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Studying entanglement growth in quantum dynamics provides both insight into the underlying micro-
scopic processes and information about the complexity of the quantum states, which is related to the
efficiency of simulations on classical computers. Recently, experiments with trapped ions, polar mole-
cules, and Rydberg excitations have provided new opportunities to observe dynamics with long-range
interactions. We explore nonequilibrium coherent dynamics after a quantum quench in such systems,
identifying qualitatively different behavior as the exponent of algebraically decaying spin-spin inter-
actions in a transverse Ising chain is varied. Computing the buildup of bipartite entanglement as well as
mutual information between distant spins, we identify linear growth of entanglement entropy corres-
ponding to propagation of quasiparticles for shorter-range interactions, with the maximum rate of
growth occurring when the Hamiltonian parameters match those for the quantum phase transition.
Counterintuitively, the growth of bipartite entanglement for long-range interactions is only logarithmic
for most regimes, i.e., substantially slower than for shorter-range interactions. Experiments with trapped
ions allow for the realization of this system with a tunable interaction range, and we show that the different
phenomena are robust for finite system sizes and in the presence of noise. These results can act as a direct
guide for the generation of large-scale entanglement in such experiments, towards a regime where the

entanglement growth can render existing classical simulations inefficient.
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I. INTRODUCTION

Advances with atomic molecular and optical (AMO)
systems, including cold atoms, entangled photons, and
trapped ions, have rapidly opened possibilities to explore
many-body physics in a highly controllable way [1-3]. A
key example of this is the new possibility to explore
coherent nonequilibrium dynamics in a closed many-
body system, e.g., the dynamics induced by quantum
quenches [4-9,9-13]. There have been several recent
quench experiments with cold atoms in optical lattices,
which not only probe the microscopic behavior of the
system, e.g., the propagation of quasiparticles [14], but
also indicate the possibility to probe dynamics beyond
the regimes that are currently accessible to classical simu-
lations [15—17]. In this context, the growth of entanglement
in the system underlies the complexity of simulating the
dynamics classically. Demonstration of large entanglement
growth after a quantum quench would be a crucial step in
demonstrating the possibility to use these systems as con-
trollable quantum simulators, effectively using experimen-
tal systems to compute dynamics in a way that exceeds the
capabilities of classical computations [18].
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Systems of trapped ions are a very promising candidate
for realizing a quantum simulator because of the control
already demonstrated in the development of gate-based
quantum computation and simulation [19-21] with these
systems, and the ability to make measurements by state
tomography [22]. Recently, analogue quantum simulation
of interacting spin systems [23,24] was also realized in ion
traps [25-27], with a key novel element being the possi-
bility to realize variable-range interactions [28-33], as
shown in Fig. 1, in contrast to the short-range interactions
of neutral atoms, or the dipole-dipole interactions possible
with polar molecules.

So far, these variable-range interactions were discussed
primarily in the case of ground-state calculations and near-
adiabatic dynamics. Here, we explore nonequilibrium co-
herent dynamics after a quantum quench in these systems,
identifying qualitatively different behavior as the exponent
a of algebraically decaying spin-spin interactions is var-
ied. Beginning with all spins aligned with a transverse
field, we use a combination of analytical and numerical
methods to compute the dynamics after the Ising interac-
tions are quenched on, incorporating matrix product op-
erator techniques [34-41] to treat variable long-range
interactions with up to 50 spins.

In particular, we investigate the buildup of bipartite
entanglement in the chain as well as mutual information
between distant spins [6-9]. For interactions with o = 1,
we show that the behavior is qualitatively similar to
nearest-neighbor interactions, with correlation buildup
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FIG. 1. (a) Ilustration of the quench experiment. We consider
a linear chain of ions (effective spin model) with long-range
interactions. Initially, all spins are fully polarized along the axis
of the magnetic field B. After a time evolution, spatial entangle-
ment entropy (S,n) builds up between blocks of the system.
(b) A typical calculated experimental interaction matrix for 20
ions (see text for further details and parameters). (c) The decay
of the interactions with a tunable decay exponent «. Here, the
grey dots show the mean interactions from diagram (b).

well described by the propagation of quasiparticles at a rate
equal to or slower than the Lieb-Robinson bound [42—44].
This leads to a linear increase in bipartite entanglement in
time, so that the dynamics cannot be efficiently computed
in existing classical simulations beyond short times
[16,17]. Interestingly, in this limit, we find that the maxi-
mum growth rate of bipartite entanglement, even in small
systems, occurs when we quench the interaction strength to
the value corresponding to the quantum-phase-transition
point, shifting accordingly for varying «.

For interactions with a < 1, we observe qualitatively
different behavior. Counterintuitively, quenches above the
critical point for these long-range interactions lead only to
a logarithmic increase of bipartite entanglement in time, so
that in this regime, long-range interactions produce a
slower growth of entanglement than short-range interac-
tions. This can be understood by the fact that the dynamics
is constrained to take place in a small part of the total
available Hilbert space. In particular, in the case of infinite-
range interactions, the system is described by the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [45,46], where the
eigenspace of the model is spanned by relatively few
Dicke states. We show that, in this case, the bipartite
entanglement is bounded by a constant value, which grows
logarithmically with the size of the system. For a large
system size, this can be thought of as a mean-field limit,
where the dynamics is simple to capture with a small
number of basis states.

Finally, we discuss specific experimental parameters for
the realization of different regimes in ion traps with finite
chain lengths, and experimental measurement protocols for
these effects, creating possibilities for the regimes consid-
ered here to be observed in the laboratory. We show that the

crossover from linear to logarithmic entanglement growth
can be observed also for inhomogeneously decaying inter-
actions. Furthermore, we take typical experimental noise
sources into account and show that the observable features
are robust against these. The result that long-range inter-
actions do not always give rise to strong entanglement in
quench dynamics has implications for the realization of
large-scale entanglement in quantum simulations in gen-
eral systems with long-range interactions.

This paper is organized as follows. In Sec. II, we in-
troduce the setup and the model, as well as the entangle-
ment measures we compute. In Sec. III, we show how the
entanglement growth depends on the model parameters
and how the entanglement distribution mechanisms can
be understood. In Sec. IV, we show entanglement growth
for typical experimental parameters with inhomogeneously
decaying interactions and how the entanglement behavior
can be measured in noisy experiments. Finally, in Sec. V,
we provide a conclusion and an outlook.

II. MODEL FOR A QUENCH WITH LONG-RANGE
INTERACTIONS

In this paper, we study the nonequilibrium dynamics of
spatial entanglement in systems with long-range interac-
tions, especially as they are realizable with variable range
in ion traps. In this section, we introduce the long-range
transverse Ising model governing the time evolution, and
the measures of entanglement we compute.

A. Transverse Ising model

We consider the transverse Ising model with long-range
interactions, described by the Hamiltonian

A=Y31,6i6%+BY &5 (1

i<j i

Here, the 6§ denote the local Pauli matrices (o = x, 2), Jij
is a general interaction matrix with potentially long-range
interactions, and B is the transverse field. This Hamiltonian
can be realized experimentally, e.g., with a string of
trapped ions that are harmonically confined in a linear
trap, as depicted in Fig. 1. Using two stable (or metastable)
electronic states of these ions as local spin representations
at site i, | 1); and | |);, it has been shown [23] that one can
use collective couplings of these local states to motional
degrees of freedom of the whole chain to produce the
effective spin model (1) [an example of J;; for the ion-
trap experiment, ‘“case B” of Sec. IV, is shown in
Figs. 1(b) and 1(c)]. Note that, throughout this paper, we
will deal with open boundary conditions, which are typical
in ion-chain experiments.

We define the local eigenstates of 6% as |0); = | |); and
[1); = | 1);, with eigenvalues —1 and 1, respectively. We
consider a quench experiment [see Fig. 1(a)], where the
system starts in the fully polarized state | o) = [T 10);,
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which is the ground state for B(t = 0) — oo. We are inter-
ested in the nonequilibrium dynamics of the many-body
quantum state under a coherent evolution, i.e., (7 = 1):

[y = et aprg) = z cil,iz,...,iM(t)l_llik>kr ()

iy,d,.dy k

with i, € {0, 1}.

