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Abstract Bertrand’s theorem asserts that any spherically symmetric natural Hamil-
tonian system in Euclidean 3-space which possesses stable circular orbits and
whose bounded trajectories are all periodic is either a harmonic oscillator or a
Kepler system. In this paper we extend this classical result to curved spaces by
proving that any Hamiltonian on a spherically symmetric Riemannian 3-manifold
which satisfies the same conditions as in Bertrand’s theorem is superintegrable
and given by an intrinsic oscillator or Kepler system. As a byproduct we obtain
a wide panoply of new superintegrable Hamiltonian systems. The demonstration
relies on Perlick’s classification of Bertrand spacetimes and on the construction of
a suitable, globally defined generalization of the Runge–Lenz vector.

1 Introduction and Preliminary Definitions

The Kepler problem and the harmonic oscillator are probably the most thoroughly
studied systems in classical mechanics. The reasons for this are twofold. First,
these potentials play a preponderant role in Physics due their connection with plan-
etary motion and oscillations around a nondegenerate equilibrium. Second, these
potentials are of particular mathematical interest due to the existence of additional
(or “hidden”) symmetries yielding additional constants of motion. In fact, both
the Kepler and the harmonic oscillator Hamiltonians are (maximally) superinte-

Depto. de Fı́sica, Universidad de Burgos, 09001 Burgos, Spain. angelb@ubu.es, fjher-
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grable in the sense that they have the maximum number (four) of functionally
independent first integrals other than the Hamiltonian.1

Bertrand’s theorem (6) is a landmark result which characterizes the Kepler and
harmonic oscillator Hamiltonians in terms of their qualitative dynamics. A precise
statement of this theorem is given below. We recall (18) that the first condition,
which is occasionally forgotten, is necessary in order to exclude potentials of the
form V (q) =−K‖q‖−s, with K > 0 and s = 2,3, . . . .

Theorem 1 (Bertrand) Let H = 1
2‖p‖2 +V (q) be a natural, spherically symmetric

Hamiltonian system in a domain of R3. Let us suppose that:

(i) There exist stable circular orbits.
(ii) All the bounded trajectories are closed.

Then the potential is either a Kepler (V (q) = A/‖q‖+B) or a harmonic oscillator
potential (V (q) = A‖q‖2 +B). In particular, H is superintegrable.

Analogues of the Kepler and harmonic oscillator systems in curved spaces
have been of interest since the discovery of non-Euclidean geometry. In fact (49),
the “intrinsic” Kepler and harmonic oscillator problems on spaces of constant cur-
vature were studied by Lipschitz and Killing already in the 19th century, and later
rediscovered by Schrödinger (48) and Higgs (25). In both cases it was established
that these systems are superintegrable and satisfy Properties (i) and (ii) above.

A considerably more ambitious development was Perlick’s introduction and
classification of Bertrand spacetimes (47), which was based on the following
observation. Let (M,g) be a Riemannian 3-manifold and consider the space M =
M×R endowed with the warped Lorentzian metric η = g− 1

V dt2, with V a smooth
positive
function on M. Then the trajectories in (M ,η), that is, the projections of inex-
tendible timelike geodesics to a constant time leaf M×{t0}, correspond to integral
curves of the
Hamiltonian H = 1

2‖p‖2
g +V (q) in (the cotangent bundle of) M. Thus Perlick

introduced the following

Definition 2 A Lorentzian 4-manifold (M×R,η) is a Bertrand spacetime if:

(i) It is spherically symmetric and static in the sense that η = g− 1
V dt2 and M

is diffeomorphic to (r1,r2)×S2, where the smooth function V depends only
on r and the Riemannian metric g on M takes the form

g = h(r)2 dr2 + r2 (dθ
2 + sin2

θ dϕ
2) (1)

in the adapted coordinate system (r,θ ,ϕ). Here r1,r2 ∈ R+∪{+∞}.
(ii) There is a circular (r = const.) trajectory passing through each point of M.

(iii) The above circular trajectories are stable, that is, any initial condition suf-
ficiently close to that of a circular trajectory gives a periodic trajectory.

1 As usual, by functional independence of the integrals I1, . . . , Ik we mean that the (k + 1)-
form dH ∧ dI1 ∧ ·· · ∧ dIk is nonzero in an open and dense subset of phase space, H being the
Hamiltonian function.
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Perlick’s main result was the classification of all Bertrand spacetimes, recover-
ing the classical Bertrand theorem as a subcase. However, two main related ques-
tions remained to be settled. On the one hand, the potentials V in Perlick’s classi-
fication lacked any physical interpretation, and this was in strong contrast with the
Euclidean case. This drawback was circumvented in Ref. (3), where we showed
that the two families of Perlick’s potentials correspond to either the “intrinsic”
Kepler or harmonic oscillator potentials in the underlying 3-manifold (M,g). On
the other hand, the issue of whether the corresponding Hamiltonian systems were
superintegrable in some reasonable sense was left wide open. In fact, Perlick’s
only remark in this direction was that, by virtue of a theorem of Hauser and Mal-
hiot (24), only two concrete models among the family of Bertrand spacetimes
admitted a quadratic additional integral coming from a second rank Killing tensor.

