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Quantum emitters such as quantum dots, defects in diamond or in silicon have emerged as efficient single-photon
sources that are progressively exploited in quantum technologies. In 2019, it was shown that the emitted single-
photon states often include coherence with the vacuum component. Here we investigate how such photon-number
coherence alters quantum interference experiments that are routinely implemented both for characterizing or
exploiting the generated photons. We show that it strongly modifies intensity correlation measurements in a
Hong–Ou–Mandel experiment and leads to errors in indistinguishability estimations. It also results in additional
entanglement when performing partial measurements. We illustrate the impact on quantum protocols by evidenc-
ing modifications in heralding efficiency and fidelity of two-qubit gates.
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1. INTRODUCTION
Single quantum emitters such as atoms, defects in diamond,
molecules or quantum dots are natural deterministic single-
photon emitters [1–7]. They can be brought to their excited state
and emit single photons with near-unity probability. Their spon-
taneous emission can be efficiently funneled into a single optical
mode by making use of the Purcell effect when they are inserted
in optical cavities. Together with coherent excitation schemes
[8–14], these methods have allowed the demonstration of single-
photon sources with a very high degree of indistinguishability
and efficiencies orders of magnitude higher than heralded single-
photon sources based on frequency conversion [15], making
them great assets to scale-up optical quantum technologies [16].
In particular, quantum dot (QD) based single-photon sources are
now commercially available and are exploited for quantum com-
puting protocols, enabling a significant increase in the number
of manipulated qubits, both on chip and in free space [17–23].

In 2019, it was shown that, when coherently driven, such quan-
tum emitters can directly generate light wave packets consisting
of arbitrary quantum superpositions of zero and one photon [24],
in other words single-rail qubits. The coherent excitation creates
a superposition between the ground and excited state of the two-
level system that, upon spontaneous emission, is transferred to

the electromagnetic field. Such deterministic and efficient gen-
eration of single-rail qubits could be of great value for quantum
technologies. Indeed, superpositions of zero- and one-photon
Fock states are a widely studied resource in photonic information
processing [27,28] as well as quantum communication protocols
[29–31]. It is important to note that, so far, most of these proto-
cols have been implemented either using weak coherent states
[29–31] or by interfering single photons with squeezed coherent
states [27,32,33]. However, such approaches carry strong limita-
tions arising from higher order Fock state components, limiting
the scalability of the envisioned protocols [34].

The demonstration of deterministic generation of coherent
superposition of zero and one photon [24] has recently opened
the path toward a more scalable exploitation of single-rail qubits
as well as new tailored protocols. Indeed, applications in quan-
tum technologies are progressively emerging, with propositions
of application to quantum key distribution [35], Boson sampling
[36], interfacing single- and dual-rail optical qubits [28], as well
as the very first experimental studies [21].

In the present work, we revisit Hong–Ou–Mandel (HOM)
interference to analyze and understand the effect of coherence
with vacuum in linear quantum protocols that are used both for
characterizing light emitted by quantum emitters as well as for
manipulating quantum information. Hence, our work is intended
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both for the community of researchers developing single-photon
sources based on quantum emitters and for those exploiting
these sources for quantum information processing. We first show
that coherence with vacuum can lead, and has led, to errors
in the measurement of photon indistinguishability for emitter-
based single-photon sources. We then explain how it leads to
specific quantum interference patterns when performing partial
measurements on multiple light pulses, and generates additional
entanglement. Considering that partial measurements are central
to the scalability of quantum computing, we numerically study
the impact of coherence with vacuum on heralded two-qubit
gates. Our findings suggest that tailored quantum information
processing protocols can be derived to exploit the determin-
istic generation photon-number superposition with quantum
emitters.

The present manuscript is organized as follows. In Sec-
tion 2, we recall the formalism of HOM interference with true
single-photon states and how it can be used to measure the indis-
tinguishability of the single-photon wave packets. To provide a
reference, we experimentally illustrate this well-known situation
using a quantum dot-based single-photon source under incoher-
ent excitation. In Section 3, we study the impact of coherence
with vacuum on HOM interference and evidence the emergence
of multiple phenomena. We first evidence the observed experi-
mental signatures on a coherently driven quantum dot (Section
3.1) and demonstrate how the intensity correlation measurement
should be revised (Section 3.2). Section 4 discusses the errors in
indistinguishability measurements that can arise in the char-
acterization of quantum emitter-based single-photon sources
from this overlooked coherence with vacuum. In Section 5,
we analyze another feature of HOM interference and evidence
how coherence with vacuum leads to additional entanglement
when performing partial measurements. Finally, in Section 6,
we numerically illustrate how such coherence impacts quan-
tum computing protocols by analyzing the case of a heralded
control-NOT (CNOT) gate, i.e., a dual-rail encoded protocol
fed with wave packets constituting superpositions of zero and
one photons.

