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Abstract: This paper explores the third-order nonlinear coupled KdV equation utilizing
prolongation structure theory and gauge transformation. By applying the prolongation
structure method, we obtained an extended version of the equation. Starting from the Lax
pairs of the equation, we successfully derived the corresponding Darboux transformation
and Backlund transformation for this equation, which are fundamental to our solving
process. Subsequently, we constructed and calculated the recursive operator for this
equation, providing an effective approach to tackling complex problems within this domain.
These results are crucial for advancing our understanding of the underlying principles
of soliton theory and their implications on related natural phenomena. Our findings not
only enrich the theoretical framework but also offer practical tools for further research in
nonlinear wave dynamics.

Keywords: recursive operator; Backlund transformation; Darboux transformation;
Lax pair; prolongation structure

MSC: 35Q51; 35Q53; 37K10; 20G43

1. Introduction

With the advancement of scientific and technological knowledge, the study of nonlin-
ear partial differential equations has garnered considerable interest from the mathematical
and physical sciences communities [1-3]. The phenomenon of isolated waves was first
observed in 1834 by British scientist and marine engineer John Scott Russell in the Union
Canal connecting Edinburgh and Glasgow, Scotland. Solitons, a broad class of solutions to
nonlinear partial differential equations, display a wide array of distinctive characteristics
and corresponding physical phenomena. Soliton theory finds extensive applications across
various fields, including fluid mechanics, laser physics, classical field theory, biology, and
nonlinear optics. Today, the theory of solitons and integrable systems stands as a pivotal
area of research within nonlinear science, continuously evolving and expanding its scope.
The exact solution of nonlinear partial differential equations is crucial for understanding a
myriad of complex physical phenomena and addressing nonlinear engineering challenges.
Recently, in the realm of continuous integrable systems, researchers have pinpointed three
principal challenges [4-8]. The first involves the discrete lattice structures found in physical
systems, ranging from simple to complex molecular or atomic arrangements. The second
challenge highlights the necessity of discrete lattice structures for the general numerical
computations of physical systems and related equations. Lastly, overcoming the limitations
inherent in continuous integrable systems and solving integrability issues in practical
applications poses the third major hurdle [9,10].
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In soliton theory, Sato theory plays an essential role in the study of the KP hierarchy
and its associated hierarchies. The exploration of the BKP hierarchy, a sub-hierarchy of
the KP hierarchy, has facilitated the gradual development and extensive application of
exact solution methods for the KdV equation. Furthermore, numerous effective approaches
have been developed to solve nonlinear evolution equations and to examine the physical
properties of these solutions. These methods include the Hirota bilinear method, Darboux
transformation, Backlund transformation, and KP reduction [11,12]. One of the focal points
of this paper is the Backlund transformation, a method introduced by scholars to maintain
consistency when studying surfaces with negative constant curvature in the context of the
Sine—Gordon equation. This transformation enables the generation of new solutions to
the equation based on an existing initial solution [13-15]. Additionally, Li Yishen devel-
oped Backlund transformations for nonlinear evolution equations through the application
of gauge transformations. Moreover, in references [16-20], a close relationship between
Backlund transformations and inverse scattering methods is highlighted, demonstrating
their interconnected roles in solving and analyzing nonlinear evolution equations. Another
key focus of this paper is the Darboux transformation, a potent method for solving inte-
grable systems. It manifests in two types: differential type T;(q) = qdq~! and integral type
T;(r) = r~10~1r [21-24]. In their research, He Jinsong and colleagues utilized the Darboux
transformation operator generated by the adjoint wave functions of the constrained KP
equations [25-28]. Among the myriad of soliton equations, the KdV equation was pioneer-
ing in introducing the property of recursive operators. With the progression of soliton
theory in recent years, recursive operators have become fundamental to the concept of
integrability. This evolution underscores their importance in both theoretical developments
and practical applications within the field [29,30].

