifold singularity obtained by an action on the five transverse directions to the

worldvolume of the branes. Class S theories for theAn series are obtained by topologically

twisting the (2,0) theory on a Riemann surface Σn,g. The topological twisting carried out

allows to preserve supersymmetry on a non-flat space which would otherwise allow no

covariantly constant spinors, needed for supersymmetry. In particular, in 6 dimensions

we have a Lorentz group SO(1, 5) and an R-symmetry group Sp(4)r ' SO(5)R. When

we consider the (2,0) theory on a product space of the form M4 × Σn,g, as it is the case

for class S theories, these symmetry groups break to

SO(1, 5) −→ SO(1, 3)× SO(2)H

SO(5)R −→ SO(3)R × SO(2)R, (4.7.4)

where SO(2)H represents the holonomy group of the 2-dimensional manifold Σn,g. Such

an holonomy represents exactly the obstacle to have covariantly constant spinors, since

we see that

Dµε = (∂µ + ωµ) ε, (4.7.5)

where ωµ is a non-trivial spin connection contributing to the covariant derivative Dµ.

In order to solve this problem, we carry out a topological twist, that is, we look for a

way to get rid of the unwanted spin connection. The way to do this is to redefine the

1S as in six.
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Lorentz group on Σn,g in such a way that the spinor parameter does not transform in

a Fermion representation any more, but as a scalar (which will allow to take it to be

covariantly constant). In particular the supercharges of the (2,0) theory transform in the

(4⊗ 4) representation of SO(1, 5)⊕ SO(5)R. Once we break the symmetry groups, the

representation decomposes to ([133])(
(2,1) 1

2
⊕ (1,2)− 1

2
⊗ (2 1

2
⊕ 2− 1

2
)
)
. (4.7.6)

So as to have supercharges which transform as scalars on Σn,g, we redefine the Lorentz

group as

SO(2)′ = SO(2)× SO(2)R|diag, (4.7.7)

that is we take the diagonal subgroup of SO(2) × SO(2)R (which can be done by ei-

ther adding or subtracting the U(1) charges). As a consequence the supercharges now

transform as

(2,1,2)1 ⊕ (2,1,2)0 ⊕ (2,2,2)0 ⊕ (1,2,2)−1, (4.7.8)

and we see that half of the supercharges now transform as scalars on Σn,g. Therefore 16

supercharges are preserved in the 4-dimensional theory, thus giving N = 2 supersymme-

try. Indeed, we see that the symmetry group of the 4-dimensional theory obtained by

shrinking Σn,g to zero size is

SO(1, 3)× SU(2)R, (4.7.9)

which agrees with the symmetry group of N = 2 supersymmetric gauge theories in 4

dimensions. In fact, theories of class S are actually super-conformal. What effectively

happened is that we introduced an R-symmetry gauge field Aµ which corrects the covari-

ant derivative on the spinor

Dµε = (∂µ + ωµ +Aµ) ε, (4.7.10)

and which can be tuned to cancel the contribution from the spin connection, thus allowing

for covariantly constant spinors. It turns out that through Gaiotto’s construction the

Seiberg-Witten curve for the theories of class S are nothing other than n-sheeted covers

of the Riemann surfaces Σn,g that were used to reduce the (2,0) theory to 4 dimensions.

The geometries of the compactification manifolds give insight into the 4-dimensional

theory, as the space of exactly marginal deformations (preserving supersymmetry and

conformal symmetry) can be identified with the complex structure moduli space of Rie-

mann surfaces Σn,g. A whole dictionary was worked out translating between gauge theory
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Figure 4.1: The two compactifications giving rise to the AGT correspondence. Equat-

ing the partition functions allows the non-trivial identification of quantities in the two

different theories.

aspects such as couplings, matter and global symmetries on one side and operations on

the geometries such as cutting and gluing on the other side. Importantly, many of the

theories of class S do not admit a Lagrangian description. Drawing from the work of

Gaiotto, Alday, Tachikawa and Gaiotto himself ([134]), went on to discover a surprising

duality between theories of class S and 2-dimensional Toda theories, where the latter are

non-supersymmetric conformal field theories which also admit an ADE classification. In

particular the following set up was used, see Figure 4.1. The (2,0) theory is compactified

first on a Riemann Surface Σn,g and the partition function is calculated on S4 by making

use that the latter is conformally flat. Or the order of compactification is reversed thanks

to the factorization of the partition function

Z[Σn,g × S4] = Z[Σn,g]× Z[S4]. (4.7.11)

Note that the conformal invariance of the (2,0) theory allows to scale either side of the

compactifiction and we find that

Z[S4] = Z[Σ], (4.7.12)

where

Z[S4] ≡ Z[Σn,g × S4]|Vol(Σ)→0 Z[Σ] ≡ Z[Σn,g × S4]|Vol(S4)→0. (4.7.13)

We can then calculate the partition function of the Toda theory of type g, where g is the

algebra associated to the initial 6-dimensional (2,0) theory. By equating the two parti-

tion functions, of the 4-dimensional theory on S4, and of the 2-dimensional theory on

Σn,g, the AGT correspondence allows to identify non-trivial quantity in the two different

theories.

Following the AGT conjecture a number of dualities were proposed in the same spirit

in order to relate different compactifications of the (2,0) theory. In ([135]) the author
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Figure 4.2: The two compactifications giving rise to the 3d-3d correspondence. In par-

ticular, via 5-dimensional Super-Yang-Mills theory the moduli space of supersymmetric

vacua of T [M3] is identified with the space of complex flat connections on M3.

proposed for the first time a 3d-3d correspondence, relating 3-dimensional N = 2 theories

and complex Chern-Simons theory on a three-manifold M3. The 3-dimensional super-

symmetric theories were obtained again from compactifying the (2,0) theory on M3 and

topologically twisting away the SO(3) holonomy of the manifold in order to obtain a

supersymmetric theory. It was argued that when such theories were studied on a space-

time of the form R2 × S1, as in Figure 4.2, the moduli space of supersymmetric vacua

could be identified with the space of complex flat connections on M3, that is ([136])

MSUSY(T [M3, G]) =Mflat(M3, GC) (4.7.14)

where T [M3, G] is the 3-dimensional N = 2 theory obtained by compactifying the (2,0)

theory of type g = Lie(G) on M3. This can be deduced by reversing the order of

compactification ([137]) through the known reduction of the (2,0) theory on S1 to 5-

dimensional Super-Yang-Mills theory.

Similarly, in ([138]), the authors proposed a correspondence, as depicted in Figure

4.3, between 2d N = (2, 0) theories labelled by four-manifolds (that is, obtained by

compactifying the (2,0) theory on a four-manifold) and defined on a two-torus T 2, with 4-

dimensional N = 4 Super-Yang-Mills theory (obtained by compactifying the (2,0) theory

on T 2) defined on the four-manifold. In order to preserve supersymmetry, a topological

twist is necessary on the side of the compactification which leads to the 2d theory since a

generic four-manifold has an SO(4) holonomy which does not admit covariantly constant

spinors. On the other hand the reduction on the flat two-torus does not need any twisting.
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Figure 4.3: The two compactifications giving rise to the 2d-4d correspondence. The

elliptic genus of the 2d theory can then be identified with the partition function of the

4-dimensional theory after performing a Vafa-Witten twist.

Then by identifying the partition functions an equality was proposed between the

elliptic genus of the 2d theory and the partition function of 4-dimensional N = 4 Super-

Yang-Mills theory as defined by the Vafa-Witten twist, ([139]).

In Chapter 6, we will extend this line of ideas, by reducing the (2,0) theory on a two-

sphere S2. This analysis was not included in the AGT construction, as the theory thus

obtained is not a theory of class S and in particular is not conformal ([140]). Note that

since the two-sphere is not flat, a topological twisting is necessary to allow for covariantly

constant spinors, or equivalently, an R-symmetry gauge field needs to be turned on to

cancel the spin connection arising from the curvature of the two-sphere.



Chapter 5

M2-Branes And The (2,0)

Superalgebra

Dp-branes are all related to each other in a straightforward way using T-duality which is

valid microscopically in the open string description and also is manifest in the low energy

Yang-Mills effective actions ([141]), although of course the quantum behaviour of these

theories drastically depends on their dimension. Mathematically this occurs because all

Super-Yang-Mills theories on D-branes are constructed by dimensional reduction of the

10-dimensional Super-Yang-Mills theory with N = 1 supersymmetry.

While the field theories for multiple M2-branes are now known ([4, 5, 142]) (for a

review see ([143])) the M5-brane remains mysterious and believed to be non-lagrangian.

Although there are various proposals for M5-brane dynamics that use a lagrangian but

which require some specific limit to be taken ([104,105,130,144]). One still expects there

to be some form of T-duality, inherited from string theory, that relates M5-branes to

M2-branes. Even though there is no microscopic picture of these theories analogous to

open strings one may still expect to see some universal structure in their field theory

descriptions.

One attempt to relate the M2-branes to M5-branes using T-duality was given in

([145]). The simple translational orbifold approach used in ([141]) fails as translations

are not a symmetry of the M2-brane Lagrangian. Nevertheless the modified approach

of ([145]) leads from the periodic array of M2-branes to a variation of 5-dimensional

Super-Yang-Mills as a description of M5-branes.

There have also been papers which show that maximally supersymmetric M2-brane

Lagrangian with a Nambu bracket for the 3-algebra leads to an abelian M5-brane ([146–

102
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148]). It might be possible to view the results here in a complimentary context: start-

ing from the non-abelian (2, 0) superalgebra associated to multiple M5-branes and then

obtaining M2-branes.

In this chapter we will generalise the 6-dimensional (2,0) superalgebra construction of

([6]) by including a non-dynamical abelian background three-form.1 Setting this to zero

reproduces the previous results which have been proposed as a description of two M5-

branes (here we specialise to the case of a positive definite Lie-3-algebra). In particular

there is a covariantly constant vector which imposes constraints that require there to be

an isometry along one direction which leads to 5-dimensional super-Yang-Mills in the

spacelike case ([6]), 5-dimensional euclidean Super-Yang-Mills in the timelike case ([144])

and quantum mechanics on instanton moduli space in the null case ([129]). These have all

been argued to provide a description of the quantum (2, 0) theory ([104, 105, 130, 144]).

We then show that turning on the background three-form allows some components of

the vector to be dynamical but also forces a dimensional reduction to 3 dimensions

leading to the maximally supersymmetric field theory of two M2-branes ([4, 142]). Thus

this generalized (2, 0) superalgebra provides a structure that contains aspects of both

multiple M2-branes and M5-branes.

The structure of the chapter is as follows. In section 5.1 we propose a generalization

of the algebra through the introduction of an abelian three-form Cµνλ, close the algebra

and derive the constraints and equations of motion for the fields. In section 5.2 we

find the central charges and the energy-momentum tensor associated to the generalized

(2,0) algebra. In section 5.3 we relate our construction to the maximally supersymmetric

model describing two M2-branes and carry out the reduction.

5.1 Closure of the Algebra

Recall the discussion in section 4.6. In ([6]) a (2,0) algebra was realised on a non-abelian

6-dimensional tensor multiplet. In order to realise the algebra, it was necessary to require

the existence of a gauge field Aµ and a spacetime vector Y µ. The fields were assumed to

live in a generic vector space endowed with an antisymmetric triple bracket; similarly to

what happens for the BLG model, closure of the algebra required the fields to actually

take values in a 3-algebra. Closure also determined the equations of motion for the fields

of the tensor multiplet and constraints for the additional fields. The aim of this chapter

is to generalise this algebra by including an abelian non-dynamical three-form Cµνλ with

mass dimension [C] = −3.

1Using such a three-form has also been considered by A. Gustavsson ([149]).
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We consider the following extension of the (2,0) algebra

δXi =iε̄ΓiΨ

δY µ =
iα

3!
ε̄ΓλρC

µλρΨ

δΨ =ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε

− 1

2
ΓµΓij [Y µ, Xi, Xj ]ε+

β

3!
CµνλΓµνλΓijk[Xi, Xj , Xk]ε

δHµνλ =3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, Xi,Ψ]

+ iγε̄(?C)µνλΓij [Xi, Xj ,Ψ] +
iγ′

2
ε̄Γ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) =iε̄Γµν [Y ν ,Ψ, · ] +
iδ

3!
ε̄CνλρΓµνλρΓ

i[Xi,Ψ, · ] , (5.1.1)

where α, β, γ, γ′, δ are constants to be determined and a dot (·) denotes an arbitrary

field. There are additional terms that one could consider however the rationale behind

this choice of algebra will become clear upon showing how a natural reduction to the

M2-branes arises. In this section we will show that the superalgebra closes on shell and

we will derive the equations of motion and the constraints that the fields need to satisfy.

Before we consider the closure of the algebra we first observe that the fermion equation

of motion can be obtained by imposing self-duality of δH. We find that

δHµνλ − (?δH)µνλ = iε̄Γµνλ(ΓρDρΨ + ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]) ,

(5.1.2)

provided that γ′ = 3γ (otherwise one does not find a single expression on the right hand

side). Thus we see that the Fermion equation of motion is

ΓρDρΨ + ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ] = 0 . (5.1.3)

5.1.1 Closure on X i

We now proceed to close the algebra on the scalar fields Xi. We see that the algebra

closes up to a translation and a gauge transformation, that is

[δ1, δ2]Xi = vνDνX
i + Λ(Xi) , (5.1.4)

with

vµ = −2i(ε̄2Γµε1)

Λ(·) = −2i(ε̄2ΓλΓiε1)[Y λ, Xi, · ]− iβ(ε̄2ΓµνλΓjkε1)Cµνλ[Xj , Xk, · ] . (5.1.5)

We note that a new term, proportional to Cµνλ, now contributes to the definition of

gauge transformation compared to the one defined in ([6]).



Chapter 5. M2-Branes And The (2,0) Superalgebra 105

5.1.2 Closure on Y µ

Next we look at closing supersymmetry on Y µ. The expected form of the closure is

[δ1, δ2]Y µ = vνDνY
µ + Λ(Y µ) , (5.1.6)

with vµ and Λ(·) as defined in (5.1.5). Explicit calculation leads to

[δ1, δ2]Y µ =− iα

3
(ε̄2Γνε1) CµλρHνλρ +

2iα

3

(
ε̄2ΓνΓiε1

)
CµνσDσX

i

− iα

6

(
ε̄2ΓλρσΓijε1

)
Cµλρ[Y σ, Xi, Xj ]

+
iαβ

3

(
ε̄2Γ τω

λ Γijkε1

)
CµλρCρτω[Xi, Xj , Xk] . (5.1.7)

We see that imposing the constraint

DνY
µ − α

6
CµλρHνλρ = 0 , (5.1.8)

turns the first term of the closure into a translation. Similarly, with the help of the

constraint

CµνσDσX
i +

3

α
[Y µ, Y ν , Xi] = 0 , (5.1.9)

the second term of the closure represents the first part of a gauge transformation. We

see that both these constraints are generalizations of ones found in ([6]).

In order for the third line to turn into the part of a gauge transformation parametrized

by Cστω we need

Cµλρ
(
ε̄2ΓλρσΓijε1

)
Y σ =

6β

α
Cστω

(
ε̄2ΓστωΓijε1

)
Y µ . (5.1.10)

It is easily checked that if α = 18β this condition is simply reduced to

C ∧ Y = 0 . (5.1.11)

We will find that the condition α = 18β also arises for closure on the other fields. Note

that in the condition (5.1.11), Y µ lives in a 3-algebra, while C does not. A generic choice

of C and Y µ is not immediately compatible with supersymmetry, and condition (5.1.11)

is here interpreted as the requirement that Y live in the space orthogonal to C with

respect to the wedge product. Work is in progress in order to determine which solutions

are consistent with supersymmetry and to understand the form of the (2,0) algebra in

such cases.

We require the fourth term to vanish as it parametrizes neither a translation nor a

gauge transformation and hence

C[µν
τCλ]τ

ρ = 0 . (5.1.12)
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Note that this means that the components of Cµνλ can be identified with the structure

constants of a Lie-algebra. Since µ, ν, ... = 0, 1, 2, ...5 this leads to only two possible

choices: su(2) and so(4) = su(2)⊕ su(2).

5.1.3 Closure on Aµ

From closing supersymmetry on the gauge field Aµ we expect to find

[δ1, δ2]Aµ = −vνFµν +DµΛ , (5.1.13)

Using the relations and constraints found so far, we find after some calculations that

[δ1, δ2]Aµ =− vν
(

[Y λ, Hµνλ, · ] + δ(?C)µνλ[Xi, DλXi, · ] +
iδ

2
(?C)µνλ[Ψ̄,ΓλΨ, · ]

)
+DµΛ + 2i

(
ε̄2ΓµΓiε1

) (
[Y ν , DνX

i, · ]− (δ/6)Cστω[Hστω, X
i, · ]

)
+ 2i(β + δ/6)

(
ε̄2Γ τω

[µ Γijkε1

)
Cν]τω[Y ν , [Xi, Xj , Xk], · ]

− i(ε̄2ΓµνσΓijε1)

(
[Y ν , [Y σ, Xi, Xj ], · ] +

3δ

α
[Y ν , [Y σ, Xi, Xj ], · ]

)
.

(5.1.14)

We see that in order for the first term to represent a translation we must require the

identification

Fµν(·) = [Y λ, Hµνλ, · ] + δ(?C)µνλ[Xi, DλXi, · ] +
iδ

2
(?C)µνλ[Ψ̄,ΓλΨ, · ] , (5.1.15)

which generalizes the constraint in (4.6.3). By looking at the form the closure needs to

take, we require the last three terms to vanish. This imposes the correction to the known

constraint

[Y ν , DνX
i, · ]− δ

6
Cστω[Hστω, X

i, · ] = 0 , (5.1.16)

as well as the relations between the coefficients

δ = −6β, α = −3δ . (5.1.17)

5.1.4 Closure on Hµνλ

Closing the algebra on Hµνλ is somewhat more lengthy, and in the process we found the

Mathematica GAMMA package quite helpful ([150]). Supersymmetry should close up to

a translation and a gauge transformation

[δ1, δ2]Hµνλ = vρDρHµνλ + Λ(Hµνλ) . (5.1.18)
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Since the calculation is quite involved we will not provide the full details here. Rather

we note that in order to close the algebra numerous terms are required to vanish as they

parametrize neither a translation, nor a gauge transformation. This is the case if the

following relations among the coefficients hold

γ′ = 3γ, γ′ = 9β, δ = −2γ . (5.1.19)

Then the remaining terms, making use of the constraints found so far, take the form

[δ1, δ2]Hµνλ =vρDρHµνλ − 2i(ε̄2ΓσΓiε1)[Y σ, Xi, Hµνλ]

− iβ
(
ε̄2ΓστωΓijε1

)
Cστω[Xi, Xj , Hµνλ]

+ 4vρ
(
D[λHµνρ] +

1

4
εµνλρστ [Y σ, Xi, DτXi]− γ(?C)[µνλ[Xi, Xj , [Yρ], X

i, Xj ]]

+
i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ]− iγ(?C)[µνλ[Xi, Ψ̄,Γρ]Γ

iΨ]

)
, (5.1.20)

We see that the first three terms represent a translation and a gauge transformation.

The algebra then closes on shell and we find the equation of motion for Hµνλ

D[λHµνρ] = −1

4
εµνλρστ [Y σ, Xi, DτXi] + γ(?C)[µνλ[Xi, Xj , [Yρ], X

i, Xj ]]

− i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ] + iγ(?C)[µνλ[Xi, Ψ̄,Γρ]Γ

iΨ] . (5.1.21)

5.1.5 Closure on Ψ

Closure of supersymmetry on the fermion Ψ should be obtained up to a translation and

a gauge transformation

[δ1, δ2]Ψ = vρDρΨ + Λ(Ψ) . (5.1.22)

An explicit calculation, making use of the Gamma package ([150]) and the constraints

found so far, gives

[δ1, δ2]Ψ =vρDρΨ + Λ(Ψ)

+
3i

4
(ε̄2Γσε1)Γσ

(
ΓρDρΨ + ΓρΓ

i[Y ρ, Xi,Ψ] +
γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]
)

− i

4
(ε̄2ΓσΓjε1)ΓσΓj

(
ΓρDρΨ + ΓρΓ

i[Y ρ, Xi,Ψ] +
γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]
)
.

(5.1.23)

We see that in order to close the algebra the terms other than the translation and

the gauge transformation need to vanish. This is achieved upon imposing the Fermion

equation of motion, which agrees with (5.1.3).
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5.1.6 Bosonic Equations of Motion

We can vary the Fermion equation of motion (5.1.3) to find the equations of motion for

Xi and Hµνλ. We find, making use of the constraints found so far, the following variation(
D2Xi − i

2
[Y σ, Ψ̄,ΓσΓiΨ] + [Y σ, Xj , [Yσ, X

j , Xi]]

+
iγ

3!
Cστω[Ψ̄,ΓστωΓijΨ, Xj ] + βγCστωCστω[[Xi, Xj , Xk], Xj , Xk]

)
Γiε

+
1

3!

(
DµHνλρ +

1

4
εµνλρστ [Y σ, Xi, DτXi]− γ(?C)µνλ[Xi, Xj , [Yρ, X

i, Xj ]]

+
i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ]− iγ(?C)µνλ[Xi, Ψ̄,ΓρΓ

iΨ]
)

Γµνλρε = 0 . (5.1.24)

We see that the equation of motion for Hµνλ agrees with the one found by requiring

closure of the algebra (5.1.21). Moreover, we find the equation of motion for Xi

D2Xi =
i

2
[Y σ, Ψ̄,ΓσΓiΨ]− [Y σ, Xj , [Yσ, X

j , Xi]]

− iγ

3!
Cστω[Ψ̄,ΓστωΓijΨ, Xj ]− βγCστωCστω[[Xi, Xj , Xk], Xj , Xk] . (5.1.25)

Therefore we have determined the equations of motion for all the degrees of freedom of

the (2,0) tensor multiplet.