2. HONG–OU–MANDEL INTERFERENCE FOR
INDISTINGUISHABILITY MEASUREMENTS
Quantifying the degree of indistinguishability of photons emit-
ted by an (artificial) atom is critical to develop useful quantum
light sources for quantum technologies. A typical test is the
ability of the quantum emitter to successively emit identical
single-photon pulses. We illustrate the typical implementa-
tion for performing such indistinguishability measurements in
Fig. 1(a). A stream of light pulses separated in time by τp, with
1/τp being the repetition rate of the excitation laser, are sent
to the input of a path-unbalanced Mach–Zehnder interferome-
ter, where delayed wave packets are temporally overlapped at
the final beam splitter BS2. Single-photon detectors, D1 and D2

monitoring the two outputs, register both single and coincidence
counts. The relative polarization of the photons entering the last
beam splitter is controlled by a half-wave plate (λ/2) on one
input of BS2. Two measurements are then performed: one with
parallel (∥) polarization for both input fields, i.e., where the pho-
tons are made as identical as possible in all degrees of freedom,
and one with orthogonal (⊥) polarization where no interference
takes place.

Fig. 1. (a) Experimental setup to perform Hong–Ou–Mandel
interference between two consecutively emitted photonic states
(τp = 12.3 ns) at a 50 : 50 beam splitter (BS2), where two detectors
D1 and D2 measure coincidences at the output. The photonic states
pick up a relative phase φ when passing through the interferom-
eter. The half-wave plate λ/2 determines parallel or orthogonal
polarization of the two arms in the interferometer. (b) Coincidence
histograms for parallel (∥) and perpendicular (⊥) polarization inter-
ference configuration for incoherent pulsed excitation of the emitter
via phonon-assisted excitation, so that coherence with vacuum is
negligible.

We recall the standard experimental features of HOM interfer-
ence with single-photon states. To do so, we use a semiconductor
QD inserted in a microcavity pillar as described in Refs. [6,37].
We use here an excitation scheme that does not generate coher-
ence with vacuum. It relies on phonon-assisted excitation that
has been shown to maintain near-unity indistinguishability while
providing an incoherent population transfer of the quantum
emitter [38–40]

Figure 1(b) presents the two detector cross correlation his-
tograms in parallel and orthogonal configuration under such
excitation. Each peak in these histograms corresponds to a cor-
relation measurement with respect to different delays between
photons detected by the two detectors, τ = kτp for integer k.
The absence of coincidence counts in the k = 0 delay peak for
the parallel configuration indicates the quantum interference
of perfectly indistinguishable single photons, where both pho-
tons bunch at the output of the final beam splitter. When the
indistinguishability is imperfect, the area of the zero delay peak
gives access to the mean wave packet overlap M, quantifying the
indistinguishability.

In the limit of high loss, the coincidence histograms give
access to intensity correlation functions, since the probability of
detection becomes proportional to the average photon-number
at the detector. The area of the zero delay peak in the parallel
polarization configuration is proportional to

G(2)
D1 ,D2 ,∥(k = 0) =

1
4

∬
G(2)

D1 ,D2 ,∥(t1, t2) dt1 dt2, (1)

where G(2)
D1 ,D2 ,∥(t1, t2) = ⟨â†

1(t1)â
†

2(t2)â2(t2)â1(t1)⟩ is the unnormal-
ized two-time second-order intensity correlation function for
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detectors D1 and D2 with detection times t1 and t2 monitoring
the output modes described by photon annihilation operators â1

and â2, respectively. The integrals are taken over the duration of
a single pulse. The normalized correlation function then reads

g(2)
D1 ,D2 ,∥(k = 0) =

4
µ2 G(2)

D1 ,D2 ,∥(k = 0), (2)

where µ/2 is the average photon-number in each input port of
the final 50:50 beam splitter BS2.

In practice, the experimental normalization procedure pro-
vides absolute values of intensity correlation functions without
knowledge on the transmission and efficiency of every compo-
nent in the experimental setup—a difficult task that falls into the
category of metrology. One way to obtain the normalized inten-
sity correlation function is to integrate the coincidences over the
duration of the measurement and subsequently normalizing by
the product of the total single detection probabilities measured
by each detector. Equivalently, one can simply normalize the
area of the zero delay peak by the area of the far delay peaks
of the correlation histogram either in parallel or perpendicular
configuration G(2)

D1 ,D2 ,∥(⊥)(|k| ≥ 2) since

G(2)
D1 ,D2 ,⊥(|k| ≥ 2) = G(2)

