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ABSTRACT

NOvA is a long-baseline neutrino oscillation experiment consisting of two
functionally-identical tracking calorimeters, and a beam of neutrinos. The near
detector is located at Fermilab, where it measures neutrinos coming from the
NuMI beam. The beam can be run in neutrino or antineutrino mode, to produce a
highly pure flux of muon (anti)neutrinos. The neutrinos then travel 810 km north
to the much larger far detector, where we measure them again after they have
oscillated. By measuring the appearance of electron (anti)neutrinos and the
disappearance of muon (anti)neutrinos, we can make precise measurements of
PMNS mixing matrix parameters, as well as the neutrino mass splitting ∆m2

32,
and shed light on the remaining unknowns of neutrino mass ordering (the sign of
∆m2

32), δCP, and the octant of θ23. This dissertation presents a joint analysis of
νµ → νµ and νµ → νe data consisting of 26.61×1020 protons-on-target (POT) in
neutrino mode and 12.5×1020 POT in antineutrino mode. Analysis improvements
include new optimizations for our simulated light model, improved systematic
uncertainties, a new sample of low-energy νe events, and an additional focus on
constraints from reactor neutrino experiments, including our first implementation
of a constraint on ∆m2

32. Additional studies aimed at improving our sensitivity to
the oscillation parameters are explored, including efforts to reclaim neutrino events
that fail selections, the implementation of the reactor neutrino constraints, and
significant improvements to Michel electron reconstruction. The best fit to the
data falls in the normal mass ordering, and upper octant of θ23, with ∆m2

32 =
2.433+0.035

−0.036 (10−3 eV2), and sin2 θ23 = 0.546+0.032
−0.075. Fitting with a constraint based

on Daya Bay’s measurement of sin2 2θ13 gives us a 1.36σ preference for the normal
mass ordering, which increases to 1.57σ when applying an additional constraint
using their measurement of ∆m2

32. Our observed data falls in a region preferring
combinations of the oscillation parameters that lead to similar oscillation
probabilities for νe and –νe. Consequently we disfavor combinations of oscillation
parameters that result in a large asymmetry, excluding δCP = 0, π, 2π in the
inverted mass ordering at > 3σ.
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Preface

This thesis describes the measurement of νµ → νµ and νµ → νe neutrino oscillations in

the NOvA experiment. Here we give an overview of the contents of each chapter, noting

my relevant contributions to the analysis.

In Chapter 1 we cover the theory of neutrinos that is relevant to this dissertation,

primarily a description of neutrino oscillations and how NOvA is sensitive to the parameters

that govern them.

In Chapter 2 we describe the design of the NOvA experiment in detail, going over the

NuMI neutrino beam and both the near and far detectors.

Chapter 3 describes how we produce a detailed simulation of our beam and detector to

compare with the real data. We then describe the process of calibrating both the simulated

and real data to convert measured quantities to meaningful physical units. As a calibration

expert for NOvA, I performed these calibration procedures on the data that is used for

this analysis.

Chapter 4 covers the various traditional and machine-learning algorithms that we use

to process our raw data and identify the neutrino interactions. This involves reconstructing

the topologies that particles make in our detector, and then using them to estimate the

energies and flavor of the neutrino interaction that produced them. I made significant

improvements to our Michel electron reconstruction technique described in this section,

but the improvements will be targeted to future analyses, and are discussed in Chapter 6.

Chapter 5 details the 3-flavor analysis methodology, including the construction of our
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predicted far detector samples, the various systematic uncertainties we incorporate, and

the different Bayesian and frequentist fitting techniques used. I performed validation of

the new low-energy sample and it’s implementation into our fitting framework. I also

made improvements to the code that is used to generate the official prediction files for the

analysis and produced many of them myself.

Chapter 6 covers various studies I performed that were aimed at gaining sensitiv-

ity to the oscillation parameters. I detail the implementation and validation of external

constraints on our analysis using measurements from reactor neutrino experiments. I per-

formed two studies aimed at reclaiming νµ and νe events that failed our selection cuts.

The νe study also helped motivate the new low-energy sample which is discussed. Finally,

I cover the detector simulation and Michel electron reconstruction improvements that I

made, and discuss how they might be used to improve the 3-flavor analysis.

Chapter 7 presents the results of the joint 3-flavor fit of νµ and νe data. I was a part of

the frequentist analysis team and so the majority of results presented here come from that

analysis. My contributions include the final observed energy spectrum plots for our data,

the bi-event plots, and the frequentist fits presented without Feldman-Cousins corrections.

Finally, Chapter 8 summarizes the results and conclusions, and discusses future research

directions .
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Chapter 1

Theory of Neutrinos

1.1 Introduction

The neutrino was first postulated by W. Pauli in 1930 as a way to explain the continuous

energy spectra that had been observed in β decays by J. Chadwick [1]. At the time,

β decay was thought to be a two-body decay, and so a continuous energy spectrum would

violate the principle of conservation of energy. By emitting a chargeless fermion along

with the electron in the decay, a continuous energy spectrum would be allowed. In 1934

this idea was incorporated by E. Fermi into his theory of β decay, where he also gave the

neutrino its name (Italian for “little neutral one”) [2].

Initial calculations of the small neutrino cross section led Pauli and others to believe

that the neutrino would never be detected. However, in 1946 B. Pontecorvo proposed

the idea of using nuclear reactors (which provide a large flux of neutrinos) combined with

large detector volumes to achieve the necessary event rates [3]. F. Reines and C. Cowan

were the first to succeed in using this method, when in 1956 they discovered the electron

antineutrino using a liquid scintillator detector placed underground near a nuclear reactor

[4]. The experiment measured the signal of a positron followed by a delayed signal from

neutron capture in the inverse beta decay process:

p + –νe→ n+ e+. (1.1)
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For the discovery of the electron neutrino, Reines was awarded the Nobel prize in 1995. Six

years after the discovery of the νe, the νµ was discovered at Brookhaven National Lab in

1962 by L. Lederman, M. Schwartz, and S. Steinberger [5], who pioneered the world’s first

accelerator-based neutrino beam. Notably, the design of the beam used to create neutrinos

is the same general design used today. A high intensity beam of protons would hit a target,

producing hadrons that then decay to neutrinos. The third generation lepton, the tau, was

discovered in 1975 at the Stanford Linear Accelerator [6], and with it the Standard Model

predicted a corresponding third generation of neutrino. However the discovery of the tau

neutrino would not come until 2000. It was observed for the first time by the Direct

Observation of the Nu Tau (DONUT) experiment at Fermilab [7], which used an emulsion

cloud chamber to detect the short-lived tau signals.

While the three generations of neutrino were predicted by the Standard Model and sub-

sequently discovered, the full picture was not yet complete, as the phenomena of neutrino

oscillations presented a new puzzle. Pontecorvo had first proposed the idea of oscillations

between neutrinos and antineutrinos in 1957 [8]. Z. Maki, M. Nakagawa, and S. Sagata

expanded this idea further in 1962 to describe electron and muon neutrinos as combina-

tions of mass eigenstates [9]. With this theory, the existence of neutrino oscillations would

then also imply the neutrinos have mass. Pontecorvo then developed an intuitive theory

of two-flavor neutrino oscillations in 1968 [10].

In that same year, R. Davis was measuring electron neutrinos from the sun using a

tank of chlorine located underground in the Homestake mine in South Dakota. Neutrinos

could capture on the chlorine, creating argon atoms, which he extracted to give a direct

measurement of the solar neutrino flux [11]. However, he observed only a third of the

events expected by the theory at the time. This became known as the solar neutrino

problem. While some believed this indicated that the astrophysical estimates were wrong,

many believed Davis had simply made an error in his measurements. However, other

experiments also found deficits in the rate of solar neutrinos.

In 1998 the phenomena of oscillations was confirmed by the Super-Kamiokande (SK)
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experiment [12]. They measured atmospheric neutrinos which result from the decays of

pions, muons, and kaons produced in cosmic ray collisions in the atmosphere. Compared

to a no-oscillation hypothesis, they found a deficit in the rates of muon neutrinos that

traveled farther, through the Earth, on their way to the detector. Just a few years later

the solar neutrino problem was also resolved, when in 2001 the Sudbury Neutrino Obser-

vatory (SNO) made a simultaneous measurement of the electron and total solar neutrino

flux. The total solar flux agreed with the expected rate, while the νe flux showed the

deficit, confirming that the νe were oscillating into other flavors [13]. For confirming that

neutrinos oscillate and thus have mass, T. Kajita and A. McDonald, of the SK and SNO

collaborations, respectively, received the Nobel prize in physics in 2015. Since then, the

field has progressed to make precision measurements of the parameters describing neutrino

oscillations.

1.1.1 Particles in the Standard Model

The Standard Model (SM) of particle physics is currently the most complete theory of

fundamental particles and their interactions under the strong, electromagnetic, and weak

forces. The classification of particles in the theory is summarized in Figure 1.1. There

are two broad categories of particle, fermions that have 1
2 integer spin and obey the Pauli

exclusion principle, and bosons that have integer spin. The gauge bosons give rise to each

of the forces, with eight gluons mediating the strong force, the photon mediating the elec-

tromagnetic force, and the W and Z bosons mediating the weak force. The fermions are

further classified based on their interactions and charges, into six quarks and six leptons

(along with the antiparticles for each). Each of the six particles is paired up into three gen-

erations. The quarks carry both electric charge, color charge, and weak isospin, meaning

they can interact via the electromagnetic, strong, and weak forces. Additionally, quarks

are subject to confinement, meaning they only exist in color-neutral bound states of two or

more quarks known as hadrons. Hadrons, containing an equal number of quarks and anti-

quarks, are known as mesons, an example being pions (a first generation quark-antiquark
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Figure 1.1: A summary of the classification of elementary particles in the Standard Model.
From [14]

pair) or kaons (a first generation and strange quark combination). Three-quark states,

such as the proton and neutron, are known as baryons. Each of the three generations of

lepton are composed of a neutrino and charged lepton of the same flavor. The neutrinos do

not have electric or color charge, and interact only via the weak force. The electron, muon,

and tau all have an electric charge of -1, and interact via the weak and electromagnetic

forces.

1.1.2 Neutrino Interactions

Within the Standard Model, neutrinos only interact via the weak force, undergoing either

charged-current (CC) or neutral-current (NC) interactions. These are mediated by the

W± boson, and neutral Z boson, respectively. Figure 1.2 shows an example of Feynman
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Figure 1.2: Feynman diagrams for charged (left) and neutral (right) current neutrino
interactions. From [15].

diagrams for each of these. In a CC interaction, the neutrino exchanges a W± boson,

changing into its corresponding lepton pair (νe to e, νµ to µ, ντ to τ), which conserves

lepton number. The sign of the W boson is chosen to conserve charge. In NC interactions

the neutrino instead exchanges a neutral Z boson. Without the charge exchange, the

neutrino remains in its initial state. In the context of inclusive ν scattering, and neutrino

oscillation experiments such as NOvA (the focus of this thesis, described in Chapter 2),

the CC interactions we see can be generalized to the form

(−)
νl +X → l

(+)
− +X ′, (1.2)

while the NC interactions can be generalized to

(−)
νl +X → (−)

νl +X ′, (1.3)

where X is the detector particle(s) that the neutrino interacted with, l is the charged lepton,

and X ′ is the remaining final state particles [16]. Identifying the charged lepton in the final

state of the CC interaction allows us to identify the flavor of the incoming neutrino. We

cannot do such identification for NC interactions. The remaining final state particles X ′
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in each interaction depend on the nature of X, the particle(s) that the neutrino interacted

with, along with the energy of the incident neutrino. For example, the neutrino may

interact with an entire nucleus, a single nucleon, or with enough momentum, individual

constituent quarks. There are four main CC interaction processes that we see in NOvA:

quasi-elastic (QE), meson-exchange current (MEC, also known as two-particle two-hole or

2p2h), resonant pion production (RES), and deep inelastic scattering (DIS). Figure 1.3

shows example Feynman diagrams for each of these processes. In the QE interaction (Fig

1.3a), the incoming neutrino interacts with a single nucleon. The charge exchange of the

W boson leaves a different nucleon in the final state, and produces a charged lepton with

the same flavor as the neutrino. In MEC interactions (Fig 1.3b), the neutrino interacts

with a correlated pair of nucleons inside the nucleus. This leads to multiple nucleons in the

final state as well. In RES interactions (Fig 1.3c) the exchanged boson has enough energy

to create a ∆ resonance, which promptly decays to produce a pion in the final state in

addition to a nucleon. Finally, DIS interactions (Fig 1.3d) involve a neutrino with enough

energy to interact with an individual quark, breaking up the nucleon in the process and

producing a variety of hadrons in the final state, known as a hadronic shower.

Each of these types of interaction has a different cross section that varies as a function

of incident neutrino energy. The neutrino cross sections for QE, RES, and DIS interactions

are plotted in Fig. 1.4. MEC events tend to occur between the energy ranges of QE and

RES events [18]. NOvA primarily measures neutrinos in the 1-5 GeV range, so we see a

mix of all kinds of interactions, primarily QE, MEC, and RES at lower energies, then RES

and DIS at higher energies.

1.2 Neutrino Oscillations

Neutrino oscillations are the phenomena whereby a neutrino created as one flavor can later

be detected as a different flavor. This implies the neutrinos have separate mass and flavor

eigenstates, which are superpositions of one another. This is in contrast to the Standard
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(a) QE (b) MEC

(c) RES (d) DIS

Figure 1.3: Feynman diagrams for the four primary CC interaction processes we see in
NOvA. From [17].

Model assumption that neutrinos are massless, and oscillations require modifying the the-

ory. The flavor eigenstates represent the basis which diagonalizes the weak interaction,

while mass eigenstates represent the basis that diagonalizes the free particle Hamiltonian.

As the superposition propagates, the mass states will become out of phase with each other

as their different masses cause them to propagate with different frequency. This causes a

mixing of mass states that in turn results in a mixing of flavor states in the superposition.

So, a neutrino created as a muon neutrino at a later time can be composed of a combi-

nation of electron, muon, and tau neutrino states. Since interactions occur in the flavor

basis, it can then interact as one of the other flavors, and we would observe it as having

oscillated.

Mathematically, we can write the neutrino flavor eigenstates (νe, νµ, ντ ) as a linear
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Figure 1.4: Neutrino (left) and antineutrino (right) per-nucleon CC cross sections (for an
isoscalar target) divided by neutrino energy, as a function of neutrino energy. Solid lines
show theoretical predictions for the total cross section as well as the different interaction
types that contribute to the total, highlighted in different colors. Data points come from
numerous experiments which are listed in the image source [19].

combination of mass eigenstates (ν1, ν2, ν3)

|να⟩ =
∑

i

U∗
αi|νi⟩ , (1.4)

where |να⟩ are the flavor eigenstates, |νi⟩ are the mass eigenstates, and U∗
αi is a 3 × 3

unitary mixing matrix known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

[9, 10]. We can then derive the oscillation probabilities, using an approximation that the

neutrinos are plane waves [20]. The full calculation requires a wave packet or quantum

field theory treatment, however the plane wave approach will reach the same result for the

purposes of this thesis.

Assume a neutrino of flavor α is produced at time t0. From Eq. 1.5 we can then write it

as a superposition of the mass states that we have assumed to be plane waves with spatial

momentum p (and we are using natural units with ℏ = c = 1),

|να(t0)⟩ =
∑

i

U∗
αi|νi(p)⟩. (1.5)
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The mass states are eigenstates of the free Hamiltonian:

Ĥ|νi(p)⟩ = Ei(p)|νi(p)⟩, Ei(p)2 = p2 +m2
i . (1.6)

The time evolution operator taking the state from t0 to t is given by e−iĤ(t−t0). The flavor

state at time t is then

|να(t)⟩ = e−iĤ(t−t0)|να(t0)⟩ =
∑

i

U∗
αie

−iEi(p)(t−t0)|νi(p)⟩. (1.7)

We can then compute the probability that the state is in flavor β at time t

P (να → νβ)(t) = |⟨νβ|να(t)⟩|2 =
∣∣∣∣∣
∑

i

UβiU
∗
αie

−iEi(p)(t−t0)

∣∣∣∣∣

2

, (1.8)

where we have applied the relation ⟨νi(p)|νj(p)⟩ = δij .

The neutrinos in the NOvA experiment are ulta-relativistic which allows us to make

the approximations

Ei(p)2 − Ej(p)2 ≃
1

2

m2
i −m2

j

|p| +O(m4), L ≃ (t− t0) . (1.9)

The final equation for the probability is then

P (να → νβ) =
∑

i,j

U∗
αiUβiUαjU

∗
βj e

−i
∆m2

ji L

2|p| , (1.10)

where we have defined the mass splitting term ∆m2
ij = m2

i − m2
j . If we define W ij

αβ =

[UαiU
∗
βiU

∗
αjUβi] and apply the unitarity of the mixing matrix, we can rewrite the probability

as

P (να → νβ) = δαβ−4
∑

j>i

Re[W ij
αβ] sin

2

(
∆m2

jiL

4Eν

)
±2
∑

j>i

Im[W ij
αβ] sin

(
∆m2

jiL

2Eν

)
, (1.11)
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where the plus(minus) sign refers to neutrino(antineutrinos), and |p⃗| ∼ Eν . In this form,

we can clearly see how the probabilty “oscillates” sinusoidally as a function of L/E, hence

the term oscillations. We can also see how the oscillations depend on the neutrinos having

non-zero and non-degenerate masses. For the case where β = α (the “survival probability”)

this simplifies to

P (να → να) = 1− 4
∑

j>i

|Uαj |2|Uαi|2 sin2
(
∆m2

jiL

4Eν

)
(1.12)

1.2.1 2-flavor oscillations

We can examine the oscillation probability in the simpler case of two-flavor oscillations.

This is a useful approximation when considering how to design an oscillation experiment,

as you will typically focus on a single oscillation channel (νµ → νe, for example). In this

case, the PMNS matrix is a simple 2D rotation matrix

UPMNS =

(
cos θ sin θ
− sin θ cos θ

)
(1.13)

and there is only a single mass splitting ∆m2. The oscillation probability becomes [20]

P (να → νβ) = sin2 2θ sin2
(
1.27

∆m2(eV2) L(km)

Eν(GeV)

)
, α ̸= β (1.14)

P (να → να) = 1− P (να → νβ) , (1.15)

where we have introduced factors of ℏ and c in order to convert to more familiar units.

Equation 1.14 is known as the “appearance probability” since the observed final state is

different than the initial, and Eq. 1.15 the “disappearance” or “survival” probability. The

appearance probability is plotted in Fig. 1.5 as a function of the baseline L (distance

between source and detector) and energy. We can see that it is a sinusoidal function of the
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baseline, with a wavelength set by the oscillation length

Losc(km) = 2π
Eν(GeV)

1.27 ∆m2(eV2)
. (1.16)

The amplitude of the oscillation is determined by the mixing angle in the leading sin2(2θ)

coefficient. It is maximal for θ= π/4.

In experiments which have a fixed baseline, we instead typically measure the oscillation

probability as a function of energy (RHS of Fig. 1.5). The peak of the first oscillation

maximum (from right to left) is given by

Emax(GeV) = 1.27
∆m2(eV2) L(km)

π/2
, (1.17)

which tells us about the mass splitting.

When designing a neutrino oscillation experiment in vacuum, the optimal settings will

have the ratio of energy and baseline tuned to match the mass splitting you want to

measure: E/L ∼ ∆m2. In the case where E/L ≪ ∆m2 you are in the fast oscillation

regime, where the experimental energy resolution is limiting. In the opposite case E/L ≫

∆m2 the mass splitting and mixing angle cannot be disentangled [20].

Figure 1.5: The oscillation probability in the two-flavor approximation, plotted as a
function of baseline L with fixed energy (left), or as a function of energy E with a fixed
baseline (right). From [20].

13



1.2.2 Matter Effects

When neutrinos travel through matter, the oscillation probabilities are modified. The

electron neutrinos can undergo coherent forward-scattering off the electrons present in

the matter that is being traversed. This is known as the Mikheyev-Smirnov-Wolfenstein

(MSW), or “matter”, effect and manifests as an additional potential applied to the νe states

[21, 22]

Ve = ±
√
2GFNe. (1.18)

Here GF is Fermi’s constant, Ne is the electron number density, and the sign is positive

for neutrinos, negative for antineutrinos. This results in an effective Hamiltonian

Hαβ =
∑

i

Uβi
m2

i

2E
U∗
iα +Aαβ (1.19)

where U is the PMNS matrix and the potential is introduced in the term Aαβ = δαβδαeVe,

which applies only to the electron neutrino states [15]. The solution to the Schrodinger

equation with this effective Hamiltonian in the case of two-flavor oscillations can be written

as Eq. 1.14 but with the ∆m2 and sin2(2θ) terms replaced by the effective terms [20]

∆m2 → ∆m2
M =

√
(∆m2 cos 2θ − 2

√
2EGFNe)2 + (∆m2 sin 2θ)2 (1.20)

sin2 2θ → sin2 2θM =
(∆m2 sin 2θ)2

(∆m2
M )2

. (1.21)

In the limit where Ne goes to zero, this reduces to the vacuum oscillation probability.

From this we can see how the matter effects give us sensitivity to the sign of ∆m2. Note

that the first term inside the square root in Eq. 1.20 depends on the relative signs of ∆m2

and the potential term Ve which is positive (negative) for neutrinos(antineutrinos). There-

fore the oscillation probability P (νµ → νe) is different for neutrinos versus antineutrinos,

as well as for different signs of ∆m2.
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1.2.3 3-flavor oscillations

We now consider the full 3-flavor oscillation probability in matter for NOvA. The 3 × 3

PMNS matrix can be written in the form

U =

(
1 0 0
0 c23 s23
0 −s23 c23

)


c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13



(

c12 s12 0
−s12 c12 0
0 0 1

)(
1 0 0
0 eiα21 0
0 0 eiα31

)

(1.22)

=




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13


× diag

(
1, eiα21 , eiα31

)

(1.23)

where sij = sin θij and cij = cos θij with θij being the three mixing angles. Here δCP is the

CP-violating phase, and αij are Majorana phases which do not enter into the oscillation

probabilities and can be ignored. The oscillation probability (Eq. 1.11) is then determined

by three mixing angles, θ13, θ12, θ23, two mass splittings ∆m2
21 and ∆m2

32, and the CP vi-

olating phase δCP
1. The angles define the amplitude of the oscillation probability, and the

mass splittings define the frequency of oscillation and position of the oscillation maximum

as a function of L/E. Neutrino oscillation experiments will have different sources of neutri-

nos as well as different L/E that make them sensitive to different oscillation parameters.

The main sources are solar neutrinos, neutrinos from nuclear reactors, neutrinos from par-

ticle accelerators (i.e. man-made neutrino beams), and atmospheric neutrinos from cosmic

ray interactions in the atmosphere. To date, all of the mixing angles and mass split-

tings have been measured to a few percent uncertainty. Table 1.1 summarizes our current

knowledge of the parameters and notes the type of experiments that are sensitive to each.

For NOvA, we are concerned with the disappearance oscillation channel P (νµ → νµ)

and the appearance oscillation channel P (νµ → νe). We can simplify the subsequent
1It is also possible to define a third neutrino mass splitting ∆m2

31, which is related to the other two via
the equation ∆m2

32 +∆m2
21 = ∆m2

31. This may appear in some calculations.
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Parameter Approx. Value Experiment Type
θ23 45◦ Atmospheric, Accelerator
θ13 8.5◦ Reactor, Accelerator
θ12 33◦ Solar, Reactor

∆m2
32 ±2.5× 10−3eV2 Accelerator, Reactor, Atmospheric

∆m2
21 7.5× 10−5eV2 Solar

δCP ? Accelerator

Table 1.1: Summary of our current knowledge of the oscillation parameters. Approximate
values of the mixing angles and mass splittings derived from the Particle Data Group
summary tables [23]. Each of the angles and mass splitings has been measured to a
few percent uncertainty. The value of ∆m2

32 has been measured but not the sign. The
parameter δCP has not yet been measured to a high degree of precision. The right column
lists the types of neutrino oscillation experiments that are sensitive to a given parameter.
For θ13 the sensitivity primarily comes from reactor neutrino experiments, and for θ12 the
sensitivity primarily comes from solar experiments.

equations in this section by defining [16]

∆ij ≡
∆m2

ijL

4E
. (1.24)

For P (νµ → νµ) we start with Eq. 1.12 for the oscillation probability in vacuum

P (νµ → νµ) = 1− 4
∑

j>i

UµjU
∗
µjU

∗
µiUµi sin

2 (∆ji)

= 1− 4
(
|Uµ2|2 |Uµ1|2 s2 (∆21) + |Uµ3|2 |Uµ2|2 s2 (∆32) + |Uµ3|2 |Uµ1|2 s2 (∆31)

)

≈ 1− 4
(
c223 s212c

2
23c

2
12 s2 (∆21) + c223c

2
12 s223 s2 (∆32) + c223 s212 s223 s2 (∆31)

)
,

(1.25)

where in the last step we have made an approximation based on current experimental

knowledge that θ13 is small relative to the other mixing angles [23], and so sin2 θ13 ∼ 0

and cos2 θ13 ∼ 1. We can make a further approximation using the relationship between

the mass splittings. We know |∆m2
21 | to be ∼30 times smaller than |∆m2

32 |, which lets
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us approximate |∆m2
32 | ≈ |∆m2

31 | [23]. We can then write Eq. 1.25 as

P (νµ → νµ) ≈ 1− 4 cos2 θ23 sin
2 θ23

(
cos2 θ12 + sin2 θ12

)
sin2 (∆32)

= 1− (2 cos θ23 sin θ23)
2 sin2 (∆32)

= 1− sin2 2θ23 sin
2 (∆32) .

(1.26)

To leading order we have recovered the result for the two-flavor approximation from Sec.

1.2.1. While the matter effects do play a role in the disappearance channel, it is known to

be a very small correction compared to that for the νe appearance channel [24]. Therefore

for our purposes this approximation will suffice.

The full νe appearance oscillation probability in vacuum, from Eq. 1.11, can be written

as

P (νµ → νe) ≈ Patm + Psol + 2
√
PatmPsol (cos∆32 cos δCP ∓ sin∆32 sin δCP ) , (1.27)

where the ∓ sign is minus (plus) for neutrinos (antineutrinos), and we have introduced the

terms 2

Patm = sin2(θ23) sin
2(2θ13) sin

2(∆31) (1.28)

Psol = cos2(θ23) cos
2(θ13) sin

2(2θ12) sin
2 (∆21) . (1.29)

As with the disappearance probability, we have approximated by dropping higher order

terms in sin2 θ13. Including the matter effects, these equations become [25, 26]

Patm = sin2(θ23) sin
2(2θ13)

sin2(∆31 ∓ aL)

(∆31 ∓ aL)2
∆2

31 (1.30)

Psol = cos2(θ23) cos
2(θ13) sin

2(2θ12)
sin2(∓aL)

∓aL
∆2

21 (1.31)

2The subscripts atm and sol stand for "atmospheric" and "solar", after the ∆31 and ∆21 parameters
that appear in each term which have been measured by atmospheric and solar neutrino experiments
respectively.
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where a = 2
√
2GFNe and the ∓signs are negative for neutrinos, and positive for antineu-

trinos. As described in Sec. 1.2.2, the relative signs of the matter potential terms a and

the mass splittings will result in changes to the oscillation probability. From Eq. 1.27 we

can also see how we get sensitivity to δCP in the appearance channel. If δCP is equal to

0 or π, then the last sine term is 0, and the overall oscillation probability in vacuum is

the same for both neutrinos and antineutrinos, implying CP conservation. However, if δCP

takes on any other value, then CP is violated, and we get different oscillation probabilities

for neutrinos and antineutrinos. This effect will compete with the matter effects when

enhancing or suppressing the appearance rate for νe (ν̄e) in NOvA, discussed further in

the next section.

1.3 Measuring Neutrino Oscillations

The goals of NOvA’s 3-flavor oscillation analysis are to

• Measure the value and octant of θ23

• Measure the magnitude of ∆m2
32

• Constrain the values of δCP

• Determine the neutrino mass ordering (the sign of ∆m2
32).

The octant of θ23 refers to whether θ23 is greater than π/4 (upper octant) or less than π/4

(lower octant). θ23 = π/4 is referred to as maximal mixing. If the mixing is maximal then

it would imply the ν3 mass state has an equal mix of νµ and ντ states, hinting at some

fundamental symmetry in the lepton sector.

The neutrino mass ordering (also sometimes called the neutrino mass hierarchy) refers

to the question of whether the third neutrino mass state is the heaviest or the lightest.

In oscillation measurements we don’t measure the neutrino mass directly, only the mass

splittings. It is known that the solar mass splitting ∆m2
21 is both small and positive,
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implying that ν1 and ν2 are of similar mass, and m2 is heavier than m1. However, the sign

of ∆m2
32 is unknown. This leads to two possible orderings of the mass states, shown in

Fig. 1.6. For the “normal” mass ordering, the ν3 state is the heaviest, which results in a

positive ∆m2
32. For the “inverted” ordering, ν3 is the lightest, which results in a negative

∆m2
32.

Figure 1.6: A schematic showing the two neutrino mass ordering possibilities, where the
third neutrino mass state is either the heaviest (normal ordering) or the lightest (inverted
ordering). Colors show the rough flavor composition of each state, with the diagonals
representing varying values of δCP. From [16].

The two oscillation channels we measure probe the parameters in different ways. In

the νµ disappearance channel P (νµ → νµ) we observe the disappearance of νµ (ν̄µ)

as they travel from our beam source to the far detector and oscillate into other flavors.

Fig. 1.7 shows a toy model of the far detector νµ energy spectra for two different values of

oscillation parameters, compared to a no-oscillations case. Taking the ratio of the oscillated

to unoscillated spectra, we get a characteristic dip shape. Measuring the location and depth

of the minimum will tell us the values of ∆m2
32 and sin2 θ23 respectively. However, the

oscillation probability is symmetric about θ23 = π/4, which prevents us from determining

the octant of θ23 by this channel alone. To make that measurement, along with the other

goals, we turn to the appearance channel.

In the νe appearance channel P (νµ → νe), we are sensitive to the value of δCP, the
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Figure 1.7: Left: Toy model of NOvA’s observed far detector νµ energy spectrum in
the case where there would be no oscillations, vs. two examples with oscillations using
different oscillation parameters. Right: The ratio of each of the oscillated spectra to
the unoscillated spectra. The location and depth of the minimum are determined by the
oscillation parameters. From [27].

octant of θ23, and the mass ordering. The octant of θ23 will lead to an overall enhancement

or suppression of νe (ν̄e) appearance. As discussed in the previous section, the matter

effects and CP violation lead to differences in the appearance probability for νe (ν̄e) events,

and this difference changes when considering the normal or inverted mass orderings. From

the matter effects, in the normal mass ordering, we see an enhancement of νe appearance

and a suppression of –νe appearance. In the inverted ordering, we an enhancement of –νe

appearance and a suppression of νe. How these combine with the effects from the value of

δCP can be visualized in Fig. 1.8. This shows the appearance probability for –νe vs. the

appearance probability for νe at NOvA’s baseline and energy, for different combinations of

the mass ordering, value of δCP, and octant of θ23. We can see that for certain combinations

of δCP and mass ordering, the enhancements/suppressions work in the same direction,

leading to a large asymmetry in the probability between νe and –νe appearance (normal

mass ordering with δCP = 3π/2 for example). For other combinations, the effects work in

opposite directions, canceling out to give a similar appearance probability for νe and –νe.
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Chapter 2

The NOvA Experiment

2.1 Introduction

The NuMI Off-Axis Neutrino Experiment (NOvA) is a long-baseline neutrino oscillation

experiment based at Fermilab in Batavia, IL. Figure 2.1 shows the experimental setup. It

uses two functionally identical detectors separated by a baseline of 810 km to measure the

oscillation of neutrinos produced by the Neutrinos at the Main Injector (NuMI) beam. The

smaller Near Detector (ND) is located 105 m underground, 1 km from the beam source at

Fermilab, and samples the neutrino interactions immediately after they are produced. The

neutrinos then travel through the Earth 810 km north to the much larger Far Detector (FD)

located on the surface in Ash River, Minnesota, where their interactions are sampled again

after oscillating. The beam is primarily made up of muon neutrinos, and the oscillation

channels that we measure are νµ (ν̄µ) → νe (ν̄e) and νµ (ν̄µ) → νµ (ν̄µ). Measuring the

disappearance of muon neutrinos and the appearance of electron neutrinos lets us measure

the mixing angle θ23, the neutrino mass-splitting ∆m2
32, and the CP-violating phase δCP.

Both detectors are located slightly off-axis of the beam to optimize the measurement of

the mass ordering (the sign of ∆m2
32). This chapter describes the experimental design

of NOvA, starting with the beam and then the detector designs, including their off-axis

placement.
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Figure 2.1: Left: Side view depiction of the NOvA experimental setup (not to scale) [29].
Note the location of the near detector and beam source underground at Fermilab, the far
detector aboveground, and the path the beam takes through the earth. Right: Top-down
view showing the geographic location of the detectors as well as the off-axis location of the
FD [30].

2.2 The NuMI Beam

Neutrinos at the Main Injector (NuMI) is used to create the neutrino beam source for

NOvA. It works by impinging a 120 GeV beam of protons on a graphite target, producing

hadrons (including charged pions and kaons), that are then focused before decaying to

produce neutrinos, primarily through the π+(−) −→ νµ (ν̄µ)+µ+(−) channel. The beamline

components are illustrated in Fig 2.2.

Figure 2.2: All of the main components of the NuMI beamline (not to scale). Particles
shown correspond to the Forward Horn Current (FHC) configuration. Image from [31].
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2.2.1 The Proton Beam

The Fermilab accelerator complex that produces the proton beam is illustrated in Fig. 2.3.

The protons initially start out as H− ions from an ion source. They are produced with

an energy of 35 keV and are immediately accelerated to 400 MeV by a linear accelerator

called the Linac. They then enter the first accelerator/storage ring called the Booster.

Here, the electrons are stripped off using a carbon foil, leaving only protons, which are

accelerated further to 8 GeV. A kicker magnet then sends the protons in 1.6 µs-long batches

to the larger storage ring called the Recycler Ring, which sits directly on top of the final

accelerator, the Main Injector. The Main Injector and Recycler have a circumference 7×

that of the Booster, so they can accommodate 6 batches at a time, with some overhead

for the kicker’s rise and fall time. The Recycler uses a process called “slip-stacking” which

allows two batches to be combined for double the intensity [32]. After accelerating the 12

(6 pairs of slip-stacked) batches of protons to their full energy of 120 GeV, they are then

sent to their final destination in the NuMI target hall. Each set of 12 batches is referred

to as one “spill”, and delivers up to ∼ 5 × 1013 protons to the target over the course of

10 µs [32]. During normal running conditions the time between spills is ∼1 second. The

total number of protons delivered is referred to as the amount of protons-on-target (POT)

and is used as the metric for how much data we’ve accumulated. The beam power varied

significantly over the course of NOvA’s data taking as upgrades to beamline components

were implemented, increasing the amount of POT per spill, and reducing the time between

spills. The beam ranged from ∼500 kW up to a recent record of 1 MW, with an average

beam power of ∼700 kW.

2.2.2 The NuMI Target

The production target of the NuMI beam is a series of 48 thin graphite fins. Each fin is

25 mm long in the beam direction, and 9 mm across. The fins are spaced 0.3 mm apart,

giving a net target length of ∼120 cm, or approximately two interaction lengths [34].
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Figure 2.3: Illustration of the main components of the Fermilab accelerator complex
which provides protons for the NuMI beam. Image from [33].

Figure 2.4 shows an image of the target, while the target’s placement in the full NuMI

beamline can be seen in Fig. 2.2. The target is long in order to increase the number of

hadrons produced, and thin to allow the produced hadrons to escape out the sides without

undergoing too many secondary interactions in the target, thus maximizing the neutrino

flux. The thinness of the target is balanced against the requirement that it be robust

enough to endure the high intensity proton beam, which requires a large enough target

so that the energy deposited per unit volume is not too high, with a maximum simulated

temperature of 913◦ C [34]. To help reduce the heat generated by these depositions, the

fins have been brazed onto two stainless steel pipes that run along the beam direction and

provide liquid-based cooling [35].

Just upstream of the target sits a collimating baffle that protects the more sensitive

downstream components from any misdirected proton beam. It is composed of a cylin-

drical graphite rod 57 mm in diameter and 1.5 m long, encased in a thin aluminum tube,
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Figure 2.4: Photograph of the NuMI target in its carrier. The individual fins can be seen
on top with one of the liquid cooling pipes running below. Image from [36].

with an 11 mm diameter hole running down the center for the beam to pass through.

Thermocouples attached to the downstream end of the baffle can detect any misdirected

beam as a sudden increase in temperature. It is able to withstand several spills of the

full intensity proton beam, long enough for the misdirected beam to be detected and shut

off. The beam is designed to be operated with up to 3% of it hitting the inner wall of the

baffle, but under normal operation it sees less than 1% [35].