This paper utilizes the extension structure method to investigate the nonlinearly
coupled KdV equation, providing a comprehensive insight into its structural characteristics.
Through this approach, we have successfully derived Lax pairs, which are pivotal for
understanding the intrinsic properties and dynamic behavior of solitons associated with
these equations. Leveraging the derived Lax pairs, we proceed to formulate both the
Darboux transformation and the Backlund transformation for the nonlinearly coupled KdV
equation. These transformations not only facilitate the discovery of new solutions but
also significantly enhance our analytical toolkit for exploring the equation’s complexities.
Furthermore, by constructing and analyzing the Lax operator, we identify the recursive
operator pertinent to the equation. This recursive operator presents an effective mechanism
for generating a plethora of new solutions, thereby deepening our comprehension of
the nonlinearly coupled KdV equation’s properties and broadening the scope for further
explorations and applications.

2. The Extended Structure of Ohta-Hirota the Equation

This section primarily employs the theory of extension structures to solve a set of
three coupled equations. Building upon Professor Jiayangjie’s previous research on Lax
pairs, this study conducts an in-depth analysis and extends the work to further explore the
methods of solving these equations and their applications.

The Ohta—Hirota coupling KdV equation is given by:
0t + (vxx + 30% + 3vu? + Butiyy), =0,
ut + (1xx + 3vu + u3)x =0,
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First, introduce new variables such that vy = w, vy = Wy = 2, Uy = p,
and uyy = py = q. Consequently, the aforementioned system of partial differential
equations can be reformulated in the following equivalent form:

Uy =W,

Uy =P,

Uxx = Wx = Z,

Uxx = Px = 1,

ut + gx + 3uw + 3vp + 3u?p =0,

0t + zx + 60w + 3uPw + 6uvp + 3pq + 3ugy = 0.

To proceed, it is necessary to define a set of exterior differential 2-forms on the
manifold. M = {x,t,u,v,w,z,p,q}.
wy = dt Ndu+dx Ndtp,
ay =dt Ndp +dx ANdtq,
a3 =dt Ndv+dx Ndtw,
ag =dt Ndw+dx ANdt z,
ag = dx A du — dt Adq + dx A dt(3uw + 3vp + 3u?p),
a5 = dx Adv — dt Adz — dt Adq(3u) + dx A dt(6vw + 3u’w + 6uvp + 3pq).

Here, d denotes the exterior derivative and A denotes the exterior product. Upon

applying the exterior differentiation to Equation (3), the result is:

doy = dx A ay,

day = —dx A g,

dag = dx A ay,

doy = dx A as + 3ung,

das = dx A [ag(60 + 3u?) + a6uv + azanag),
dag = dx A [ag3u + o (30 + 3u?)].

Therefore, the set M = {ay, apa3, a4, a5, 06 } forms a closed ideal on the manifold.
When each 2-form a; is restricted to the solution manifold S = {x,t, u(x,t),v(x,t),
w(x,t),z(x,t),p(x,t),q(x,t)}, it vanishes. Consequently, the equations of system (1)
can be derived.

In this section, we introduce the n-1 forms w*:

wk = dyk + Fk(x, t,u,v,w,z,p, q,yi)dx + Gk(x, tu,v,w,z,p, q,yi)dt, (k=1,---,n) (5)

The variable y' is a continuation variable that needs to form a new closed ideal

with «; and requires w* to satisfy the condition.

4 no .
At =) fiol + Loy A, (©)
]:

Among them, f]l is a 0-form and 17]1: is a 1-form. From this, we can derive the
system of partial differential equations (PDEs) satisfied by Fk(u, v,wW,z,p,4q, yi) and
Gk(u, v,W,z,p,4, yi).

F,=F=F,=F=0, (7)
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Gq - _Fu - Bqu, GZ — _Fy, (8)

pGu + wGy + qGp + 2Gy + (Buw + 3vp + 3u®p)F, + (6vw + 3u’w + 6uvp + 3pq)F, + [G, F] = 0. 9)

G1

Upon integrating Equation (8) with respect to g and ¢, we obtain:
G = —qF, — 3uqF, — zF, + Gy (u,v,w, p, ') (10)

With respect to substituting (10) into (9), the following can be derived.