D1 ,D2 ,∥(|k| ≥ 2)

=

∬
I1(t1)I2(t2) dt1 dt2 =

µ2

4
,

(3)

where Ii(t) = ⟨â†

i (t)âi(t)⟩ is the average intensity at detector Di,
and µi = µ/2 for balanced beam splitters BS1 and BS2. After
normalization, the area of the coincidence peaks for |k| ≥ 2 is 1
and the single-photon indistinguishability M is obtained via the
HOM visibility defined as [41,42]

VHOM = 1 −
g(2)

D1 ,D2 ,∥(k = 0)

g(2)
D1 ,D2 ,⊥(k = 0)

, (4)

where g(2)
D1 ,D2 ,∥(⊥)(k = 0) is the normalized second-order intensity

correlation for zero delay between detectors in parallel (orthog-
onal) configuration. As an example, from the experimental data
shown in Fig. 1(b), we deduce a total mean wave packet overlap
M = VHOM = (91.66 ± 0.26)% using this approach.

A last typical feature of the normalized experimental peaks
is the area of the |k| = 1 peak that amounts to 3/4. This can be
understood considering the number of ways a pulse sequence
of single photons can contribute to each peak [43]. There are
three unique paths for the photons to take that contribute to the
|k| = 1 peak, each with the same probability of occurring when
considering balanced beam splitters. However, for the |k| ≥ 2
peaks, there are four possible paths and hence the observed
normalized peak ratio of 3/4.

3. EFFECT OF COHERENCE WITH VACUUM ON
HONG–OU–MANDEL INTERFERENCE
We now revisit HOM interference with single-photon wave pack-
ets showing quantum coherence with vacuum. We first evidence
the multiple experimental signatures arising from coherence
with vacuum, provide the theoretical framework to account for
these observation, and explain how to adapt the experimental
protocol accordingly.

Fig. 2. (a) Measured QD emission intensity (yellow dots) as a
function of pulse area θ of the resonant driving laser shows the onset
of Rabi oscillations. Also shown are the theoretical fit to the data
(yellow line) using a simple two-level system model, and the cor-
responding predictions for zero-photon probability (blue dashed)
and the two-photon contribution to the emission intensity (red
dash-dotted). The curves are normalized to the maximum emission
intensity Iπ (at θ = π). The inset shows the zero- and two-photon
predictions near θ = π. (b) Two-time second-order correlation his-
togram for an emitter driven with pulse area θ = 0.22π in parallel
polarization configuration. (c) Intensities measured by detectors D1
and D2 in a Hong–Ou–Mandel setup for a resonantly driven emitter
with pulse area θ = 0.22π, showing anticorrelated oscillations as a
function of the freely evolving phase φ.

3.1. Experimental Signatures

To generate a quantum superposition of zero and one photon, we
exploit a resonant excitation scheme, the most widely used exci-
tation technique to obtain indistinguishable single photons. In
practice, the laser is resonant to the QD transition and the emit-
ted light is separated from the laser using a cross-polarization
configuration [6]. Figure 2(a) shows the emission intensity I as a
function of pulse area θ (yellow circles) normalized by the emis-
sion intensity at θ = π, evidencing the onset of Rabi oscillations.
Figure 2(b) shows the coincidence peaks in parallel configura-
tion measured for pulse area θ = 0.22π. While the coincidence
peaks for θ = π appear close to the case of incoherent excita-
tion (not shown), distinct differences in relative peak heights
are observed for θ = 0.22π. Notably, the area of the |k| = 1
peaks is greater than the area of the |k| ≥ 2 peaks. Another
important signature of photon-number coherence is observed
when considering the single counts on each detector [24]. Fig-
ure 2(c) evidences that the single counts slowly fluctuate over
time in opposite phase, indicating the presence of substantial
photon-number coherence for θ = 0.22π.

As demonstrated in Ref. [24], for sources with negligible
multi-photon emission, the coherence between the ground and
excited state imprinted by the laser is transferred to the electro-
magnetic field through spontaneous emission [25]. The resulting
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Fig. 3. (a) Integrated coincidence histograms in parallel (red) and orthogonal (grey) polarization configuration for θ = 0.22π normalized
using the phase-independent normalization factor (see main text). The delay axis of the grey curve is shifted for clarity. (b) Experimentally
extracted normalized areas of the |k| ≥ 2 peaks from phase-resolved coincidence histograms g(2)

D1 ,D2 ,∥ as a function of optical phase φ and
pulse area θ = 2 arcsin (I/Iπ ). (c) Theoretical prediction of the normalized far delay peak areas (|k| ≥ 2) as a function of optical phase φ and
pulse area. (d) and (e) Same as in panels (b) and (c), respectively, but for the |k| = 1 peak areas.