We will concentrate on the case J;; >0 for all i, j.
However, we note that, nevertheless, we obtain solutions
for both the ferromagnetic and the antiferromagnetic case.
Since we start in a state with a real probability amplitude in
the spin basis, the evolution for any observable O, (with
OA;L = OZ), such as a density matrix of any subsystem, is
completely symmetric under the time-reversal transforma-
tion t < —¢. This can be seen by the fact that

(P01 ,) = (ol cos(H1)O, cos(HD)| o)
+ (Yl sin(l'-AIt)OZ sin(A1)| )
=(W_ 0. l¢_), 3)

where the cross terms have to vanish because of the real
coefficients of the initial state and the fact that the expec-
tation value must be real. Thus, the evolution of any
observable is identical under both Hamiltonians A and
—H. Therefore, the results we obtain for B > 0 with the
antiferromagnetic (J; ; > 0) model are identical to the fer-
romagnetic model (J; ; < 0) with either a negative field —B
or a rotated initial state.

In this paper, we will show how the entanglement growth
behavior changes with the strength of the magnetic field
and the range of the interactions. Initially, we will idealize
the interaction matrix, taking the form

o
ol =gl

“

where J denotes the nearest-neighbor interaction strength
and « is the decay exponent. This gives a good represen-
tation of the basic behavior of the interactions, but in real
experiments, there are typically small deviations from the
purely algebraic behavior of the interactions. In Sec. IV, we
will consider a full interaction matrix J; ; for real experi-
mental parameters, as well as the effects of noise in the
experiment.

B. Spatial entanglement

In characterizing the growth of spatial entanglement in
the spin chain, we will make use of two complementary
measures: The von Neumann entropy for a bipartite split-
ting of the chain in the center of the system, and the
quantum mutual information between two distant spins.
The former gives a measure of the overall entanglement
buildup, and it also gives an idea of the complexity of
the state being generated. The latter measure will give
more detailed information as to how correlations propagate

spatially, and it will also help us to characterize what part
of the entanglement buildup is due to propagation of
quasiparticles produced in the quench and which part is
due to direct interactions through long-range interactions.
Both of these measures are accessible in experiments,
though the mutual information is substantially less costly
to measure (see Sec. IV B for more information).

1. Half-chain von Neumann entropy

Consider a chain of M spins as depicted in Fig. 1(a). We
can split this system into two halves, L and R, in the center
of the system. In the case that the (pure) state of the
composite system | ) cannot be written as a product state
of two states on the subsystems L and R, i.e., |i) #
| 4)| 5, we call the state entangled. The reduced density
matrix of the subsystem L is defined via p; = trg(| i )}i]),
where trp denotes the partial trace over the system R. This
density matrix will only be pure for a product state, and in
the case of an entangled state, the amount of bipartite
entanglement is quantified by the von Neumann half-chain
entropy of this matrix, which is defined as

S = S(pr) = —tr(p logypy). 5

The time-dependent growth of the half-chain entropy
summarizes the buildup of quantum correlations between
two halves of the system. In a sense, it also underlies the
complexity of numerical simulations of the quench when
using matrix product state (MPS) representations. As we
show in Appendix A, the size of the MPS, represented by
the bond dimension D, has to grow exponentially as a
function of time in the case where S,y grows linearly.
Regimes of linear entanglement growth in time are thus
important in demonstrating the power of a quantum simu-
lator since realizing such regimes is a necessary require-
ment in order to observe dynamics that cannot be captured
by state-of-the-art numerical techniques over long time
scales [15,16].

2. Quantum mutual information

An alternative measure, which gives more information
on the distance of correlations, is the quantum mutual
information between two distant spins i and j. In an
experiment, this is also more straightforward to measure
than the von Neumann entropy for a bipartite splitting into
two large blocks (see Sec. IV B), and it clearly allows one
to distinguish different regimes of entanglement growth.
The quantum mutual information is defined as

Ii; = Sy(pi) + Six(pj) — Sun(piy)- (6)

Here, p; = try; (Il X&) and p; = tres (| Xp]) denote
the reduced density matrices of the single spins (obtained
by tracing over all other spins k), and p,; = trj; ; (| )}|)
is the reduced density matrix of the composite system of
the two spins.
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Note that one has to be careful when interpreting the
half-chain entropy and the quantum mutual information in
an experiment in which the quantum state of the whole
chain is, in general, mixed because of coupling to the
environment and classical noise. In general, the
von Neumann entropy for each reduced density matrix is
expected to increase compared to the zero-temperature
case [47]. We will consider these imperfections in Sec. I'V.

III. ENTANGLEMENT GROWTH DYNAMICS

In this section, we study the evolution of the entangle-
ment after the quench. We identify three very different
regimes: (i) For relatively short-range interactions o = 1
(depending on the system size), we find a linear growth of
the half-chain entropy as a function of time, which we can
understand in terms of free quasiparticle propagation
within an effective Lieb-Robinson light-cone. (ii) For
long-range interactions « ~ 0.8, 0.9, 1, we find a regime
where the half-chain entropy grows logarithmically.
(iii) For nearly infinite-range interactions with o < 0.2,
we find rapid oscillations of the half-chain entropy around
small values, which we can understand in an effective
Dicke-state model [48]. We treat case (i) in Sec. IIT A,
case (ii) in Sec. IIIB 1, and case (iii) in Sec. IIIB2. In
Sec. III C, we show how the entanglement growth in re-
gime (i) depends on the transversal field B, and we discover
a connection between the entanglement growth rate and the
underlying ground-state phase diagram of the model.

A. Entanglement dynamics for relatively short-range
interactions (& = 1)

1. Nearest-neighbor interactions

To understand the entanglement entropy growth behav-
ior in this regime, it is instructive to first revise the case of
nearest-neighbor interactions, i.e., an interaction matrix (4)
with a decay exponent &« — oo, and discuss the dynamics
of the quantities we study here. In this limit, the model
Hamiltonian (1) becomes a standard transverse Ising
model of the form

H=1JY ool +BY o5, @)
i i

which has been well studied in the literature. Note that
since the spectrum of the Hamiltonian is symmetric under
the exchange B < —B, the dynamics will not only be
identical under a change of the sign of the total
Hamiltonian, but also under a change of the sign of B,
and we therefore focus on B > 0 here. The model (7) can
be diagonalized analytically [49] (see Appendix B for
more details). After performing a Jordan-Wigner transfor-
mation and diagonalizing the quadratic Hamiltonian in
quasimomentum space, the resulting diagonal model is a
model of free fermions vy,

H = %etI('y; Yo - %) (®)

The v, (y;f) are the annihilation (creation) operators
for a fermionic quasiparticle with quasimomentum gq,
which obey the anticommutation relations {y,, yi} =
56“,. In the thermodynamic limit, i.e., for a chain of
infinite length, the quasimomenta become continuous
—a < qa < (a is the spatial separation between the
spins), and the dispersion relation of the free particles is

twofold degenerate for ¢ = —¢g # 0 and given by €, =

24/(J — B)? + 4JBsin*(ga/2). The group velocity of qua-
siparticle excitations in this system is given by v,(q)/a =
de,/d(ga). The maximum velocity of the quasiparticles
gives rise to the Lieb-Robinson bound, which defines an
effective light cone for spatial correlations, outside of
which the correlations are exponentially suppressed [42].
This sets an upper linear bound on the block entropy
growth, as we will see below. It is straightforward
to calculate that the fastest particles move at a
Lieb-Robinson velocity vg = max|v,| = 2aJ for B = J
and vy = 2aB for B <J.