1 3 1 .
= Eszuuipzqu + pwFyy + p[Fy, F| + 3up|Fy, F] + EwZFw + w[Fy, F| + Ga(u,v,y") (11)

In relation to substituting (11) into (10), the following equations can be derived.

[FZJM/F]:O/ [GZIF]:OI
Z[FU,F] +2u[Fu,Fy} — 0,

Fuuu = fuv = ryuv = fovv = Fuvo = oo = 0/ (12)
Gy = —3uF, — 60F, — 3u’F,,
qu - 301:‘” _31/[2Pl[ - 61/[UFU - [[PM,P},F] - 3“[[PD,F],P].
By (9)-(12),
F =Xy +uXo+vXz+ u?Xy, (13)

Here, each X;(i = 1,2,3,4) depends solely on the continuation variable yj . Further,
let [Xp, X1] = X5, [X3, X1] = X, [X3, X2] = X7. Upon substituting F into Equation (12)
and applying the Jacobi identity, the following relationship can be derived:

[Xg, X1] = [X3,X1] =0, [X4,X3] =0,
(X5, Xa] — [X5,X3] =0, [Xe, X3] = —[Xe, Xal,
(X4, Xo] +2[X3,X5] =0, [X5,X3] = [Xg, Xo] + [X7, X1], (14)
Gy = —(Buv + u3) Xy — 3(u?v + v*) X3 — (u* + 4u?v) Xy — uv[Xs, X3] — u[Xs, X
—%MZ[X&;, Xz] — %MZ[X6, Xl] — %ZJZ[X@ X3] — U[X6, Xl] + X().

Concerning the substitution of G, into the equation [Gy, F] = 0, we then
obtain the following relationship:
[Xo, X1] =0,
[[X5, Xa], Xa] + [Xo, X2] =0,
[[X6, X1], Xa] — [Xo, X3] =0,
2[[Xs, Xa] 3] + [[Xe, X3], Xa] = 0.
3Xe+ 5 [[Xé, X3] Xl] + HX6/ X1},X3] =0,
Xe — 3[[X5, Xal, Xa] — 3[[Xe, Xa], Xa] =0, (15)
[[X6, X5], X5] = [[X6, X3, X4] = [[X5, X3], X4] =0,
3X5 + [[Xs, X3], X1] + [[Xe, X1], Xo] + [[X5, X1], X3] =0,
X5+ 3[[X5, Xa], Xo] + 3[[Xe, X1], Xo] + [[X5, X1], X4] =0,
3[[X5, Xal, Xa] + 5 [[Xe, Xa], Xa] + [ X5, X1], Xa] — [Xo, Xa] =0,
Xo — 3([X5, X2, X3] — 5[[Xe, X1], X3] — [[X5, X3], Xa] — [[Xe, X1], Xa] = 0.
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Let [X5, X1] = X¢, [X5, Xo] = Xo, [X5, X3] = X10, [ X6, X1] = X711, [X6, X3] = X120

Then, from Equation (15), we obtain the following relations:

[Xs, Xa] = [Xo, X1] =0,

[Xo, X3] = [X7, X5] + [X10, X2,

[Xg,X4] = 2[X5,X7] — [Xlo, Xz],

[X11, X2] = [X10, X1] + [X5, Xs],

(X8, X3] = —[Xs, X4] = [Xe, X5] + [X10, X1,

[X11, X3] = —[Xq1, X4] + [X12, X1], [X10, X3] = —[X10, X4]-

From Equations (15) and (16), we derive the following relationship:

[X10, X1] = —Xo, [X12,X1] = —2XG,

3[Xs, X3] = [Xo, X2],

[Xo, X3] = [Xo, X4] =0, (17)
[X10, Xo] = [X10, X3] = [X10, X4] =0,

[X12, Xo] = [X12, X3] = [X12, X4] = 0.

