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Abstract: This paper explores the third-order nonlinear coupled KdV equation utilizing

prolongation structure theory and gauge transformation. By applying the prolongation

structure method, we obtained an extended version of the equation. Starting from the Lax

pairs of the equation, we successfully derived the corresponding Darboux transformation

and Bäcklund transformation for this equation, which are fundamental to our solving

process. Subsequently, we constructed and calculated the recursive operator for this

equation, providing an effective approach to tackling complex problems within this domain.

These results are crucial for advancing our understanding of the underlying principles

of soliton theory and their implications on related natural phenomena. Our findings not

only enrich the theoretical framework but also offer practical tools for further research in

nonlinear wave dynamics.

Keywords: recursive operator; Bäcklund transformation; Darboux transformation;

Lax pair; prolongation structure
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1. Introduction

With the advancement of scientific and technological knowledge, the study of nonlin-

ear partial differential equations has garnered considerable interest from the mathematical

and physical sciences communities [1–3]. The phenomenon of isolated waves was first

observed in 1834 by British scientist and marine engineer John Scott Russell in the Union

Canal connecting Edinburgh and Glasgow, Scotland. Solitons, a broad class of solutions to

nonlinear partial differential equations, display a wide array of distinctive characteristics

and corresponding physical phenomena. Soliton theory finds extensive applications across

various fields, including fluid mechanics, laser physics, classical field theory, biology, and

nonlinear optics. Today, the theory of solitons and integrable systems stands as a pivotal

area of research within nonlinear science, continuously evolving and expanding its scope.

The exact solution of nonlinear partial differential equations is crucial for understanding a

myriad of complex physical phenomena and addressing nonlinear engineering challenges.

Recently, in the realm of continuous integrable systems, researchers have pinpointed three

principal challenges [4–8]. The first involves the discrete lattice structures found in physical

systems, ranging from simple to complex molecular or atomic arrangements. The second

challenge highlights the necessity of discrete lattice structures for the general numerical

computations of physical systems and related equations. Lastly, overcoming the limitations

inherent in continuous integrable systems and solving integrability issues in practical

applications poses the third major hurdle [9,10].
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In soliton theory, Sato theory plays an essential role in the study of the KP hierarchy

and its associated hierarchies. The exploration of the BKP hierarchy, a sub-hierarchy of

the KP hierarchy, has facilitated the gradual development and extensive application of

exact solution methods for the KdV equation. Furthermore, numerous effective approaches

have been developed to solve nonlinear evolution equations and to examine the physical

properties of these solutions. These methods include the Hirota bilinear method, Darboux

transformation, Bäcklund transformation, and KP reduction [11,12]. One of the focal points

of this paper is the Bäcklund transformation, a method introduced by scholars to maintain

consistency when studying surfaces with negative constant curvature in the context of the

Sine–Gordon equation. This transformation enables the generation of new solutions to

the equation based on an existing initial solution [13–15]. Additionally, Li Yishen devel-

oped Bäcklund transformations for nonlinear evolution equations through the application

of gauge transformations. Moreover, in references [16–20], a close relationship between

Bäcklund transformations and inverse scattering methods is highlighted, demonstrating

their interconnected roles in solving and analyzing nonlinear evolution equations. Another

key focus of this paper is the Darboux transformation, a potent method for solving inte-

grable systems. It manifests in two types: differential type Td(q) = q∂q−1 and integral type

Ti(r) = r−1∂−1r [21–24]. In their research, He Jinsong and colleagues utilized the Darboux

transformation operator generated by the adjoint wave functions of the constrained KP

equations [25–28]. Among the myriad of soliton equations, the KdV equation was pioneer-

ing in introducing the property of recursive operators. With the progression of soliton

theory in recent years, recursive operators have become fundamental to the concept of

integrability. This evolution underscores their importance in both theoretical developments

and practical applications within the field [29,30].

This paper utilizes the extension structure method to investigate the nonlinearly

coupled KdV equation, providing a comprehensive insight into its structural characteristics.

Through this approach, we have successfully derived Lax pairs, which are pivotal for

understanding the intrinsic properties and dynamic behavior of solitons associated with

these equations. Leveraging the derived Lax pairs, we proceed to formulate both the

Darboux transformation and the Bäcklund transformation for the nonlinearly coupled KdV

equation. These transformations not only facilitate the discovery of new solutions but

also significantly enhance our analytical toolkit for exploring the equation’s complexities.

