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Abstract

In this article, we present a variety of evaluations of series of polylogarithmic
nature. More precisely, we express the special values at positive integers of
two classes of zeta functions of Arakawa-Kaneko-type by means of certain
inverse binomial series involving harmonic sums which appeared fifteen years
ago in physics in relation with the Feynman diagrams. In some cases, these
series may be explicitly evaluated in terms of zeta values and other related
numbers. Incidentally, this connection allows us to deduce new identities for
the constant C' = 3°, ~; ﬁ(l—k%—k- -+ 5-1+) considered by S. Ramanujan
in his notebooks.
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1 Introduction

The function 3 defined for R(s) > 0 by the Dirichlet series
1)71 1

Z (2n —1)®

n:l

has the integral representation

1 oo et 1 oo g7t 1—e 2
- tS*l dt — / - L tS*l dt
bls) ['(s) /0 1+e 2 I'(s)Jo 1—e2 10 ( 2 )

[e.e] n
where Li, denotes the classical polylogarithm Lig(z) = Z —-- One may also
n=1

observe that

1+ et
—— Lij(l—e )t dt=(2-27° 1).
foh T e (2-27)s (s +1)
These preliminary observations lead us to introduce two families of functions oy
and [ defined by the Mellin transforms

—t

1 too e . _ .
ak(s)_F(s)/() lek(l—e 2t)t Ydt  for R(s) >0and k > 1,

1 +oo gt 1=\
ﬁk(s)zr(s)/o mhk ) t°"dt for R(s) >0and k>0,

so that
ay(s) =272 — 1)s¢(s + 1), and By(s) = B(s).

We point out that the function ay(s) introduced here is (apart from a factor
27°) nothing less than the special value at x = 1/2 of the (generalized) Arakawa-
Kaneko zeta function & (s, z) previously defined in [7], whereas the function fg(s)
is a new function of the same type (cf. Remark 2). Let us remind that the original
Arakawa-Kaneko zeta function &x(s) = &(s,1) was introduced by Arakawa and
Kaneko in 1999 (cf. [1]) and formed the subject of recent works and further
generalizations (cf. [2], [4], [7], [14], [15]).

In the case where s is a positive integer, the special values oy (s) and fi(s) can
be expressed by means of certain inverse binomial series studied by Kalmykov and
Davydychev in relation with the Feynman diagrams (cf. [8]). More precisely, we
obtain the following identities:

0o 22n 1 ]
oW ...oW 0"y (fork>1),
2 (o o ) (fork > 1)
on-— 1

Pu(O,...,09),...,00m) (for k > 0),

o0
Z 2n
— ( ) nk+1



where P, is the modified Bell polynomial of order m and OY) = $°7_, ﬁ is the
'odd" harmonic number of order j. For small values of k and s, these series may
be explicitly evaluated in terms of zeta values and other related constants which
are real periods in the sense of Kontsevich and Zagier (cf. [9]). For instance, we

have the following evaluations:

00 2n71 On
5i1(2) = Z (Qn) 2 Zg(?’) - 5G,
n=1\ ,
00 22n71 On 7T4
as(2) :; (2;1) 3 :7C(3)1n2—3—2—8G(1),
o0 22n71 1 2 7 4
as(1) = nz:jl Y S(n2)? = 2¢(3)n2+ % +4G(1),

On 1207(11):2%2‘1 1’
]_

j=1
G := [(2) is the Catalan constant,

is the Ramanujan constant (cf. [3] p. 257, [13]).

The evaluation of a;(2) above was given previously in [6], whereas the following
ones are new. In particular, the two last relations provide new interesting formulae
for Ramanujan’s constant G(1) as explained in detail in section 6.

2 Bell polynomials and "odd" harmonic numbers
Definition 1. The modified Bell polynomials are the polynomials

Pm € Q[I17'x27 ;‘/L‘m]

defined for all natural numbers m by Fy = 1 and the generating function

(e 9]

0 Zk:
exp <Zxkk> = Z Pm(xla"' 7-Tm) Zm?
k=1 m=0



The general explicit expression for P, is
1 T\ P g\ k2 T \
o=, Bt (8 )
k1+2ko+--+mkm=m kl‘kQ' te km' 1 2 m