5.1.7 Summary

We have shown that the (2,0) algebra (5.1.1) we proposed closes on shell. We found

corrections to the equations of motion and constraints (4.6.3), which we list here for

convenience. Since we are free to rescale Cµνλ we can, without loss of generality, set the

coefficients of the (2,0) algebra to the specific values

α = 3 β = 1/3! γ = 1/2 δ = −1 γ′ = 3/2 , (5.1.26)

which respect the relations found in the closure of the algebra. The equations of motion

for the fields of the tensor multiplet are

0 = D2Xi − i

2
[Y σ, Ψ̄,ΓσΓiΨ] + [Y σ, Xj , [Yσ, X

j , Xi]]

+
i

2 · 3!
Cστω[Ψ̄,ΓστωΓijΨ, Xj ] +

1

2 · 3!
CστωCστω[[Xi, Xj , Xk], Xj , Xk]

0 = D[λHµνρ] +
1

4
εµνλρστ [Y σ, Xi, DτXi]− 1

2
(?C)[µνλ[Xi, Xj , [Yρ], X

i, Xj ]]

+
i

8
εµνλρστ [Y σ, Ψ̄,ΓτΨ]− i

2
(?C)[µνλ[Xi, Ψ̄,Γρ]Γ

iΨ]

0 = ΓρDρΨ + ΓρΓ
i[Y ρ, Xi,Ψ] +

1

2 · 3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ] , (5.1.27)
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while the additional constraints for the algebra to close on shell are

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (?C)µνλ[Xi, DλXi, · ] +
i

2
(?C)µνλ[Ψ̄,ΓλΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν ·, ·′] +
1

3!
Cστω[Hστω, · , ·′ ]

0 = C ∧ Y . (5.1.28)

The equations of motion (5.1.27) are invariant under the (2,0) supersymmetry realised

by the variations

δXi = iε̄ΓiΨ

δY µ =
i

2
ε̄ΓλρC

µλρΨ

δΨ = ΓµΓiDµX
iε+

1

2 · 3!
HµνλΓµνλε

− 1

2
ΓµΓij [Y µ, Xi, Xj ]ε+

1

3!2
CµνλΓµνλΓijk[Xi, Xj , Xk]ε

δHµνλ = 3iε̄Γ[µνDλ]Ψ + iε̄ΓiΓµνλρ[Y
ρ, Xi,Ψ]

+
i

2
ε̄(?C)µνλΓij [Xi, Xj ,Ψ] +

3i

4
ε̄Γ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = iε̄Γµν [Y ν ,Ψ, · ]− i

3!
ε̄CνλρΓµνλρΓ

i[Xi,Ψ, · ] . (5.1.29)

5.2 Conserved Currents

In this section we construct the supercurrent Sµ and energy-momentum tensor Tµν as-

sociated to the supersymmetry algebra realised in (5.1.1). We can then deduce the form

of the superalgebra including the central charges.

The supercurrent can be easily computed by

ε̄Sµ = 2πi〈δεΨ,ΓµΨ〉 . (5.2.1)

Note the pre-factor of 2π which is needed to produce the correct energy-momentum tensor

and will be justified in due course. Explicitly we find

Sµ =− 2πi〈DνX
i,ΓνΓiΓµΨ〉+

πi

3!
〈Hστω,Γ

στωΓµΨ〉 − πi〈[Yν , Xi, Xj ],ΓνΓijΓµΨ〉

+
πi

3 · 3!
Cστω〈[Xi, Xj , Xk],ΓijkΓστωΓµΨ〉 . (5.2.2)
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The supercurrent is indeed found to be conserved on shell.

Next we construct the energy-momentum tensor, which after some trial and error,

reads

Tµν =2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλXi〉+ π〈[Xi, Xj , Yµ], [Xi, Xj , Yν ]〉

−π
2
ηµν〈[Xi, Xj , Yλ], [Xi, Xj , Y λ]〉+

π

2
〈Hµλρ, H

λρ
ν 〉 − iπ〈Ψ̄,ΓµDνΨ〉

−iπ〈Ψ̄,ΓνDµΨ〉+ iπηµν〈Ψ̄,ΓλDλΨ〉 − iπηµν〈[Ψ̄, Y λ, Xi],ΓλΓiΨ〉

+
π

3!
〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉(CµτωC τω

ν − 1

3!
ηµνC

2)

+
π

3!
Cµλρ(?C)ν

λρ〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉 − iπ

3!
ηµνC

στω〈[Ψ̄,ΓστωΓijψ,Xi], Xj〉 .

(5.2.3)

The energy-momentum tensor is found to satisfy ∂µTµν = 0 using the equations of motion

and constraints for the fields derived in the previous section. Although we note that the

bosonic part is not symmetric for a general choice of three-form due to the Cµλρ(?C)ν
λρ

term (as well as the more familiar asymmetry arising from the fermions). The 2π pre-

factor was justified in ([151]) to agree with charge quantization and also in ([144]) to

reproduce the correct energy density for M2-branes ending on M5-branes. It also leads

to the correct matching of instanton-solitons with KK tower modes ([144]).

In order to derive the super-algebra we make use of the the chain of identities

iε̄B{QA, QB} = i{ε̄Q,QA} = δεQA =

∫
d5x (δεS

0)A , (5.2.4)

where

Q =

∫
d5x S0 . (5.2.5)

Since by construction {QA, QB} is symmetric in A,B, we can extract the momentum

Pν =

∫
d5xT0ν , (5.2.6)

and the central charges (Ziµ, Z
ij
µνλ) following the expansion

{QA, QB} = 2(ΓµC−1)ABPµ + (ΓµΓiC−1)ABZ
i
µ +

1

2! · 3!
(ΓµνλΓijC−1)ABZ

ij
µνλ . (5.2.7)

In case of vanishing Fermions, we find the following central charges. For Ziµ we find

Zi0 =4π

∫
d5x 〈[Y0, X

i, Xj ], D0Xj〉 − 〈[Yµ̇, Xi, Xj ], Dµ̇Xj〉 (5.2.8)

Ziµ̇ =4π

∫
d5x 〈[Y 0, Xi, Xj ], Dµ̇X

j〉+ 〈[Yµ̇, Xi, Xj ], D0Xj〉

+ 〈H0µ̇ν̇ , D
ν̇Xi〉+

1

3
C+

0µ̇ν̇〈[X
j , Xk, X l], Dν̇Xm〉εijklm

− C+
0µ̇ν̇〈[X

i, Xj , Xk], [Y ν̇ , Xj , Xk]〉 , (5.2.9)
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while Zijµνλ reads (all the expressions should be taken to be anti-symmeterized in i, j and

µ̇, ν̇, λ̇ where dotted indices only run over spatial coordinates µ̇, ν̇ = 1, 2, . . . , 5.)

Zij0µ̇ν̇ =4π

∫
d5x 2〈[Yµ̇, Xi, Xk], [Yν̇ , X

k, Xj ]〉 − 〈[Yν̇ , Xk, X l], Dµ̇X
m〉εijklm

+
1

2
〈H0µ̇ν̇ , [Y

0, Xi, Xj ]〉 − 1

2
〈Hµ̇ν̇ρ̇, [Y

ρ̇, Xi, Xj ]〉 − 2〈Dµ̇X
i, Dν̇X

j〉

− 〈(Cµ̇ν̇ρ̇Dρ̇Xk + C0µ̇ν̇D0X
k), [Xi, Xj , Xk]〉

+
1

2
〈(Cµ̇ν̇ρ̇[Y ρ̇, Xk, Xn]− C0µ̇ν̇ [Y 0, Xk, Xn]), [X l, Xm, Xn]〉εijklm

− 1

2 · 3!
〈[Xk, X l, Xm], (2C0ν̇ρ̇H

ρ̇
0µ̇ + Cν̇ρ̇σ̇H

ρ̇σ̇
µ̇ )〉εijklm (5.2.10)

Zij
µ̇ν̇λ̇

=4π

∫
d5x

1

2
〈Hµ̇ν̇λ̇, [Y

0, Xi, Xj ]〉 − 3

2
〈H0µ̇ν̇ , [Yλ̇, X

i, Xj ]〉

− 〈(Cµ̇ν̇λ̇D0X
k + 3C0µ̇ν̇Dλ̇X

k), [Xi, Xj , Xk]〉

− 1

2
〈(Cµ̇ν̇λ̇[Y0, X

m, Xn] + 3C0µ̇ν̇ [Yλ̇, X
m, Xn]), [Xk, X l, Xn]〉εijklm

+
1

4
〈(Cµ̇ν̇ρ̇H ρ̇

0λ̇
− C0λ̇ρ̇H

ρ̇
µ̇ν̇ ), [Xk, X l, Xm]〉εijklm . (5.2.11)

5.3 From (2,0) to 2 M2’s

As recalled in section 2 previous work has examined the dynamical systems that arise

from the above system when Cµνλ vanishes ([6, 129, 144]). To this end let us split up

spacetime into the directions α, β = 0, 1, 2 and a, b = 3, 4, 5 and fix

Cabc = l3 εabc , (5.3.1)

where l has dimension of length. This breaks to the SO(1, 5) Lorentz symmetry to

SO(1, 2) × SO(3). We will see that this SO(3) enhances the SO(5) R-symmetry to

SO(8).

Recall the constraints found upon closing the (2,0) algebra (5.1.1) on the tensor

multiplet

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (?C)µνλ[Xi, DλXi, · ] +
i

2
(?C)µνλ[Ψ̄,ΓλΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν ·, ·′] +
1

3!
Cστω[Hστω, · , ·′ ] . (5.3.2)

We now look at the third constraint

CµνσDσ(·) + [Y µ, Y ν , · ] = 0 , (5.3.3)
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The simplest way to solve this constraint is to take the fields independent of the the xa

spatial directions: ∂a(·) = 0. Then the constraint is solved for

Aa(·) =
1

2l3
εabc[Y

b, Y c, · ] . (5.3.4)

Next we look at the last constraint

[Y ν , Dν · , ·′ ] +
1

6
Cστω[Hστω, · , ·′ ] = 0 , (5.3.5)

and we see that a solution is given by

Y α = 0 Habc = − 1

l6
[Ya, Yb, Yc] , (5.3.6)

where to obtain the last relation we used the fundamental identity. Note that the second

constraint is also solved by (5.3.6). Finally the first constraint is satisfied if in addition

we have

Hαab =
1

l3
εabcDαY

c . (5.3.7)

We note that similar expressions for Hµνλ appeared in ([147]). We also find that

Fαβ(·) = − 1

l3
εαβγ [Ya, D

γY a, · ]− l3εαβγ [Xi, DγXi, · ]− il3

2
εαβγ [Ψ̄,ΓγΨ, · ] . (5.3.8)

To summarise, we found a solution to the constraints (5.3.2) given by

∂a(·) = Y α = 0

Aa(·) =
1

2l3
εabc[Y

b, Y c, · ]

Fαβ(·) = − 1

l3
εαβγ [Ya, D

γY a, · ]− l3εαβγ [Xi, DγXi, · ]− il3

2
εαβγ [Ψ̄,ΓγΨ, · ]

Habc = − 1

l6
[Ya, Yb, Yc]

Hαab =
1

l3
εabcDαY

c , (5.3.9)

with the other components of Hµνλ fixed by self-duality. We now wish to implement the

solution to the constraints that we found into the algebra (5.1.29). We see that since

the fields are required to be independent of the three spatial directions, a dimensional

reduction naturally arises.

Let us now look at the supersymmetry transformations and apply the solution to

the constraints (5.3.9). We find, noting that the fields now depend only on xα, for the

fermions

δΨ = ΓαΓiDαX
iε+

1

2l3
ΓabΓ345Γi[Y a, Y b, Xi]ε− 1

3!l6
Γabc[Y

a, Y b, Y c]ε

+
1

l3
ΓαΓcΓ345DαY

cε− 1

2
ΓaΓij [Y a, Xi, Xj ]ε+

1

3!l3
Γ345Γijk[Xi, Xj , Xk]ε , (5.3.10)
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and for the bosons

δXi = iε̄ΓiΨ

δY a = il3ε̄ΓaΓ345Ψ

δAα(·) = iε̄ΓαΓb[Y b,Ψ, · ]− il3ε̄ΓαΓ345Γi[Xi,Ψ, · ] . (5.3.11)

We can now discuss how the degrees of freedom of the two theories are related. The

eight scalars parametrizing fluctuations in the directions transverse to the M2-branes

worldvolume will consist of the five scalars Xi of the (2,0) tensor multiplet and the three

remaining scalars Y α. Therefore we can define the 3-dimensional scalars:

XI ≡ (l−3/2Y a, l3/2Xi) , (5.3.12)

where now I, J = 3, 4, 5, ..., 10. Note that no other bosonic degrees of freedom are present

since Hµνλ is fixed by the constraints (5.3.9).

Next we explain how the fermionic degrees of freedom of the two theories are related.

Let us define

Ω =
1√
2

+
1√
2

Γ345 , (5.3.13)

then Ω2 = Γ345 and we see that

Γ012Ω = Ω−1Γ012 . (5.3.14)

A consequence of this is that if we define

ε′ = Ωε Ψ′ = l3/2ΩΨ , (5.3.15)

then

Γ012ε
′ = ε′ Γ012Ψ′ = −Ψ′ , (5.3.16)

and hence ε′ can be thought of as parametrizying the supersymmetries preserved by an

M2-brane along xα.

The supersymmetry transformations now read

δΨ′ = ΓαΓIDαX
Iε′ − 1

3!
ΓIJK [XI , XJ , XK ]ε′

δXI = iε̄ ′ΓIΨ′

δAα(·) = iε̄ ′ΓαΓI [XI ,Ψ′, · ] . (5.3.17)

These are exactly the variations of the maximally supersymmetric M2-brane model ([4,

142]). Moreover, we see that the constraint (5.3.9) for the field strength Fαβ

Fαβ(·) = −εαβγ [XI , DγXI , · ]− i

2
εαβγ [Ψ̄′,ΓγΨ′, · ] , (5.3.18)
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is precisely the equation of motion for the field strength of the maximally supersymmetric

M2-brane model. Similarly, the remaining equations of motion reduce to the correct

equations of motion:

0 =D2XI +
1

2
[[XI , XJ , XK ], XJ , XK ] +

i

2
[Ψ̄′,ΓIJΨ′, XJ ]

0 =ΓαDαΨ′ +
1

2
ΓIJ [Ψ, XI , XJ ] . (5.3.19)

Therefore we showed that upon imposing the solution of the constraints (5.3.9) on the

(2,0) algebra (5.1.29) we obtain the maximally supersymmetric model describing two

M2-branes.

Let us briefly mention what happens if we instead take

Cαβγ = l3εαβγ . (5.3.20)

This is essentially just a double Wick rotation so that the equations are obtained by a

suitable Wick rotation. Thus we arrive at a euclidean field theory in 3 dimensions. An

inspection of the equations shows that this has an SO(2, 6) R-symmetry. We thus obtain

a non-abelian 3-dimensional euclidean theory which is suitable to describe an euclidean

M2-brane in (5 + 6)-dimensional spacetime, as appears in the work of ([152]).



Chapter 6

M5-branes on S2

The results of this chapter have their origin in an early collaboration towards the paper

([12]). I would like to thank the authors for allowing part of the results of ([12]) to appear

in this thesis, and for acknowledging the collaboration in the paper itself.

Chapter 4 provided some motivation as to why compactifications of the (2,0) theory

to lower dimensions might be of interest. Recall that a number of important results were

obtained by relating theories living in different dimensions, by considering their origins

as compactifications of the (2,0) theory on some manifolds. The AGT correspondence

([134]), was the first such relation to be found. It relates quantities in 4-dimensional, N =

2 theories to quantities in 2d-dimensional Toda theories, which are non-supersymmetric

conformal field theories. Indeed, a class of 4-dimensional N = 2 theories can be obtained

as compactification of the (2,0) theory on a Riemann surface Σn,g of genus g with possibly

puncture defects (so called theories of class S), while Toda theories of type ADE can

be obtained by compactifying the (2,0) theory of type ADE on a four-sphere S4. The

partition function of the (2,0) theory on the product manifold Σn,g×S4 (or the equivalent

replacement of S4 with an Ω background) then allows to identify quantities in the two

theories through the factorization of the partition function and the scaling of the volume

of either compactification manifolds thanks to conformal invariance.

Following the AGT correspondence, other results followed relating other compactifi-

cations of the (2,0) theory on different manifolds. In particular, in Chapter 4 the 3d-3d

correspondence of ([135]) and the 4d-2d correspondence of ([138]) were recalled. The

latter is the start of a program involving the compactification of the (2,0) theory on

arbitrary four-manifolds M4 (more precisely those which can be seen as coassociative

four-cycles in G2 manifolds). On the other side of the compactification, the authors of

([138]) consider a two-torus T 2 which produces N = 4 Super-Yang-Mills theory on the

115
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four-manifold M4. In this chapter, we extend such analysis and we study the (2,0) the-

ory on a two-sphere S2. The resulting theory is a sigma model from R4 into the moduli

space of k centered SU(2) monopoles, where k is the number of parallel M5-branes. In

order to obtain this result, the two-sphere is seen as a circle fibration of an interval, such

that the radius of the fiber vanishes at the two endpoints of the interval. This allows to

reduce the (2,0) theory on the circle fiber and successively on the interval. The first step

realizes 5-dimensional N = 2 Super-Yang-Mills theory on the space R4 × I, where I is

the interval. The vanishing of the radius of the fiber at the two endpoints provide specific

boundary condditions. The further reduction of 5-dimensional Super-Yang-Mills theory

on an interval I does not produce a superconformal field theory, as it is instead the case

for theories of class S. In this case the volume of the sphere, or equivalently the length

of the interval in our setup, will set the scale of the underlying theory. In particular, the

latter will arise by localizing on the fields configurations that preserve supersymmetry

along the interval I. These are found to be those configurations for which the three

scalars out of the five of the (2,0) theory which transform under the so(3)R resulting

from the breaking of the total R-symmetry group, satisfy Nahm equations. Indeed the

moduli space of Nahm equations with particular boundary conditions is known to be

isomorphic to the moduli space of k centered SU(2) monopoles ([153]). Therefore, by us-

ing the intermediate reduction to 5-dimensional Super-Yang-Mills theory allowed by the

circle fibration of the interval, it is possible to identify the supersymmetric configurations

as those which satisfy Nahm equations on the interval. In this chapter such analysis is

carried out, by embedding the (2,0) in an appropriate supergravity background which

allows to preserve supersymmetry on the two-sphere. The analysis follows closely the

one carried out in ([12]), arising from an early collaboration. In ([12]) the authors go on

to study the reduction for a generic four-manifold M4, while here we only study the case

of flat R4.

The structure of this chapter is the following. In section 6.1 we study the supergravity

background preserving supersymmetry on the curved two-sphere. In section 6.2 we carry

out the circle reduction from 6 dimensions to Super-Yang-Mills theory in 5 dimensions,

and in section 6.3 we reduce to 4 dimensions by shrinking the size of the interval to zero.

6.1 Supergravity Backgrounds and Twists

This section serves two purposes: firstly to explain the possible twists of the 6-dimensional

N = (0, 2) theory on a two-sphere S2, and secondly, to determine the supergravity

background associated to the topological half-twist on S2.
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6.1.1 Twisting on S2

The R-symmetry and Lorentz algebra of the M5-brane theory are

sp(4)R ⊕ so(6)L . (6.1.1)

The supercharges transform in the (4, 4̄) spinor representation (the same representation

as the fermions in the theory). The product structure of the space-times implies that we

decompose the Lorentz algebra as

so(6)L → so(4)L ⊕ so(2)L ∼= su(2)` ⊕ su(2)r ⊕ so(2)L . (6.1.2)

Consider the decomposition of the R-symmetry as

sp(4)R → su(2)R ⊕ so(2)R (6.1.3)

For our analysis we first consider the theory on S2 ×R4 and the twist along S2. The

Lorentz and R-symmetry groups reduce again as in (6.1.2) and (6.1.3). The twist is

implemented by identifying so(2)R with so(2)L and we denote it so(2)twist ' u(1)twist.

As we have seen this is compatible with the twist 1, discussed in the last subsection.

Twist S2 : so(6)L⊕sp(4)R → gres ∼= su(2)`⊕su(2)r⊕su(2)R⊕u(1)twist . (6.1.4)

The residual symmetry group and decomposition of the supercharges and fermions is

then

so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)twist

4⊗ 4 → (2,1,2)−2 ⊕ (2,1,2)0 ⊕ (1,2,2)0 ⊕ (1,2,2)+2 .

(6.1.5)

There are eight supercharges transforming as singlets on S2 and transforming as Weyl

spinors of opposite chirality on M4 and doublets under the remaining R-symmetry

The fields of the 6-dimensional (2,0) theory decompose as follows

so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)r ⊕ su(2)R ⊕ u(1)L ⊕ u(1)R

Φmn : (1,5) → (1,1,1)0,2 ⊕ (1,1,1)0,−2 ⊕ (1,1,3)0,0

ρm̂m : (4,4) → (1,2,2)+1,+1 ⊕ (1,2,2)−1,+1 ⊕ (2,1,2)+1,−1 ⊕ (2,1,2)−1,−1

BAB : (15,1) → (1,1,1)0,0 ⊕ (3,1,1)0,0 ⊕ (1,3,1)0,0 ⊕ (2,2,1)2,0 ⊕ (2,2,1)−2,0 .