Furthermore, by constructing and analyzing the Lax operator, we identify the recursive

operator pertinent to the equation. This recursive operator presents an effective mechanism

for generating a plethora of new solutions, thereby deepening our comprehension of

the nonlinearly coupled KdV equation’s properties and broadening the scope for further

explorations and applications.

2. The Extended Structure of Ohta-Hirota the Equation

This section primarily employs the theory of extension structures to solve a set of

three coupled equations. Building upon Professor Jiayangjie′s previous research on Lax

pairs, this study conducts an in-depth analysis and extends the work to further explore the

methods of solving these equations and their applications.

The Ohta–Hirota coupling KdV equation is given by:
{

vt +
(
vxx + 3v2 + 3vu2 + 3uuxx

)
x
= 0,

ut +
(
uxx + 3vu + u3

)
x
= 0,

(1)
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First, introduce new variables such that vx = w, vxx = wx = z, ux = p,

and uxx = px = q. Consequently, the aforementioned system of partial differential

equations can be reformulated in the following equivalent form:




vx = w,

ux = p,

vxx = wx = z,

uxx = px = q,

ut + qx + 3uw + 3vp + 3u2 p = 0,

vt + zx + 6vw + 3u2w + 6uvp + 3pq + 3uqx = 0.

(2)

To proceed, it is necessary to define a set of exterior differential 2-forms on the

manifold. M = {x, t, u, v, w, z, p, q}.




α1 = dt ∧ du + dx ∧ dt p,

α2 = dt ∧ dp + dx ∧ dt q,

α3 = dt ∧ dv + dx ∧ dt w,

α4 = dt ∧ dw + dx ∧ dt z,

α6 = dx ∧ du − dt ∧ dq + dx ∧ dt(3uw + 3vp + 3u2 p),

α5 = dx ∧ dv − dt ∧ dz − dt ∧ dq(3u) + dx ∧ dt(6vw + 3u2w + 6uvp + 3pq).

(3)

Here, d denotes the exterior derivative and ∧ denotes the exterior product. Upon

applying the exterior differentiation to Equation (3), the result is:




dα1 = dx ∧ α2,

dα2 = −dx ∧ α6,

dα3 = dx ∧ α4,

dα4 = dx ∧ α5 + 3uα6,

dα5 = dx ∧ [α4(6v + 3u2) + α26uv + α3α2α6],

dα6 = dx ∧ [α43u + α2(3v + 3u2)].

(4)

Therefore, the set M = {α1, α2α3, α4, α5, α6} forms a closed ideal on the manifold.

When each 2-form αi is restricted to the solution manifold S = {x, t, u(x, t), v(x, t),

w(x, t), z(x, t), p(x, t), q(x, t)}, it vanishes. Consequently, the equations of system (1)

can be derived.

In this section, we introduce the n-1 forms ωk:

wk = dyk + Fk(x, t, u, v, w, z, p, q, yi)dx + Gk(x, t, u, v, w, z, p, q, yi)dt, (k = 1, · · · , n) (5)

The variable yi is a continuation variable that needs to form a new closed ideal

with αi and requires ωk to satisfy the condition.

dωk =
4

∑
j=1

f i
j αj +

n

∑ ηi
j ∧ ω j, (6)

Among them, f i
j is a 0-form and ηi

j is a 1-form. From this, we can derive the

system of partial differential equations (PDEs) satisfied by Fk(u, v, w, z, p, q, yi) and

Gk(u, v, w, z, p, q, yi).

Fp = Fq = Fw = Fz = 0, (7)
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Gq = −Fu − 3uFv, Gz = −Fv, (8)

pGu + wGv + qGp + zGw + (3uw + 3vp + 3u2 p)Fu + (6vw + 3u2w + 6uvp + 3pq)Fv + [G, F] = 0. (9)

Upon integrating Equation (8) with respect to q and ϕ, we obtain:

G = −qFu − 3uqFv − zFv + G1(u, v, w, p, yi) (10)

With respect to substituting (10) into (9), the following can be derived.

G1 =
1

2
p2Fuu

3

2
p2uFvu + pwFuv + p[Fu, F] + 3up[Fv, F] +

1

2
w2Fvv + w[Fv, F] + G2(u, v, yi) (11)

In relation to substituting (11) into (10), the following equations can be derived.