2.2.3 The Focusing Horns

Downstream of the target are two magnetic “horns” that act as lenses to focus hadrons

produced at an angle to the beam axis, thus increasing the resulting neutrino flux in the

forward direction. They are made of aluminum, with the inner conducting surface of rev-

olution in the shape of a parabola. Current is run through the horns to produce a toroidal

magnetic field, which focuses either positively or negatively charged hadrons depending on

the direction of the current. Any hadrons that are under or over-focused in the first horn

are refocused by the second horn, and particles of the opposite charge are ejected. Figure

2.5 illustrates this concept. We call the mode that focuses positively charged hadrons

the Forward Horn Current (FHC) mode, while negatively charged hadrons are focused in

Reverse Horn Current (RHC) mode. The primary decay mode is π+(−) −→ (−)
νµ + µ+(−) , so
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Figure 2.5: Illustration showing potential paths taken by hadrons produced in the target
and subsequently focused by Horn 1 and/or Horn 2. Hadrons that are over or under-
focused by the first horn are re-focused onto the beam axis by the second horn. Particles
produced directly on-axis are unaffected. This diagram shows the Forward Horn Current
(FHC) configuration. For Reverse Horn Current the current would flow in the opposite
direction, flipping the magnetic field direction, and instead focusing negative pions and
kaons, while ejecting positive ones. Note that this diagram has the target inside horn 1
(the MINOS configuration) while for NOvA it is pulled back to be just outside horn 1, but
the focusing concept is the same. Image from [37].

FHC corresponds to a neutrino beam, and RHC corresponds to an antineutrino beam. In

either mode, if a particle is traveling directly along the beam axis, it will not be affected by

the magnetic fields, and can pass through. This will lead to a small amount of ν̄µ (νµ) being

produced in the FHC(RHC) beam. We refer to these unwanted opposite-sign neutrinos as

“wrong-sign” neutrinos, and they constitute one of our irreducible beam backgrounds.

Adjusting the position of the horns and target will change the resulting energy distri-

bution of produced neutrinos. Lower energy hadrons will tend to contain a higher relative

transverse momentum, and so will be traveling at higher angles relative to the beam direc-

tion. Thus, placing the first horn closer to the target will capture more of the low-energy

hadrons, and in the case of the so-called “Low-Energy” configuration where the target is

placed entirely inside Horn 1, all angles are captured. Moving either Horn further away

from the target will then select for higher-energy hadrons and neutrinos. For NOvA, a

“Medium-Energy” configuration was selected, where Horn 1 is placed 15 cm from the down-
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stream end of the target, and Horn 2 is placed 10 m from the upstream end of Horn 1. The

resulting energy distribution was shown to give the best sensitivity to the mass ordering

when considering both FHC and RHC running [38].

2.2.4 The Decay Pipe and Absorber

After the hadrons have been focused by the horns they travel through a large steel pipe

(the decay pipe) to facilitate their decay and production of neutrinos. The pipe is 2 m

in diameter and 675 m long, and is placed 50 m downstream of the target. Initially

the inside was vacuum until corrosion was discovered on one of the beam windows. It

was then filled with helium to slightly below atmospheric pressure. This relieved some

pressure on the beam window to ensure it didn’t fail, while preventing further corrosion

and maintaining a low density environment for the particles to decay in. Just beyond the

end of this pipe sits the hadron absorber, a large box-shaped structure 5.5 m wide × 5.6

m tall × 8.5 m long, with an aluminum core surrounded by layers of steel and concrete.

It serves to absorb most of the remaining non-neutrino particles in the beam, preventing

unwanted particles from reaching the near detector, as well as protecting groundwater and

personnel from excess radiation [35]. The hadron absorber is instrumented upstream with

a 7× 7 grid of helium-filled ionization chamber detectors, with a total area of 1 m × 1 m.

Called the “hadron monitor”, it measures the residual hadron flux, and is used to gauge

the quality of the NuMI target and track alignment of the target and horns to within ±0.1

mm [31]. Muons and, of course, neutrinos are able to pass through the absorber. There

is 240 m of dolomite rock in-between the end of the NuMI beamline and the ND hall,

with additional ionization chamber detectors placed in alcoves in the rock downstream

of the absorber. These “muon monitors” are slightly larger with an area of 2.3 m × 2.3

m, and measure the two-dimensional profile of muons at different energies. As we move

downstream, lower-energy muons are ranged out by the rock, and so the monitors have

increasing muon detection thresholds of 4, 10, and 20 GeV [35]. Observing these muons

provides an additional measure of the quality and intensity of the beam. The positions of
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the absorber, monitors, and rock in the beamline can be seen in Fig. 2.2. The last 210 m

of rock serves to range out the majority of remaining muons, and we are left with our final

beam of neutrinos.

2.2.5 Off-axis detector location

Another important aspect of the NOvA experiment is the placement of the detectors 14.6

mrad (0.865◦) away from the central beam axis. This is done to optimize the νe appearance

channel, given the two-body decay kinematics that produce the majority of our neutrinos.

In their own rest frames, the pions and kaons decay isotropically, giving mono-energetic

neutrinos. However, in the lab frame, the pions decay-in-flight, and the neutrinos are

Lorentz-boosted. In the case of π → ν + µ, the energy of a neutrino with a small angle θ

relative to the pion direction is given by

Eν =
0.43Eπ

1 + γ2θ2
(2.1)

where Eπ is the energy of the pion, γ is Eπ
mπ

and mπ is the mass of the pion [38]. For a

detector with area A at a distance z, the flux of neutrinos is given by

ϕν =

(
2γ

1 + γ2θ2

)2 A

4πz2
. (2.2)

These distributions are plotted for NOvA’s baseline of 810 km in Figure 2.6. As we move

further off-axis, the energy distribution becomes more narrowly peaked at lower energies,

and at 14 mrad it lines up with the first oscillation maximum for νµ → νe oscillations

for a 810 km baseline. Having the peak of our energy distribution here maximizes the

amount of νe appearance events we can observe. Alongside the increased flux in the region

of interest, the narrow peak in energy results in reduced backgrounds from neutral current

(NC) neutrino interactions, allowing even better measurement of νe appearance signals.

Because no charged lepton is produced in a neutral current event, the neutrino often carries
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away most of the energy, and so high-energy NC events will “feed down” to lower energy

and may look like νe events. Since we have a narrow-band beam, there are much fewer

high-energy events to feed down into our signal region, whereas a wide-band beam would

lead to larger NC backgrounds [38].
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(a) Neutrino energy as a function of parent pion energy
(Eq. 2.1) for different off-axis placements of the FD.

(b) Top: Event rates as a function of en-
ergy for different off-axis placements of
the FD assuming an 810 km baseline.
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Figure 2.6: Neutrino energy (a) and event rates (b) of neutrinos at the FD for different
off-axis angles, assuming a baseline of 810 km. Taken from [39] and [40].

2.2.6 Final Beam Components

Beam Mode νµ
–νµ νe + –νe

FHC 95% 4% 1%
RHC 6% 93% 1%

Table 2.1: Summary of the predicted flavor profile of the NuMI beam in each running
mode. Numbers represent flux integrated over the 1-5 GeV energy range in the absence of
oscillations.
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The calculated amount of each neutrino flavor in the final beam is summarized in

Table 2.1. The beam is composed primarily of muon neutrinos in FHC mode, and muon

antineutrinos in RHC mode, with a small amount of wrong-sign and νe (ν̄e) backgrounds

in each case. The primary decay modes for the pions and kaons that produce the muon

(anti)neutrinos are summarized in Table 2.2.

Decay Mode Branching Fraction (%)
π+ → νµ + µ+ 99.98770 ± 0.00004
π− → –νµ +µ− 99.98770 ± 0.00004
K+ → νµ + µ+ 63.56 ± 0.11
K− → –νµ +µ− 63.56 ± 0.11

Table 2.2: The primary decay modes of the mesons that produce the neutrinos for our
beam, along with their corresponding decay fractions [23].

Alongside the wrong-sign neutrinos discussed in Sec. 2.2.3, the other significant intrin-

sic beam background is a small amount of electron neutrino contamination coming from

muon decay, as well as from some of the rarer kaon decay processes. These are summarized

in Table 2.3

Decay Mode Branching Fraction (%)
µ+ → –νµ +e+ + νe ≈ 100
µ− → νµ + e−+ –νe ≈ 100
K+ → π0 + e+ + νe 5.07 ± 0.04
K− → π0 + e−+ –νe 5.07 ± 0.04

Table 2.3: The decay modes of particles that contribute the most to the intrinsic electron
neutrino backgrounds in our beam, along with their corresponding decay fractions [23].

Figures 2.7 and 2.8 show the beam flux distributions at the ND for each of the different

neutrino types, broken down by the parent particle that decayed to produce it. The pion

decays contribute the most around the desired beam energy range of 2 GeV, while the

kaons mostly contribute to the higher energy neutrinos around 7 GeV for νe (ν̄e) and 12

GeV for νµ (ν̄µ).
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(a) νµ (b) –νµ

(c) νe (d) –νe

Figure 2.7: FHC energy distributions for different neutrino types at the ND, broken down
by parent meson. Plots taken from [41]
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(a) νµ (b) –νµ

(c) νe (d) –νe

Figure 2.8: RHC energy distributions for different neutrino flavors at the ND, broken
down by parent meson. Plots taken from [41]
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2.3 The NOvA Detectors

NOvA uses two low-Z segmented tracking calorimeter detectors to measure neutrinos from

the NuMI beam before and after oscillations. The two detectors are made to be functionally

identical, which will allow some cancellation of systematic uncertainties related to beam

composition and cross sections (discussed further in Sec. 5.5). The detectors differ mainly

in their size (shown in Fig. 2.9) and placement relative to the Earth’s surface (recall Fig.

2.1). The 0.3 kiloton near detector has dimensions 3.9 m wide × 3.9 m tall × 15.9 m long.

It is located 105 m underground at Fermilab, about 1 km from the beam source. The

much-larger 14 kton far detector has dimensions 15 m wide × 15 m tall × 60 m long and is

located on the surface 810 km away in Ash River Minnesota. Both detectors are centered

slightly off the beam axis, with the FD at an angle of 14.6 mrad.

Figure 2.9: Diagram showing the scale of the detectors, along with a zoom-in on the
essential components. On the right is the basic unit, the cell, with its wavelength shifting
fiber connected to the pixel of an APD. These cells are stacked to form planes, which are
then alternated to make up the full detector. From [40].

In order to meet our physics goals of measuring the oscillation channels νµ → νµ and

νµ → νe, the detectors need to be able to identify and differentiate between particles

that make tracks, like the muons produced in νµ CC events, and those that make showers

such as the electrons in νe CC events. To this end, low-Z materials were used which give
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a long radiation length. In combination with a fine-grained segmented detector, we have

the position resolution to be able to distinguish electron showers from muon tracks and

other hadronic backgrounds. Of particular note is the background coming from neutral

current (NC) neutrino events. In NC neutrino interactions a π0 can be produced, which

then promptly decays to two photons. If the showers from these two photons coincide

it can mimic the shower made by electrons in νe events. However, the photons travel a

short distance before showering, and with our detector’s resolution we can see this as a

displacement of the photon showers from the neutrino interaction vertex. The electron from

a νe event, on the other hand, will have its shower begin immediately at the interaction

vertex. This section will go into more detail on how the detectors function in order to

achieve this goal.

2.3.1 From Cells to Full Detector

The fundamental unit of the detector is a polyvinyl chloride (PVC) cell filled with liquid

scintillator, with a loop of wavelength-shifting fiber-optic cable running the length of the

cell to trap and transport light to the readout electronics. Figure 2.10 shows a diagram.

The cell has a cross-section of 6.6 × 3.9 cm, and a length of 15.5 m (3.9 m) in the FD

(ND).

The PVC cells are made via an extrusion process where they are compounded with

Titanium Dioxide to increase the reflectivity of the walls [42]. Simulations showed that,

on average, light produced in the cell will be reflected 8 times before getting trapped and

transported in the fiber, and so a 1% increase in reflectivity leads to ∼8% more light

collected [42]. This is particularly relevant in the far detector, where the long length of

the cells can lead to significant attenuation of light in the fibers. The scintillation liquid

is made of 95% mineral oil, with the remaining 5% being pseudocumene and additional

trace elements to increase the light yield. This liquid constitutes the 65% active mass of

the detectors, while the PVC makes up the remaining 35% inactive material. The looped

optical fiber has each end attached to one pixel of an avalanche photodiode (APD) at the
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Figure 2.10: Diagram of essential cell components. Top dimensions refer to liquid volume.
Images taken from [42].

end of the cell, which amplifies and digitizes the signal. This looped shape allows light to

travel in either direction towards the APD, increasing light yield by a factor of 4 compared

to a single non-looped fiber [38]. The fiber additionally shifts the collected light to the 490

- 550 nm range where the APDs have a higher quantum efficiency [43].

The cells are extruded in groups of 16 (see Fig. 2.10) and then stacked and glued

together to form planes 384 (96) cells wide in the FD (ND). The planes are arranged in

alternating horizontal and vertical orientations, which gives us both an “X view” and “Y

view” of the detector (see Figure 2.11). The horizontal planes provide the Y view, and

the vertical planes provide the X view. By combining both views, we can then get full 3D

particle track reconstruction in our detector (more on how this works in Sec. 4.1). The FD

has 896 total planes, and the ND has 214 planes. The final 22 planes at the downstream

end of the ND are interleaved with 10cm-thick steel plates whose purpose is to range out

any produced muons. This section of the ND is called the “muon catcher”. Its planes are

slightly smaller than those in the main volume of the ND, standing 2/3rds as tall, since
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Figure 2.11: Schematic showing what the X and Y views of the NOvA detector look like
for an example neutrino event. Image from [44].

the steel was reused from a smaller prototype detector called the Near Detector On the

Surface (NDOS).

2.3.2 The Data Acquisition System

Every cell constitutes one channel connected to one pixel of an APD. With 896 planes and

384 cells per plane that amounts to 344,064 channels in the FD (and 20,192 in the ND)

whose signals need to be constantly read out and digitized. The Data Acquisition System

(DAQ) handles all these signals simultaneously, while keeping the time synchronized across

devices and triggering on relevant physics activity [45].

The APDs are the first step in the DAQ. Each of 32 pixels on an APD is a separate

channel, reading in light from the fibers, amplifying them, and then converting it to an

electric signal. To keep the electronic noise levels low, the APDs are connected to thermal-

electric coolers which maintain a -15◦ C operating temperature, while dry nitrogen gas is

pumped into the APD housing to prevent condensation on the connecting surface.

Each APD constantly sends its 32 independent signals to a Front-End Board (FEB),

which contains relevant electronics for low-level processing. An Application Specific In-
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Figure 2.12: Overview of the Data Acquisition System for the FD. The ND is similar,
but with a smaller number of channels. From [46].

tegrated Circuit (ASIC) first shapes the pulses to give them a characteristic rise and fall

time. An Analogue to Digital Converter (ADC) then converts the shaped pulses to a dig-

ital signal. Finally, a Field Programmable Gate Array (FPGA) adds a timestamp to the

signals, and passes any with an amplitude above a threshold to the Data Concentrator

Modules (DCMs). Signals above threshold that get read out in this way are also referred

to as "hits". Each DCM collects signals from 64 FEBs to consolidate into a 50 µs-long data

packet called a “microslice”. These microslices are sent to a farm of buffer nodes where

they are stored for up to 16 minutes while their information is analyzed and a triggering

decision is made. Because of the large number of channels and high rate of cosmic events

(∼150 kHz) in the far detector, these microslices can amount to >1 Gb/s of data being
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created.

There are several different types of triggers that can cause data to be permanently

saved by the Data Logger for later anaylsis. Timing-based triggers save all data around a

specific point in time. For example, the FD cosmic minimum-bias trigger saves a 550 µs

window of data every 100 ms. Signal-based triggers save a specific amount of data when

an external signal is received. An example of this is the NuMI trigger, which saves 500 µs

of data centered around the 10 µs beam-spill. Finally, we have data-driven triggers that

use information in the microslices to determine whether to trigger or not. The supernova

trigger looks for a large number of small clusters of hits as an indicator that a supernova

is occurring, and will read out a variable window of data based on the clusters [47].

In order to facilitate this precise triggering and hit readout, a strict and uniform timing

system is required. Time Distribution Units (TDUs) connect to multiple DCMs and keep

them all synced to the same local time provided by a Master TDU (MTDU) which is itself

synced to a Global Positioning System (GPS) to maintain consistent timing between the

two detectors and the Fermilab accelerator complex providing the beam.

2.3.3 File organization

Data from each trigger is saved separately to its own set of files. Each file will contain

many instances of that trigger, organized by time into runs and subruns. A run consists

of multiple subruns, and the length of a subrun varies by detector and running conditions.

In the near detector, a new subrun is started approximately every hour. At the FD, it is

determined by the trigger rate. Each trigger is writing to its own set of files and when

a total file size limit is reached for the current subrun, a new subrun is started. This

is usually caused by the cosmic trigger, and results in a few subruns per hour. Groups

of runs can be organized into data taking periods, sometimes called “epochs”, which are

determined by larger changes in beam running conditions, such as switching from FHC to

RHC running, or entering a beam shutdown period in the summer months.
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2.3.4 Event Display and Detector Differences

Figures 2.13 and 2.14 show event displays of NuMI trigger data for the FD and ND,

which are useful for illustrating some of the key differences in the two detectors. The

FD, being located on the surface of the earth, experiences a high rate of cosmic events,

which can be seen in Fig. 2.13a. We can mitigate this background by zooming in on only

the data that occurs in the beam spill window. This is shown in Fig. 2.13b, revealing a

beam neutrino event. The ND, being located underground, experiences significantly less

cosmics. However its proximity to the beam source means it sees a much higher flux of

neutrinos, with several events occurring every spill (compared to ∼1 a week at the FD).

Additionally, there are neutrino events that occur in the rock surrounding the detector,

with the particles produced in the events (primarily muons) being another background at

the ND. The multiple neutrino events and rock muons can be seen in Fig. 2.14. To deal

with this pile-up of events, the ND samples each channel of the APD at a higher rate than

at the FD. This is shown in Fig. 2.14b where we can distinguish multiple tracks within a

single beam spill. The rate at the ND is 8 MHz, or one digitization (ADC readout) every

125 ns. The rate at the FD is 2 MHz, or one digitization every 500 ns [48]. Beyond the

lack of pile-up, the coarser readout timing at the FD is necessary since the large number

of detector channels would lead to unmanageable file sizes from all the extra data.

40



(a) All data from the 500 µs NuMI trigger

(b) Only the data in the 10 µs NuMI beam-spill window

Figure 2.13: A far detector event display, showing the high rate of cosmic events, as well
as the effectiveness of isolating the beam-spill window. (a) shows all data from the NuMI
trigger with the color indicating the charge collected by the APD, corresponding to the
amount of energy deposited. (b) shows a zoom-in on the beam-spill window, revealing a
muon neutrino event from the beam.
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(a) All data from the 500 µs NuMI trigger (colored by charge)

(b) Only the data in the 10 µs NuMI beam-spill window (colored by time)

Figure 2.14: A near detector event display, showing multiple neutrino interactions as well
as rock events occurring in a single beam spill. (a) shows all data from the NuMI trigger
with the color indicating the charge collected by the APD, corresponding to the amount
of energy deposited. (b) shows a zoom-in on the beam-spill window, where the color now
indicates the time of the hit, to show off the precise timing resolution at the ND which
allows us to deal with the event pile-up.
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2.3.5 Data Quality Monitoring

NOvA maintains automated data quality monitoring scripts to ensure that the data being

collected is of high quality and usable for our analyses. Both the beam and detectors are

monitored, and runs of data that are taken when both are fully operational are labeled

as “Good”. If either the detector or beam is in a full or partial failure mode, the run of

data can be labeled as “Bad” and easily excluded from analyses (details on the cuts used

in determining “Good” and “Bad” for this analysis will be discussed in Chapter 5). At the

FD, in addition to labeling a full run as bad, we can also apply a “mask” to only exclude

the regions of the detector that are undergoing a failure mode, and keep the data for the

rest of the detector. This can extend down to labeling individual channels as good/bad.

Figure 2.16 shows an example of one of the plots that are used to monitor the detectors,

the average hit rate of the FEBs. Figure 2.15 shows the Good Runs monitoring, with the

various failure modes labeled. A description of each mode is given below [49].

• Failed Reco - Too many or too few tracks; generally occurs when one or more DCM(s)

is down.

• Failed Hit Rate - Median hit rate too high/low; beam instability is the main cause

(ND).

• Failed Diblock1/Partial Detector - Part of the detector missing or a part of the de-

tector having too high/low hit rate; general causes are detector crash, thunderstorm,

issues with the diblock, etc.

• Failed Other - Incorrect timestamp or no activity; general cause is a change in Day-

light Saving Time.

• Failed Livetime - Fewer than 1 k triggers in run; low POT (ND) .

1A Diblock is a group of 64 contiguous planes.
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Figure 2.15: A plot of the Good Runs monitor, which indicates whether recent data
collected is labeled as “Good” or is undergoing some type of failure mode. It is continually
updated, with new data populated on the right. A description of the various modes is
listed in the text. From [49].

Figure 2.16: Online Monitoring plots showing the FEB hit rate over a 24 hour period at
the FD (left) and ND (right). The hit rate is one variable used in determining whether
individual channels or runs of data are labeled as “Good” or “Bad”. Channels with abnor-
mally high or low hit rates would be labeled Bad and excluded.
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2.3.6 Total Data Collected

Since we have no practical way to measure the exact number of neutrinos produced by

our beam, we instead use the number of protons delivered to the target as our metric

for the amount of data collected. The unit is referred to as protons on target, or POT.

Figure 2.17 shows the accumulated beam exposure at the FD across NOvA’s 10 years of

operation. In addition, individual data points show the daily POT accumulated, which

you can see increase over time as the beam was upgraded to provide more POT per spill,

and reduced time between spills. For this thesis, we analyze a total FD neutrino beam

exposure of 26.61 ×1020 protons-on-target (POT) corresponding to 885.53 s of beam-on

time. This is combined with an antineutrino beam exposure of 12.50 ×1020 POT over

322.59 s of beam-on time.
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Figure 2.17: Accumulated beam exposure at the FD over time. Neutrino beam mode
is indicated in orange, and antineutrino beam mode in blue. White regions are when the
beam was off. This thesis uses the 2024 analysis dataset, while prior results used the 2020
analysis dataset. [50]
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Chapter 3

Detector Simulation & Calibration

To interpret our data, we need an accurate simulation of the beam and detector, and

the ability to convert the quantities we measure to meaningful physical units consistently

across the detectors. This is the job of the simulation and calibration software.

3.1 Simulation

( G4NuMI )

( GENIE )

( Geant ) ( NOvASoft )

Figure 3.1: Flowchart of our simulation chain. Blue squares indicate the processes being
simulated (with the software package in gray), and green circles indicate data products
produced at each stage and used as input for the next. Modified from [51].

Figure 3.1 shows a flowchart of the simulation chain used in NOvA, and the data
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products produced at each stage. A variety of Monte-Carlo simulation software is used,

including GENIE [52], GEANT4 [53], and detailed models of the beamline and detector

geometries. To complement the base simulation, we make data-driven corrections at several

stages in order to improve our data/MC agreement.

3.1.1 Beam Simulation

The goal of the beam simulation is to produce a set of flux files which describe the energy,

flavor, and direction of neutrinos produced, along with kinematic information about the

ancestor particles that lead to their production. It takes as input a simulated 120 GeV beam

of protons with Gaussian position and angular distributions. It then uses a detailed model

of the beamline geometry described in Sec. 2.2, called G4NuMI, along with GEANT4

to simulate the production of hadrons in the NuMI target, followed by their transport,

focusing, and decay to neutrinos. The decay of the hadron and production of a neutrino

ends this stage of the simulation.

The Package to Predict the Flux (PPFX) [55] is used to correct the baseline simula-

tion, using constraints from hadron production experiments including NA49 [56]. It was

developed for the NuMI beam within the MINERVA collaboration, and works by applying

weights to individual neutrino events based on the kinematic information and interaction

history of the hadrons that produced the neutrino. Figure 3.2 shows the predicted flux at

the NOvA ND and FD with the PPFX corrections applied.

3.1.2 Detector Simulation

The next step after the beam simulation is the simulation of neutrino interactions in the

detectors. At the neutrino energies that our beam produces, there is a variety of different

interaction types that can occur. Figure 3.3 shows the νµ cross section on carbon as a

function of energy for these different interaction types [16].

NOvA uses GENIE [52] to simulate the cross section and interaction of neutrinos

in the detectors and surrounding material. GENIE uses the flux files from the beam
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Figure 3.2: Neutrino flux with PPFX corrections applied at the FD (top) and ND (bot-
tom) for FHC (left) and RHC (right) beam modes [54].

simulation, and a detector geometry file, combined with global neutrino cross section data

and theoretical models to determine if a neutrino will interact along its predicted path.

When an interaction occurs, GENIE will determine a vertex location and kinematic process

for the interaction, and produce a set of final state particles that can be handed off to the

next stage of the simulation [51].

In their default state, the GENIE models do not agree well with the NOvA data. As

with the beam simulation, data from the NOvA ND and external measurements are used to

form corrections to the simulation. These corrections are then applied at analysis time as

weights to the individual simulated neutrino events. Table 3.1 lists the physics models used

by GENIE for the different interaction types, along with the corresponding corrections that

are applied. After first correcting the other interaction processes, we construct a NOvA-
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Figure 3.3: Muon neutrino cross section on carbon for different interaction processes, as
a function of energy. From [16]

data-based correction to the Meson Exchange Current (MEC) model. This interaction

describes charged-current neutrino scattering off of a correlated pair of nucleons via meson

exchange. It contributes significantly to NOvA’s cross section, but is underestimated in

the default configuration of GENIE [57]. The correction is constructed based on a fit to

NOvA ND Data using reconstructed visible hadronic energy and three momentum transfer

[58]. The effect of the complete cross-section weights, which combine the effects of all the

corrections, can be seen in Fig. 3.4. The simulation agrees significantly better with the

data after tuning.

The list of final state particles produced in the neutrino interactions by GENIE are then

used as input to GEANT4, along with a detector geometry file. GEANT4 then simulates

the propagation of those particles through the detectors, and any subsequent interactions.

The final output of this stage of simulation is the location and size of the energy depositions

made by each particle as it traverses the detector.

These energy depositions are then converted to number of photons Nγ using the fol-
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Figure 3.4: Data/MC comparison of the reconstructed visible hadronic energy of νµ CC
selected events in the ND, for FHC (left) and RHC (right) beam modes. The black points
are the data and the simulation with cross-section weights applied is shown as a stacked
histogram with the different interaction modes indicated. The dashed line is the default
GENIE simulation before any tuning. From [59]

lowing equation:

Nγ = Fview(YsEB + ϵCCγ) , (3.1)

where Fview are overall scaling factors for the X and Y views in each detector (four in

total), Ys is an overall scaling for scintillation energy, ϵC is an overall scaling factor for

Cherenkov energy, Cγ is energy deposited due to Cherenkov photons, and EB is the Birks

energy, which is determined from Birks Law

dL

dr
= S

dE
dr

1 + kB
dE
dr

(3.2)

where dL
dr is the light emitted per pathlength, dE

dr is the energy loss per pathlength, S is the

scintillator efficiency (set to 1 after calibration is applied) and kB is the Birks constant.

This equation is used to modify the energy distribution to include the effect of quenching,

which is any loss in light yield of the scintillator due to inherent material properties, such

as when photons are reabsorbed by the scintillation material. This occurs when the dE
dx is
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CC Interaction Process Model Correction
Initial State València Local Fermi Gas

Model [60]
N/A

QE València + Z-Expansion
[60]

Random Phase Approxi-
mation (RPA) included to
model effect of long-range
nuclear correlations [60]

MEC València [61, 62] Parameters tuned to match
NOvA ND Data

Resonant Production Berger-Seghal [63] Parameters tuned to match
neutrino-deuteron scatter-
ing data [64]

DIS Bodek-Yang [65] Parameters tuned to match
neutrino-deuteron scatter-
ing data [64]

FSI Model GENIE hN intranuclear
cascade model [66]

Parameters tuned to
match pion-nucleus scat-
tering data [67–73]

Table 3.1: Physics models in the GENIE version used for this analysis, along with the
corrections applied to each model to improve data/MC agreement.

very high, so it mostly affects the ends of tracks. This effect is parameterized by the Birks

constant kB, which has been measured by NOvA to be 0.01155 ± 0.00065 g/(MeV cm2)

for our scintillator [74]. We once again apply a data-driven correction to our model, with

the scaling factors Fview, YS , and ϵC determined from a least-squares fit to data. Four

different sets of data and MC samples are used to perform the joint fitting on the light

level parameters. These samples are: ND muons, ND protons, ND cosmics, and FD

cosmics. This light model tuning is also used to set the size of our systematic uncertainty

on the light model, and is discussed further in Sec. 5.5.

The next step is to simulate the transport of light through the cell and to the APD

via the fiber. While GEANT4 is capable of simulating this process through ray tracing,

it is computationally expensive to do so for every photon. Instead, NOvA uses a custom

light simulation software that uses templates to parameterize the collection of photons

by the fiber, the transport of those photons up the fiber, and the response of the APD

[75]. The initial position and number of photons is used as input, and values are drawn
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from the templates for each process to determine the photo-electrons as a function of

time for a given energy deposit. This step also takes into account attenuation along the

fiber, using quality control measurements of fibers taken prior to detector construction

[75]. To account for APD noise, the number of photo-electrons are smeared according to a

log-normal distribution, with the final response matching the theoretical distribution well

[76].

The final stage of the simulation models the pulse shaping and triggering logic of the

DAQ readout electronics. The pulse shaping is modeled by a double exponential, one for

the rise time and one for the fall time, that match the times of the ASIC on the FEB [75].

A dual-correlated sampling (DCS) method is used to determine if a hit is read out. The

DCS value is given by

DCSi = ADCi −ADCi−3 (3.3)

where ADCi is the value of the current digitization sample, and ADCi−3 is the sample

from 3 digitizations prior (as a reminder, the FD cells produce a digitization every 500 ns,

and the ND every 125 ns). If the DCS value is above threshold, the hit is read out with the

time and ADC of the hit recorded. The thresholds for each individual cell are pulled from

a database to match with the corresponding cell in the real detectors. After triggering and

reading out a hit, the APD will not re-trigger for a specified amount of time, called the

dead-time.1

The end product of this simulation chain is a file containing detector hits that match

the format seen in the data, but with the addition of truth information from the simulation.

The truth information includes the particle types and interactions that lead to the hits,

the true energy deposited, and kinematic and ancestry information for all particles. We

can then pass both data and MC files through the same reconstruction chain to look for

neutrino events and make inferences about the data. This is discussed further in the next
1The re-triggering logic is known to be mis-modeled in the simulation, leading to a data/MC discrepancy

in APD deadtime. While this does not significantly affect the majority of signals, it has a large effect on
delayed signals such as those from Michel electrons. This discrepancy and a future solution are discussed
further in Sec. 6.4.
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chapter.

3.1.3 Cosmic and Rock Events

Cosmic ray events at the FD, and rock muon events at the ND are both large sources of

background that are computationally expensive to simulate since it requires modeling a

much larger volume to get enough events that actually pass through the detectors. To

solve this problem at the FD we instead overlay real data from our dedicated 10 Hz cosmic

trigger onto the MC files to give a realistic cosmic background. At the ND, we simulate a

smaller sample of neutrino events occurring in the rock in front of the detector, and overlay

them onto the MC files, re-using events if necessary to match the POT/spill of a given run.

The same is done for the FD, but the probability of a rock event occurring is much smaller

due to the lower neutrino flux, so the FD rock events represent a small background in the

analysis. For cases where a simulated cosmic sample is necessary, such as for calibration,

we use the CRY generator [77].

3.2 Calibration

The calibration software allows us to convert our measured ADC values into an established

unit of energy, which can be used to interpret physics results. The calibration is performed

for both data and MC and done in two stages. The first stage, called the relative calibra-

tion, corrects for effects that cause a variation in the observed photoelectrons (PE) across

individual detector elements, such as attenuation of light along the fibers. The output of

this stage is a corrected photoelectron count for each hit, called PECorr, which is uniform

across the detector for a given energy deposition. The second stage, called the absolute

calibration, finds a scaling factor to convert the PECorr values to units of energy (GeV),

which are useful to our physics analyses. A simple flowchart of the procedure is shown in

Fig. 3.5.
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Figure 3.5: A simple flowchart of the calibration procedure. The top colored blocks
show the units of hits at each stage. The gray arrows and blocks indicate the calibration
procedure performed to take one data type to the next, along with its primary goal and
sample used. Taken from [78]

Both stages of calibration are performed using cosmic muons since we have very large

samples of cosmic data, ensuring high statistics in all cells, and the energy deposition of

muons is well-understood using the Bethe-Bloch formula [79]:

〈
−dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(γβ)

2

]
. (3.4)

Here, the constant K = 4πNAr
2
emec

2 combines Avogadro’s number, NA, the classical

electron radius, re, and the rest energy of the electron, mec
2. Wmax is the maximum

energy transfer to an electron in a single collision. Z/A, I and δ are the ratio of the atomic

number to the mass number, mean excitation energy and the density effect correction

to ionization energy loss for the target material, respectively. The charge, velocity and

relativistic gamma factor of the incoming particle are given by ze, βc, and γ, respectively.

The equation describes the mean energy loss rate, dE
dx of a heavy relativistic charged

particle moving through a medium. The equation is valid in the region 0.1 < βγ < 1000

with an accuracy of a few percent [79]. The curve is plotted for muons incident on different

media in Fig. 3.6.
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Figure 3.6: Bethe Bloch curve for muons in different materials. Taken from [79].

Particles located near the minimum of the Bethe-Bloch curve have a nearly constant

dE/dx and are referred to as Minimum Ionizing Particles, or MIPs. For our detector, muons

fall in the MIP region for the majority of their track, where they deposit approximately 1.8

MeV/cm [78]. This makes them ideal candidates for calibration. The relative calibration

uses cosmic muons that traverse the entire detector, referred to as “through-going muons”.

This ensures a roughly consistent energy deposition per length across the detector.

Absolute calibration uses cosmic muons that stop in the detector. Knowing the end

position of the muon track, the Bethe-Bloch equation can be used to determine the exact

energy deposited in a selected track region in GeV and then define a conversion factor

between observed PECorr and true energy. In each case, a simple track reconstruction

algorithm called CosmicTrack is used to identify the cosmic muons, with separate selections

applied afterward. The reconstruction is described in more detail in Sec. 4.1.

3.2.1 Relative Calibration

The purpose of the relative calibration is to correct for attenuation effects and cell-to-cell

variations. Hits that occur far from the readout in a cell can have more light attenuated

on the way to the APD and would thus appear to have a lower energy on average than hits
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Figure 3.7: Simulated PE as a function of W (position along the cell) for FD cells in the
X view, split by different fiber brightness bins. Higher W values are closer to the readout,
with W = 0 the center of the cell. The effect of attenuation can be seen as lower PE
observed further from the readout.

close to the readout. This step also corrects for threshold and shadowing effects. Threshold

effects are when the energy depositions occurring far from the detector readout may need

to have a slight upward fluctuation in the number of photons produced in order to pass the

hit threshold. This can bias the energy distribution to higher values far from the readout.

Shadowing refers to self-shielding of the detector by its own mass, which causes the dE/dx

to not be completely uniform throughout the detector. As a muon traverses the detector it

will lose energy and move down the Bethe-Bloch curve, changing its dE/dx. These effects

are most prominent at the FD, where the detector is larger and cells are much longer. The

final effect covered by the relative calibration is differences in fiber brightness. This refers

to the observation that different WLS fibers attenuate light at different rates (shown in

Fig. 3.7). During detector construction, the attenuation of each fiber was measured, and

the resulting distribution was split into 12 quantiles. The boundaries between groups are

used as brightness ratings, ranging from 0-11, and each cell is assigned a brightness rating,

and simulated with that attenuation value. The calibration is done separately for each

fiber brightness bin to account for this.

Fig 3.8 shows a block diagram of the relative calibration process. We first create

“attenuation profiles” separately for each cell in data and MC. These are 2D histograms of
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Figure 3.8: Block diagram illustrating the main steps in the relative calibration.

PE/cm vs. W (the position along the cell) 2, which we then profile to get a 1D distribution

of mean PE/cm vs. W for each cell.

To fill these histograms, we need to select appropriate hits from the throughgoing

cosmic muon tracks. To calculate PE, we apply a simple scaling to the ADC of each hit 3,

but in order to calculate PE/cm we also need an accurate estimate of the pathlength of

the muon through the cell. To ensure a proper pathlength estimate, we only consider so-

called “tricell” hits which are located between two other hits in adjacent cells. Figure 3.9

illustrates this configuration. This guarantees the muon passed through opposite walls of

the cell, and the pathlength can be found by taking the width of the cell and dividing it

by the cosine of the track angle through the cell. The W of the hit is calculated by finding

the nearest hits in the same track in the opposite view, and making a straight line between

them.

Once the attenuation profile histograms are made, the next step is to calculate the

threshold and shadowing corrections. This is done using only the MC tricell hits, since it

requires truth information about the hit, with the same correction then applied to both
2W is a coordinate independent of the X,Y,Z coordinates normally used when referring to detector

position. The same system is used for both horizontal and vertical cells, with W = 0 defined as the
midpoint of the cell, more positive W being closer to the readout electronics, and more negative W being
further from the readout.