Following [43], we can understand the entanglement
distribution mechanism in model (8) as follows: In a
coherent time evolution, the initially excited state acts as
a source for quasiparticle excitations. Pairs of the free
fermions with quasimomenta p and —p, which have
been created at a certain point in space, are entangled pairs.
These pairs move freely through the system with corre-
sponding group velocities v, and —v,, respectively. Parts
of pairs that have been produced in block L and arrive in
block R entangle the two blocks. An illustration of this
mechanism is given in Fig. 2(a). Thus, the arrival rate in
block R for quasiparticles belonging to a pair created in
block L is constant. Therefore, the increase of half-chain
entropy is linear, and we expect S,y = Mv,t, with some
constant 7). Since the group velocity is limited by the
Lieb-Robinson bound, S,y = nugt.

We can test this mechanism explicitly by making use of
the boundary effects with open boundary conditions.
Consider a quasiparticle pair, which has been created at
the left edge of block L and moves at the Lieb-Robinson
velocity. As soon as the right-moving quasiparticle arrives
in block R, the linear entanglement increase has to break
down since there are no more entangled pairs available to
the left that could further entangle blocks L and R. We can
estimate the time at which this happens as * = (M/2)/vg,
which corresponds to t* = (M/4J) for B = J and to t* =
(M/4B) for B <J. In Fig. 2(b), we plot a comparison of
this critical time with a numerical exact diagonalization
simulation (ED; see Appendix A for details) of the half-
chain entropy evolution for B = J for increasingly large
system sizes of 10 = M = 20 spins. We see that, as ex-
pected exactly at the critical time, for each system size, the

031015-4



ENTANGLEMENT GROWTH IN QUENCH DYNAMICS WITH ... PHYS. REV. X 3, 031015 (2013)
(a) (b) 10 < M <20 © M=20 (/]| @ M=20
3 T T 1 3 ? 3 ! 5 3 T T ¢ T v l¢ ] 5 3 T T /l T E
N s
: 4t P 1 4t K 2 3
23 f Z3F o0 oo\ 23F o ]
> > Q.? = 2
NRot -"32-@ 02-"32-Q7
, N ) 0.1 i 2
* U ] FA Ny y r ¥
O ! tM:1|O ) '| : t|20 0 ll‘.f’n’ \/M O ! ! ! 1
L R 01 2 3 4 5 6 0 2 4 6 8 10 0 2 4 6 8 10
time (J71) time (J 1) time (J71)

FIG. 2. Entanglement growth after a quantum quench in the transverse Ising model in which nearest-neighbor interactions are
introduced suddenly. (a) Illustration of entanglement distribution, via entangled quasiparticle pair excitations that move within a Lieb-
Robinson light cone. Boundary effects for this system with open boundary conditions stop the linear increase at a critical time 7*. (b—d)
Time evolution of half-chain entropies for M = 10, 12, 14, 16, 18, and 20 spins (ED calculation). (b) Boundary effects as a breakdown
of the linear growth. Respective critical times calculated for the free fermion model are shown as vertical lines. (c) The crossover from
the oscillatory behavior for B = 0 (dots: analytical result) to a linear increase (M = 20). With decreasing B, boundary effects shift to
later times; critical times are indicated as vertical arrows. (d) The half-chain entropy growth, which is fastest for B = 1 and decreases

again for B> 1 (M = 20).

entropy starts to level off and remarkably reduces again
after this maximum peak.

The quench experiment for B = J is special in the sense
that this is a quench to the critical point of the quantum
phase transition of Hamiltonian (7). We will now ask how
the entanglement growth depends on B. In the limit of
B — 0o, the initial state becomes an eigenstate of the
system and no evolution will take place, i.e., Syx(f) = 0.
On the other hand, in the limit of B — 0, the Hamiltonian
has a spectrum with M degenerate levels, which are
separated by an energy of ~2J (spin flips). Thus, in the
latter case, we expect dynamics which is dominated by
oscillations between those levels at a frequency scale given
by J. Indeed, for B = 0 it is straightforward to calcu-
late analytically that S,y(f) = —cos?(J1)log,[cos®(J1)]—
sin?(Jt)log,[sin?(J1)]. In Fig. 2(c), we find the expected
behavior for B < J in an exact diagonalization simulation
of a system with 20 spins. For increasing B, the oscillatory
behavior of S,y (which fits the analytical result) breaks
down and changes into a linear increase before boundary
effects become important. Since the Lieb-Robinson veloc-
ity decreases with B for B < J, correspondingly the bound-
ary effects shift to later times for smaller B [critical times *
are indicated as vertical arrows in Fig. 2(c)]. It is interest-
ing to note that in this case the maximum value of S,y can
actually be larger than for B = J. In Fig. 2(d), we analyze
the opposite case of B > J. Remarkably, we find that, also
away from the critical point, the half-chain entropy growth
becomes slower with increasing B. Below, we will find that
this also holds for finite-range interactions with & = 2 and
that the fastest entanglement growth precisely follows the
point of the phase transition.

2. Finite-range interactions (a = 1)

We now investigate the situation of relatively short-
ranged interactions, which extend beyond nearest neighbors

and decay algebraically with &« = 1. In Fig. 3, we demon-
strate that the picture of entanglement distribution via
entangled quasiparticle pair propagation also holds for a
large range of finite @ = 1 (depending on the system size).
We find that, despite the existence of direct spin-spin inter-
actions over all distances, it is the propagation of quasipar-
ticles that dominates the dynamics of entanglement growth
over this range of « values.

One marked signature of the linear half-chain entropy
growth is that, before boundary effects become important,
the rate of the growth is essentially independent of the size
of the system, as shown in Fig. 3(a). In this figure, we show
the time evolution of S,y after the quench for various decay
exponents in the range 0 = o = 1.5. The solid lines show
an ED simulation for a system of 20 spins, and the dashed
lines are for M = 50 spins. We obtain the results for
large systems using time-dependent density matrix renor-
malization group (t-DMRG) methods. Specifically, we
use a matrix product operator (MPO) [34-36] of the
Hamiltonian to time evolve a MPS via a Runge-Kutta—
type method [50] (see Appendix A for more details). In all
cases with @ > 2, we find that the two lines coincide and
that the increase is linear. For &« = 1.5, we find a slight
change in the behavior in the sense that the results for M =
20 and M = 50 start to differ. When we further increase the
range of interactions, we find that this linear growth
changes to a logarithmic one, as we demonstrate in
Fig. 3(b) using a t-DMRG calculation with « = 0.8, 0.9,
1 and for M = 30, 40, 50. We treat this case in more detail
in Sec. [IIB 1.

In Fig. 3(c), we show an overview over the regime of
linear half-chain entropy growth and its finite-size scaling.
Therefore, as a function of system size and «, we plot
the error of a linear fit, €, which is defined as a
95%-confidence interval on the slope coefficient and it is
cut off at 6%. In large systems, we find that the linear
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FIG. 3. Entanglement growth after a quantum quench in the transverse Ising model in which algebraically decaying interactions are
introduced suddenly. (a) Time evolution of the half-chain entropy after the quench for B = 1 and varying decay exponents & = 1.5, 2,
2.5, 3, and o (from bottom to top). Solid lines are ED results for M = 20 spins; dashed lines are MPS/MPO results for 50 spins
(converged with MPS bond dimension D = 192). For a = 2, the growth is clearly linear and independent of the system size. (b) Time
evolution of 25w, Each of the three bundles of lines contains the results for M = 30, 40, and 50 spins and & = 0.8, 0.9, and 1 (MPS/
MPO simulation, converged with D = 192). On top of the oscillations, the growth is logarithmic (straight line on the exponential
scale). Time is given in units of the inverse Hamiltonian norm, A7 (cf. Sec. III B 1). (c) Finite-size scaling of the crossover from linear
S~ growth to a logarithmic one visualized by the error of a linear fit, e, in the interval 1 < tJ < 3 as a function of & and M (B = 1,
ED and MPS/MPO simulations, D = 192). For large systems, the crossover occurs around a ~ 1. (d) Time evolution of the mutual
information between spins 1 and 8, /g (M = 20, B = J, ED). The upper panel shows results for 2 = « = 1, the lower panel for
1 = a = 0.2. The signature of linear growth of the half-chain entropy is the arrival of a quasiparticle peak after a certain time, whereas

for a < 1, distant spins become entangled instantaneously.

increase (small error) breaks down at « ~ 1. For smaller
systems, boundary effects and finite-size effects become
significant, and the linear regime breaks down at larger a.
Note that the change in behavior for large systems at & ~ 1
can, in a sense, be understood since this marks the point at
which, in the thermodynamic limit, the sum in the interac-
tion term in the Hamiltonian begins to diverge with in-
creasing system size.