[Fvu, F] = 0, [G2, F] = 0,

2[Fv, F] + 2u[Fu, Fv] = 0,

Fuuu = Fuv = Fuuv = Fvvv = Fuvv = Fvv = 0,

G2v = −3uFu − 6vFv − 3u2Fv,

G2u = 3vFu − 3u2Fu − 6uvFv − [[Fu, F], F]− 3u[[Fv, F], F].

(12)

By (9)–(12),

F = X1 + uX2 + vX3 + u2X4, (13)

Here, each Xi(i = 1, 2, 3, 4) depends solely on the continuation variable yj. Further,

let [X2, X1] = X5, [X3, X1] = X6, [X3, X2] = X7. Upon substituting F into Equation (12)

and applying the Jacobi identity, the following relationship can be derived:




[X4, X1] = [X3, X1] = 0, [X4, X3] = 0,

[X5, X4]− [X5, X3] = 0, [X6, X3] = −[X6, X4],

[X4, X2] + 2[X3, X2] = 0, [X5, X3] = [X6, X2] + [X7, X1],

G2 = −(3uv + u3)X2 − 3(u2v + v2)X3 − (u4 + 4u2v)X4 − uv[X5, X3]− u[X5, X1]

− 1
2 u2[X5, X2]−

1
2 u2[X6, X1]−

1
2 v2[X6, X3]− v[X6, X1] + X0.

(14)

Concerning the substitution of G2 into the equation [G2, F] = 0, we then

obtain the following relationship:




[X0, X1] = 0,

[[X5, X1], X1] + [X0, X2] = 0,

[[X6, X1], X1]− [X0, X3] = 0,

2[[X5, X3], X3] + [[X6, X3], X2] = 0.

3X6 +
1
2 [[X6, X3], X1] + [[X6, X1], X3] = 0,

X6 −
1
2 [[X5, X2], X4]−

1
2 [[X6, X1], X4] = 0,

[[X6, X3], X3] = [[X6, X3], X4] = [[X5, X3], X4] = 0,

3X5 + [[X5, X3], X1] + [[X6, X1], X2] + [[X5, X1], X3] = 0,

X5 +
1
2 [[X5, X2], X2] +

1
2 [[X6, X1], X2] + [[X5, X1], X4] = 0,

1
2 [[X5, X2], X1] +

1
2 [[X6, X1], X1] + [[X5, X1], X2]− [X0, X4] = 0,

X6 −
1
2 [[X5, X2], X3]−

1
2 [[X6, X1], X3]− [[X5, X3], X2]− [[X6, X1], X4] = 0.

(15)



Mathematics 2025, 13, 921 5 of 15

Let [X5, X1] = X6, [X5, X2] = X9, [X5, X3] = X10, [X6, X1] = X11, [X6, X3] = X12.

Then, from Equation (15), we obtain the following relations:





[X8, X2] = [X9, X1] = 0,

[X9, X3] = [X7, X5] + [X10, X2],

[X9, X4] = 2[X5, X7]− [X10, X2],

[X11, X2] = [X10, X1] + [X5, X6],

[X8, X3] = −[X8, X4] = [X6, X5] + [X10, X1],

[X11, X3] = −[X11, X4] + [X12, X1], [X10, X3] = −[X10, X4].

(16)

From Equations (15) and (16), we derive the following relationship:





[X10, X1] = −X9, [X12, X1] = −2X6,

3[X8, X3] = [X9, X2],

[X9, X3] = [X9, X4] = 0,

[X10, X2] = [X10, X3] = [X10, X4] = 0,

[X12, X2] = [X12, X3] = [X12, X4] = 0.

(17)

Given the generator set from Equation (17) as {Xi = 1, 2, 3, · · · , 12}, let us consider

X7 = 0, Consequently, we find that X12 = 2X4, X4 = −X3,and the commutation

relations [X6, X3] = −2X3 and [X3, X1] = X6. Here, X3 is identified as a nilpotent

element, while X6 serves as a central element.