3This scaling is different for each detector and depends on the gain of the APD.
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Figure 3.9: Example of the tricell hit condition used in calibration for a horizontal (Y-
view) cell. The dark red cell is selected due to having hits in the adjacent light red cells.
The general direction of cosmic and beam neutrino events is indicated. Taken from [78]

data and MC. Instead of being done independently for every cell, we collate all planes in

the same view, and the correction is calculated as a function of view, cell number within

a plane, and fiber brightness. The correction is of the form

T =
PE

λ
∗ Etrue

EMIP
, (3.5)

where T is the combined “threshold and shielding” correction factor, PE is the simulated

photoelectrons recorded at the readout, λ is the number of simulated photons which would

be seen at the readout out in the absence of fluctuations, Etrue is the true energy deposited

in the cell and EMIP is the energy you would expect to be deposited by a MIP based on

the pathlength. The first factor corrects for the threshold effects from fluctuations in the

number of photons produced, and the second factor corrects for variations in the MIP

energy from self-shielding.

After applying this correction to the attenuation profiles, we fit the corrected hits to
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extract calibration constants. The fit is of the form

y = C +A

(
exp

(
W

X

)
+ exp

(
−L+W

X

))
(3.6)

where y is the response, L is the cell length, W is the location of the hit in the cell, and

C, A, and X are free parameters in the fit, with X representing the attenuation length.

The two exponentials represent the two paths a photon can take through the looped WLS

fiber to the APD, with the first accounting for the shorter direct path, and the second

representing the photon taking the longer path down the cell and back around (see Fig.

2.10).

The fit is performed for every cell independently in data, while for MC we collate

planes in the same view, and the fit is done by view, cell, and fiber brightness. We do this

for two main reasons; first, our simulated cosmic sample is much smaller than the cosmic

data sample, due to the large simulation time required. So, to get the required statistics

for the fit we collate planes. The other reason is that the simulated detector is assumed

to be uniform plane-to-plane. We do not make this assumption for the real detector. In

the ND muon catcher, which is less instrumented than the main near detector, there are

significantly fewer tracks with the angles required to produce tricell hits. Here, the fit is

done only by view in both data and MC.

The results of the fit for a typical cell are shown in Fig. 3.10. The fit performs well

in the center regions of the cell, but does not describe well the ends of the cell, where

a “roll-off” in the PE/cm is observed (see Fig. 3.10). To fix this, an additional locally

weighted scatter plot smoothing (LOWESS) fit is done on the residuals of the first fit and

used to correct the roll-offs near the ends of the cell. This is shown as the blue curve in

Fig 3.10. The effect of the relative calibration applied to data and MC can be seen in Fig.

3.11.
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Figure 3.10: The results of the attenuation fit for a typical cell in the ND (left) and FD
(right). The red curve is the initial exponential fit, and the blue curve is the final fit with
LOWESS correction.

3.2.2 Absolute Calibration

The last step in the calibration serves to find a conversion factor to take the PECorr values

for each cell in each detector and express them in units of energy. This conversion factor is

found by dividing the average true energy per pathlength (MeV/cm) from simulated muon

hits by the average reconstructed energy/pathlength (PECorr/cm) of our reconstructed

hits in both data and simulation.

To do this, we first find the appropriate muon hits used to calculate these mean values.

Unlike with relative calibration, we look for muons that stop in our detector. To select

these, we choose tracks from CosmicTrack that have a reconstructed end point within the

fiducial volume of the detector4, as well as at least 1 Michel electron (the electron produced

from muon decay) associated with the track. This process is described in Chapter 4. By

knowing the end point of the muon, we can select hits in the region of the track where the

muon is a MIP. For NOvA, this is the region 100-200 cm from the end of the track (see

Fig. 3.12). The dE/dx of simulated muons is found to be flat to within 1.8% in this region

[81]. This range was chosen to minimize the effect of track reconstruction failures where

hits are missed at the end of the track. We also apply the tricell condition to these hits to
4The fiducial volume is a smaller internal volume of the detector, defined in Sec. 5.2.
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ensure an accurate pathlength estimate.

Once these hits are selected we fill a histogram of true MeV/cm from truth information

in the MC hits, and histograms of PECorr/cm from reconstructed hits in data and MC

separately. We then find the mean of the histograms to be used for the correction. The

conversion factor is then calculated as

Correction =
Average MeV/cm

Average PECorr/cm
(3.7)

Separate factors are found for data and MC, and for each view. The separation in view is

done to prevent potential bias coming from differences in the amount of hits between views.

The cosmic muons are mostly downward-going, and will leave more hits in horizontal than

in vertical cells. The final result of relative and absolute calibration can be seen summarized

in Fig. 3.13.

3.2.3 Accounting For Drift

A decrease in the collected PE over time, known as “detector drift” has been observed

in the FD data. It is expected to come from degradation over time of the scintillator

material, fibers, and electronics. The drift can be observed in Fig. 3.14. To account for

this, the calibration is done separately for different periods of time. For data taken before

June 2021, it was split into “epochs”, which are run periods dictated by major changes to

beam running conditions including changes in horn current, upgrades, or summer shutdown

periods. For the majority of new data in this analysis, taken Sept 2021 - July 2023 (see Fig.

2.17) we have switched to a month-by-month calibration. No difference in effectiveness was

observed using this new scheme [83].

61



Figure 3.11: FD plots showing the effect of relative calibration, averaged across all cells,
with PE/cm for each view on top and PECorr/cm for each view on the bottom. The
different colored curves represent different data taking periods, with a comparison made to
one MC period. These epochs represent data taken from October 2015 - June 2021. Epoch
10d has a significant deviation since it contained only one week of data. Constants from
epoch 10c were used instead for that data, and it is only included here for completeness.
Taken from [80].
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Figure 3.12: Simulated muon dE/dx, with the selected track window used for calibration
shown.

Figure 3.13: The mean reconstructed/true energy shown for simulated FD hits in the
Y-view before/after calibration is applied. Relative calibration will flatten the curve, and
absolute calibration will shift it up/down. Taken from [82].
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Figure 3.14: Observed PE over time for the FD, averaged over all X-view cells. The
steady decrease over time is known as detector drift. The colors correspond to different
run periods. The vertical bars indicate the beginning of new epochs. The gray points are
MC. [80]
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Chapter 4

NOvA Software Infrastructure

Our analysis relies on our ability to reconstruct neutrino events from our data, and identify

their flavor and energy. To do this we make use of a software chain that first builds up

clusters of hits into events, finds topological features, and then feeds them into algorithms

that can reliably estimate the flavor and energy.

The suite of software we use is called NOvASoft, written primarily in C++ and Python,

built on top of the Art data processing framework [84]. It is divided into a series of

stages called modules that progressively add more information into the files in the form

of new objects or “data products”, built using previous stages products as inputs. These

products represent topological features in the events such as tracks, or contain the outputs

of algorithms that estimate particle type or energy.

The data and MC files have the same underlying format and are passed individually

through the same stages of the reconstruction. The simulation files have additional access

to truth information from the generators, which can be used to assess the efficiency of

algorithms. Neutrino events will look similar between the FD and ND due to both detectors

having the same composition, so the same software chain can be applied to files from either

detector as well.

We can divide the full reconstruction chain into three main parts: event reconstruction,

energy estimation, and particle identification. We will now go through each part in detail.
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4.1 Event Reconstruction

Event reconstruction builds the neutrino events out of individual hits in the detector, using

algorithms designed to look for the topological features that different particles are known

to make in the detector.
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Figure 4.1: The typical topologies for νµ CC (top), and νe CC (middle) events in our
detectors, and an example NC (bottom) topology that appears νe-like. The arrows indicate
the particle type that produced the hits, which are shown in red. Each square represents
a cell in the detector, and the color indicates the amount of charge, or energy deposited in
that cell, with darker cells having more energy. Images from [85].

Figure 4.1 shows an example of what different neutrino interactions look like in our

detectors. The first is the νµ CC interaction which is characterized by a long straight muon

track. There may also be a shorter track close to the interaction vertex from hadronic

activity, often a final-state proton. The νe CC events will instead produce an electron as

the charged lepton, which results in a shorter and broader electromagnetic shower. This

event also contains a proton track near the interaction vertex. The neutral current event

shown produces a π0 instead of a charged lepton, along with additional hadronic activity

near the vertex. The π0 decays to two photons that shower, which can resemble an electron
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shower, particularly if the photons happen to overlap. To distinguish these from νe CC

events, the displacement of the photon shower’s vertex from the primary interaction vertex

can be identified.

Raw Hits

CalHit
Hits

TDSlicer
Clusters

Cosmic Track
Tracks

Kalman Track
Tracks

MultiHough
Hough Lines

Elastic Arms
Vertex

Fuzzy-K
Prongs

Calibration

νμ CC 
Analysis

νe CC 
Analysis

Michel Electron Finder
Slc/TrkME

Various uses

Figure 4.2: Block diagram showing the order that reconstruction chain modules are run.
The red block is the initial raw data input to the chain, the green blocks are the modules,
with the names in black and data products produced in gray. The blue blocks show the
eventual end usage of each part of the chain.

Figure 4.2 shows the reconstruction paths for the modules, and the end usage of the

data products that were created. The green boxes represent individual modules that are

run, each designed to find a specific feature in the data, and save it as an object into the

file. Recall from Sec. 2.3.3 that data is organized in the files by run, subrun, and beam

spill. Modules are run once per beam spill, and can access any data products associated

with that spill that were created earlier on in the chain. We now discuss these modules in

turn.

4.1.1 Hits

The first step in the reconstruction chain is to turn the collection of raw hits from our

detectors into “calhits”. The coordinates of each raw hit are translated from DAQ logical

channel number to the plane and cell number of the hit. The plane number gives the

longitudinal position (Z-coordinate) in the detector, as well as which view the hit was in
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(X or Y), and the cell number gives the transverse position along that view. No distinction

is made yet between hits from physics activity and those from electronics noise.

4.1.2 Clustering

Next, calhits are clustered together in space and time. These clusters are referred to as

slices and represent individual physics event candidates. NOvA uses an algorithm called

TDSlicer, which first clusters calhits in each view separately, before merging the sets of 3D

(x, z, t, and y, z, t) clusters from each view into one set in 4D (x, y, z, t). It has three steps;

first, in each view, centroids are identified by finding the hits with maximum density and

isolation according to the work of Rodriguez and Liao [86]. Density is defined as

ρi =
∑

j

exp(−d2ij/τ
2) , (4.1)

where dij is the Euclidean distance between hits in the same view, and τ is a configurable

scale parameter, set to 12(60) ns in the ND(FD) to reflect the timing resolution for hits in

each detector [87]. Isolation is defined as the Euclidean distance to the closest hit in the

same view with a higher density. This process is illustrated in Figure 4.3.

Figure 4.3: Illustration of the centroid-finding algorithm utilized by TDSlicer, based on
[86]. The right plot shows the density (ρ) and isolation (δ) of points for the clustering
problem on the left. The points with the highest density in each group (1, 10) will also
have high isolation and are chosen as centroids, using detector specific cutoffs for ρ and δ.
Points with high density but low isolation will form the bulk of each cluster. Points with
low density and and high isolation will be treated as noise. Image from [86].
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Second, Prim’s algorithm [88] is used to build up hits into a cluster, starting from the

centroids. This is done sequentially, adding the next hit outside the cluster that is closest

to some hit in the cluster, up to a predefined distance in each detector. Finally, the set

of 3D slices in each view are merged by comparing the average (z, t) coordinates between

slices. Each slice is compared to every other slice in the opposite view, and the slice with

the closest match in (z, t) (up to a specified distance) is paired. These two slices are merged

and removed from the list, and the process continues until all slices have been considered.

If a matching slice cannot be found within the defined range for each detector, the slice is

considered noise.

Once a slice is made, it is treated as a physics event. This object is the basis of most of

our reconstruction infrastructure. Since slices are meant to represent individual neutrino

events, we often refer to slice and event interchangeably 1. Features of each event are

picked out using further modules and then used to identify the event.

4.1.3 νe reconstruction

The goal of the νe reconstruction chain is to identify the electromagnetic shower produced

by the electron in the νe CC interaction. This is done through a series of modules, which

first identify lines of interest, then use them to find the vertex of the interaction, and finally

form prongs that extend from that vertex. This process is shown in Fig. 4.4.

The first step in the νe chain identifies lines of interest in the clusters produced by

TDSlicer by using a modified Hough transform [90]. This pattern-finding algorithm con-

siders pairs of hits in each view separately, and calculates the line through them in polar

coordinates ρ, the perpendicular distance from the origin to the line, and θ, the angle

between ρ and the axis of the view in question. The coordinates ρ and θ from each line
1This is easily confused with an Art event, which is how the Art framework refers to one beam-spill

worth of data from the detectors. I will specify “Art event” if using it in this context.

69



Figure 4.4: Flowchart of the νe reconstruction chain applied to an NC event. Image from
[89].

are then used to fill a 2D array, called a Hough Map, with a Gaussian vote given by

vote = e
− (ρ−ρ0)

2

2σ2
ρ e

− (θ−θ0)
2

2σ2
θ (4.2)

where σρ = 3/
√
12 and σθ = 3/d

√
6 ( d being the distance between the two hits in the

detector) [89]. After filling the Hough map, it is then smoothed by averaging votes in the

map using a Gaussian smoothing weight. Prominent features in the event will lead to lots

of votes in a particular region of the Hough map. Peaks above a threshold in the map

are then identified, and the coordinates of those peaks used to define Hough lines that

characterize the event.

This process is then iterated to search for smaller lines that could be missed by the

presence of dominant lines in the map. Hits associated to the most dominant Hough line

are removed, and the algorithm is re-run to identify new peaks in the map, which are now

more likely to be associated with legitimate shorter physics tracks instead of noise [89].

This “Multi-Hough” process is repeated, keeping the dominant lines at each iteration, until
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a maximum number of lines is reached or no peaks above threshold are identified in the

map.

The next step attempts to find the neutrino interaction vertex, using the Hough lines as

input. A modified version of the Elastic Arms method is used [91]. This algorithm assumes

an event containing 1 or more tracks emanating from a common vertex. Taking the Hough

lines and their intersection points as seeds, vertex points are identified, and 2D vectors, or

“arms” are constructed pointing outwards from the vertex. The number of arms is taken

as the larger of the number of Hough lines in either view. The direction of the arms,

along with the vertex location are then adjusted to minimize an energy cost function [89].

This function rewards arms that pass through hits, and penalizes for missing hits. The

version used in NOvA has an additional term which penalizes arms whose first hit occurs

beyond one radiation length. This is necessary since, unlike in the traditional algorithm,

the vertex is not known a priori, and also allows for the displaced photon showers from π0

decay common in NC backgrounds. The vertex which minimizes the energy cost function

is then used.

Once the vertex is established, the next step is the assignment of hits in the event to

“prongs”. Prongs are collections of hits meant to represent individual particle tracks or

showers emerging from the vertex. Prongs are formed using a fuzzy k-means algorithm.

“Fuzzy” refers to the fact that hits can be assigned to multiple prongs, and the total number

of prongs is unknown at the start. In each view, prong centers are identified by observing

the angular distribution of energy depositions around the vertex, and searching for peaks.

Hits are then assigned a degree of membership to the prongs based on their proximity to

the centers, and hits with a low degree of membership to any prong are treated as noise.

The final step is to merge the prongs together from each view. This is done by matching

prongs which share a similar energy profile. A temporary track is made out of every prong

in each view, and the cumulative energy distribution along the track is computed. This

energy profile for each prong is then compared to those in the opposite view using a Kuiper

metric [89], which takes the sum of the absolute values of the largest positive and negative
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vertical distances between the two distributions. The pair of prongs with the minimum

value of this metric are matched, and removed from the list of available prongs. The

process is repeated until all prongs that can be matched are matched.

4.1.4 νµ Reconstruction

The νµ reconstruction chain is more straightforward, owing to the highly identifiable track

of hits that muons make in the detector. Instead of showering, the muons lose energy

via ionization, tracing a straight and narrow path through the detector with occasional

small changes in trajectory from multiple scattering. The module we use to identify these

and other tracks is called Kalman Track [92], which makes use of a Kalman Filter [93] to

identify lines with possible deviations.

The algorithm starts by looking in the downstream end of the detector for pairs of hits

in the same view separated by no more than 4 cells, to be used as track seeds. The tracking

begins downstream since the particles created in the interaction are expected to be more

separated there. It uses the track seeds to calculate an initial slope. The algorithm then

scans back and forth through the detector, iteratively adding hits to build up the tracks.

The location of adjacent hits is predicted using the estimated position and direction of

the track assuming a linear fit to the current track, with some weighting to account for

scattering and measurement uncertainty. Hits that are within 8 units of χ2 from this track

prediction are added to the track [92]. After adding each hit the estimated trajectory is

updated, and the process continues until no valid hits can be found.

The 2D tracks from each view are merged together to form 3D tracks. As a first step,

tracks in a single view are compared to look for broken tracks that can be joined together.

This can occur if there were gaps in the hits, or if a hard scattering occurred that produced

a large angular deviation, leading to two independent tracks being made for one particle.

The final list of tracks in each view are then merged together based on their overlap in the

Z direction, resulting in 3D tracks. An example of the tracks reconstructed for a simulated

νµ event can be seen in Fig. 4.5.
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Figure 4.5: A zoomed-in FD event display showing the Kalman tracks reconstructed for
a simulated νµ event. From [92].

4.1.5 Cosmic Tracks

CosmicTrack is the module used to identify the downward-going tracks from cosmic activity

in both detectors, assuming a simple topology of a single straight-line track in the detector,

typically at a steep vertical angle. It is designed as a simple, fast reconstruction method

for these single-particle events which are mostly used for calibration (Sec. 3.2). It uses a

sliding window-tracking algorithm that is performed separately in each view before merging

views [94].

For each reconstructed slice, a user-defined range of planes (the “window”) at one end

of the slice is selected. The hits within that window are used to fit a straight line, and

any hits in the slice consistent with that line are added to the track. Then, the window is

moved one plane forward in the slice, and any new hits consistent with the line are added.

A new fit is then performed to update the line’s trajectory with the new hits. This process

is repeated until all planes in the slice have been considered. The tracks in each view for

each slice are then merged together making a final 3D track. These tracks are primarily

used for calibration, as discussed in the previous chapter.
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4.1.6 Michel electrons

A Michel electron is the electron that results from a muon decay (µ− → e− + νµ+
–νe).

It shows up in our detector as a small time-delayed signal near the ends of a muon track.

Michel electrons are useful for tagging muons that stop in the detector, and they provide

a source of events with well-understood energy and decay-time distributions. They have

several uses for NOvA, including tagging stopped cosmic muons for calibration (discussed in

Sec. 3.2), understanding electron neutrino beam backgrounds through our decomposition

process (Sec. 5.4.1), or as a standard candle to set our energy calibration uncertainty (Sec.

5.5).

Because of the possibly long time delay between the muon stopping and electron ap-

pearing, hits from the Michel electron are unlikely to be clustered with the hits from their

parent muon. Additionally, Michels have an energy distribution that cuts off at 53 MeV

(half the muon rest mass), so they do not deposit a lot of energy or make a lot of hits in

the detector. Our goal is to both find and cluster the small hits from the Michel, and then

match it with a parent slice (the muon).

Michel Electron Finder (MEFinder) is the module we use to do this [95]. It is run once

per Art event, and does the Michel clustering and matching across all hits and slices in

that spill at once. Figure 4.6 shows an overview of the steps in this process.

We start by selecting the appropriate hits to cluster. Any detector hits that did not

end up clustered by TDSlicer are added to a “noise slice” for each Art event. We form a

list of candidate Michel electron hits by considering all hits from the noise slice, as well as

all hits from slices from TDSlicer with a low total number of hits (<=12). We refer to the

rest of the slices from TDSlicer with > 12 hits as “physics slices”.

We then filter the sample of candidate Michel hits. We include only hits with ADC

values >= 50 to remove electronics noise. Since we expect the Michel to show up as a

delayed signal near physics slices, we only keep hits within 10,000 ns of the mean time,

and 40 cm of a physics slice. Additionally we remove any hits if another hit occurred
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Figure 4.6: Block diagram showing the sequence of steps in the MEFinder algorithm.
The arrows indicate the order of steps performed, and where the outputs from each step
are used. Red blocks indicate inputs from outside the algorithm, green blocks are the steps
performed by the algorithm, and the two classes of output objects, SlcME and TrkME, are
shown in blue.

in the same cell within 1200 ns. This is to account for a data/MC discrepancy in APD

deadtime. The APD deadtime had been mismodeled in the simulation, leading to a lower

average deadtime, and some simulated hits occurring too soon after one another2. This

cut removed such hits as a way to give a better Data/MC agreement without needing to

alter the low-level simulation and require remaking all of the files.

Once we have the list of candidate Michel hits, MEFinder makes clusters of hits using a

simplified version of the density-based clustering algorithm DBScan [96], taking the plane,

cell, and time differences of hits as input. The algorithm calculates the distance between
2This is discussed further, along with a solution for future analyses, in Sec. 6.4.
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hits using the distance function

d =

√(
∆P

1.85

)2

+

(
∆C

1.40

)2

+

(
∆T

40ns

)2

(4.3)

where ∆P is the difference between plane number of the hits, ∆T is the time separation,

and ∆C is the difference in cell number when the two hits are in the same view, otherwise

∆C= 0. Starting with individual hits, clusters are built up by adding hits that are within

5 distance units of any other hit in the current cluster. Clusters from the DBScan output

that contain no more than 12 hits, and are within 10,000 ns and 20 cm of a physics slice

will become a Michel cluster.

The next step is to determine which physics slice to assign as the parent slice for each

Michel cluster. Each Michel is matched to only one physics slice. For most clusters, there

will be only one physics slice within the allowed range, and that will be matched. For

Michels with multiple possible parents we need a way to determine the best match. This is

done using our Michel electron Identifier (MID). MID is a log-likelihood particle identifier

that we use to select true Michel electrons, and match parent slices accurately. It is built

on four reconstructed input variables that look significantly different between true-ME

and non-ME clusters. These are the reconstructed calorimetric energy (CalE), the number

of hits (NCells), the time difference between the parent slice and the Michel (∆T), and

the distance between the parent slice and Michel (DistToSlc). Normalized 2D template

histograms of these variables are made from simulation files, using truth information to

separate the true-ME and non-ME components. These are shown in Fig. 4.7. The parent

slice assigned to each Michel cluster is chosen to be the physics slice that would give the

highest value on the true-ME DistToSlc vs. ∆T template.

Once the parent slice is matched, we can calculate the MID, which represents the

likelihood that the cluster is from a true Michel electron. This is done using the formula

MID = log( Ltrue )− log( Lnon ) (4.4)
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Figure 4.7: Normalized 2D template histograms of the Michel variables used in the MID
calculation. The top two plots are for the true-ME case, and the bottom two are for the
non-ME case. The empty bands in the DistToSlc plot come from the distance metric
used, which takes the closest cell-to-cell distance between Michel and parent slice hits in
the same view. The cell-to-cell distances are roughly standard, so only certain values are
allowed, hence the bands. True Michels have more energy and hits on average, and occur
in the same cell as the parent slice (DistToSlc = 0) more often. From [95].

where Ltrue and Lnon are the likelihoods for the true/non-ME hypotheses. These are

calculated using the probabilities pulled from the MID templates for a given Michel cluster’s

input variables (CalE, NCells, DistToSlc, and ∆T) according to

Ltrue = Ptrue(CalE,NCells) ∗ Ptrue(DistToSlc,∆T ) (4.5)

Lnon = Pnon(CalE,NCells) ∗ Pnon(DistToSlc,∆T ) . (4.6)

MEFinder outputs two classes of Michel electron objects, SlcME and TrkME. A Michel

cluster is considered a TrkME if it is within 15 cm of some Kalman (Cosmic) 3D track

endpoint with track length >= 100 cm. This Michel cluster is then matched to the track

and its associated slice. All other Michel clusters are labeled as SlcME. TrkMEs represent

a purer sample of Michel electrons given the extra requirement of the presence of a muon
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track. As such they are useful for precision checks in the calibration and energy scale

calculations.

Data/MC comparisons for the distribution of MIDs of SlcME and TrkME in the ND are

shown in Fig. 4.8. The effect of cutting on MID can be seen in Fig. 4.9, which compares

the energy distributions of the Michels.
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Figure 4.8: Data/MC comparison of the MID values of reconstructed SlcME (left) and
TrkME (right) in the ND. The top plots show the individual data and MC distributions,
while the bottom shows the ratio MC−Data

Data .
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Figure 4.9: Data/MC comparison of calorimetric energy for reconstructed SlcME (left)
and TrkME (right) in the ND for FHC events. The top plots are the distributions without
any cuts applied. The bottom distributions have a cut on MID > 1 applied to SlcME and
MID > 0 applied to TrkME. Beneath each plot is the ratio distribution MC−Data

Data .
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4.2 Particle Identification

NOvA makes use of various machine learning techniques to identify and separate νe CC,

νµ CC, NC, and cosmic events, using the reconstructed objects as inputs. The algorithms

will output scores, which represent the likelihood that an event is of a particular neutrino

type, or that individual tracks/prongs are from a particular particle type. These scores

are later used to develop cuts to select different samples (see Sec. 5.2). We will describe

the algorithms that are most relevant for this analysis.

4.2.1 Event Classification with CVN

The Convolutional Visual Network (CVN) is a deep neural network that is used as our

primary event classifier [97]. It is based on Convolutional Neural Networks (CNN), which

are a class of algorithm typically used for image recognition tasks. In the case of CVN, the

“image” is a pixel map of the slices, where each pixel represents a cell, and the intensity

represents the amount of energy deposited in that cell. Pixel maps are generated for

each view in the slice, and input to the algorithm separately, before being combined at

a later stage. Training CVN on the slices avoids reconstruction failures such as broken

tracks or misplaced vertices, and allows the neural network to classify events based on

more complex or abstract topological features that may not be expected by humans. The

features identified by the algorithm can be visualized in a “feature map”. Figure 4.10

shows examples of pixel maps for νµ and νe CC events, as well as the feature maps for

each. CVN is trained over millions of simulated beam events, and hundreds of thousands

of cosmic events [98]. The output of CVN is a set of scores from 0 to 1, which represent the

likelihood that an event is νµ CC, νe CC, NC, or cosmic. Each event’s individual scores

for each category will add up to 1, giving the probability the event is of that type. Figure

4.11 shows the distribution of νµ and νe scores by true event type.
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Figure 4.10: Pixel map of the Y-view of νe CC (left), and νµ CC (right) events along
with the feature maps extracted for each. Individual features are highlighted corresponding
to muon-like (green), electron-like (blue), and hadronic (purple) qualities in each event.
Images from [99].

4.2.2 Muon Identification using ReMID

To better identify the muon tracks from νµ CC events we use the Reconstructed Muon

Identifier (ReMID) [100]. ReMID is a Boosted Decision Tree (BDT) which takes the

Kalman tracks from each event as input and scores them based on how muon-like they are.

ReMID is primarily meant to distinguish muons from their dominant background, charged

pions from NC events, and makes use of variables that look significantly different between

the two particles.

The four variables input to the BDT are the dE
dx log-likelihood, the scattering log-

likelihood, the track length, and the fraction of planes that overlap with hadronic activity.

The energy deposited along the track, or dE
dx , can be different between muons and pions,

because pions will lose energy from hadronic scattering in addition to ionization. Energy

profiles for muon and pion hypotheses are made, and a log likelihood is computed for each

track comparing its own dE
dx to these templates. The hadronic scattering will also lead to

differences in the angular deviations of pions as a function of track length. The scattering

log-likelihood uses an analogous process to determine how much the track differs from a
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Figure 4.11: Distribution of CVN output scores for νe CC (left) and νµ CC (right) for
simulated FD events, split by true interaction type. Both are able to effectively separate
signal and background, with the νe classifier having a small irreducible background of νe CC
events that did not oscillate from νµ, but were intrinsic to the beam. The νµ performance
is boosted by the ease with which we can identify muon tracks in our detector. Images
from [97]

straight line. The track length is actually similar between muons and pions, except at

higher energies where muons produce longer tracks. This variable is primarily meant to

distinguish muon tracks from hadronic showers that produce many particles with short

tracks. Finally, the fraction of planes in the track that overlap with hadronic activity is

expected to be very low for muons except near the interaction vertex. The opposite is true

for pions, whose interactions can create additional hadrons along the track.

The highest scoring ReMID track in each event is later used in the νµ CC event selection

process (section 5.2).

4.2.3 Prong CVN

Prong CVN is an additional application of the CVN architecture to identify the particle

type of individual prongs within an event. It differs from event CVN by having four total

pixel map inputs: two generated from the hits in each view of the entire slice (similar to

event CVN), and two smaller maps generated from the hits in each view of the individual

prong. The output is again a set of scores ranging from 0 to 1, representing the probability
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that an individual prong was the result of an electron, proton, photon, muon, or pion. For

this analysis these scores are only used for identifying the hadronic vs. electron components

of the slice during νe energy estimation (Sec. 4.3.1).

4.2.4 Cosmic Rejection BDTs

As an additional step to reject cosmic backgrounds at the FD, we use Boosted Decision

Trees to score events based on how likely they are to not be cosmic in origin. There

are separate BDTs trained for the νµ and νe samples, but using similar kinematic input

variables. In both cases the BDTs are trained using simulated beam events as the signal,

and cosmic data for the background.

The νµ BDT uses the following variables: the track length, the cosines of the track

angle with respect to the beam and Y axis, the start and end positions of the track, the

distance from the track start/end to any wall of the detector, the number of hits in the

track vs. slice, and the pt/p or transverse momentum vs. total momentum for the track.

The νe BDTs are more complex. As will be described in Sec. 5.2, we split our νe

events into core and peripheral sub-samples, which represent fully contained and partially

contained νe events, respectively. Due to the different geometries of these events, we use

separate cosmic rejection BDTs for each. The BDT for the core νe sample is trained using

a similar set of variables to the νµ sample, but using prongs instead of tracks. The BDT

for the peripheral νe sample is trained using a smaller set of variables, using only pt/p, the

vertex x, y, and z positions, and the distance of the prong start/end to any wall of the

detector other than the top.

The BDTs perform very well, with >90% cosmic backgrounds rejected while retaining

at least 90% signal efficiency in all cases [101, 102].

4.2.5 Low-Energy νe BDT

New for this analysis is an additional sample of reclaimed low-energy νe events that fail

our main selection cuts. Their energy range, from 0.5 - 1.5 GeV is one where we typically
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have low selection efficiency, and higher backgrounds, so a simple retuning of the selection

cuts was not possible to reclaim these events [103]. Instead, a BDT was developed to select

these events, being trained on both hit-level reconstruction variables, prong topology and

energy variables, and CVN scores [103]. The training sample used simulated events that

fail our main νe selection, outlined in Sec. 5.2. For training, all νe events were considered

signal, with no distinction made between beam νe and oscillated νµ → νe events. All other

categories of events were considered background.

4.3 Energy Estimation

To constrain the oscillation parameters requires observing neutrino events as a function of

energy at a fixed baseline. This in turn requires an accurate measurement of the energy

of each neutrino event. The first step in energy estimation, the calibration, was already

discussed in the previous chapter. Once the neutrino events have been reconstructed, we

can employ specific energy estimation methods for νe and νµ events that achieve better

performance than calorimetry alone.

4.3.1 νe energy estimation

The energy of νe events is divided into components from the hadronic activity, and the

electromagnetic shower produced by the electron. The νe energy is reconstructed from

Eν = p0( p1EEM + p2Ehad + p3E
2
EM + p4E

2
had) (4.7)

where EEM and Ehad are the energies of the electromagnetic shower, and hadronic compo-

nents respectively. These are obtained by summing the visible energy of EM and hadronic

prongs, which are selected using the Prong CVN. The parameters pi are found by fitting

the polynomial to a weighted-average true energy distribution. The weights serve to flatten

the true energy distribution to avoid biasing towards the peak energies [104]. The fit is
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performed separately for FHC and RHC events. The overall energy resolution for νe events

is 10.8% for FHC, and 8.5% for RHC [105].

4.3.2 νµ energy estimation

We can calculate muon energy based on the distance a track traverses in the detector. The

uncertainty on the muon track length is on the order of one plane length, and lower than

the uncertainty on our energy scale, allowing us to achieve better energy resolution than

from calorimetry alone. The hadronic energy is then simply estimated by summing the

visible energy of hits not associated with the muon track. The νµ CC energy can then be

estimated by the equation

Eν = Eµ + Ehad (4.8)

where Eµ is the energy of the muon, and Ehad is the energy of the hadronic component of

the interaction.

Both muon and hadronic energies are corrected using fits to simulated events, shown in

Fig. 4.12. 2D Histograms are made of the reconstructed quantity (Kalman track length,

or visible hadronic energy) vs. true energy. In each bin of the reconstructed variable, the

mode of the distribution of true energy is found, and the tails under 10% are removed.

This modified true energy distribution in each bin is then fit to a Gaussian.

The means of the true-energy Gaussian fit in each reconstructed bin are then used

as data points to perform a linear fit3. The points are additionally weighted by the size

of the peak of the Gaussian distributions, to avoid losing information about the relative

frequency of events in each bin. The result of the fit is shown as the red line in Fig. 4.12.

The resulting energy resolutions for Eν , Eµ, and Ehad are summarized in Table 4.1.

3In previous analyses, a piece-wise linear spline fit was used but it was found that this resulted in
unwanted sharp features in the hadronic energy distribution due to fitting a piece-wise linear function to a
continuous distribution. A simple linear fit gave very similar performance without these unwanted features
[106].
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(c) (d)

Figure 4.12: Linear fits to the true energy (shown as a red line) for FHC (top) and RHC
(bottom) events for the muon (left) and hadronic (right) components of the event. The
higher energy resolution of the muon component is evident when comparing the spread of
the distributions [107].
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νµ Energy Resolution
Detector Beam Bias Resolution

FD FHC -2.58% 9.30%
FD RHC -1.68% 8.06%
ND FHC -3.06% 12.18%
ND RHC -2.85% 9.98%

µ Energy Resolution
Detector Beam Bias Resolution

FD FHC 0.02% 4.17%
FD RHC -0.07% 4.04%
ND FHC -0.00% 4.80%
ND RHC -0.14% 4.44%

Hadronic Energy Resolution
Detector Beam Bias Resolution

FD FHC -4.23% 31.11%
FD RHC -3.51% 34.10%
ND FHC -4.81% 38.59%
ND RHC -11.31% 42.42%

Table 4.1: Energy biases and resolutions for νµ events as well as individual µ and hadronic
components. These are calculated as the mean and standard deviation of the Ereco−Etrue

Etrue

distribution [105].

88



Chapter 5

3-Flavor Analysis Setup

5.1 Introduction

Our measurement of the oscillation parameters is extracted by fitting the energy spectrum

of our simulated FD neutrino events to the observed data. We have so far described the

process of reconstructing the events, estimating their energy, and assigning them particle

ID scores to gauge their likelihood of being a particular flavor. All the basic pieces are now

in place to carry out the analysis. We begin by developing cuts to select pure samples of

νe and νµ events, and binning them in ways that improve our sensitivity to the oscillation

parameters when fitting. With these cuts and binnings we can construct predictions of

the oscillated FD energy spectra, and then apply data-driven corrections using informa-

tion from the ND. This is a two-step approach where the ND simulation is corrected to

better match the data, in a process called decomposition, and then these corrections are

propagated to the FD in a process called extrapolation. A wide range of systematic uncer-

tainties affecting the predictions are also calculated. The final predictions and systematics

are then used to test hypotheses of different oscillation parameters, using either a Bayesian

or a Frequentist approach to inference. This chapter will cover each step in detail.
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5.2 Event Selection

We apply a series of selection cuts to our data to get pure samples of νe and νµ events

for fitting. Similar categories of cuts are applied to each sample but many are optimized

independently for νe and νµ selection. The broad categories of cuts are:

• Spill and Data Quality - Ensures that both the beam and the detectors were

running in good conditions. Additionally, it places timing cuts to only keep data in

the beam spill window.

• Containment - Removes events whose particles are not fully contained in the

detector. This ensures all of the neutrino energy was deposited in the detector, and

can be fully reconstructed. Additionally, it helps to remove cosmic and rock muon

background events.

• Reco and Event Quality - Applies cuts on the reconstructed objects and basic

event variables such as the energy and number of hits. This checks that the events

are well-reconstructed and fall withing the desired energy range.

• Particle Identification (PID) - Uses the scores from our event CVN and BDTs to

select the desired signal candidate events and remove cosmic and other backgrounds.

5.2.1 Spill and Data Quality

Occasionally, the beam or detectors undergo a failure mode, and the resulting data may

not be of high enough quality to include in the analysis. These cuts remove poor quality

data and are applied at either the subrun or individual spill level.