A careful analysis of the literature reveals that many particular cases of Bertrand
metrics have been thoroughly analyzed and shown to be superintegrable (21; 22;
27; 28), and that in many cases they have been shown to admit a generalization
of the classical Runge–Lenz vector as an additional first integral. The physical
and mathematical interest of these models (and thus of Bertrand spacetimes) is
fostered by their connections with the theory of magnetic monopoles, with differ-
ential and algebraic geometry, and with low-dimensional manifold theory (9; 10;
33; 34; 35; 43; 45; 46; 50). The relation between Bertrand spaces and monopole
motion is not totally incidental. Indeed, an ample subclass of Bertrand spacetimes
admitting some kind of generalized Runge–Lenz vectors (the so-called multifold
Kepler systems) were introduced by Iwai and Katayama (27; 28) as generaliza-
tions of the Taub–NUT metric, whose geodesics asymptotically describe the rel-
ative motion of two monopoles (see, for instance, (1; 7; 11; 29; 39; 40)). Inter-
estingly, superintegrable Hamiltonian systems on curved spaces have recently
attracted considerable attention also within the integrable systems community,
especially in low dimensions (cf. (2; 4; 5; 30; 31; 32) and references therein).

The main result of this article is that all Bertrand spacetimes are indeed super-
integrable, their superintegrability being linked to the existence of a generalized
Runge–Lenz vector. This enables us to present an optimal version of Bertrand’s
theorem (Theorem 16) on spherically symmetric manifolds which includes the
classification of the natural Hamiltonians whose bounded orbits are all periodic (47),
the physical interpretation of the corresponding potentials as Kepler or harmonic
oscillator potentials, in each case, and the proof of the superintegrability of these
models. This settles in a quite satisfactory way a problem with a large body of
previous partial results scattered in the literature.

It is standard that the superintegrability of the Kepler system stems from the
existence of a conserved Runge–Lenz vector, whose geometric significance is
described from a modern perspective in (23). On the other hand, the superin-
tegrability of the harmonic oscillator is usually established either using explicit
(scalar) first integrals or the conserved rank 2 tensor C = 2ω2q⊗q+p⊗p, which
is sometimes preferable for algebraic reasons (19). That the latter approach is
closely related to a (multivalued) analogue of the Runge–Lenz vector was firmly
established in (26). Motivated by this connection, we have based our approach
to the integrability of the Bertrand systems on the construction of a generalized
Runge–Lenz vector, globally defined on a finite cover of M. This construction
relies on a detailed analysis of the integral curves of the appropriate Hamiltonians.



4 Á. Ballesteros, A. Enciso, F. J. Herranz, O. Ragnisco

The literature on generalizations of the Runge–Lenz vector for central potentials
on Euclidean space is vast (see the survey (36) and references therein), but unfor-
tunately several interesting papers are severely flawed by the lack of distinction
between local, semi-global and global existence.

The article is organized as follows. In Sect. 2 we recall the two families of
Bertrand spacetimes entering Perlick’s classification, which are labeled by two
coprime positive integers n and m. We also include the characterization of Per-
lick’s potentials as the intrinsic Kepler or harmonic oscillator potentials of the cor-
responding Riemannian
3-manifolds (M,g) and briefly discuss several physically relevant examples. In
Sect. 3 we consider the associated natural Hamiltonian systems on (M,g) and
compute their integral curves in closed form (Proposition 7). Using this result
we easily derive that the latter Hamiltonians are geometrically superintegrable
(cf. Definition 9 and Proposition 10) in the region of phase space foliated by
bounded orbits, as happens with the harmonic oscillator and Kepler potentials
in R3. Our central result is a stronger superintegrability theorem (Theorem 12)
that we present in Sect. 4, where we construct a generalized Runge–Lenz vector
globally defined on an n-fold cover of M. As a corollary of this construction we
also obtain a global rank n tensor field in M invariant under the flow and a wide
panoply of new superintegrable Hamiltonian systems. Lastly, in Sect. 5 we com-
bine the results established in the previous sections to obtain an optimal extension
of Bertrand’s theorem to curved spaces (Theorem 16).

2 Harmonic Oscillators and Kepler Potentials in Bertrand Spacetimes

In this section we shall define the “intrinsic” Kepler and harmonic oscillator poten-
tials in a spherically symmetric 3-manifold and show how Bertrand spacetimes are
related to the Kepler and harmonic oscillator potentials of any of its constant time
leaves. Most of the material included here is essentially taken from Ref. (3); for
the sake of completeness, let us mention that further information on geometric
properties of Green functions can be consulted e.g. in (13; 14; 15; 37; 38).

We start by letting (M,g) be a Riemannian 3-manifold as in Definition 2. In
particular, the metric g takes the form

ds2 = h(r)2 dr2 + r2 (dθ
2 + sin2

θ dϕ
2) . (2)

It is standard that if u(r) is a function which depends only on the radial coordinate,
then its Laplacian is also radial and is read:

∆gu(r) =
1

r2h(r)
d
dr

(
r2

h(r)
du
dr

)
.