We can also identify the regime of linear growth of S,y
by looking at the mutual information between distant spins.
In the upper panel of Fig. 3(d), we plot the time evolution
of the mutual information I, g, between sites 1 and 8, for
1 = a =2 in a system of 20 spins and for B = J. As a
clear signature of the regime of linear growth of the half-
chain entropy, we find that the mutual information remains
nearly zero for a certain time until it suddenly peaks at a
time corresponding to the arrival of an “entangling” qua-
siparticle pair originally produced on a site between the
two spins. For nearest-neighbor interactions, this arrival
time is consistent with the analytically calculated
Lieb-Robinson velocity (cf. Appendix B), and we find
that the same mechanism still holds for rather long-ranged
interactions of @ ~ 2. In contrast, for the regime of loga-
rithmic growth of S,y, we find a markedly different be-
havior [lower panel of Fig. 3(d)], which is discussed in the
next section.

We emphasize that the fact that the entanglement growth
mechanism is directly reflected in the time dependence of
the mutual information between two distant spins is very
important for experimental observations. Instead of having
to reconstruct 2M/2) x 2(M/2) density-matrix elements of a
large block via quantum-state tomography, the growth

behavior of the half-chain entropy can be directly verified
by measuring only 4 X 4 density matrices for a system of
two composite spins. In Sec. IV B, we will show how the
measurement further simplifies for the particular quench
we consider here.

B. Entanglement dynamics for long-range interactions

In this section, we study the entanglement growth for
very long-range interactions with & = 1. In this regime,
the picture of entangling quasiparticles that move freely
within a light cone breaks down, and instead distant parts
of the system can become almost instantaneously en-
tangled based on direct interactions. We observe that for
a ~ 0.8, 0.9, 1, the half-chain entropy can still increase
steadily as a function of time for our quench, but that the
increase becomes logarithmic instead of linear. When fur-
ther increasing the range of interactions for o < 0.2, we
find a regime where S,y oscillates rapidly around small
values. We understand this behavior via an effective model
in a basis of Dicke states [48] for infinite-range interactions
a=0.

1. Logarithmic entropy growth

When increasing the range of interactions, eventually
the linear growth of S,y breaks down, and the growth
becomes logarithmic, as shown in Fig. 3(b). For very
long-range interactions, the time scale of the dynamics is
dominated by the interaction-energy term in the
Hamiltonian. Thus, to make a valid comparison, it is
favorable to measure the time in inverse units of the matrix
norm instead of J. For Hamiltonian (1), we can calculate
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the Frobenius norm as || H ||= 2M/2\/(ZM J? + MB?).

Jj>ivi,j

The 2M/2 prefactor is due to the exponential growth of the
Hilbert space with M, and we define the time unit per spin
realistically as A7~ =|| H || 27M/2, In Fig. 3(b), we plot
the evolution of the von Neumann entropy in these units for
system sizes of M = 30, 40, 50, for « = 0.8, 0.9, 1 and for
B =0.7J, 1J, 1.3J. If, ideally, the entropy increases log-
arithmically without oscillation, S,n = log,(Cr + 1), with
some constant C. On an exponential scale, i.e., by plotting
25w we would see a straight line. In Fig. 3(b), we indeed
find oscillations around a straight line. It is remarkable that,
for a fixed value of B, independently of the system size and
for all « = 0.8, 0.9, 1, we find roughly the same constant C
in units of A7~ !. With decreasing B, i.e., for quenches that
put an increasing amount of energy into the system, the
constant increases. For interactions with o < 0.7, the os-
cillations become more dominant so that the logarithmic
increase is hard to verify.

Also, the time evolution of the mutual information be-
tween distant spins shows a completely different qualitative
behavior for @ < 1 than for « = 1. In Fig. 3(d), we show
the evolution of /, g after the quench for a system of 20 spins
(B = J)for2 = a = 0.2.In the upper panel of Fig. 3(d), we
find that the incoming-wave picture breaks down when a
decreases from o = 2to = 1. In the latter case, we find a
mixed behavior, where a wave peak is still roughly visible
around tJ ~ 3; however, peaks also appear for very short
times. These peaks indicate that, because of the long-range
part of the interaction, distant parts of the system become
rapidly entangled with an immediate increase in correla-
tions after the quench. When further increasing the interac-
tion range [lower panel of Fig. 3(d)], these contributions to
I, ¢ become dominant and the quasiparticle peak disappears
completely. While for o ~ 1, I, g still shows some slow
overall increase as a function of time, in the case of nearly
infinite-range interactions (« =< 0.2), we only find rapid
oscillations around a constant value of /;g ~ 0.1. In an
experiment, the decrease in the height of the short-time
peak of the mutual information could be used as an indicator
for the crossover from the logarithmic half-chain entropy
growth regime to the linear one. Furthermore, we find that
this height, in contrast to the frequency of the oscillations, is
independent of the system size.

2. Entanglement dynamics for infinite-range interactions

To understand the rapid oscillations and small half-chain
entropy for decay exponents of a =< 0.2, it is instructive to
consider the case of infinite-range interactions, i.e., &« = 0.
In this limit, each spin interacts with equal strength with all
others and the (‘““mean-field”’) Hamiltonian reads

M M
H=173% 667+ Z 9)

i<j

~.

As in the nearest-neighbor case, this limit is analytically
exactly solvable. We can introduce effective spin-M/2
operators S, ,. = >M 7", With these, we can rewrite
Hamiltonian (9) as

N | J
H=2-52+BS.—M. 10
2 X Z 2 ( )

In the literature, this model is well known as the LMG
model, and its entanglement properties have been studied,
e.g., in [45,46]. A basis for Hamiltonian (10) is given by
Dicke spin-M /2 states, which are defined as

M M
§=—,mg=n; — ?> = SHno, mp. (A

2

Here, ng, n; denote the number of spins (down and up,
respectively), and S is the symmetrization operator.
For example, for a system of four spins, we would
have an effective spin-2 model, and one particular Dicke
state would be |S =2, mg = —1) = (|0001) + [0010) +
|0100) + [1000))/2. In this picture, the quench experiment
is equivalent to a free evolution under Hamiltonian (10)
with the initial state |i) = |S = M/2, mg = —M/2).

It is straightforward to calculate the half-chain
von Neumann entropy for an arbitrary Dicke state [51]
(see Appendix B for more details). One finds that

S = = piloga(p)), (12)
1

M/2\( M/2

(" )=

i )
( n )

where p; are combinatorial factors depending only on the

number of single up spins of the corresponding Dicke state

and 0 = [ = M /2. Example results are plotted in Fig. 4(a),

and it is important to note that, simply because the sum in

(12) contains a maximum of M /2 + 1 terms, the entropy is
bounded by S,y = log,(M/2 + 1).

pi(ny) = (13)

@ T 100] ®

T log,(50/4+1) ]

4
3F M =50 ]
2

10 ' 1WWWWWWWVW

0 - 0 ‘
0 10 20 30 40 50 0o 1 2 3
nq time (J 1)

SVN

FIG. 4. (a) The half-chain entropy for single Dicke states as a
function of the number of spins up and for system sizes M =
10, ..., 100. (b) The time evolution of the half-chain entropy in
our specific quench experiment for a chain of 50 spins. As shown
in the text, the entropy is bounded by a constant S, =
log,(M/4 + 1).
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In our quench, the time-dependent state will assume a
superposition of Dicke states, |(1)) = Y.,.c,.(t)|M /2, m),
with ¢, (t =0) = 8, _j/. In the small Dicke Hilbert
space, the time evolution can be easily numerically simu-
lated, and we can, at any instance in time, construct the
reduced density matrix for one half of the system. From this
density matrix, the von Neumann entropy can be readily
calculated, and examples are shown in Fig. 4(b). Again, we
find, simply by noting that the dimension of the M /4 Dicke
subspace is M/2 + 1, that for an arbitrary Dicke-state
superposition, the von Neumann entropy is limited by
So~ = log,(M/2 + 1). However, for our specific experi-
ment, a tighter bound can be found. Since the Hamiltonian
(10) only couples spin states with mg = =2, the time-
dependent coefficients c,,(f) can only be nonzero for
states with m = —M /2, =M /2 + 2,..., M /2. Assuming
an even number of spins, the entropy is then limited by
SN = log,(M/4 + 1), which is in agreement with the ex-
act von Neumann entropy evolution, as shown in Fig. 4(b).