Given the generator set from Equation (17) as {X; = 1,2,3, - - - ,12}, let us consider
X7 = 0, Consequently, we find that X;, = 2X4, X4 = —X3,and the commutation
relations [Xs, X3] = —2X3 and [X3, X1] = Xs. Here, X3 is identified as a nilpotent
element, while Xg serves as a central element.

Concerning Equation (1), it has been determined that the following scaling sym-

metry applies, where A denotes the spectral parameter:
x—= A, t—= AT, u— A%, v — Ao, (18)

If w' needs to remain invariant under the aforementioned scaling transformation,

then we have:
F— AF, G— A%G. (19)

And X; satisfies

{ Xy — )\3X0, Xi > AXy, Xo—> Xy, Xz— /\71X3, (20)

Xy = A1Xy, X5 =5 AXs, Xe— Xo, Xy— A71Xy.

Using the basis of generators X;, (i = 1,2,3,4) , which are defined by the commu-
tation relations [Xg, X3] = —2X3 and [X3, X1] = X, we embed the extended structure y
into the Lie algebra sl(n +1,C). When n = 1, it is evident that s/(2, C) is not a suitable
choice. Subsequent calculations indicate that sI(3, C) is the optimal selection.

Assume the following relations :Xj9 = —Xp, X1p = —2X3, X3 =e_, X = hy.

Then, we have Xq = A3(hy +2hy), X1 = e— + (1 +2hy), Xp = X5 = Xg = X9 =
X10=0

The matrix representations of the nilpotent element X3 and the central element X¢

0 0 1 0
e:<_1 o)’ hz(o —1) @)

are presented below:
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Substitute the aforementioned generated elements into Equations (10), (11), (13)—(15).

Consequently, the concrete expressions for F and G have been derived.

A 0 u? — v

1 0 A

22
—up—r+A% 0 ug+s+p?—ut—ulv+20? (22)
G= 0 —2A3 0
—u? —2v 0 up +r—+A3

Here, p = ¢x, 4 = px = ¢xx. If we require that wk\u = 0, we can obtain the Lax
pair representation of the Ohta-Hirota Equation (1):

y! y' y! y!
yz =—F yz , yz =-G yz . (23)
v/, v v/, v

The original Equation (1) can be readily derived from the compatibility relation
Yxt = Y. The Lax pair of equations was successfully identified through a drag
structure, representing a crucial step in solving the nonlinear coupled KdV equation
and laying a foundation for subsequent analysis. Additionally, this methodology
offers the potential for gaining a comprehensive understanding of the underlying

equation structure.

3. Backlund Transformation and Darboux Transformation of
Ohta-Hirota Equation

The Lax pair for the Ohta—Hirota equation has been obtained. To ascertain the in-
tegrability of the Ohta—Hirota equation, we will now seek the Backlund transformation
and Darboux transformation for this equation. The spatial part of the spectral problem

given in Formula (1) will continue to be studied, starting from the obtained Lax pair:
Px=Mp, ¢=(¢1,¢2)7, (24)

In the following equations, A represents a constant spectral parameter, and the
matrix T is the canonical transformation matrix, which performs the canonical transfor-
mation on ¢

$=T¢, T=T(unv,,7A) (25)

The spectral problem satisfies the same form as that of Equation (1), namely:
A0 #2-7

fr=Mp, M=|0 -2 0 (26)
1 0 1

where 71 and @ represent another set of solutions. The compatibility condition for the
linear system is given by:
Ty + TM — MT =0 (27)
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The spatial part of the Backlund transformation is provided, and it is determined
that the canonical transformation with respect to A is linear. Consequently, the corre-
sponding Backlund transformation can be derived.