The data quality cuts applied at the subrun level compare various quantities averaged

across the detector and subrun to label individual subruns as “good” or “bad”. There

are several cuts a subrun must pass to be labeled as “good”. The average hit rate across

the detectors, along with the rate of slices and 3D tracks produced must all be within

nominal levels [108]. Timing quality cuts are also applied, checking that event timestamps
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are ordered correctly, and hits are occurring in time with the beam. Finally, at least 4

diblocks in the FD, and all diblocks in the ND, must be reporting normal hit rates to allow

for a minimum analyzable detector size. These cuts can catch failure modes associated

with the hit rate, such as a change in gain from cooling issues, or time synchronization

issues leading to broken tracks. Additionally, at the FD, if an individual APDs hit rate is

producing too many hits ( > 103.5 ) or not enough hits ( < 3) , it can be masked off and

excluded from reconstruction [108].

Spill level cuts are meant to remove short periods of low-quality data that occur in an

otherwise good run. There are two types of spill-level cuts. The first focuses on the beam

quality. To pass, a beam spill must have a POT greater than 2×1012 and a total spill time

of less than 0.5 × 109 ns. In addition, the beam’s position and width, and the focusing

horn’s current must all be within acceptable ranges [105]. Finally, the timing peak of the

beam must be within the 217-229 µs beam spill window of the 550 ns NuMI trigger. Only

data within this window is used in the analysis. The second type of spill cut focuses on

the detectors. These primarily catch failure modes where one or more DCMs are down or

taking poor quality data. If a DCM in either detector is not reporting any hits, then that

spill will be excluded. At the FD, there is an additional check on the timing of the DCMs,

to ensure that they are not out-of-sync with each other [109].

The amount of data we keep for the analysis has increased over time. In the first data

taking period, that occurred while the detector was still being built, the percent of POT

retained after applying Good Runs and spill cuts was 73.3%. This increased to > 99% in

subsequent periods and remains high [110].

5.2.2 νe selection

The electron neutrino selection for the FD is outlined in the cut flow diagram in Fig. 5.1.

The selection process results in several different samples of νe events. The main sample

is the “Core” sample, for which events must pass all quality, containment, and PID cuts.

There are two additional samples, the “Peripheral” and “Low-energy” samples, which seek
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to reclaim events into the analysis that fail the Core selection. Each has its own set of event

quality and PID cuts tuned to the particular sample. The Peripheral sample is FD-only

and focuses on events that were not fully contained in the detector, but were otherwise

very νe- like. The Low-energy sample is FHC-only1, and probes a new region of energy

space for this analysis. It uses a separate BDT trained to identify low-energy νe events

that fail the Core selection. Additional details and motivation for this samples inclusion

can be found in Chapter 6. The ND νe selection follows a similar flow, but with its own

cut tunings. The primary difference is the absence of a Peripheral sample and nearest slice

cut.

At the start of the cut flow are two cuts that all events need to pass. The basic reco

quality cut checks that reconstruction was successfully run on the event. It requires a

reconstructed vertex, and at least one prong in the event. It additionally requires there

to be fewer than 8 hits per plane in the event, to remove a type of reconstruction failure

called an FEB flasher. This occurs when a large amount of charge passes through one or

more cells in a single FEB, saturating the electronics and causing all 32 channels on the

FEB to “light up”. This is primarily observed in large cosmic background events.

The nearest slice cut requires the nearest slice in time to the candidate slice to be

sufficiently far away, in either space or time, and sufficiently far from the top of the detector,

with the exact ranges varying based on the CVN score of the candidate slice (lower scores

requiring higher spacing). This cut reduces the Bremsstrahlung background from cosmic

events coming from a reconstruction failure where a cosmic event is sliced into two separate

events, with one of them appearing to be electron-like [111].

The containment cut defines the split between core and peripheral samples in the FD.

To pass, an event must have all hits at least 63 cm from the top, 18 cm from the front or

back, and 12 cm from the east, west, or bottom sides of the detector. At the ND, there are

several containment checks. First is a cut on the vertex position, requiring it to be within
1This sample was enabled by the doubling of our FHC dataset. The corresponding RHC sample was

deemed too small for inclusion. Details in Chapter 6.
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Figure 5.1: Cut flow diagram for the νe selection at the FD. The rectangles indicate a
cut or group of cuts, and the arrows indicate the paths an event can take to potentially
end up in one of 3 different samples. The Core, Peripheral, and Low-energy samples each
have their own set of event quality and PID cuts. The flow is the same for FHC and
RHC, but some cuts are optimized differently for each horn current, and only the FHC
Low-energy sample is included in the analysis. The selection process for the ND events
follows a similar flow, but with its own cut tunings, and without the nearest slice cut or
the Peripheral sample.

a smaller internal volume of the detector known as the fiducial volume, with coordinates

• -120 cm < x < 160 cm

• -160 cm < y < 110 cm

• 150 cm < z < 950 cm .

The second is a cut requiring the shower be contained in a larger volume, defined by

• -150 cm < x < 170 cm

• -170 cm < y < 150 cm
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• 100 cm < z < 1240 cm .

Lastly, the event cannot have any hits in the muon catcher. The tuning metrics used to

find the optimal cut values are the signal/background ratio, the Data/MC ratio, the energy

resolution, and the fraction of energy escaping the detector [112]. After retuning, the FD

cuts from the previous analysis were found to still be optimal, while the ND containment

cuts were loosened for this analysis. There were slight increases to the X,Y,Z ranges for

the fiducial cut, and a slight increase in the allowed Z range for the shower.

Events passing containment must then pass basic event quality cuts for the core sample.

These filter out regions obviously dominated by backgrounds, and select the desired energy

ranges for our analysis. In the FD, we require a reconstructed νe energy between 1 and 4

GeV, between 30 and 150 hits in the event, and a longest prong length between 100 and

500 cm. In the ND we require an energy between 0 and 4.5 GeV, between 20 and 200 hits,

and a longest prong between 100 and 500 cm.

Finally, inclusion in the core sample requires passing the particle identification (PID)

cuts. These use the output scores from CVN, specifically the electron score, CVNe. We

require a CVNe score of at least 0.82 in FHC, and 0.87 in RHC 2. At the FD, we additionally

cut on the cosmic score CVNcos, and the score from the νe cosmic rejection BDT discussed

in Sec. 4.2.4 to mitigate the larger cosmic backgrounds there. We require a CVNcos score

less than 4.1 × 10−4 in FHC, and less than 3.95 × 10−4 in RHC. The cosmic rejection

BDT score must be at least 0.45 in both FHC and RHC. The ND only requires a cut on

CVNe, and uses the same values as the FD. This selects similar samples in each detector,

allowing the ND to be used to correct FD predictions (discussed in Sec. 5.4). The optimal

cut values are found by maximizing the figure of merit

FOM2 =
S2

S +B
(5.1)

2As a reminder, each event’s CVN scores add up to 1, with the individual scores of each category
indicating the probability that the event is of that type.
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Figure 5.2: The νe core sample cut optimization in 3D CoreBDT:CVNcosmic:CVNe
space shown as CVNcosmic:CVNe projection for FHC (left) and RHC (right) with the
optimal CoreBDT cut of 0.45 applied to both. The color (z-axis) represents signal purity
and the box size is proportional to the amount of signal content in each bin. Black lines
show optimal cut values, which further divide the sample into the low and high PID bins
discussed in Sec. 5.3.1. From [112].

where S is the number of signal events remaining after the cuts, and B is the number of

background events [112]. All 3 cuts are tuned simultaneously, with separate tunings for

FHC and RHC events.

If an FD event failed the containment cut it can still be included in the analysis, through

the Peripheral sample. The event quality cuts for the Peripheral sample require a νe energy

between 0 and 4.5 GeV. This wider allowed range reflects the additional uncertainty from

energy lost outside the detector. There is an additional requirement that no more than

2.5 GeV can come from the electromagnetic shower. This new requirement was added to

remove high-energy beam νe background events [105]. Equation 5.1 was used to optimize

the energy cuts in increments of 0.5 GeV. One of the functions of the containment cut is

to remove cosmic backgrounds. The peripheral sample will have higher backgrounds as a

result, so we impose stricter PID cuts to account for this. We require a CVNe score of at

least 0.82 in FHC, and 0.90 in RHC. The CVNcos score must be less than 3.5 × 10−5 in

FHC, and less than 3.0 × 10−5 in RHC. Finally, the peripheral νe cosmic rejection BDT

score must be at least 0.48 in FHC, and 0.52 in RHC. The cuts were tuned using the same

method as the core sample described in Sec. 5.2.
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If an event passed containment but failed the subsequent core cuts it has one more

chance to be included in the analysis, through the low-energy sample. At both the ND

and FD, the low-energy sample uses the same event quality cuts as the core sample, but

with a different energy cut, requiring a νe energy between 0.5 and 1.5 GeV. The PID cuts

are the same in both detectors. At these lower energies, there are higher backgrounds from

cosmic and NC events. Stricter cuts on CVN scores are applied alongside the specialized

low-energy BDT described in 4.2.5. For cosmic rejection we require a CVNcos score less

than 3.0×10−4, and a νe cosmic rejection BDT score above 0.47 (this uses the same cosmic

BDT as the core sample). To reduce NC backgrounds, we require a CVNnc score less than

0.6. For signal selection, we rely mostly on the low-energy BDT, so the CVNe cut is looser,

requiring a score > 0.5. Much of the low-energy νe signal occurs at lower CVNe scores

as well, so this allows the potential for more νe events to be reclaimed [103]. Finally, a

low-energy BDT score greater than -0.05 is required.

5.2.3 νµ selection

The νµ event selection process is more straightforward, with only a single sequence of cuts,

outlined in Fig. 5.3. The broad categories are similar to νe, but optimized for νµ events,

which amounts to a focus on the reconstructed muon track instead of prongs. We begin

with basic reconstruction and event quality cuts. The reconstruction requirements are that

the event has at least one 3D Kalman track with a valid ReMID score, a nonzero track

energy, and more than 20 hits spanning more than 4 contiguous planes in the detector.

The only event quality cut is on the energy, requiring a reconstructed νµ energy between

0 and 5 GeV.

The containment cuts at the FD require the event to have no hits within 60 cm of the

top, 12 cm of the bottom, 16 cm of the east, 12 cm of the west, and 18 cm from the front or

back of the detectors. Additionally, there cannot be any hits in the first 2, or last 3 planes

of the detector. Finally, the end point of the track is propagated forward, and the start

point of the track is propagated backwards, to determine the number of planes crossed
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Figure 5.3: Cut flow diagram for the νµ selection. Rectangles indicate categories of cuts.
There is an identical flow for both ND and FD, as well as FHC and RHC, but with different
cut tunings for each. The result is a single sample of νµ candidate events for each detector,
that can then be binned in different ways described in section 5.3.

before reaching one of the edges of the detector. Both the start and back-propagated

tracks must cross at least 6 planes before reaching an edge.

At the ND, we require the hits in the event be contained in a volume defined by

• -180 cm < x < 180 cm

• -180 cm < y < 180 cm

• -180 cm < z < 180 cm

Additionally, the z-coordinate of the start point of the track cannot be greater than 1100

cm. The start and end points of the track are propagated forward/backwards as is done in
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the FD, and the forward-propagated track must cross at least 5 planes before encountering

an edge, while the back-propagated track must cross at least 10 planes. Both ND and FD

cuts were optimized using an identical procedure to the νe containment cuts [112].

The νµ PID cuts use CVNm (the muon score from CVN), the ReMID score from the

highest scoring track in the event, and the νµ cosmic rejection BDT score. We require a

CVNm score above 0.76, a ReMID score above 0.30, and a BDT score above 0.48. All

three cuts were simultaneously optimized using the figure of merit Eq. 5.1, with the one

difference that for the νµ analysis, both right and wrong-sign events count as signal. Several

cases were considered: optimizing the FOM across the whole energy range, or optimizing

the FOM in the oscillation dip region, for either FHC or RHC modes. The cuts used

are those that optimize the FOM in the RHC oscillation dip region. These were found

to lower background while keeping a high number of signal events for both maximal and

non-maximal mixing values of θ23 [112].

5.3 Analysis Binning

Once the νe and νµ samples have been selected, we bin them in different ways to increase our

sensitivity to the oscillation parameters while fitting. This includes splitting the selected

samples into various sub-samples, as well as adjusting the number and width of energy bins

in the histograms themselves. The binning choices reflect the nature of the sample’s power

in determining the oscillation parameters in our analysis. The νe appearance analysis is

more akin to a counting experiment, where the number of νe vs. –νe events is what gives us

sensitivity to the mass ordering and value of δCP. Therefore, the selection process included

the additional peripheral sample to reclaim events and the binning choice will focus on

enhancing the purity to ensure accurate counts. The νµ events give us our sensitivity

to ∆m2
32 and sin2 θ23 through measurement of the location and depth of the oscillation

dip between 1-2 GeV. The binning will then focus on the energy resolution, and making

a precise measurement of the dip. Binnings are the same between ND and FD selected
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samples, to allow for the corrections discussed in subsequent sections.

5.3.1 νe Binning

Each of the three νe samples (core, peripheral, and low-energy) have a unique binning

scheme, shown in Fig. 5.4 for the FD. The core sample is split into two sub-samples based

on CVNe score. A low-PID, and high-PID sample are defined, with the high-PID requiring

a CVNe score of at least 0.96 (0.98) in FHC (RHC), and the low-PID requiring a score

between 0.82 (0.87) and 0.96 (0.98) in FHC (RHC). This separation ensures most of the

non-νe background (primarily NC, and νµ events) is in the low-PID sample. The high-PID

sample is then highly pure in νe events, with the remaining backgrounds coming from the

irreducible wrong sign and beam νe components. The histogram for each subsample uses

six 0.5-GeV energy bins across its 1-4 GeV energy range.

The peripheral sample events have missing energy from particles that exited the de-

tector. Therefore, we elect to not use the energy information in our fits, instead using

only a single bin to count the number of events. It can also be noted in Fig. 5.4 that the

peripheral sample has the highest amount of cosmic background, due to its proximity to

the detector edges.

The low-energy sample is already a small sample, so further binning optimization was

not pursued, as it is unlikely to lead to gains in sensitivity. We match the histogram

binning used in the core sample, with two 0.5-GeV energy bins covering the samples 0.5 -

1.5 GeV energy range.

5.3.2 νµ Binning

The 1 - 2 GeV energy range, where the first oscillation maximum occurs, is the focus

of the νµ disappearance analysis. We employ a variable binning scheme to improve the

precision for measuring the location and depth of the dip in reconstructed energy in that

range. Within the dip region we use fine bins of 0.1 GeV, the minimum size allowed by

our νµ energy resolution. At higher and lower energies we have fewer events and lower
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Figure 5.4: Predicted FD νe candidate events for the Low-energy (left), FHC (middle)
and RHC (right) samples. The signal events are shown in purple, with the backgrounds
stacked below. Predictions were generated with the corrections described in Sec. 5.4, using
NOvA’s 2020 analysis best-fit oscillation parameters [113]. From [105].

oscillation probabilities, so we gradually increase the size of the bins there, which reduces

the computation time when fitting without sacrificing sensitivity [114]. The number of

bins was re-optimized for this analysis, resulting in a modest 1% gain in ∆m2
32 sensitivity

over the previous analysis binning by splitting several bins just outside of the dip region

[115].

In Sec. 4.3.2 we described the energy reconstruction for νµ events, and saw that the

energy resolution for hadronic energy is worse than muon energy, setting the scale for the

average FD νµ energy resolution at 9.3% (8.0%) in FHC (RHC). To enhance sensitivity

to the disappearance measurement, the νµ sample is split into sub-samples based on the

fraction of hadronic energy present in the event: EHad/Eν . In each bin of reconstructed

energy, the FD νµ selected sample is split into 4 parts ordered by hadronic energy fraction,

each containing 25% of the events in that energy bin. The boundaries defining these quar-

tiles are shown in Fig. 5.5 and separate the νµ sample into 4 sub-samples with increasing

hadronic energy fraction. This acts as a proxy for binning by the energy resolution, with

the lowest hadronic energy quartile having the best energy resolution ( 6.5% in FHC, 5.4%

in RHC ), and the highest quartile having the worst resolution ( 12.6% in FHC, 11.2% in

RHC ) [106].

In addition to the increased energy resolution in the lower hadronic energy quartiles,

we also see most of the backgrounds confined to the highest quartile. This occurs because
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Figure 5.5: Hadronic energy fraction vs. reconstructed νµ energy for simulated events
passing the full νµ selection in the FD, for FHC (left) and RHC (right). The z-axis indicates
the event count in each bin. The blue and purple lines indicate the four hadronic energy
quartile boundaries for each sample. From [112].

the muon is the primary identifier of a true νµ CC event, and less hadronic energy leads

to easier muon identification.

5.3.3 Transverse Momentum - pT

While the two NOvA detectors are functionally identical, their different sizes lead to dif-

ferent acceptances and selection efficiencies. This is primarily caused by side containment

of the muon in νµ CC interactions at the ND. Figure 5.6 shows a cartoon of this effect.

This leads to a difference in the kinematics of the selected samples, and a sensitivity to

systematic uncertainties, particularly cross-section uncertainties [116]. Luckily, there are

reconstructed variables that are correlated with this effect, namely the transverse momen-

tum of the interaction, pT. Figure 5.7 shows a comparison of pT distributions for νµ and

νe selected events in the ND and FD. The next section will describe corrections we apply

to our FD predictions using ND information. By binning our selected samples in pT while

applying the corrections, the ND data can constrain any pT dependence in our neutrino

interaction models, reducing the overall systematic uncertainty in our measurements [116].

The ND νµ selected samples are used to define three equally populated bins of pT in both

FHC and RHC.
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Figure 5.6: A cartoon showing the different acceptances of the two detectors. A neutrino
event with high transverse momentum is more likely to be contained in the far detector.
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Figure 5.7: Reconstructed transverse momentum distributions. In both plots red is the
ND νµ selected events. Blue is FD νe (left), and FD νµ (right) selected events. For the
FHC beam. From [116].

5.4 Constructing Far Detector Predictions

While it is possible to simply use the MC simulation to predict the FD event rates, we

can take advantage of the identical designs of the two detectors to apply corrections to

the FD predictions using data/MC information from the ND. The result is a reduction in

systematic uncertainties that are correlated between detectors, primarily those related to

neutrino flux and cross sections. There are two main steps in this process. Each type of

neutrino event present in the beam at the ND will propagate differently to the FD. To

apply a correction using ND data we first need an estimate of the relative amounts of each

beam component in the data. We refer to this estimation process as beam decomposition.
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The second step, extrapolation, combines the ND data/MC differences with FD simulation

and oscillation parameters to derive a corrected FD prediction. The process is carried out

independently for the νe/ νµ signal and background channels, which use differing methods

for decomposition and extrapolation. Once each is complete, the extrapolated FD event

rates for signal and background are recombined, and additional FD-only backgrounds such

as cosmics are added in, resulting in the final FD prediction. We will describe the various

decomposition and extrapolation methods, and then summarize the techniques used for

each analysis sample at the end.

5.4.1 Beam Decomposition

Beam decomposition is used to estimate the relative fractions of each event type in our

ND data. In each of the ND selected samples, MC is scaled to exactly agree with the

data in each bin of reconstructed energy, and the proportions of each event type can

then be adjusted based on additional ND information. The method used to adjust the

event proportions depends on the selected sample being decomposed. The νµ (ν̄µ) selected

samples use the signal decomposition method, while the beam backgrounds from the ND

νe selected samples use a combination of the Beam Electron Neutrino (BEN) and Michel

decomposition methods (together referred to as “combo decomposition”) or proportional

decomposition.

Signal Decomposition

The FD signal events for both the νe appearance and νµ disappearance analyses originate

from the νµ (ν̄µ) sample at the ND. The ND νµ selected sample is highly pure, and any

data/MC discrepancy is assumed to come from the νµ (ν̄µ) events [105]. Accordingly,

the signal decomposition procedure scales only the νµ (ν̄µ) components to get data/MC

agreement. In each bin of reconstructed energy, the simulation and data are compared,

and any data/MC disagreement is corrected by adjusting the amount of νµ + –νµ events so
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that the total simulation agrees with data [18]. Any small backgrounds from other event

types are not scaled.

BEN Decomposition

In the νe appearance analysis, there are larger FD backgrounds coming from the beam.

This includes intrinsic beam νe CC events and NC events and νµ CC events that appear

νe-like. To constrain them, we make use of their corresponding events in the ND νe

selected sample. In FHC, the decomposition process is done in two steps. First, the BEN

decomposition method is used to set the proportion of beam νe CC events in the ND νe

selected sample, using information from the parent mesons of the neutrinos. The Michel

decomposition is then used to adjust the remaining ratio of νµ CC and NC events, using

differences in Michel electron counts in data and MC. In RHC, proportional decomposition

is used instead.

As discussed in Sec. 2.2.6, the intrinsic νe events in the NuMI beam come from kaon

decay, as well as the decays of muons coming from pion decay. By constraining the flux

of these mesons in the NuMI beam, we can then estimate the amount of νe events. BEN

decomposition does this using samples of contained and uncontained νµ events in the ND.

The reconstructed νµ energy distributions of these samples are shown in Fig. 5.8, with their

parent meson ancestry highlighted. The selection for the contained sample is the ND νµ

selection from 5.2.3, and the selection for the uncontained sample is the same but excluding

the containment cut [117]. The contained νµ sample is originating almost entirely from

pion decays, while the uncontained sample has a large population of events from kaon

decay. First, the pion rate is identified using the contained νµ sample. A set of weights ωνµ

are calculated by taking the ratio of the estimated number of νµ CC events from pions and

kaons in data vs. MC. These ratios are propagated back to the parent pions as a function

of pion momentum, to get a weight for the pions as a function of momentum (pT , pz) [16].

The kinematics of the pions that produced the νµ events are very similar to those of the

pions that produce the νe events, as shown in Fig. 5.9. Therefore, we can apply the same
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pion event weights calculated from the νµ sample to the events with pion ancestry in the

selected νe sample. The corrected rate of νe events from pions is then found by summing

over pion (pT , pz) in each reconstructed energy bin [118].

The remaining beam νe events from kaon decays are corrected using the uncontained

νµ sample. A kaon scale, SK is calculated by computing a ratio of the number of selected

νµ CC events from kaons in data vs. MC. First, the pion component of the uncontained νµ

sample is corrected using the pion weights from the contained sample. Then, the bins in

the 4.5-10 GeV range are combined to account for energy loss in the uncontained sample,

and the kaon component is adjusted to achieve data/MC agreement [18]. This scaling is

then applied to the ND νe selected events originating from kaons.
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Figure 5.8: Reconstructed νµ energy distributions for the FHC contained (left) and un-
contained (right) νµ selected samples in the ND. The events are split by their corresponding
parent meson, and used to constrain the pion and kaon flux in the BEN decomposition.
From [41].

Michel Decomposition

Once the proportion of νe events in the ND νe selected sample has been set by the BEN

decomposition, the remaining ratio of νµ CC and NC events is determined by the Michel

decomposition. This is done using differences in the rates of Michel electrons between

the two types of event. While both types of events can produce Michel electrons through

the hadronic system (primarily via muons from pion decays), the presence of the primary

muon in the νµ CC events means that on average the νµ CC events will contain one more
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Figure 5.9: Simulated transverse vs. forward momentum for parent pions of νµ (left) and
νe (right) CC events in the ND, for FHC mode. From [41].

reconstructed Michel electron than the NC events. Figure 5.10 shows the distribution of

the number of reconstructed Michels per event, for the ND νe selected sample.

The decomposition procedure is carried out separately in each bin of reconstructed

energy for the ND νe selected sample. The number of νe events in each bin is set by the

BEN decomposition, and kept fixed. The number of νµ CC and NC events is then scaled

up so that data/MC agree in each bin. We then construct separate NMichel distributions

analogous to Figure 5.10 for each bin of reconstructed energy. Finally, the ratio of νµ CC

to NC events are adjusted in each energy bin by performing a log-likelihood fit to data

using the NMichel distribution for that bin [119].

The Michel decomposition is only performed for energy bins in which at least 20% of

events in that bin have a reconstructed Michel electron. This is to ensure an accurate fit

can be performed to the NMichel distribution [119]. For bins without enough Michels, a

fallback to the proportional decomposition method is used (described below).

Proportional Decomposition

Proportional decomposition is a simpler method which only scales the MC to agree with

data in each bin of reconstructed energy, without further adjustments to the proportions

of each event type. It assumes the simulation has correctly modeled the relative ratios of
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Figure 5.10: The number of reconstructed Michels per event in the ND νe selected sample,
before corrections are applied, for all νe energies. Left shows a data/MC comparison, and
right spotlights the simulated νµ CC and NC events from the left plot, which are used in
the Michel decomposition. These Michels come from MEFinder (section 4.1.6) and must
pass an MID and ∆T cut. From [41].

the event types, but not the overall normalization in each reconstructed energy bin.

Currently the BEN+Michel decomposition method is used for the FHC Core νe back-

grounds, and proportional decomposition is used for the RHC νe backgrounds, the FHC

low-energy νe backgrounds, and as a fallback for low-statistics bins in the FHC Michel de-

composition. A combo decomposition method was developed for RHC, but requires storing

additional ND RHC data/MC information in the files, greatly adding to the computation

cost [105]. For this reason the proportional decomposition method was chosen instead.

Figure 5.11 shows the ND Core νe selected sample before/after decomposition has been

applied, along with the relative scalings applied by the FHC combo decomposition. Figure

5.12 shows the ND low-energy νe selected sample before and after the proportional decom-

position is applied. Note that there is no ND sample corresponding to the FD Peripheral

sample. For the FD peripheral sample backgrounds we will use the decomposition from

the high-PID Core νe bins, since they share similarly strict PID requirements.
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Figure 5.11: The ND νe selected samples in FHC (top) and RHC (bottom) after their
corresponding decomposition methods have been applied. The total MC before the correc-
tion is shown as a dotted red line. After correction, the MC agrees exactly with the data,
by construction. From [105].

Figure 5.12: The ND low-energy νe selected sample, before and after applying propor-
tional decomposition. These are the events that will oscillate to become the beam back-
grounds to the FD low-energy νe selected sample. The first bin had a scaling of 2.56%,
and the second bin had a scaling of 11.7% applied. From [120].
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5.4.2 Extrapolation

Extrapolation is performed for both signal channels, and for the large νe backgrounds.

νe backgrounds from other oscillation channels, and all νµ backgrounds, are too small

for data-driven corrections to be effective, and so are simply taken directly from the FD

simulation. A schematic of the extrapolation procedure is shown in Fig. 5.13, using the

νµ → νµ signal extrapolation as an example.

Figure 5.13: Schematic diagram showing the extrapolation procedure for the νµ → νµ
signal events. From [29].

The first step is the decomposition described above, where the ND data is decomposed

using the corrected ND MC. Once we have a corrected ND spectrum, we can convert

it to true energy before extrapolating. This is done via a reconstructed-to-true energy

smearing matrix derived from ND simulation [121]. This requires an accurate conversion

between reconstructed and true energy, and so extrapolation in bins of true energy can

only be done for components that have good energy resolution, i.e., the νµ → νµ and

νµ → νe signal components (referred to as “truth extrapolation”) [121]. The backgrounds

contain mis-identified events, and so we do not expect the energy estimators to perform

well. For the background components, the corrected ND spectrum is not converted to true

energy, and the extrapolation is done in bins of reconstructed energy (referred to as “reco

extrapolation”).

The next step multiplies the decomposed ND data by a ratio of the uncorrected

Far/Near simulation, to get a FD prediction in true energy. For truth extrapolation this
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takes the form

FPred
α→β (E

T
i , Bj) =

NData
α (ET

i )× FMC
α→β(E

T
i , Bj)

NMC
α (ET

i )
(5.2)

where N and F represent event rates in the near and far detectors, normalized to data POT

in the appropriate detector. MC indicates a rate derived directly from simulation, Data is

a rate from the decomposition, and Pred is a predicted rate calculated by the extrapolation.

These rates are calculated for neutrino flavors α, β in the ND, FD respectively 3 . Terms in

parenthesis indicate a binning, in either true energy ET indexed by i, or analysis binning B

indexed by j (nominally the reconstructed energy, but which can take on any reconstructed

variable) [121].

For reco extrapolation the equation takes the form

FPred
α→β (E

T
i , Bj) =

NData
α (Bj)× FMC

α→β(E
T
i , Bj)

NMC
α (Bj)

(5.3)

Where the only difference is the binning of ND samples in reconstructed energy, since the

reco-to-true matrix was not applied.

This can then be multiplied by the oscillation probability, and converted back from

true energy to the analysis bins using the corresponding FD true-to-reco energy smearing

matrix.

FPred
α→β (Bj , θ⃗ ) =

∑

i

FPred
α→β (E

T
i , Bj)× P (ET

i , θ⃗ ) (5.4)

Here, the oscillation probability P is for a particular set of oscillation parameters θ⃗. Fac-

toring the prediction in this way allows us to easily recompute the rates at many different

values of the oscillation parameters ( for example, during fitting), without recomputing all

of the FPred
α→β (E

T
i , Bj) terms [121].

There are two equivalent ways to look at this application of the extrapolation correction,
3For the purposes of extrapolation, neutral current is considered as a separate, non-oscillating flavor.

Additionally, there are vanishingly few ντ in the near detector (ND MC does not include them at all), so
the allowed flavors are α ∈ {νe, –

νe, νµ,
–
νµ, NC} and β ∈ {νe, –

νe, νµ,
–
νµ, ντ ,

–
ντ , NC}[121].
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which in simpler terms takes the form

FPred = NData ×
FMC

NMC
=

NData

NMC
× FMC . (5.5)

The first expression emphasizes a reweighting of ND data by the simulated far/near ratio,

which leads to the reduction in systematic uncertainties correlated between detectors. The

second expression emphasizes a reweighting of FD simulation by a data/MC correction.

The extrapolation captures both effects, so it is helpful to think of both reweightings

simultaneously.

Below is a summary of the different decomposition and extrapolation techniques used

for each of the primary samples in the analysis.

FD νµ → νµ Signal

Extrapolates the signal events from the ND νµ selected sample to the FD νµ selected

sample, using signal decomposition and truth extrapolation. During extrapolation, the

samples are split into four bins of hadronic energy, and three bins of pT , as described in

section 5.3, for a total of 12 extrapolated samples each in FHC and RHC. The pT bins are

summed together at the end, and the 4 FD hadronic energy samples are carried forward

in the analysis.

FD νµ → νµ Background

All beam backgrounds in the νµ analysis are small, and taken directly from the FD sim-

ulation without corrections. Events are split into their corresponding hadronic energy

bins.

FD νµ → νe Signal

Extrapolates the ND νµ selected sample to the FD νe selected sample, using signal de-

composition and truth extrapolation. The samples are split into three bins of pT for the
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extrapolation, and recombined into their FD analysis bins at the end.

FD νµ → νe Background

For the large νe backgrounds (beam νe, NC, νe-like νµ CC) we extrapolate the ND νe

selected samples to the FD νe selected samples, using combo decomposition for the FHC

core and peripheral samples, and proportional decomposition for the low-energy sample

and RHC core and peripheral samples. Note that the peripheral sample uses the ND high-

PID bins from the core sample for its decomposition, as there is no corresponding ND

peripheral sample. Reco extrapolation is used in all cases, without pT binning. All other

beam backgrounds in the νe analysis are small, and taken directly from the FD simulation

without corrections.

5.4.3 Cosmic and Rock Backgrounds

As mentioned in the introduction, the final step in constructing the FD predictions is

to incorporate additional backgrounds coming from cosmic events, and beam neutrino

interactions in the rock surrounding the detector. As discussed in Secs. 2.3 and 3.1.3, the

rock sample comes from a special dedicated simulation of beam neutrino events outside

the detector, and the cosmic sample uses real data taken from the FD cosmic trigger to

avoid a costly simulation. As a reminder, this data is taken outside the NuMI spill window

so there is no potential overlap with beam events.

For both backgrounds we apply the full νµ and νe selection cuts and analysis binnings

to get the corresponding backgrounds for each selected sample. The rock prediction is

taken directly from the simulation, without extrapolation applied, and can be scaled to

match the POT of the data used in the analysis. The cosmic sample comes from data

outside the beam spill, which has no associated POT. Instead, this sample is scaled based

on time, scaling down the cosmic data livetime to match the beam data’s livetime. For

the νµ samples, the cosmic distributions are also smoothed to get a better estimate of the

energy dependence (described in Sec. 5.5.4). The backgrounds for each sample are then
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summed into the final predictions. The total cosmic background events before and after

scaling are summarized in Table 5.1. The number of predicted rock background events are

summarized in Table 5.2.

FHC RHC

no scaling 885.5s livetime no scaling 332.6s livetime

νe All 2047 5.40 1047 1.13
νµ Q1 223 0.49 81 0.07
νµ Q2 237 0.52 99 0.09
νµ Q3 352 0.77 151 0.14
νµ Q4 1235 2.69 467 0.42

Table 5.1: Cosmic background events selected for all νe samples, and each νµ quartile,
before and after scaling to match beam livetimes. Before scaling, the FHC cosmic sample
had a livetime of 406,368.56 seconds, and the RHC a livetime of 367,915.41 seconds. From
[122].

FHC RHC
νe 2.62 0.38

Low-energy 0.15 -
νµ 0.020 0.005

Table 5.2: Predicted number of additional events from rock interactions in the FD selected
samples. From [105].

5.4.4 Final FD Predictions

The final FD predictions for the νµ FHC and RHC sample in hadronic energy bins are

shown in Fig. 5.14. The prediction with all hadronic energy bins summed together is shown

in Fig. 5.15. The νe predicted samples are shown in Fig. 5.16. The total predicted event

counts are summarized in Table 5.3.
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Figure 5.14: Predictions for the FD νµ selected events in the FHC (left) and RHC (right)
samples, split by hadronic energy fraction, with extrapolation applied. The total prediction
is shown in purple. The background components are shown as a stacked histogram below
this, with the remaining whitespace indicating the signal component. Predictions were
generated using the best-fit oscillation parameters found in Sec. 7.2.
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Figure 5.15: Predictions for the FD νµ selected events in the FHC (left) and RHC (right)
samples, with all hadronic energy bins summed, and with extrapolation applied. The
total prediction is shown in purple. The background components are shown as a stacked
histogram below this, with the remaining whitespace indicating the signal component.
Predictions were generated using the best-fit oscillation parameters found in Sec. 7.2.
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Figure 5.16: Predicted FD νe candidate events for the FHC (left) and RHC (right) sam-
ples, with extrapolation applied. The total prediction is shown in purple. The background
components are shown as a stacked histogram below this, with the remaining whitespace
indicating the signal component. Predictions were generated using the best-fit oscillation
parameters found in Sec. 7.2.

FHC RHC

Sample νµ νe Low-energy ν̄µ ν̄e

νµ →νµ 372.3 4.3 0.3 24.4 0.2
–νµ →–νµ 24.5 0.1 0.0 71.5 0.2
νµ →νe 0.4 125.3 3.4 0.0 2.1
–νµ →–νe 0.0 1.8 0.1 0.0 18.9
Beam νe+

–νe 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6 125.3 3.4 96.0 18.9
Background 11.0 55.4 7.1 1.7 12.2

Total 408.6 180.7 10.5 97.7 31.1

Table 5.3: Predicted event counts for the νµ, νe and Low-energy selected samples in the
neutrino beam, and ν̄µ and ν̄e samples in the antineutrino beam. The low/high PID, and
Peripheral samples are combined in the νe (ν̄e) columns, while the low-energy sample is
shown separately due to its novel status. Signal in the νµ (ν̄µ) columns includes wrong-sign
events and some νµ from Others. Predictions were generated using the best-fit oscillation
parameters found in Sec. 7.2.
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5.5 Systematic Uncertainties

When extracting oscillation parameters through our fits to data, we account for over 60

systematic uncertainties covering many aspects of our simulated model [105]. Described in

Sec. 5.6, likelihoods are minimized with respect to systematic terms as well as oscillation

parameters. To determine the likelihood as a function of systematics, a new set of simulated

predictions are created for each systematic, where the effect has been applied at the ±1 and

±2σ levels. This is done either by using functions to reweight the energy distributions of the

nominal predictions, or for more complex effects, by making new predictions from scratch,

rerunning the full reconstruction chain over dedicated samples with a systematically-shifted

simulation. Within the fits, a continuous systematic range is necessary, so the final spectra

from the 1σ, and 2σ predictions are interpolated to get values between the nominal and

1σ, and 2σ levels [111]. The broad categories of systematic are flux, neutrino cross section,

detector response and calibration, and other systematics.

5.5.1 Flux Systematics

The flux systematic covers uncertainty in our simulation coming from mismodeling of

the production and transport of hadrons in our beamline (described in Sec. 3.1.1), which

subsequently decay to create neutrinos. The Package to Predict the Flux (PPFX) [55],

which provides data-driven corrections to our proton target cross-section, is also used

to construct the uncertainty using a multiverse technique. A statistical ensemble of 100

“universes” are considered where the cross sections in our proton target have been varied

within the allowed uncertainties of the PPFX data constraints [123]. For each of these

universes, an additional 20 scenarios are considered that vary parameters related to the

subsequent transport of hadrons, such as focusing horn position and current, beam position

and spot size, and target position [18]. The result is 2000 fluctuated universes, each with

their own weights that can be used to correct the default simulation of neutrino interactions

to achieve that universe [124]. For each universe, a covariance matrix is constructed in
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true energy bins of the resulting neutrino interactions. These matrices are then summed,

forming an average covariance matrix. Since the flux uncertainties are known to be highly

correlated across true energy bins since we are off-axis, and to reduce the dimensionality

of our fits, we can summarize their effects using a Principal Component Analysis (PCA)

on the averaged covariance matrix [124]. The matrix is diagonalized, with the eigenvectors

taken as the principal components (PCs) and the size of their eigenvalues determining their

ranking. The 5 largest PCs are chosen as the final flux systematics, and scaled up by 25%

to ensure proper coverage of the full underlying systematic effect [105].