As the Kepler potential in Euclidean three-dimensional space is simply the radial
Green function of the Laplacian and the harmonic oscillator is its inverse square,
it is natural to make the following
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Definition 3 The (intrinsic) Kepler and the harmonic oscillator potentials in
(M,g) are respectively given by the radial functions

VK(r) = A1

(∫ r

a
r′−2h(r′)dr′+B1

)
, VH(r) = A2

(∫ r

a
r′−2h(r′)dr′+B2

)−2

, (3)

where a,A j,B j are constants.

Example 4 Let (M,g) be the simple connected, three-dimensional space form of
sectional curvature κ . In this case the metric has the form (2) with

h(r)2 =
1

1−κr2 .

The corresponding Kepler and harmonic oscillator potentials are therefore

VK =
√

r−2−κ , VH =
1

r−2−κ
(4)

up to additive and multiplicative constants. In terms of the distance function ρκ to
the point r = 0 this can be rewritten as

VK =
√

κ cot
(√

κ ρκ

)
, VH =

tan2(
√

κ ρκ)
κ

,

thus reproducing the known prescriptions for the sphere and the hyperbolic space (5;
49). The Euclidean case is recovered by letting κ → 0.

Now let us consider the spherically symmetric spaces (M,g j) ( j = I, II) defined
by the metrics

Type I : ds2 =
m2dr2

n2 (1+Kr2)
+ r2(dθ

2 + sin2
θ dϕ

2), (5a)

Type II : ds2 =
2m2

(
1−Dr2±

√
(1−Dr2)2−Kr4

)
n2 ((1−Dr2)2−Kr4)

dr2 + r2(dθ
2 + sin2

θ dϕ
2),

(5b)

where D and K are real constants and m and n are coprime positive integers. The
maximal interval (r1,r2) can be easily found from these expressions. These Rie-
mannian 3-manifolds, which first appeared in (47) (where the quotient n/m was
called β ), will be henceforth called Bertrand spaces. A short computation shows
that, up to a multiplicative constant, the Kepler potential of a Bertrand space of
type I is

VI =
√

r−2 +K +G , (6a)

whereas the harmonic oscillator potential of one of type II can be written in the
convenient form

VII = G∓ r2
(

1−Dr2±
√

(1−Dr2)2−Kr4

)−1

. (6b)

Here G is an arbitrary constant.
By comparing with Ref. (47), the above digression immediately yields the

following
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Proposition 5 (M ,η) is a Bertrand spacetime if and only if it is isometric to

the warped product
(

M×R,g j − dt2

V j

)
, with (M,g j) a Bertrand space of type j

( j = I, II, cf. (5)) and Vj given by (6).

In particular, this shows that Perlick’s obtention of two different kinds of
Bertrand spacetimes has a natural interpretation (3): they are associated to either
Kepler (type I) or harmonic oscillator (type II) potentials. The multiplicative con-
stant of the potentials is inessential and can be eliminated by rescaling the time
variable.

Example 6 We conclude this section with a brief discussion of a few examples of
physically relevant spaces that are Bertrand. This intends both to serve as motiva-
tion and to help the reader gain some insight on Bertrand spaces. A more detailed
discussion can be found in (3).

(i) Spaces of constant curvature. The metric of the simply connected Rieman-
nian 3-manifold of constant sectional curvature κ is usually written as

ds2 =
dr2

1−κr2 + r2 (dθ
2 + sin2

θ dϕ
2) .

We have already seen that the Kepler and harmonic oscillator potentials in
these spaces are given by (4), and it is well known that all the bounded
integral curves of both systems are periodic. This result is immediately
recovered by noticing that the Kepler system is recovered from the type
I Bertrand spacetimes when n = m = 1 and K =−κ , whereas the harmonic
oscillator is obtained as the type II Bertrand spacetime with n/m = 2, K = 0
and D = κ .

(ii) Darboux space of type III. Consider the metric

ds2 =
k2 +2r2 + k

√
k2 +4r2

2(k2 +4r2)
dr2 + r2 (dθ

2 + sin2
θ dϕ

2) ,

whose intrinsic harmonic oscillator potential is given by

VII =
2k2r2

k2 +2r2 + k
√

k2 +4r2

up to multiplicative and additive constants. This defines a Bertrand space-
time of type II with parameters n/m = 2, K = 4/k4 and D =−2/k2.
Let us introduce coordinates Q = (Q1,Q2,Q3) as

Q =

(
(k2 +4r2)1/2− k

2

)1/2

(cosθ cosϕ,cosθ sinϕ,sinθ) .

In terms of these coordinates, the above metric and potential is read:

ds2 =
(
k +‖Q‖2)‖dQ‖2 , VII =

k2‖Q‖2

k +‖Q‖2 .
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Thus we recover the three-dimensional Darboux system of type III (32).
The Darboux system of type III is the only quadratically superintegrable
natural
Hamiltonian system in a surface of nonconstant curvature which is known
to admit quadratically superintegrable N-dimensional generalizations (2).