(6.1.6)

After the twist of the u(1) symmetries, note that this is not the standard transformation

of the 4-dimensional N = 2 hypermultiplet. Twisting with the su(2)r Lorentz with the

remaining su(2)R, i.e.

su(2)twist ∼= su(2)r ⊕ su(2)R (6.1.7)
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the resulting topological theory has the following matter content

so(6)L ⊕ sp(4)R → gres ∼= su(2)` ⊕ su(2)twist ⊕ u(1)twist

Φmn : (1,5) → (1,1)2 ⊕ (1,1)−2 ⊕ (1,3)0

ρm̂m : (4,4) → (1,1⊕ 3)+2 ⊕ (1,1⊕ 3)0 ⊕ (2,2)0 ⊕ (2,2)−2

BAB : (15,1) → (1,1)0 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (2,2)2 ⊕ (2,2)−2 .

(6.1.8)

6.1.2 Supergravity Background Fields

Before describing the details of the reduction, we should summarize our strategy. Our

goal is to determine the dimensional reduction of the 6-dimensional (2, 0) theory with

non-abelian An gauge algebra. For the abelian theory, the dimensional reduction is

possible, using the equations of motions in 6 dimensions ([154, 155]). However, for the

non-abelian case, due to absence of a 6-dimensional formulation of the theory, we have

to follow an alternative strategy. Our strategy is much alike to the derivation of com-

plex Chern-Simons theory as the dimensional reduction on an S3 in ([156]). First note,

that the 6-dimensional theory on S1 gives rise to 5-dimensional N = 2 Super-Yang-

Mills theory. More generally, the dimensional reduction of the 6-dimensional theory on

a circle-fibration gives rise to a 5-dimensiona Super-Yang-Mills theory in a supergravity

background ([157]) (for earlier references see ([158,159])). This theory has a non-abelian

extension, consistent with gauge invariance and supersymmetry, which is then conjec-

tured to be the dimensional reduction of the non-abelian 6-dimensional theory.

More precisely, this approach requires first to determine the background of the 6-

dimensional abelian theory as described in terms of theN = (2, 0) conformal supergravity

theory ([160, 161]). The 5-dimensional background is determined by reduction on the

circle fiber, and then non-abelianized. We can then further reduce the theory along the

remaining compact directions to determine the theory in 4-dimensional. For S3, there

is the Hopf-fibration, used in ([156]) to derive the Chern-Simons theory in this two-step

reduction process. Here, for the S2, we will fiber the S1 over an interval, and necessarily,

the fibers will have to become singular at the end-points.

In the following we will prepare the analysis of the supergravity background. By re-

quiring invariance under the residual group of symmetries gres preserved by the topolog-

ical twist on S2, we derive ansätze for the background fields in 6-dimensional N = (0, 2)

off-shell conformal supergravity fields. In the next section we will consider the Killing

spinor equations and fix the background fields completely.
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Label Field sp(4)R Properties

e
A
µ Frame 1

V B̂Ĉ
A R-symmetry Gauge Field 10 V B̂Ĉ

A = −V ĈB̂
A

T Â[BCD] Auxiliary Three-form 5 T Â = − ∗ T Â

D(ÂB̂) Auxiliary Scalar 14 DÂB̂ = DB̂Â, DÂ
Â

= 0

Table 6.1: Bosonic background fields for the 6-dimensional (2,0) conformal supergravity.

To begin with, the 6-dimensional metric on S2 × R4 is given by

ds2 = ds2
R4 + r2dθ2 + `(θ)2 dφ2 , (6.1.9)

with `(θ) = r sin(θ) for the round two-sphere. More generally, `(θ) can be a function,

which is smooth an interpolates between

`(θ)

r
∼ θ , for θ → 0 ,

`(θ)

r
∼ π − θ , for θ → π . (6.1.10)

We choose the frame

eA = dxA , e5 = r dθ , e6 = `(θ) dφ . (6.1.11)

The corresponding non-vanishing components of the spin connection are

ω56 = −ω65 = −`
′(θ)

r
dφ . (6.1.12)

In the following the index conventions are such that all hatted indices are R-symmetry,

all unhatted Lorentz indices. All our conventions are summarized in appendix B.1. The

background fields for the off-shell gravity multiplet are summarized in table 6.1.

Before setting up the ansätze note the following decompositions of representations,

that the background fields transform under, first for the Lorentz symmetry,

so(6)L → su(2)` ⊕ su(2)r ⊕ u(1)L

A : 6 → (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2

[BCD](+) : 10 → (2,2)0 ⊕ (3,1)2 ⊕ (1,3)−2

[BC] : 15 → (2,2)2 ⊕ (2,2)−2 ⊕ (3,1)0 ⊕ (1,3)0 ⊕ (1,1)0

(6.1.13)
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and for the R-symmetry

so(5)R → su(2)R ⊕ u(1)R

Â : 5 → 30 ⊕ 12 ⊕ 1−2

[B̂Ĉ] : 10 → 30 ⊕ 32 ⊕ 3−2 ⊕ 10

(B̂Ĉ) : 14 → 50 ⊕ 32 ⊕ 3−2 ⊕ 12 ⊕ 1−2 ⊕ 10 .

(6.1.14)

The bosonic supergravity fields of 6-dimensional off-shell conformal maximal supergravity

([157,158,160–162]) are summarized in appendix are the frame e
A
µ and

T
[BCD]Â

, V
A [B̂Ĉ]

→ (dV )
[AB] [ĈD̂]

, D
(ÂB̂)

, bA → (db)[AB] , (6.1.15)

where dV and db denote the field strength of the R-symmetry and dilatation gauge fields

respectively. Furthermore T
BCDÂ

is anti-self-dual 1 and D
(ÂB̂)

is traceless

T
BCDÂ

= T
[BCD](+)Â

, δÂB̂D
ÂB̂

= 0 . (6.1.16)

We shall now decompose these in turn under the residual symmetry group gres and

determine the invariant components.

1. T
Â[BCD]

The decomposition under gres (that is, after performing the twist) is given

by:

(10,5)→(2,2,3)(2) ⊕ (3,1,3)(2) ⊕ (1,3,3)(−2) ⊕ (2,2,1)(±2) ⊕ (3,1,1)(4)

⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,3,1)(−4) .

(6.1.17)

This tensor product does not contain any singlet under gres, so the backgrounds

we consider have TÂBCD = 0.

2. VA[B̂Ĉ] We are looking for components of the field strength (dV )[AB] [ĈD̂] invariant

under gres. The decomposition of (dV )[AB] [ĈD̂] is:

(15,10)→(2,2,3)(±2) ⊕ (3,1,3)(0) ⊕ (1,3,3)(0) ⊕ (1,1,3)(0) ⊕ (2,2,3)(±4)

⊕ 2× (2,2,3)(0) ⊕ (3,1,3)(±2) ⊕ (1,3,3)(±2) ⊕ (1,1,3)(±2)

⊕ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) .

(6.1.18)

1In Euclidean signature, T[BCD]Â can be complexified and taken to satify T = i ∗ T .
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We see that we have a singlet that corresponds to turning on a flux on the S2 and

an ansatz for V is given by

Vφ x̂ŷ =
1

2
v(θ) εx̂ŷ . (6.1.19)

where x̂, ŷ run over the components B̂, Ĉ = 4, 5, and the other components of V

vanish.

3. bA The field strength (db)[AB] decomposes under gres as

(15,1)→ (2,2,1)(±2) ⊕ (3,1,1)(0) ⊕ (1,3,1)(0) ⊕ (1,1,1)(0) . (6.1.20)

There is a singlet, which corresponds to turning on a field strength on the S2. In

the following we will not consider this possibility. Note that any other choice can

always be obtained by a conformal transformation with K, which shifts bA ([161]).

In the following we thus set

bA = 0 . (6.1.21)

4. D
(ÂB̂)

The decomposition under gres is given by

(1,14)→ (1,1,5)(0) ⊕ (1,1,3)(±2) ⊕ (1,1,1)(±2) ⊕ (1,1,1)(0) . (6.1.22)

There is one singlet corresponding to the ansatz:

D
âb̂

= d δ
âb̂

, Dx̂ŷ = −3

2
d δx̂ŷ , (6.1.23)

with other components vanishing. The relative coefficients are fixed by the trace-

lessness condition on D
ÂB̂

.

6.1.3 Killing spinors

With the ansätze for the supergravity background fields we can now determine the con-

ditions on the coefficients v and d, to preserve supersymmetry. The background on

6-dimensional supergravity is summarized in section 6.1.2 and the Killing spinor equa-

tions (B.2.1) and (B.2.7) are solved in appendix B.2. In summary the background with

t = b = 0 preserves half the supersymmetries if

v(θ) = −`
′(θ)

r

d(θ) =
3

2

`′′(θ)

r2`(θ)
,

(6.1.24)

where for the round two-sphere l(θ) = r sin(θ), and the Killing spinor ε is constant and

satisfies the following constraint

(Γ4̂5̂)m̂n̂ε
n̂ − Γ56εm̂ = 0 . (6.1.25)
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For the round two-sphere `(θ) = r sin(θ).

The value of the R-symmetry gauge field V 56 = − `′(θ)
r dφ = ω56 and the fact that

the preserved supersymmetries are generated by constant spinors indicates that this

supergravity background realizes the topological twist on S2, as expected.

Finally, recall that we chose a gauge for which bµ = 0. Note that the background

field bµ can be fixed to an arbitrary other value by a special conformal transformation

(see ([161])). The special conformal transformation does not act on the other background

fields (they transform as scalars under these transformations), nor on the spinor εm̂, how-

ever it changes the spinor ηm̂ parametrizing conformal supersymmetry transformations.

Indeed one can show that the Killing spinor equations (B.2.1), (B.2.7) are solved for an

arbitrary bµ by the same solution εm̂ together with

ηm̂ = −1

2
bAΓAεm̂ . (6.1.26)

In this way one can recover the gauge choice bµ = α−1∂µα (with α = 1/` in our conven-

tions) of ([157]), although we will keep our more convenient choice bµ = 0. For our gauge

choice, the dimensional reduction to 5 dimensions is rederived in appendix B.3.

6.2 From 6-dimensional (2, 0) on S2 to 5-dimensional Super-

Yang-Mills theory

We now proceed with the dimensional reduction of the 6-dimensional N = (2, 0) theory

on S1 to obtain 5-dimensional N = 2 Super-Yang-Mills theory, as in ([157, 158]). Note

that the reduction of the (2,0) theory on S1 is well known, also for circle fibrations ([163])

and in the case in which a supergravity background is turned on ([157]). However, we

proceed to a new analysis of the reduction. We find that a different solution to the Killing-

Spinor equations compared to the one found in ([157]) is possible, which corresponds to

the gauge in which bµ = 0. This, together with (6.1.26), implies that ηm̂ = 0. We find

this gauge to be much more suitable to work with, in particular in the following step of

the reduction to 4 dimensions.

We should remark on an important point in the signature conventions: the reduction

to the 5-dimensiona Super-Yang-Mills theory is accomplished in Lorentzian signature,

R4 → R1,3, where fields admit 6-dimensional reality conditions, however it would go

through in Euclidean signature upon complexifying the fields in 6 dimensions and then

imposing reality conditions in 5d. This amounts to Wick-rotating the Lorentzian 5-

dimensional theory. In later sections, when we study the 5-dimensional theory on a

generic M4, we adopt the Euclidean signature, which is compatible with the twist on M4.
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6.2.1 The 6-dimensional (2, 0) Theory

The abelian 6-dimensional N = (0, 2) theory contains a tensor multiplet, which is com-

prised of a two-form B with field strength H = dB, five scalars Φm̂n̂, and four Weyl

spinors ρm̂m of negative chirality, which are symplectic Majorana. the scalars satisfy

Φm̂n̂ = −Φn̂m̂ and Ωm̂n̂Φm̂n̂ = 0. The equations of motion are2

H−µνσ −
1

2
Φm̂n̂T

m̂n̂
µνσ = 0

D2Φm̂n̂ −
1

15
Dr̂ŝ
m̂n̂Φr̂ŝ +

1

3
H+
µνσT

µνσ

m̂n̂ = 0

/Dρm̂ − 1

12
T m̂n̂µνσΓµνσρn̂ = 0.

(6.2.1)

Here H± = 1/2(H±?H) and the R-symmetry indices of the background fields have been

transformed Â→ m̂n̂ using the Gamma matrices as in (B.2.3). The covariant derivatives

are defined as follows

Dµρ
m̂ =

(
∂µ −

5

2
bµ +

1

4
ωABµ ΓAB

)
ρm̂ − 1

2
V m̂
µn̂ρ

n̂

DµΦm̂n̂ = (∂µ − 2bµ)Φm̂n̂ + V
[m̂
µr̂ Φn̂]r̂

D2Φm̂n̂ = (∂A − 3bA + ω
BA
B )DAΦm̂n̂ + V

µ[m̂

r̂ DµΦn̂]r̂ − R6d

5
Φm̂n̂.

(6.2.2)

Here R6dis the 6-dimensional Ricci scalar. These equations are invariant under the su-

persymmetry transformations

δBµν = −ε̄Γµνρ

δΦm̂n̂ = −4ε̄[m̂ρn̂] − Ωm̂n̂ε̄ ρ

δρm̂ =
1

48
H+
µνσΓµνσεm̂ +

1

4
/DΦm̂n̂εn̂ − Φm̂n̂ηn̂ .

(6.2.3)

In appendix B.3 we reduce the equations of motion and obtain a 5-dimensional Super-

Yang-Mills in a general background, but for our gauge choice bµ = 0, which is a different

gauge choice from e.g. ([157]). In this section we specify to the background R4× S2 and

couple this theory to the background supergravity fields of Section 6.1. Using the index

convetions in appendix B.1 the 6-dimensional fields are decomposed in the following way

H → F = dA

ρmm̂ →

 0

iρm
′m̂


Φm̂n̂ → Φm̂n̂ ,

(6.2.4)

2We will use the conventions of ([161]).
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while the frame is decomposed as follows

e
µ

A →

 eµ
′

A′ eφA′ ≡ CA′

eµ
′

6 ≡ 0 eφ6 ≡ α

 (6.2.5)

The action of abelian 5-dimensional Super-Yang-Mills theory in a general background is

S5d = SF + Sscalar + Sρ, (6.2.6)

where

SF = −
∫

tr[αF̃ ∧ ∗5dF̃ + C ∧ F ∧ F ]

Sscalar = −
∫
d5x

√
|g|α−1

(
DA′Φm̂n̂DA′Φm̂n̂ + 4Φm̂n̂FA′B′T

A′B′

m̂n̂ − Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)

Sρ = −
∫
d5x
√
|g|α−1ρmm̂

(
i /Dmn ρnm̂ + (Mρ)

mm̂
nn̂ ρnn̂

)
,

(6.2.7)

with all the mass matrices defined in appendix B.3 and F̃ defined as

F̃ = F − 1

α
Φm̂n̂T

m̂n̂. (6.2.8)

6.2.2 5-dimensional Super-Yang-Mills theory in the Supergravity Back-

ground

We now determine the 5-dimensional Super-Yang-Mills theory in the background, which

corresponds to the 6-dimensional (2, 0) theory on S2, by performing the dimensional

reduction along the circle fiber. As shown in section 6.1.2, the only background fields

for the 5-dimensional Super-Yang-Mills theory, which are compatible with the symmetry

group, were Dm̂n̂
r̂ŝ and V m̂n̂

φ . In this section we use the results from appendix B.3 to

derive the action with only the background fields Dm̂n̂
rs and Sm̂n̂ switched on, in the

gauge bµ = 0.

For our background the metric, graviphoton, CA′ , and the dilaton, α, are given by

ds2
5 = ds2

R4 + r2dθ2 , CA′ = 0 , α =
1

`(θ)
, 0 ≤ θ ≤ π , (6.2.9)

which means that G = dC = 0. Imposing these conditions and turning on only the

background fields Dm̂n̂
rs and Sm̂n̂ the full action is given by3

S = SF + Sscalar + Sρ + Sint , (6.2.10)

3The numerical prefactors are determined by supersymmetry.
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where

SF = −1

4

∫
1

`(θ)
Tr(F ∧ ∗5dF )

Sscalar = +
1

16

∫
d5x

√
|g| `(θ) Tr

(
Φm̂n̂D2Φm̂n̂ + Φm̂n̂(MΦ)r̂ŝm̂n̂Φr̂ŝ

)
Sρ = −

∫
d5x

√
|g| `(θ) Tr

(
iρm′m̂ /D

m′

n′ ρ
n′m̂ + ρm′m̂(Mρ)

m̂n̂m′
n′ ρ

n′

n̂

)
.

(6.2.11)

Here, we non-abelianized the theory, and the covariant derivatives and mass matrices

Dµ′Φm̂n̂ = ∂µ′ + [Aµ′ ,Φ
m̂n̂]

D2Φm̂n̂ = ∂a
′Da′Φm̂n̂ +

`′(θ)

r2`(θ)
DθΦm̂n̂ + [Aµ′ , ∂

µ′Φm̂n̂] + [Aµ′ , [A
µ′ ,Φm̂n̂]]

Dµ′ρ
m̂ = ∂µ′ρ

m̂ + [Aµ′ , ρ
m̂]

(MΦ)m̂n̂r̂ŝ =
2`′′(θ)

r2`(θ)
δm̂[r̂ δ

n̂
ŝ] +

1

2`(θ)2

(
Sm̂[r̂ S

n̂
ŝ] − S

n̂
t̂
S t̂[r̂δ

m̂
ŝ]

)
− 1

15
Dm̂n̂
r̂ŝ

(Mρ)
m̂n̂m′

n′ =
1

`(θ)

(
1

2
Sm̂n̂δm

′
n′ +

i`′(θ)

2r
Ωm̂n̂(γ5)m

′
n′

)
,

(6.2.12)

where the 5-dimensional Ricci scalar vanishes because we have a flat metric on the inter-

val. In the non-abelian case we can add the following interaction terms

Sint =

∫
d5x
√
|g|Tr

(`(θ)3

64
[Φm̂n̂,Φ

n̂r̂][Φr̂ŝ,Φ
ŝm̂] +

`(θ)

24
Sm̂n̂Φm̂r̂[Φn̂ŝ,Φr̂ŝ]

− `(θ)2ρm′m̂[Φm̂n̂, ρm
′

n̂ ]
)
,

(6.2.13)

where the non-vanishing background fields take the following values

Sm̂n̂ = −r`′(θ)(Γ4̂5̂)m̂n̂

Dm̂n̂
r̂ŝ =

3`′′(θ)

2r2`(θ)

[
5(Γ4̂5̂)

[m̂
r̂ (Γ4̂5̂)

n̂]
ŝ − δ

[m̂
r̂ δ

n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
,

(6.2.14)

where `′ and `′′ denote first and second derivatives of ` with respect to θ. The action is

invariant under the following supersymmetry transformations

δAµ′ = `(θ) εm̂γµ′ρ
m̂

δΦm̂n̂ = −4iε[m̂ρn̂]

δρm̂ =
i

8`(θ)
Fµ′ν′γ

µ′ν′εm̂ +
1

4
/DΦm̂n̂εn̂ +

i

4`(θ)
S

[m̂
r̂ Φn̂]r̂εn̂ −

i

8
`(θ)Ωn̂r̂[Φ

m̂n̂,Φr̂ŝ]εŝ .

(6.2.15)

Note that the Killing spinor εm
′

m̂ satisfies the relation (6.1.25) which now reads

(Γ4̂5̂)m̂n̂εm
′

n̂ = −i(γ5)m
′

n′ ε
n′m̂ . (6.2.16)



Chapter 6. M5-branes on S2 126

So far we have kept the sp(4)R R-symmetry indices explicit. However the background

breaks the R-symmetry to su(2)R⊕so(2)R. To make the symmetry of the theory manifest,

we decompose the scalar fields Φm̂n̂ into a triplet of scalars ϕâ, transforming in the 30 of

su(2)R ⊕ so(2)R, and the complex field ϕ, which is singlet 11, which can be achieved as

follows

ϕâ =
1

4
(Γâ)m̂n̂Φm̂n̂ , â = 1, 2, 3

ϕ = ϕ4 + iϕ5 =
1

4

(
Γ4 + iΓ5

)
m̂n̂

Φm̂n̂ .

(6.2.17)

The spinors ρm̂ decompose into the two doublets ρ
(1)
p̂ , ρ

(2)
p̂ , transform in the (2)1⊕ (2)−1,

as detailed in appendix B.1.3. We also split the gauge field (singlet of the R-symmetry)

into the components Aµ along R4 and the component Aθ along the interval.