Concerning Equation (1), it has been determined that the following scaling sym-

metry applies, where λ denotes the spectral parameter:

x → λ−1x, t → λ−3t, u → λ2u, v → λ2v, (18)

If ωi needs to remain invariant under the aforementioned scaling transformation,

then we have:

F → λF, G → λ3G. (19)

And Xi satisfies

{
X0 → λ3X0, X1 → λX1, X2 → X2, X3 → λ−1X3,

X4 → λ−1X4, X5 → λX5, X6 → X6, X7 → λ−1X7.
(20)

Using the basis of generators Xi, (i = 1, 2, 3, 4) , which are defined by the commu-

tation relations [X6, X3] = −2X3 and [X3, X1] = X6, we embed the extended structure y

into the Lie algebra sl(n + 1, C). When n = 1, it is evident that sl(2, C) is not a suitable

choice. Subsequent calculations indicate that sl(3, C) is the optimal selection.

Assume the following relations :X10 = −X2, X12 = −2X3, X3 = e−, X6 = h1.

Then, we have X0 = λ3(h1 + 2h2), X1 = e− + (h1 + 2h2), X2 = X5 = X8 = X9 =

X10 = 0

The matrix representations of the nilpotent element X3 and the central element X6

are presented below:

e− =

(
0 0

−1 0

)
, h =

(
1 0

0 −1

)
(21)



Mathematics 2025, 13, 921 6 of 15

Substitute the aforementioned generated elements into Equations (10), (11), (13)–(15).

Consequently, the concrete expressions for F and G have been derived.

F =




λ 0 u2 − v

0 −2λ 0

1 0 λ


.

G =




−up − r + λ3 0 uq + s + p2 − u4 − u2v + 2v2

0 −2λ3 0

−u2 − 2v 0 up + r + λ3


.

(22)

Here, p = φx, q = px = φxx. If we require that ωk|U = 0, we can obtain the Lax

pair representation of the Ohta-Hirota Equation (1):




y1

y2

y3




x

= −F




y1

y2

y3


,




y1

y2

y3




t

= −G




y1

y2

y3


. (23)

The original Equation (1) can be readily derived from the compatibility relation

yxt = ytx. The Lax pair of equations was successfully identified through a drag

structure, representing a crucial step in solving the nonlinear coupled KdV equation

and laying a foundation for subsequent analysis. Additionally, this methodology

offers the potential for gaining a comprehensive understanding of the underlying

equation structure.

3. Bäcklund Transformation and Darboux Transformation of
Ohta–Hirota Equation

The Lax pair for the Ohta–Hirota equation has been obtained. To ascertain the in-

tegrability of the Ohta–Hirota equation, we will now seek the Bäcklund transformation

and Darboux transformation for this equation. The spatial part of the spectral problem

given in Formula (1) will continue to be studied, starting from the obtained Lax pair:

φx = Mφ, φ = (φ1, φ2)
T , (24)

In the following equations, λ represents a constant spectral parameter, and the

matrix T is the canonical transformation matrix, which performs the canonical transfor-

mation on φ

φ̃ = Tφ, T = T(u, v, ũ, ṽ, λ) (25)

The spectral problem satisfies the same form as that of Equation (1), namely:

φ̃x = M̃φ̃, M̃ =




λ 0 ũ2 − ṽ

0 −2λ 0

1 0 1


 (26)

where ũ and ṽ represent another set of solutions. The compatibility condition for the

linear system is given by:

Tx + TM − M̃T = 0 (27)
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The spatial part of the Bäcklund transformation is provided, and it is determined

that the canonical transformation with respect to λ is linear. Consequently, the corre-

sponding Bäcklund transformation can be derived.

First, let us write out M and M̃ separately:

M = λF + G, M =




λ 0 u2 − v

0 −2λ 0

1 0 λ


. (28)

M̃ = λF̃ + G̃, M̃ =




λ 0 ũ2 − ṽ

0 −2λ 0

1 0 λ


. (29)

Assuming that T is of the form T = λH + I, we substitute this expression into the

compatibility condition:

Tx + TM − M̃T = 0 (30)

By performing the calculation and comparing the coefficients of like terms in λ,

the results are as follows:

O(λ2) : [H, F] = 0 (31)

O(λ1) : Hx + HG + IF − F̃I − G̃H = 0 (32)

O(λ0) : Ix + IG − G̃I = 0 (33)

These equations correspond to the following conditions on the elements of

h12 = h21 = h23 = h32 = 0 (34)