Example 1. For the first values of m, one has

P0:17
Plley

1 1
P2—§ZL’%+2$27

1 1 1
P3:6$?+2$11’2+3{E3,

1 1 1 1 1
P, = 24x1+4:1:1x2—|— 8x2+ 3x1x3+4:{;4

Notation. For s € C with R(s) > 1 and an integer n > 1, let O'*) be the "odd"
harmonic sum:

i 1
=Y ——— and O,:=0W.
1;::1 (2k —1)°
In the notation of [7], one has
0P =27°nY (1/2)  with AY(z) = Z
]=0
Proposition 1. For all integers m > 0 and n > 1,
2n
m n(”) +oo —t —2t\n—1 t
P(On,...,00™) = 2%_1/0 et -yt (1)

Proof. Since
Pu(Ons ., O0) = 27" P (b1 (1/2), ... " (1/2),

formula (1) follows from Lemma 1 of [7] in the special case x = 1/2. To be
self-contained, we give a direct proof below. We show that

i n . 2n o
Z Pm(Ona H 2‘7 1 — n<n) /+ etZ(1_€f2t)n71€7tdt’
m=0 j=1 0

j—l—Z 22n—1




and then we shall obtain formula (1) by identification of the coefficients of z™. On
one side, one has

ﬁ 27 -1 :ﬁ(l— z )1
2 —-1—-2 5 27 —1
L z
= exp(— Y log(1 — o)
j=1
PIp PP
= exp )
j=1k=1 k(2j - 1)k
+00 Zk n 1
= eXp( R : )’
k=1 k j; (2] - 1)k
thus i
=~ —exp(Y 0P = Pp(Oyp, - -+ ,0MM) zm
3H1 2] —1—=z g::l k m,z::O
On the other side, one has
12[ 2j—1 1 P(n+1/2)I'(=2/2+1/2)
21—z 7 T(n—z/2+1/2)

_ 1 P(n+1/2)T(n)I(=2/2+1/2)
Vi T(n)  T(n-2z/2+1/2)

(\V]

where B is the Euler Beta function. Thus, for 0 < |z| < 1, one has

& 2] —1 _ ’I’L<2:) ! n—1 —z/2-1/2
] e P A ) du,

j=1

2

and making the change of variable u = 1 — ™%, one then obtains:

2n
noo9j—1 n() e
H oF J : — 22( 2/ etz(l _6—215)71—16—15dt7
g—1—2z = Jo

and finally

00 2n oo
Z Pm(Om N 7Ogm)) LM — n(”) /+ etz(l . 6_2t)n_16_tdt.
m=0 0



3 The operators D and S, and the Euler series
transformation

Definition 2. Let a be an analytic function in P = {x | R(x) > 1} defined by
+o00
a(z) = / e "G(t)dt forallz € P,
0
where @ € C'([0, +o00[) is such that there exists o < 1, and C' > 0 with

[a(t)| < Ce® for all t € ]0, +o0] .
For x € P, we define the functions x — D(a)(x) and z — S(a)(x) by
+o0 eft
D(a)() = | (1= e al)dr,
o l—et

€_t

s =[5

Proposition 2. For all integers n > 1, one has

(1 —e ™) a(t)dt.

and for all integer n > 0,
D(a)(n+1) = fj(—nk <Z> a(k+1).
Proof. The first relation follows from
St = [ o e_tl__i(n:l)A / zi; FOYG()dt = kz: / T et dt
The second relation results from the binomial expansion of (1 — e™*)" since
Dla)n+1) = [ T et — e trat)de

et é (—1)F (Z) e~ Ma(t)dt

(1) (Z) / T et () dt



Example 2. For s with R(s) > 1 and x € P, let

1
a(z) = =1
One has A
+o0 51 +o0 65(7)5—
_ —(2z—-1)t dt = / —xt 2 dt .
a() /0 ‘ I'(s) o © 2I'(s)
Thus, for all integer n > 1,
400 . (i)sfl +oo ts_l

D :/ -5(1 — —t\n—1\2 :/ —t 1 — —2t\n—1 . 2
(a)(n) e 2(1—e™) o) dt e (1—e7) F(s)dt (2)

By (1), one has

400 tm 22n—1
/ et1—e 2t g =% __p (O,,...,0m).
0 m' n(Q:)
Thus, if s is an integer, s = m + 1 with m > 0, then we get for all integers n > 1
the following formula

D((2x—11)m+1)(n) = i(Z;)Pm(on, L,00M). )

n

Lemma 1. The operators D and S are linked by the following relation:

D <1S(a)> = 1D(a) forall z € P.
x T

Proof of the lemma. By definition of S(a),

too ] —e % et

“S(@)e) = | [l dr,

T

integrating by parts, we get

s = [Te ([T TSt du) ar,
[~ )

this gives

iS(a)(t) -7 i_:_ua(u) du.