The spinor εn̂ parametrizing supersymmetry transformations decompose under the

R-symmetry subalgebra su(2)R ⊕ so(2)R into two su(2)R doublets of opposite so(2)R

charge: εm̂ → ε
(1)
p̂ ⊕ ε

(2)
p̂ (see appendix B.1.3). The projection condition (6.2.16) becomes

ε
(1)
p̂ − γ

5ε
(1)
p̂ = 0 , ε

(2)
p̂ + γ5ε

(2)
p̂ = 0 . (6.2.18)

For any 5-dimensional spinor χ we define

χ± =
1

2
(χ± γ5χ), (6.2.19)

as the 4-dimensional chirality. The action for the gauge field is

SF = −1

8

∫
d5x
√
|g| 1

`(θ)
Tr
(
FµνF

µν + 2FµθF
µθ
)
. (6.2.20)

The action for the scalars is

Sscalar

= −1

4

∫
d5x `(θ)Tr

(
Dµ′ϕâDµ′ϕâ +Dµ′ϕDµ′ϕ̄+

1

r2
Dθϕ

âDθϕâ +
1

r2
DθϕDθϕ̄+m2

ϕϕϕ̄

)
,

(6.2.21)

where the mass term is

mϕ(θ)2 =
`′(θ)2 − `(θ)`′′(θ)

r2`(θ)2
. (6.2.22)

which for the round sphere reduces to m2
ϕ = cot(θ)2/r2 and diverges at the endpoints

of the interval. We will return to this matter when discussing the boundary conditions.

The action for the fermions is

Sρ = −2i

∫
d5x
√
|g| `(θ) Tr

(
ρ

(1)
p̂+γ

µDµρ
(2)p̂
− + ρ

(1)
p̂−γ

µDµρ
(2)p̂
+

+
1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+ − 1

r
ρ

(2)
p̂−Dθρ

(1)p̂
−
)
, (6.2.23)
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and the interaction terms become

SYukawa = −
∫
d5x
√
|g| `(θ)2 Tr

[
2(σâ)p̂q̂ρ

(2)
p̂−

[
ϕâ, ρ

(1)
q̂−

]
+ 2(σâ)p̂q̂ρ

(2)
p̂+

[
ϕâ, ρ

(1)
q̂+

]
+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

])]
Squartic = −1

4

∫
d5x
√
|g| `(θ)3 Tr

(
[ϕâ, ϕ][ϕâ, ϕ̄] +

1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)
Scubic =

1

6

∫
d5x
√
|g| `(θ)`

′(θ)

r
εâb̂ĉ Tr

(
ϕâ[ϕb̂, ϕĉ]

)
.

(6.2.24)

The complete 5-dimensional action is

S5d = SF + Sscalar + Sρ + SYukawa + Squartic + Scubic, (6.2.25)

and the supersymmetry variations for this action, decomposed with regards to the R-

symmetry, are summarized in appendix B.4. The action above should be supplemented

with appropriate boundary terms, which ensure that supersymmetry is preserved and

that the action is finite. We will address this issue after we have taken the cylinder limit

of the metric.

We need to determine the boundary conditions of the 5-dimensional fields at the

endpoints of the θ interval.

To proceed we first notice that the complex scalar ϕ has a mass term m(θ)2 which

diverges at the boundaries θ = 0, π: 4

m(θ)2 '


1
θ2

, θ → 0 ,

1
(π−θ)2 , θ → π .

(6.2.26)

Finiteness of the action requires that ϕ behaves as

ϕ =

 O(θ) , θ → 0 ,

O(π − θ) , θ → π .
(6.2.27)

The boundary conditions on the other fields are most easily determined by the require-

ment to preserve supersymmetry under the transformations generated by ε
(1)
p̂ and ε

(2)
p̂

presented in appendix B.4. We obtain at θ = 0:

ρ
(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) ,

Aµ = O(θ2) ,

(6.2.28)

and the counterpart at θ = π.

4This follows from the regularity conditions on f : f(θ) ' θ at θ = 0 and f(θ) ' π − θ at θ = π.
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The fields ϕâ, Aθ are constrained to obey generalized Nahm equations as they ap-

proach the boundaries. The generalized Nahm equations take the form

Dθϕâ −
1

2
r`(θ)εâ

b̂ĉ
ϕb̂ϕĉ = 0 . (6.2.29)

These equations reduce to standard Nahm’s equations upon setting r`(θ) = 15.These

equations are compatible with a singular boundary behaviour of the fields at the endpoints

of the θ interval. For simplicity let us assume the gauge Aθ = 0 in a neighbourhood of

θ = 0, then the above modified Nahm’s equation are compatible with the polar behaviour

at θ = 0

ϕâ =
2%(τ â)

rθ2
+O(1) . (6.2.30)

where

% : su(2)→ u(k) (6.2.31)

denotes an embedding of su(2) into u(k), see e.g. in ([140,164]) and τ â are related to the

Pauli matrices σâ as follows

τ â =
i

2
σâ . (6.2.32)

Moreover the order O(1) term is constrained to be in the commutant of % in u(k). The

reduction that we study, from a smooth two-sphere to the interval, correspond to % being

an irreducible embedding ([140]).

More generaly the Nahm pole boundary condition (6.2.29) is compatible with any

embedding % and is associated with the presence of ’punctures’ – or field singularities

– at the poles of the two-sphere in the 6-dimensional non-abelian theory ([133]). An

embedding % can be associated to a decomposition of the fundamental representation (k)

under su(2) and can be recast into a partition [n1, n2, · · · ] of k. The irreducible embedding

is associated to the partition % = [k] and corresponds to the absence of puncture in 6d.

The boundary conditions at θ = π are the mirror of the one at θ = 0 and are also

characterized by Nahm pole behaviour with irreducible embedding % = [k].

The remaining fermions ρ
(1)
− , ρ

(2)
+ appear in the supersymmetry variations of ϕâ and

hence are of order O(1) at θ = 0

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) , (6.2.33)

and similarly at θ = π.

5After a redefinition of θ, these equations are simply a different form of the usual Nahm’s equations.
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6.2.3 Cylinder Limit

For general hyperbolic Riemann surfaces, the dimensional reduction depends only on

the complex structure moduli ([133]). The two-sphere has no complex structure moduli,

however, there will be a metric-dependence in terms of the area of the sphere, which

enters as the function `(θ), except through the area of the sphere. This can be checked

by explicitly performing the reduction keeping `(θ) arbitrary. However, for simplicity

we consider here the special limiting case, when the two-sphere is deformed to a thin

cylinder capped with two half-spheres. This corresponds to taking the metric factor `(θ)

to be be constant

`(θ) = ` = const. for ε < θ < π − ε ,

`(θ)→ smooth caps for θ < ε , π − ε < θ . (6.2.34)

and taking the limit ε→ 0. The limit is singular at the endpoints of the θ-interval. The

boundary conditions in 5 dimensions can then be fixed by preserving supersymmetry and

the symmetry group of the twisted theory. We rescale the fields as follows

ϕâ → 1

r`
ϕâ , ϕ→ 1

r`
ϕ , ρ

(1)
± →

1

r`
ρ

(1)
± , ρ

(2)
± →

1

r`
ρ

(2)
± . (6.2.35)

The action in this limit simplifies to

SF = − r

8`

∫
dθd4x

√
|g|Tr

(
FµνF

µν +
2

r2
(∂µAθ − ∂θAµ + [Aµ, Aθ])

2

)
Sscalar = − 1

4r`

∫
dθd4x

√
|g|Tr

(
Dµ′ϕâDµ′ϕâ +Dµ′ϕDµ′ϕ̄

)
Sρ = −2i

r`

∫
dθd4x

√
|g|Tr

(
ρ

(1)
p̂+γ

µDµρ(2)p̂
− + ρ

(1)
p̂−γ

µDµρ(2)p̂
+

+
1

r
ρ

(1)
p̂+Dθρ

(2)p̂
+ − 1

r
ρ

(1)
p̂−Dθρ

(2)p̂
−

)
SYukawa = − 1

r2`

∫
dθd4x

√
|g|Tr

(
2ρ

(2)
p̂−

[
ϕp̂q̂, ρ

(1)
q̂−

]
+ 2ρ

(2)
p̂+

[
ϕp̂q̂, ρ

(1)
q̂+

]
+i
(
ρ

(1)
p̂−

[
ϕ̄, ρ

p̂(1)
−

]
+ ρ

(1)
p̂+

[
ϕ̄, ρ

p̂(1)
+

]
− ρ(2)

p̂−

[
ϕ, ρ

p̂(2)
−

]
− ρ(2)

p̂+

[
ϕ, ρ

p̂(2)
+

]))
Squartic = − 1

4r3`

∫
dθd4x

√
|g|Tr

(
1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂] + [ϕâ, ϕ][ϕâ, ϕ̄]− 1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

)
.

(6.2.36)
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The supersymmetry variations in appendix B.4 in the cylinder limit reduce to

δAµ = −1

r

(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)
δAθ = −

(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
δϕâ = i

(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)
δϕ = −2ε(1)p̂ρ

(1)
p̂+

δϕ̄ = +2ε(2)p̂ρ
(2)
p̂−

(6.2.37)

for the bosonic fields and for the fermions

δρ
(1)
p̂+ =

ir

8
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγµε(2)p̂ +

1

4r
Dθϕq̂p̂ε

(1)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ − i[ϕ, ϕ̄]ε

(1)
p̂

)
δρ

(1)
p̂− =

i

4
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕq̂p̂ γ

µε
(1)
q̂ +

i

4r
Dθϕε(2)p̂ −

1

4r
[ϕ,ϕq̂p̂]ε

(2)
q̂

δρ
(2)
p̂+ = − i

4
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕq̂p̂ γ

µε
(2)
q̂ −

i

4r
Dθϕ̄ε(1)p̂ −

1

4r
[ϕ̄, ϕq̂p̂]ε

(1)
q̂

δρ
(2)
p̂− =

ir

8
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γµε(1)p̂ +

1

4r
Dθϕq̂p̂ε

(2)
q̂ −

1

8r

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ + i[ϕ, ϕ̄]ε

(2)
p̂

)
.

(6.2.38)

The theory we obtain is nothing else than the N = 2 Super-Yang-Mills theory in 5d. A

similar reduction of the 6-dimensional (0,2) theory on a cigar geometry was considered

in ([164]). The 5-dimensional Super-Yang-Mills theory is defined on a manifold with

boundaries, which are at the end-points of the θ-interval and half of the supersymmetries

are broken by the boundary conditions. It is key to study the boundary terms and

boundary conditions in detail, which will be done in the next subsection.

6.2.4 Nahm Equations and Boundary Considerations

The boundary conditions at the two ends of the θ interval can be worked out in the same

way as in section 6.2.2. In the cylinder limit of the two-sphere `(θ) → ` the mass term

m(θ)2 goes to zero everywhere on the θ interval except at the endpoints θ = 0, π where is

diverges, forcing the scalar ϕ to vanish at the boundary. The other boundary conditions

can be worked out by requiring supersymmetry under the eight supercharges. This leads

to letting the scalars ϕâ obey standard Nahm equations close to the boundaries

Dθϕâ −
1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0 . (6.2.39)

Explicitly we obtain, in the gauge Aθ = 0, at θ = 0:
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ϕ = O(θ) , Aµ = O(θ) ,

ϕâ =
%(τ â)

θ
+ ϕâ(0) +O(θ) ,

ρ
(1)
p̂− = O(1) , ρ

(2)
p̂+ = O(1) ,

ρ
(1)
p̂+ = O(θ) , ρ

(2)
p̂− = O(θ) ,

(6.2.40)

where % : su(2) → u(k) is an irreducible embedding of su(2) into u(k), with τ as in

(6.2.32) and there are identical boundary conditions at θ = π. The constant term ϕâ(0)

in the ϕâ-expansion is constrained to be in the commutant of the embedding %. The

maximally supersymmetric configurations are vacua of the theory preserving the eight

supercharges and are given by the BPS equations

Dθϕâ −
1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0

ϕ = ϕ̄ = Fµν = Fµθ = 0

Dµϕâ = 0 .

(6.2.41)

and vanishing fermions. Moreover there is the additional constraint that the scalars ϕâ

have poles at θ = 0, π both characterized by the partition % = [k]. The first equation in

(6.2.41) is the Nahm equation for the fields (ϕâ, Aθ) and the boundary behaviour of ϕâ

are standard Nahm poles.

The Nahm pole boundary condition introduces two difficulties: the supersymmetry

variation of the action results in a non-vanishing boundary term and the polar behaviour

of the scalar fields make the action diverge. These two problems are cured by the addition

of the following boundary term

Sbdry = − 1

6r2`
Tr

∫
d4x
√
|g|
[
ε
âb̂ĉ
ϕâϕb̂ϕĉ

]π
0

= − 1

6r2`
Tr

∫
d4xdθ

√
|g|∂θ

(
ε
âb̂ĉ
ϕâϕb̂ϕĉ

)
.

(6.2.42)

The second line gives Sbdry a total θ-derivative and we shall take this as the definition of

Sbdry. This additional term ensures supersymmetry and makes the 5-dimensional action

finite. We have in particular

−Tr

∫
dθd4x

√
|g|
(
DθϕâDθϕâ +

1

2
[ϕâ, ϕb̂][ϕ

â, ϕb̂]

)
− 2

3
Tr

∫
d4xdθ

√
|g|∂θ

(
ε
âb̂ĉ
ϕâϕb̂ϕĉ

)
= Tr

∫
d4xdθ

√
|g|
(
Dθϕâ −

1

2
ε
âb̂ĉ

[ϕb̂, ϕĉ]

),
.

(6.2.43)
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which is the square of Nahm’s equations. The 5-dimensional action is finite since the

scalar fields ϕâ obey Nahm’s equations at the boundaries. We even find a stronger result:

the 5-dimensional action is minimized when the scalars ϕâ obey Nahm’s equations on

the whole θ interval.

Finally we can comment of generalizations of the Nahm pole boundary conditions

to two arbitrary partition %o and %π for the scalars fields at the two boundaries θ =

0, π as described in ([140]). These boundary conditions preserve the same amount of

supersymmetry and admit global symmetry groups H0×Hπ ⊂ SU(k)×SU(k) acting by

global gauge transformations on the fields. H0 and Hπ are the commutant of %o and %π

in SU(Nk), defined as the subgroup of SU(k) which leaves the % boundary conditions

invariant. The general (%0, %π) Nahm pole boundary condition corresponds to inserting

singularities or punctures at the two poles of the two-sphere in the 6-dimensional (2,0)

theory (see ([140])). All our results can be directly generalized to having general Nahm

poles at the boundaries of the θ interval.

6.3 4-dimensional Sigma-Model and Nahm’s Equations

In the last section we have seen that the 5-dimensiona Super-Yang-Mills theory in the

background corresponding to the S2 reduction of the 6-dimensional (2, 0) theory requires

the scalars ϕâ to satisfy Nahm’s equations, and the supersymmetric boundary condi-

tions require them to have Nahm poles (6.2.40) at the boundaries of the interval. The

4-dimensional theory is therefore dependent on solutions to Nahm’s equations. To di-

mensionally reduce the theory, we pass to a description in terms of of coordinates on

the moduli space Mk of solutions to Nahm’s equations. In this section we will find the

theory to be a 4-dimensional sigma model intoMk, where the bosonic degrees of freedom

XI , I = 1, 2, . . . , 4k, are coordinates on the moduli space

XI : M4 → Mk , (6.3.1)

while the fermionic degrees of freedom ξ(i), i = 1, 2, are Grassman-valued sections of the

pull-back of the tangent bundle to M

ξ(1,2) ∈ Γ(X∗TM⊗S±) , (6.3.2)

where S± is the spin bundle on M4. The sigma-model for M4 = R4 is supersymmetric,

with N = 2 supersymmetry in 4 dimensions. The coupling constant for the sigma-model

is proportional to the area of the two-sphere as anticipated. We now proceed to the

derivation of the sigma model.
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6.3.1 Poles and Monopoles

Before studying the dimensional reduction to 4 dimensions, we summarize a few well-

known useful properties of the moduli space Mk. The moduli space Mk of solutions

to Nahm’s equations, on an interval with Nahm pole boundary conditions given by the

irreducible embedding ρ = [k], is well-known to be isomorphic to the moduli space of

(framed) su(2) magnetic monopoles of charge k ([165,166]), which is 4k-dimensional and

has a Hyper-Kahler structure. Let us recall the monopole moduli space and the Nahm

equations moduli space.

Magnetic monopoles can be understood as solutions to the Bogomolny equations

([167]). Let Aµ be a connection on a principal G-bundle over a 3-dimensional manifold

M3. Moreover, let φ be a section of the associated adjoint bundle, the so-called Higgs

field. The Bogomolny equation for the pair (A, φ) is then ([167])

F = ?Dφ, (6.3.3)

where F is the field strength of the connection, D is the covariant derivative defined

by Aµ and ? is the 3-dimensional Hodge operator. Moreover, it can be proved that the

following action ([166])

S =
1

2

∫
M3

(F, F ) + (Dφ,Dφ), (6.3.4)

where ( , ) is the Lorentz invariant inner product, is minimised when the couple (A, φ)

satisfies the Bogomolny equations. In addition, in that case ([166]), S = 4πk, where

k is then defined as the monopole magnetic charge. The solutions to such Bogomolny

equations describe the monopole moduli space of charge k.

On the other hand, as we saw, Nahm equations read as follows

dTi
dθ
− 1

2
εijk[Tj , Tk] = 0, i = 1, 2, 3, (6.3.5)

where Ti are matrix valued, depending on θ ∈ [0, π] and have simple poles at the endpoints

of the interval, the residues of which define representations of su(2). In particular the

residue is specified by an embedding

ρ : su(2)→ u(k), (6.3.6)

which is determined by a partition [k] of k. This is because such embedding is specified

by the image of the nilpotent matrix σ+ = σ1 + iσ2 in u(k) (where σi are the Pauli

matrices), which corresponds to a partition of k following the decomposition into Jordan

normal form (see e.g. ([168])).
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Hitchin showed the equivalence of the moduli space of su(2) monopoles of charge k

with the moduli space of Nahm’s equations with boundary conditions specified by the

embedding ρ = [k] ([153]).

The metric of spaces Mk is not known in explicit form, other than for the cases

M1 ' R3 × S1 and for the case

M2 ' R3 × S1 ×MAH

Z2
, (6.3.7)

whereMAH is the Atiyah-Hitchin manifold ([166]). For general k the moduli space takes

the form ([166])

Mk ' R3 ×
S1 ×M0

k

Zk
. (6.3.8)

A particularly useful characterization of the reduced Nahm moduli spaceM0
k is in terms

of Slodowy-slices. Bielawski showed in ([169, 170]), that the moduli space of solutions

with Nahm pole boundary conditions for k-centered su(2) monopoles is given in terms of

M0
k ' {(g,X) ∈ su(N)C × su(N)C;X ∈ S[k] ∪ g−1S[k]g ⊂ T ∗SU(k)C} (6.3.9)

where the Slodowy slice for an embedding ρ : su(2)→ u(k) is

Sρ = {ρ(τ+) + x ∈ su(k)C; [ρ(τ−), x] = 0}. (6.3.10)

Here σ± ≡ σ1 ± iσ2 are the raising/lowering operators of su(2).

6.3.2 Reduction to the 4-dimensional Sigma-Model

To proceed with the reduction on the θ interval to 4 dimensions, we take the limit of small

r (the size of the interval). The terms in the action (6.2.36) are organized in powers of r.

The divergent terms which are of order r−n, n = 2, 3, must vanish separately. The terms

of order r−1 contain the four-dimensional kinetic terms and lead to the 4-dimensional

action. The terms of order rn, n ≥ 0 are subleading and can be set to zero. To perform

this reduction we must expand a generic field ∆ in powers of r,

∆ = ∆0 + ∆1r + ∆2r
2 + . . . , (6.3.11)

and compute the contribution at each order. We find that only the leading term ∆0

contributes to the final 4-dimensional action for each field, except for the ‘massive’ scalars

ϕ, ϕ̄, and spinors ρ
(1)
+p̂, ρ

(2)
−p̂ whose leading contribution arise at order r. The final 4-

dimensional action will arise with the overall coupling 1
r` .
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Let us now proceed with detailing the dimensional reduction. We substitute the

expansion (6.3.11) in the action (6.2.36) and study the terms at each order in powers of

r. At order r−3 we find the term

Sr−3 = − 1

4r3`

∫
dθd4x

√
|g|

Tr

[(
Dθϕ

â − 1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ]

)2

+ [ϕâ, ϕ][ϕâ, ϕ̄] +DθϕDθϕ̄−
1

4
[ϕ, ϕ̄][ϕ, ϕ̄]

]
.

(6.3.12)

This term is minimized (and actually vanishes) up to order O(r−1) corrections, upon

imposing the following constraints: ϕ, ϕ̄ vanish at order r0,

ϕ = ϕ̄ = O(r), (6.3.13)

and the fields ϕâ and Aθ obey Nahm’s equations, up to order O(r) corrections,

Dθϕâ −
1

2
εâ
b̂ĉ

[ϕb̂, ϕĉ] = 0 , (6.3.14)

with Nahm pole behaviour % = [k] at the two ends of the interval. The 4-dimensional

theory will then localize onto maps X : R4 → Mk, where Mk is the moduli space of

u(k) valued solutions of Nahm’s equations on the interval with %-poles at the boundaries.

Furthermore we choose the gauge fixing

∂θAθ = 0. (6.3.15)

The terms at O(r−2) vanish by imposing ρ
(1)
p̂+, ρ

(2)
p̂− to have no O(r0) term

ρ
(1)
p̂+ = O(r), ρ

(2)
p̂− = O(r). (6.3.16)

The kinetic term of these spinors become of order r and can be dropped in the small r

limit. The fermions ρ
(1)
p̂+, ρ

(2)
p̂− become Lagrange multipliers and can then be integrated

out, leading to the constraints on the fermions ρ
(1)
p̂−, ρ

(2)
p̂+

Dθρ
(2)
+p̂ + i[ϕp̂q̂ , ρ

(2)
+q̂ ] = 0

Dθρ
(1)
−p̂ + i[ϕp̂q̂ , ρ

(1)
−q̂ ] = 0 ,

(6.3.17)

which correspond to the supersymmetric counterparts to Nahm’s equations (6.2.39). We

will use these localizing equations below to expand the fermionic fields in terms of vectors

in the tangent space to the moduli space of Nahm’s equations Mk.