I12 = I21 = I23 = I32 = 0, h22,x = 0,

h11,x + h13 − h31(ũ2 − ṽ) = 0,

h13,x + h11(u
2 − v)− h33(ũ2 − ṽ) = 0,

h31,x + h33 − h11 = 0,

h33,x + h31(u
2 − v)− h13 = 0,

(35)





I11,x + I13 − I31(ũ2 − ṽ) = 0,

I13,x + I11(u
2 − v)− I33(ũ2 − ṽ) = 0,

I31,x + I33 − I11 = 0,

I33,x + I31(u
2 − v)− I13 = 0,

(36)

Let q = u2 − v. Rearranging and transforming Equation (35) yields:

(h11h33 − h13h31)x = 0 (37)

From this, it can be inferred that T = λH + I is a constant matrix, and from this,

it can be inferred that h31 is a constant, and knowing that h11 = h33, along with q = q̃

and F = F̃, G = G̃, we obtain:

M = M̃ (38)
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Moreover, since the I matrix is not a constant matrix, the relationships can be

derived by transforming Equation (36):

(I11 + I33)x = 0, (I11 − I33)(1 + q) = (I31 − I13)x (39)

Regarding the I matrix, the values of I11 and I33 merit separate consideration. The

H matrix is subdivided into eight categories to examine its constituent elements. Once

the H matrix has been determined, further analysis is conducted on the I matrix, which

is divided into six categories for discussion.

It can be observed that the transformation matrix T presents a variety of cases.

Initially, let q = u2 − v, and then proceed with a categorized discussion. When h22 = 1

and I22 = 1, the subsequent discussion focuses on the specific values taken by h11 = h33

and h31, respectively. (1.1) When h31 = 0, h13 = 0, h11 = h33 = 0, I11 = 1, I33 = 0,

φ̃ = Tφ

T =




1 0 − 2q2

qx

0 λ + 1 0

− 2q
qx

0 1




(1.2) When h31 = 0, h13 = 0, h11 = h33 = 0, I11 = 0, I33 = 1, φ̃ = Tφ

T =




1 0
2q2

qx

0 λ + 1 0
2q
qx

0 1




(1.3) When h31 = 0, h13 = 0, h11 = h33 = 0, I11 = 1, I33 = 1, φ̃ = Tφ

T =




1 0 0

0 λ + 1 0

0 0 1




(2.1) When h31 = 0, h13 = 0, h11 = h33 = 1, I11 = 1, I33 = 0, φ̃ = Tφ

T =




λ + 1 0 − 2q2

qx

0 λ + 1 0

− 2q
qx

0 λ + 1




(2.2) When h31 = 0, h13 = 0, h11 = h33 = 1, I11 = 0, I33 = 1, φ̃ = Tφ

T =




λ + 1 0
2q2

qx

0 λ + 1 0
2q
qx

0 λ + 1



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(2.3) When h31 = 0, h13 = 0, h11 = h33 = 1, I11 = 1, I33 = 1, φ̃ = Tφ

T =




λ + 1 0 0

0 λ + 1 0

0 0 λ + 1




(3.1) When h31 = 1, h13 = q, h11 = h33 = 0, I11 = 1, I33 = 0, φ̃ = Tφ

T =




1 0 q − 2q2

qx

0 λ + 1 0

q − 2q
qx

0 1




(3.2) When h31 = 1, h13 = q, h11 = h33 = 0, I11 = 0, I33 = 1, φ̃ = Tφ

T =




1 0 q + 2q2

qx

0 λ + 1 0

q + 2q
qx

0 1




(3.3) When h31 = 1, h13 = q, h11 = h33 = 0, I11 = 1, I33 = 1, φ̃ = Tφ

T =




1 0 q

0 λ + 1 0

1 0 1




(4.1) When h31 = 1, h13 = q, h11 = h33 = 1, I11 = 1, I33 = 0, φ̃ = Tφ

T =




λ + 1 0 q − 2q2

qx

0 λ + 1 0

q − 2q2

qx
0 λ + 1




(4.2) When h31 = 1, h13 = q, h11 = h33 = 1, I11 = 0, I33 = 1, φ̃ = Tφ

T =




λ + 1 0 q + 2q2

qx

0 λ + 1 0

q + 2q2

qx
0 λ + 1




(4.3) When h31 = 1, h13 = q, h11 = h33 = 1, I11 = 1, I33 = 1, φ̃ = Tφ

T =




λ + 1 0 q

0 λ + 1 0

1 0 λ + 1




At this point, Equation (27) Tx + TM − M̃T = 0 is equivalent to the Bäcklund

transformation. However, it should be noted that there are other cases to consider, such

as h22 = 0, I22 = 1; h22 = 1, I22 = 0. These different cases will result in distinct gauge

transformation matrices, thereby yielding multiple solutions to the spectral problem.
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Furthermore, we examine the Darboux transformation of the Ohta–Hirota equa-

tion, with a specific focus on the scenario where q = q̃ in the subsequent Darboux

transformation.