C. Ground-state phase-transition point and
entanglement growth

In this section, we study how the linear growth of Sy for
a = 2 depends on the value of B and the decay exponent
a. We focus on the case J = 1, B > 0. For ground states, as
for the nearest-neighbor transverse Ising model, the long-
range model undergoes a quantum phase transition from an
antiferromagnetic to a paramagnetic phase at a critical field
B, for all decay exponents « [52,53]. For example, for & =
3 it has been calculated that B, = 0.83 [54]. As shown in
Ref. [54], we can estimate the point of the phase transition
by locating the discontinuity of the transverse magnetiza-
tion, i.e., the jump in d’m_/dB?, where m, = ¥, (o%,). In
order to do this for moderately large systems, we use a

Quench calT™)

1_!""!""!"""""' ""_ 1
0.9 E— o1 0.9
7 Y S 1
C S 0.8
S 0.8: g
= 0.7 07
[ 1® 0.6
0.6, e SR CRINTUCY
2 3 4 5
o

FIG. 5. The half-chain entropy growth rate ¢, from a linear fit
0 < tJ < 3 after the quench (M = 20, ED). Each ¢, is normal-
ized to its maximum value in the range 0.6 <B <1, ¢, =
[dSyn/dt]/ max[dS,x/dt(B)]. The dashed line is the contour
for maximum growth, i.e., ¢, = 1/J. The points show the
location of the quantum phase transition, which we extract
from a MPO Lanczos diagonalization for 100 spins.

MPO Lanczos diagonalization for 100 spins. In Fig. 5, we
compare this ground-state phase-transition point for a
moderate system size to the linear growth rates of the
von Neumann entropy in a small systems of only 20 spins
as a function of & and B. It is remarkable that the point of
the ground-state phase transition is not only reflected in the
scaling behavior of the block entropy in the ground state
[53], but we also find that in the evolution following the
quench from B(t = 0) = co — B, the growth rate of
the von Neumann entropy as a function of time is largest
at the critical points B,.. Since the entangling quasiparticles
are bounded by the Lieb-Robinson bound, this effect is
independent of the system size up to times #* when bound-
ary effects limit the quasiparticle propagation.

IV. ENTANGLEMENT GROWTH AND
MEASUREMENT USING TRAPPED IONS

A. Entanglement growth for realistic
experimental parameters

In this section, we ask to what extent the effects shown in
the previous sections are experimentally observable in ion
traps. Therefore, we consider two experimentally realistic
full interaction matrices J; ;, which show the characteristic
behavior of linear entanglement growth and logarithmic
growth. In case A, over short distances, the averaged
interactions decay as & < 1 (logarithmic growth regime),
and in case B, they decay as « ~ 2 (linear growth regime),
as depicted in Fig. 6(a). We define the energy unit by the
largest element of J; ;, which we denote J in this section.

We consider a linear chain of 20 ions that interact via the
mechanism described in [31,32]. In summary, a force is
applied that couples the electronic “‘spin’ state of the ions
to the spectrum of closely spaced (nearly frequency degen-
erate) vibrational modes transverse to the ion string. By
setting the driving force to be far off resonance, the phonon
states can be adiabatically eliminated, allowing an ana-
logue simulation. While the simulations presented are for
40Ca™ ions driven with bichromatic laser fields, similar
interaction matrices can be derived in a number of other
systems. The exact experimental parameters considered
are given in Appendix C.

We show the evolution of the half-chain entropy and the
mutual information /; 5 in Figs. 6(b) and 6(c), respectively.
As expected from the averaged decay of the interactions in
both cases A and B and from the previous discussions, we
find that for the case B, S,y increases linearly in time,
while for A, the growth behavior is logarithmic.
Accordingly, we find the behavior of the mutual informa-
tion as we have found it for the case of homogeneously
decaying interactions: In case B, the initial mutual infor-
mation is zero, and a peak appears at a time around 2.8/J.
In case A, in the logarithmic regime, we find an instanta-
neous increase of I; due to the long-range part of the
interactions, which entangles distant parts instantaneously.
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FIG. 6. (a) The averaged normalized interactions for the two
experimental setups (grey dots). In case A, interactions decay
with & < 1 over short distances; in case B, they decay as o ~ 2.
(b) The evolution of the half-chain von Neumann entropy S,y
(exponential scale for case A) in a system with 20 ions (ED). The
solid line is the idealized noiseless case. The dashed lines in (b)
and (c) are for fluctuations of the magnetic field with s; =
0.01/J; the dotted lines in (b) and (c) are for fluctuations in
the coupling strength with s, = 0.01/J (200 noise trajectories).
(c) Time evolution of the mutual information /; 5. The character-
istic features of the two entanglement growth regimes survive in
the presence of the noise.

In a realistic experiment setup, the string of ions will be
subjected to noise. Here, we consider the two most signifi-
cant imperfections: (i) fluctuations in the energy splitting
of the electronic states used to encode a spin (e.g., due to
ambient magnetic field fluctuations) and (ii) fluctuations in
the coupling strength between the spin-dependent force
mechanism and the ions (e.g., due to laser-intensity fluc-
tuations). Noise of the form (i) will lead to a correlated
rotation of the qubits around the z axis, while noise of type
(i1) causes a stochastic fluctuation of the overall interaction
strength J. We idealize both cases as white noise fluctua-
tions &(r), £(0)&(r) = s5,6(¢) with strength s, (the bar
denotes the time average). The evolution of the state can
then be described by a Stratonovich stochastic Schrodinger
equation [55,56]

dly) = —iH|p)dt — ifs;L |p)ydW(n),  (14)

where dW(¢) is the Wiener increment, and L, is the noise
(jump) operator. For case (i), L, = BY ;d75; for case (ii),

L, =30} ;. Equivalently, we can derive a master
equation for the evolution of the full density matrix,

9P — —ifAp) - [l (L pll ()
dt 2

In the long-time limit, the master equation drives the
system into a state that commutes with the jump operators.
For noise of type (i), this is a state diagonal in the z basis,
and for type (ii), it is a state diagonal in the x basis. For the
time scales of the experiment, the dynamics consists of a
complicated interplay between the coherent evolution and
the dissipative part. In general, we expect that noise of
type (i) leads to a global dephasing in the sense that it will
reduce the purity of the full state and thus result in a
slightly higher measured entropy, whereas noise of
type (ii) can be more complicated because an overall
fluctuation of J acts with different strengths between dif-
ferent spins according to J; ;. We can simulate the evolu-
tion of the master equation numerically by evolving the
stochastic Schrodinger equation in time using a first-order
semi-implicit method with strong order 1.0 convergence
[55] and statistically averaging over a large amount of
trajectories.

In Figs. 6(b) and 6(c), we find that, as expected, the noise
adds an additional entropy growth as a function of time for
both the half-chain entropy and the mutual information.
However, the underlying entropy features, which arise
from the entanglement buildup in the coherent evolution,
remain clearly visible. For example, instead of the short-
time initial mutual information being zero in the regime of
the linear S,y growth regime, for noise of type (i) we find
an overall increase of I;5 as a function of time.
Nevertheless, the quasiparticle peak clearly remains ob-
servable even in the presence of the noise. In general, we
find that the overall entropy growth that is induced by the
fluctuations on B is larger than the one induced by fluctua-
tions on J; ;. In particular, we find that the mutual infor-
mation between distant spins is very robust against noise
on the coupling strength because of the decay of J; ; with
distance. In case A, we find that for long times, the char-
acteristic logarithmic growth eventually breaks down be-
cause of the entropy increase from the noise; however, for
tJ < 3, it remains observable. In general, these results
suggest that the mutual information is a very robust ex-
perimental measure for the entanglement growth behavior
of the systems, which, furthermore, can be easily extracted
from experimental data, as we show in the next section.