state of light is then well described by

|Ψ(θ,α)⟩ = cos
(︃
θ

2

)︃
|0⟩ + eiα sin

(︃
θ

2

)︃
|1⟩, (5)

where the phase α is imposed by the laser. The pulse area
allows for tuning of the zero- (p0 = cos2(θ/2)) and one- (p1 =

sin2(θ/2)) photon populations and photon-number coherence
ρ01 = eiα sin

(︁
θ

2

)︁
cos

(︁
θ

2

)︁
. In our experiment, the interferometer

is not actively stabilized and the two wave packets pick up a
slowly varying relative phase φ, i.e., the amplitude of light in
one arm experiences a phase shift α → α + φ, leading to phase-
dependent quantum interference at beam splitter BS2. The single
counts I1,2 measured by detectors D1,2 are now proportional to

I1,2 ∝
µ

2
(︁
1 ± c(1) cos (φ)

)︁
, (6)

where c(1) = p0 = cos2(θ/2) for a state comprising only 0 or 1
photon. More generally, for pure photonic states of the form
|Ψ⟩ =

∑︁∞

n=0
√pn |n⟩, this quantity is

c(1) =
1
µ

|︁|︁|︁|︁|︁ ∞∑︂
n=0

√︁
(n + 1)pnpn+1

|︁|︁|︁|︁|︁2 , (7)

and it quantifies the mean first-order photon-number coherence
between states containing n and n + 1 photons. The oscillations
in single counts reflect single-photon interference phenomena
that take place between two indistinguishable emitted wave
packets. Importantly, this interference effect invalidates the stan-
dard normalization procedures described in the previous section:
those relying on the recorded single counts or on the areas of far
delay peaks |k| ≥ 2.

3.2. Normalization in the Presence of Coherence with
Vacuum

In the presence of coherence with vacuum, Eq. (6) shows that
in parallel configuration, the product I1I2 depends on φ, and the

areas of the |k| ≥ 2 delay peaks are now given by

G(2)
D1 ,D2 ,∥(|k| ≥ 2) ∝ 1 −

(︁
c(1) cos (φ)

)︁2 . (8)

This is a manifestation of first-order interference, similar to clas-
sical interference, where the interferometer phase causes fringes
at the output that can increase the counts at one detector while
decreasing the counts at the other. This results in an overall
reduced coincidence count rate unless φ = π/2 exactly. As a
consequence, when overlooking the presence of this type of
quantum interference and having no control over the phase φ,
the far delay peaks will be smaller than expected when c(1) ≠ 0.
Hence, the normalization factor µ2/4, which should be indepen-
dent of phase and coherent effects, can no longer be obtained
from just the far delay peaks of the detector cross correlation
histogram [26].

As a solution, one can access the normalization factor
by recording both the cross and auto-correlation functions
G(2)

Di ,Dj
(t1, t2) with i ≠ j and i = j, respectively, considering that

µ2

4
=

1
4

(︂
G(2)

D1 ,D1
(k) + 2G(2)

D1 ,D2
(k) + G(2)

D2 ,D2
(k)

)︂
, (9)

with |k| ≥ 2 and assuming parallel polarization. This normal-
ization factor is also conveniently robust against efficiency
imbalances in the interferometer (see Supplement 1).

Using this phase-independent and coherence-robust nor-
malization procedure, we plot in Fig. 3(a) the normalized
coincidence histograms in parallel (red) and orthogonal (grey)
polarization configuration for θ = 0.22π. We observe a strong
suppression of the far delay peaks as anticipated by the propor-
tionality in Eq. (8), here averaged over the fluctuating phase φ.
We also perform phase-resolved intensity correlation measure-
ments using time-tagging techniques, where we divide the data
into separate normalized histograms depending on the instanta-
neous interferometer phase φ deduced from the detector single
counts (see Supplement 1 for experimental details). Figure 3(b)
shows the experimentally measured peak areas of the |k| ≥ 2
delay peaks as a function of φ for various probed pulse areas

https://doi.org/10.6084/m9.figshare.27212274
https://doi.org/10.6084/m9.figshare.27212274
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θ. An increasingly strong phase-dependence is observed as
the vacuum component of the photonic state increases. These
observations agree well with the theoretical prediction

g(2)
D1 ,D2 ,∥(|k| ≥ 2) = 1 −

(︁
c(1) cos (φ)

)︁2 , (10)

as illustrated in Fig. 3(c).
Conversely, we show in Supplement 1, experimentally and

theoretically, that the normalized zero delay peak g(2)
D1 ,D2 ,∥(k = 0)

exhibits no phase-dependence. One can thus use the standard
relation (Eq. (4)) along with this phase-independent normal-
ization procedure to extract the indistinguishability, even in the
presence of coherence with vacuum.