(iii) Multifold Kepler systems. The family of multifold Kepler systems was intro-
duced by Iwai and Katayama (27; 28) as Hamiltonian reductions of the
geodesic flow in a generalized Taub–NUT metric. These systems are given
by the metrics and potentials

ds2 = ‖Q‖
n
m−2

(
a+b‖Q‖

n
m

)
‖dQ‖2 ,

VII =
‖Q‖2− n

m

a+b‖Q‖ n
m

(
µ

2‖Q‖−2 + µ
2c‖Q‖

n
m−2 + µ

2d ‖Q‖
2m
n −2

)
,

with Q = (Q1,Q2,Q3), a,b,c,d,µ constants and n,m coprime positive inte-
gers. The substitution

Q =

(
(a2 +4br2)

1
2 −a

2b

)m
n

(cosθ cosϕ,cosθ sinϕ,sinθ)

shows that the multifold Kepler models are equivalent to the type II Bertrand
systems with parameters K = 4a−4b2 and D = − 2b

a2 . It should be noticed
that the Darboux space of type III is a particular case of the multifold Kepler
systems.

3 The Orbit Equation and Geometric Superintegrability

Hereafter we shall analyze the properties of the Hamiltonian systems in (M,g j)
given by

H j :=
1
2
‖p‖2

g j
+Vj(q) , j = I, II , (7)

where the metric g j and the potential Vj are respectively defined by (5) and (6). As
previously discussed, the orbits of these systems correspond to trajectories of the
associated Bertrand spacetimes. It should be noticed that in the adapted coordinate
system, these Hamiltonians read:

HI =
1
2

[( n
m

)2 (
1+Kr2) p2

r +
p2

θ

r2 +
p2

ϕ

r2 sin2
θ

]
+
√

r−2 +K +G , (8a)

HII =
1
2

 n2
(
(1−Dr2)2−Kr4

)
p2

r

2m2
(

1−Dr2±
√

(1−Dr2)2−Kr4
) +

p2
θ

r2 +
p2

ϕ

r2 sin2
θ


∓r2

(
1−Dr2±

√
(1−Dr2)2−Kr4

)−1

+G , (8b)
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where pr is the momentum conjugate to r and pθ and pϕ are defined analogously.
In this section we shall derive the simplest superintegrability property of the

Hamiltonian systems (7) (cf. Proposition 10), which nonetheless seems to have
escaped unnoticed so far. The proof of this result relies on the fact that, by def-
inition, the orbits of (7) define an invariant foliation by (topological) circles in
an open subset Ω ⊂ T ∗M of the phase space of the system. E.g., in the classical
Kepler problem

Ω =
{
(q,p) ∈ R3×R3 : H(q,p) < 0, q×p 6= 0

}
is the set of points with negative energy and nonzero angular momentum, whereas
for the harmonic oscillator one can take Ω = (R3×R3)\{(0,0)}, i.e., the whole
phase space minus the equilibrium. In Proposition 7 below we compute the expres-
sion of the orbits in closed form, revealing that the above foliation is actually a
locally trivial fibration. This allows us to resort to the geometric theory of super-
integrable Hamiltonian systems (12), yielding the first superintegrability result
for (7).

Before discussing the precise statement of Proposition 10, let us compute the
orbits of the Hamiltonian (7). In fact, the closed expression that we shall derive is
not only used in the proof of Proposition 10, but it is also a key element of Theo-
rem 12, where a stronger superintegrability result is presented. It is convenient to
introduce the rectangular coordinates q = (q1,q2,q3) associated to the spherical
coordinates (r,θ ,ϕ) as

q = (r cosθ cosϕ,r cosθ sinϕ,r sinθ). (9)

The conjugate momenta will be denoted by p = (p1, p2, p3). Clearly the coor-
dinates (q,p) are globally defined in T ∗M. We shall use the notation ·, × and
‖ · ‖ for the Euclidean inner product, cross product and norm in R3 and call
E = H j(p,q) and J2 = ‖q× p‖2 the energy and angular momentum of an inte-
gral curve (q(t),p(t)) of (7). Obviously E and J2 are constants of motion.

Proposition 7 Let γ be an inextendible orbit of the Hamiltonian system (7) which
is contained in the invariant plane

{
θ = π

2

}
. Then γ is given by

cos
(nϕ

m
−ϕ0

)
=

1+ J2
√

r−2 +K√
1+2J2(E−G)+KJ4

(10a)

if j = I and by

cos
(nϕ

m
−ϕ0

)
=

J2r−2
(

1−Dr2±
√

(1−Dr2)2−Kr4
)

+DJ2 +2G−2E√
(2E−2G−DJ2)2±4J2−KJ4

(10b)

if j = II. Here ϕ0 is a real constant.

Proof We begin with the case j = I. The crucial observation is that the orbit equa-
tion

m2J2

n2r4(1+Kr2)

(
dr
dϕ

)2

= 2E−2VI−
J2

r2
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simplifies dramatically with the change of variables

u =
√

r−2 +K ,

in terms of which the potential and the inverse square term read:

VI = u+G , r−2 = u2−K.