First, let us write out M and M separately:

A 0 u? — v
M=AF+G, M=

o
|

N

>

> O

~—

N

[0S

N—

A0 ur-79
M=AF+G, M=|0 —-2A 0 : (29)
1 0 A
Assuming that T is of the form T = AH + I, we substitute this expression into the
compatibility condition:
Ty + TM — MT =0 (30)
By performing the calculation and comparing the coefficients of like terms in A,

the results are as follows:

O(A%):[H,F] =0 (31)
OAM):Hy+HG+IF-FI-GH=0 (32)
OAN): I, +IG-GI=0 (33)

These equations correspond to the following conditions on the elements of

hip = hy1 = hy3 = h3, =0 (34)

hp=I1=Is=05=0 hny=0,

hi1,x + iz — b3y (u? —9) =0,

Tg,x + i1 (4% — 0) — hag (2 — 3) = 0, (35)
h31,x + 3z — h11 =0,

haz,x + ha1 (2 —v) — hi3 =0,

Ly + Iz — I3 (4?2 —9) =0,

113,;( + 111 (uz — U) — 133(142 — f)/) =0,

(36)
I31,x 4 I33 — I11 = 0,
Iz + In (u? —0) — 3 = 0,
Let ¢ = u? — v. Rearranging and transforming Equation (35) yields:
(h11hss — hizha1)x = 0 (37)

From this, it can be inferred that T = AH + [ is a constant matrix, and from this,
it can be inferred that /3; is a constant, and knowing that /17 = h33, along withq = g
andF=F, G= C~3, we obtain:

M=M (38)
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Moreover, since the I matrix is not a constant matrix, the relationships can be

derived by transforming Equation (36):

(i +1I3)x =0, (I1 —I)(1+9q) = (Is1 — I13)«x (39)

Regarding the I matrix, the values of I;; and I33 merit separate consideration. The
H matrix is subdivided into eight categories to examine its constituent elements. Once
the H matrix has been determined, further analysis is conducted on the I matrix, which
is divided into six categories for discussion.

It can be observed that the transformation matrix T presents a variety of cases.

Initially, let ¢ = u?

— v, and then proceed with a categorized discussion. When hy; =1
and Iy = 1, the subsequent discussion focuses on the specific values taken by h1; = h33
and h31, respectively. (11) When h31 == 0, h13 == 0, hll == h33 = 0, 111 == 1, 133 = 0,

¢=To

1 o X
T=| 0 A+1 o0

]