B. Measurements of block entropies and
mutual information

We will now briefly review how the entanglement mea-
sures we used in this paper can be measured experimen-
tally. To calculate the von Neumann entropy of a
subsystem A of [ spins (which do not have to be next to
each other), one can simply measure the reduced density
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matrix of that block. While the process of measuring this
matrix is known as quantum-state tomography, we show
that for our particular experimental setup, this tomography
simplifies significantly.

The reduced density matrix of A, after tracing over the
remaining system, is

pa=> phlaypl (16)
ap

where bold greek symbols denote the set of indices for the
subsystem of spins, i.e., all 2M4 binary representations of
MA Spins: o = (a], Ay, ..., CYMA) with ap (S {0, 1} The
diagonal elements of p, can be easily measured. They
are the probabilities for finding the spin combination e,
Pa- The off-diagonal elements are more challenging but
reduce to the measurement of spin correlations.

For our experimental situation, we can make use of the
fact that for any time-evolved state | (2)) = 3 ,cqo (1)),

M
ca)=0@Pay=1 (17)
k

where @ denotes the sum modulo 2. This result is easily
verified by the fact that the matrix elements of any power of
Hamiltonian (1) (a|A"|B) =0 for @Y a); # @Y By
Thus, since we start in the state with ¢, (t=0)= 84, the
time-evolution operator exp(—itH)=Y,_,(—itH)"/n!
can only produce states with nonzero coefficients c,(f)
for which @ a; = 0. Thus, half the elements of any
reduced density matrix calculated from the time-evolved
state |(¢)) will always remain zero. The remaining spin-
spin correlations consist only of o, and o, terms.

We illustrate this here for the example of a subsystem of
a single spin (! = 1) and two spins (/ = 2) and show how to
reconstruct the corresponding density matrix. In the case of
a single spin, the density matrix will be diagonal:

p1 = polOXOl + py|1X1I. (18)

Here, the off-diagonal part completely vanishes since trivi-
ally, for all ﬁg with @ # B, @« ® 8 = 1. For a block of two
spins, the density matrix becomes

Poo 0 0 P(lxl)

- 0 Po1 Plo 0
p2 = e D)

0 (Po; JZ0 Y

(pip)* 0 0 pn

The six density-matrix values are all that have to be mea-
sured. To experimentally obtain the off-diagonal elements,
one has to measure the real and imaginary parts of p}} and
ped. This can be done by expanding those elements into
spin-spin correlations via

Re(pl)) = (@& — " @ ")/4,  (20)

Im(pl)) = (67 ® 67 + 67 ® 6) /4, 1)
Re (pld) = (67 ® 67 + 67 ® 67) /4, (22)
Im(pl) = (" ® 6* — " ® 6°)/4,  (23)

which means that four spin correlations have to be mea-
sured. Thus, for the whole density matrix p,, a total of
eight expectation values have to be experimentally deter-
mined. Note that this is a simplified version of full
quantum-state tomography for two qubits [22]; however,
a full state tomography, i.e., a measurement of all density-
matrix elements, might be useful to quantify the deviations
of the other elements from zero and therefore get a measure
for experimental deviations.

From the density matrices, one can directly extract the
corresponding von Neumann entropy. Note, however, that
one can also calculate Renyi entropies of arbitrary order .
These entropies are defined as S")(p) =log,[tr(5)]/(1—n)
and can serve as lower bounds to the von Neumann en-
tropy. In an analogous fashion, one can use these entropies
to define mutual information.

A generalization of the density-matrix measurement to
larger blocks is straightforward. In particular, for a block
length of [ sites, one has to measure a total amount of
[22/=2 4 20=D] density-matrix values. For example, to
clearly observe a linear entanglement increase for o = 2,
one would have to simulate the system until a time of ~2/J
[cf. Fig. 3(a)]. Before finite-size effects of the block size
play a role, one therefore has to consider a block with
[ = 8. While this seems to be achievable in current experi-
ments (full state tomography for systems consisting of
eight ions have been reported in [57]), we emphasize that
ultimately the direct measurement of entanglement entro-
pies of larger blocks becomes essentially impossible. This
result is due to the fact that the number of correlation
functions that have to be measured experimentally in-
creases exponentially with the block size /. However, it is
important to note that the mutual information can always
be extracted by only using blocks of [ =1 and [ = 2.

Alternatively to measuring the mutual information, the
problem of measuring entanglement entropies of large
blocks could be overcome by using recently proposed
measurement schemes, which rely on the preparation of
identical copies of the same state [58,59]. In this case,
either Rabi oscillations of a quantum switch (coupled to
the copies [60]) or “beam-splitter’” operations between
those copies and repeated measurements of the spin con-
figurations [61] could be used for an experimental estima-
tion of Renyi entropies. Multiple copies could, for
example, be realized by performing the quench identically
for cotrapped strings in microtraps. Alternatively, one
could use a single, large string and hiding pulses to effec-
tively realize two copies.
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V. CONCLUSION AND OUTLOOK

We have studied the dynamical evolution of entangle-
ment in quench experiments in ion traps. We found that a
regime of linear half-chain von Neumann entropy growth is
present even for relatively long-range interactions with
interaction decay exponents of o = 1. The growth rate is
sensitive to the underlying low-energy spectrum and nota-
bly largest at the point of the quantum phase transition,
which varies with changing «. For longer-range interac-
tions, we find a regime of logarithmic entropy growth
(e = 1), and for infinite-range interactions (a = 0), the
entropy remains bound by a small constant and oscillates
rapidly. We showed that mutual information between dis-
tant parts of the system can be experimentally measured
and used to distinguish the different regimes.

The entanglement entropy growth behavior has impor-
tant implications for t-DMRG/MPS/MPO algorithms on
classical computers since it underlies the complexity of
these algorithms. For a specific experimental example, we
have shown that this regime is in reach for an experimental
quantum simulator, which means that we can find a regime
in these systems that fulfills a necessary condition realiza-
tion of a quantum simulator regime where state-of-the-art
numerical simulations on classical computers can become
inefficient. While this idea provides a general strong moti-
vation for experiments in this regime, we emphasize that, in
future work, the study of dynamics of different types of,
e.g., multipartite entanglement as a resource for specific
quantum-information applications could also be interesting.

We emphasize that ion-trap experiments are not the only
experimental realizations in which the entanglement dy-
namics studied here could be observed. For example, ex-
actly the same spin model [62] and also more complicated
models with long-range interactions can be realized in
systems with polar molecules [63,64] or Rydberg atoms
[65-68] in optical lattices. These systems would have the
disadvantage that the decay exponent is not directly tuna-
ble; however, they could have the advantage that half-chain
entropies might be easier to measure directly, by employ-
ing schemes that rely on the preparation of multiple copies
in an optical lattice [61].

In the final stages of preparing our manuscript, we
became aware of some related work [69], in which a local
quench in an Ising model with algebraically decaying
interactions is studied, together with the resulting spread
of quasiparticles. Though our quenches are qualitatively
different, and large-scale-entanglement growth cannot be
observed in a local quench, Ref. [69] has interesting par-
allels with what we observe here, and it identifies similar
parameter regimes for dynamics with long-range and
short-range interactions.
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APPENDIX A: NUMERICAL SIMULATIONS AND
ENTANGLEMENT GROWTH

In this appendix, we will give more details about the
connection of the entanglement growth behavior and the
numerical algorithms we use.