The orbit equation is then given by(
mJ
n

du
dϕ

)2

= 2E−2G+KJ2−2u− J2u2 ,

which can be readily integrated to yield

cos
(nϕ

m
−ϕ0

)
=

1+ J2u√
1+2J2(E−G)+KJ4

for some constant ϕ0.
When j = II the treatment is analogous. Now the orbit equation reads

1−Dr2±
√

(1−Dr2)2−Kr4

r4 [(1−Dr2)2−Kr4]

(
mJ
n

dr
dϕ

)2

= E−VII−
J2

2r2 ,

and it is convenient to introduce the variable

v = r−2
(

1−Dr2±
√

(1−Dr2)2−Kr4

)
.

In terms of this new coordinate the potential is simply VII = G∓ 1
v , whereas the

inverse square term is given by

r−2 =
v2 +2Dv+K

2v
.

Hence a straightforward computation shows that the orbit equation is(
mJ
n

dv
dϕ

)2

= 4(E−G)v− J2 (v2 +2Dv+K
)
±4 ,

thereby obtaining

cos
(nϕ

m
−ϕ0

)
=

J2(v+D)+2G−2E√
(2E−2G−DJ2)2±4J2−KJ4

.

Here ϕ0 is a real constant. ut

Remark 8 Equations (10) are well defined also when J = 0. Moreover, it is not
difficult to check that r can be readily expressed as a function of ϕ by performing
some manipulations in the right-hand side of (10).
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We shall now specify what is understood by geometric superintegrability. Let
F0 be a smooth Hamiltonian defined on a 2d dimensional symplectic manifold N
admitting s ≥ d− 1 functionally independent first integrals F1, . . . ,Fs other than
the Hamiltonian. Let us suppose that F = (F0,F1, . . . ,Fs) is a submersion onto its
image with compact and connected fibers, which by Ehresmann’s theorem (cf.
e.g. (41)) implies that its level sets define a locally trivial fibration F of N. If
s ≥ d, not all the latter first integrals can Poisson-commute: the usual condition
to impose is that there exists a matrix-valued function P : F(N)→ Mat(s + 1) of
rank s−d +1 such that

{Fi,Fj}= Pi j ◦F, 0≤ i, j ≤ s. (11)

In particular, when s = d− 1 this yields the usual definition of Liouville integra-
bility. Well known generalizations of the Liouville–Arnold theorem (42; 44) show
that every fiber of F is an invariant (2d− s−1)-torus, and that the motion on each
of these tori is conjugate to a linear flow. Moreover, the fibration F has symplectic
local trivializations.

Geometrically, the existence of the function P means that F has a polar folia-
tion (12), i.e, a foliation F⊥ whose tangent spaces are symplectically orthogonal
to those of F . Similarly, the rank condition in Eq. (11) is tantamount to demand
that the invariant (2d− s− 1)-tori of the foliation be isotropic. Thus the crucial
element in the geometric characterization of superintegrability is the bifoliation
(F ,F⊥), which is a type of dual pair as defined in (51). One is thus led to intro-
duce the following definition (cf. (12) and the survey (17), where slightly different
wording is used):

Definition 9 A Hamiltonian system on a symplectic 2d-dimensional manifold is
geometrically superintegrable with s≥ d−1 semiglobal integrals if the Hamil-
tonian vector field is tangent to a locally trivial fibration by isotropic (2d−s−1)-
tori which admits a polar foliation. If s takes the maximum value 2d−2 we shall
simply say that the system is geometricaly superintegrable.

Of course, generally not all the phase space of a (super)integrable system is
fibered by invariant isotropic tori: there can be, e.g., singular points and unbounded
orbits. But it is customary and of interest to restrict one’s attention to the region
where such fibration is well defined. In the case when s = d−1 (Liouville integra-
bility), the invariant tori are Langrangian and therefore F⊥ = F , explaining why
the bifibration (F ,F⊥) is less well known than the fibrations by Lagrangian tori.
(However, an advantage of the bifibration is that, under mild technical assump-
tions, it is uniquely determined (and finer), whereas for integrable systems with
additional integrals there is some arbitrariness in the choice of invariant Lagrangian
tori.) It should be noticed that the above structure yields “semiglobal” (i.e., defined
in a tubular neighborhood of each torus) first integrals associated to the exis-
tence of generalized action-angle coordinates; a detailed account can be found
in (8; 12; 17). The content of the following proposition is that the Bertrand sys-
tems (7) are geometrically superintegrable in the region foliated by periodic orbits.