5.5.2 Cross-Section Systematics

Cross sections and final state interactions (FSI) represent the largest category of systemat-

ics, with 78 systematic “knobs” that modify interaction models in the fit [105]. This is done

through GENIE [52], which has weights that can be applied to individual events using their

neutrino truth information [40]. There are knobs affecting all of the simulated interaction

modes described in Sec. 3.1.2. New for this analysis are additional knobs targeting RES

and DIS events, to account for mismodeling of pion production in the transition region

between the two types of event [125].

Since the extrapolation process reduces the impact of cross section uncertainties, many

of the systematics will have a small effect on the final fit results. To reduce computa-

tion time when fitting, we split the list into “large” and “small” groups, with the large

systematics treated individually, and the small systematics encompassed in a PCA. The

distinction is determined by the ∆χ2 the +/-1σ shifted samples produce with respect to

the nominal predictions, with any that have an impact above ∆χ2 = 0.005 considered as

large [126]. Additionally, any systematics that are being included for the first time are

placed in the “large” group regardless of χ2. Thirty of the systematics fall in the large

category, summarized in Table 5.4.

We conduct a PCA on the remaining 48 small systematic knobs to summarize their

effect. Similar to the flux systematic, we use a multiverse technique where 1000 universes
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are generated with variations in the systematics. The averaged covariance matrix in true

neutrino energy bins is constructed, and diagonalized, with the eigenvectors of the matrix

taken as the PCs [126]. The eigenvalues are used to rank the PCs, with the 8 largest

included as individual systematics in the analysis, with a 35% upscaling to ensure good

coverage of all the underlying effects [105].

Table 5.4: Name and short description of the effect in simulation for the 30 “large” cross
section systematic knobs. Those with a star are new for this analysis. From [105, 111, 125].

Systematic Name Effect

ZNormCCQE Normalization parameter in the CCQE z-expansion

axial form factor

ZExpAxialFFSyst2020_EV{1,2,3,4} Four correlated CCQE z-expansion axial vector shape

variations

MECEnuShape2020 Eν dependence of MEC for neutrinos

MECEnuShape2020AntiNu E–ν dependence of MEC for antineutrinos

MECShape2024Nu (q0, |q⃗|) dependence of MEC for neutrinos

MECShape2024AntiNu (q0, |q⃗|) dependence of MEC for antineutrinos

MECInitStateNPFrac2020Nu Fraction of MEC interactions on neutron-proton pairs

for neutrinos

MECInitStateNPFrac2020AntiNu Fraction of MEC interactions on neutron-proton pairs

for antineutrinos

MaCCRES Mass parameters in the axial form factors for resonant

production in CC events

MaNCRES Mass parameters in the axial form factors for resonant

production in NC events

MvCCRES Mass parameters in the vector form factors for reso-

nant production in CC events

MvNCRES Mass parameters in the vector form factors for reso-

nant production in NC events
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Table 5.4: Name and short description of the effect in simulation for the 30 “large” cross
section systematic knobs. Those with a star are new for this analysis. From [105, 111, 125].

RPAShapeenh2020 Higher-Q2 Enhancement for Random Phase Approxi-

mation in CCQE

RPAShapesupp2020 Low-Q2 Suppression for Random Phase Approxima-

tion in CCQE

LowQ2RESsupp2020 Low-Q2 Suppression in RES events

RESvpvnRatioNuXSecSyst * Relative RES cross-section scaling of σ(ν+p)
σ(ν+n)

RESvpvnRatioNubarXSecSyst * Relative RES cross-section scaling of σ(–ν+p)
σ(–ν+n)

RESDeltaScaleSyst * Scales the normalization of RES interactions which

produce a ∆

RESOtherScaleSyst * Scales the normalization of RES interactions produc-

ing higher order resonances

DISNuHadronQ1Syst * Relative scaling of ν DIS interactions with 2 final state

hadrons with total Q=1

DISNuBarHadronQ0Syst * Relative scaling of –ν DIS interactions with 2 final state

hadrons with total Q=0

DISvnCC1pi_2020 Normalization factor of 1π final states in DIS scatter-

ing of neutrinos from neutrons

hNFSI_MFP 2024 Neutrino mean free path in FSI

hNFSI_FateFracEV1_2024 Largest of three FSI correlated ‘fate fraction’ shifts

radcorrnue νe/νµ cross-section differences from radiative correc-

tions

radcorrnuebar –νe/
–νµ cross-section differences from radiative correc-

tions

2ndclasscurr Cross-section differences from second-class currents

5.5.3 Detector Response and Calibration Systematics

Some of the most significant uncertainties are related to the model of our detector response

and the calibration process. Modifying the underlying parameters for these systematics
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can have many effects that are hard to quantify with a simple scaling of neutrino energy.

For example, changing the amount or energy of hits, which then alters the reconstruction

and PID performance. Therefore, to quantify their effects necessitates a partial or full

re-simulation of the ND and FD samples. For each of the ±1 and/or ±2σ shifts, a new

sample is made. Some systematics consider all four shifts, while some only consider ±1σ,

or are one-sided shifts in the + or - directions. These samples are processed through the

full reconstruction chain, and separate predictions are generated for each shift of each

systematic. These are described below.

Light Level and Cherenkov

The light level and Cherenkov systematics modify parameters in the light level tuning

procedure described in Sec. 3.1.2 to get ±1σ shifted predictions. Specifically, the light

level systematic varies the Fview detector-specific scaling parameters in equation 3.1, while

the Cherenkov uncertainty varies the Cherenkov scaling parameter ϵC . The amount that

each parameter needs to be adjusted up/down to correspond to a ±1σ shifted prediction

is determined during the light-level tuning procedure4. For ϵC , the amount is found by

profiling the parameter during the light level tune fit, while allowing the attenuation and

FD view scale parameters to float (the ND parameters are kept fixed, and are covered by

the light level systematic) [127]. Figure 5.17 shows the resulting profile, with 1σ, 3σ, and

5σ ranges of the parameter indicated. The 3σ range was conservatively chosen for the

systematic, which shifts the value of ϵC by ±0.05 (± 6.2%) [127].

For the light level systematic, a similar approach was used, where the ND and FD Fview

scaling parameters were profiled and the 3σ confidence interval was used to set the scale

of the uncertainty. For each detector, a likelihood surface was constructed, with the X

and Y-view scaling parameters as the axes, and the other parameters profiled as nuisance

parameters in the fit [127]. This means that at each point in the surface the X and Y-view
4As a reminder, the light tune procedure is a joint fit which varies the light level parameters to achieve

data/MC agreement in several selected samples simultaneously (ND muons, protons, and cosmics, and FD
cosmics).
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Figure 5.17: Profile of the Cherenkov scaling parameter in the light level tune fit. ND
view scaling parameters were held fixed, while all other parameters were allowed to float.
The 3σ range here was used to set the scale of the Cherenkov uncertainty. From [127].

parameters are set to their axis values, and the other parameters are fit to the data to find

the values that minimize the χ2 for that point. The resulting surfaces are shown in Figure

5.18. For each surface, the width of the 3σ ellipse covers a range of approximately ±0.05

on each axis. Therefore, the light-level uncertainty was set as a ±5% scaling of the Fview

parameters for each detector. Therefore the ±1σ shifted systematic predictions will have

an increase/decrease in the light level of 5%.

Figure 5.18: The ND (left) and FD (right) profiles of the X and Y Fview scaling parameters
in the light level tune fit. 3 and 5σ bands are drawn, and the extent of the 3σ bands were
used to set the light level uncertainty. From [127].
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Calibration Energy Scale

The absolute calibration process uses stopping cosmic ray muons as a standard candle to set

the absolute energy scale (Sec. 3.2.2). ND Data/MC ratios of additional standard candles

such as beam muon and proton dE
dx , neutral pion decays, and Michel electrons are used

to define the uncertainty in the energy scale. Historically, NOvA used a 5% uncertainty

set by the largest discrepancy, the beam muon and proton dE
dx . For this analysis, the

updated light level tune resulted in significant improvement to muon and proton dE
dx , and

all standard candles now fall under 2% uncertainty [127]. However, it was decided to

maintain the 5% uncertainty level until more studies could be conducted that consider

different contributions from electromagnetic, hadronic, and muonic systems [127].

Since we cannot effectively determine whether the ND data/MC ratios extend to the

FD, we consider two separate systematics for the energy scale: a fully correlated and anti-

correlated uncertainty, to bracket all possible scenarios. The fully correlated systematic

applies the same +/-5% shifts to both ND and FD. The anti-correlated systematic applies

opposite +5% and -5% shifts in the ND and FD [127].

Calibration Shape

The calibration shape systematic is used to account for uncertainty in the relative calibra-

tion process (Sec. 3.2.1) particularly the difference in response close to the ends of cells.

Linear fits to data/MC ratios of the PECorr/cm vs. W in each view were used to define

an uncertainty as a function of W, with different slopes in the middle of the detector vs.

the edges [127].

Muon Energy Scale

We account for additional uncertainty in the muon energy that comes from uncertainty

in determining the muon track length. Separate systematics are considered which cover

different correlated and uncorrelated effects, and are applied by varying the muon track
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length in simulation, and redoing the reconstruction which results in a varied energy esti-

mate. The first three cover effects that are uncorrelated between the FD, ND, and muon

catcher, and have uncertainties of 0.13% (ND), 0.15% (FD), and 0.51% (muon catcher).

These are dominated by detector mass accounting, primarily uncertainty in the exact vol-

ume/density of the FD scintillator and ND PVC mass [128]. The next is a correlated

systematic that has uncertainties of 0.74% in the ND and FD, and 0.13% for the muon

catcher5, which are dominated by muon range uncertainty coming from GEANT4, as well

as mass accounting [128]. Finally, there is a systematic to deal with neutron pile-up at the

ND, set as a one-sided +7 MeV up-scaling, and a systematic for uncertainty in the true

initial energy of muons, which uses a one sided -9 MeV down-scaling [128].

Geant4 Reweight

New for this analysis, Geant4Reweight [129] is an event reweighting framework that allows

us to quantify the effects of changing our Geant4 hadron model without needing to re-run

simulation. There are 11 systematic knobs covering uncertainties on inelastic scattering

of hadrons produced in primary neutrino interactions as well as subsequent interactions

of the particles in the detector [105]. They are incorporated into the analysis via a PCA

similar to the GENIE and Flux systematics. The main difference is that the covariance

matrices are constructed in reconstructed instead of true neutrino energy bins. This is

because the systematic knobs only affect the particles produced in the interaction and do

not affect the true energy of the neutrino. Three PCs are used, with a 100% scaling factor

applied to ensure proper sensitivity coverage [130].

Detector Aging

The detector aging effect, discussed in Sec. 3.14, is covered by a systematic sample which

models the degradation of the scintillator as a simple linear decrease in the light model as a
5This means for an nσ shift up, each detector has their track lengths shifted up by n× the corresponding

percent.
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function of time. The rate of 4.5% per year was chosen to match the decrease in NHit shifts

seen in data, and is offset by a corresponding increase in the calibration constants which

preserves muon response [111]. The effect can only decrease the scintillation efficiency, so

this is implemented as a one-sided systematic, only allowing positive shifts. The effect is

expected to be the same in both detectors so it is also a fully correlated between detectors.

5.5.4 Other Systematics

This section contains the remaining systematics that don’t fit neatly into one of the other

categories, or encompass several effects.

Neutron Model - MENATE

Neutrons are commonly produced in antineutrino interactions, so it is important we un-

derstand their uncertainty in our model. We account for neutron mismodeling using a

systematic sample that replaces our baseline Geant4 simulation with one that uses a dif-

ferent neutron model, MENATE [131, 132], which includes additional data-derived cross

sections for interactions on carbon. MENATE improves data/MC shape agreement in sev-

eral neutron prong variables, including the prong energy as shown in Fig. 5.19. There are

still some residual scaling differences, so an additional 33% scale factor is applied to the

systematic to cover the difference [133]. Since the model can only be turned on or off, the

systematic is included as a one-sided +1σ shift.

Cosmic Scale

The cosmic scale systematic is based on the statistical uncertainty of the cosmic data

samples added into the predictions. For the νe samples, the +/- 1σ error in each bin of

the cosmic distribution is taken as the corresponding range for a Poisson distribution with

mean equal to the unscaled cosmic events in that bin [111]. The error is then scaled down

by the same amount as the events to match the beam livetime before being added in to the

predictions. For the νµ samples, the shape of the energy distribution has more of an effect
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Figure 5.19: Neutron prong energy for standard (left) and MENATE-supplemented
Geant4 simulation (right). Prongs come from a neutron enhanced sub-sample selected
from the ND RHC –νµ sample (the largest sample of neutrons available). Simulation is
broken down by immediate particle type that produced the prong, with neutron related
prongs in warm tones, and other primary particles in cool tones. From [133].

on results, so we smooth the cosmic spectra using a Kernel Density Estimate (KDE), which

is a standard statistical technique for approximating the shape of unknown distributions

[122]. An example of the smoothed distributions is shown in Fig. 5.20 for the FD FHC νµ

quartiles.

5.5.4.1 Normalization

The normalization systematic consists of several small systematic effects that affect the

overall normalization of our final predictions and are not accounted for elsewhere. These

are an uncertainty on the POT of 0.55%, an uncertainty in ND/FD mass differences of

0.19%, a simulation uncertainty of 0.4% meant to account for the impact of air bubbles

in the liquid scintillator not simulated in GEANT4, and an uncertainty of 0.5% in the

reduction in efficiency from pile-up in the ND [134]. The individual effects are added in

quadrature to get a final normalization uncertainty of 0.86%.

5.5.4.2 Michel Tagging

The efficiency with which we tag Michel electrons can affect the νe background estimate

through the Michel decomposition process. This is a small effect, so instead of creating
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Figure 5.20: Selected cosmic events and their corresponding KDE for the FD FHC νµ
quartiles, before scaling to match beam livetimes. The KDE error is shown in blue, and
the Poisson error is shown as the black bars on the data points. From [105].

new systematic MC samples that vary the efficiency (a computationally costly endeavor),

the tagging efficiency is artificially varied by randomly forcing 5% of Michels to pass/fail

selection cuts for the ±1σ shifts. Carrying this through to the final νe predictions results

in a 1-2% shift in the νe background [135].

5.5.5 Summary of uncertainties and the effect of extrapolation

The effect of the systematic uncertainties on the final FD predicted event counts before

and after extrapolation are summarized in Fig. 5.21 for the νµ sample, and Fig. 5.22 for

the νe sample, for both FHC and RHC. These illustrate the overall reduction in systematic

uncertainty that extrapolation achieves, particularly for the large correlated systematics

such as flux and cross-section. There are a few systematics for which extrapolation in-

creases the uncertainty, such as lepton reconstruction 6. This comes from introducing ND

information with a higher degree of uncertainty into the FD predictions, but is more than
6This is referred to as “Muon Energy Scale” systematic in the section above. Additionally, “Near-Far

Uncorr” refers to the normalization systematic.

126



made up for by the reduction in the largest uncertainties.
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Figure 5.21: Summary of errors on the integrated number of νµ selected events for the
FHC (left) and RHC (right) samples, with all quartiles summed. Errors bars are shown for
predictions before (blue) and after (red) extrapolation is applied, and represent the ±1σ
ranges for each systematic sample. The total error, taken as the sum in quadrature of the
individual errors, is shown at the bottom. Predictions were generated using the best-fit
oscillation parameters found in Sec. 7.2.
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Figure 5.22: Summary of errors on the integrated number of νe selected events for the
FHC (left) and RHC (right) samples. Errors bars are shown for predictions before (blue)
and after (red) extrapolation is applied, and represent the ±1σ ranges for each systematic
sample. The total error, taken as the sum in quadrature of the individual errors, is shown
at the bottom. Predictions were generated using the best-fit oscillation parameters found
in Sec. 7.2.
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5.6 Fitting Oscillation Parameters

Historically, NOvA has used a frequentist statistical approach to fitting oscillation param-

eters [113, 136, 137]. In 2023, a Bayesian approach to inference was used to analyze the

NOvA data for the first time [138]. This analysis contains results that employ both ap-

proaches, which are described below. In both cases, the oscillation parameters are found

by minimizing the binned Poisson log-likelihood function

−2 lnL(θ⃗, ϕ⃗) = −2

N∑

i=1

[
Ei(θ⃗, ϕ⃗)−Oi +Oi ln

Oi

Ei(θ⃗, ϕ⃗)

]
+

M∑

j=1

ϕ2
j

σ2
j

, (5.6)

where Ei(θ⃗, ϕ⃗) are the predicted event count in analysis bin i, as a function of oscillation

parameters θ⃗ and systematic uncertainties ϕ⃗, and Oi are the observed data in analysis bin

i. The second term is a sum is over the systematic uncertainties, computing a penalty

term for each, where ϕj and σj are the values and 1σ ranges of systematic parameter j.

These terms serve to keep the systematic parameters from being pulled too far away from

their central values, with larger pulls incurring a larger likelihood penalty.

The simulated model used to predict the event counts at the FD uses the full oscillation

probability in matter described in Sec. 1.2. The NOvA baseline L and density of the Earth

ρ are held fixed at

L = 810 km

ρ = 2.74 g/cm3 .

The solar oscillation parameters, which NOvA is not sensitive to, are held fixed at the

values determined by the PDG [79]

∆m2
21 = 7.53× 10−5 eV 2

sin2(θ12) = 0.307 .

The remaining oscillation parameters, ∆m2
32, sin2 θ23, δCP, and sin2 2θ13 are allowed to

vary in the fit, along with the systematic uncertainties.
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Our sensitivity to sin2 2θ13 is relatively low due to degenerate oscillation effects from

the other parameters. At the same time, this parameter has been strongly constrained by

the Daya Bay reactor neutrino experiment [139]

sin2 2θ13 = 0.0851± 0.0024 .

This recent result is the most precise to date, and the data release for the publication

included a 2D χ2 surface for their measurement of ∆m2
32 and sin2 2θ13 as well, which

makes it straightforward to include these as additional constraints in our fits. We consider

several constraint options: no constraint (NOvA-only measurement), a 1D constraint on

sin2 2θ13, or a 2D constraint on sin2 2θ13 and ∆m2
32. The details of the implementation are

specific to each statistical approach described below.

5.6.1 Frequentist Techniques

In the frequentist approach to fitting, we consider the log-likelihood as a χ2 statistic

χ2(θ⃗, ϕ⃗) = −2L(θ⃗, ϕ⃗) (5.7)

and the vector of parameters that minimizes this χ2 is taken as the “best-fit” oscillation

parameters. This minimum point, and its associated parameters, are referred to as the

“best-fit” point χ2
best. Along with this best-fit point we present 1D confidence intervals,

and 2D confidence regions, which are plots showing the regions of parameter space that,

under many repeated independent trials of the experiment, we would expect to contain the

true value of the parameters a certain percentage of the time. Typically these are drawn

as contours indicating the 1σ, 2σ, & 3σ (68.27%, 95.45%, 99.73%) confidence levels. These

regions are defined by means of the test statistic

∆χ2(θ⃗, ϕ⃗) = χ2(θ⃗, ϕ⃗)− χ2
best. (5.8)
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At each point in the phase space under consideration (for example, a 2D plot of ∆m2
32

vs. sin2 θ23) we calculate ∆χ2 using the parameter values at that point, while fitting the

remaining oscillation and systematic parameters, to find the combination that gives the

lowest ∆χ2. This fit over the parameters not on the axes is referred to as “profiling” the

parameters. In the Gaussian approximation, there are then well-defined cutoffs of ∆χ2 that

correspond to 1σ, 2σ, & 3σ levels. For example, for a ∆χ2 with two degrees of freedom they

are ∆χ2 < 2.30 , ∆χ2 < 6.18, and ∆χ2 < 11.83 respectively [23]. However, for several

reasons, our experiment does not fall under the Gaussian approximation. Many of the

bins, particularly near the disappearance maximum, can have very low event counts and

are subject to Poisson fluctuations. Our parameter space also contains effective physical

boundaries such as sin2 θ23 restricted between 0 and 1, and a poorly-constrained cyclic

parameter in δCP. Using the Gaussian ∆χ2 cutoffs in this context will likely result in the

confidence intervals and contours containing the true values of the parameters at a different

rate than the stated 1σ, 2σ, & 3σ coverage [111].

To determine the cutoffs in ∆χ2 that do ensure proper 1σ, 2σ, & 3 σ coverage we use

the unified method of Feldman and Cousins [140]. At each point in the parameter space

under consideration we create an ensemble ( O(104) ) of mock experiments with statistical

fluctuations applied to each bin. We calculate the ∆χ2 for each experiment and histogram

them. We then find the ∆χ2 of the mock experiment corresponding to the quantile of the

desired confidence level (e.g. 90%), and subtract from it the lowest ∆χ2 out of all the

experiments (i.e. the overall best fit of all possibilities). This gives the ∆χ2 cutoff value

for the desired confidence level for that point in parameter space. This process is repeated

for all points in the space we are considering. For example, for a 2D plot of sin2 θ23 vs.

δCP we may consider a 30 × 30 grid of points in the expected range for each parameter.

We can then draw the confidence level contours for the actual ∆χ2 using the “corrected”

cutoff for each grid point on the plot. One other consideration is what to do about the

nuisance parameters (i.e. the systematic and oscillation parameters not on the axes). To

deal with these, we profile the parameters before throwing mock experiments [141].
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Due to the large number of sample generations and fits required, this process is car-

ried out on supercomputers at the National Energy Research Scientific Computing Center

(NERSC), which brings the time to results down from months to weeks [142].

Finally, when it comes to the Daya Bay constraints, the 1D constraint on sin2 2θ13 is

implemented as a Gaussian penalty term in the fit. This gets added on to the χ2 giving

χ2′ = χ2 +
(x− µ)2

σ2
, (5.9)

where µ is the result (0.0851), σ is the error on the result (0.0024), and x is the value of

sin2 2θ13 being considered. For the 2D Daya Bay constraint on ∆m2
32 and sin2 2θ13, we

simply add the χ2 from the provided surface at the corresponding point in parameter space

χ2′ = χ2 + χ2
DB . (5.10)

5.6.2 Bayesian Techniques

Bayesian statistics estimates parameters θ⃗ using Bayes theorem

P (θ⃗|x⃗) = P (x⃗|θ⃗)× P (θ⃗)

P (x⃗)
, (5.11)

where P (θ⃗|x⃗) is the probability that the parameters θ⃗ are true given the data x⃗, refered to

as the posterior. P (x⃗|θ⃗) is the likelihood, which is found via Eq. 5.6:

ln P (θ⃗|x⃗) = −2 lnL(θ⃗, ϕ⃗) . (5.12)

P (θ⃗) is the prior, which represents our knowledge of the parameters, and constrains the

posterior accordingly. It is also possible to choose an “uninformed” prior that is constant

across the range of the parameter. Finally, P (x⃗) is the evidence, or probability of observing

the data. It is independent of the parameters, and acts only as a normalization constant.

Since the NOvA data is fixed, and our goal is to find the parameters that maximimize
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the posterior (not the absolute posterior probability), we can then ignore this term when

estimating parameters [138]

P (θ⃗|x⃗) ∼ P (x⃗|θ⃗)× P (θ⃗). (5.13)

In Bayesian statistics we also wish to make statements about our degree of confidence

in the values of the parameters that we find that maximize the posterior. We make 1D or

2D plots of the posterior probability for some chosen parameters, and define 1D “credible

intervals”, or 2D “credible regions” which indicate the 1σ, 2σ, & 3σ regions containing

the highest probability bins that yield 68.27%, 95.45%, & 99.73% of the total probability

distribution respectively [143]. These credible regions differ from the frequentist confidence

intervals in that they represent a region, under our specified model, that should contain

the true value with the given probability [144].

When making these plots we also need to deal with the nuisance parameters. In

frequentist statistics we profiled over the parameters not being considered, but in Bayesian

statistics we instead “marginalize” over them by integrating the likelihood across them:

P (θ⃗|x⃗) =
∫

P (θ⃗, δ⃗ |x⃗) dδ⃗. (5.14)

Here θ⃗ are the parameters of interest and δ⃗ are the nuisance parameters.

The exact calculation of the posterior can quickly become difficult when the parameter

space extends beyond just a few parameters [143]. With NOvA’s large number of system-

atics and oscillation paramters, a different analytical approach is necessary to estimate the

shape of the posterior. We use Markov Chain Monte Carlo (MCMC) to solve this problem.

The Markov Chain builds up a series of sampled points (the “chain”) where the next point is

chosen from a probability distribution based on the current point. An example is shown in

Fig. 5.23. This is an efficient way of estimating the posterior, and can achieve any desired

degree of precision given enough samples [145]. NOvA uses the Metropolis-Rosenbluth-

Rosenbluth-Teller-Teller-Hastings (MR2T 2H) sampling method [146], referred to as ARIA

(for Arianna Rosenbluth, a major contributor).

132



Figure 5.23: An illustration of the MCMC sampling technique used by NOvA, for a 1D
example scenario. The chain of points is built up by iteratively proposing a new point,
sampled from a Gaussian distribution, and randomly deciding whether to accept it and add
to the chain, or stay at the current point. The acceptance criteria prefers higher density
regions based on the posterior, so with enough samples we build up the correct distribution
shown on the right. From [147].

The Daya Bay constraints for Bayesian results are applied in a straightforward way

by simply multiplying the posterior (with appropriate normalizations) by the likelihood of

the external constraint [143]. So the MCMC sampling only needs to be done once to get

a posterior without any constraint, and then we can get 1D or 2D constrained versions by

simply multiplying by the likelihood of the corresponding Daya Bay constraint.
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Chapter 6

Gaining Sensitivity

NOvA is now a mature experiment, with many years of data and a robust analysis pro-

cedure. Other than the inclusion of new data, we primarily expect gains in sensitivity to

come from squeezing out any additional sensitivity that we can from the existing data.

This means smaller analysis optimizations or additions, as opposed to large overhauls of

the procedure. In the years leading up to this analysis we conducted several studies that

examined the state of the 3-flavor analysis, and looked for additional ways in which we

could improve our sensitivity to oscillation parameters. This chapter covers the results

of these studies, some of which led to new additions in this analysis, while some could

be targeted for future analyses. First we describe the implementation of the Daya Bay

constraint on sin2 2θ13 and ∆m2
32, and look ahead to how our sensitivity to the oscillation

parameters might evolve over time. Then, we discuss efforts to reclaim both νµ and νe

events that were failing cuts, and the motivation for the new low-energy sample. Finally,

we go over the many improvements that I made to the Michel electron reconstruction, and

conclude with ideas for its future application to the 3-flavor analysis.

Since many of the studies in this section were conducted in years prior, before the

details of this analysis had been finalized, they may use the datasets, selections, and/or

systematics from NOvA’s 2020 analysis [113]. The overarching procedure is largely the

same, but with some of the re-optimizations for the new simulation and other updates
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detailed in previous chapters. A full summary of the 2020 analysis methodology can be

found at [111].

6.1 Daya Bay Constraints and Future Sensitivity

One way we can improve our sensitivity to oscillation parameters is by incorporating

results from other experiments as additional constraints in our fits. In past NOvA 3-flavor

oscillation analyses, we used the PDG value of sin2 2θ13 as a constraint, implemented as

a Gaussian penalty term in the same way as the 1D constraint described in Sec. 5.6.1

[113]. However, in 2022 Daya Bay was expected to release a new precision measurement

of sin2 2θ13 alongside a measurement of the mass splitting ∆m2
32. We had previously

only incorporated a constraint on sin2 2θ13 and were interested in whether including a

constraint on ∆m2
32 as well could further improve our sensitivity. To gauge the impact of

such a constraint, and understand its potential effect on future measurements, we compared

fitting results with several different constraints at current and future POT levels.

6.1.1 Implementing the constraints

We considered several versions of a Daya Bay constraint, using their 2018 results [148] as the

2022 results hadn’t been published yet. First is the nominal 1D PDG constraint on sin2 2θ13

that NOvA had been using. Then, the two independent 1-Dimensional constraints using

the Daya Bay results is implemented in the same way as the existing sin2 2θ13 constraint.

So, one constraint using their measurement for sin2 2θ13,

sin2 2θ13 = 0.0851± 0.0024 (6.1)

and a separate constraint using their measurements for ∆m2
32 in each mass ordering

∆m2
32 = 2.471± 0.07× 10−3 eV2 (Normal Mass Ordering) (6.2)
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∆m2
32 = −2.575± 0.07× 10−3 eV2 (Inverted Mass Ordering) (6.3)

[148]. Lastly, we applied a constraint that used the provided 2D χ2 surface for their results.

This required some additional treatment. Daya Bay does not measure ∆m2
32 directly. At

their short 1 km baseline, they instead measure an effective mass-squared difference ∆m2
ee

related to the wavelength of the oscillation [139]. They measure the –νe disappearance

oscillation channel, which has an oscillation probability given by

P (–νe → –νe) = 1− cos4 θ13 sin
2 2θ12 sin

2∆21

− sin2 2θ13
(
cos2 θ12 sin

2∆31 + sin2 θ12 sin
2∆32

)
,

(6.4)

where ∆ij = 1.27∆m2
ijL/E with L as the baseline and E as the neutrino energy. At their

baseline, the two oscillation phases ∆31 and ∆32 are indistinguishable [149], and so the

terms in the parentheses are approximated by the effective phase ∆m2
ee:

P (–νe → –νe) = 1− cos4 θ13 sin
2 2θ12 sin

2∆21 − sin2 2θ13∆m2
ee . (6.5)

Their measurement of ∆m2
ee can then be converted to ∆m2

32 via the equation

|∆m2
32| = |∆m2

ee| − α cos2(θ12)∆m2
21 , (6.6)

where α is ±1 in the normal/inverted mass ordering, and the solar oscillation parameters

are fixed at their PDG values. Their data is provided as a grid of points in ∆m2
ee vs.

sin2 2θ13 space, with each point giving their measured χ2 value for that combination of

parameters. To turn this into a usable constraint in our fits, we first convert the grid of

points to a surface, using ROOT’s TGraph2D class. This allows us to interpolate between

points using the functions provided by the class, to get χ2 values at any combination of

parameters, a requirement in our fits. In the fits, for a given value of ∆m2
32 and sin2 2θ13,

we would first convert to ∆m2
ee using Eq. 6.6 1, and then sample that point from the

1In the data release for their latest 2023 publication [139] they provided a grid of points in ∆m2
32 vs.

sin2 2θ13 space as well, so we are able to skip the conversion step and just directly use that surface for the
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TGraph2D object to get the correct χ2.

6.1.2 Impact on oscillation parameters

To gauge the impact of the constraints on our oscillation measurements, we construct sep-

arate 2D frequentist confidence regions using each constraint, and compare them. The FD

predictions used in the fits here were made using the selections, binnings, and systematics

from NOvA’s 2020 analysis [113]. When doing preliminary tests like this, we don’t use

real data in order to avoid bias. Instead we generate “fake data” which is just a predicted

FD spectrum at a particular value of the oscillation parameters that we use in place of

real data in our fits. All fake data used in this section was generated at NOvA’s 2020

analysis best-fit point. Additionally, we do not apply Feldman-Cousins corrections at this

testing stage due to their prohibitive computational cost. The contours shown here are

not representative of final results, but meant to give an idea of the relative sensitivity to

different analysis approaches.

Confidence regions in ∆m2
32 vs. sin2 θ23 space are shown in Fig. 6.1 using each version of

the constraint. Both versions of the Daya Bay constraint improve the sensitivity compared

to the nominal constraint, and by similar amounts. In both mass orderings, the contours

are “squeezed” in the ∆m2
32 direction, with the inverted ordering showing additional re-

duction in the sin2 θ23 space, particularly at the 1σ level. Fig. 6.2 shows the corresponding

confidence regions in sin2 θ23 vs. δCP space. Again we see similar improvement from both

versions of the Daya Bay constraint, with a more restricted contour in the inverted mass

ordering. For both sets of plots, this enhanced restriction in the inverted mass ordering

reflects the fact that both Daya Bay and NOvA prefer the normal mass ordering.

We also wanted to understand how much of the change we were seeing in the contours

was coming specifically from the difference between NOvA and Daya Bay’s measured values

of ∆m2
32, versus simply the inclusion of this additional data point in the fits. To test this,

we imagined a scenario where Daya Bay would make a measurement of ∆m2
ee that agrees

fit results later in this thesis (Chapter 7).
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(a) Nominal PDG Constraint (b) Two 1-D DB Constraints (c) 2-D DB Constraint

Figure 6.1: Fake data fits showing frequentist confidence-level contours for ∆m2
32 vs.

sin2 θ23 in the normal (top) and inverted (bottom) mass orderings, using several different
constraints on the value of sin2 2θ13. The left column uses the nominal 1D constraint
on sin2 2θ13 using the PDG value [150]. The middle column uses two uncorrelated 1D
constraints on sin2 2θ13 and ∆m2

32, and the right column uses a 2D correlated constraint
on ∆m2

32 and sin2 2θ13, all based on the 2018 Daya Bay measurement [148]. Black dots
indicate the best-fit point in each plot.

exactly with NOvA in the normal mass ordering, and differs in the inverted mass ordering.

Then, we can compare improvements in each mass ordering to see how much the difference

in the measurements affects the contours. Using Eq. 6.6, this would correspond to ∆m2
ee

= 2.46 ± 0.07 × 10−3eV2 which would give ∆m2
32 = 2.41 ± 0.07 × 10−3eV2 in the normal

mass ordering (matching NOvA’s 2020 result), and ∆m2
32 = −2.51 ± 0.07 × 10−3eV2 in

the inverted mass ordering. We implemented these as 1D constraints on ∆m2
32 along

with the same 1D Daya Bay constraint on sin2 2θ13 as before, and did fits to produce 2D

confidence level contours to compare with the nominal case. Fig. 6.3 shows the sin2 θ23

vs. δCP contours and Fig. 6.4 shows the ∆m2
32 vs. sin2 θ23 contours. What we see is

that in the normal mass ordering, the ∆m2
ee constraint gives less improvement over the

nominal constraint, compared to Figs. 6.3, and 6.4. At the same time, the inverted mass

ordering still experiences a larger reduction in the size of the contours (although not as
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(a) Nominal PDG Constraint (b) Two 1D DB Constraints (c) 2D DB Constraint

Figure 6.2: Fake data fits showing frequentist confidence-level contours for sin2 θ23 vs.
δCP in the normal (top) and inverted (bottom) mass orderings, using several different
constraints on the value of sin2 2θ13. The left column uses the nominal 1D constraint
on sin2 2θ13 using the PDG value [150]. The middle column uses two uncorrelated 1D
constraints on sin2 2θ13 and ∆m2

32, and the right column uses a 2D correlated constraint
on ∆m2

32 and sin2 2θ13, all based on the 2018 Daya Bay measurement [148]. Black dots
indicate the best-fit point in each plot.

large as in Figs. 6.3, and 6.4). This suggests that the tension between the NOvA and Daya

Bay results does play a role in constraining the shape of the contours along with overall

sensitivity improvements from including additional information in the fit.

Given the potential improvement seen from using the additional Daya Bay constraints

on ∆m2
32, we elected to include the Daya Bay 2D constraint as an additional option in

our fits going forward. The 2D constraint was selected over the two 1D constraint since

they gave very similar results and the 2D version better represents the actual Daya Bay

measurement, and would preserve any small correlations between the parameters. The

effect of its inclusion in the final results for this analysis is shown in Chapter 7.
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(a) Nominal PDG Constraint (b) ∆m2
ee Constraint

Figure 6.3: Fake data fits showing frequentist confidence-level contours for sin2 θ23 vs.
δCP in the normal (top) and inverted (bottom) mass orderings, using different constraints.
The left column uses the nominal 1D constraint on sin2 2θ13 using the PDG value [150].
The right column implements two uncorrelated 1D constraints, using Daya Bay’s result
[148] for sin2 2θ13, and a ∆m2

ee constraint which agrees with NOvA’s ∆m2
32 value in the

normal ordering and differs in the inverted ordering. Black dots indicate the best-fit point
in each plot.
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(a) Nominal PDG Constraint (b) ∆m2
ee Constraint

Figure 6.4: Fake data fits showing frequentist confidence-level contours for ∆m2
32 vs.

sin2 θ23 in the normal (top) and inverted (bottom) mass orderings, using different con-
straints. The left column uses the nominal 1D constraint on sin2 2θ13 using the PDG value
[150]. The right column implements two uncorrelated 1D constraints, using Daya Bay’s
result [148] for sin2 2θ13, and a ∆m2

ee constraint which agrees with NOvA’s ∆m2
32 value in

the normal ordering and differs in the inverted ordering. Black dots indicate the best-fit
point in each plot.
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6.1.3 Future Sensitivities

We were also interested in how much our sensitivity to different measurements would

improve with more data, and whether we would become systematics-limited at any point.