50 1

(12) When h31 = O, h13 = 0, hll = ]’133 = 0, 111 = 0, 133 = 1, (f) = T(P

1 o ¥
T=| 0 A+1 0

2

Moo 1

(1.3) When hgy =0, h13=0, h11 =h33 =0, [1 =1, [z =1, (ﬁ = T(P

1 0 0
T=10 A+1 0
0 0 1

(21) When h31 = O, h13 = O/hll = ]’133 = 1, Ill = 1, 133 = 0, 43 = T¢

A+l 0 X
T=| 0 A+1 0
-0 A+l

(22) When h31 = O, h13 = 0, ]’111 = ]’l33 = 1, 111 = 0, 133 = 1, 43 = T(P

A+1 0 %?
T=| 0o A+1 o0

%, 0 A+1



Mathematics 2025, 13, 921 9 of 15

(2.3) When h31 =0, h13 =0, hll = h33 =1, 111 =1, 133 =1, 43 = T‘P

A+1 0 0
T = 0 A+1 0
0 0 A+1

(3.1) Whenhzy =1,hi3=q, hj1 =h33 =0, 11 =1, I3 =0, =T¢

2
1 0 q—%
T= 0 A+1 0
_
0 0 1

(32)Whenhs; =1, hiz=q, hiy =hss =0,I;; = 0,1z =1, ¢ = T¢p

2

1 0 g+
T=| 0 A+1 0
q+$—z 0 1

(33)Whenhz =1, hi3=¢q, hj1 =h33 =0, 11 =1, I1z=1,¢=T¢

1 0 g
T=10 A+1 0
1 0 1

(41)Whenhg; =1, hiz=q, hjy =hss =1, 11 =1, i3 =0,¢ = T

A+l 0 g-X

T= 0 A+1 0

~® 0 A+l

(42)Whenhsy =1, hiz=q, hj1 =hsz3 =1, 111 =0, ;3 =1, ¢ =T¢

A+1 0 q+2qi:
T = 0 A+1 0
2q2

(43)Whenhsyy =1, hiz=q, hj1 =hsz3 =1, I11 =13 =1,¢=T¢

A+1 0 q
T=| 0 A+1 0
1 0 A+1

At this point, Equation (27) Ty + TM — MT = 0 is equivalent to the Backlund
transformation. However, it should be noted that there are other cases to consider, such
as hy =0, Ino = 1; hpp =1, I = 0. These different cases will result in distinct gauge

transformation matrices, thereby yielding multiple solutions to the spectral problem.
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Furthermore, we examine the Darboux transformation of the Ohta—Hirota equa-
tion, with a specific focus on the scenario where g = g in the subsequent Darboux

transformation.

{112—0_142—@, (40)
y=Ty

In this context, the matrix T represents the transformation derived from the
Bécklund transformation, obtained through the application of a canonical transforma-
tion. It can be demonstrated that ¢ satisfies the following equation: ¢, = M. Thus
far, we have completed the Backlund transformation for the Ohta—Hirota equation
and conducted an analysis of the Darboux transformation. Based on the identified Lax
pairs, we performed systematic computations of both the Darboux and the Backlund
transformation. Through these transformations, we have successfully constructed a
series of new solutions, providing us with a diverse range of solution structures. These
solutions not only verify the theoretical correctness of the underlying theory but also
facilitate further analysis of the properties of integrable systems. Additionally, they
offer substantial support for practical applications by enabling deeper insights into the
behavior of these systems.

By solving nonlinear integrable equations, we obtained Lax pairs. On this basis,
we further constructed Backlund and Darboux transformations. As an essential tool
for studying nonlinear partial differential equations, Lax pairs provide a profound
understanding of the intrinsic structure of systems. Using these transformations, not
only can new solutions be generated, but they also reveal the underlying symmetries
and conservation laws of the original equations. This process not only lays a solid foun-
dation for the discussion of recursive operators in Chapter 4 but also offers us a unique
perspective to delve into the issues of locality and non-locality of transformations and
operators. Specifically, we will analyze in detail how these characteristics influence the
behavior of the operators used and their significance in different application contexts.
For instance, local properties are typically associated with differential operators, reflect-
ing the behavior of the system near a point; non-local properties, on the other hand,
may involve integral operators or other global effects that capture interactions over a
broader range within the system. Furthermore, we will explore how these concepts
help us to more comprehensively understand and articulate the theoretical framework
related to recursive operators. In this context, recursive operators play a crucial role,
as they not only generate an infinite number of conservation laws but also reveal the
deeper structural features of the system. Through a detailed examination of locality
and non-locality, we can better comprehend the potential applications of recursive
operators in various physical models and how they facilitate the development of an-
alytical solutions for nonlinear systems. In conclusion, our study aims to provide a
more robust theoretical foundation for the research on recursive operators by systemat-
ically integrating Lax pairs, Backlund transformations, and Darboux transformations,

thereby advancing the field.
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(L™ )21 (u) = (L- L") >q(#) = Lo1 - L% () + (Lo1 - (L2)>1() + (Lar - (L™)51) 1 (1)
= azutm + 82(111 + aza_l + )(u) + (L<1 . (Lm)zl)zl(u)

4. Recursive Operator of Ohta-Hirota Equation

Significant progress has been made in the construction and calculation of recursive
operators. The introduction of the recursive operator facilitates a more efficient solution
for the Hamiltonian structure of the nonlinear coupled KdV equation. Based on the
previously obtained matrix form, we provide the recursion relation between 1, and
U1 for the coupled KdV equation under the n-reduction condition. Specifically, our
goal is to find an operator R, such that the equation u,, 1 = Ry Uy, holds.