Proposition 10 Let Ω be the region of T ∗M where all the orbits of H j are peri-
odic. Then H j|Ω is geometrically superintegrable.
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Proof It easily follows from Proposition 7 that the orbits of H j define a locally
trivial fibration by (topological) circles in Ω . The fibers are certainly isotropic, as
they are one-dimensional, and the flow of H j on each fiber is conjugate to the linear
one because H j does not possess any critical points in Ω . Moreover, it stems from
Proposition 7 that the function Ω → R+ mapping each point in Ω to the length
of the (periodic) orbit passing through it is smooth, which in turn readily implies
that the period function is also smooth and nonvanishing in this region. Hence a
theorem of Fassò (16) implies that H j is geometrically superintegrable, proving
the proposition. ut

4 The Generalized Runge–Lenz Vector

In this section we shall prove a stronger superintegrability result for the Bertrand
Hamiltonians (7). More precisely, we shall provide a semi-explicit construction of
an additional vector first integral which we shall call the generalized Runge–Lenz
vector. This vector field is defined on an n-fold cover M̃ of the original space M,
and it is invariant under the flow generated by the lift of the Bertrand Hamiltonian
to the covering space M̃. In M, this vector field induces a global tensor field of
rank n which is preserved under the flow of H. As before, n is the positive integer
which appears in Eq. (7).

As regards the superintegrability properties of the Hamiltonian systems (7),
the spherical symmetry of these systems readily yields three first integrals other
than the Hamiltonian, which can be identified with the components of the angular
momentum. The idea of looking for generalizations of the Runge–Lenz vector in
order to find an additional integral of motion is not new: an updated and rather
complete review of the related literature can be found in (36). Here we shall use
our information about the integral curves of (7) and some ideas already present in
the work of Fradkin (20) and Holas and March (26).

Let us start by recalling Fradkin’s construction (20) of a local vector first inte-
gral for the Hamiltonian system

H0 =
1
2
‖p‖2 +U(‖q‖) ,

where U(‖q‖) is an arbitrary central potential and (q,p) ∈ R3 ×R3. The start-
ing point is the following trivial remark. Consider an integral curve q(t) of H0
contained in the plane {θ = π

2 } ⊂R3, where (r,θ ,ϕ) are the usual spherical coor-
dinates. We can assume without loss of generality that we have taken the initial
condition ϕ(0) = 0 and use the notation r = ‖q‖, J = pϕ = r2ϕ̇ . A simple com-
putation shows that the derivative along this integral curve of the unit vector field

a =
cosϕ

r
q+

sinϕ

rJ
q× (q×p) (12)

is identically zero, as in fact a(t) is the constant vector (1,0,0). Fradkin’s observation
was that if cosϕ and J−1 sinϕ can be expressed in terms of q and p in a domain
Ω ⊂ R3\{0}, then the resulting vector field is a first integral of H0 in Ω . When
H0 is the Kepler Hamiltonian, the generalized Runge–Lenz vector field is well
defined globally and essentially coincides with the classical Runge–Lenz vector
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divided by its norm. When H0 is the harmonic oscillator, the generalized Runge–
Lenz vector is multivalued (this can be neatly understood by considering the turn-
ing points of the orbits), but can be used to recover the conserved tensor field
C = 2ω2q⊗q+p⊗p associated to the SU(3) symmetry (26).

Definition 11 Let H be a Hamiltonian system defined on (the cotangent bundle
of) a 3-manifold N. We say that H admits a generalized Runge–Lenz vector if
there exists a nontrivial momentum-dependent vector field A in N which is constant
along the flow of H.

Obviously the conserved vector A is nontrivial if it is not constant and can-
not be written in terms of the energy and the angular momentum integrals, and we
recall
that a momentum-dependent vector field in N is a map A : T ∗N → T N such
that πT NoA = πT ∗N . A momentum-dependent tensor field is defined similarly. The
main problem with Fradkin’s approach is that, of course, it is not at all obvious
how to obtain sufficient conditions ensuring that these local integrals are well
defined globally, while local superintegrability is trivial in a neighborhood of any
regular point of the Hamiltonian flow. However, we shall see below that Fradkin’s
approach works well for the kind of Hamiltonian systems that we are considering
in this paper, and that one can construct a globally defined generalized Runge–
Lenz vector (cf. Eq. (16) below) which is roughly analogous to (12).

Theorem 12 Consider a Hamiltonian of the form (7), with m,n coprime positive
integers. Then there exists an n-fold cover M̃of M such that the lift of this Hamil-
tonian to M̃ admits a generalized Runge–Lenz vector.

Proof We shall call H j, j = I, II, the Hamiltonian (7). Let γ be an inextendible
orbit of H j, which can be assumed to lie in the invariant plane

{
θ = π

2

}
. By

Proposition 7, and taking ϕ0 = 0 in Eq. (10) without loss of generality, γ is the
self-intersecting curve given by

cos
nϕ

m
= χ(r2,J2,E) , (13)

where χ is the function

χ(r2,J2,E) =



1+ J2
√

r−2 +K√
1+2J2(E−G)+KJ4

if j = I ,

J2r−2
(

1−Dr2±
√

(1−Dr2)2−Kr4
)

+DJ2+2G−2E√
(2E−2G−DJ2)2±4J2−KJ4

if j = II.