At the time it was expected that NOvA would take around 60×1020 POT of data across the

lifetime of the experiment, split equally between FHC and RHC. A study was conducted to

quantify our sensitivity at these final POT levels. Fig. 6.5 shows the projected sensitivity

to reject the incorrect mass ordering and measure CP violation, while Fig. 6.6 shows the

sensitivity to reject maximal mixing, and measure the octant of θ23. Both figures are made

assuming a final NOvA dataset of 63×1020 POT, split evenly between FHC and RHC.
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Figure 6.5: The significance at which we could reject the incorrect mass hierarchy (left)
or measure CP violation (right) as a function of the true value of δCP, for a future 63×1020

POT level, with data split evenly between FHC and RHC. From [151].

At each point on each of the curves, fake data is generated setting the variable in question

(δCP or sin2 θ23) to the value on the x-axis, setting the sign of ∆m2
32 to match the current

mass-ordering, with all remaining parameters set to match the NOvA 2020 best-fit values.

We then perform two fits to this fake data, a restricted and unrestricted fit, and quote

the square root of the difference in their χ2 as the sensitivity. The unrestricted fit allows

all the fit parameters to vary freely, and acts as the “best-fit” for each point. The restricted

fit is done keeping the range of one of the parameters fixed to the “wrong” region of phase

space.

σ =
√
χ2
restricted − χ2

best−fit (6.7)
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Figure 6.6: The significance at which we could reject maximal mixing (left) and determine
the octant of θ23 (right) as a function of the true value of θ23, for a future 63×1020 POT
level, with data split evenly between FHC and RHC. From [151].

For the mass-ordering sensitivity the restricted fit only allows values of ∆m2
32 in the oppo-

site mass-ordering than what was used to generate the fake data. So for the inverted mass

ordering curve, the fits are restricted to the normal mass ordering, and vice versa. The

CP violation sensitivity restricts δCP to be either 0 or π (i.e. no CP violation). For the

maximal mixing rejection sensitivity, sin2 θ23 is restricted to a small region around 0.5, the

maximal mixing value. The octant determination sensitivity restricts θ23 to the opposite

octant from the current point used to generate fake data. As we approach the restricted

regions on the x-axis, our “best-fit” χ2 at each point will naturally agree with the restricted

fits, and our rejection sensitivity goes to zero. This makes sense, as we cannot reject max-

imal mixing if its true, and we cannot measure any CP violation if there is none. The one

exception is the mass-ordering sensitivity which doesn’t restrict the value of ∆m2
32, only

the sign. Here we see a maximum sensitivity in the regions of δCP that give the highest

νe (ν̄e) asymmetry for a given mass ordering.

We then extended this study out to higher POT levels, in order to see whether the

gains in sensitivity leveled off at any point, indicating that our measurements had become

systematically-limited instead of statistically-limited. We considered 72, 100, and 125

×1020 POT, the largest amount being double the expected full NOvA dataset at the time.

Figs. 6.8, 6.7, 6.9, and 6.10 show the sensitivities. In each plot, the dotted lines indicate fits
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without including the effects of systematic uncertainties (so-called “stats-only” plots), while

the fits with the full systematic treatment are shown in solid lines. The sensitivity is lower

when accounting for systematic uncertainties but we still continue to see improvement

with additional POT in all cases. This is an indicator that we are unlikely to become

systematics-limited given our current uncertainty levels.

Figure 6.7: NOvA’s sensitivity to determine the neutrino mass ordering at increasing
levels of POT, for the normal (top) and inverted (bottom) mass orderings, as a function
of the true value of δCP. 72, 100, and 125×1020 POT scenarios are shown, with data split
evenly between FHC and RHC. Dotted lines indicate fits without systematics included,
while solid lines have all systematics included.
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Figure 6.8: NOvA’s sensitivity to discover CP violation at increasing levels of POT, for
the normal (top) and inverted (bottom) mass orderings, as a function of the true value
of δCP. 72, 100, and 125×1020 POT scenarios are shown, with data split evenly between
FHC and RHC. Dotted lines indicate fits without systematics included, while solid lines
have all systematics included.

Figure 6.9: NOvA’s sensitivity to reject maximal mixing at increasing levels of POT, for
the normal (top) and inverted (bottom) mass orderings, as a function of the true value
of δCP. 72, 100, and 125×1020 POT scenarios are shown, with data split evenly between
FHC and RHC. Dotted lines indicate fits without systematics included, while solid lines
have all systematics included.
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Figure 6.10: NOvA’s sensitivity to determine the octant of θ23 at increasing levels of
POT, for the normal (top) and inverted (bottom) mass orderings, as a function of the
true value of δCP. 72, 100, and 125×1020 POT scenarios are shown, with data split evenly
between FHC and RHC. Dotted lines indicate fits without systematics included, while
solid lines have all systematics included.
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Finally, we explored a future sensitivity scenario with an additional constraint on ∆m2
32.

This was done to check whether including a constraint at a fixed uncertainty level might

eventually negatively impact our results with further datataking. we considered a 1D

gaussian constraint on ∆m2
32 around the NOvA 2020 best-fit value with a 3% uncertainty

(matching the uncertainty in the Daya Bay 2018 result), and reproduced the 72×1020

POT sensitivity plots with and without the constraint, shown in Figs. 6.11, 6.12. In all

cases this additional constraint did not significantly impact the results, providing a mild

improvement at a few values of δCP.

Figure 6.11: NOvA’s sensitivity to determine the mass ordering (left) and measure CP
violation (right) for the normal (top) and inverted (bottom) mass orderings, as a function
of the true value of δCP. Plots shown for a future 72×1020 POT scenario, split evenly
between FHC and RHC data. The dotted lines indicate the nominal fake data fits while
the solid lines include an additional 3% constraint on ∆m2

32 around NOvA’s 2020 best-fit
value.
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Figure 6.12: NOvA’s sensitivity to reject maximal mixing (left) and measure the octant
of θ23 (right) for the normal (top) and inverted (bottom) mass orderings, as a function of
the true value of θ23. Plots shown for a future 72×1020 POT scenario, split evenly between
FHC and RHC data. The dotted lines indicate the nominal fake data fits while the solid
lines include an additional 3% constraint on ∆m2

32 around NOvA’s 2020 best-fit value.

6.2 Reclaiming νµ Events

The νµ disappearance analysis gives us sensitivity to the values of ∆m2
32 and sin2 θ23

through measurement of FD νµ CC events in the oscillation dip region between 1 and 2

GeV. However, below 2 GeV our efficiency for selecting νµ CC events begins to fall off,

becoming very low below 1 GeV. This is shown in Fig. 6.13. We were interested in whether

this could be improved by reclaiming some of the events that failed selection cuts via a

new, secondary selection. This additional sample of reclaimed νµ events could then be

included in the analysis to hopefully boost the overall selection efficiency, and sensitivity

to oscillation parameters.

We began by checking the number and types of events failing cuts. Specifically we
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Figure 6.13: Selection efficiency as a function of true energy for νµ CC signal events, as
well as mis-identified NC and νe CC background, for NOvA’s 2020 analysis. From [152].

looked at the events failing the 2020 νµ PID selection cut, for the FD FHC simulated

dataset. Fig. 6.14 shows the full failed sample, along with specifically the failed signal

events we would want to reclaim. These failed signal events would represent a ∼17%

increase in the signal of the full selected sample. However, there are large amounts of

background in the full failed sample, which are also concentrated at these lower energies.

The largest backgrounds are from cosmic and NC events.

The next step was then to identify additional reconstructed variables we could cut on

to reduce these large backgrounds. Fig. 6.15 shows six of the variables we considered that

had some potential for separating signal and background. The first variables which stood

out were the max Y and Z positions of the muon track, because of the obvious skew in the

cosmic background towards higher values. To identify the optimal location to place a cut

we calculated the figure of merit

FOM =
signal√

background
. (6.8)
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Figure 6.14: Top Left: All events failing the 2020 νµ PID cut, for the FHC sample. Top
right: All signal events failing the 2020 numu PID cut, for the FHC sample. Bottom:
All events passing the full 2020 FHC νµ selection.

The FOM is plotted in Fig. 6.16 for each position variable, with the optimal cut locations

indicated. The effect of applying both optimal cuts to the failed νµ sample is shown in

Fig. 6.17. The total backgrounds are reduced from 842.52 to 312.90 (62.8% reduction),

while the signal goes from 34.28 to 26.33 events (23.2% reduction). The majority of the

reduction is in the cosmic background, which is now below the level of the NC background.

Despite this the overall background remains high relative to the signal.
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Figure 6.15: Plots of simulated events from the 2020 analysis FHC sample failing the νµ
2020 PID cut.
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Figure 6.16: The figure of merit for a cut on the max Y and Z positions of the track,
for events failing the 2020 νµ PID selection. The cut removes all events above the current
value, and the FOM is calculated with the remaining events. The gold lines indicate the
maximum FOM, and corresponding cut locations on each plot.

Another variable that showed differences in the signal/background distributions was

the CVN score. We considered splitting the failed νµ sample by CVN score, similar to

what is done with the νe core sample. We identified 3 different regions in the CVN plot,

outlined in Fig. 6.19a. The low region is where CVNm < 0.4 and corresponds to where the

background becomes significantly higher than the signal. The middle region is defined by

0.4 ≤ CVNm< 0.8 and corresponds to the region where the signal is approximately equal

to the background. Finally, the high CVN region where CVNm ≥ 0.8 is where there is

more signal than background. These are events that passed the CVNm cut but failed one

of the other PID cuts (cosmic rejection or ReMID), which explains the sharp cutoff in the
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 CCeν
τνAll 

Cosmic Bkg.
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 -> Numu CCeν/eνBeam 
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Figure 6.17: Reconstructed energy distributions for the failed νµ event sample before and
after cutting on maximum track Y and Z position, using the optimal cut values found in
Fig. 6.16.

events at 0.8. The energy distributions for each of these three CVN regions are shown in

Fig. 6.18. A large majority of the backgrounds are confined to the low CVN bin, while

the mid and high CVN bins have lower backgrounds while retaining just under 40% of

the signal events. Additionally, the number of Michel electrons present in the events was

higher on average for the signal compared to background, more so for the mid and high

CVN bins (shown in Fig. 6.19). Overall, 33% of signal events contained at least one Michel

electron, compared to 15% of NC and 7% of cosmic events.

Despite identifying some preliminary variables that could reclaim signal events with

reduced backgrounds, a majority of the signal events were still associated with large back-

grounds, primarily from cosmic events. Before investing a lot of time in reducing the

backgrounds further we wanted to gauge the potential impact of these events on our mea-

surements to see if the effort was warranted. We performed fake data fits to produce 2D

confidence regions in ∆m2
32 vs sin2 θ23, as well as 1D confidence intervals for each indi-

vidually. The fake data was generated at the 2020 analysis best-fit point, and only the

FHC samples were used in the fitting process, without applying the effects of systematics

(stats-only). Three different “best-case” scenarios were considered for the reclaimed νµ

sample. In all three, the cosmic backgrounds were removed. Then, the first case adds the
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(d) Mid CVN

Figure 6.18: Reconstructed energy distributions for νµ events failing the PID cut, split
into the 3 bins of CVNm score defined in the top left.

full failed sample (minus cosmics) as an additional sample into the fit. The second case

takes the full failed sample (minus cosmics), and splits it into the 3 bins of CVNm score

before adding it into the fit. Finally, the last sample takes only the true signal events

from the failed sample, and adds them into the fit, representing the theoretical maximum

additional sensitivity 2. The results of the 2D fits are shown in Fig. 6.21, and the 1D

fits are shown in Fig. 6.20. The maximum improvement, when adding in only the addi-
2We explored splitting the true signal events by CVN score as well, but this didn’t offer any improvement

over just including them in a single sample.
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(d) Mid CVN

Figure 6.19: Number of reconstructed Michel electrons present in the event, for νµ events
failing the PID cut, split into the 3 bins of CVNm score defined in the top left.

tional true signal events, corresponds to a small but noticeable reduction in the size of the

contours. However, this improvement is significantly reduced when instead the full failed

sample is included in CVN bins, and barely visible when including it as a single sample.

The differences are a bit more obvious in the 1D profiles, where you can see the curves get

pulled inwards slightly with the addition of more signal events.

The improvements seen here are very small, and this is a significantly pared-down

version of the full fit. Any improvement would likely be washed out by the inclusion of
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RHC data. For this reason we elected to not pursue the study further at the time. However,

as we near the end of NOvA’s datataking, small gains from analysis optimizations will

become the main way to improve sensitivity. It may be worth reexamining the study at a

future date with the full NOvA dataset, including RHC. We will have taken significantly

more data than what was available at the time of the original study, which also means

more events available to be reclaimed. Additionally many of the variables will have been

re-optimized, so it may be possible to reclaim a purer sample of νµ events.

Figure 6.20: 1D sensitivity to ∆m2
32 and sin2 θ23 for a nominal fake data fit, versus 2

fits that include an additional sample of reclaimed νµ events. All fits are FHC-only and
stats-only, with fake data generated at the NOvA 2020 best-fit point.
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(a) FHC νµ + failed νµ
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(b) FHC νµ + failed νµ (split by CVN)
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(c) FHC νµ + true failed νµ

Figure 6.21: Fake data fits with/without an additional sample of reclaimed νµ events.
All fits are FHC-only, and stats-only, with fake data generated at the NOvA 2020 best-fit
point. Red, pink, blue lines correspond to 1σ, 2σ, and 3σ contours. Solid lines indicate
the nominal fit without the additional sample, and dotted lines indicate the fits with the
additional sample. 3 cases are considered: (a) including the reclaimed events as a single
additional sample, (b) splitting the reclaimed events into 3 samples based on CVN score,
and (c) including only the true reclaimed signal events as an additional sample. The best-
fit point is indicated as the black dot. The additional samples offer a very small but visible
improvement in (c), whereas (a) and (b) remain nearly identical.
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6.3 Reclaiming νe Events

The νe appearance analysis gives sensitivity to the mass ordering, δCP, and the octant

of θ23 through measuring differences in the rates of νe and –νe events. As such, knowing

the exact counts of each event type is important and effort has been made to incorporate

additional samples of νe events, initially through the peripheral sample, and now for this

analysis, the low-energy sample. In the lead-up to this analysis we conducted studies to

understand how impactful reclaiming additional νe events would be, and also where the

events were failing cuts, so we could direct efforts to reclaim them. This then served as

additional motivation for the low-energy sample, which is discussed at the end of this

section.

Starting with NOvA’s 2020 analysis selections and dataset, we looked at the number of

νe events that failed both the core and peripheral sample selections. These νe (ν̄e) events

are shown in Fig. 6.22 for both the FHC and RHC samples. There are enough events

available in these samples to warrant further investigation. If reclaimed, the 21.93 FHC

events would represent a 26.7% increase over the 82 events that had been observed for the

2020 analysis νe data, while the 5.46 RHC events represent a 16.5% increase over the 33

events that had been observed in the –νe data [113].

To see what the effect would be of reclaiming all of these events in to our analysis,

we performed fake data fits producing confidence regions for sin2 θ23 vs. δCP, with and

without the extra events. The fake data was generated at the NOvA 2020 best-fit point.

We include both νµ and νe predictions in the fit, without the effects of systematics (stats-

only), and optionally including the additional reclaimed νe samples (Fig. 6.22). The result

is shown in Fig. 6.23. Going from the nominal fit, to nominal with the reclaimed νe events,

we see a large shrinking of the contours indicating that the extra events are enhancing our

sensitivity. While this is the “best-case” scenario where we reclaimed all events, it shows

that they do have power to constrain the oscillation parameters, and are worth pursuing.
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Figure 6.22: True FD νe (ν̄e) events failing both the 2020 νe core and peripheral selections,
for the 2020 analysis FHC (left) and RHC (right) samples.

(a) Nominal only (b) Nominal + reclaimed νe (ν̄e)

Figure 6.23: 2D confidence-level contours for sin2 θ23 vs. δCP in the normal (top) and
inverted (bottom) mass orderings, with (left) and without (right) the additional FHC and
RHC reclaimed νe samples. From fits to fake data generated at the NOvA 2020 best-fit
point.
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Figure 6.24: A Venn diagram showing the number of true νe signal events that failed a
particular combination of the 2020 νe selection cuts. Each ring represents one of the 4 cuts
making up the 2020 νe selection, with the events in that ring having failed that specific
cut.

We then looked into which cuts the events were failing to inform studies attempting

to reclaim them. We focused on the FHC sample, since that contained the majority of

νe events we could reclaim, and the 2024 analysis would contain even more FHC data,

with the same sample of RHC data as the 2020 analysis. The νe 2020 Core selection has

four main cuts, Preselection, CosRej, PID, and NearestSlice. These are similar to the cuts

described in Sec. 5.2.2, but organized differently. Preselection covers reconstruction and

event quality, and containment cuts. The PID cut here is just a cut on CVNe score, while

CosRej contains the cut on cosmic rejection BDT score. NearestSlice is the same cut as

in Sec. 5.2.2. We constructed predictions for events failing specific combinations of these

cuts, and removed any events that would have been selected into the Peripheral sample.

We then counted up the number of events that fall into each category. For example,

we found that 7.03 of the 21.93 total events failed only the PID cut, while passing the

other cuts. There are 2.45 events failing both PID and Preselection cuts, while passing

the other cuts, and so forth. We can organize all of the categories of failed events into

a Venn diagram which shows the number of true signal events in each category. This
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is shown in Fig. 6.24. Most of the events are failing just the PID cut (7.03 events), or

just the Preselection cut (5.68 events). After these two categories, the next-largest are

events failing both PID and Preselection (2.45 events) and events failing both Preselection

and CosRej (2.08 events). The remaining ∼3 signal events are spread between the other

combinations of PID, Preselection, and CosRej. The NearestSlice cut is removing a very

specific class of backgroundevent so the categories with it have only a small amount of

signal.

(a) PID (b) Presel

(c) PID and Presel (d) Presel and Cosrej

Figure 6.25: νe signal and beam background energy distributions, for the 4 Venn diagram
categories containing the most νe signal. Labels indicate the cut categories that were failed.
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Next, we examined the beam backgrounds. Fig. 6.25 shows the energy distributions

of both the signal and beam backgrounds for the four largest Venn diagram categories.

The largest beam backgrounds in our energy region of interest ( < 4 GeV ) are present in

the events which failed the PID cut, and are comprised of mostly NC events, with some

mis-identified νµ CC events as well. There are beam νe events concentrated at higher

energies, which we see mostly in the events failing Preselection, since that cut selects

neutrino energies between 1 and 4 GeV. The plots do not include cosmic events, but we

would expect some cosmic background in the samples that failed Preselection (due to its

containment cut) and larger cosmic backgrounds in the samples that failed the CosRej

cut. From these distributions we learned that if we are able to reclaim these νe events we

should expect larger NC backgrounds in the sample, and depending on the category of cut

we target, there may be additional cosmic backgrounds as well.

Given the large backgrounds, it was not feasible to reclaim events by simply retuning

our existing selections, and a more sophisticated approach would be needed. One avenue

to reclaim events that we pursued was the low-energy BDT (described in Sec. 4.2.5).

This targeted νe events in the 0.5 - 1.5 GeV range, and could potentially reclaim events

from several of the categories we examined. As explained in Sec. 5.2.2 the low-energy

selection allows a wider range of CVN score, so it can target νe events failing the PID cut.

Additionally, the energy range allows us to include events falling below the Preselection

energy cut.

There were several additional reasons for the focus on lower neutrino energies. First,

similar to the νµ selection, the νe selection efficiency also falls off at lower energy (shown in

Fig. 6.26). This is an indication that there are events we could reclaim, but also that they

may be difficult to identify using our nominal selections, another motivation for training a

new BDT explicitly on low-energy events. Additionally, at lower energies we have a higher

sensitivity to the asymmetry in the rates of νe (ν̄e) events. We define asymmetry as the

difference in the probability of νµ → νe and –νµ → –νe oscillations, divided by the total
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Figure 6.26: The efficiency with which we select true νe CC events in the FD as a
function of energy, for FHC (left) and RHC (right) samples. Efficiency is defined as
(selected νe)/(total true νe) events in each bin. The NOvA 2020 analysis νe selection was
used, with the Preselection energy cut lowered from 1.0 GeV to 0.5 GeV to include the
low-energy region. From [103].

probability:

Asymmetry =
P (νµ → νe)− P (–νµ → –νe)

P (νµ → νe) + P (–νµ → –νe)
. (6.9)

This is plotted as a function of energy in Fig. 6.27, along with the expected range of νe

events. We see that the maximum and minimums occur below 1 GeV, and are inverted for

each mass ordering. While we expect significantly fewer events at low energy, they should

also be highly sensitive to the choice of mass ordering.

For this analysis we only included the FHC low-energy sample. This is because the

corresponding RHC sample was found to be too small, with the total FD prediction size

being less than a single event, and the majority of that being background [103]. If NOvA

is able to take more RHC data in the future, the sample may become a viable addition to

the analysis. Of course, without the RHC sample to compare to, some of the sensitivity

to the asymmetry is lost. Despite that, the FHC low-energy sample still maintains some

small ability to distinguish between the mass orderings. Fig. 6.28 shows the expected

total number of events in the low-energy sample for this analysis as a function of δCP,

for each choice of mass ordering. The shaded bands show the variation over the 1σ range

of sin2 θ23. On average there is about 1 event separation between the choice of mass

orderings. Including the 1σ range of sin2 θ23, the difference between the maximum in the

normal ordering and minimum in the inverted ordering is about 3 events.
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Figure 6.27: Predicted asymmetry of FD νe and –νe events at the far detector. Overlaid is
a spectrum of predicted νe events at the FD without any cuts. Asymmetry curves use the
best-fit parameters found in Chapter 7. The predicted spectrum spans credible oscillation
parameters around these best fit values. From [153].

To gauge the impact of the low-energy sample on the full analysis, a fake data fit using

the Bayesian framework was conducted both with and without this additional sample.

Fits included all systematics, and used the 1D Daya Bay reactor constraint. Fig. 6.29

shows the posterior probability density for δCP from the full fits with and without the

low-energy sample, and for 3 different mass ordering cases. The first case allows either

mass ordering in the fit, while the second and third are restricted to either the normal

or inverted mass orderings respectively. Within the fit that allows both mass orderings

(Fig. 6.29a), including the low-energy sample gives a modest increase to the percent of the

posterior density in the normal mass ordering from 73.5% to 74.1%.
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Figure 6.29: Comparison of 1D posterior density distributions for δCP from fits with
and without the low-energy sample included. For (a) both mass orderings, (b) normal
mass ordering only, and (c) inverted mass ordering only cases. The fit is done with all
systematics and 1D Daya Bay reactor constraint applied. From [143].
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6.4 Michel electrons

A large focus of my work has been on improving the simulation and reconstruction of

Michel electrons in NOvA. This work was started after production had already begun on

the files that would be used for this analysis (referred to as Production 5.1, or Prod5.1

files). Since the simulation and reconstruction code is frozen before starting production,

the Michel improvements will be targeted to future analyses. In the interim period, the

improvements were tested using a few different sets of files. Initially we produced dedicated

sets of files from scratch running the necessary simulation and reconstruction jobs with

the improvements added in. Recently, we have been gearing up for a new production

run (Production 6) which will include the improvements, and we have been able to begin

testing their full implementation. Preliminary samples of files were produced in a “mini-

production”, to test and validate the changes before undertaking the full production. Most

plots in this section were made from these sets of files.

6.4.1 Improving Simulation

One of the first improvements made was a fix to a longstanding data/MC discrepancy in

the ∆T of the Michel electrons, the time difference between the Michel and parent slice

(nominally a muon). The discrepancy is shown in Fig. 6.30, and is different depending

on whether the Michel retriggered one of the cells in the parent slice. It is common for

reconstructed Michel electrons to contain hits that retrigger cells from their parent slice,

since they are a time-delayed signal that appears close to where the muon decayed. What

we saw was an excess in MC at low ∆T for Michels that retrigger. For Michels that don’t

retrigger we saw the opposite, an excess in data at low ∆T . One way this could occur

is if the APD deadtime was shorter in simulation than in the actual hardware. Careful

examination of the readout simulation and detector firmware code found this to be the case.

Fig. 6.31 illustrates the differences in the retriggering logic between the old simulation, and

the real detector firmware. In both cases a dual-correlated sample (DCS) is first used to

167



Figure 6.30: ND Data/MC discrepancy seen in the ∆T of reconstructed Michel electrons
in older simulation files. Left is for Michels which retrigger a cell from the parent slice,
and right is for Michels which do not retrigger. Histograms have been area normalized to
illustrate the shape differences. From [154].

trigger a readout. The current ADC value is compared to the one from 3 samples ago, and

if their difference is larger than the trigger threshold, we trigger and read out a hit. The old

simulation used a variable deadtime, which lasted until the current DCS value fell below a

defined “retrigger threshold”. In the real detectors, the peak is first found after triggering

(the purple point), and then a fixed deadtime lasting 9 digitizations is implemented. The

two detectors have different timing resolutions, so this results in a 1.125 µs deadtime at

the ND, and a 4.5 µs deadtime at the FD. Since the deadtime of the old simulation could

vary, it often ended earlier than the fixed deadtime of the data (the blue point in the

example). Simulated Michel electrons, which appeared soon after the muon decay, could

then retrigger cells before the data, hence the discrepancy.

We rewrote the readout simulation code to match the logic from the firmware in each

detector, and then produced new simulated files with the change. We then ran the recon-

struction code up to MEFinder, and plotted the ∆T in MC vs. the data. The result for

the ND is shown in Fig. 6.32. The simulation now matches the data and we see the ∆T

for the retriggered Michels peak and then fall off at the deadtime of 1125 ns as expected.
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(a) Old Retrigger Logic (b) Correct Retrigger Logic

Figure 6.31: Cartoon diagrams of the retriggering logic used in the old simulation, and
the correct version from the real detector firmware. Left: In the old simulation, a trigger
was initiated once the DCS value goes above the trigger threshold (green point), and you
cannot trigger again until it goes back below the retrigger threshold (blue point). Right:
In the actual detector, a trigger is also initiated when the DCS value goes above threshold
(green point), the peak is then found (purple point), and a fixed deadtime of 9 digitizations
is always used (live again on the 9th).

6.4.2 Improving Reconstruction

With the timing simulation fixed, I moved on to examine the Michel reconstruction code,

MEFinder (detailed in Sec. 4.1.6). There were several improvements made. With the

timing fixed, we removed the cut on retriggered candidate Michel hits from the hit-finding

step in MEFinder. We also identified and fixed a bug in the hit-finding that was missing

candidate Michel hits at the ends of the 10,000 ns window after a physics slice. The code

was attempting to use a binary search function to identify the first and last valid hits in

the window, but it was not implemented correctly. Switching to a simple linear search

function resulted in no missed hits, and by removing some unnecessary function calls we

were able to mitigate any loss in search algorithm efficiency, with the new jobs finishing

∼20% faster [155].

Since the timing distribution had significantly changed, the next step was to remake

the MID template histograms (described in Sec. 4.1.6). This was overdue, as they had not

been remade in several years despite other changes to the reconstruction code that could
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(a) Retriggered Michels (b) Non-retriggered Michels

Figure 6.32: Data/MC comparison of Michel electron ∆T with old and new retriggering
logic for Michels that retrigger (left) and those that don’t (right).

have affected the Michels, such as an update to the slicer. Additionally, we identified a

reconstruction failure associated with the old templates. The old templates (Fig. 6.33)

have a cutoff in the ∆T variable at 800 ns. This was put in place early on because of the

poor data/MC agreement. However, the cutoff extends to all values of the Distance To

Slice variable, instead of only being applied to the 0 DistToSlc bin which contains all the

retriggered Michels. As described in Sec. 4.1.6, the true Michel DistToSlc vs. ∆T template

is used to match reconstructed Michel electrons to their parent slice. So, the knock-on

effect of this cutoff is that MEFinder would not match any Michels to parent slices with

a ∆T < 800 ns, even for Michel electrons that didn’t retrigger a cell. Instead, they would

either be matched to a different parent slice at a later ∆T (potentially incorrectly) or, they

would not be reconstructed at all. This effect can be seen as the sharp cutoff in events

below 800 ns in the ∆T plots in Fig. 6.32.

Remaking the MID templates is an iterative process. Since the templates are used in

the reconstruction, the initial round of reconstruction with the new code will still have

to use the old templates. Then, we can create new template histograms from the newly-

reconstructed Michels. We then re-run MEFinder over the same input files, this time using

the new templates, to make sure the effects of any changes are fully captured. This final

sample of Michels can then be used to create a final version of the template histograms
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(a) True ME

(b) Non ME

Figure 6.33: MID template histograms using the old simulation. The top two plots are
for the true-ME case, and the bottom two are for the non-ME case. From [95].

that will be used going forward3. There were several rounds of file production in the mini-

production leading up to Production 6, which allowed us to do this iterative process over

a large enough dataset. The final template histograms incorporating all the changes are

shown in Fig. 6.34. The CalE vs. NCell templates are largely the same as before, but

there are significant changes to the ∆T templates. The cut at 800 ns ∆T was removed

and we can see there are a significant number of events at low ∆T , with the majority of
3In principle, if there are still differences in the templates or reconstructed Michel distributions after

the second iteration, this process could be continued until the distributions no longer change. In practice
however the two iterations of reconstruction were sufficient.
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the backgrounds occurring at very low ∆T .

(a) True ME

(b) Non ME

Figure 6.34: ND MID template histograms using the new simulation. The top two plots
are for the true-ME case, and the bottom two are for the non-ME case.

A Data/MC comparison of the energy, ∆T and MID distributions of Michels using the

new MID templates are shown in Fig. 6.35.
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Figure 6.35: Reconstructed energy, ∆T , and MID distributions for SlcME (left) and
TrkME (right) in the near detector. These Michels were reconstructed using the ND MID
templates in Fig. 6.34.
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The shape of the distributions agree well with data. The Gaussian shape of the energy

distribution we measure for true Michels can be seen at higher energy4, with a spike

at lower energies from the backgrounds. The ∆T distribution extends all the way to 0

now, and we see a spike around 1125 ns from Michel electrons that retrigger. The MID

distributions show most of the signal events being skewed to MID > 0, so we can still

expect to effectively cut on that variable to remove backgrounds. The MC events have

been scaled to match the POT of the data events, but there is still a slight normalization

offset between data and MC in several of the distributions, particularly for the TrkME. This

is expected to occur because we do not yet have cross-section weights for Production 6 files

to apply to the simulation [156]. When those become available the distributions should

be re-examined with the weights applied. The largest backgrounds come from neutron

interactions (specifically the photons and protons from neutron capture or scattering) and

have their distribution highlighted in the plots. Truth information from the simulation

was studied to quantify the total makeup of the backgrounds, and the results are shown

for the ND in Table 6.1.

Particle Type Source % of Total Background
Photon neutron capture 30.0
Photon π0 decay 18.2

Primary µ νµ CC interaction 16.3
Proton neutron elastic scattering 14.2

Proton or photon neutron inelastic scattering 8.6
Primary proton νµ CC interaction 2.5

Table 6.1: Tabulation of the largest sources of background in reconstructed Michel elec-
trons at the ND. Remaining percent is made up of charged particles and photons resulting
from a large variety of different interactions, each comprising less than 1% of the total.
The numbers are determined from GEANT4 truth information.

4Note that the theoretical true Michel distribution is not a Gaussian, and has a sharp cutoff at 53 MeV.
The different shape we see results from imperfect energy reconstruction. For example, missing Michel
energy due to traversing dead material. Essentially, our energy resolution for the Michels is not precise
enough to resolve the true theoretical shape of the distribution.
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6.4.3 Far Detector Michel electrons

Up until now only Michel electrons in the near detector had been examined in detail. I also

took a first look at Michel electrons specifically in the FD. We expected to see differences

at least in the timing distributions due to the coarser timing resolution and longer APD

deadtime, and was curious whether they warranted creating separate MID templates for

the FD. The energy, ∆T , and MID distributions for the simulated FD Michel electrons

are plotted in Fig. 6.36. There are several key differences to take note of. First, in the

∆T distributions the effect of the timing resolution is evident. We see a small bump in

events near the FD retrigger threshold of 4500 ns, and a more rounded peak for the events

that don’t retrigger, with the peak occurring at a later ∆T than in the ND. In the energy

distribution, we see the same spike at low-energy from the backgrounds, but we also see a

smaller increase at low energy for the true Michel electrons. This is related to the timing

differences as well. Because of the longer APD deadtime, many of the Michel electrons

will appear while the cell that the muon decayed in is still dead. Any energy deposited

by the Michel in that cell will then be missed if it occurs during the deadtime. Since the

Michels only make a handful of hits to begin with, this can represent a significant percent

of the total Michel energy. This effect becomes more obvious when we plot the energy of

true Michels that retrigger vs. those that don’t in the FD. This is shown in Fig. 6.37. The

Michels that decayed late enough to register a retriggered hit have an energy distribution

that more closely resembles the expected true Michel energy distribution, while the Michels

that do not retrigger have the excess at lower energy from events that missed hits.

With significant differences in both the timing and energy distributions, we elected to

make separate MID template histograms for the FD Michels. These are shown in Fig. 6.38.

The true Michel templates have a similar shape to their ND counterparts, but there are

more events concentrated at low NCells/CalE, and fewer events at low ∆T . There are also

more events concentrated in the higher DistToSlc bins because of the longer APD dead-

time. The non-Michel background templates look the same as the ND for the NCell/CalE
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Particle Type Source % of Total Background
Photon neutron capture 88.8
Photon π0 decay 3.2

Primary µ νµ CC interaction 2.9
Proton neutron elastic scattering 1.1

Proton or photon µ− capture 1.3

Table 6.2: Tabulation of the largest sources of background in reconstructed Michel elec-
trons at the FD. Remaining percent is made up of charged particles and photons resulting
from a large variety of different interactions, each comprising less than 1% of the total.
The numbers are determined from GEANT4 truth information.

template, however the DistToSlc/∆T template shows a more diffuse distribution of events

than the ND, where the backgrounds are concentrated at low ∆T . This is a reflection of

the different background composition at the FD. As can be seen in Fig. 6.36, almost all of

the backgrounds at the FD are from neutron interactions. The specific backgrounds were

again quantified from truth information and are summarized in Table 6.2. Similar types of

background events are present but take up a smaller percent of the total than at the ND.

Once again this can be related to the timing differences. As can be seen in the ∆T plots

for the ND (Fig. 6.35) there are large spikes in the non-neutron backgrounds at low ∆T ,

which are significantly reduced at the FD. These additional backgrounds at very low ∆T

could be introduced from pile-up, which is not present at the FD.

As a final check on the impact of these improvements, we calculated the difference in

Michel electron tagging efficiency before and after the changes to simulation/reconstruction.

The tagging efficiency is defined as the sum of all reconstructed true Michel electrons (both

SlcME and TrkME) divided by the total true Michel electrons that made hits in the de-

tector, across all events. The result is shown in Table 6.3 for both ND and FD, before and

after the improvements. The ND sees an increase from 71.7% to 84.8% efficiency, which

corresponds to finding 18.3% more Michel electrons. The FD sees a modest increase from

59.3% to 61% efficiency when using the FD MID templates in MEFinder. Most of the

improvement seems to come from accessing the additional phase space below 800 ns ∆T .

The FD, because of the longer APD deadtime, doesn’t gain much from this, and has a
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lower overall tagging efficiency as well compared to the ND. That being said, this number

does not take into account any improvements to the data/MC agreement. While we didn’t

see a large increase in the tagging efficiency at the FD, we are no longer applying analysis

cuts on ∆T which will increase the amount of Michel electrons we can use for things like

the Michel decomposition.

Tagging Efficiency Tagging Efficiency
Detector (Old Sim/Reco) (Updated Sim/Reco)

ND 71.7 84.8
FD (using ND templates) 59.3 59.7
FD (using FD templates) 61.0

Table 6.3: Michel electron tagging efficiency before and after updates to improve the
simulation and reconstruction of Michels. Shown separately for each detector, with the
FD using either the ND MID templates for slice-matching, or the new FD-specific MID
templates.
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Figure 6.36: Reconstructed energy, ∆T , and MID distributions for SlcME (left) and
TrkME (right) in the far detector. These Michels were reconstructed using the ND MID
templates in Fig. 6.34.

178



(a) True ME Retriggers (b) True ME No Retrigger

Figure 6.37: Reconstructed energy of true SlcME Michel electrons in the FD, split by
those that retrigger (left) or don’t retrigger (right) the parent slice. The spike at low
energy for those that don’t retrigger is from Michels that miss hits due to the longer APD
deadtime in the FD.
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(a) True ME

(b) Non ME

Figure 6.38: FD MID template histograms made with all simulation and reconstruction
updates applied. The top two plots are for true Michels, and the bottom two are for the
non-Michel backgrounds.
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6.4.4 Future improvements using Michel electrons

Looking ahead, we are considering new ways to utilize Michel electrons in the 3-flavor

analysis that can leverage my improvements. One idea is to use Michel electrons as a

way to constrain wrong-sign backgrounds in the FD. Wrong-sign events are considered an

irreducible background because we cannot distinguish the charge of the particles produced.