We also analyze the area of the |k| = 1 peaks of the properly
normalized histograms as shown in Fig. 3(d) which evidences
strong phase dependence increasing with the vacuum compo-
nent. When θ ≃ π, we observe a normalized area close to 3/4, but
for θ<π, the peak areas can exhibit both lower and higher values.
Through a complete theoretical analysis of the path-unbalanced
interferometer including coherent effects (see Supplement 1),
we find that the normalized |k| = 1 peak area is described by

g(2)
D1 ,D2 ,∥(|k| = 1) =

1
4
+

1
2

(︂
1 − s(2)

{1|M}
cos(2φ)

)︂
, (11)

where the amplitude s(2)
{1|M}

quantifies the joint temporal over-
lap between the first-order photon-number coherence ⟨â(t)⟩ that
dictates c(1), and the first-order two-time amplitude correlation
⟨â†(t1)â(t2)⟩ that dictates M. Similar to the g(2) notation, the
superscript (2) in s(2)

{1|M}
indicates here that this amplitude is a

second-order correlation, i.e., a two-photon process. In the case
of an emitter subject to pure dephasing only, we theoretically
show that

s(2)
{1|M}
= c(1)

(︃
2M

1 +M

)︃
. (12)

Figure 3(e) illustrates the theoretically expected behavior for
perfect single-photon indistinguishability (M = 1) as a function
of pulse area θ and interferometer phase φ accurately accounting
for our experimental observations.

The above observations and theoretical analysis evidence how
the quantum interference of single wave packets on a beam split-
ter is modified in the presence of coherence with vacuum. In the
next section, we discuss how these changes should be taken into
account for accurate measurements of the indistinguishability of
single-photon wave packets from quantum emitters.

4. ERRORS IN INDISTINGUISHABILITY
MEASUREMENTS
Many quantum emitters are investigated as sources of indistin-
guishable photons (atoms, ions, semiconductor QDs, defects in
2D materials etc.) [45]. When pursuing the generation of indis-
tinguishable photons, coherent control schemes are naturally
adopted as they ensure the lowest degree of time jitter for the
spontaneous emission process.

Due to its relatively recent evidence [24], the presence of
photon-number coherence in the emission of resonantly excited
atoms or artificial atoms has been widely ignored so far. As a
result, the influence of optical phases in the experimental appara-
tus that play an important role in the presence of coherence with
vacuum (see Section 3) has been completely overlooked. Impor-
tantly, we underline that such phase-resolved analysis would add
a great level of complexity to the experimental study, requiring

Fig. 4. (a) Ratio of the normalized |k| = 1 and |k| ≥ 2 peak areas
(left, theoretical; right, experimental) as a function of optical phase
φ for different pulse areas θ. The colors follow the same color map as
in Fig. 3. (b) Phase averaged peak ratios of the normalized |k| = 1
and |k| ≥ 2 peak areas as a function of excited state population
p1 and indistinguishability M (color coded) for a purely dephased
emitter. (c) Error in indistinguishability δM as a function of pulse
area θ (or p1) and single-photon indistinguishability M considering
a purely dephased emitter.

active phase-stabilization or high photon collection efficiency to
trace the phase effect as it varies within the measurement time,
as well as event timing to access auto-correlation signals. Still,
we show now that there is actually a simple way to identify the
presence of photon-number coherence in standard experimental
studies of photon indistinguishability, which allows to trace back
errors in its estimation.

We consider the ratio Rk1/k2 of the |k| = 1 and |k| ≥ 2 peak
areas. In Fig. 4(a), we plot this ratio as a function of the
interferometer phase φ for both the theoretical prediction and
our experimental data, once again illustrating good agreement
between the two. If the measurements are not phase-resolved
but phase-averaged, cos(2φ) in Eq. (11) vanishes and cos2(φ)
in Eq. (10) tends to 1/2. Thus, the ratio becomes Rk1/k2 =

3/(4 − 2(c(1))2) and Rk1/k2>3/4 implies that c(1)>0, hence indicat-
ing the presence of first-order coherence. We also note that this
technique to measure c(1) can work even if the source has non-
negligible multi-photon emission by applying a minor correction
to Rk1/k2 .

https://doi.org/10.6084/m9.figshare.27212274
https://doi.org/10.6084/m9.figshare.27212274
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Table 1. Estimated Ratio Rk1/k2 in a Selection of Prior
Publications Resulting in an Estimation for the Vacuum
Component p0 and Errors on Indistinguishability