Moreover, the chain rule immediately yields

sin
nϕ

m
= −m

n
d

dϕ

(
cos

nϕ

m

)
=−mṙ

nϕ̇

∂

∂ r
χ(r2,J2,E) = Θ(rṙ,r2,J,E) , (14)

where

Θ(rṙ,r2,J,E) =−2rṙ
mr2

nJ
(D1χ)(r2,J2,E)
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and D1χ stands for the derivative of the function χ with respect to its first argu-
ment. It should be noted that these expressions are well defined also for J = 0.

Using the properties of the Chebyshev polynomials it is trivial to express
cosnϕ and sinnϕ in terms of r, ṙ,J and E as

cosnϕ = Tm

(
cos

nϕ

m

)
= Tm

(
χ(r2,J2,E)

)
,

sinnϕ = sin
nϕ

m
Um−1

(
cos

nϕ

m

)
= Θ(rṙ,r2,J,E)Um−1

(
χ(r2,J2,E)

)
.

Here Tm and Um respectively stand for the Chebyshev polynomials of the first and
second kind and degree m. Setting

S1 = {z ∈ C : |z|= 1},

we find it convenient to define the analytic S1-valued map

En(rṙ,r2,J,E) = Tm
(
χ(r2,J2,E)

)
+ iΘ(rṙ,r2,J,E)Um−1

(
χ(r2,J2,E)

)
,

in terms of which the orbit γ is characterized as

einϕ = En(rṙ,r2,J,E). (15)

It stems from Fradkin’s argument that (12) yields a vector first integral of (8) in
any region where eiϕ can be unambiguously expressed in terms of the coordinates
(q,p). However, Eq. (15) does not determine the angle ϕ univocally modulo 2π

because the map z 7→ zn of the unit circle onto itself has degree n, so that Fradkin’s
construction is, a priori, not global. As a matter of fact, it is obvious that Eq. (15)
only defines ϕ modulo 2π/n, thus yielding an n-valued additional integral.

The aforementioned problem is a consequence of the fact that the orbit γ has
self-intersections. It is standard that this difficulty can be circumvented by means
of an appropriate covering space of our initial manifold. The construction which
we shall next outline is in fact analogous to that of the Riemann surface of the
function z 7→ zn. We denote by γ(t) the periodic integral curve of (7) defined by
the orbit γ ⊂M and take an n-fold cover Π : M̃ →M of M such that the lift γ̃(t) of
γ(t) to M̃ is a smooth path without self-intersections. Notice that γ̃(t) is actually
an integral curve of the lifted Hamiltonian

H̃ j =
1
2

∥∥p̃
∥∥2

Π∗g j
+(Vj ◦Π)(q̃) , j = I, II ,

where (q̃, p̃)∈ T ∗M̃. M̃ is a fiber bundle over M with typical fiber Zn, and for each
k ∈ Zn we denote by Λk : M → M̃ the section of M̃ with fiber value k. Obviously
Λk is an injective map, and an isometry from an open and dense subset Mk ⊂ M
onto its image in (M̃,Π ∗g j). One obviously has that Π ◦Λk = id and

Π
−1(q) =

⋃
k∈Zn

Λk(q)

for all q ∈M.
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By construction, in each section Λk(M) there exists a determination of the
(complex) nth root which allows to solve eiϕ in terms of einϕ univocally along
Λk(γ̃). Therefore, for each k ∈ Zn there exist real functions Sk and Ck (namely,
determinations of arcsin and arccos) such that

eiϕ(t) = Ck(cosnϕ(t))+ iSk(sinnϕ(t))

whenever the point (r(t),θ = π

2 ,ϕ(t)) lies in Λk(γ̃). Moreover, an easy computa-
tion shows that the functions

Ck(r2,J2,E) = Ck
(
Tm(χ(r2,J2,E))

)
,

Sk(rṙ,r2,J2,E) = J−1Sk
(
Θ(rṙ,r2,J,E)Um−1(χ(r2,J2,E))

)
are analytic in their domains.

In order to express Ck(r2,J2,E) and Sk(rṙ,r2,J2,E) in a more convenient
way, we consider the lift of the coordinates q to each space Λk(M). With a slight
abuse of notation, we shall still denote these coordinates by q. An immediate
computation shows that Π ∗g j|Λk(M) reads:

ds2 = ‖dq‖2 +
[
h(‖q‖)2−1

] (q ·dq)2

‖q‖2 ,

where the function h is defined as in Sect. 2, namely,

h(r)2 =


m2

n2(1+Kr2)
if j = I ,

2m2
(

1−Dr2±
√

(1−Dr2)2−Kr4
)

n2 ((1−Dr2)2−Kr4)
if j = II.

By differentiation it stems from this formula that the conjugate momentum p to q
is given by

p = q̇+
[
h(‖q‖)2−1

] q · q̇
‖q‖2 q ,

yielding q̇ = v(q,p) with

v(q,p) = p+
[
h(‖q‖)−2−1

] q ·p
‖q‖2 q.