1. MPS simulations vs entanglement growth

There is an interesting connection between the time-
dependent growth of the half-chain von Neumann entropy
and the possibility to simulate dynamics on classical com-
puters. The dimension of the reduced density matrix for
half of the system is dim(p;) = 2"/2 and thus grows
exponentially as a function of the system size. This ex-
ponential Hilbert-space growth is the reason why exact
numerical simulation becomes, in practice, impossible
for large system sizes. The von Neumann entropy is de-
fined as

XL
Siw=S(py)=—tr(pylogap;) == A dogy(A,), (Al)

where in the second equation we defined the eigenvalues of
pr as A, and introduced the number of nonzero eigenval-
ues, ;. = dim(p,). x, is called the Schmidt rank and can
be considered as an entanglement measure itself. Also note
that the maximum possible Schmidt rank grows exponen-
tially as a function of M, and correspondingly, the maxi-
mum possible von Neumann entropy grows linearly as
stmax] — p1/2. However, the Schmidt rank for states as
they occur in typical experiments can be much smaller
than the dimension of p;. The approximation, which is
made in numerical DMRG or MPS algorithms (see below),
consists therefore of truncating the Schmidt rank (for all
possible bipartite splittings) at a maximum value, which is
called the bond dimension D, thus effectively limiting the

von Neumann entropy to Slegps] = log,(D). The error
made is called the truncated weight, ep = Y X .| A,.
The truncation made in typical DMRG simulations is
very significant. For example, considering a string of 50
spins, the dimension of p; is given by 2. If one represents
a state of this system by a MPS with a bond dimension of
Dy, = 1024, the size of the effective Hilbert space for
one-half of the system is still only around 0.003% of the
full Hilbert space. However, it is quite remarkable that this
approximation is, in many cases, quasiexact. The reason
for this is that most low-energy states of physical systems
in nature turn out to be, in fact, very slightly entangled. If,
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for example, in Hamiltonian (1) we restrict the interaction
to nearest neighbors (standard transverse Ising model),
then it can be proven that for the critical model, i.e., for
J = B, where for an infinite system the energy gap
from the ground state to excited states disappears, the
entanglement entropy scales with the block length as

SEGS] ~ log,(L). If the system is gapped, the entanglement
entropy scales as S; ~ const; i.e., it obeys an ‘“‘area law”
[70,71]. Thus, in the worst case (critical model), the bond
dimension only has to grow linearly with the system size,
and therefore ground states can be easily calculated up to a
quasiexact precision with DMRG or MPS for systems of
hundreds of spins.

It is obvious that, therefore, in a time-evolution simula-
tion, whether the simulation of the system over long times
with t-DMRG methods is, in practice, possible or not
depends on how fast the entanglement grows. If, in our
quench experiment with ions, the von Neumann entropy
grows linearly as a function of time, in order to keep €p
small, D has to grow exponentially as a function of time.
The computational resources to store a MPS thus grow
exponentially with the time the system is to be simulated,
which becomes prohibitively expensive for large system
sizes.

2. Exact diagonalization

Despite the exponential growth of the Hilbert space,
quantum systems of moderate size can still be diagonalized
exactly, simply by exploiting the sparseness of typical
Hamiltonians. For example, for 20 spins, the full
Hamiltonian is a 2%° X 229 matrix, which is too large to
even store in the memory of current computer hardware.
However, the amount of nonzero elements of Hamiltonian
(1) is only O(2%°), even for a full interaction matrix.
Therefore, one can use Krylov subspace projection tech-
niques [72] to evaluate the matrix exponential of the
Hamiltonian matrix, as well as semi-implicit first-order
methods to propagate a state vector for systems of 20 spins
in time.

3. MPO/MPS algorithms

For larger systems, one has to use an alternative
approximate spin representation in the form of a matrix
product state (MPS) [37—41]. A MPS is defined as the
decomposition of the complex amplitudes of the
full quantum state of a lattice system, |¢)=
24 Cinianing [1NE2) - lipr) (M sites with local basis states
{li;)}) into a matrix product. Specifically, we define a MPS
in its canonical form as

c (A2)

ityineniyg

— 1 2 _ M
= AMSIIARISEL | stv=11A0,

Here, the Agf] are complex unitary D;_; X D; matrices
in an effective basis, and for open boundary conditions,

Dy = D,; = 1. The Sl are real diagonal D; X D; matrices
with unit norm, SUTSI = 1. Any arbitrary state can be
brought into the form (A2) by making use of subsequent
singular-value decompositions of the M-dimensional ten-
sor ¢;, i, i (see, e.g., [40]). In general, the sizes of the
matrix dimensions that are required to represent a certain
state exactly are given by the Schmidt rank y; for the
bipartite splitting between sites i and i + 1. Limiting all
matrix dimensions by the bond dimension D limits the

maximum allowed von Neumann entropy to S%PS] =

log,(D). Note that in the case of D = 1, S%PS] =0, and
it is readily seen that the MPS reduces to a nonentangled
product state.

We can study systems with long-range interactions
numerically by making use of MPOs, which are as the
MPSs, a decomposition of the now real 4M-dimensional

operator tensor of the full Hamiltonian H =

Suagaorz oMl - i)l - .. (ul into a ma-

trix product. The long-range interaction Hamiltonian (1)
with a decaying interaction J;; = J/|i — j|* canbe,uptoa
very good approximation, implemented as a MPO with
relatively small bond dimension, which can be achieved
by expanding the power-law decay function into a sum of
exponentials [34-36]. With the Hamiltonian in MPO
form, it is then possible to implement time-evolution
algorithms, using, e.g., a Runge-Kutta—type evolution
scheme [50]. Alternatively, one can also use the original
adaptive t-DMRG methods [37-39] and introduce swap
gates, which interchange indices in a MPS. This has the
advantage that arbitrary interaction matrices J;; can be
implemented.

To calculate ground states, one can either evolve a MPS
in negative imaginary time, or one can construct the local
representations of the Hamiltonian expectation value by
leaving the indices on a particular site open and contracting
the remaining tensor network (see, e.g., [40]). We then use
a local iterative Lanczos solver to find the local MPS
matrix, which minimizes the corresponding energy. By
sweeping through the system from site to site, this is a
very efficient method to find the overall MPS ground state
for large systems.

We checked the validity of all our results by comparing
different methods, and we confirm the convergence in the
bond dimension by running multiple calculations with
increasingly large D.

APPENDIX B: DETAILS ON ANALYTICAL
CALCULATIONS

1. Quasiparticle contribution to the half-chain
entropy growth

Here, we give more details for the quasiparticle picture
for the nearest-neighbor Ising model. Following [49], the
nearest-neighbor transverse Ising Hamiltonian (7) can be
rewritten in terms of local spin-lowering and spin-raising

operators, aji = (o} = io-ﬁ)/z. With a Jordan-Wigner
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transformation, these operators can be mapped to anticom-
muting quasiparticles via ¢; =[exp(imX/Z} o 07)]o; =

;;11 (1=20}07)o; . We thus end up with a fermionic
Hamiltonian

H=7Y (! —c)el ) +cim) + BY (cfe; — eich).

(B1)

Assuming translational invariance and expanding the qua-
siparticle operators into plane waves, the Hamiltonian in
quasimomentum space becomes

HZZ(C:} . )< | €7 2iJsi11(qa))< Cy ),
=6 1\ —2iJsin(qga) —€ ety

q
(B2)
with anticommuting fermions c,, {cq, c;} =8,,and é, =
2J cos(ga) + 2B. For M spins, the quasimomenta are given
by ¢ = n2m/(aM), where a is the separation of the spins,
and n = —M/2,...,M/2 — 1. The Hamiltonian can be
diagonalized using a unitary (Bogoliubov) transformation,
where the new fermionic quasiparticles y are given by
(y;r, Y- =U B(c:,r, c_,). Performing this transformation
leads to the diagonal model
H=Ye, (v, )
q
where the dispersion relation of the new particles is given
by €, = 2/(J — B)? + 4JBsin*(qa/2).

Example dispersion relations and corresponding group
velocities v,(¢q)/a = de,/d(qa) are shown in Fig. 7(a). At
the critical point, the gap closes, and the dispersion relation
is linear around ¢ = 0. In this regime, the particles with the
Lieb-Robinson velocity |vg| are found for g ~ 0, whereas
for B # J, the fastest particles shift to larger |g|. For
B> J and B < J, the fastest quasiparticles are found at
q~ *m/2.