Thus

D(ES(a))(x) = /O+OO e (1 —et)y*t (/too <’ au) du) dt,

T

and integrating again by parts, we get

D(15<a))(x):/o+°01(1—et)x C_a(t)dt = D(a)(x).

T 1—et T

Remark 1. The relation between D and S given above is a reformulation of
a result that we called the "harmonic property' in an earlier paper (where the
operator S is denoted by A): cf. [4] Theorem 6.

Proposition 3. For all complex numbers z such that |z| < 3, one has

400 +oo z
ZD(G)(H)Z”Z =2 an)(z—)",
n=1 =
z" =1 z
D(a —=—->» =S " 4
) =L S (@)
Proof. For the first relation we write
400 z
D(a 1)z"t = / a(t)dt
Z TL + (1 _ eit)za( )
too oz e
= — a(t)dt .
/0 (z—l)l—e*tﬁam
The expansion
() = X
z=1"1—et% z z—1
gives
+oo to0 z
Z Dia)(n+ 1)z = = [ 773 e (=) alt)at
(U — z—1
+o0 > +00 :
=— n “a(t)dt
S erao,



the order of [;"* and 3°°°, may be interchanged because

oo IR —nt( ~ _ 2] oo e’
/0 Z € Z| ‘a(t)‘dt - (1—|Z|)/0 7" (t)’ < +00.

1—et |z‘ |

The second relation (4) is an immediate consequence of the first one by Lemma 1
above. ]

Proposition 4. For all integers p > 1, one has

i W = /O+Oo 1 i_;t Li( L= e_t) a(t)dt. (5)

n—1 DM b

Proof. Let p be a positive integer, then
>, s

1 oo et
k/ : C _(1—era) dt
n=1 n=1 pnn —e

B (e
/ — a(t) dt

t k
e nl pn

too et 1 —et
:/0 L Ya(t)dt,
the order of [;"* and 3-°2, may be interchanged since, by the hypothesis on @,

[a(t)| < Ce™ for all t € )0, +o00] ,

which gives

et @ e et et
/0 1 — et Z |a(t>| dt < C/O 11— e—tle( )6 dt < +00.

et pnnk

4 The functions «; and [

Definition 3. Let k be a positive integer. The functions «y, and i are respectively
defined for all s € C with R(s) > 0 by

1 +o00 Git ) B .
() = 15 /0 S L (- e e (for k2 1),

—t

1 ~+o00 e 1 — e 2t
= Li t*~Ldt  (for k> 0).
Bi(s) ['(s) /0 1] —e 2 e ( 2 ) (for k= 0)




Example 3.

2 +o0 et
= — 5 dt=2"%(2°"t —1 1
() = 1, A —= ( )sC(s + 1),
—t

1 ()
B = ) T (2=,

Remark 2 (link with the Arakawa-Kaneko zeta function). In [7], we introduced
the function (s, ) — & (s, z) defined for R(s) > 0 and = > 0 by :

1 teo tLik<1 ) 1

s,x) = e ot T € Jyst gy
(s, 7) F(s)/o 1—et
which is a very natural extension of the original Arakawa-Kaneko zeta function
of in the same way as the Hurwitz zeta function ((s,x) generalizes the Riemann
zeta function. In the simplest case k = 1, & (s, x) is nothing else than s((s+ 1, z),
and moreover we deduce immediately from the previous definition the following
relation:

ar(s) = 27°& (s, ;) :

In a similar way, if (s, z) is defined for R(s) > 0 and = > 0 by
—t

1 oo et 1—e
* = Li st dt
5]{:(87 x) F(S) A 1 - e_t lk( 2 ) Y

then

Buls) = 27°Ei(s, 7).

Proposition 5. If s is such that R(s) > 1, then

=1 1
a(s) =;@D(m

= 1 1
Br(s) = nz::l Q”n’fD((2x — 1)8)(71) (for k >0).