Emitter Ref. Reported VHOM Rk1/k2 p0 δM

QD [46] (89.2 ± 0.9)% 0.90 ± 0.06 40% 1%
QD [47] (91.1 ± 1.9)% 0.80 ± 0.04 30% 0.5%
QD [48] (92.6 ± 1.6)% 0.97 ± 0.04 55% 1.5%
QD [49] (93.0 ± 1.3)% 1.04 ± 0.04 60% 1.5%
QD [50] (95 ± 4)% 0.88 ± 0.04 30% 0.5%
Ion [51] (80 ± 4)% 0.86 ± 0.02 30% 0.5%

Figure 4(b) shows the theoretically calculated ratio assuming
phase averaging and a purely dephased emitter as a function
of θ for various M, evidencing a correspondence between the
measured ratio and the fraction of coherent vacuum in the pho-
ton state. We can thus give an estimation for the population
of coherent vacuum contributing to previous measurements in
the literature. As an example, we have gathered in Table 1 the
ratio Rk1/k2 estimated from experimental data from some works
[46–51], where a clear deviation from the 3/4 value is observed.
We deduce the corresponding estimation of vacuum population
present (columns 4 and 5) illustrating how ignoring the pres-
ence of coherence with vacuum has led to errors in the derived
indistinguishability values. Interestingly, the errors lead to an
underestimation of the photon indistinguishability.

Figure 4(c) shows the calculated error δM as a function of
pulse area θ for the phase-averaged scenario. Here, our study is
limited to the case where the two-photon component is neg-
ligible, typically for values p1<0.9. We define this error in
indistinguishability as δM = M − VHOM, where we consider M
the single-photon indistinguishability and VHOM the indistin-
guishability extracted from coincidence histograms using the
areas of the far delay peaks as a reference. A tentative estima-
tion of the errors in the literature is shown in the last column of
Table 1. These errors appear small, but we underline that every
fraction of a percent is critical when optimizing the indistin-
guishability of source emission—a requirement for fault tolerant
quantum information processing.

Note that we have so far focused our study on the coherence
between the zero- and one-photon components, which holds
below π-pulse and for short enough excitation pulses. However,
it is important to emphasize that the above-described effects

can also occur close to and beyond θ = π, where the first-order
photon-number coherence may appear between higher photon-
number components following Eq. (7). Figure 2(a) shows the
theoretical predictions of the vacuum probability p0 and the one-
p1 and two-photon contribution 2p2 along the Rabi curve upon
resonant excitation with a finite pulse of 7-ps duration and an
emission decay time of approximately 161 ps. The two-photon
component (dash-dotted line) is expected to be significantly
larger than the zero-photon component at θ = π. This effect still
results in a non-zero first-order coherence at maximum excited-
state population (i.e., maximal brightness of the source), mainly
dictated by the coherence between the one- and two-photon
component according to Eq. (7). Experimentally, we indeed wit-
ness the presence of photon-number coherence in anti-correlated
oscillations in the single counts, see Supplemental Fig. S2. Thus,
corrections to indistinguishability measurements must also be
implemented at the highest brightness of the source, i.e., around
θ = π by including the analysis of the emitted state up to two
photons.

5. ENTANGLEMENT IN PARTIAL
MEASUREMENTS
In this section, we discuss the quantum phenomena behind the
observation of phase-dependent single counts (see Fig. 2(c)).
We show that it arises from partial photonic measurements and
reveals the presence of spatiotemporal entanglement.

We first consider the events leading to a coincidence for
|k| = 1 in the unbalanced Mach–Zehnder interferometer with
a delay line (τ = τp) implemented in one of the arms. In the
high loss regime, a |k| = 1 coincidence count implies the detec-
tion of exactly two photons, one at each detector and separated
in time by τp in an early and late detection bin. Figure 5(a)
shows the pulse sequence arriving at the first beam splitter of
the Mach–Zehnder interferometer that contribute to this sig-
nal—each pulse at the input of the interferometer is a quantum
superposition of 0 and 1 photon (Eq. (5)). Labeling |U⟩e,l and
|L⟩e,l, a single-photon arriving from the upper (U) and lower (L)
input of the last beam splitter, in early (e) or late (l) detection time
bins, there are four states of light impinging on BS2 that lead to
a two-photon coincidence count contributing to g(2)

D1 ,D2 ,∥(|k| = 1):
|U⟩e |U⟩l, |U⟩e |L⟩l, |L⟩e |U⟩l, and |L⟩e |L⟩l, see Fig. 5(b). The case
|U⟩e |L⟩l, however, can only result from light pulses containing

Fig. 5. (a) Considered input to the unbalanced Mach–Zehnder interferometer. Here, U and L denote the upper and lower path of the
interferometer. (b) Detection of g(2)