{
u2 − v = ũ2 − ṽ,

ψ̃ = Tψ
(40)

In this context, the matrix T represents the transformation derived from the

Bäcklund transformation, obtained through the application of a canonical transforma-

tion. It can be demonstrated that ψ̃ satisfies the following equation: ψ̃x = M̃ψ̃. Thus

far, we have completed the Bäcklund transformation for the Ohta–Hirota equation

and conducted an analysis of the Darboux transformation. Based on the identified Lax

pairs, we performed systematic computations of both the Darboux and the Bäcklund

transformation. Through these transformations, we have successfully constructed a

series of new solutions, providing us with a diverse range of solution structures. These

solutions not only verify the theoretical correctness of the underlying theory but also

facilitate further analysis of the properties of integrable systems. Additionally, they

offer substantial support for practical applications by enabling deeper insights into the

behavior of these systems.

By solving nonlinear integrable equations, we obtained Lax pairs. On this basis,

we further constructed Bäcklund and Darboux transformations. As an essential tool

for studying nonlinear partial differential equations, Lax pairs provide a profound

understanding of the intrinsic structure of systems. Using these transformations, not

only can new solutions be generated, but they also reveal the underlying symmetries

and conservation laws of the original equations. This process not only lays a solid foun-

dation for the discussion of recursive operators in Chapter 4 but also offers us a unique

perspective to delve into the issues of locality and non-locality of transformations and

operators. Specifically, we will analyze in detail how these characteristics influence the

behavior of the operators used and their significance in different application contexts.

For instance, local properties are typically associated with differential operators, reflect-

ing the behavior of the system near a point; non-local properties, on the other hand,

may involve integral operators or other global effects that capture interactions over a

broader range within the system. Furthermore, we will explore how these concepts

help us to more comprehensively understand and articulate the theoretical framework

related to recursive operators. In this context, recursive operators play a crucial role,

as they not only generate an infinite number of conservation laws but also reveal the

deeper structural features of the system. Through a detailed examination of locality

and non-locality, we can better comprehend the potential applications of recursive

operators in various physical models and how they facilitate the development of an-

alytical solutions for nonlinear systems. In conclusion, our study aims to provide a

more robust theoretical foundation for the research on recursive operators by systemat-

ically integrating Lax pairs, Bäcklund transformations, and Darboux transformations,

thereby advancing the field.
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4. Recursive Operator of Ohta–Hirota Equation

Significant progress has been made in the construction and calculation of recursive

operators. The introduction of the recursive operator facilitates a more efficient solution

for the Hamiltonian structure of the nonlinear coupled KdV equation. Based on the

previously obtained matrix form, we provide the recursion relation between utm and

utm+1 for the coupled KdV equation under the n-reduction condition. Specifically, our

goal is to find an operator Rn such that the equation utm+1 = Rnutm holds.

Calculate L = ∂2 + u∂−1v∂, thereinto utm = (Lm)≥1(u), vtm = −∂−1(Lm)∗≥1,

utm+1 = (Lm+1)≥1(u), Let (Lm)<1 = a1 + a2∂−1 + · · · the following calcula-

tion (Lm+1)≥1(u).

(Lm+1)≥1(u) = (L · Lm)≥1(u) = L≥1 · Lm
≥1(u) + (L≥1 · (Lm

≥1)≥1(u) + (L<1 · (Lm)≥1)≥1(u)

= ∂2utm + ∂2(a1 + a2∂−1 + ....)(u) + (L<1 · (Lm)≥1)≥1(u)
(41)

According to the above formulas, through analysis, we first calculate the coefficient

of a1 by taking ∂0 at both ends of Ltm.