)(n) (for k>1),

Proof. This is an immediate consequence of formula (5) applied to the function

1 . ty\s—1
a(z) = 1) (for p =1, 2) since a(t) = e? (221“(5) as already seen in Example 2.
O
Corollary 1. For all integers m > 0, then
00 22n 1
sm+1)=> = Pn(OW,...,0{™)  (for k >1), (6)
— ( n) nk+1
00 on-— 1
(m+1) =Y P(OW,...,0t™)  (for k >0). (7)

2
ot ( n) nk+1

10



Proof. This is an immediate consequence of Proposition 5 by formula (3). [

Example 4. Since ay(s) = 275(2°" — 1)s((s + 1), then for all integers m > 1,

00 22n—1

2-2""ml(m+1)=">_ W P,_1(OW, ... 0m=Dy, (8)

n=1

In particular, for m = 2, a nice formula for Apéry’s constant (cf. [6], p. 81) is
regained:

2 = 7(3). §)
Co)

Example 5. Since 5y(s) = ((s), one has for all integers m > 1,

oo2nl

B2m) =Y C )nPQm L(OW, . 0PNy (10)

n=1

In particular, for m = 1, a nice formula for Catalan’s constant (cf. [3] p. 293,
Entry 34) is regained:

< 2" O,
;::1(2:)” = 2G, (11)

and for m = 2, formula (10) is translated into

X 2" (0, & 28 0,00 & 2t O
Y A +3Y° 22 L=125(4). (12)
= o I= 1 () n

Remark 3. In a similar way (cf. [4] § 5.5), one can prove for & (s) := &(s, 1) the
following identity:

< 1
Zn— —n (for R(s) > 1and k > 1),

and, furthermore, one has (cf. [4] § 3)

1 Py (HWM, . .. HM™) LA
D(merl)(n): WlthH’r(z g? a"'vm)a

which gives for instance Euler’s famous identity:



4.1 The function 5,

The Euler series transformation (Proposition 3 above) provides an alternative ex-
pression for f3;.

Proposition 6. For all s € C with ®(s) > 1, one has

- nflOv(f)
Bils) =D (-1 =",
n=1 n
hence, for each integer m > 1
00 (m) 0 gn—1
Syt At o 2 ko, o). (13)
n=1 n n=1 (g)n2
Proof. By (4), one has for all |z| < 3,
% D(a)(n) =1 z
I i S GOl

If the series Y725 D( ‘2(”)2% is convergent, then, by the classical Abel lemma, we
get

X D)(n) 1 X1 .

> o =2 S m)(=1)" .

n
= n 2 —n

By formula (5), the series 0% 5D (%1 O )(n) is convergent and

B9 =3 g Dl = 3 T s
W= 2oy PN 2r — 1) P 2z — 1)\
Then, using formula (1) for D((211))(n), one obtains (13). O
xr — m
Example 6.
oo 00 2n—1 1 7T2
—1 — —
D N T
oo (2) 00 2n—1 O 7 T
et =N T T = ((3) — = 14

([8] (2.36) and (2.37) with u = 2 and 6 = g) :

S a10n) &~ 2" (0n)? — 2" Og) _ m 2
Z(‘l) - Z (2:) (2n)2 +nZ::1 (27?) (2n)2 T 64 G (15)

([8] (2.38), (2.39), (2.40) and (C.4) with u = 2 and 6 = g) .

12



Remark 4. In complete analogy with (13), one also has the following relation

[e%S) H(m) 9] 1 .
n=1

which is equivalent to that given by Ch01 and Srivastava ([5] p. 66, formula (4.29)).

Proposition 7. Let
k—1

7=y
k=1
If s is such that R(s) > 1, then

S gt =0z 3 EV S ae.

Thus, for each integer m > 1,

f:l (2nH_”1)m = (1=27™)¢(m) In 2+(—1)™ In 2+2§j(—1)m’“6(k)—ﬁl(m)- (18)

Proof. The first relation is a direct consequence of the following elementary result:
If the series >0 1 @y, D02 by, Y00y anby, and 3207, b, -7 ai are convergent,
then the series >, a, >_p_; by is convergent and we have

Zaank:Zaann—i—Zan n Zb Zak
n=1 k=1 n=1 n=1 n=1 n=1

Applied to a, = ﬁ and b, = #, this relation gives (17). The second

relation is a consequence of the first one by the following observation:
If s is an integer, s = m, then we have

_()mEn-1) -

Z - 2n ’

= (2n — 1)k
hence ( 1)n—1 ( 1>n—1 m ( 1>n 1
— — (—1)™ — m k \
n(2n — 1)m (=1) z:: (2n — 1)k
which gives formula (18). O

Example 7. Formula (18) gives respectively for m = 2 and m = 3 the following
identities:

00 2 G

Z 2n_1 %an—i—an—E—i—QG—fC() % (19)

i H ZC()1112—lr12+*—2G—1—f—i-G2—711. (20)
2n—1 8 2 16 64

n:l

13



5 The values (1) and [x(1)

The special values of oy and i at s = 1 are evaluated in terms of (generalized)

log-sine functions (cf. [8], [10]).