However, because of the different decay behavior of muons/antimuons, we can expect

different rates of Michel electrons between neutrino/antineutrino events. A µ+ will always

decay and produce a Michel electron, but a µ− will sometimes get captured on a nucleus

instead of decaying, and not produce a Michel electron. Therefore, we should expect a

higher rate of Michels from –νµ CC events (which produce µ+) than νµ CC events (which

produce µ−). Michels can also appear in νe (ν̄e) events through pion production. νe CC

events can produce π+ through DIS or RES interactions, while –νe can produce π−. The

pions can decay, producing muons that can then decay to a Michel. However, the π− and

µ− can both be captured on a nucleus, which will result in no Michel, whereas π+ will

be more likely to decay to a µ+, which will then always decay to a Michel. From this we

would expect a higher rate of Michels from νe CC events than from –νe CC events.

To get an idea of the difference in the rates for NOvA, we studied the truth information

of neutrino events in the Far detector. We looked at the number of true νµ (ν̄µ) and νe (ν̄e)

events that passed the full 2024 νe and νµ selections in the FD, and counted how many

of them contained true Michel electrons that made hits in the detector 5. The calculation

is done for both FHC and RHC beam modes. The numbers for νµ events are shown in

Table 6.4, and for νe events in Table 6.5. The νµ CC events have a higher rate of Michel

electrons, with a small difference in the rates between νµ signal and wrong-sign (WS). The

νe CC events produce fewer Michels, but there is a more significant difference between the

νe signal/WS Michel rates than in the νµ CC events. A constraint would likely be most

effective for the RHC νe sample, where the WS makes up a larger portion of the sample,
5Note that this does not imply that the Michels were successfully reconstructed, just that they made

hits in the detector, so there is a chance we could reconstruct them.
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(a) FHC
Channel Total Events Events w/ True Michel % of Total

νµ → νµ (Sig) 316.63 285.05 90.0%
–νµ → –νµ (WS) 20.96 20.96 100%

(b) RHC
Channel Total Events Events w/ True Michel % of Total

νµ → νµ (WS) 22.11 20.12 91.0%
–νµ → –νµ (Sig) 64.03 64.03 100%

Table 6.4: The number of true signal and wrong-sign νµ events that contain a visible true
Michel electron compared to all events. Events are passing the full νµ selection described
in 5.2.3. Predictions were generated without extrapolation using the best-fit oscillation
parameters found in Ch. 7.

(a) FHC
Channel Total Events Events w/ True Michel % of Total

νµ → νe (Sig) 86.53 24.97 28.9%
–νµ → –νe (WS) 1.31 0.091 7.0%

(b) RHC
Channel Total Events Events w/ True Michel % of Total

νµ → νe (WS) 1.62 0.465 28.7%
–νµ → –νe (Sig) 13.42 0.670 5.0%

Table 6.5: The number of true signal and wrong-sign νe events that contain a visible
true Michel electron compared to all events. Events are passing the full Core νe selection
described in 5.2.2. Predictions were generated without extrapolation using the best-fit
oscillation parameters found in Ch. 7.

and there is the largest discrepancy between the Michel electron rates.

The exact nature of the constraint we can implement will depend on how much of this

effect we can see in reconstructed Michel electrons. If a larger effect is seen, we could

incorporate Michel electron info into a selection to create a new WS-enhanced subsample

or reclaim events. The Michel info on its own is unlikely to be a sufficient selection but

could be combined with some of the ideas discussed earlier in the chapter for reclaiming

events. If a smaller effect is seen we could instead do a fit to the observed Michel rates

while varying the amount of WS, to check that the amount of WS is within expected

levels. If there appears to be a discrepancy in the amount of WS we are estimating then

182



we could include an additional systematic uncertainty. If not, this would remain as a

simple cross-check on the amount of WS background.

We then studied the number-of-Michel-electron (NMichel) distributions for reconstructed

νe and νµ events in the FD, for both FHC and RHC beam modes. The goal was to see

how much WS was present in bins with reconstructed Michel electrons, relative to the

signal, and see if it matched expectations from the truth study. Then, we can scale up

the proportion of WS events in the sample, while keeping the same total, and see whether

it results in a significant change to the observed NMichel distributions. How much the

distribution changes indicates how significant of an effect a Michel constraint on the WS

could have.

First we consider the FD νµ events. Fig. 6.39 shows the NMichel distribution for FD

FHC simulation, for events passing the full νµ selection. From the truth study, we would

expect the WS events in this sample to have a slightly higher rate of Michel electrons

than the signal events. That should manifest as relatively more WS events in the 1 and

2+ NMichel bins. In the left hand plot, we see the total events, with signal and WS

components indicated in purple and green. Since the WS is much smaller than the signal,

in order to compare their shapes we also plot the WS scaled to match the area of the

signal. Comparing the scaled WS and signal, we do see relatively more WS in the 1 Michel

bin, matching the expectation from the truth study. However, in the 2+ Michel bin we

see the opposite, with relatively less WS than signal. We have not yet determined a clear

explanation, but one idea is that there could be more non-Michel backgrounds in that bin

which behave differently from the true Michels.

Next we attempt to determine how much sensitivity the reconstructed Michel electrons

have to the WS rate, by scaling up the proportion of WS events and seeing how the NMichel

distributions change 6. The right hand plot of Fig. 6.39 shows the effect of scaling up the

proportion of WS events on the total. In order to see an effect, the WS needed to be scaled
6To give an example of how the scaling works, imagine there are 100 events total, 90 signal and 10 WS.

If we scale up the WS 100% then we go from 10→20 WS and the signal scales down 90 → 80 to keep the
same total events in the sample. We only considered an increasing WS proportion for this study.
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Figure 6.39: Simulated FD FHC events with 0, 1, or 2+ reconstructed Michel electrons,
for events passing the full FD νµ selection. All histograms are scaled to this analysis’ POT.
The total prediction is shown in black with statistical error bars (

√
N), and is the same

in both histograms. The left shows the signal (νµ) and WS (–νµ) components of the total,
as well as what the WS distribution would look like scaled up to match the size of the
signal. The right shows what the total distribution would look like if we scaled up the WS
by 50%, 100%, and 200% while keeping the same total number of events.

up by a large amount: 50%, 100%, and 200% 7 indicating that the Michels in this sample

may not have much sensitivity. With 200% scaling we see a small increase in the 1 Michel

bin, and a small decrease in the 0 and 2+ bins.

The corresponding distributions for the RHC νµ sample are shown in Fig. 6.40. From

the truth study, we expect the signal events in RHC to have relatively more Michel elec-

trons. This would be seen as relatively fewer WS in the 1 and 2+ NMichel bins. Comparing

the scaled WS to the signal, this expectation is true for the 1 Michel bin, but reversed for

the 2+ Michel bin. The RHC samples have a larger proportion of WS events, so we see

more of an effect when scaling the WS. In the right-hand plot, the 50% scaling now has a

small but visible effect, and the 200% scaling shows a large effect.
7We do not expect our WS to be off by this much. The large deviations are chosen only to understand

the limit of our sensitivity using the Michels.
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Figure 6.40: Simulated FD RHC events with 0, 1, or 2+ reconstructed Michel electrons,
for events passing the full FD –νµ selection. All histograms are scaled to this analysis’ POT.
The total prediction is shown in black with statistical error bars (

√
N) and is the same in

both histograms. The left shows the signal (–νµ) and WS (νµ) components of the total, as
well as what the WS distribution would look like scaled up to match the size of the signal.
The right shows what the total distribution would look like if we scaled up the WS by
50%, 100%, and 200% while keeping the same total number of events.

Next we consider the νe samples. Fig. 6.41 shows the NMichel distributions for FD

FHC simulation, for events passing the full FD Core νe selection. From the truth study, we

expect the WS to have relatively fewer Michels than the signal, however we expect overall

very few WS events. The shape of the scaled WS histogram does match the expectation

from the truth study, but there are so few WS events that even scaling by 200% has a

negligible effect on the total.

Fig. 6.42 shows the corresponding RHC νe distributions. From the truth study we

expect the WS to have relatively more Michels. We also expected this sample to have the

most potential for sensitivity to the WS since there is both a larger amount of WS events,

and the difference in Michel rate between signal/WS is the highest. In the left-hand plot,

the signal and WS are actually at a comparable level even before scaling the WS. We see
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Figure 6.41: Simulated FD FHC events with 0, 1, or 2+ reconstructed Michel electrons,
for events passing the full FD Core νe selection. All histograms are scaled to this analysis’
POT. The total prediction is shown in black with statistical error bars (

√
N) and is the

same in both histograms. The left shows the signal (νe) and WS (–νe) components of the
total, as well as what the WS distribution would look like scaled up to match the size of
the signal. The right shows what the total distribution would look like if we scaled the
WS up by 50%, 100%, and 200% while keeping the same total number of events.

more WS in both 1 and 2+ Michel bins, matching the expectation from the truth study.

Despite this, we still require a large scaling of the WS to see a significant difference in the

total NMichel distributions.

The reconstructed NMichel distributions show varying agreement with the expectations

from the truth study. All the distributions agree with expectation in the 1 NMichel bin,

but some differ in the 2+ bin for an unknown reason. This should be explored further to

determine the cause. In terms of the effectiveness of using the Michel rates for a constraint

on the WS, it seems as though the WS would need to be off by a significant amount, much

more than we expect, for there to be a visible effect in the NMichel distributions. So there

would not be much power in constraining the WS this way. The distributions that have

been shown are for events passing selections, so there may still be some potential for the
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Figure 6.42: Simulated FD RHC events with 0, 1, or 2+ reconstructed Michel electrons,
for events passing the full FD Core –νe selection. All histograms are scaled to this analysis’
POT. The total prediction is shown in black with statistical error bars (

√
N) and is the

same in both histograms. The left shows the signal (–νe) and WS (νe) components of the
total, as well as what the WS distribution would look like scaled up to match the size of
the signal. The right shows what the total distribution would look like if we scaled the
WS up by 50%, 100%, and 200% while keeping the same total number of events.

Michel electrons to be used to reclaim events. The Michel distributions for those events

failing selections should be studied further.
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Chapter 7

3-Flavor Analysis Results

In this chapter we present the results of the joint analysis of 26.61×1020 POT of neu-

trino mode, and 12.5×1020 POT of antineutrino mode beam data. As outlined in Chapter

5, the predicted FD νµ and νe energy spectra, along with the full list of systematic un-

certainties, are fit at once to the observed FD data spectra using either frequentist or

Bayesian techniques, in order to extract a measurement of the oscillation parameters. The

νµ disappearance channel primarily gives us sensitivity to ∆m2
32 and sin2 θ23, while the νe

appearance channel gives us sensitivity to the mass ordering, octant of θ23, and value of

δCP. We start by showing the observed data in the FD. We then present the results of the

frequentist fit to the data. At this time Feldman-Cousins corrections are only available

for a handful of our measurements, due to the significant computational cost of produc-

ing them. The majority of the frequentist results are shown with confidence levels drawn

assuming the Gaussian approximation. While the contours may not exactly contain the

stated coverage, they can still serve as a useful approximation of our results, and be used

to make comparisons between contours under different fitting conditions. The remaining

sections incorporate both frequentist and Bayesian results. We show the impact of the dif-

ferent Daya Bay reactor neutrino constraints on our measurements, and finally, conclude

with a discussion of the new results in context with other results from the field of neutrino

oscillation physics.
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7.1 The Observed Data

Using the νµ selections outlined in Sec. 5.2.3, we observe 384 events in the data, with a

predicted best-fit total of 408.6 (including 11.0 background). We observe 106 –νµ events,

with a predicted best-fit total of 97.7 (including 1.7 background). The energy spectra for

the events are shown in Fig. 7.1, with all hadronic energy bins combined. Figure 7.2 shows

the same distributions split into their hadronic energy bins. In the absence of neutrino
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Figure 7.1: Observed and predicted energy spectra, for νµ (left) and –νµ (right) CC selected
events in the FD. All hadronic energy fraction and transverse momentum quantiles have
been combined in these spectra. The prediction is generated at the frequentist best-fit
point.

0 1 2 3 4
0

1

2

3

4
HadE Fraction 3

0 1 2 3 4 5

worst resolution
HadE Fraction 4

0

1

2

3

4

5
best resolution
HadE Fraction 1 HadE Fraction 2

FD data

Background

Best-Fit Prediction
 syst. rangeσ1-

Wrong Sign bkgd.
Cosmic bkgd.

-beamν

Reconstructed Neutrino Energy [GeV]

E
ve

nt
s 

/ 0
.1

 G
eV

(       )

Figure 7.2: Observed and predicted energy spectra, for νµ (left) and –νµ (right) CC
selected events in the FD, split into four hadronic energy fractions but with the transverse
momentum quantiles combined. The prediction is generated at the frequentist best-fit
point.
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oscillations we would have expected to see ∼2100 νµ events and ∼500 –νµ events, so the

observed event counts show a clear sign of muon neutrino disappearance in our beam. This

can be visualized in Fig. 7.3 which plots the predicted FD energy spectra in the absence of

oscillations on top of the observed spectra for the FHC beam. From this we can also plot

the ratio of oscillated to unoscillated predictions, where we can clearly see the characteristic

dip shape in the data.
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Figure 7.3: Left: Observed and predicted energy spectra, for νµ CC selected events in
the FD, for the oscillated (purple) and unoscillated (red) predictions. Right: Ratio of the
observed data and oscillated prediction to the unoscillated prediction.

Using the νe selections from 5.2.2 we observe 181 events in the data, with a predicted

total of 191.2 events (including 62.5 background). We observe 32 –νe events, with a pre-

dicted total of 31.1 (including 12.2 background). The observation exceeds the expected

background, giving a clear signal of νe appearance in our beam. The νe events for each of

the selected samples are shown in Fig. 7.4. The total observed and predicted νµ (ν̄µ) and

νe (ν̄e) event counts, along with the predicted background components, are summarized in

Table 7.1.

Figures 7.5 and 7.6 show comparisons of the observed number of appearance events

to the predicted number of events under different combinations of the mass ordering, δCP

and sin2 θ23. This can help give context to the full fit results in the next section. Figure

7.5 shows the FHC and RHC appearance samples separately. Neither FHC or RHC data
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Figure 7.4: Observed and predicted energy spectra, for νe (left) and –νe (right) CC selected
events in the FD. The prediction is generated at the frequentist best-fit point.

show a strong preference towards one of the mass orderings, being compatible with either

one over different ranges of δCP. The new low-energy νe sample is also shown on its own.

In this subsample we see slightly more data events than expected, however the best-fit

prediction still falls within 1σ of the data. The excess does give a slight preference towards

the normal mass ordering but the effect on the total νe sample is small.

We can combine the FHC and RHC into a 2D representation (the bi-event plot) shown

in Fig. 7.6. This shows the number of RHC appearance events on the y-axis versus the

number of FHC appearance events on the x-axis. This allows us to look for asymmetry in

the rates of νe and –νe appearance. The ellipses show the predicted event counts in each

beam mode under different combinations of the oscillation parameters. With 181 FHC

events and 32 RHC events, our data falls right in the middle region where the matter

and CP violation effects are degenerate. In other words, we prefer combinations of the

oscillation parameters that lead to similar probability of νe and –νe appearance, such as

the normal mass ordering with δCP near π/2, or the inverted mass ordering with δCP near

3π/2. We disfavor the combinations of oscillation parameters that would lead to a large

asymmetry in the rates of νe vs. –νe, such as the normal mass ordering with δCP near 3π/2,

or the inverted mass ordering with δCP near π/2.
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FHC RHC

Sample νµ νe Low-energy ν̄µ ν̄e

νµ →νµ 372.3 4.3 0.3 24.4 0.2
–νµ →–νµ 24.5 0.1 0.0 71.5 0.2
νµ →νe 0.4 125.3 3.4 0.0 2.1
–νµ →–νe 0.0 1.8 0.1 0.0 18.9
Beam νe+

–νe 0.1 26.1 0.8 0.0 6.5
NC 5.5 16.8 5.3 0.8 2.0
Cosmic 4.4 5.5 0.5 0.7 1.1
Others 1.5 0.8 0.1 0.2 0.1

Signal 397.6 125.3 3.4 96.0 18.9
Background 11.0 55.4 7.1 1.7 12.2

Predicted 408.6 180.7 10.5 97.7 31.1
Observed 384 169 12 106 32

Table 7.1: Predicted event counts for the νµ, νe and Low-energy selected samples in the
neutrino beam, and ν̄µ and ν̄e samples in the antineutrino beam. The low/high PID, and
Peripheral samples are combined in the νe (ν̄e) columns, while the Low-energy sample
is shown separately due to its novel status. Any oscillation channels not listed are in
“Others”. Signal in the νµ (ν̄µ) columns includes wrong-sign events and some νµ from
Others. Predictions were generated using the best-fit oscillation parameters found from a
frequentist fit to the data with the 1D Daya Bay constraint on sin2 2θ13 [139].
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value of sin2 θ23, while the band shows the variation over a wider range of sin2 θ23 values
listed in the top right. The total observed data events are shown in gray along with the
statistical 1σ error bands. Shown for the full FHC (including LowE) and RHC samples on
top, with the LowE sample additionally shown on its own below.

193



50 100 150 200 250
Total events - neutrino beam

20

30

40

50

60

T
ot

al
 e

ve
nt

s 
- 

an
tin

eu
tr

in
o 

be
am

= 0CPδ /2π= CPδ

π= CPδ /2π= 3CPδ

2eV-310×2.47−=2
32m∆

Inverted MO

2eV-310×2.43+=2
32m∆

  Normal MO

=0.4623θ2sin
        LO

=0.5423θ2sin
        UO

=0.08513θ22sin
NOvA FD

)ν POT-equiv (20 10×26.61 
)ν POT (20 10×12.50 

NOvA Preliminary

Best Fit Prediction

NOvA Preliminary

Figure 7.6: Bi-event plot showing total predicted appearance events in RHC and FHC
for different combinations of octant and hierarchy. Each ellipse uses the values of mass
ordering and octant indicated by the color and closest label. The value of δCP is varied to
trace out the ellipse, with important values marked. Observed number of events is shown
with errors. The best-fit point in the UO, Normal MO is indicated. Systematic pulls are
included in the predictions. Low-energy sample is included in both observed and predicted
event counts. Our data falls in the middle region, away from combinations of oscillation
parameters that lead to a large asymmetry in –νe vs. νe events.
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7.2 Fits and Results

We begin by presenting analysis results using the frequentist approach to fitting. First,

doing a stats-only fit, and then incorporating all systematics. The available Feldman-

Cousins corrections are shown in the subsequent section.

Figure 7.7 shows the 2D confidence-level contours in ∆m2
32 vs. sin2 θ23, and sin2 θ23

vs. δCP space, from a frequentist fit to the data using the 1D Daya Bay constraint on

sin2 2θ13. Figure 7.8 shows 1D fits for ∆m2
32, sin

2 θ23, and δCP. The oscillation parameters

not present on the axes of a given plot have been profiled over at each point in the space.

These are stats-only fits, so the systematic parameters are not included in the log-likelihood

minimization. We find a best fit point in the normal mass ordering and upper octant of θ23.

The allowed values of θ23 are compatible with maximal mixing in both mass orderings. As

hinted at by Fig. 7.6, we disfavor regions of parameter space that lead to high asymmetry

in νe (ν̄e) appearance rates. Notably, in the inverted mass ordering we exclude most values

of δCP between 0 and π at greater than 3σ.
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Figure 7.7: Frequentist 1,2,3σ confidence level contours from stats-only fits to the full
FHC and RHC datasets, using the 1D Daya Bay constraint on sin2 2θ13. Top panels show
normal mass ordering (NO) in blue, and bottom panels show inverted mass ordering (IO)
in red. The best-fit point is found in the normal mass ordering, and upper octant of θ23.
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Figure 7.8: 1D stats-only frequentist fits to the full FHC and RHC datasets, using the 1D
Daya Bay constraint on sin2 2θ13. Assuming the inverted mass ordering (left) and normal
mass ordering (right).
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Next we repeat the fits, this time including the systematic terms in the log-likelihood

minimization. At each point in the phase space of a given plot, we profile over all the

systematic parameters as well as the other oscillation parameters. Figure 7.9 shows the

resulting 2D confidence-level contours, and Fig. 7.10 shows the results of the 1D fits.

These are the results on which Feldman-Cousins corrections will be applied. The inclusion

of systematics broadens the contours slightly, while keeping the same general conclusions

from the stats-only fits. With the systematics included in the fit, and using the 1D Daya

Bay constraint on sin2 2θ13, we find a best-fit point in the normal mass ordering and upper

octant of θ23, with the oscillation parameters

• ∆m2
32 = 2.433

• sin2 θ23 = 0.546

• δCP = 0.87 .

The systematic uncertainties associated with each of these parameters at the best-fit point

is summarized in Fig. 7.11. Our largest systematic uncertainty comes from detector cali-

brations, followed by either lepton reconstruction (for the ∆m2
32 measurement) or neutrino

cross sections (for δCP and sin2 θ23). The statistical uncertainty is still dominant for all

measurements.
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Figure 7.9: Frequentist 1,2,3σ confidence level contours from fits to the full FHC and
RHC datasets, profiling over all systematic uncertainties, and using the 1D Daya Bay
constraint on sin2 2θ13. Top panels show normal mass ordering (NO) in blue, and bottom
panels show inverted mass ordering (IO) in red.
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Figure 7.10: 1D frequentist fits to the full FHC and RHC datasets, profiling over all
systematic uncertainties, and using the 1D Daya Bay constraint on sin2 2θ13. Assuming
the inverted mass ordering (left) and normal mass ordering (right).
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32,

sin2 θ23, and δCP at the best-fit point. From [157].
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As an additional exercise, we can perform the fits while excluding a subset of our data

(and corresponding predictions) and compare with the full result above. This can give

us a better sense of the effect the excluded sample has on the full result. Two studies of

interest are the results without the RHC data (an FHC-only fit) and the results without

the νe data (a νµ-only fit). The plots shown are for stats-only fits with the 1D Daya Bay

constraint. Figure 7.12 shows the FHC-only fits. Compared to the full stats-only fit, the

contours are slightly expanded and shifted down to lower values of sin2 θ23. Notably, the

best-fit point has also changed from the upper to lower octant of θ23. Figure 7.13 shows

the νµ-only fits. These include both FHC and RHC νµ (ν̄µ) samples, but no νe samples.

From this we can clearly see how all of our sensitivity to δCP comes from the νe appearance

measurement, since the contour is completely flat in that space now. For the ∆m2
32 vs.

sin2 θ23 space, the contours have expanded slightly, and the best fit has shifted to a higher

value of sin2 θ23.
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Figure 7.12: Frequentist 1,2,3σ confidence level contours from stats-only fits to the FHC-
only νµ +νe dataset, using the 1D Daya Bay constraint on sin2 2θ13. Top panels show
normal mass ordering (NO) in blue, and bottom panels show inverted mass ordering (IO)
in red.
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Figure 7.13: 1,2,3σ confidence level contours from stats-only fits to the νµ-only dataset,
using the 1D Daya Bay constraint on sin2 2θ13. Top panels show normal mass ordering
(NO) in blue, and bottom panels show inverted mass ordering (IO) in red.
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7.2.1 Feldman-Cousins Corrections

The frequentist results shown so far will need to be Feldman-Cousins corrected to ensure

accurate coverage before final publication. Currently we have corrections for the ∆m2
32

vs. sin2 θ23 fit in the normal mass ordering, and a calculation of our preference for the

normal mass ordering under different reactor constraints. Efforts are underway to produce

corrections for the remaining measurements. Figure 7.14 shows the corrected surface. The

best-fit oscillation parameters with corrected 1σ uncertainties are shown in the table in

Fig. 7.15, along with the significance with which we prefer the normal mass ordering under

the 1D or 2D Daya Bay constraints.
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Figure 7.14: Feldman-Cousins corrected 68% and 90% confidence level contours for the
∆m2

32 vs. sin2 θ23 space, found from a frequentist fit to the data. The fit included the 1D
Daya Bay reactor constraint and all systematic uncertainties. From [158].
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Parameter Best-fit Normal Ordering Preference (σ)

sin2 (θ23) 0.546+0.032
−0.075

W/ 1D Daya Bay
constraint

p-value 0.1731
1.36σ

∆m2
32

(
10−3 eV2

)
2.433+0.035

−0.036
W/ 2D Daya Bay

constraint
p-value 0.1158

1.57σδCP (π) 0.875

Figure 7.15: Left: The best-fit oscillation parameters and FC-corrected 1σ uncertainties
from the frequentist fit to the data, using the 1D Daya Bay constraint. Right: The
significance with which we prefer the normal mass ordering when using the 1D or 2D Daya
Bay constraints. From [158].

7.2.2 The Effect of Reactor Neutrino Constraints

Constraints from reactor neutrino experiments like Daya Bay are expected to enhance

our mass ordering sensitivity, as described by Nunokawa, Parke, and Funchal [159]. Figure

7.16 shows the 1D stats-only fits to ∆m2
32 using different options for the reactor constraint.

Unlike the other 1D frequentist plots in this chapter, the ∆χ2 values in both mass ordering

are calculated with respect to the global best-fit minimum in the normal mass ordering, to

illustrate the difference in χ2 between normal and inverted mass orderings. As we go from

no reactor constraint, to a 1D and then 2D constraint, the difference between the minimum

χ2 in normal and inverted mass ordering increases. This can be seen as the inverted curves

being displaced further upwards, showing our enhanced preference for the normal mass

ordering. Figure 7.17 shows a similar result from the Bayesian framework. The plot shows

the marginalized posterior probability densities for ∆m2
32 using the same three options

for reactor constraint (no constraint, 1D, or 2D Daya Bay constraint). Without a reactor

constraint, we have a 70% preference for the normal mass ordering (i.e. 70% of the total

posterior density is in the normal mass ordering). With the 1D Daya Bay constraint this

increases to 77%, and with the 2D constraint it increases further to an 87% preference.
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Figure 7.16: 1D stats-only fits of ∆m2
32 using no reactor constraint (top), the 1D Daya

Bay constraint (middle), or the 2D Daya Bay constraint (bottom). Here the significance
is drawn relative to the global best-fit point, to highlight the increasing preference for the
normal MO we get by applying the 1D and then 2D Daya Bay constraints.
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Figure 7.17: Marginalized posterior probability densities for ∆m2
32 in each mass ordering,

from the Bayesian fit with systematics included, and for three different reactor constraint
options. Applying the 1D and then 2D Daya Bay constraints increases our preference for
the normal mass ordering compared to the NOvA-only measurement. From [160].

The reactor constraint also serves to enhance our preference for the upper octant of

θ23. Figure 7.18 shows the 1D stats-only frequentist fits for sin2 θ23 using the three reac-

tor constraint options. There is a slight degeneracy, with local minima in either octant.

Without a reactor constraint we have a slight preference for the lower octant of θ23. Ap-

plying the 1D constraint changes the preference to the upper octant, and applying the

2D constraint enhances the preference further. It is not obvious in the 1D plots how the

degeneracy in sin2 θ23 is broken by the reactor constraint. To see how, we can look at a 2D

plot of sin2 2θ13 vs. sin2 θ23. Figure 7.19 shows the Bayesian posterior density and credible

regions in sin2 2θ13 vs. sin2 θ23 from a fit without any reactor constraints (NOvA-only

measurement). The 1σ range from the 1D sin2 2θ13 Daya Bay measurement is overlaid to

illustrate the effect. There is more overlap between the Daya Bay result and the posterior

density in the upper octant.
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Figure 7.18: 1D stats-only frequentist fits of sin2 θ23 using no reactor constraint (top),
the 1D Daya Bay constraint (middle), or the 2D Daya Bay constraint (bottom). Applying
the 1D constraint shifts our preference from the lower to upper octant of θ23, with the 2D
constraint increasing the preference further.
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sin2 2θ13 marginalized jointly over the mass orderings. Posteriors are extracted from a fit
to NOvA data without any reactor constraints, with results from the Daya Bay experiment
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7.2.3 NOvA Results in a Global Context

Here we compare the new results to both NOvA’s previous results, and the results of the

broader neutrino oscillation physics community. Figure 7.20 shows a comparison of the

FC-corrected frequentist confidence regions for ∆m2
32 vs. sin2 θ23 to those from NOvA’s

2020 analysis. The new result occupies a similar region of phase space but with tighter

constraints in both directions compared to the previous result. Figure 7.21 shows a com-

parison of the new result to results from other neutrino oscillation experiments. We see

good agreement between all results in this space. Figure 7.22 shows our central values and

1σ ranges of ∆m2
32 from the Bayesian analysis, compared to those from other experiments.

With this new result, NOvA currently has the most precise single-experiment measurement

of ∆m2
32, as shown in Fig. 7.22.
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Figure 7.20: Comparison of the ∆m2
32 vs. sin2 θ23 FC-corrected 90% confidence level

contour from this analysis to the one from NOvA’s 2020 analysis [113]. From [158].
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In the sin2 θ23 vs. δCP space NOvA results are again consistent with our 2020 results,

but with improved sensitivity. However, there is a small tension with the results from

T2K in the normal MO that has persisted since the 2020 analysis. Figure 7.23 shows

the Bayesian 68% credible regions in sin2 θ23 vs. δCP for recent NOvA and T2K results.

In the normal MO NOvA prefers a region of δCP that leads to low asymmetry in νe (ν̄e)

appearance rates, while T2K prefers a large asymmetry. In the inverted mass ordering there

is good agreement between experiments. Currently the difference between the experiments

does not occur at a high degree of statistical significance, with more overlap at 2 and 3σ

levels. If the tension is to be resolved, additional datataking, particularly in antineutrino

mode, will be necessary.
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Figure 7.23: New NOvA results for sin2 θ23 vs. δCP in the Normal (left) and Inverted
(right) MOs, compared with previous NOvA results [113, 138] and results from other
experiments [161, 164, 170], including the 2024 joint NOvA-T2K analysis [171, 172]. All
of the credible intervals are extracted from Bayesian analyses. The star indicates NOvA’s
highest probability density point from this analysis. From [169].
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Chapter 8

Conclusions

This thesis presents an analysis of 26.61×1020 POT of neutrino-mode and 12.5×1020 POT

of antineutrino-mode beam data. On top of doubling our FHC dataset, this analysis

included improvements to the light-model tune, improved systematic uncertainties, a new

sample of νe events, and an additional focus on reactor neutrino constraints including our

first implementation of a constraint on ∆m2
32. In the muon neutrino disappearance channel

we get sensitivity to ∆m2
32 and sin2 θ23 primarily through measurement of the minimum of

the oscillation dip region of the energy spectra. The frequentist fit to the data, using the 1D

Daya Bay constraint on sin2 2θ13, and with Feldman-Cousins corrections applied, yielded

best-fit values of ∆m2
32 = 2.433+0.035

−0.036 (10−3 eV2), and sin2 θ23 = 0.546+0.032
−0.075. Without a

reactor constraint, the Bayesian analysis finds ∆m2
32 = 2.429+0.038

−0.037 (10−3 eV2) which at

1.5% uncertainty is currently the most accurate single-experiment measurement of ∆m2
32.

In the electron neutrino appearance channel we get sensitivity to the mass ordering, value

of δCP, and octant of θ23 through measurement of asymmetry in the rates of νe (ν̄e)

appearance. Our best-fit value falls in the normal mass ordering and upper-octant of θ23,

with δCP = 0.875π. With the 1D Daya Bay constraint applied we have a 1.36σ preference

for the normal mass ordering, which increases to 1.57σ when applying the 2D Daya Bay

constraint. Our data prefers combinations of oscillation parameters that lead to little

asymmetry in the νe (ν̄e) appearance channels. We disfavor regions of high asymmetry,
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excluding values of δCP from 0-π, and δCP = 2π, in the inverted mass ordering at >3σ. This

puts us in a low-significance tension with T2K [173], who prefer oscillation parameters that

lead to significant asymmetry in the appearance channel. Along with this mild tension,

there are many open questions that warrant further analysis. The true mass ordering,

octant of θ23, and value of δCP are still not known at a high significance level.

NOvA has an additional 2.8× 1020 POT of antineutrino data waiting to be analyzed,

and hopes to take an additional 1.5-2.5×1020 POT of antineutrino data before concluding

operations at the beginning of 2027. This is to enable the beginning a long shutdown period

in preparation for DUNE, which will make its first measurements early next decade. In this

interim period, NOvA will release it’s final 3-flavor oscillation results using our full dataset.

This will be among the last new long-baseline results for the community until the next-

generation of experiments such as DUNE come online. Further analysis improvements are

being explored to ensure we get the maximum sensitivity possible out of this measurement.

NOvA has data from a test-beam run that are being analyzed to improve our large energy

scale uncertainties. Updated simulation models and reconstruction techniques have been

incorporated into the production of our final dataset. Some of the studies to reclaim

neutrino events that were conducted for this analysis can then be re-examined with more

data and re-tuned selections. The improvements to Michel electron reconstruction will be

fully incorporated as well, and explored further for potential sensitivity improvements.

Along with our independent results, collaboration with other experiments will be crit-

ical. NOvA and T2K have performed a joint 3-flavor analysis that is being prepared for

publication [171, 172]. We continue to collaborate and plan further joint analyses that

can exploit the unique qualities of each experiment to break degeneracies, and hopefully

resolve the tension between them. The next-generation reactor neutrino experiment JUNO

is expected to begin taking data this year, and will likely be the first of the next-generation

experiments to publish results. If NOvA’s final 3-flavor results can push the uncertainty

on ∆m2
32 to the 1% level, then we could combine our results with JUNO’s high-precision

measurement of ∆m2
32 to make an even better measurement of the mass ordering [159].

216



References

[1] J. Chadwick. The intensity distribution in the magnetic spectrum of β particles from

radium (B + C). Verh. Phys. Gesell., 16:383–391, 1914.

[2] E. Fermi. Versuch einer theorie der β-strahlen. i. I. Z. Physik, 88, March 1934.

[3] B. Pontecorvo. Inverse beta process. Camb. Monogr. Part. Phys. Nucl. Phys. Cos-

mol., 1:25–31, 1991.

[4] C. Cowan, F. Reines, F. Harrison, H. Kruse, and A. McGuire. Detection of the free

neutrino: a confirmation. Science, 124, 1956.

[5] G. Danby et al. Observation of high-energy neutrino reactions and the existence of

two kinds of neutrinos. Phys. Rev. Lett., 9, 1962.

[6] Martin L. Perl et al. Evidence for Anomalous Lepton Production in e+ - e- Annihi-

lation. Phys. Rev. Lett., 35:1489–1492, 1975.

[7] T. Patzak (DONUT). First direct observation of the tau-neutrino. Europhys. News,

32:56–57, 2001.

[8] B. Pontecorvo. Mesonium and Antimesonium. Sov. Phys. JETP, 6:429–431, 1958.

[9] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model

of elementary particles. Prog. Theor. Phys., 28:870–880, 1962.

217

http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1126/science.124.3212.103
http://dx.doi.org/10.1103/PhysRevLett.9.36.
http://dx.doi.org/10.1103/PhysRevLett.35.1489
http://dx.doi.org/10.1051/epn:2001205
http://dx.doi.org/10.1051/epn:2001205
http://dx.doi.org/10.1143/PTP.28.870


[10] B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic

Charge. Zh. Eksp. Teor. Fiz., 53:1717–1725, 1967.

[11] Raymond Davis, Don S. Harmer, and Kenneth C. Hoffman. Search for neutrinos

from the sun. Phys. Rev. Lett., 20:1205–1209, May 1968.

[12] Y. Fukuda et al. (Super-Kamiokande). Evidence for oscillation of atmospheric neu-

trinos. Phys. Rev. Lett., 81:1562–1567, 1998.

[13] Q. Ahmad et al. (SNO Collaboration). Direct evidence for neutrino flavor transfor-

mation from neutral-current interactions in the sudbury neutrino observatory. Phys.

Rev. Lett., 89:011301, Jun 2002.

[14] Wikimedia Commons. Standard model of elementary particlese. Web image, 2019.

Accessed: 2025-7-27.

[15] Fernanda Psihas. Measurement of Long Baseline Neutrino Oscillations and Improve-

ments from Deep Learning. PhD thesis, Indiana U., 2018.

[16] Alexander Craig Booth. Electron neutrino appearance at the NOvA experiment. PhD

thesis, Univ. Of Sussex, 10 2021.

[17] Pierre Lasorak. A search for neutrino-induced single photons and measurement of

oscillation analysis systematic errors with electron and anti-electron neutrino selec-

tions, using the off-axis near detector of the Tokai to Kamioka experiment. PhD

thesis, Queen Mary, U. of London, 2018.

[18] Miranda Rabelhofer. Study of neutron detector response and related systematic un-

certainties in the NOvA oscillation analysis. PhD thesis, Iowa State U., 2023.

[19] J. A. Formaggio and G. P. Zeller. From ev to eev: Neutrino cross sections across

energy scales. Rev. Mod. Phys., 84:1307–1341, Sep 2012.