Given L = ∂2 + u∂−1v∂, the coefficient on the left side is (u∂−1v∂)tm =

∂tm(u∂−1v∂).

On the right-hand side, we have:

= −[a1 + a2∂−1 + ...., ∂2 + u∂−1v∂] = −[a1, ∂2] = −a1∂2 + ∂2a1

= −a1∂2 + (a1)xx + 2(a1)x∂ + a1∂2

= (a1)xx + 2(a1)x∂.

(42)

Therefore, the coefficient of ∂0 generated on the right side is (a1)xx. By equat-

ing the coefficients on both sides, we obtain ∂tm(u∂−1v∂) = (a1)xx, from which we

can deduce:
a1 =

∫ ∫
∂tm(u∂−1v∂)dx1dx2

=
∫ ∫

utm∂−1v∂dx1dx2 +
∫ ∫

u∂−1vtm∂dx1dx2

= ∂−2utm∂−1v∂ + ∂−2u∂−1vtm∂

(43)

Also, because ∂−1v = v∂−1 − vx∂−2 + vxx∂−3 + · · · , there are ∂−1vtm = vm∂−1 −

vmx∂−2 + vmxx∂−3 + · · · . Therefore, ∂tm(u∂−1v∂) = utm(v∂−1 − vx∂−2 + vxx∂−3 +

...)∂ + u(vm∂−1 − vmx∂−2 + vmxx∂−3 + ...)∂. That is, the coefficient of ∂0 on the left

side is utmv + uvtm.

In summary:

(Lm+1)≥1(u) = ∂−2utmv + ∂−2uvtm∂u

= ux∂−2utmv + ux∂−2uvtm

(44)

On account of:

(L<1 · (Lm)≥1)≥1 = (L<1 · (Lm)≥1)≥0 − (L<1 · (Lm)≥1)[0]
= (u∂−1v∂Bm)≥0 = u∂−1v∂Bm − (u∂−1v∂Bm)<0

= u∂−1v∂Bm − u∂−1(∂B)∗m(v)

= u∂−1v∂Bm + u∂−1B∗
m∂(v)

(45)
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So, we can calculate:

(L<1 · (Lm)≥1)≥1(u) = (u∂−1v∂Bm + u∂−1B∗
m∂(v))(u)

= (u∂−1v∂(Lm)≥1 − u∂−1(Lm)∗≥1∂(v))(u)

= u∂−1v∂utm + uvtm(u)

= u∂−1v∂utm + u2vtm

(46)

All in all, it can be calculated:

utm+1 = (Lm+1)≥1(u) = ∂2utm + ∂2(a1 + a2∂−1 + ....)(u) + (L<1 · (Lm)≥1)≥1(u)

= (∂2 + ux∂−2v + u∂−1v∂, ux∂−2u + u2)
(47)

(
utm

vtm

)
≜
(

R11 R12

)( utm

vtm

)
(48)

We can use the same method to find R21, R22, and the calculation can be ob-

tained: vtm+1 = −∂−1(Lm+1)∗≥1∂(v)

(Lm+1)≥1 = (Lm · L)≥1 = (Lm
≥1 · L≥1)≥1 + (Lm

≥1 · L<1)≥1 + (Lm
<1 · L≥1)≥1 + (Lm

<1 · L<1)≥1 (49)

The first item is awarded: (Lm
≥1 · L≥1)≥1 = Lm

≥1 · L≥1 = Bm · ∂2

On account of (Lm
≥1 · L≥1)

∗
≥1 = −∂2 · Bm,

vtm+1 = −∂−1(Lm+1)∗≥1∂(v)

= −∂−1(−∂2B∗
m)∂(v) = ∂B∗

m∂(v)

= ∂B∗
m(∂v) = vtm

(50)

On account of

(Lm
≥1 · L<1)≥1 = (Bmu∂−1v∂)≥1 = Bmu∂−1v∂ − (Bmu∂−1v∂)<0

= (Bmu∂−1(∂v − vx))<0 = (Bmuv − Bmu∂−1vx)<0 = −(Bmu∂−1vx)<0

= −Bm(u)∂−1vx = −utm∂−1vx

(51)

as a result:

−∂−1(Bmu∂−1v∂ + utm∂−1vx∂(v))

= −∂−1(∂v∂−1u(Bm)∗ − vx∂−1utm)∂(v)

= −∂−1∂v∂−1u(Bm)∗)∂(v) + ∂−1vx∂−1utm∂(v)

= v∂−1u∂vtm + ∂−1vx∂−1utmvx

(52)

The third part of the equation, first of all to Lm
<1 = a0 + a1∂1 + a2∂2 + · · · available:

(Lm
<1 · L<1)≥1 = ((a0 + a1∂−1 + a2∂−2 + ....)∂2)≥1 = a0∂2 (53)

For the following calculation: a0 mean Ltm = [(Lm)≥1, L] = −[(Lm)<1, L], take the

coefficient of ∂0 at both ends.