Finally we drop the order r kinetic terms of the 4-dimensional gauge field and scalars

ϕ, ϕ̄ (which contribute only at order r), and we are left with the terms of order 1
r which
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describe the 4-dimensional action

Sr−1 =− 1

4r`

∫
dθd4x

√
|g|Tr

(
Dµ′ϕâDµ′ϕâ + ∂µAθ∂µAθ

)
− 2i

r`

∫
dθd4x

√
|g|Tr

(
ρ

(1)
p̂−γ

µDµρ(2)p̂
)
.

(6.3.18)

The remaining task is to express this action in terms of the fields X = {XI} and the

massless fermionic degrees of freedom, and to integrate out the 4-dimensional components

of the gauge field Aµ and the scalars ϕ, ϕ̄, which appear as auxiliary fields in the 4-

dimensional action. The subleading terms (at order r) in the ϕâ expansion can similarly

be integrated out without producing any term in the final 4-dimensional action, so we

ignore these contributions in the rest of the derivation.

6.3.3 Scalars

We will now describe the 4-dimensional theory in terms of ‘collective coordinates’, simi-

lar to the approach taken in e.g. ([171–173]) for dimensional reduction of 4-dimensional

Super-Yang-Mills theories on a Riemann surface. The resulting theory is a (supersym-

metric) sigma-model (6.3.1), where we will consider M4 = R4. Let XI be coordinates

on the moduli space M. The three scalar fields ϕâ and Aθ in terms of these collective

coordinates are expanded as follows

δϕâ =Υâ
IδX

I

δAθ =Υθ
IδX

I ,

(6.3.19)

where I = 1, . . . , 4k, where we expanded in a basis of the cotangent bundle ofMk, which

up to gauge transformations is

Υâ
I =

∂ϕâ

∂XI
+ [EI , ϕ

â]

Υθ
I =

∂Aθ
∂XI

−DθEI ,
(6.3.20)

where EI defines a connection ∇I = ∂I + [EI , ·] on Mk. So we see that the expansion

(6.3.19) is just the usual variation of fields on Mk, e.g. δϕâ = ∇IϕâδXI . To guarantee,

that the fields ϕâ and Aθ satisfy the Nahm equations, the sections of the cotangent bundle

to Mk have to solve

DθΥâ
I +

[
Υθ
I , ϕ

â
]

= εâb̂ĉ
[
Υ
Ib̂
, ϕĉ
]
, (6.3.21)

The metric on Mk can be expressed in terms of these one-forms as

GIJ = −
∫
dθTr(Υâ

IΥJâ + Υθ
IΥ

θ
J) . (6.3.22)
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Similarly we can write down an expression for the three symplectic forms (see e.g.

([168]))

ωâIJ =

∫
dθTr(εâb̂ĉΥ

Ib̂
ΥJĉ + Υâ

IΥ
θ
J −Υθ

IΥ
â
J) . (6.3.23)

These provide the hyper-Kähler structure of the moduli space M. In the appendix B.5

we collect various useful properties for these structures. Thanks to the gauge fixing

condition

DθΥθ
I +

[
ϕâ,Υ

â
I

]
= 0 , (6.3.24)

by substituting the expansions in collective coordinates (6.3.19) and (6.3.20) into the

bosonic part of the action (6.3.18) we obtain

Sscalars = − 1

4r`

∫
d4xdθ

√
|g|Tr

(
∂IAθ∂JAθ + ∂Iϕ

â∂Jϕâ

)
∂µX

I ∂µXJ . (6.3.25)

The terms additional to the usual kinetic term vanish after integrating out the gauge

field.

6.3.4 Fermions

The fermions satisfy the equation (6.3.17), which is the supersymmetry variation of the

Nahm equations. The spinors therefore take values in the cotangent bundle to the moduli

space Mk and we can therefore expand them in the basis that we defined in (6.3.20),

ρ
(1)
−p̂ = Υâ

I (σâ)
q̂
p̂λ

(1)I + iΥθ
Ip̂λ

(1)I

ρ
(2)
+p̂ = Υâ

I (σâ)
q̂
p̂λ

(2)i + iΥθ
Ip̂λ

(2)I ,

(6.3.26)

where λ(1)I , λ(2)I are spacetime spinors, valued in TMk. The identities (B.5.2) imply

that the fermionic fields obey the constraints

ωâI Jλ
(i)J
p̂ = i(σâ)q̂p̂λ

(i)I
q̂ . (6.3.27)

The expansion in (6.3.26) can be seen to satisfy the equation of motion for the spinors

(6.3.17) by making use of (6.3.21) and the gauge fixing condition (6.3.24). Then substi-

tuting the expansions in collective coordinates (6.3.26) in the fermionic part of the action

(6.3.18) we find

Sρkin =
8i

rl

∫
d4x
√
|g|
[
GIJλ

(1)Ip̂γµ∂µλ
(2)J
p̂

−
∫
dθTr

(
Υâ
I∂JΥâK + Υθ

I∂JΥθ
K

)
λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J
]
.

(6.3.28)
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6.3.5 4-dimensional Sigma-Model Action and Symmetries

Finally, we need to integrate out the gauge field and the scalars ϕ, ϕ̄, which is done in

appendix B.5. The conclusion is that, in addition to giving the standard kinetic term

for the scalars, this covariantizes the fermion action and results in a quartic fermion

interaction that depends on the Riemann tensor of the moduli space. In summary we

find the action

S4d =
1

r`

∫
M4

d4x
√
|g4|

[1

4
GIJ

(
∂µX

I ∂µXJ+8iλ(1)Ip̂σµDµλ(2)J
p̂

)
− 32RIJKLλ

(1)Ip̂λ
(1)J
p̂ λ(2)Kq̂λ

(2)L
q̂

]
(6.3.29)

where Dµλ(2)I
p̂ = ∂µλ

(2)I
p̂ + λ

(2)J
p̂ ΓIJK∂µX

K . The final step is to decompose the spinors

λ(i), as explained in appendix B.1.2, into 4-dimensional Weyl spinors

λ
(1)I
p̂ =

1

4

(
ξ

(1)
p̂

0

)
, λ

(2)I
p̂ =

1

4

(
0

ξ
(2)
p̂

)
, (6.3.30)

obeying the reality conditions

(ξ(1)p)∗ = ξ
(2)
ṗ , (ξ(2)ṗ)∗ = ξ(1)

p . (6.3.31)

The 4-dimensional sigma-model action from flat M4 into the monopole moduli spaceMk

is then given by

S4d =
1

4r`

∫
M4

d4x
√
|g4|

[
GIJ

(
∂µX

I ∂µXJ − 2iξ(1)Ip̂σµDµξ(2)Jp̂

)
− 1

2
RIJKLξ

(1)Ip̂ξ
(1)J
p̂ ξ(2)Kq̂ξ

(2)L
q̂

]
(6.3.32)

The supersymmetry transformations become

δXI = −i
(
ε(2)p̂ξ

(1)I
p̂ + ε(1)p̂ξ

(2)I
p̂

)
δξ

(1)I
p̂ =

1

4

(
∂µX

Iσµε
(1)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

Jσµε
(1)
q̂

)
− ΓIjkδX

Jξ
(1)K
p̂

δξ
(2)I
p̂ =

1

4

(
∂µX

I σ̄µε
(2)
p̂ − iω

âI
J(σâ)

q̂
p̂∂µX

J σ̄µε
(2)
q̂

)
− ΓIjkδX

Jξ
(2)K
p̂ .

(6.3.33)

We have thus shown, that the M5-brane theory reduced on an S2 gives rise to a 4-

dimensional sigma-model with N = 2 supersymmetry, based on maps from R4 into the

moduli space Mk of Nahm’s equations (with ρ = [k] boundary conditions).
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Conclusion

In this thesis aspects of both F-Theory and M-Theory were investigated. The main

aim was to gain insight into non-perturbative phenomena in string theory which can be

accessible from these two frameworks.

In the F-Theory context, we saw how to properly take into account configuration

of 7-branes in Type IIB compactifications. The low energy dynamics of the resulting

compactification turns out to be encoded in the geometry of an elliptically fibered Calabi

Yau. In particular, in order to produce a non-abelian gauge group in the resulting theory,

the Calabi Yau manifold needs to develop geometric singularities. Up to subtleties in

higher codimension in the base, we saw that an ADE classification determines both the

singularity type in codimension one and the gauge group of the theory obtained upon

compactification.

When considering compactifications to 4 dimensions, resulting in N = 1 supersymme-

try, we saw that phenomenological reasons led us to consider additional abelian factors

to the ADE gauge group. Indeed, if the gauge group of the Standard Model can be

embedded into SU(5) or SO(10) in Grand Unified Theories, it is also the case that addi-

tional gauge bosons are predicted which would give rise, for example, to unwanted proton

decay operators. Such a problem can be solved by requiring the existence of additional

abelian factors in the gauge group of the resulting theory, through which the proton

decay operators result to be not gauge invariant.

The principle of geometric engineering is of use in this case as well. The existence

of additional sections of the elliptic fibration results exactly in U(1) factors through the

following mechanism: via F-Theory/M-Theory duality the C3 form of M-Theory can

be decomposed along the forms which are Poincare dual to the sections of the fibration

(which are divisors of the total variety), thus resulting in a gauge field for each additional

139
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rational section. A classical analysis through the application of Tate’s algorithm allows

to determine the singularities of the elliptic fibration. In this thesis, Tate’s algorithm

was applied to an elliptic fibration with two additional rational sections. The analysis

resulted in a thorough classification of such elliptic fibrations, making use of the fact that

the coefficients of the fibration belong to a unique factorization domain.

On the other hand, in the context of M-Theory, aspects connected to the theory on

parallel membranes were investigated. M2 and M5-branes in M-Theory are half BPS

solutions to 11-dimensional supergravity and their low energy dynamics is governed by,

respectively, three and 6-dimensional superconformal field theories. Such theories have

been elusive for many years, even though recently, following the breakthrough of the BLG

model (followed by the ABJM one), the worldsheet theory on coincident M2-branes has

been better understood.

The theory on parallel M5-branes, instead, still remains unknown, and aspects of it

have been the focus of this thesis. A first line of research consisted in the extension

of a previously proposed model ([6]), which similarly to what happens for the BLG

model, realised the (2,0) supersymmetry of the 6-dimensional theory describing M5-

branes through a gauge symmetry depending on a 3-algebra, rather than a usual Lie

algebra. In this thesis, such realization of the (2,0) algebra was extended through the

introduction of an abelian 3-form. After showing that such algebra closes on shell, it

was seen that by solving the constraints for the fields that arise from closure, a natural

dimensional reduction to 3 dimensions arises. Remarkably, upon solving such constraints,

the (2,0) theory reduces to the BLG model. Therefore, the algebraic structure here

proposed seems to include details of the dynamics of both parallel M2 and M5-branes.

The second line of research followed in the M-Theory context tried to extend a web of

dualities which arises from the compactification of the theory on coincident M5-branes,

the (2,0) theory. Indeed, even if a satisfying description of the (2,0) theory is not avail-

able, a number of results has been obtained by relating different compactifications to lower

dimensions. In particular, through the breakthrough of the AGT correspondence, quan-

tities of 4-dimensional N = 2 theories were related to quantities in non-supersymmetric

Toda theories in 2 dimensions. Dualities in other dimensions were then proposed follow-

ing a similar reasoning. In this thesis, we begin the investigation of a new set of dualities,

which would relate 2-dimensional theories obtained by compactifying the (2,0) theory on

four-manifolds with the theory obtained by reducing the (2,0) theory on a two-sphere.

Such dimensional reduction is here carried out to obtain a 4-dimensional sigma model

into the moduli space of magnetic monopoles.
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Appendices to Chapter 3

A.1 Solving Polynomial Equations over UFDs

In this appendix details are included of how to solve polynomial equations in the sections

si given that they belong to a unique factorization domain [73]. These solutions were

repeatedly used in the algorithm to enhance the vanishing order of the discriminant. For

convenience a part of this section will be a summary of the details given in the appendix

A of [22], however there are polynomials specific to the case of two additional rational

sections and the derivation of the solution for these is provided here. For more details

on polynomial equations over UFDs that arise in the application of Tate’s algorithm the

reader is referred to appendix B of [21].

In [22] solutions were obtained for a three-term polynomial of the form

s2
1s2 − s1s3s4 + s2

3s5 = 0 . (A.1.1)

Four solutions were found, three of which involve setting pairs of terms to zero, which

are what we refer to as canonical solutions of the polynomials, and one other solution

which we refer to as the non-canonical solution. The canonical solutions were found to

be the pairs

s1 = s3 = 0

s1 = s5 = 0

s2 = s3 = 0 .

(A.1.2)

141



Appendix A. Appendices to Chapter 3 142

The non-canonical solution is when

s1 = σ1σ2

s2 = σ3σ4

s3 = σ1σ3

s4 = σ2σ4 + σ3σ5

s5 = σ2σ5 ,

(A.1.3)

where σ2 and σ3 are coprime over this UFD.

The non-canonical solution of a two-term polynomial was also needed

s1s2 − s3s4 = 0 :



s1 = σ1σ2

s2 = σ3σ4

s3 = σ1σ3

s4 = σ2σ4 .

(A.1.4)

With this solution σ2 and σ3 are coprime, and so are σ1 and σ4.

A.1.1 Two Term Polynomial

We now look at the polynomial

P = s2
1 − 4s2s3 . (A.1.5)

Setting P = 0 imposes the following conditions:

• There is an equality between the irreducible components of s2
1 and the product of

the irreducibles of s2 and s3.

• Write µ for the irreducible components common to all the three terms.

• Write σ1 for the irreducible components common to s1 and s2.

• Write σ2 for the irreducible components common to s1 and s3.

Note that no conclusion is drawn about irreducibles shared only by s2 and s3. Then the

most general solution takes the form

s2
1 − 4s2s3 = 0 :


s1 = 2µσ1σ2

s2 = µσ2
1

s3 = µσ2
2 .

(A.1.6)
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Since µ is the greatest common divisor of s2 and s3 we have that σ1 and σ2 are coprime.

A.1.2 Perfect Square Polynomial

The first perfect square polynomial is given by

s2
1 − 4s2s3 = p2 . (A.1.7)

This can be reformulated as

(s1 + p) (s1 − p) = 4s2s3 , (A.1.8)

which can be solved in general by applying the solution of the two-term polynomial

(A.1.4). In this case, it reads

s1 − p = 2σ1σ2

s1 + p = 2σ3σ4

s2 = σ1σ3

s3 = σ2σ4 .

(A.1.9)

From the first two of these equations, one finds the generic form of s1

s1 = σ1σ2 + σ3σ4 . (A.1.10)

So the general solution to the perfect square condition is

s2
1 − 4s2s3 = p2 :


s1 = σ1σ2 + σ3σ4

s2 = σ1σ3

s3 = σ2σ4 .

(A.1.11)

It follows from the solution of (A.1.4) that σ2 and σ3 are coprime, as are σ1 and σ4.

A.1.3 Three Term Polynomial

The three-term polynomial

P = s2
1s2s3 − s1s4s5 + s2

5s6 , (A.1.12)

appears in the algorithm. By imposing P = 0 it is seen that s1 | s2
5s6, since it divides the

other two terms in the equation. In the same way s5 | s2
1s2s3. Decompose s5 = σ1σ2 and
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s1 = σ1σ3, where σ1 = (s1, s5) is the greatest common divisor of the two terms, so that

σ2 and σ3 have no common irreducibles. Then the equation of the polynomial becomes

σ2
1(s6σ

2
2 − s4σ2σ3 + s2s3σ

2
3) = 0 . (A.1.13)

Applying the same reasoning it is now seen that σ3 | s6σ2, but since σ2 and σ3 have no

common irreducibles one can conclude that σ3 | s6. In the same way it can be deduced

that σ2 | s2s3. This can be expressed as

s6 = σ4σ3, s2s3 = κσ2 , (A.1.14)

where κ is some constant of proportionality. The two-term solution (A.1.4) can be applied

to the second of these equations to obtain

s2 = σ5σ6, s3 = σ7σ8, κ = σ5σ7, σ2 = σ6σ8 . (A.1.15)

Then the initial polynomial reduces to

σ2
1σ3σ6σ8(σ3σ5σ7 + σ4σ6σ8 − s4) = 0 , (A.1.16)

from which can be solved for s4. Then there is a non-canonical solution

s2
1s2s3 − s1s4s5 + s2

5s6 = 0 :



s1 = σ1σ3

s2 = σ5σ6

s3 = σ7σ8

s4 = σ3σ5σ7 + σ4σ6σ8

s5 = σ1σ6σ8

s6 = σ3σ4 ,

(A.1.17)

where the pairs (σ5, σ8), (σ6, σ7), and (σ3, σ6σ8) are all coprime. There are also four

different canonical solutions

σ1 = 0 : s1 = s5 = 0

σ3 = 0 : s1 = s6 = 0

σ6 = 0 : s2 = s5 = 0

σ8 = 0 : s3 = s5 = 0 .

(A.1.18)
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A.2 Matter Loci of SU(5) Models

In this appendix we list the matter loci of the I5 fibers whose U(1) charges are studied

in section 3.4.

σ2
3s1,2 − σ2σ3s2,2 + σ2

2s3,2 (A.2.1)

σ2
4s1,2 − σ4σ5s2,2 + σ2

5s3,2 (A.2.2)

σ1(σ2
3s5,1 − σ2σ3s6,1 + σ2

2s7,1)− (σ2σ4 − σ3σ5)(σ2s9,1 − σ3s8,1) (A.2.3)

σ2
3σ4(σ4s3,1 − σ1s7,0) + σ2

2(σ2
4s1,3 − σ1σ4s5,2 + σ2

1s8,1)− σ2σ3(σ2
4s2,2 − σ1σ4s6,1 + σ2

1s9,0)

(A.2.4)

σ2
3σ4(σ4s1,2 − σ1s5,1) + σ2

2σ4(σ4s3,2 − σ1s7,1)− σ2σ3(σ2
4s2,2 − σ1σ4s6,1 + σ2

1s9,0) (A.2.5)

σ2
1σ

2
2s1,3 − σ1σ2s2,2s5,1 + s3,1s

2
5,1 (A.2.6)

− σ1σ
2
3σ4s5,1 − σ2σ3(σ2

4s3,1 − σ1σ4s6,1 + σ2
1s8,1) + σ1σ

2
2(−σ4s7,1 + σ1s9,1) (A.2.7)

σ2
1σ3(σ2

3s1,4−σ2σ3s2,3+σ2
2s3,2)+σ1(σ2σ4−σ3σ5)(σ2

3s5,2−σ2σ3s6,1+σ2
2s7,0)+σ3(σ2σ4−σ3σ5)2s8,0

(A.2.8)

σ1(σ2
2s3,1 − σ2σ3s6,1 + σ2

3s8,1)− (σ2σ4 − σ3σ5)(σ2s7,1 − σ3s9,1) (A.2.9)

(σ2σ4 − σ3σ5)2s1,4 + σ2σ5s
2
2,2 − (σ2σ4 − σ3σ5)s2,2s5,2 + σ3σ4s

2
5,2 (A.2.10)

(σ2σ4−σ3σ5)s1,5−σ1(σ2σ4−σ3σ5)(σ2s5,3−σ3s2,3)+σ2
1(σ2

3s3,1−σ2σ3s6,1+σ2
2s8,1) (A.2.11)

(ξ3σ2− ξ2σ3)(ξ2
2s1,3− ξ2ξ3s2,3 + ξ2

3s3,3)+(ξ2ξ4− ξ3ξ5)(ξ2
2s5,1− ξ2ξ3s6,1 + ξ2

3s7,1) (A.2.12)

ξ3ξ4σ
2
1 − σ1σ4s5,1 + σ2

4s1,2 (A.2.13)

ξ2
2(σ1s5,1 − σ4s1,2) + ξ2ξ3(σ4s2,2 − σ1s6,1) + ξ2

3(σ1s7,1 − σ4s3,2) (A.2.14)

ξ2
2ξ4s5,1 + ξ2ξ3(σ4s8,1 − ξ4s6,1) + ξ2

3(ξ4s7,1 − σ4s9,1) (A.2.15)

ξ2(−ξ2σ2s2,2 + ξ2σ3s3,2 + ξ3σ2s6,1 − ξ3σ3s7,1)− ξ2
3σ2s9,0 (A.2.16)

ξ3
2(σ3s1,3− ξ4s2,2) + ξ2

2ξ3(ξ5s2,2−σ3s5,2 + ξ4s6,1) + ξ3
3ξ5s9,0− ξ2ξ

2
3(ξ5s6,1−σ3s8,1 + ξ4s9,0)

(A.2.17)

ξ1ξ
2
2ξ4s3,1 + ξ2ξ3(ξ2

4σ4 − ξ1ξ4s6,1 + ξ2
1σ2s7,1) + ξ1ξ

2
3(ξ4s8,1 − ξ1σ2s9,1) (A.2.18)

(ξ1ξ2σ3−σ2σ4)2s3,1+ξ3(ξ1ξ2σ3−σ2σ4)(ξ1σ2s2,2−ξ1σ3s6,1+ξ4σ3σ4)+ξ2
1ξ

2
3(σ2

2s1,3−σ2σ3s5,2+σ2
3s8,1)

(A.2.19)

ξ4ξ
3
6ξ

3
8σ4 − ξ3ξ

2
6ξ

2
8(ξ5ξ7σ4 − s1,2 + ξ4s6,1)

+ ξ2
3ξ6ξ8(ξ4ξ7ξ8σ3 − ξ5ξ6s5,2 + ξ5ξ7s6,1 + ξ4ξ5ξ6s9,1)− ξ2

3ξ5(ξ2
7ξ8σ3 − ξ5ξ

2
6s8,2 + ξ5ξ6ξ7s9,1)

(A.2.20)
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ξ3
3ξ4ξ7σ

3
3 − ξ5ξ

3
6ξ8σ3σ

2
4 + ξ2

3ξ6(ξ2
5ξ

2
6s3,2 + σ2

3(s1,2 − ξ4s6,1)− ξ5σ3(ξ7σ3σ4 + ξ6s2,2 − ξ4ξ6s7,1))

+ ξ3ξ
2
6σ4(ξ4ξ8σ

2
3 + ξ5(σ3s6,1 − ξ5ξ6s7,1))

(A.2.21)

δ1(ξ2
2s1,2 − ξ2ξ3s2,2 + ξ2

3s3,2)− δ4(ξ2
2s5,1 − ξ2ξ3s6,1 + ξ2

3s7,1) (A.2.22)

ξ2
2(σ1s5,1− δ1σ3s8,1) + ξ2

3(σ2s7,1− δ1δ2s9,1) + ξ2ξ3(−σ1s6,1 + δ1δ2s8,1 + δ1δ3s9,1) (A.2.23)

δ2δ
2
4σ1(δ2ξ3−δ3ξ2)+δ2

1(δ2
2s1,2−δ2δ3s2,2+δ2

3s3,2)−δ1δ4(δ2
2s5,1−δ2δ3s6,1+δ2

3s7,1) (A.2.24)

A.3 Resolution of Generic Singular Fibers

In section 3.1 a table (table 3.4) of canonical forms for many of the different fiber types

as originally denoted by Kodaira was presented. In this section is is shown by explic-

itly constructing the resolution that each of the forms is the stated fiber. Given the

set of resolutions and the canonical vanishing orders, the resolved geometry is uniquely

determined and the form of the resolved geometry will not be written explicitly. For

the Cartan divisors the equations are given after the resolution process and they will

intersect according to the fiber type of the singularity under consideration.