Proposition 8. For each integer k£ > 1 and @ € R such that 0 < o < 1, let Ly («)

be the log-sine-type integral':

L (a) :/ wln®! (28in u) du = 7T2/ zln*! (281n M) dz .
0 2 0 2

Then, one has

2ea(l) = 2 (22:) nkl“ - Qk_lg(_l)i_lu —(lf)!Q()k_—z i)! Li(1).

o on k . =1 (ln 2)F?
28,(1) = ; (zn) nk1+1 _ Z(_D"l(f_ 1()!(2)_ 5 Li(;).

=1

Then, one has for £ > 1,

By a classical identity due to Euler (cf. [16], [17]), one also has

Ji(z) = (arcsinz)?,

hence )
Jo(z) = 2z arcsin x
’ V1—2?2
It is easily verified that
L Jp
205(1) = 2, (1) = 2’“/ Jesl®) 4o
0 x

and v
26,(1) = 2ka(é§) - z’f/o7 Jk_;(x)dx.

'With the notation of [10], Ly(«) is —Ls]gl(aﬂ').

14

(21)

(22)



u

By (k — 1) integrations by parts and the change of variable » = sin ¢,

(=DM e Jo(2) (D" o ey U
Jk(l):(k—l)!/o In""(x) . dI:Q(kJ—l)!/{) uln (51n§)du,

we get

and

R RVES R o(z Lt pom -1 in 2
Jk<ﬂ>:§k1_)1>!/o 1nk_1(ﬁx)J;)d$:2<(klzl>!/c) u (g

It remains to use the binomial expansions of
1 k—1
In*~!(sin %) = [ln(Q) + In(2sin ;)} :

and

k-1
In*~1(v/2sin %) = [ln( ) + In(2sin ;L)]

1
V2
to obtain formulas (21) and (22). O

Proposition 9. For all « such that 0 < a < 1, we have

a) Li(a) = 5o’
b) Lafa) = () = 3. ) — o - ),
¢) Ls(a) = 7;;(@4 - 2043 + 20?2) + 22 G ”1)3 cos(m(n + 1)a)
+ 2m§jl 0 +”1)2 sin(m(n + 1)a) — ;§(4) : (23)

Proof. The assertion a) is trivially verified and b) is a classical identity (cf. [10],
formula (7.53)). It remains to prove c¢). We use the following expansion :

) e’} Zn+1
L 1—2)=2 H,——
o) =2
to get
] 00 e—iwx(n-‘,—l)
Log?(1—e ™) =2% H,———
o (1) =23 1

15



Since
L0g2 (1 . e#m;) _ Log2 (efiﬂ':r/Z(eiﬂ’xﬂ _ efiﬂx/Q))

1
= (—imz/2 +im/2 + In(2sin ixﬂ))Q

_ _7;2(;,; — 1)+ In*(2sin “-2) +iS (Log? (1 — 7)) |

one has )
In*(2sin %x) = %(33 — 1)+ R (Log2 (1 - e"”)) :

hence ) (n( 1))

12<2'm):7r 122y g, S .

n” ( 2sin - 1 (x —1)" + ;::1 o
Integrating, this gives

"z ln? (2 ) — / —1)?

/0 xIn® ( 2sin T (x
+2Zn+1/ zcos(m(n+ 1)x) dx. (24)

The permutation of - and [ in (24) is justified by the following Lemma 2 and the
dominated convergence theorem. The integrals in the right-hand side of (24) are
easily computed by

at 203 o?

e —1)dr =L 2 LY
/ox(‘r Vv ===+,

and
a cos(m(n + 1)) a . 1
)z)dr = Na)— —— .
/0 zcos(m(n+ 1)z)dx (0 172 D) sin(m(n+1)a) 1 1)
Thus, we deduce from (24) the following expression for Lz(«):
7t ot 223 o?
L3(a) = Z(Z 7 ? +2 Z 5 cos(m(n +1)a)
00 Hn
2 i Da) —2
+ Wanz::l(”+1)28m( m(n+1) Z n+1
Moreover, one has
>~ H, = H, ) 1
ST 4y = 2(4) - C(4) = ~C(4
S = G = G~ = e,
and this gives (23). O

16



Lemma 2. The partial sums

zk: zcos(m(n + 1)x)
= n+1

are uniformly bounded for = €]0, 1[.