D1 ,D2 ,∥(|k| = 1) coincidence clicks (separated in time by τ = τp) projects the interferometer state into the
path and time entangled state shown on the left (at the interfering beam splitter BS2). The subscripts e, l denote early and late detection,
respectively. The state of light ieiϕ |U⟩e |L⟩l inside the interferometer can only be produced by an input state involving two photons in one
pulse, and hence it has a negligible chance of occurring. See main text for details.
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Fig. 6. (a) Heralding efficiency and (b) fidelity with respect to the Bell state |Φ+⟩ as a function of pulse area θ of the driving field
generating the photonic states input to the heralded CNOT gate (inset) where the target (t), control (c) paths encode logical qubits, and certain
combinations of detector clicks at the output of the heralding (h) paths signal a successful gate [53]. The different curves correspond to
different scenarios: where physical input states share the same phase, α = 0 (blue, dotted), where α is optimized to obtain maximum fidelity
(red, dash-dotted), and where α corresponds to a minimized gate fidelity (grey, dashed). Also shown are the heralding efficiency and fidelity
as a function of losses (yellow, solid).

more than one photon: a situation that has a negligible chance
of occurring in our experiment and so we disregard it.

If the remaining three cases are indistinguishable, the detec-
tion of |k| = 1 coincidences actually projects the state of light
entering BS2 onto the partially path-entangled state:

|Ψ⟩ =
1
√

3
(︁
ieiϕ |L⟩e |U⟩l + |U⟩e |U⟩l − e2iϕ |L⟩e |L⟩l

)︁
, (13)

a state with an entanglement concurrence of C = 2/3 [52]. In
practice, photon losses and photon distinguishability will cause
these states to become partially distinguishable, which reduces
the amount of path entanglement and hence reduces the vis-
ibility of oscillations in the |k| = 1 peak areas. For example,
a three-photon state followed by the loss of a single photon
could produce the outcome |L⟩e |U⟩l while being completely dis-
tinguishable from the other two cases via the lost photon (see
Supplement 1).

We find that the amplitude s(2)
{1|M}

, quantifying the visibility
of the |k| = 1 coincidences, is related to the entanglement con-
currence of this path-entangled state entering BS2, according
to C = (2/3)s(2)

{1|M}
. The observation of phase-dependent areas of

the |k| = 1 peaks thus reveals the generation of spatiotempo-
ral entanglement with a maximal concurrence of 2/3 when θ
tends to zero and M to one, which conversely vanishes when
approaching θ = π.

6. EFFECT ON HERALDED GATES
Based on the above study of HOM interference, we are now in a
position to reach some general understanding about the impact
of coherence with vacuum on linear quantum protocols. Start-
ing from N pulses containing quantum superpositions of zero
and one photons, we expect no modification of linear quantum
processing protocols when detecting N single photons. In such
a case, the measurement post-selects on all pulses being in the
Fock state 1. However, large scale linear quantum computing
relies on partial measurement of photons and feed-forward. In
such a case, by measuring only n photons out of N pulses, one
does not post-select on a single configuration, but on multi-
ple interfering quantum trajectories where the n photons come
from different pulses. Such additional quantum interferences

will modify the operation of any heralded protocol differently
from the presence of photon loss (incoherent vacuum).

To illustrate this effect, we consider the case of the heralded
CNOT gate [53] in the path encoded implementation of Ref.
[54], see inset in Fig. 6(a). This gate requires four ancillary
modes (h) to implement the nonlinearity and herald the success-
ful operation on the control (c) and target (t) qubit. The gate is
heralded by the detection of exactly one photon at detectors D1

and D3, and zero photons at detectors D0 and D2. If the qubits
are prepared in the logical state |ψin⟩ =

1
√

2
(|0l⟩c + |1l⟩c) ⊗ |0l⟩t,

the output logical state is a maximally entangled Bell state
|Φ+⟩ = (|0l⟩c |0l⟩t + |1l⟩c |1l⟩t) /

√
2. The heralding probability, in

the ideal case where none of the four photons gets lost, is
P(h|4) = (11 − 6

√
2)/49, or approximately 5.1% [54].

To model the effect of coherence with vacuum on the operation
of this gate, we perform numerical simulations using the Perce-
val framework [55]. We first calculate the heralding efficiency
P(h) considering incoherent losses, i.e., considering input states
in the form of ψ′(θ) = p0 |0⟩⟨0| + p1 |1⟩⟨1| = cos2(θ/2)|0⟩⟨0| +
sin2(θ/2)|1⟩⟨1| (solid yellow curve in Fig. 6(a), and correspond-
ing upper x-axis). We then consider the case of a quantum
superposition of 0 and 1 photons. All four input single-photon
states are initially prepared in the same state |Ψ(θ,α = 0)⟩
(according to Eq. (5)) and we plot the corresponding heralding
efficiency (dotted blue curve).