We can analyze how the propagation of free quasipar-
ticle pairs contributes to the entanglement growth by look-
ing at the mutual information between distant spins. In
Fig. 7(b), we plot the mutual information I, ; between site 1
and j while increasing j = 4, ..., 10 for nearest-neighbor
interactions and for & = 2. We find that in both cases, for
two particular spins that are separated by some distance,
the mutual information remains nearly zero for a long time,
until it suddenly peaks at a time corresponding to the
arrival of a quasiparticle pair originally produced on a
site between the two spins, which then entangles the two
spins. After the quasiparticles pass, the mutual information
remains at a value slightly greater than zero (barely vis-
ible). We find that the time of the arrival of the wave at site
Jj is consistent with quasiparticles moving at the
Lieb-Robinson velocity for nearest-neighbor interactions.
Since the two sites become entangled once a quasiparticle
that has been created in the middle of the two sites first

(B3)

I
. =
<2 i i
— |
=~ — —~ 0.8 -
0.3 prprrrees '3
0 @=2 S /di
"= 0.6 I/ 0.253vr/a~]
Ny
01 2 3 4 5 6 2 4 6 8 10
time (J 1) «
FIG. 7. (a) Quasiparticle dispersion relations for the nearest-

neighbor Ising Hamiltonian for B =0 and B = J, €,. The
corresponding group velocities v,(g)/a = de,/d(qa) are shown
as dashed lines (right axis). (b) The time evolution of the mutual
information /;; between the leftmost spin and j=4,...,10
(ED, B =1, M = 20; different I, j offset by —0.1 for different
J, for better visibility). The upper panel is for o — oo (nearest-
neighbor interactions), the lower panel for & = 2. The vertical
black bars indicate the analytical result of the entangled quasi-
particle pair arrival, calculated from the group velocity. (c) The
half-chain entropy growth rates (linear fit 1 < tJ <3, ED, B =
1, M = 20) compared to the effective velocity of the entangling
“quasiparticle wave” v; (see text). We extract v; from a linear
fit to the position of the mutual information peaks in panel (c).

arrives at both spins, this time is given by ¢; =
(j —2)/2vg = (j — 2)/2aJ and is shown as black bars
in Fig. 7(b). In the lower panel, we find that even for
a =2, despite the rather long-range interactions, the
characteristic behavior is the same. For longer-range
interactions, we find that the wave moves more slowly.
Furthermore, we note that for &« — o0 one finds a much
more “‘diffusive” behavior, in the sense that the peaks of
mutual information broaden and become smaller with
distance.

The peaks in Fig. 7(b) allow us to extract an effective
velocity of the “wave” of entangling quasiparticles, v;.
We do this by fitting a line to the position of the peaks
(in time) as a function of the distance j to obtain 1/v;. As
we show in Fig. 7(c), the rate of the half-block entropy
increase (linear fit 1 < tJ < 3) is directly related to v,. We
find that for a = 5, S,x(f) = nv,t/a with n = 0.253. For
a =< 3, the proportionality constant starts to depend on «
and n < 0.253. This means that for an increasing range of
interactions, both the half-chain entropy growth rate and v,
reduce, and v; decreases less strongly. We note that, in
general, 1 also depends on B.
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2. Model for infinite-range interactions
in the Dicke-state basis

Here, we give more details on our calculation for
infinite-range interactions, i.e., a model where each spin
interacts with equal strength with all others. As shown in
the main text, in this regime the Hamiltonian for M ions
becomes a spin-M/2 model, which is known as the LMG
model [45,46,51],

L] J
H=>-S2+BS,— =M, (B4)
2 2
with a basis given by the Dicke states
M M
Szf,msznl _?>ES|{’10,”1}>- (BS)

We want to calculate the bipartite entanglement for a
splitting in the center of the chain. Therefore, we make use
of a formula for the Schmidt decomposition of Dicke states
[51]. Specifically, any spin-M/2 Dicke state can be rewrit-
ten as a sum over product states of two spin-M/4 Dicke
states, for the left and right halves of the system, respec-
tively. For n; spins up, this decomposition can be written as

M M\ M2 M M\ |M M
o —— =§,/ ey el O fa R A
|2 ") 2P| a3,

(B6)

The p; can be found using combinatorical arguments,
( M/2 ( M/2
[ ny — l
i .
ny

The von Neumann entropy of half the chain can be trivially
extracted from the p; since they are simply the eigenvalues
of the reduced density matrix for half the chain. Therefore,
Sy = =2 pilogy(p)).

In our quench experiment, initially the ion chain is in the
Dicke state |M /2, —M /2), and the subsequent time evolu-
tion will rotate the state vector in the Dicke manifold and
therefore prepare a time-dependent superposition

() = X cn(DIM/2,m)

pi(ny) = (B7)

(B8)

Numerically determining the c,,(7) is easily achieved for
large systems, since the dimension of the Hilbert space is
only given by M + 1. However, when inserting the formula
(B6) into (B8), the resulting decomposition is not a proper
Schmidt decomposition anymore since the “Schmidt val-
ues”’ can be complex now. Therefore, one has to construct
the full reduced density matrix by tracing over one-half of

the system,
v ) w5 m,).

M
pr =3 (5 m (B9)
Performing the partial trace, we find

m,

pr)=3 3 cs(nfpim)cypim) |¥,n~1+%_l>

[ m,m 4
><<M My (B10)
",

This matrix can then be easily diagonalized numerically,
which allows us to time dependently calculate the half-
chain entropy.

For the same reason as discussed in Sec. IV B, we find
that half the coefficients c,,(r) will always remain zero. The
Hamiltonian only couples terms with m < m = 2. Thus,
the amount of nonzero eigenvalues of the matrix (B10) is
limited by M/4 + 1 (for even M). This gives the upper
bound of the entropy, S,x = log,(M/4 + 1).

APPENDIX C: REALISTIC EXPERIMENT
WITH 20 IONS

In Sec. IV, the entanglement growth is analyzed in
experimentally realistic situations. Here, we give details
on the exact experimental parameters considered. In each
case, we consider a string of 20 ions in a 3D harmonic
trap with highest transverse motional frequency w, =
27 X 4.9 MHz and variable lowest axial frequency 0.1 <
w./2m<0.5 MHz. A state-dependent driving force is
simulated at a fixed detuning 6 = +27 X 80 kHz from
w,. These three parameters are sufficient to completely
determine the form of the interaction matrix [31,32].

In order to vary the interaction strength, we choose to
vary w,, which has the effect of changing how closely
spaced the transverse modes are. For the cases shown in
Figs. 6(a)-6(c), we choose w, = 27 X 0.45, 27 X (.25,
and 27 X 0.1 MHz, respectively. Alternatively, one could
fix w, and change the detuning o.

The absolute value of the interaction strength J is de-
termined by the specific choice of driving-force mecha-
nism, driving strength, ionic species, and electronic
transition used to encode the spin. We consider an optical
transition, at 729 nm, between the S, 2 (m = 1/2), ground,
and metastable Ds; (m =3/2) states in “°Ca*.
Copropagating bichromatic laser fields at 729 nm drive
the interaction, with a Rabi frequency of ) = 27 X
0.5 MHz (if put on resonance with the electronic spin).
For the highest transverse mode cooled to the ground state,
the coupling strength on the upper vibrational sideband of
the transition is therefore 7,{) = 27 X 22 kHz, where
1, = 0.044 is the Lamb-Dicke parameter. In the case
8 > 7,{), the assumption that the phonon states can be
adiabatically eliminated holds. In our case, 6 = 47,().
This approximation could be improved at the expense of
a slower overall interaction strength J.

For the cases shown in Figs. 6(a)-6(c), we find overall
spin-spin coupling rates J /27 = 27 X 0.5, 277 X 0.4, and
27 X 0.3 kHz. These rates correspond to quantum dynam-
ics observable on time scales of a few ms, which compares
favorably with typical decoherence times of several 10’s of
ms that are typically achieved in these experiments.
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