Ltm = (u∂−1v∂)tm = utm∂−1v∂ + u∂−1vtm∂ (54)

−[(Lm)<1, L] = −[a0 + a1∂−1 + a2∂−2 + ...., ∂2 + u∂−1v∂] = −[a0, ∂2]

= −a0∂2 + ∂2a0 + 2(a0)x∂ + (a0)xx

(55)
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The coefficient of ∂0 on the left is utmv + uvtm. The coefficient of ∂0 on the right is:

(a0)xx = utmv + uvtm (56)

It is possible to accrue points:

a0 = ∂−2utmv + ∂−2uvtm (57)

There is:
−∂−1(a0∂)∗∂(v)

= (∂−2utmv + ∂−2uvtm)∂(v)

= ∂−2utmv∂(v) + ∂−2uvtm∂(v)

= ∂−2utmvvx + ∂−2uvtmvx

(58)

In conclusion, the recursive operator of the Ohta–Hirota equation can be written

as follows:

(
utm

vtm

)
≜

(
∂2 + ux∂−2v + u∂−1v∂ ux∂−2u + u2

∂−1vx∂−1vx + ∂−2vvx v∂−1u∂ + ∂−2uvx

)(
utm

vtm

)
(59)

In this section, we constructed the Lax operator and performed the necessary

calculations to obtain the recursive operator. Subsequent analysis led to deriving the

recursive operator for the Ohta–Hirota equation. Significant progress has been made

in both the construction and computation of recursive operators. By constructing these

recursive operators, we can efficiently generate higher-order solutions and further

analyze the complex behavior of integrable systems. This section not only verifies the

effectiveness of recursive operators but also introduces new tools and methods for

studying integrable systems, thereby greatly advancing research in this field.

5. Summary and Conclusions

The research outlined in this paper is segmented into four principal sections.

Part 1: This section offers an extensive review of the evolution of the solitary

wave equation, culminating in the exploration of a third-order block-coupled partial

differential equation. Utilizing foundational principles from extension structures

theory, our primary aim is to delve into the integrability properties of the third-order

coupled KdV equation.

Part 2: Transitioning into the second part, we leverage pertinent theories from

prolongation structure theory alongside the specified Ohta–Hirota equation to derive

the corresponding Lax pair. This step is pivotal for subsequent analyses.

Part 3: With the derived Lax pair as our foundation, we apply a canonical trans-

formation to the spectral problem at hand. By rigorously employing compatibility

conditions associated with this transformation, we meticulously examine both the

Bäcklund and Darboux transformations. This comprehensive approach ensures our

findings are characterized by exceptional precision and depth.

Part 4: The final segment focuses on exploring the intrinsic characteristics of the

Ohta–Hirota equation, alongside a detailed analysis of its recurrence operator. Through

the application of the Lax operator obtained from the Lax equation, we conduct an
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exhaustive investigation to uncover the nuances of the recurrence operator specific to

the Ohta–Hirota equation.

This paper primarily examines prolongation structures, Bäcklund transformations,

Darboux transformations, and recursive operators as they relate to the Ohta–Hirota

equation. However, several areas warrant further research and discussion: Firstly,

for integrable equations, it is crucial to devise a straightforward yet effective method

to achieve representation via prolongation structures. Developing such an approach

will enhance our understanding and facilitate broader applications. Secondly, the

relationship between matrix linear spectral problems and prolongation structure theory

requires deeper exploration. Investigating this connection could yield significant

insights into both theoretical frameworks and their practical implications. Lastly, the

Hamiltonian structure of integrable equations should be studied in greater depth

through the lens of prolongation structure theory. A thorough analysis in this area

could provide valuable perspectives on the integrability and structural properties of

these equations.
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