Calculate L = 02 + ud~'v0, thereinto usy, = (L™)>1(u), 0t = —07! (L™)%4,
Upme1 = (L™1)>q1(u), Let (L™)oy = a3 + a0~ + -+ the following calcula-
tion (L™ 1) 5 (u).

(41)

According to the above formulas, through analysis, we first calculate the coefficient
of a; by taking 9% at both ends of Lyy,.

Given L = 9%+ u0~'vd, the coefficient on the left side is (4d~1vd)y, =
Otm (40~ 109).

On the right-hand side, we have:

= —[a; +a07 1 + ..., 0% + ud"'0d] = —[a1,9%] = —a10% + 3%y
= —a10% + (a1)xx + 2(a1)x0 + a10° (42)
= (ﬂl)xx + 2(al)xa.

Therefore, the coefficient of d° generated on the right side is (a1)xy. By equat-
ing the coefficients on both sides, we obtain Otm (40~ 109) = (aq)yy, from which we

can deduce:
a1 = [ [ 9m(ud~1vd)dx1dx,

= [ [ upmo~toddx1dxy + [ [ ud  op,ddxydx; (43)
= 02U 0 100 + 0210 v,

Also, because 9 v = 09! — 0,072 + 0,0 3 + - - -, there are 0 vy, = v, —
Upx0 2 + Upyy@ 2 4 - -, Therefore, 9y, (U0 100) = 1y (00! — V072 + V303 +
)0+ (007 — V@2 + V@3 + ...)0. That is, the coefficient of 3° on the left
side is U0 + UV

In summary:

(L™ 151 (u) = 0 2Upmv + 0 2Uvp,du

44
= 130 U0 + U0 2UDpy (44)
On account of:
(L1~ (L™)>1)>1 = (Lax - (L"™)>1)50 — (L<a - (L) >1) o)
= (40~ '09By) >0 = ud 1vdBy — (U0~ 10dBy) <o (45)

= ud~1v0B,, — ud~1(dB)%,(v)
= ud~1vdB, +ud~'B;,0(v)
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So, we can calculate:

(Lt (L™)21)21(u) = (40~ "0dBy + ud~"'B;,0(v)) (u)

= (W0 Tod(L)=; — w1 (L"), 2(0)) ()
= U0 0ousy + uvyy (1)
= ud '0dusy + v

All in all, it can be calculated:

U1 = (L") 51 (1) = 0%upy + 02 (a1 + 207" 4 ...) (1) + (Lt - (L™)51)>1(u)
= (9% + ux0 %0 + ud~ 100, uxd2u + u?)

()2 (o ma) (2

Otm

(46)

(47)

(48)

We can use the same method to find Ry, Ry, and the calculation can be ob-
tained: vy, 41 = —8_1(Lm+1)*218(v)
(L™ )5y = (L™ - L)>1 = (L% - L1)s1 4+ (L% - Lea)s1 + (L% - Lot)s1 + (L% - L) > (49)
The first item is awarded: (Lg1 Ls1)>1 = LY - L>1 =B 02
On account of (L% - L>1)%; = —02 - By,
Utm1 = =0~ (L"F1)%,0(v)

>1
— —971(—~3%B},)a(v) = 3B;,d(0)

(50)
= 0B;;,(90) = vpy
On account of
(Ug1 Log)sy = (Bmua_lva)zl = Buud 109 — (B,uo~1vd) g
= (Bm”afl(av —0x))<0 = (Bnuv — Bmuaflvx)<0 = *(Bmuaflvxko (51)
as a result:

—0~Y(Byud ™00 + 10~ 1v,d(v))
= 971 (000 'u(By)* — 00 tupy,)o(v) (52)
= —071900 " u(Byy)*)9(v) + 0 1oy L usmd(v)
= 00 vy + 9 100 Lty vy

The third part of the equation, first of all to L} = ap + 110" + 420 + - - - available:

(ngl . L<1)21 = ((ﬂo + 1118_1 + ﬂza_z + ....)82)21 = ﬂoaz (53)

For the following calculation: a9 mean Ly, = [(L™)>1,L] = —[(L™)<1, L], take the
coefficient of 9° at both ends.