A.3.1 I
s(0|n1|m2)
2k+1 (n+m ≤ k)

The generic form for the singular I
s(0|n1|m2)
2k+1 is (2k+1−(n+m), k−n,m, k+1−m, 0, 0, n, 0),

provided that (m+ n ≤ k). The resolution process involves several steps. First perform

the following blow ups

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i < min{k − n, k + 1−m} . (A.3.1)

If n 6= 0 then the following small resolutions can be applied

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n . (A.3.2)

Similarly if m 6= 0 the small resolutions,

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m , (A.3.3)

are possible. If both n 6= 0 and m 6= 0 we need to use both sets of resolutions are applied.

The next step depends on the sign of the quantity m − n − 1. We call ζmax the last

exceptional divisor introduced in the initial blow ups, and from now on the index will be

used as max = min{k − n, k + 1−m} If it is positive then the resolutions,

(y, ζmax;χ1), (y, χr;χr+1) 1 ≤ r < m− n− 1 , (A.3.4)



Appendix A. Appendices to Chapter 3 147

are used. Whereas if negative then the resolutions are

(x, ζmax; Ω1), (x,Ωr; Ωr+1) 1 ≤ r < −(m− n− 1) . (A.3.5)

If the term is exactly zero then we do neither set. Finally the process can be completed

with the resolutions

(y, ζs;ψs) 1 ≤ s < max . (A.3.6)

The Cartan divisors are listed, assuming that n−m− 1 > 0,

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0ζ1δ1 + l1s7,0ζ1ξ1

ζi<max s6,0x

ζmax xs6,0 + s5,k+1−mζmax−1

δj<m l2s6,0 + s7,0ζ1

δm l2ys6,0 + ys7,0ζ1ψ1 + s3,mζ
m
1 δm−1ψ

m−1
1

ξi<n l1s6,0 + s9,0ζ1

ξn l1xs6,0 + ζ1(xs9,0 + s8,0ζ
n−1
1 ξn−1)

χr<m−n−1 xs6,0 + s5,k+1−mζmax−1

χm−n−1

y(xs6,0 + s5,k+1−mζmax−1ψmax−1)+

+ζm−nmax−1ψ
m−n−1
max−1 (xs2,k−n + s1,2k+1−n−mζmax−1ψmax−1)χm−n−2

ψs<max s6,0y

Then the ordered set (z, ξ1, · · · , ξn, ζ1, · · · , ζmax, χ1, · · · , χm−n−1, ψmax, · · · , ψ1δm, · · · , δ1)

gives an I
s(0|n1|m2)
2k+1 fiber, where the divisors are listed in the canonical ordering for the

Dynkin diagram. One gets the analogous result when n−m− 1 < 0.

A.3.2 I
s(0|n1|m2)
2k+1 (k < n+m ≤

⌊
2
3 (2k + 1)

⌋
)

The generic form for the singular fibers of type I
s(0|n1|m2)
2k+1 with section separation of the

form m + n ≤
⌊

2
3(2k + 1)

⌋
is given by (2k + 1 − (m + n),m,m, n, 0, 0, n, 0), where it is

assumed that m ≥ n. In order to resolve the geometry the following set of resolutions is

used



Appendix A. Appendices to Chapter 3 148

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m

(x, δr;χr) 1 ≤ r ≤ m

(x, χm;ψ1), (x, ψs;ψs+1) 1 ≤ s < 2k − 2m− n .

(A.3.7)

Notice that the first three set of resolutions (together with z) produce 2m+n+ 1 Cartan

divisors. The fourth set of resolutions is only necessary if 2k − 2m − n > 0. Then the

Cartan divisors in the most general case are

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0δ1 + l1s7,0ξ1

δ1 l2s6,0 + s7,0ξ1ξ
2
2 · · · ξnnχ1

δj<m l2s6,0 + s7,0χj−1χj

δm l2(ys6,0 + s2,mδm−1χm−1) + χm−1(ys7,0 + s3,mδm−1χm−1)χm

ξi<n l1s6,0 + s9,0δ1

ξn l1xs6,0 + xs9,0δ1χ1 + l1s5,nδ
n
1 ξn−1χ

n−1
1 + s8,nδ

n+1
1 ξn−1χ

n
1

χr<m xs6,0

χm ys6,0 + s2,mχm−1

ψs<2k−2m−n ys6,0 + s2,mχm−1

ψ2k−2m−n xys6,0 + xs2,mχm−1 + s1,2k+1−m−nψ2k−2m−n−1χ
n−1
m−1

The ordered set (z, ξ1, · · · , ξn, χ1, · · · , χm−1, ψ2k−2m−n, · · · , ψ1, χm, δm, · · · , δ1) gives

an I
s(0|n1|m2)
2k+1 singular fiber.

A.3.3 I
s(0|n1|m2)
2k (n+m ≤ k, m < k)

The generic form for the singular fiber of type I
s(0|n1|m2)
2k , where m + n ≤ k, is given by

(2k − (n + m), k − n,m, k −m, 0, 0, n, 0). The analysis follows closely that carried out

for I
s(0|n1|m2)
2k+1 where more details can be found. In order to resolve the geometry perform

the resolutions

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i < min{k − n, k −m}

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m .

(A.3.8)
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Then the sign of the quantity m− n and then use the according set of small resolutions,

where the index in ζmax again means the last exceptional divisor introduced in the blow

ups, that is, max = min{k − n, k −m}

(y, ζmax;χ1), (y, χr;χr+1) 1 ≤ r < m− n

(x, ζmax; Ω1), (x,Ωr; Ωr+1) 1 ≤ r < −(m− n) .

(A.3.9)

Finally the resolution process is completed with

(y, ζs;ψs) 1 ≤ s < max . (A.3.10)

The Cartan divisors are, assuming m− n > 0,

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0ζ1δ1 + l1s7,0ζ1ξ1

ζi<max s6,0x

ζmax xs6,0 + s5,k−mζmax−1

δj<m l2s6,0 + s7,0ζ1

δm l2ys6,0 + ys7,0ζ1ψ1 + s3,0ζ
m
1 δm−1ψ

m−1
1

ξi<n l1s6,0 + s9,0ζ1

ξn l1xs6,0 + ζ1(xs9,0 + s8,nζ
n−1
1 ξn−1)

χr<m−n xs6,0 + s5,k−mζmax−1

χm−n
y(xs6,0 + s5,k−mζmax−1ψmax−1)+

+ζm−n+1
max−1 ψ

m−n
max−1(xs2,k−n + s1,2k−m−nζmax−1ψmax−1)χm−n−1

ψs<max s6,0y

Then the ordered set (z, ξ1, · · · , ξn, ζ1, · · · , ζmax, χ1, · · · , χm−n−1, ψmax, · · · , ψ1, δm, · · · , δ1)

gives an I
s(0|n1|m2)
2k+1 , and again analogously for m−n < 0. Notice that if m = k and n = 0

the vanishing orders (k, k, k, 0, 0, 0, 0, 0) specify the singular fibers I
ns(01|n2)
2k as listed in

table 3.4. The k small resolutions that resolve the singularity are

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < k . (A.3.11)

The resolved geometry has k+1 Cartan divisors, k−1 of which will split if s2
6,0−4s5,0s7,0

is a perfect, non-zero, square.
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A.3.4 I
s(0|n1|m2)
2k (n+m ≤

⌊
4
3k
⌋
)

The generic form for the singular fibers of type I
s(0|n1|m2)
2k with section separation such

that m+n ≤
⌊

4
3k
⌋

is given by (2k− (m+n),m,m, n, 0, 0, n, 0), where it is assumed that

m ≥ n. In order to resolve the geometry the following set of resolutions is used

(x, z; ξ1), (x, ξi; ξi+1) 1 ≤ i < n

(y, z; δ1), (y, δj ; δj+1) 1 ≤ j < m

(x, δr;χr) 1 ≤ r ≤ m

(x, χm;ψ1), (x, ψs;ψs+1) 1 ≤ s < 2k − 2m− n− 1 .

(A.3.12)

Notice that the first three sets of resolutions produce 2m + n + 1 Cartan divisors. The

fourth set of resolutions is then necessary if 2k − 2m − n − 1 6= 0. The Cartan divisors

in the most general case are

Exceptional Divisor Fiber Equation

z l1l2ws6,0 + l2s9,0δ1 + l1s7,0ξ1

δ1 l2s6,0 + s7,0ξ1ξ
2
2 · · · ξnnχ1

δj<m l2s6,0 + s7,0χj−1χj

δm l2(ys6,0 + s2,mδm−1χm−1) + χm−1(ys7,0 + s3,mδm−1χm−1)χm

ξi<n l1s6,0 + s9,0δ1

ξn l1xs6,0 + xs9,0δ1χ1 + l1s5,nδ
n
1 ξn−1χ

n−1
1 + s8,nδ

n+1
1 ξn−1χ

n
1

χr<m xs6,0

χm ys6,0 + s2,mχm−1

ψs<2k−2m−n−1 ys6,0 + s2,mχm−1

ψ2k−2m−n−1 xys6,0 + xs2,mχm−1 + s1,2k−m−nψ2k−2m−n−2χ
n−2
m−1

The ordered set (z, ξ1, · · · , ξn, χ1, · · · , χm−1, ψ2k−2m−n−1, · · · , ψ1, χm, δm, · · · , δ1) gives

an I
s(0|n1|m2)
2k type singular fiber.

A.3.5 I
ns(012)
2k+1

The generic form for I
ns(012)
2k+1 is (2k+ 1, k+ 1, 0, k+ 1, 0, 0, 0, 0). The geometry is singular

at x = y = z = 0 and it can be resolved by performing a blow up (x, y, z; ζ1). This

process can be repeated k times, with the ith resolution being (x, y, ζi−1; ζi). The Cartan

divisors are then
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Exceptional Divisor Fiber Equation

z l1wx(l1xs3,0 + l2ys6,0) + l22wy
2s8,0 + xy(l1xs7,0 + l2ys9,0)ζ1

ζi≤k x2s3,0 + xys6,0 + y2s8,0

It is easily seen by considering the projective relations introduced by the resolutions

the ordered set (z, ζ1, · · · , ζk) of Cartan divisors intersects in an I
ns(012)
2k+1 . Notice that if

s2
6,0− 4s3,0s8,0 is a perfect square, each of the fiber components along {ζi = 0} splits into

two, thus giving the split version I
s(012)
2k+1 .

A.3.6 I
ns(012)
2k

The generic form for I
ns(012)
2k is (2k, k, 0, k, 0, 0, 0, 0). The singular geometry can be blown

up k times with the ith resolution being (x, y, ζi−1; ζi). The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1wx(l1xs3,0 + l2ys6,0) + l22wy
2s8,0 + xy(l1xs7,0 + l2ys9,0)ζ1

ζi<k x2s3,0 + xys6,0 + y2s8,0

ζk x2s3,0 + xys6,0 + y2s8,0 + ζk−1xs2,k + ζk−1ys5,ks1,2kζ
2
k−1

The ordered set of (k + 1) Cartan divisors (z, ζ1, · · · , ζk) gives an I
ns(012)
2k . If, in

addition, s2
6,0− 4s3,0s8,0 is a perfect square the (k− 1) Cartan divisors along ζi split into

two, giving an I
s(012)
2k fiber.

A.3.7 I
∗s(0|1||2)
2k+1

The generic forms for the singular fibers of type I
∗s(0|1||2)
2k+1 are characterized by the van-

ishing orders (k + 2, k + 2, k + 1, 1, 1, 0, 1, 0). In order to resolve the geometry perform

the resolutions

(x, y, z; ζ1), (z, ζ1; ζ2), (x, z; ζ3), (y, z; ζ4), (y, ζ2; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k .

(A.3.13)

The Cartan divisors are
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Exceptional Divisor Fiber Equation

z l1s7,0ζ3 + l2s9,0ζ4

ζ1 ys5,1

ζ2 s5,1zζ4 + xζ1(xs7,0ζ3 + s9,0ζ4δ1)

ζ3 xs9,0 + z(l1s5,1 + s8,1ζ2)

ζ4 ys7,0

δi≤2k s7,0ζ1 + s5,1ζ4

δ2k+1 y(s7,0ζ1 + s5,1ζ4) + ζk1 ζ
k
4 (s3,k+1ζ1 + s1,k+2ζ4)δ2k

The ordered set of divisors (z, ζ3, ζ2, δ1, · · · , δ2k+1, ζ1, ζ4) specifies an I
∗s(0|1||2)
2k+1 fiber in

the canonical ordering.

A.3.8 I
∗s(0|1||2)
2k

The generic forms for the singular fibers of type I
∗s(0|1||2)
2k+1 are given by the vanishing

orders (k + 2, k + 1, k + 1, 1, 1, 0, 1, 0). In order to resolve the geometry the following

resolutions are used

(x, y, z; ζ1), (z, ζ1; ζ2), (x, z; ζ3), (y, z; ζ4), (y, ζ2; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k − 1 .

(A.3.14)

The Cartan divisors are listed, where, as always, all coordinates that are constrained to

be non-zero by the projective relations have been scaled to one,

Exceptional Divisor Fiber Equation

z l1s7,0ζ3 + l2s9,0ζ4

ζ1 ys5,1

ζ2 s5,1zζ4 + xζ1(xs7,0ζ3 + s9,0ζ4δ1)

ζ3 xs9,0 + z(l1s5,1 + s8,1ζ2)

ζ4 ys7,0

δi<2k s7,0ζ1 + s5,1ζ4

δ2k ys7,0ζ1 + ys5,1ζ4 + s2,k+1ζ
k
1 ζ

k
4 δ2k−1

Then the ordered set (z, ζ3, ζ2, δ1, · · · , δ2k, ζ1, ζ4) is an I
∗s(0|1||2)
2k fiber.
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A.3.9 I
∗s(01||2)
2k+1

The standard forms for the I
∗s(01||2)
2k+1 type of singular fibers are given through the vanishing

orders (k+3, k+2, k+2, 1, 1, 0, 0, 0). In order to resolve the geometry use the resolutions

(x, y, z; ζ1), (y, z; ζ2), (ζ1, ζ2; ζ3), (y, ζ1; ζ4), (y, ζ3; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k .

(A.3.15)

The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2ζ2(l2ws8,0 + xs9,0ζ1ζ3)

ζ1 s5,1z + s8,0ζ4

ζ2 ys7,0

ζ3 s5,1zζ2 + ζ4(s7,0ζ1 + s8,0ζ2δ1)

ζ4 ys5,1

δi≤2k s7,0ζ4 + s5,1ζ2

δ2k+1 ys5,1ζ2 + ys7,0ζ4 + s2,k+2ζ
k+1
2 ζk4 δ2k

Then the ordered set (z, ζ1, ζ3, δ1, · · · , δ2k+1, ζ2, ζ4) intersects in an I
∗s(01||2)
2k+1 type fiber.

A.3.10 I
∗s(01||2)
2k

The generic forms for singular fibers of type I
∗s(01||2)
2k are given by the vanishing orders

(k + 2, k + 2, k + 1, 1, 1, 0, 0, 0). The geometry is non-singular after the resolutions

(x, y, z; ζ1), (y, z; ζ2), (ζ1, ζ2; ζ3), (y, ζ1; ζ4), (y, ζ3; δ1)

(y, δi; δi+1) 1 ≤ i ≤ 2k − 1 .

(A.3.16)

The Cartan divisors after these resolutions take the form
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Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2ζ2(l2ws8,0 + xs9,0ζ1ζ3)

ζ1 s5,1z + s8,0ζ4

ζ2 ys7,0

ζ3 s5,1zζ2 + ζ4(s7,0ζ1 + s8,0ζ2δ1)

ζ4 ys5,1

δi<2k s7,0ζ4 + s5,1ζ2

δ2k y(s5,1ζ2 + s7,0ζ4) + ζk2 ζ
k−1
4 (s1,k+2ζ2 + s3,k+1ζ4)δ2k−1

The set of divisors (z, ζ1, ζ3, δ1, · · · , δ2k, ζ2, ζ4) then has the intersection structure of

an I
∗s(01||2)
2k fiber.

A.3.11 I
∗ns(01|2)
2k+1

The generic forms for the singular fibers of type I
∗ns(01|2)
2k+1 are given by the vanishing

orders (2k + 3, k + 2, 1, k + 2, 1, 0, 0, 0). In order to resolve the geometry perform the

resolutions

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i ≤ k

(y, z; δ1), (y, ζi; δi+1) 1 ≤ i ≤ k + 1

(ζj , δj ; ξj) 1 ≤ j ≤ k + 1

(ζk+1, δk+2;χ) .

(A.3.17)

The Cartan divisors are

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2δ1(l2ws8,0 + xs9,0ζ1ξ1)

ζi≤k δi+1

δ1 s3,1z + ys7,0δ2

δk+2 x2s3,1 + xs2,k+2δk+1ξk+1 + s1,2k+3δ
2
k+1ξ

2
k+1

ξ1 s3,1zζ1 + (s7,0ζ1 + s8,0δ1)δ2

ξj≤k+1 s3,1ζj−1ζj + s8,0δjδj+1

χ s8,0δk+2 + ζk+1(x2s3,1 + xs2,k+2ξk+1 + s1,2k+3ξ
2
k+1)

Then the set (z, δ1, ξ1, ζ1, ξ2, ζ2, · · · , ζk, ξk+1, χ, δk+2) is an I
∗ns(01|2)
2k+1 fiber. Notice that
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if s2
2,k+2 − 4s1,2k+3s3,1 is a perfect, non zero square then the Cartan divisor δk+2 splits

into two and the fiber is an I
∗s(01|2)
2k+1 .

A.3.12 I
∗ns(01|2)
2k

The standard forms for the singular fibers of type I
∗ns(01|2)
2k are expressed through the

vanishing orders (2k + 2, k + 2, 1, k + 1, 1, 0, 0, 0). The space is resolved by the following

sequence of resolutions

(x, y, z; ζ1), (x, y, ζi; ζi+1) 1 ≤ i ≤ k

(y, z; δ1), (y, ζi; δi+1) 1 ≤ i ≤ k

(ζj , δj ; ξj) 1 ≤ j ≤ k + 1 .

(A.3.18)

The Cartan divisors in the resolved geometry are then

Exceptional Divisor Fiber Equation

z l1x
2s7,0ζ1 + l2δ1(l2ws8,0 + xs9,0ζ1ξ1)

ζi≤k δi+1

ζk+1 y2s8,0 + ys5,k+1ζk + s1,2k+2ζ
2
k

δ1 s3,1z + ys7,0δ2

ξ1 s3,1zζ1 + δ2(s8,0δ1 + s7,0ζ1)

ξj≤k s3,1ζj−1ζj + s8,0δjδj+1

ξk+1 s3,1ζkζk+1 + (y2s8,0 + ys5,k+1ζk + s1,2k+2ζ
2
k)δk+1

The ordered set (z, δ1, ξ1, ζ1, ξ2, ζ2, · · · , ζk, ξk+1, ζk+1) represents an I
∗ns(01|2)
2k fiber.