Proof of the lemma. Let S,(x) = x37_ cos(m(j + 1)z). A sommation by parts
gives

k Hn k Hn Hn+1 Hk
1z) = _
n; e eeostrnt ) ;S”(x>(n+ T2 P @)
and one has
2z
= 1 _.
)l = zZCOS 7 + L)) < sin(mz/2)

It follows that, for all = €]0, 1[,

Ek: cos(m(n + 1)z) < _ 2z (&_Hk+1+ Hy, )< — Cux <c.

- n+1 sin(rx/2)" 2 k+2 k+1 sin(mz/2)

Example 8. Formulae (21) and (22) give for k = 2 the following identities:

© gm 7
7;(2:)713—77 ln2—§C(3),
> 2" 1 2 35

which were known of Ramanujan (cf. [3], p. 269).

6 New formulae for Ramanujan’s constant G(1)

In Chapter 9 of his notebooks (cf. [3] p. 255, Entry 11), Ramanujan introduced
two generating functions?:

< 0,z < 0,z
=2y M G0 =2

2These functions are respectively denoted by ¢ and 1 in the original manuscript : cf. [11]
p- 108.

17



then, he writes the following functional relation :

G(a:)—l—G(l_x) :F(:c)log(x)—l—F(l_x>10g<1_x)

1+=x 1+=x 1+
1 1—=zx
L oe?()1 2( > .
TG og”(x)log 152 +C, (ii)
with - ( 1) .
T —1)" T X
C=-— - .
4;) (4n +1)3 3\/5,;(2n+1)3

Unfortunately, this beautiful formula for C' given by Ramanujan turns out to be
erroneous since, letting x tend to 1 in (ii), one sees easily that the constant C' must
be equal to
= O
G(1) = =
=2 (2n)3

n=1

(cf. [3] p. 257, or [13] for more details).

However, the calculation of a3(1) and ay(2) provides two interesting formulae for
the constant G(1).

Proposition 10. Let G(1) = X2, -2; be the Ramanujan constant. One has

n=1 (2n)3
G(1) 7<(3) o 1 2(ln2)2+2§: 2" 1 (25)
= —_ —_ — 7’7"' PR— .
8 384 8 = (?) (2n)*
Proof. One has
> O HQn - l}In
1) = n__ 2
OO =2 Gap =2 (@

n=1 n=1
1 & H, 1&(-1)"H, 1 & H,
X mtal T TEls
35 1 & H
= () — =Y (=),
1 =5 S
Moreover, by (23) with o = 1, one also has
25 <
Ls(1) = =C(4) =23 (-1)"'—
8 = n
m o
= — +4G(1). 26
T 400 (26)



Then, applying formula (21) with & = 3, it results from (26) that

00 22n 1 4
2a5(1) = 3. v — = 72(In2)2 — 7¢(3) In2 + — + 8G(1) (27)
= (:) n 48
and this relation is equivalent to (25). O

Remark 5. We have seen before (cf. Example 4, formula (9)) that

EEDS 2()2 - T,

n=1 n

and one also knows (cf. [3], p. 259) that

wr(1) = 3 8= 106).

Thus
1. 22 0,

00 On 1
“Xp TaX e

(28)

The calculation of as(2) provides a nice expression of the Ramanujan constant
G(1) similar to (28).

Proposition 11. Let G(1) = Y22, (2
the following formula:

7r4 1 X, 22n On

G(1) = =((3)In2 — fz () n

(29)

ool

Proof. Applying (2.44) and (2.45) of [8] with u = 4 and 6 = 7, one obtains, after
calculations, an expression of ay(2) involving L(1) which may be simplified using
formula (26). Finally, we get the following relation:

7.[.4

02(2) = 7¢(3)In2 — o~ 8G(1) (30)
and this relation is equivalent to (29). O
Remark 6. Since %C(ZS) = Y00 (2n+1)3 and 5 = 3,50 (§n+1 5, formula (29) may
be rewritten
1 (- 1 22" 0
G(1) =21In(2 —_— — 8+ In(2 —_ — = 31

which gets closer to the erroneous formula given by Ramanujan for C'.
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7 Conclusion

With the aim of defining a natural framework for the study of the special values of
zeta functions of Arakawa-Kaneko-type, we were led to consider polylogarithmic
series in the generic form:

n

Z ik with k€N, 2€C, and
-2

S

We studied the important cases a(z) = 2% and a(z) = (20 — 1)7° for z = 1
and z = 1/2. Though limited in practice to small values of k and s, our ap-
proach provided plenty of nice formulae with interest both in number theory and
in physics.

D )(n+1)
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