Lim = (u0~100) 1y = uy 0100 + ud 104,09

—[(L™) <1, L] = —[ag + a10~ ' + 22072 + ..., 0% + ud~'v9] = —|[ag, 0?|
= —ﬂoaz + 82”0 + 2(”0)9{a + (aO)xx

(54)

(55)
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The coefficient of d° on the left is 14,0 + 1v4y,. The coefficient of 9° on the right is:

(a0>xx = U0 + Uty (56)

It is possible to accrue points:

a9 = 0 Um0 + 0 2uvsy (57)

There is:

—071(ag0)*a(v)

= (02Ut + 0~ 2uvy,)0(v)
02Uy vd (V) + 02UV, d(v)
a—2

Upm U0y + 02UV

(58)

In conclusion, the recursive operator of the Ohta-Hirota equation can be written

as follows:
Utm \ a 9% + u0 20+ uo~1vo U021 + 12 Ut (59)
Ot 0 10,0 oy +0 200, v 1ud + 9 2uv, Vtm
In this section, we constructed the Lax operator and performed the necessary
calculations to obtain the recursive operator. Subsequent analysis led to deriving the
recursive operator for the Ohta—Hirota equation. Significant progress has been made
in both the construction and computation of recursive operators. By constructing these
recursive operators, we can efficiently generate higher-order solutions and further
analyze the complex behavior of integrable systems. This section not only verifies the

effectiveness of recursive operators but also introduces new tools and methods for

studying integrable systems, thereby greatly advancing research in this field.

5. Summary and Conclusions

The research outlined in this paper is segmented into four principal sections.

Part 1: This section offers an extensive review of the evolution of the solitary
wave equation, culminating in the exploration of a third-order block-coupled partial
differential equation. Utilizing foundational principles from extension structures
theory, our primary aim is to delve into the integrability properties of the third-order
coupled KdV equation.

Part 2: Transitioning into the second part, we leverage pertinent theories from
prolongation structure theory alongside the specified Ohta—Hirota equation to derive
the corresponding Lax pair. This step is pivotal for subsequent analyses.

Part 3: With the derived Lax pair as our foundation, we apply a canonical trans-
formation to the spectral problem at hand. By rigorously employing compatibility
conditions associated with this transformation, we meticulously examine both the
Bécklund and Darboux transformations. This comprehensive approach ensures our
findings are characterized by exceptional precision and depth.

Part 4: The final segment focuses on exploring the intrinsic characteristics of the
Ohta-Hirota equation, alongside a detailed analysis of its recurrence operator. Through

the application of the Lax operator obtained from the Lax equation, we conduct an
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exhaustive investigation to uncover the nuances of the recurrence operator specific to
the Ohta—Hirota equation.

This paper primarily examines prolongation structures, Bicklund transformations,
Darboux transformations, and recursive operators as they relate to the Ohta—Hirota
equation. However, several areas warrant further research and discussion: Firstly,
for integrable equations, it is crucial to devise a straightforward yet effective method
to achieve representation via prolongation structures. Developing such an approach
will enhance our understanding and facilitate broader applications. Secondly, the
relationship between matrix linear spectral problems and prolongation structure theory
requires deeper exploration. Investigating this connection could yield significant
insights into both theoretical frameworks and their practical implications. Lastly, the
Hamiltonian structure of integrable equations should be studied in greater depth
through the lens of prolongation structure theory. A thorough analysis in this area
could provide valuable perspectives on the integrability and structural properties of

these equations.
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