As rṙ = q · q̇ = q · v(q,p), we now have all the ingredients to invoke Fradkin’s
argument (cf. Eq. (12), with which (16) should be compared) and derive that each
component of the momentum-dependent vector field Ak in T ∗Λk(M) defined by

Ak =
1
r

[
Ck
(
‖q‖2,‖q×p‖2,H j(q,p)

)
q

+ Sk
(
q ·v(q,p),‖q‖2,‖q×p‖2,H j(q,p)

)
q× (q×p)

]
(16)

is a constant of motion in Λk(M). By construction, the vector fields Ak (with k ∈
Zn) define an analytic global momentum-dependent vector field A in T ∗M̃ whose
Lie derivative along the flow of H̃ j is zero, thereby obtaining the desired unit
Runge–Lenz vector. ut
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Remark 13 The particular form of the orbits (10) and the fact that M̃ is a finite
cover of M ensure that all the lifted orbits which are bounded are also periodic, and
that the lifted orbits do not have any self-intersections. Note that if M̃ is endowed
with the pulled back metric g̃ j = Π ∗g j, H̃ j is a natural Hamiltonian system and
Π : (M̃, g̃ j)→ (M,g j) becomes a Riemannian cover.

Corollary 14 Consider a Hamiltonian of the form (7) with n = 1. Then the gen-
eralized Runge–Lenz vector is well defined in all M.

Proof It trivially follows from Theorem 12. ut

Corollary 15 Consider a Hamiltonian H j of the form (7), with m,n coprime pos-
itive integers. Then there exists a momentum-dependent symmetric tensor field in
M of rank n which is invariant under the flow of H j.

Proof Let us use the same notation as in the proof of Theorem 12. In particular, we
consider the integral curve γ(t) and the maps Ak used in the proof of Theorem 12.
For each k∈Zn, let us denote by Ak(t) the restriction of the momentum-dependent
vector field Ak : T ∗Λk(M) → R3 to the projection of the integral curve γ(t) to
T ∗Λk(M). The only observation we need in order to prove Corollary 15 is that,
by the expression for γ found in Proposition 7 and the definitions of the covering
space M̃and of the momentum-dependent vector fields Ak, it easily follows that

Ak
(
t + `

n Tγ

)
= Ak+`(t)

for all k ∈ Zn, ` ∈ Z, t ∈ R such that γ(t) ∈ Mk+` and γ(t + `
n Tγ) ∈ Mk. Here Tγ

stands for the period of the integral curve γ(t) and the sum k + ` is to be consid-
ered modulo n. This periodicity property readily implies that the symmetric tensor
product C of A1, . . . ,An, with components

Ci1,...,in(q,p) = A(i1
1 (q,p) · · ·Ain)

n (q,p) ,

is a well defined, analytic tensor field in M of rank n. As usual, symmetrization of
the superscripts delimited by curved brackets is understood. To complete the proof
of the corollary, it suffices to notice that C is trivially invariant under the flow of
H j as each Ak is a (multivalued) first integral. ut

Some comments may be in order. First, one should observe the dependance of
the additional integrals (16) on the momenta is generally complicated (and in par-
ticular not quadratic), which explains why they are usually so hard to spot (30).
Second, it should be noticed that Corollaries 14 and 15 yield the usual Runge–
Lenz vector and second rank conserved tensor (up to a normalization constant)
when the Bertrand Hamiltonian we consider is the Kepler or harmonic oscilla-
tor system in Euclidean space (26; 47). Note, however, that given an arbitrary
Bertrand Hamiltonian it is usually hard to compute the conserved tensor C or the
Runge–Lenz vector A in closed form. In this direction, it should be mentioned that
an additional integral has been explicitly obtained for some of the Bertrand Hamil-
tonians discussed in Example 6 (cf. e.g. (2; 4; 21; 27) and references therein).
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5 Bertrand’s Theorem on Curved Spaces

In the previous sections we have thoroughly analyzed the superintegrability prop-
erties of the spherically symmetric natural Hamiltonian systems whose bounded
orbits are all periodic. When combined with the discussion of harmonic oscillators
and Kepler potentials on Bertrand spacetimes presented in Sect. 2, this gives all
the ingredients we need to state a fully satisfactory analogue of Bertrand’s theorem
on spherically symmetric spaces:

Theorem 16 Let H be the Hamiltonian function associated to a Bertrand space-
time, i.e., an autonomous, spherically symmetric natural Hamiltonian system on
a Riemannian 3-manifold (M,g) satisfying Properties (i) and (ii) in Bertrand’s
Theorem 1. Then the following statements hold:

(i) H is of the form (7) for some coprime positive integers n,m.
(ii) The potential V is the intrinsic Kepler or oscillator potential in (M,g).

(iii) H is superintegrable. More precisely,
(a) H is geometrically superintegrable in the region of T ∗M foliated by

bounded orbits.
(b) There exists an n-fold cover M̃ of M such that the lift of H to M̃ admits

a generalized Runge–Lenz vector.
(c) There exists a nontrivial momentum-dependent tensor field in M of

rank n which is invariant under the flow of H.

As mentioned in the Introduction, this result is of interest both in itself and
because of the abundant literature devoted to the study of particular cases of this
problem in different contexts and from various points of view.
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