218

http://dx.doi.org/10.1103/PhysRevLett.20.1205
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg
https://sussex.figshare.com/articles/thesis/Electron_neutrino_appearance_at_the_NOvA_experiment/23485028
http://dx.doi.org/10.1103/RevModPhys.84.1307


[20] P. Hernandez. Neutrino Physics. In 8th CERN–Latin-American School of High-

Energy Physics, pages 85–142, 2016. 10.5170/CERN-2016-005.85.

[21] L. Wolfenstein. Neutrino Oscillations in Matter. Phys. Rev. D, 17:2369–2374, 1978.

[22] S. P. Mikheyev and A. Yu. Smirnov. Resonance Amplification of Oscillations in

Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys., 42:913–917, 1985.

[23] S. Navas et al. (Particle Data Group). Review of particle physics. Phys. Rev. D,

110(3):030001, 2024.

[24] Peter B. Denton and Stephen J. Parke. Smallness of matter effects in long-baseline

muon neutrino disappearance. Phys. Rev. D, 109:053002, Mar 2024.

[25] Hiroshi Nunokawa, Stephen J. Parke, and Jose W. F. Valle. CP Violation and

Neutrino Oscillations. Prog. Part. Nucl. Phys., 60:338–402, 2008.

[26] Mattias Blennow and Alexei Yu. Smirnov. Neutrino propagation in matter. Adv.

High Energy Phys., 2013:972485, 2013.

[27] I. Singh. New Perspectives - Three-Flavor Neutrino Oscillations at NOvA. NOvA

Internal Documents docid=63057, 2024.

[28] Nitish Nayak. Pedagogical Bi-Probability Plots – Blessing Package. NOvA Internal

Documents docid=38454, 2019.

[29] Jeremy Wolcott. New neutrino oscillation results from nova with 10 years of data.

Zenodo. https://doi.org/10.5281/zenodo.12704805, June 2024.

[30] T. Lackey. US Map with NOvA Baseline . NOvA Internal Documents docid=66945,

2025.

[31] Katsuya Yonehara, Sudeshna Ganguly, Don Athula Wickremasinghe, Pavel Snopok,

and Yiding Yu. Exploring the Focusing Mechanism of the NuMI Horn Magnets. 5

2023.

219

http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1103/PhysRevD.110.030001
http://dx.doi.org/10.1103/PhysRevD.110.030001
http://dx.doi.org/10.1103/PhysRevD.109.053002
http://dx.doi.org/10.1016/j.ppnp.2007.10.001
http://dx.doi.org/10.1155/2013/972485
http://dx.doi.org/10.1155/2013/972485
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=63057
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=38454
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=66945


[32] Accelerator Division Operations Department. Concepts Rookie Book. Tech. Rep.

(Fermilab, 2020).

[33] Fermilab Creative Services. ’fcs still photos’. https://mod.fnal.gov. Accessed Jan

1st, 2025.

[34] Katsuya Yonehara (NuMI). Megawatt upgrade of NuMI target system. PoS, Nu-

Fact2021:107, 2022.

[35] P. Adamson et al. The NuMI neutrino beam. Nucl. Instrum. Methods Phys Res.,

Sect. A, 806:279–306, 2016.

[36] J. Hylen. NuMI Status . NOvA Internal Documents docid=29534, 2018.

[37] S. Kopp et al. Secondary beam monitors for the numi facility at fnal. Nucl. Instrum.

Meth. A, 568(2):503–519, December 2006.

[38] D. S. Ayres et al. (NOvA). The NOvA Technical Design Report. October 2007.

[39] M. D. Tutto. Blessing Package - Beam Simulation Plots. NOvA Internal Documents

docid=13524, 2015.

[40] Erika Catano-Mur. Constraints on neutrino oscillation parameters with the NOvA

experiment. PhD thesis, Iowa State University, 2018.

[41] M. Rabelhofer. Ben+Michel Decomposition Blessing Package 2020. NOvA Internal

Documents docid=45865, 2020.

[42] R.L. Talaga et al. Pvc extrusion development and production for the nova neutrino

experiment. Nucl. Instrum. Meth. A, 861:77–89, 2017.

[43] The NOvA APD is a custom variant of the Hamamatsu S8550

https://www.hamamatsu.com/us/en/product/optical-sensors/apd/si-apd-

array/S8550-02.html.

220

https://operations.fnal.gov/rookie_books/concepts.pdf
https://mod.fnal.gov/mod/stillphotos/2014/0000/14-0007-01D.hr.jpg
http://dx.doi.org/10.22323/1.402.0107
http://dx.doi.org/10.22323/1.402.0107
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
http://dx.doi.org/https://doi.org/10.1016/j.nima.2015.08.063
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=29534&filename=2018-05-10%20NUMI%20Status%20NOVA%20collab.pdf&version=1
http://dx.doi.org/10.1016/j.nima.2006.07.062
http://dx.doi.org/10.1016/j.nima.2006.07.062
http://dx.doi.org/10.2172/935497
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=13524
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=45865
http://dx.doi.org/https://doi.org/10.1016/j.nima.2017.03.004


[44] A. Salles. Press Release: Fermilab’s 500-mile neutrino experiment up and run-

ning. https://news.fnal.gov/2014/10/fermilabs-500-mile-neutrino-experiment-up-

and-running/, 2014.

[45] A. Norman (NOvA). The NOvA Data Acquisition System. J. Phys. Conf. Ser.,

396:012035, 2012.

[46] J. Zalesak. The NOvA Far Detector Data Acquisition System. NOvA Internal

Documents docid=10032, 2013.

[47] M. A. Acero et al. (NOvA). Supernova neutrino detection in NOvA. JCAP, 10:014,

2020.

[48] E. Niner. Timing Calibration Technical Note. NOvA Internal Documents do-

cid=12570, 2015.

[49] D. Bhattarai. APS 2022 Data Quality Talk: Blessing Package. NOvA Internal

Documents docid=54441, 2022.

[50] A. Cooleybeck. Blessing package for FD All POT plots. NOvA Internal Documents

docid=62786, 2024.

[51] R. Hatcher. Simulation Tools in Neutrino Experiments. NOvA Internal Documents

docid=14441, 2013.

[52] Júlia Tena-Vidal et al. Neutrino-Nucleon Cross-Section Model Tuning in GENIE v3.

FERMILAB-PUB-20-531-SCD-T, 4 2021.

[53] Geant4 Collaboration. Geant4 10.4 release notes. geant4-data.web.cern.ch,

https://geant4-data.web.cern.ch/ ReleaseNotes/ReleaseNotes4.10.4.html, 2017.

[54] L. Aliaga. 2017-2018 Beam Plots. NOvA Internal Documents docid=20843, 2018.

[55] L. Aliaga et al. (MINERvA). Neutrino Flux Predictions for the NuMI Beam. Phys.

Rev. D, 94(9):092005, 2016. [Addendum: Phys.Rev.D 95, 039903 (2017)].

221

http://dx.doi.org/10.1088/1742-6596/396/1/012035
http://dx.doi.org/10.1088/1742-6596/396/1/012035
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=10032
http://dx.doi.org/10.1088/1475-7516/2020/10/014
http://dx.doi.org/10.1088/1475-7516/2020/10/014
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=12570&filename=timing_tech.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=12570&filename=timing_tech.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=54441
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62786
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=14441&filename=Neutrino-Simulation-Chain.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=20843
http://dx.doi.org/10.1103/PhysRevD.94.092005
http://dx.doi.org/10.1103/PhysRevD.94.092005


[56] C. Alt et al. (NA49). Inclusive production of charged pions in p+C collisions at

158-GeV/c beam momentum. Eur. Phys. J. C, 49:897–917, 2007.

[57] J. Wolcott. Recent Cross Section Work From NOvA. In 18th International Workshop

on Neutrino Factories and Future Neutrino Facilities Search, 11 2016.

[58] M. Martinez Casales. Constraining neutrino interaction uncertainties for oscillation

measurements in the NOvA experiment using Near Detector data. PhD thesis, Iowa

State U. (main), Iowa State U., 2023.

[59] M. Martinez Casales. Ana 2024 (prod5.1) MEC tuning blessing package. NOvA

Internal Documents docid=62915, 2024.

[60] J. Nieves, J. E. Amaro, and M. Valverde. Inclusive quasi-elastic neutrino reactions.

Phys. Rev. C, 70:055503, 2004. [Erratum: Phys.Rev.C 72, 019902 (2005)].

[61] J. Nieves et al. Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C,

83:045501, Apr 2011.

[62] R. Gran, J. Nieves, F. Sanchez, and M. J. Vicente Vacas. Neutrino-nucleus quasi-

elastic and 2p2h interactions up to 10 GeV. Phys. Rev. D, 88(11):113007, 2013.

[63] Ch. Berger and L. M. Sehgal. Lepton mass effects in single pion production by

neutrinos. Phys. Rev. D, 76:113004, Dec 2007.

[64] Aaron S. Meyer, Minerba Betancourt, Richard Gran, and Richard J. Hill. Deuterium

target data for precision neutrino-nucleus cross sections. Phys. Rev. D, 93:113015,

Jun 2016.

[65] A. Bodek and U. K. Yang. Modeling deep inelastic cross-sections in the few GeV

region. Nucl. Phys. B Proc. Suppl., 112:70–76, 2002.

222

http://dx.doi.org/10.1140/epjc/s10052-006-0165-7
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62915
http://dx.doi.org/10.1103/PhysRevC.70.055503
http://dx.doi.org/10.1103/PhysRevC.83.045501
http://dx.doi.org/10.1103/PhysRevC.83.045501
http://dx.doi.org/10.1103/PhysRevD.88.113007
http://dx.doi.org/10.1103/PhysRevD.76.113004
http://dx.doi.org/10.1103/PhysRevD.93.113015
http://dx.doi.org/10.1103/PhysRevD.93.113015
http://dx.doi.org/10.1016/S0920-5632(02)01755-3


[66] Costas Andreopoulos, Christopher Barry, Steve Dytman, Hugh Gallagher, Tomasz

Golan, Robert Hatcher, Gabriel Perdue, and Julia Yarba. The GENIE Neutrino

Monte Carlo Generator: Physics and User Manual. arXiv 1510.05494, June 2015.

[67] B. W. Allardyce et al. Pion reaction cross-sections and nuclear sizes. Nucl. Phys. A,

209:1–51, 1973.

[68] A. Saunders, S. Hoeibraten, J. J. Kraushaar, B. J. Kriss, R. J. Peterson, R. A.

Ristinen, J. T. Brack, G. Hofman, E. F. Gibson, and C. L. Morris. Reaction and

total cross-sections for low-energy pi+ and pi- on isospin zero nuclei. Phys. Rev. C,

53:1745–1752, 1996.

[69] O. Meirav, E. Friedman, R. R. Johnson, R. Olszewski, and P. Weber. Low-energy

Pion - Nucleus Potentials From Differential and Integral Data. Phys. Rev. C, 40:843–

849, 1989.

[70] S. M. Levenson et al. Inclusive pion scattering in the delta (1232) region. Phys. Rev.

C, 28:326–332, 1983.

[71] D. Ashery, I. Navon, G. Azuelos, H. K. Walter, H. J. Pfeiffer, and F. W. Schleputz.

True Absorption and Scattering of Pions on Nuclei. Phys. Rev. C, 23:2173–2185,

1981.

[72] D. Ashery et al. Inclusive pion single charge exchange reactions. Phys. Rev. C,

30:946–951, 1984.

[73] E. S. Pinzon Guerra et al. (DUET). Measurement of σABS and σCX of π+ on carbon

by the Dual Use Experiment at TRIUMF (DUET). Phys. Rev. C, 95(4):045203,

2017.

[74] O. Samoylov. Birks fit validation for results from Dubna scintillator stand measure-

ment. NOvA Internal Documents docid=181120, 2018.

223

http://dx.doi.org/10.1016/0375-9474(73)90049-3
http://dx.doi.org/10.1016/0375-9474(73)90049-3
http://dx.doi.org/10.1103/PhysRevC.53.1745
http://dx.doi.org/10.1103/PhysRevC.53.1745
http://dx.doi.org/10.1103/PhysRevC.40.843
http://dx.doi.org/10.1103/PhysRevC.40.843
http://dx.doi.org/10.1103/PhysRevC.28.326
http://dx.doi.org/10.1103/PhysRevC.28.326
http://dx.doi.org/10.1103/PhysRevC.23.2173
http://dx.doi.org/10.1103/PhysRevC.23.2173
http://dx.doi.org/10.1103/PhysRevC.30.946
http://dx.doi.org/10.1103/PhysRevC.30.946
http://dx.doi.org/10.1103/PhysRevC.95.045203
http://dx.doi.org/10.1103/PhysRevC.95.045203
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=34223&filename=181120-Samoylov-BirksFitValidation.pdf&version=1


[75] A. Aurisano, C. Backhouse, R. Hatcher, N. Mayer, J. Musser, R. Patterson,

R. Schroeter, and A. Sousa (NOvA). The NOvA simulation chain. J. Phys. Conf.

Ser., 664(7):072002, 2015.

[76] P. Balaban, P.E. Fleischer, and H. Zucker. The probability distribution of gains in

avalanche photodiodes. IEEE Transactions on Electron Devices, 23(10):1189–1190,

1976.

[77] Chris Hagmann, David Lange, and Douglas Wright. Cosmic-ray shower generator

(cry) for monte carlo transport codes. In 2007 IEEE Nuclear Science Symposium

Conference Record, volume 2, pages 1143–1146, 2007.

[78] Tyler Alion. Third Analysis: Absolute Calibration Technote. NOvA Internal Docu-

ments docid=23372, 2017.

[79] R. L. Workman et al. (Particle Data Group). Review of Particle Physics. PTEP,

2022:083C01, 2022.

[80] FD Prod5.1 Calibration Validation. L. Koerner and J. Lesmeister. NOvA Internal

Documents docid=54054, 2022.

[81] L. Vinton. Calorimetric Energy Scale Calibration of the NOvA Detectors. NOvA

Internal Documents docid=13579, 2015.

[82] C. Backhouse, A. Radovic, P.Singh, and M. Campbell. The Attenuation and Thresh-

old Calibration of the NOvA detectors. NOvA Internal Documents docid=13579,

2017.

[83] A. Lister and J. Trokan-Tenorio. Calibration of Periods 12-14 Data in the NOvA

Near and Far Detectors . NOvA Internal Documents docid=60838, 2024.

[84] C. Green, J. Kowalkowski, M. Paterno, M. Fischler, L. Garren, and Q. Lu. The Art

Framework. J. Phys. Conf. Ser., 396:022020, 2012.

224

http://dx.doi.org/10.1088/1742-6596/664/7/072002
http://dx.doi.org/10.1088/1742-6596/664/7/072002
http://dx.doi.org/10.1109/T-ED.1976.18570
http://dx.doi.org/10.1109/T-ED.1976.18570
https://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=23372
http://dx.doi.org/10.1093/ptep/ptac097
http://dx.doi.org/10.1093/ptep/ptac097
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=54054&filename=ValidCalib_fd_prod5.1.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=13579&filename=calib_technote_3rdana.pdf&version=35
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=13579&filename=calib_technote_3rdana.pdf&version=35
http://dx.doi.org/10.1088/1742-6596/396/2/022020


[85] F. Psihas. Event Displays for Nue Selected Events. NOvA Internal Documents

docid=15647, 2016.

[86] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density

peaks. Science, 344(6191):1492–1496, 2014.

[87] D. Pershey, J. Huang, and M. Judah. TDSlicer Technote. NOvA Internal Documents

docid=27689, 2019.

[88] R. C. Prim. Shortest connection networks and some generalizations. The Bell System

Technical Journal, 36(6):1389–1401, 1957.

[89] M. Baird, J. Bian, M. Messier, E. Niner, D. Rocco, and K. Sachdev. Event recon-

struction techniques in nova. Journal of Physics: Conference Series, 664(7):072035,

dec 2015.

[90] Leandro A.F. Fernandes and Manuel M. Oliveira. Real-time line detection through

an improved hough transform voting scheme. Pattern Recognition, 41(1):299–314,

2008.

[91] Mattias Ohlsson. Extensions and explorations of the elastic arms algorithm. Com-

puter Physics Communications, 77(1):19–32, 1993.

[92] R. Raddatz. KalmanTrack Technical Note. NOvA Internal Documents docid=13545,

2015.

[93] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82(1):35–45, 03 1960.

[94] B. Rebel. A Window Tracking Algorithm for Cosmic Ray Muons. NOvA Internal

Documents docid=15997, 2016.

[95] D. Pershey. MEFinder Technote. NOvA Internal Documents docid=14789, 2016.

225

https://nusoft.fnal.gov/nova/blessedplots/index.html#!/doc/15647
http://dx.doi.org/10.1126/science.1242072
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=27689
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1088/1742-6596/664/7/072035
http://dx.doi.org/10.1088/1742-6596/664/7/072035
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2007.04.003
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2007.04.003
http://dx.doi.org/https://doi.org/10.1016/0010-4655(93)90033-9
http://dx.doi.org/https://doi.org/10.1016/0010-4655(93)90033-9
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=13545&filename=technote.pdf&version=1
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=15977&filename=WindowAlgTechNote.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=14789&filename=mefinder.pdf&version=1


[96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proceedings

of the Second International Conference on Knowledge Discovery and Data Mining,

KDD’96, page 226–231. AAAI Press, 1996.

[97] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.D. Messier, E. Niner, G. Pawloski,

F. Psihas, A. Sousa, and P. Vahle. A convolutional neural network neutrino event

classifier. Journal of Instrumentation, 11(09):P09001, sep 2016.

[98] M. Groh and K. Warburton. CVN Training for the 2020 Analysis. NOvA Internal

Documents docid=42897, 2020.

[99] F. Psihas. Assorted CVN Plots for Blessing. NOvA Internal Documents do-

cid=15639, 2017.

[100] J. Porter. ReMId 2019 retraining. NOvA Internal Documents docid=42277, 2019.

[101] P. Gandrajula and L. Kolupaeva. Cosmic rejection BDT for e appearance analysis.

NOvA Internal Documents docid=42473, 2019.

[102] K. Warburton. Muon Neutrino Cosmic Rejection Technote For The 2020 Analysis.

NOvA Internal Documents docid=42358, 2020.

[103] A. Back, C. Sullivan, and M. Messier. A new low-energy classifier to enhance nue

selection. NOvA Internal Documents docid=59554, 2023.

[104] W. Wu and A. Kalitkina. Prod5.1 Nue Energy Estimator. NOvA Internal Documents

docid=61091, 2024.

[105] E. Catano-Mur, R. Nichol, and Z. Vallari. Three-Flavour Executive Summary 2024

. NOvA Internal Documents docid=61655, 2024.

[106] B. Jargowsky and R. Nichol. Prod5.1 Numu Energy Estimators Technote. NOvA

Internal Documents docid=61064, 2024.

226

http://dx.doi.org/10.1088/1748-0221/11/09/P09001
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=42897&filename=CVN2020_technote_v2.pdf&version=2
https://nusoft.fnal.gov/nova/blessedplots/index.html#!/doc/15639
https://nusoft.fnal.gov/nova/blessedplots/index.html#!/doc/15639
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=42277&filename=report.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=42473&filename=Cosmic_rejection_BDT_for_nu_e_appearance_analysis.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=42358&filename=NuMuCosmicRej_Ana2020.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=59554&filename=Improving_mass_hierarchy_sensitivity_with_a_new_low_energy_sample.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=61091&filename=Prod5_1_Nue_Energy_Estimator_Technote.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=61655&filename=3_Flavour_Executive_Summary_2024-4.pdf&version=6
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=61064


[107] B. Jargowsky. Blessed Package For Prod5.1 Energy Estimation for 3F Ana2024.

NOvA Internal Documents docid=61952, 2024.

[108] J. Coelho, B. Chowdhury, and R. Murphy. Good Data Selection. NOvA Internal

Documents docid=13546, 2017.

[109] S. Lein. DCM Edge Metric. NOvA Internal Documents docid=13527, 2015.

[110] Ashley Back et al. Data Quality 2020. NOvA Internal Documents docid=44226,

2020.

[111] Michael Baird, Louise Suter, and Jeremy Wolcott. Summary of the 2020 FHC+RHC

3-Flavor oscillation analysis. NOvA Internal Documents docid=44422, 2020.

[112] E. Catano-Mur et al. 3-Flavour event selection for Ana2024 analysis. NOvA Internal

Documents docid=61640, 2024.

[113] M. A. Acero et al. (NOvA). Improved measurement of neutrino oscillation parameters

by the NOvA experiment. Phys. Rev. D, 106(3):032004, 2022.

[114] M. Baird and L. Vinton. Extrapolation Technote for the Numu Third Analysis.

NOvA Internal Documents docid=23390, 2017.

[115] W. Shorrock. Numu Binning Studies. NOvA Internal Documents docid=60579, 2024.

[116] A. Mislevic. Near-to-Far Extrapolation in pT for the NOA 2020 3-Flavor Analysis.

NOvA Internal Documents docid=44401, 2020.

[117] M. Rabelhofer. 2020 Decomposition: Michel, BEN, and Proportional. NOvA Internal

Documents docid=43712, 2020.

[118] E. Catano-Mur. BEN Decomposition Tech Note. NOvA Internal Documents do-

cid=15392, 2016.

[119] D. Pershey. MichelDecomp Technote for the 2017 νe Analysis. NOvA Internal

Documents docid=22523, 2017.

227

https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=61952
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=13546&filename=GoodDataSelection_TechNote_v5.pdf&version=6
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=13527&filename=dcmedge_2015_06_15.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=44226&filename=DQ_technote_2020.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin//ShowDocument?docid=44422
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=61640&filename=3_Flavour_Event_Selection_2024-4.pdf&version=1
http://dx.doi.org/10.1103/PhysRevD.106.032004
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=23390&filename=prod3_numu_extrap_technote.pdf&version=2
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=60579&filename=231102_BinningStudies_WShorrock.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=44401&filename=pt_extrap_2020_tech_note_20200504_2.pdf&version=5
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=43712
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=15392&filename=BENTechnote.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=15392&filename=BENTechnote.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=22523&filename=Technote_MichelDecomp2017.pdf&version=4


[120] M. Rabelhofer. LowE νe Extrapolation Technote. NOvA Internal Documents do-

cid=62120, 2024.

[121] J. Lozier. ModularExtrap Technical Note. NOvA Internal Documents docid= 12563,

2014.

[122] T. Bezerra, E. Catano-Mur, and R. Nichol. Cosmic predictions for 3F 2024 analysis.

NOvA Internal Documents docid=62105, 2024.

[123] N. Nayak. Hadron Production Systematics for the NOvA Oscillation Analysis. NOvA

Internal Documents docid=22532, 2017.

[124] N. Nayak. Flux Systematics for the 2018 NOvA Oscillation Analyses. NOvA Internal

Documents docid=27884, 2018.

[125] Kirk Bays et al. NOvA Cross-Section Modeling Internal Technical Note For Produc-

tion 5.1. NOvA Internal Documents docid=61559, 2024.

[126] B. Jargowsky. 2024 Genie PCA Technote. NOvA Internal Documents docid=62099,

2024.

[127] Erika Catano-Mur, V Hewes, and Lisa Koerner. Prod 5.1 Detector Systematics

Executive Summary. NOvA Internal Documents docid=53225, 2022.

[128] M. Strait. Muon energy scale systematic. NOvA Internal Documents docid=20816,

2022.

[129] J. Calcutt, C. Thorpe, K. Mahn, and L. Fields. Geant4reweight: a framework for

evaluating and propagating hadronic interaction uncertainties in geant4. Journal of

Instrumentation, 16(08):P08042, aug 2021.

[130] B. Jargowsky. 2024 Geant4Reweight PCA Technote. NOvA Internal Documents

docid=62099, 2024.

228

https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62120&filename=LowE_Extrap.pdf&version=6
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62120&filename=LowE_Extrap.pdf&version=6
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=12563&filename=ModularExtrap%20Technical%20Note%20-%20Joseph%20Lozier%20-%20December%2023%2C%202014.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=62105&filename=Cosmic_predictions_for_2024_3F_analysis.pdf&version=4
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=22532&filename=ppfx_pca_technote.pdf&version=5
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=27884&filename=flux_pca.pdf&version=4
https://nova-docdb.fnal.gov/cgi-bin//ShowDocument?docid=61559
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62099&filename=Genie_PCA_Technote.pdf&version=5
https://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=53225
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=20816&filename=muenergynote%2Battachements.pdf&version=26
http://dx.doi.org/10.1088/1748-0221/16/08/P08042
http://dx.doi.org/10.1088/1748-0221/16/08/P08042
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62099&filename=Geant4Reweight_PCA_Technote.pdf&version=5


[131] B Roeder. Development and validation of neutron detection simulations for eurisol.

EURISOL Design Study, Report No. 10-25-2008-006-In-beamvalidations.pdf, pp 31-

44, 2008.

[132] Z. Kohley et al. Modeling interactions of intermediate-energy neutrons in a plastic

scintillator array with Geant4. Nucl. Instrum. Meth. A, 682:59–65, 2012.

[133] M. Rabelhofer. File-based MENATE Neutron Systematic. NOvA Internal Docu-

ments docid=59999, 2024.

[134] A. Yankelevich. Ana2024: 3F Normalization Systematics. NOvA Internal Documents

docid=62214, 2024.

[135] J. Trokan-Tenorio. Michel Electron Tagging Systematic Overview For Ana2024.

NOvA Internal Documents docid=62217, 2024.

[136] M. A. Acero et al. (NOvA). New constraints on oscillation parameters from νe

appearance and νµ disappearance in the NOvA experiment. Phys. Rev. D, 98:032012,

2018.

[137] M. A. Acero et al. (NOvA). First Measurement of Neutrino Oscillation Parameters

using Neutrinos and Antineutrinos by NOvA. Phys. Rev. Lett., 123(15):151803, 2019.

[138] M. A. Acero et al. (NOvA). Expanding neutrino oscillation parameter measurements

in NOvA using a Bayesian approach. Phys. Rev. D, 110(1):012005, 2024.

[139] F. P. An et al. (Daya Bay). Precision Measurement of Reactor Antineutrino Oscil-

lation at Kilometer-Scale Baselines by Daya Bay. Phys. Rev. Lett., 130(16):161802,

2023.

[140] Gary J. Feldman and Robert D. Cousins. A Unified approach to the classical statis-

tical analysis of small signals. Phys. Rev. D, 57:3873–3889, 1998.

229

http://dx.doi.org/10.1016/j.nima.2012.04.060
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=59999&filename=MENATE_Systematic.pdf&version=4
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62214
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=62217
http://dx.doi.org/10.1103/PhysRevD.98.032012
http://dx.doi.org/10.1103/PhysRevD.98.032012
http://dx.doi.org/10.1103/PhysRevLett.123.151803
http://dx.doi.org/10.1103/PhysRevD.110.012005
http://dx.doi.org/10.1103/PhysRevLett.130.161802
http://dx.doi.org/10.1103/PhysRevLett.130.161802
http://dx.doi.org/10.1103/PhysRevD.57.3873


[141] M. A. Acero et al. (NOvA). A Monte Carlo method for constructing more accu-

rate confidence intervals in the presence of nuisance parameters that violate Wilks’

theorem assumptions. Submitted to Phys. Rev. D, July 2022. arXiv 2207.14353.

[142] A. Sousa, N. Buchanan, S. Calvez, P. Ding, D. Doyle, A. Himmel, B. Holzman,

J. Kowalkowski, A. Norman, and T. Peterka. Implementation of feldman-cousins

corrections and oscillation calculations in the hpc environment for the nova experi-

ment. EPJ Web Conf., 214:05012, 2019.

[143] A. Yankelevich et al. Ana2024: Bayesian Sensitivity. NOvA Internal Documents

docid=62090, 2024.

[144] A. Back, P. Lasorak, A. Sztuc, and J. Wolcott. Introduction to Bayesian MCMC

fitting. NOvA Internal Documents docid=53021, 2021.

[145] Benjamin Jargowsky. A Measurement of νe Appearance and νµ Disappearance Using

10 Years of Data from the NOvA Experiment. PhD thesis, UC Irvine, 2024.

[146] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing machines.

The Journal of Chemical Physics, 21(6):1087–1092, 06 1953.

[147] Jaewook Lee, Woosuk Sung, and Joo-Ho Choi. Metamodel for efficient estimation of

capacity-fade uncertainty in li-ion batteries for electric vehicles. Energies, 8(6):5538–

5554, 2015.

[148] D. Adey et al. (The Daya Bay Collaboration). Measurement of the electron antineu-

trino oscillation with 1958 days of operation at daya bay. Phys. Rev. Lett., 121, Dec

2018.

[149] Feng Peng An et al. (Daya Bay). Measurement of electron antineutrino oscilla-

tion based on 1230 days of operation of the Daya Bay experiment. Phys. Rev. D,

95(7):072006, 2017.

230

http://dx.doi.org/10.1051/epjconf/201921405012
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=62090&filename=3_Flavour_Bayesian_Sensitivity_2024_Technote-2.pdf&version=8
https://nova-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=53021&filename=intro.pdf&version=4
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.3390/en8065538
http://dx.doi.org/10.3390/en8065538
http://dx.doi.org/10.1103/PhysRevLett.121.241805
http://dx.doi.org/10.1103/PhysRevLett.121.241805
http://dx.doi.org/10.1103/PhysRevD.95.072006
http://dx.doi.org/10.1103/PhysRevD.95.072006


[150] M. Tanabashi et al. (Particle Data Group). Review of Particle Physics. Phys. Rev.

D, 98(3):030001, 2018 and 2019 update.

[151] L. Kolupaeva. Future 3 Flavour Sensitivities - 2020 analysis. NOvA Internal Docu-

ments docid=46343, 2020.

[152] Veera Mikola. Improving the NOvA 3-Flavour Neutrino Oscillation Analysis. PhD

thesis, University College London, 2023.

[153] J. Trokan-Tenorio and C. Sullivan. Ana2024 Low-Energy Nue Plots Blessing Package.

NOvA Internal Documents docid=62876, 2024.

[154] D. Pershey. APD Dead Time Follow-Up. NOvA Internal Documents docid=12295,

2014.

[155] J. Trokan-Tenorio. Remaking MID Templates and improving MEFinder. NOvA

Internal Documents docid=56642, 2022.

[156] J. Trokan-Tenorio. Miniprod6.1 Michel electrons - applying Cuts/Weights in

CAFAna. NOvA Internal Documents docid=64237, 2024.

[157] B. Choudhary, I. Singh, and L. Suter. Ana2024: Uncertainties on Frequentist Best-fit

Point. NOvA Internal Documents docid=62867, 2024.

[158] A. Dye and L. Ricardo Prais. Ana2024 Neutrino2024 Frequentist Blessing Package.

NOvA Internal Documents docid=62888, 2024.

[159] Hiroshi Nunokawa, Stephen Parke, and Renata Zukanovich Funchal. Another pos-

sible way to determine the neutrino mass hierarchy. Phys. Rev. D, 72:013009, Jul

2005.

[160] B. Jargowsky, L. Kolupaeva, and A. Yankelevich. Blessing Package For Ana2024 3F

Bayesian Results. NOvA Internal Documents docid=62918, 2024.

231

http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1103/PhysRevD.98.030001
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=46343
https://nusoft.fnal.gov/nova/blessedplots/index.html#!/doc/62876
https://nova-docdb.fnal.gov/cgi-bin/private/RetrieveFile?docid=12295&filename=2014_11_04_APD_DeadTime.pdf&version=1
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=56642
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=64237
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62867
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62888
http://dx.doi.org/10.1103/PhysRevD.72.013009
http://dx.doi.org/10.1103/PhysRevD.72.013009
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62918


[161] K. Abe et al. First joint oscillation analysis of Super-Kamiokande atmospheric and

T2K accelerator neutrino data. arXiv 2405.12488, May 2024.

[162] R. Abbasi et al. (IceCube). Measurement of Atmospheric Neutrino Oscillation Pa-

rameters Using Convolutional Neural Networks with 9.3 Years of Data in IceCube

DeepCore. Phys. Rev. Lett., 134(9):091801, 2025.

[163] P. Adamson et al. (MINOS+). Precision Constraints for Three-Flavor Neutrino

Oscillations from the Full MINOS+ and MINOS Dataset. Phys. Rev. Lett.,

125(13):131802, 2020.

[164] T. Wester et al. (Super-Kamiokande). Atmospheric neutrino oscillation analysis with

neutron tagging and an expanded fiducial volume in Super-Kamiokande I–V. Phys.

Rev. D, 109(7):072014, 2024.

[165] Denis Carabadjac. T2K Neutrino Oscillation Analysis. Presented at ICHEP 2024,

July 2024.

[166] S. Jeon et al. (RENO). Measurement of reactor antineutrino oscillation amplitude

and frequency using 3800 days of complete data sample of the RENO experiment.

December 2024. arXiv 2412.18711.

[167] F. P. An et al. (Daya Bay). Measurement of Electron Antineutrino Oscillation Am-

plitude and Frequency via Neutron Capture on Hydrogen at Daya Bay. Phys. Rev.

Lett., 133(15):151801, 2024.

[168] Intae Yu. New Results from RENO. presented at Neutrino-2018.

https://zenodo.org/records/1287949, June 2018.

[169] B. Jargowsky, L. Kolupaeva, and A. Yankelevich. Blessing Package For Ana2024 3F

Bayesian Results Comparisons with Other Experiments. NOvA Internal Documents

docid=62924, 2024.

232

http://dx.doi.org/10.1103/PhysRevLett.134.091801
http://dx.doi.org/10.1103/PhysRevLett.125.131802
http://dx.doi.org/10.1103/PhysRevLett.125.131802
http://dx.doi.org/10.1103/PhysRevD.109.072014
http://dx.doi.org/10.1103/PhysRevD.109.072014
https://indico.cern.ch/event/1291157/contributions/5888128/attachments/2899009/5083754/T2K_Osc_Analysis_ICHEP_Carabadjac.pdf
http://dx.doi.org/10.1103/PhysRevLett.133.151801
http://dx.doi.org/10.1103/PhysRevLett.133.151801
https://zenodo.org/records/1287949
https://nova-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=62924


[170] Patrick Dunne et al. Oscillation results from neutrino 2022, data release. Zenodo,

https://doi.org/10.5281/zenodo.6908532, July 2022.

[171] Zoya Vallari. Results from a joint analysis of data from NOvA and T2K. Presented

at FNAL seminar. https://indico.fnal.gov/event/62062/, Feb 2024.

[172] Edward Atkin. Results from the T2K+NOvA Joint Analysis. Presented at KEK

seminar. https://kds.kek.jp/event/49811/, Feb 2024.

[173] K. Abe et al. (T2K). Measurements of neutrino oscillation parameters from the T2K

experiment using 3.6× 1021 protons on target. Eur. Phys. J. C, 83(9):782, 2023.

233

http://dx.doi.org/10.1140/epjc/s10052-023-11819-x

	Acknowledgments
	List of Tables
	List of Figures
	Preface
	Theory of Neutrinos
	Introduction
	Particles in the Standard Model
	Neutrino Interactions

	Neutrino Oscillations
	2-flavor oscillations
	Matter Effects
	3-flavor oscillations

	Measuring Neutrino Oscillations

	The NOvA Experiment
	Introduction
	The NuMI Beam
	The Proton Beam
	The NuMI Target
	The Focusing Horns
	The Decay Pipe and Absorber 
	Off-axis detector location
	Final Beam Components

	The NOvA Detectors
	From Cells to Full Detector
	The Data Acquisition System
	File organization
	Event Display and Detector Differences
	Data Quality Monitoring
	Total Data Collected


	Detector Simulation & Calibration
	Simulation
	Beam Simulation
	Detector Simulation
	Cosmic and Rock Events

	Calibration
	Relative Calibration
	Absolute Calibration
	Accounting For Drift


	NOvA Software Infrastructure
	Event Reconstruction
	Hits
	Clustering
	e reconstruction
	  Reconstruction
	Cosmic Tracks
	Michel electrons

	Particle Identification
	Event Classification with CVN
	Muon Identification using ReMID
	Prong CVN
	Cosmic Rejection BDTs
	Low-Energy e BDT

	Energy Estimation
	e energy estimation
	 energy estimation


	3-Flavor Analysis Setup
	Introduction
	Event Selection
	Spill and Data Quality
	e selection
	 selection

	Analysis Binning
	 e Binning 
	  Binning
	 Transverse Momentum - pT

	Constructing Far Detector Predictions
	Beam Decomposition
	Extrapolation
	Cosmic and Rock Backgrounds 
	Final FD Predictions

	Systematic Uncertainties
	Flux Systematics
	Cross-Section Systematics
	Detector Response and Calibration Systematics
	Other Systematics
	Normalization
	Michel Tagging

	Summary of uncertainties and the effect of extrapolation

	Fitting Oscillation Parameters 
	Frequentist Techniques
	Bayesian Techniques


	Gaining Sensitivity
	Daya Bay Constraints and Future Sensitivity
	Implementing the constraints
	Impact on oscillation parameters 
	Future Sensitivities

	Reclaiming  Events
	Reclaiming e Events
	Michel electrons
	Improving Simulation
	Improving Reconstruction
	Far Detector Michel electrons
	Future improvements using Michel electrons


	3-Flavor Analysis Results
	The Observed Data
	Fits and Results
	Feldman-Cousins Corrections
	The Effect of Reactor Neutrino Constraints
	NOvA Results in a Global Context


	Conclusions