We find that the maximal heralding efficiency can be increased
from 5.1% at θ = π to 5.8% for a certain pulse area of θ<π. This
observation can be understood considering that coherence with
vacuum leads to additional interference effects when the num-
ber of measurements is lower than the number of manipulated
light pulses. As observed on the single counts and on the |k| = 1
peaks in the HOM experiment, it can either reduce or increase
the amplitude at certain outputs such that P(h) can be increased or
decreased compared with the case of incoherent vacuum. Actu-
ally, by numerically exploring P(h) when varying individually
the four phases (α1, α2, α3, α4) of the four input states |Ψ(θ,α)⟩,
we find that P(h) can span anywhere from 2.5% up to 7.1% at
θ = 0.6π (dashed and dash-dotted curves).

Conversely, Fig. 6(b) shows that the fidelity F of the output
state |ψout⟩, with respect to the ideal Bell state, is decreased when
the four light states are in the input state |Ψ(θ,α = 0)⟩ (dotted

https://doi.org/10.6084/m9.figshare.27212274


Research Article Vol. 2, No. 6 / 25 December 2024 / Optica Quantum 411

blue) compared with the case of equivalent incoherent vacuum.
Symmetrically, for the phase combination (α1, α2, α3, α4) that
maximizes (minimizes) the heralding efficiency, we find that
the fidelity of the heralded state is decreased (increased) com-
pared with incoherent losses. This behavior can be understood
considering that errors arise only from additional vacuum com-
ponents in the input (either coherent or incoherent). As a result,
an enhanced heralding efficiency with respect to incoherent
loss arising from quantum interference necessarily reduces the
probability of obtaining two photons at the logical outputs.

Quantitatively, the gate operates perfectly (F = 100%) with
conditional probability P(h|4), i.e., a heralding signal was
observed given that the input state contains exactly four pho-
tons, while F = 0% if the input state contains fewer than four
photons. In the case of either coherent or incoherent loss, this
implies that the scheme will operate as expected only with prob-
ability P(4) = p1

4, where p1 = sin2(θ/2). Prior to heralding, the
fidelity of the output state thus depends only on the probability of
having four photons at the input P(4) and the ideal gate heralding
probability P(h|4). As such, the fidelity post-heralding is simply
the probability P(4|h) of having had four photons given that a
heralding signal was observed. Thus, using Bayes’ theorem, we
get

F =
P(4)P(h|4)

P(h)
, (14)

where P(h) is the only term depending on the photon-number
coherence and relative phases of the superposition with vacuum.

It is interesting to note that any suppression of the herald-
ing efficiency P(h), stemming from coherence, acts as a filter
to reduce the occurrence of erroneous output states that con-
tain fewer than two photons, thereby enhancing the heralded
Bell-state fidelity overall. Likewise, any enhancement of P(h)

increases the number of erroneous output states, leading to a
reduction in the fidelity.

7. CONCLUSION
We have shown that the photon-number coherence natu-
rally present in the light wave packets generated by quantum
emitters leads to a large variety of quantum interference phe-
nomena and entanglement. They impact both the standard
techniques employed in the development of deterministic quan-
tum light sources and information processing with photons.
Starting with an experimental configuration as simple as the
Hong–Ou–Mandel interferometer, we have shown that the long
standardized protocol to deduce the photon indistinguishability
from quantum emitters needs to be revised.

In the broader context of quantum information processing in
the discrete variable framework, i.e., exploiting single-photon
wave packets, our study shows that the absence of a photon
cannot simply be treated as a photon loss as has been done so
far in the discrete variable paradigm community. In particular,
we experimentally demonstrate that the presence of photon-
number coherence can be a resource to create entanglement in
an unbalanced Mach–Zehnder interferometer, which touches on
fundamental relationships in quantum physics [56]. As another
example, we have found that coherence with vacuum can actually
lead to reduced errors for a photonic CNOT gate compared with
incoherent vacuum when leveraging control over the phase of
the coherent superposition. This hints that the amount and form
of quantum coherence plays an important role in determining the
performance of quantum information processing. Such a general

relationship may be better elucidated from the perspective of
resource theory [57]. We anticipate that the possibility to deter-
ministically generate quantum superpositions of zero and one
photon in a fully controlled manner with quantum emitters opens
up many possibilities for photon-based quantum information
processing, providing additional degrees of freedom to leverage
single-rail qubit encoding in a revisited way for exploitation.
It also may provide a critical bridge between continuous- and
discrete-variable paradigms of quantum information processing.
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