We note that if s2
5,k+2− 4s1,2k+2s8,0 is a perfect, non-zero square then the Cartan divisor

ζk+1 splits into two and the fiber is an I
∗s(01|2)
2k fiber.

A.4 Determination of the Cubic Equation

In this appendix a non-singular elliptic curve with three marked points is constructed

following [15, 174] and it is embedded into the projective space P2. This non-singular

elliptic curve is then fibered over some arbitrary base, B3, to create a non-singular elliptic

fibration.

Begin by considering a genus one algebraic curve, X, with three marked divisors P , Q,

and R. The line bundle O(P +Q+R) is identified with the vector space of meromorphic
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functions on X, with poles of at worst order one at the points P , Q, and R, and regular

elsewhere. The Riemann-Roch theorem for algebraic curves fixes the dimension of such

vector spaces. Any divisor in an algebraic curve X can be written as a formal sum

over the points of X: D =
∑

P∈X nPP , where nP = 0 for all by finitely many P . The

Riemann-Roch theorem then states that for any such divisor

dim O(D) = deg(D) + 1− g , (A.4.1)

where deg(D) is the sum over the nP associated to D. Thus it follows that the vector

space O(P +Q+R) has dimension 3. Let the three generators of this space be denoted

by the functions 1, x, and y. We can determine the pole structure of these functions.

Consider first the vector space O(P ), which has dimension 1 for any P ∈ X, and which

must contain the 1-dimensional space of constant functions. As it has dimension 1 it can

only contain these holomorphic functions, and therefore there are no functions with a

pole of order one at any single point of X. The pole structure of 1, x, and y can then be

determined to be as given in table A.4, up to linear combinations.

Similarly one can consider the vector space O(2(P +Q+
Function Order

P Q R

1 0 0 0

x 1 1 0

y 1 0 1

xy 2 1 1

x2 2 2 0

y2 2 0 2

x2y 3 2 1

xy2 3 1 2

x3 3 3 0

y3 3 0 3

R)) which has degree, and thus dimension, 6. Clearly 1,

x, and y are generators of half this space, and the other

three generators can be written as x2, y2 and xy, which

have the pole structures given in table A.4. Finally consider

O(3(P + Q + R)) which has dimension nine. Out of the

six generators for O(2(P + Q + R)) one can construct ten

meromorphic functions inside O(3(P +Q+R)), which must

be linearly dependent for the space to be of dimension nine.

We write this relation as

A1 +A2x+A3y+A4xy +A5x
2 +A6y

2 +A7x
2y (A.4.2)

+A8xy
2 +A9x

3 +A10y
3 = 0 .

The right-hand side of this equation is the zero function,

which does not have poles anywhere. It must then be the

case that the left-hand side must not have any poles for such a relation to hold. There

are two terms with poles of order three at the points Q, R, which are the x3 and y3

terms respectively. There is no other term which contributes a pole of these orders and

so could be tuned to cancel it off, therefore the only solution is to set the coefficients, A9

and A10, to zero.
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This leaves exactly two terms with a pole of order three at P and, by the same

argument as above, if either of these coefficients vanish then the other must also vanish.

Let us follow this line of argument and demonstrate that it leads to a contradiction. If

A7 = A8 = 0 then it is clear that both A5 = 0 and A6 = 0 as these are the only terms

remaining with a pole of order two in Q, R. Further if these terms are vanishing the

arguments above lead us to conclude that A4 = A3 = A2 = A1 = 0. If this is the case

then this is not a non-trivial relation among these ten meromorphic functions, and so the

relation cannot have either of A7 or A8 vanishing.

After the embedding of the elliptic curve into projective space the relation defines the

curve by a hypersurface equation which we write as

s1w
3 + s2w

2x+ s3wx
2 + s5w

2y + s6wxy + s7x
2y + s8wy

2 + s9xy
2 = 0 , (A.4.3)

where [x : y : w] are the coordinates of a P2 and si lie in some base coordinate ring R.

This will be taken as the defining equation of our elliptic fibration.

The cubic equation (A.4.3) can always be mapped into the form of a Weierstrass

model using Nagell’s algorithm [175, 176]. For the convenience of the reader we write

here only the f and g of the corresponding Weierstrass model. The complete derivation

of the Weierstrass model from the cubic (A.4.3) is given in [1,24–26] and we do not repeat

it here. The Weierstrass equation is

ỹ2 = x̃3 + fx̃+ g , (A.4.4)

where f and g are given in terms of the coefficients of (3.1.1) as

f =
1

48
(−s4

6 + 8s2
6(s5s7 + s3s8 + s2s0)− 24s6(s2s7s8 + s3s5s9 + s1s7s9)

+ 16(−s2
5s

2
7 + 3s1s

2
7s8 − s2

3s
2
8 + s2s3s8s9 − s2

2s
2
9 + 3s1s3s

2
9 + s5s7(s3s8 + s2s9)))(A.4.5)

g =
1

864
(s6

6 − 12s4
6(s5s7 + s3s8 + s2s9) + 36s3

6(s2s7s8 + s3s5s9 + s1s7s9)

+ 24s2
6(2s2

5s
2
7 + 2s2

3s
2
8 + s2s3s8s9 + 2s2

2s
2
9 + s5s7(s3s8 + s2s9)− 3s1(s2

7s8 + s3s
2
9))

+ 8(−8s3
5s

3
7 − 72s1s3s

2
7s

2
8 − 8s3

3s
3
8 + 27s2

1s
2
7s

2
9 − 72s1s

2
3s8s

2
9 − 8s3

2s
3
9

+ 3s2
2s8(9s2

7s8 + 4s3s
2
9) + 6s5s7(6s1s

2
7s8 + 2s2

3s
2
8 + s2s3s8s9 + 2s2

2s
2
9 − 3s1s3s

2
9)

+ 6s2s9(−3s1s
2
7s8 + 2s2

3s
2
8 + 6s1s3s

2
9) + 3s2

5(4s3s
2
7s8 + 4s2s

2
7s9 + 9s2

3s
2
9))

− 144s6(s2
2s7s8s9 + s9(s1s5s

2
7 + s2

3s5s8 + s3s8(s2
5 − 5s1s8))

+ s2(s5s
2
7s8 + s3s7s

2
8 + s1s7s

2
9))) . (A.4.6)
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Appendices to Chapter 6

B.1 Conventions and Spinor Decompositions

B.1.1 Indices

Our index conventions, for Lorentz and R-symmetry representations, which are used

throughout Chapter 6 are summarized in the following tables. Note that R-symmetry

indices are always hatted. Note that m = 1, · · · , 8, however only four components are

independent for Weyl spinors in 6d.

Lorentz indices 6d 5d 4d 3d 2d

Curved vector µ, ν µ′, ν ′ µ, ν . .

Flat vector A,B A′, B′ A,B a, b x, y

Spinors m,n m′, n′ p, q; ṗ, q̇ . .

(4 of su(4)L) (4 of sp(4)L) (2 of su(2)L; su(2)L′)

Table B.1: Spacetime indices in various dimensions.

so(5)R sp(4)R so(3)R su(2)R so(2)R ' u(1)R

Index for fundamental Â, B̂ m̂, n̂ â, b̂ p̂, q̂ x̂, ŷ

Table B.2: R-symmetry indices.

158
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B.1.2 Gamma-matrices and spinors: 6d, 5d and 4d

We work with the mostly + signature (−,+, · · · ,+). The gamma matrices ΓA in 6

dimensions, γA
′

in 5 dimensions and γA in 4 dimensions, respectively, are defined as

follows:

Γ1 = iσ2 ⊗ 12 ⊗ σ1 ≡ γ1 ⊗ σ1

Γ2 = σ1 ⊗ σ1 ⊗ σ1 ≡ γ2 ⊗ σ1

Γ3 = σ1 ⊗ σ2 ⊗ σ1 ≡ γ3 ⊗ σ1

Γ4 = σ1 ⊗ σ3 ⊗ σ1 ≡ γ4 ⊗ σ1

Γ5 = −σ3 ⊗ 12 ⊗ σ1 ≡ γ5 ⊗ σ1

Γ6 = 12 ⊗ 12 ⊗ σ2 , (B.1.1)

with the Pauli matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (B.1.2)

The 6-dimensional gamma matrices satisfy the Clifford algebra

{ΓA,ΓB} = 2ηAB , (B.1.3)

and similarly for the 5-dimensional and 4-dimensional gamma matrices.

Futhermore we define

ΓA1A2...An ≡ Γ[A1A2...An] =
1

n!

∑
w∈Sn

(−1)wΓAw(1) ΓAw(2) . . .ΓAw(n) , (B.1.4)

and similarly for all types of gamma matrices.

The chirality matrix in 4 dimensions is γ5 = −σ3 ⊗ 12 and in 6 dimensions is defined

by

Γ7 = Γ1Γ2 · · ·Γ6 = 12 ⊗ 12 ⊗ σ3 . (B.1.5)

The charge conjugation matrices in 6 dimensions, 5 dimensions and 4 dimensions are

defined by

C(6d) = σ3 ⊗ σ2 ⊗ σ2 ≡ C

C(5d) = C(4d) = −i σ3 ⊗ σ2 ≡ C . (B.1.6)
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They obey the identities (
ΓA
)T

= −CΓAC−1 , A = 1, · · · , 6.(
γA
′
)T

= CγA
′
C−1 , A′ = 1, · · · , 5.(

γA
)T

= CγAC−1 , A = 1, · · · , 4. (B.1.7)

To define irreducible spinors we also introduce the B-matrices

B(6d) = iσ1 ⊗ σ2 ⊗ σ3

B(5d) = B(4d) = i σ1 ⊗ σ2 , (B.1.8)

which satisfy (
ΓA
)∗

= B(6d)Γ
AB−1

(6d) , A = 1, · · · , 6.(
γA
′
)∗

= −B(5d)γ
A′B−1

(5d) , A′ = 1, · · · , 5.(
γA
)∗

= −B(4d)γ
AB−1

(4d) , A = 1, · · · , 4. (B.1.9)

The 6-dimensional Dirac spinors have eight complex components. Irreducible spinors

have a definite chirality and have only four complex components. For instance a spinor ρ

of positive chirality satisfies Γ7ρ = ρ. Similarly Dirac spinors in 4 dimensions have four

complex components and Weyl spinors obey a chirality projection, for instance γ5ψ = ψ

for positive chirality, and have two complex components. The components of positive,

resp. negative, chirality spinors in 4 dimensions are denoted with the index p = 1, 2,

resp. ṗ = 1, 2.

The indices of Weyl spinors in 6 dimensions can be raised and lowered using the

SW/NE (South-West/North-Est) convention:

ρm = ρnC
nm , ρm = Cmnρ

n , (B.1.10)

with (Cmn) = (Cmn) = C. There is a slight abuse of notation here: the indices m,n go

from 1 to 8 here (instead of 1 to 4), but half of the spinor components are zero due to

the chirality condition. We indices are omitted the contraction is implicitly SW/NE. For

instance

ρρ̃ = ρmρ̃
m , ρΓAρ̃ = ρn(ΓA)nmρ̃

m , (B.1.11)

with (ΓA)nm the components of ΓA as given above.

The conventions on 5-dimensional and 4-dimensional spinors are analogous: indices

are raised and lowered using the SW/NE convention with (Cm
′n′) = (Cm′n′) = C in 5
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dimensions and with the epsilon matrices εpq = εpq = εṗq̇ = εṗq̇, with ε12 = 1. They are

contracted contracted using the SW/NE convention.

We also introduce Gamma matrices ΓÂ for the sp(4)R = so(5)R R-symmetry

Γ1 = σ1 ⊗ σ3 , Γ2 = σ2 ⊗ σ3 , Γ3 = σ3 ⊗ σ3 , Γ4 = 12 ⊗ σ2 , Γ5 = 12 ⊗ σ1 .

(B.1.12)

For the R-symmetry indices we use the opposite convention compare to the Lorentz

indices, namely indices are raise and lowered with the NW/SE convention:

ρm̂ = ρn̂Ωn̂m̂ , ρm̂ = Ωm̂n̂ρn̂ , (B.1.13)

with (Ωm̂n̂) = (Ωm̂n̂) = iσ2⊗σ1. When unspecified, R-symmetry indices are contracted

with the NW/SE convention, so that we have for instance ρρ̃ = ρm̂mρ̃
m
m̂.

A collection of Weyl spinors ρm̂ in 6 dimensions transforming in the 4 of sp(4)R can

further satisfy a Symplectic-Majorana condition (which exist in Lorentzian signature,

but not in Euclidean signature)

(ρm̂)∗ = B(6d)ρ
m̂ . (B.1.14)

In 5 dimensions the Symplectic-Majorana condition on spinors is similarly

(ρm̂)∗ = B(5d)ρ
m̂ . (B.1.15)

In 4 dimensions the Weyl spinors are irreducible, however 4-dimensional Dirac spinor can

obey a Symplectic-Majorana condition identical to (B.1.15).

B.1.3 Spinor Decompositions

6d to 5d :

A Dirac spinor in 6 dimensions decomposes into two 5-dimensional spinors. A 6-dimensional

spinor ρ = (ρm) (eight components) of positive chirality reduces to a single 5-dimensional

spinor ρ = (ρm
′
), with the embedding

ρ = ρ⊗
(

1

0

)
. (B.1.16)

For a 6-dimensional spinor of negative chirality, the 5-dimensional spinor is embedded

in the complementary four spinor components. The 6-dimensional Symplectic-Majorana

condition (B.1.14) on ρ
m̂

reduces to the 5-dimensional Symplectic-Majorana condition

(B.1.15) on ρm̂ if ρ
m̂

has positive chirality, or reduces to the opposite reality condition

(extra minus sign in the rhs of (B.1.15)) if ρ
m̂

has negative chirality.
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5d to 4d :

A 5-dimensional spinor ρ = (ρm
′
) decomposes into two 4-dimensional Weyl spinors ψ+, ψ−

of opposite chiralities, with the embedding

ρ =

(
0

1

)
⊗ ψ+ +

(
1

0

)
⊗ ψ− =

(
ψ−
ψ+

)
. (B.1.17)

If ρm̂ obeys the 5-dimensional Symplectic-Majorana condition (B.1.15), the spinors ψm̂+ , ψ
m̂
−

are not independent. They form four-component spinors which obey a 4-dimensional

Symplectic-Majorana condition:(
ψ−m̂
ψ+m̂

)∗
= B(4d)

(
ψ−

m̂

ψ+
m̂

)
. (B.1.18)

With these conventions, we obtain for two 5-dimensional spinors ρ, ρ̃ the decomposi-

tion of bilinears

ρρ̃ = ρm′ ρ̃
m′ = ψ+pψ̃

p
+ − ψ−ṗψ̃

ṗ
+ = ψ+ψ̃+ − ψ−ψ̃− ,

ργ5ρ̃ = ρm′(γ
5)m

′
n′ ρ̃

n′ = ψ+pψ̃
p
+ + ψ−ṗψ̃

ṗ
+ = ψ+ψ̃+ + ψ−ψ̃−

ργµρ̃ = ψ+p(τ
µ)pṗψ̃

ṗ
− + ψ−ṗ(τ̄

µ)ṗpψ̃
p
+ = ψ+τ

µψ̃− + ψ−τ̄
µψ̃+ , (B.1.19)

with (τ1, τ2, τ3, τ4) = (−12, σ1, σ2, σ3) and (τ̄1, τ̄2, τ̄3, τ̄4) = (−12,−σ1,−σ2,−σ3).

R-symmetry reduction :

In Chapter 6 we considered the reduction of the R-symmetry group

sp(4)R → su(2)R ⊕ so(2)R . (B.1.20)

The fundamental index m̂ of (4)R decomposes into the index (p̂, x̂) of su(2)R ⊕ so(2)R.

A (collection of) spinors ρm̂ in any spacetime dimension can be gathered in a column

four-vector ρ with each components being a full spinor. The decomposition is then

ρ = ρ(1) ⊗
(

1

0

)
+ ρ(2) ⊗

(
0

1

)
, (B.1.21)

with ρ(1) = (ρ(1)
p̂) transforming in the (2)+1 of su(2)R ⊕ so(2)R and ρ(2) = (ρ(2)

p̂)

transforming in the (2)−1. So the four spinors ρm̂ get replaced by the four spinors

ρ(1)
p̂, ρ

(2)
p̂. From the sp(4)R invariant tensor Ωm̂n̂, with Ω = ε ⊗ σ1, and the explicit

gamma matrices (B.1.12) we find the bilinear decompositions. For instance

ρm̂ρ̃m̂ = ρ(1)p̂ρ̃
(2)
p̂ + ρ(2)p̂ρ̃

(1)
p̂ , (B.1.22)

ρΓâρ̃ ≡ ρm̂(Γâ)m̂
n̂ρ̃n̂ = ρ(2)p̂(σâ)p̂

q̂ρ̃
(1)
q̂ − ρ

(1)p̂(σâ)p̂
q̂ρ̃

(2)
q̂ ≡ ρ(2)σâρ̃(1) − ρ(1)σâρ̃(2) .
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Furthermore, there is a useful identity

(ΓÂ)m̂n̂(Γ
Â

)r̂ŝ = 4δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ . (B.1.23)

B.2 Killing spinors for the S2 background

In this appendix we determine the solutions to the Killing spinor equations for the S2

background in section 6.1.2.

B.2.1 δψm̂A = 0

The supersymmetry transformations are parametrized by two eight-component spinors

εm̂, ηm̂ with an index m̂ transforming in the 4 of sp(4)R. The first Killing spinor equation

reduces with our ansätze to

0 = δψm̂A = DAεm̂ +
1

24
(T m̂n̂)BCDΓBCDΓAε

n̂ + ΓAη
m̂ (B.2.1)

with

Dµεm̂ = ∂µε
m̂ +

1

2
bµε

m̂ +
1

4
ω̃BCµ ΓBCε

m̂ − 1

2
V m̂
µ n̂ε

n̂

ω̃ABµ = 2eν[A∂[µeν]
B] − eρ[AeB]σeCµ ∂ρeσC + 2e[A

µ b
B] = ωABµ + 2e[A

µ b
B] ,

(B.2.2)

where the background fields have been converted to sp(4)R representations with

V m̂
A n̂ = V

AB̂Ĉ
(ΓB̂Ĉ)m̂n̂ , T m̂n̂BCD = T

ÂBCD
(ΓÂ)m̂n̂ , Dm̂n̂

r̂ŝ = D
ÂB̂

(ΓÂ)m̂n̂(ΓB̂)r̂ŝ .

(B.2.3)

We choose to set η = 0. After plugging our ansatz, in particular T m̂n̂BCD = bA = 0, we

obtain:

0 = ∂φε
m̂ − 1

2r
`′(θ) Γ56εm̂ − 1

2
v(θ) (Γ4̂5̂)m̂n̂ε

n̂

0 = ∂µ′ε
m̂ , µ′ = x1, x2, x3, x4, θ ,

(B.2.4)

We find solutions for constant spinors εm̂ satisfying:

0 = −Γ56εm̂ + (Γ4̂5̂)m̂n̂ε
n̂ , (B.2.5)

with

v(θ) = −`
′(θ)

r
. (B.2.6)

The condition (B.2.5) projects out half of the components of a constant spinor, leav-

ing eight real supercharges in Lorentzian signature, or eight complex supercharges in

Euclidean signature.
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B.2.2 δχm̂n̂r̂ = 0

The second Killing spinor equation is given by

0 = δχm̂n̂r̂

=
5

32

(
DAT m̂n̂BCD

)
ΓBCDΓAεr̂ −

15

16
ΓBCR

[m̂
BC r̂ε

n̂] − 1

4
Dm̂n̂

r̂ŝε
ŝ +

5

8
T m̂n̂BCDΓBCDηr̂ − traces ,

(B.2.7)

with

DµT m̂n̂BCD = ∂µT
m̂n̂
BCD + 3ω̃

E
µ[BT

m̂n̂
CD]E − bµ T

m̂n̂
BCD + V

[m̂
µr̂ T

n̂]r̂
BCD

Rm̂n̂µν = 2∂[µV
m̂n̂
ν] + V

r̂(m̂
[µ V

n̂)
µ]r̂ .

(B.2.8)

Here, ‘traces’ indicates terms proportional to invariant tensors Ωm̂n̂, δm̂r̂ , δ
n̂
r̂ . Again the

background fields are converted to sp(4)R representations using (B.2.3).

With T m̂n̂BCD = 0, we obtain the simpler conditions

0 = −15

4
ΓBCR

[m̂
BC r̂ε

n̂] −Dm̂n̂
r̂ŝε

ŝ − traces . (B.2.9)

The R-symmetry field strength has a single non-vanishing component, corresponding to

a flux on S2:

Rm̂n̂θφ = −Rm̂n̂φθ = −`
′′(θ)

r
(Γ4̂5̂)m̂n̂ . (B.2.10)

In flat space indices this becomes

Rm̂n̂56 = −Rm̂n̂65 = − `′′(θ)

r2`(θ)
(Γ4̂5̂)m̂n̂ . (B.2.11)

Moreover our ansatz for D
ÂB̂

(6.1.23) can be re-expressed in sp(4)R indices as:

Dm̂n̂
r̂ŝ = d

[
5(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝ − δ[m̂
r̂δ
n̂]
ŝ − Ωm̂n̂Ωr̂ŝ

]
, (B.2.12)

where the two last terms lead only to “traces” contributions in (B.2.9) and hence drop

from the equations. We obtain

0 =
15

2

`′′(θ)

r2`(θ)
Γ56(Γ4̂5̂)[m̂

r̂ε
n̂] − 5d(Γ4̂5̂)[m̂

r̂(Γ
4̂5̂)n̂]

ŝε
ŝ . (B.2.13)

Using (B.2.5), we solve the equations without further constraints on εm̂ for

d =
3

2

`′′(θ)

r2`(θ)
. (B.2.14)

The background we found corresponds to the twisting u(1)L ⊕ u(1)R → u(1) on S2.

It preserves half of the supersymmetry of the flat space theory.
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B.3 6d to 5d Reduction for bµ = 0

In this appendix we detail the reduction of the 6-dimensional equations of motion on an

S1. This is done following ([157, 158]) however we choose to gauge fix bµ = 0, which is

possible without loss of generality.

We start by decomposing the 6-dimensional frame:

e
µ

A =

 eµ
′

A′ eφA′ ≡ CA′

eµ
′

6 ≡ 0 eφ6 ≡ α

 , (B.3.1)

where the 5-dimensional indices are primed. We work in the gauge bµ = 0, which is

achieved by fixing the special conformal generators, KA. Note that this choice is different

from the gauge fixing of bµ in ([157,158]), in particular α is not covariantly constant in this

case. Furthermore, we fix the conformal supersymmetry generators to ensure ψ5 = 0,

which means that e
µ

6 = 0 is invariant under supersymmetry transformations. For a

general background the bosonic supergravity fields descend to 5-dimensional fields as

Dm̂n̂
r̂ŝ → Dm̂n̂

r̂ŝ

V m̂n̂
A →

 V m̂n̂
A′ a 6= 6

Sm̂n̂ a = 6

T m̂n̂ABC → T m̂n̂A′B′6 ≡ T m̂n̂A′B′ .

(B.3.2)

The components of the spin connection along the φ direction are given by

wA
′6

φ =
1

α2
eµ
′A′∂µ′α , wA

′b′
φ = − 1

α2
GA

′B′ wA
′6

µ′ =
1

α
eν
′A′Gµ′ν′ , (B.3.3)

where G = dC and can be derived from the 6-dimensional vielbein using

ωABµ = 2eν[A∂[µe
B]
ν] − e

ρ[AeB]σeCµ ∂ρeσC . (B.3.4)

B.3.1 Equations of Motion for B

In order to reduce the equation of motion for the H field we proceed as in the 6d-4d

reduction and decompose the field as:

H =
1

3!
HA′B′C′e

A′ ∧ eB′ ∧C′ +1

2
HD′E′6e

D′ ∧ eE′ ∧ e6. (B.3.5)

The 6-dimensional equation of motion reduces to

dH = 0

H−ABC −
1

2
Φm̂n̂T

m̂n̂
ABC = 0 .

(B.3.6)
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From this and the second equation in (B.3.6) we can express the two components of H

as

HA′B′6 = αFA′B′

HA′B′C′ =
1

2
εA′B′C′

D′E′(αFD′E′ − Φm̂n̂T
m̂n̂
D′E′) ,

(B.3.7)

where Fµ′ν′ is a two-form in 5 dimensions. Substituting this into the expansion of H and

reducing to 5-dimensional we obtain

H = α ∗5d (F − 1

α
Φm̂n̂T

m̂n̂) + F ∧ C + F ∧ dϕ , (B.3.8)

The equation of motion dH = 0 implies

dF = 0, F ∧ dC + d(α ?5d F − Φm̂n̂T
m̂n̂) (B.3.9)

which can be integrated to the action in 5d

SF = −
∫

tr[αF̃ ∧ ∗5dF̃ + C ∧ F ∧ F ] , (B.3.10)

where

F̃ = F − 1

α
Φm̂n̂T

m̂n̂ . (B.3.11)

Together with the constraint dF = 0, which identifies F with the field strength of a

5-dimensional connection A, given by Fµ′ν′ = ∂µ′Aν′ − ∂ν′Aµ′ .

B.3.2 Equation of Motion for the Scalars

Reducing the equation of motion down to 5-dimensional we find

D2Φm̂n̂ + 2FA′B′T
A′B′

m̂n̂ + (MΦ)m̂n̂r̂ŝ Φr̂ŝ = 0 , (B.3.12)

where

Dµ′Φm̂n̂ = ∂µ′ − V
[m̂
µ′r̂Φ

n̂]r̂ + [Aµ′ ,Φ
m̂n̂]

D2Φm̂n̂ = (∂A
′
+ ωB

′A′
B′ )DA′Φm̂n̂ − V [̂m

µ′r̂D
µ′Φ

n̂]
r̂

(MΦ)m̂n̂r̂ŝ = −R6d

5
δ

[m̂
r̂ δ

n̂]
ŝ +

1

α
Cµ
′
∂µ′αS

[m̂
r̂ Φn̂]r̂ +

1

2
α2(S

[m̂
r̂ S

n̂]
ŝ − S

t̂
ŝS

[m̂

t̂
δ
n̂]
r̂ )− 1

15
Dm̂n̂
r̂ŝ − T

A′B′

r̂ŝ T m̂n̂A′B′ .

(B.3.13)

This equation of motion can be integrated to

SΦ = −
∫
d5x

√
|g|α−1

(
DA′Φm̂n̂DA′Φm̂n̂ + 4Φm̂n̂FA′B′T

A′B′

m̂n̂ − Φm̂n̂(MΦ)m̂n̂r̂ŝ Φr̂ŝ
)
.

(B.3.14)
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B.3.3 Equation of Motion for the Spinors

We decompose the 6-dimensional field to

ρmm̂ →

 0

iρm
′m̂

 . (B.3.15)

Then for a general background the 6-dimensional equation of motion reduces to

i /Dρm′m̂ + (Mρ)
m′m̂
n′n̂ ρn

′n̂ = 0 , (B.3.16)

where

Dµ′ρ
m′m̂ =

(
∂µ′ +

1

4
ωA
′B′

µ′ γA′B′

)
ρm
′m̂ − 1

2
V m̂
µ′n̂ρ

n̂

(Mρ)
m′m̂
n′n̂ = α

(
−1

2
Sm̂n̂ δ

m′
n′ +

1

8α2
GA′B′(γ

A′B′)m
′

n′ δ
m̂
n̂ −

i

2α2
eµ
′A′∂µ′α(γA′)

m′
n′ δ

m̂
n̂

)
+

1

2α2
(γµ

′
γν
′
)m
′

n′ Cµ′∂ν′α+
1

2
T m̂A′B′n̂(γA

′B′)m
′

n′ .

(B.3.17)

From this we obtain the action

Sρ = −
∫
d5x
√
|g|α−1ρmm̂

(
i /Dmn ρnm̂ + (Mρ)

mm̂
nn̂ ρnn̂

)
. (B.3.18)

B.4 Supersymmetry Variations of the 5-dimensional Ac-

tion

The supersymmetry variations (6.2.14), which leave the action S in section 6.2.2 invariant,

can be decomposed with respect to the R-symmetry of the 5-dimensional action, following

the rules of appendix B.1.3. The scalar and gauge field variations are then

δAµ = −`(θ)
(
ε(1)p̂γµρ

(2)
p̂− + ε(2)p̂γµρ

(1)
p̂+

)
δAθ = −r`(θ)

(
ε(1)p̂ρ

(2)
p̂+ − ε

(2)p̂ρ
(1)
p̂−

)
δϕâ = i

(
ε(1)

p̂(σ
â)p̂q̂ρ

(2)
q̂+ − ε

(2)
p̂(σ

â)p̂q̂ρ
(1)
q̂−

)
δϕ = −2ε(1)p̂ρ

(1)
p̂+ , δϕ̄ = 2ε(2)p̂ρ

(2)
p̂−

(B.4.1)
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and for the fermions

δρ
(1)
p̂+ =

i

8`(θ)
Fµνγ

µνε
(1)
p̂ −

i

4
Dµϕγµε(2)

p̂ +
1

4r
Dθϕq̂p̂ε

(1)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(1)
q̂ − i[ϕ, ϕ̄]ε

(1)
p̂

)
δρ

(1)
p̂− =

i

4r`(θ)
Fµθγ

µε
(1)
p̂ +

1

4
Dµϕq̂p̂ γ

µε
(1)
q̂ +

i

4r

(
Dθϕ−

`′(θ)

r`(θ)
ϕ

)
ε
(2)
p̂ −

`(θ)

4
[ϕ,ϕq̂p̂]ε

(2)
q̂

δρ
(2)
p̂+ = − i

4r`(θ)
Fµθγ

µε
(2)
p̂ −

1

4
Dµϕq̂p̂ γ

µε
(2)
q̂ −

i

4r

(
Dθϕ̄−

`′(θ)

r`(θ)
ϕ̄

)
ε
(1)
p̂ −

`(θ)

4
[ϕ̄, ϕq̂p̂]ε

(1)
q̂

δρ
(2)
p̂− =

i

8`(θ)
Fµνγ

µνε
(2)
p̂ +

i

4
Dµϕ̄γµε(1)

p̂ +
1

4r
Dθϕq̂p̂ε

(2)
q̂ −

`(θ)

8

(
εâb̂ĉ[ϕâ, ϕb̂](σĉ)

q̂
p̂ε

(2)
q̂ + i[ϕ, ϕ̄]ε

(2)
p̂

)
,

(B.4.2)

where ϕp̂
q̂ =

∑
â ϕ

â(σâ)p̂
q̂.

B.5 Aspects of the 4-dimensional Sigma-Model

In this appendix we summarize properties of the sigma-model defined in section 6.3 and

provide details on integrating out the gauge field and the scalars ϕ and ϕ̄.

B.5.1 Useful Relations

The three symplectic structures of the hyper-Kähler target can be used to define the

three complex structures ωâK
I = ωâKJG

JI , which satisfy

ωâI
Jω

b̂J
K = −δ

âb̂
δKI + ε

âb̂ĉ
ωĉI

K . (B.5.1)

The complex structures exchange Υâ
I and Υ

(θ)
I in the following fashion

ωâI
JΥ

(θ)
J = −Υâ

I

ωâI
JΥb̂

J = δâb̂Υ
(θ)
I + εâb̂ĉΥIĉ .

(B.5.2)

Here, we made use of the completeness relations ([173])

GIJΥâα
I (θ)Υb̂β

J (τ) +
∑
i

Ψâaα
i (θ)Ψb̂β

i (τ) = δâb̂δαβ δ(θ − τ)

GIJΥ
(θ)aα
I (θ)Υ

(θ)β
J (τ) +

∑
i

Ψ
(θ)aα
i (θ)Ψ

(θ)β
i (τ) = δαβδ(θ − τ)

GIJΥâα
I (θ)Υ

(θ)β
J (τ) +

∑
i

Ψα̂
i (θ)Ψ

(θ)β
i (τ) = 0,

(B.5.3)

Here α, β are indices labelling generators of the gauge algebra. These functions satisfy

the orthogonality conditions∫
dθΥâα

I (θ)Ψb̂β
i (θ) = 0 ,

∫
dθΥ

(θ)α
I (θ)Ψ

(θ)β
i (θ) = 0. (B.5.4)



Appendix B. Appendices to Chapter 6 169

B.5.2 Integrating out Fields

In this appendix we discuss how the scalars ϕ, ϕ̄ and the 4-dimensional gauge field Aµ

are integrated out in the sigma-model reduction. The equations of motion for ϕ, ϕ̄ and

Aµ are derived from the action (6.2.36)

D2ϕ+ [ϕâ, [ϕ
â, ϕ]] = −4ir[ρ

(1)
−p̂, ρ

(1)p̂
+ ]

D2ϕ̄+ [ϕâ, [ϕ
â, ϕ̄]] = 4ir[ρ

(2)
+p̂, ρ

(2)p̂
− ]

D2
θAµ +

[
ϕâ,
[
ϕâ, Aµ

]]
= [Aθ, ∂IAθ] ∂µX

I +
[
ϕâ, ∂Iϕ

â
]
∂µX

I − 4i[ρ
(1)
−p̂, γµρ

(2)p̂
+ ] ,

(B.5.5)

where in the equation of motion for Aµ we made use of the expansion (6.3.19) and

(6.3.20). We adopt a convenient gauge for the connection EI

DθΥθ
I + [ϕâ,Υ

â
I ] = 0, (B.5.6)

which can be re-expressed as

D2
θEI + [ϕâ, [ϕ

â, EI ]] = [Aθ, ∂IAθ] + [ϕâ, ∂Iϕ
â] , (B.5.7)

where we have used the gauge fixing condition ∂θAθ = 0. We evaluate the spinors bilinear

in (B.5.5) to give[
ρ

(1)
−p̂, ρ

(1)p̂
−

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υ

(θ)
I ,Υ

(θ)
J

])
λ

(1)I
p̂ λ(1)Jp̂[

ρ
(2)
+p̂, ρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υ

(θ)
I ,Υ

(θ)
J

])
λ

(2)I
p̂ λ(2)Jp̂[

ρ
(1)
−p̂, ρ

(2)p̂
+

]
= −4

([
Υâ
I ,ΥJâ

]
+
[
Υ

(θ)
I ,Υ

(θ)
J

])
λ

(1)I
p̂ λ(2)Jp̂

(B.5.8)

We note that the curvature

ΦIJ = [∇I ,∇J ] , (B.5.9)

where ∇I = ∂I + [EI , · ], satisfies the equation

D2
θΦIJ + [ϕâ, [ϕ

â,ΦIJ ]] = 2
(

[ΥIâ,Υ
â
J ] + [Υ

(θ)
I ,Υ

(θ)
J ]
)
. (B.5.10)

It can be used to solve the equations of motion by

ϕ = 8irΦIJλ
(1)I
p̂ λ(1)Jp̂

ϕ̄ = −8irΦIJλ
(2)I
p̂ λ(2)Jp̂

Aµ = EI∂µX
I + 8iΦIJλ

(1)I
p̂ γµλ

(2)Jp̂.

(B.5.11)
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Inserting this back in the action the terms with ϕ, ϕ̄ result in

Sϕ,ϕ̄ =
16

r`

∫
dθd4x

√
|g4|Tr(DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ])λ
(1)Ip̂λ

(1)J
p̂ λ(2)Kq̂λ

(2)L
q̂

(B.5.12)

Integrating out the gauge filed we obtain three types of terms. The first type are

terms such that XI appear quadratically

SAµ,type1 = − 1

4r`

∫
d4xdθTr

(
DθEIDθEJ − 2∂IAθDθEJ + 2∂Iϕ

â[EJ , ϕâ]

+[EI , ϕ
â][EJ , ϕâ]

)
∂µX

I∂µXJ .

(B.5.13)

These terms combine with terms in the scalar action (6.3.25) to give the sigma-model

kinetic term

Sscalars + SAµ,type1 =
1

4r`

∫
d4x
√
|g4|GIJ∂µXI∂µXJ , (B.5.14)

Terms of the second type are linear in XI and covariantise the kinetic terms of the spinor

SAµ,type2 = −4i

r`

∫
d4xdθ

√
|g4|Tr(2Υâ

I [EJ ,ΥKâ] + 2Υ
(θ)
I [EJ ,Υ

(θ)
K ])λ(1)Ip̂γµλ

(2)K
p̂ ∂µX

J .

(B.5.15)

The terms involving the connection EI are promoted to covariant derivatives ∇I when

combined with the terms in the spinor action (6.3.28). Using the identities

∇IΥâ
J = ΓKIJΥâ

K +
1

2
[ΦIJ , ϕ

â]

∇IΥ(θ)
J = ΓKIJΥ

(θ)
K −

1

2
DθΦIJ ,

(B.5.16)

where

ΓIJ,K = −
∫
dθTr

(
Υâ
K∇(IΥJ)â + Υ

(θ)
K ∇(IΥ

(θ)
J)

)
, (B.5.17)

the kinetic term in the spinor action is covariantised. Lastly, the terms of type 3 give

rise to the quartic fermion interaction. Using (B.5.10) these terms simplify to

SAµ,type3 = −16

r`

∫
d4xdθ

√
|g|Tr(DθΦIJDθΦKL + [ΦIJ , ϕ

â][ΦKL, ϕâ])

× (λ(1)Ip̂γµλ
(2)J
p̂ )(λ(1)Kq̂γµλ

(2)L
q̂ ).

(B.5.18)

Using various identities, including Fierz-type identities,

(λ(1)p̂[Iλ
(1)J ]
p̂ )(λ(2)q̂[Kλ

(2)L]
q̂ ) = 2(λ(1)p̂[Iλ(1)J ]q̂)(λ

(2)[K
p̂ λ

(2)L]
q̂ )

ωâ K
I ∇[KΥθ

J ] = ∇[IΥ
â
J ]

∇[IΥ
â
J ]λ

(i)J
p̂ = i∇[IΥ

θ
J ](σ

â)q̂p̂λ
(i)J
q̂

∇[IΥ
â
J ]∇[KΥL]âλ

(i)J
p̂ λ

(i)L
q̂ = 3∇[IΥ

θ
J ]∇[KΥθ

L]λ
(i)[J
p̂ λ

(i)L]
q̂

(B.5.19)
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it can be shown that this quartic fermion interaction combines with the term (B.5.12) to

make the Riemann tensor of the target space appear

SAµ,type3 + Sϕ,ϕ̄ = −32

rl

∫
d4x
√
|g4|RIJKL(λ(1)Ip̂λ

(1)J
p̂ )(λ(2)Kq̂λ

(2)L
q̂ ), (B.5.20)

where the Riemann tensor is given by

RIJKL = −
∫
dθTr(2∇[IΥ

â
J ]∇[KΥL]â +∇[IΥ

â
K]∇[JΥL]â −∇[IΥ

â
L]∇[JΥK]â)

+ 2∇[IΥ
(θ)
J ] ∇[KΥ

(θ)
L] +∇[IΥ

(θ)
K]∇[JΥ

(θ)
L] −∇[IΥ

(θ)
L] ∇[JΥ

(θ)
K])

= −1

4

∫
dθTr(2DθΦIJDθΦKL + 2[ΦIJ , ϕ

â][ΦKL, ϕâ] +DθΦIKDθΦJL

+ [ΦIK , ϕ
â][ΦJL, ϕâ]−DθΦILDθΦJK − [ΦIL, ϕ

â][ΦJK , ϕâ]) ,

(B.5.21)

Combining all the terms we obtain the final sigma model (6.3.29).
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[74] C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and

Higher Codimension Fibers, JHEP 1304 (2013) 061, [1212.2949]. 3, 3.2.3, 3.2.3

[75] T. W. Grimm, S. Krause, and T. Weigand, F-Theory GUT Vacua on Compact

Calabi-Yau Fourfolds, JHEP 1007 (2010) 037, [0912.3524]. 3.2.3

[76] S. Krause, C. Mayrhofer, and T. Weigand, G4 flux, chiral matter and singularity

resolution in F-theory compactifications, Nucl.Phys. B858 (2012) 1–47,

[1109.3454]. 53 pages, 2 figures. 3.2.3

http://xxx.lanl.gov/abs/1406.6071
http://xxx.lanl.gov/abs/1409.8295
http://xxx.lanl.gov/abs/1304.1678
http://xxx.lanl.gov/abs/1402.2653
http://xxx.lanl.gov/abs/1402.6331
http://xxx.lanl.gov/abs/1407.3520
http://xxx.lanl.gov/abs/1407.1867
http://xxx.lanl.gov/abs/1404.1527
http://xxx.lanl.gov/abs/1401.7844
http://xxx.lanl.gov/abs/1406.5180
http://xxx.lanl.gov/abs/1212.2949
http://xxx.lanl.gov/abs/0912.3524
http://xxx.lanl.gov/abs/1109.3454


Bibliography 178

[77] J. Marsano and S. Schafer-Nameki, Yukawas, G-flux, and Spectral Covers from

Resolved Calabi-Yau’s, JHEP 1111 (2011) 098, [1108.1794]. 3.2.3, 3.2.3

[78] A. P. Braun and T. Watari, On Singular Fibres in F-Theory, JHEP 1307 (2013)

031, [1301.5814]. 3.2.3

[79] R. Miranda, The basic theory of elliptic surfaces. Dottorato di Ricerca in

Matematica. [Doctorate in Mathematical Research]. ETS Editrice, Pisa, 1989.

3.2.3

[80] M. Kuntzler and C. Lawrie, Smooth: A Mathematica package for studying

resolutions of singular fibrations, Version 0.4, . 3.2.3

[81] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, vol. 151 of

Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. 3.2.3

[82] C. Mayrhofer, D. R. Morrison, O. Till, and T. Weigand, Mordell-Weil Torsion

and the Global Structure of Gauge Groups in F-theory, JHEP 1410 (2014) 16,

[1405.3656]. 4

[83] P. S. Aspinwall and D. R. Morrison, Nonsimply connected gauge groups and

rational points on elliptic curves, JHEP 9807 (1998) 012, [hep-th/9805206]. 4

[84] D. S. Park, Anomaly Equations and Intersection Theory, JHEP 1201 (2012) 093,

[1111.2351]. 29 pages + appendices, 8 figures/ v2: minor corrections, references

added. 3.2.3

[85] T. Shioda, Mordell-Weil lattices and Galois representation. I, Proc. Japan Acad.

Ser. A Math. Sci. 65 (1989), no. 7 268–271. 3.2.3

[86] P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with

boundary, Nucl. Phys. B475 (1996) 94–114, [hep-th/9603142]. 4

[87] C. Saemann and M. Wolf, Non-Abelian Tensor Multiplet Equations from Twistor

Space, Commun. Math. Phys. 328 (2014) 527–544, [1205.3108]. 4
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