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ABSTRACT

Since several decades, the predictions of the Standard Model (SM) of particle physics are being
probed and validated. One major success of the Large Hadron Collider (LHC) at CERN was the
discovery of the Higgs boson in 2012. With the increasing amount of proton-proton collisions recor-
ded with the experiments located at the LHC, precise Higgs measurements are now possible and rare
processes are accessible.

ATLAS and CMS recently discovered the production process of a Higgs boson in association with
a pair of top quarks using LHC RUN II data. The ttH(H — bb) process allows for a direct meas-
urement of the Top-Yukawa coupling which is the strongest fermion-Higgs coupling in the Standard
Model and plays therefore an important role in Higgs physics. The challenging final state with at
least 4 b-jets requires an advanced analysis strategy as well as sophisticated b-jet identification meth-
ods. b-tagging is not only crucial in the ttH(bb) analysis, but most physics analyses within ATLAS
are making use of it. The reoptimisation of the deep-learning-based heavy flavour tagger in ATLAS
is shown in this thesis for two different jet collections. Various improvements were made result-
ing in a drastic performance increase up to a factor two in certain regions of the phase space. The
ttH(bb) analysis is performed using 139 fb—! of RUN II ATLAS data at a centre-of-mass energy
of /s = 13TeV. The signal strength, being the ratio of the measured cross-section over the pre-
dicted cross-section in the SM, was measured to be O.43f8:$8(stat.)fgég(syst.) with an observed
(expected) significance of 1.3 (3.0) standard deviations in the inclusive cross-section measurement.
In addition, a simplified template cross-section (STXS) measurement in different Higgs pt bins is
performed which is possible because of the ability to reconstruct the Higgs boson. The measure-
ment is limited by the capability to describe the challenging irreducible tt + bb background and by

systematic uncertainties.



KURZZUSAMMENFASSUNG

Seit mehreren Jahrzehnten werden die Vorhersagen des Standardmodells (SM) der Teilchenphysik
erprobt und validiert. Mit der zunehmenden Anzahl von Proton-Proton-Kollisionen, die mit den Ex-
perimenten am LHC aufgezeichnet werden, sind nun prizise Higgs-Messungen moglich.

ATLAS und CMS haben kiirzlich den ttH-Produktionsprozess mit Hilfe von LHC RUN II-Daten
entdeckt. Der ttH(H — bb)-Prozess ermoglicht eine direkte Messung der Top- Yukawa-Kopplung,
welche die stirkste Fermion-Higgs-Kopplung ist und daher eine wichtige Rolle im SM einnimmt.
Der anspruchsvolle Endzustand mit mindestens 4 b-Jets erfordert eine fortschrittliche Analysestrategie
sowie elaborierte b-Jet-Identifikationsmethoden. b-Tagging ist nicht nur in der ttH(bb)-Analyse
von entscheidender Bedeutung, sondern die meisten Physik-Analysen innerhalb von ATLAS machen
davon Gebrauch. Die Re-Optimierung des Deep-Learning-basierten Heavy-Flavour Taggers in AT-
LAS wird in dieser Arbeit fiir zwei verschiedene Jet-Definitionen gezeigt. Es wurden verschiedene
Anderungen vorgenommen, die zu einer signifikanten Verbesserung von bis zu einem Faktor zwei
in der Untergrundunterdriickung in bestimmten Phasenraumregionen fiihrten. Die ttH(bb)-Analyse
wurde mit 139 fb~! RUN II ATLAS-Daten bei einer Schwerpunktsenergie von /s = 13 TeV durchge-
fiithrt. Die Signalstirke, d.h. das Verhiltnis des gemessenen Wirkungsquerschnitts zum vorhergesagten
Wirkungsquerschnitt im SM, wurde mit O, 43J_r8ﬁg (stat.)igﬁg (syst.) mit einer beobachteten (erwar-
teten) Signifikanz von 1,3 (3,0) Standardabweichungen fiir den inklusiven Wirkungsquerschnitt
gemessen. Zusétzlich wurde zum ersten Mal eine vereinfachte differenzielle Wirkungsquerschnitts-
messung in verschiedenen Higgs pr-Bereichen durchgefiihrt. Die Messung wird durch systematische
Unsicherheiten begrenzt, hauptsichlich im Zusammenhang mit dem anspruchsvollen irreduziblen

tt + bb Untergrund.
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RESUME

ATLAS et CMS ont récemment découvert le processus de production ttH en utilisant les données
prises durant le RUN II du LHC. Le processus ttH(H — bb) permet de mesurer directement le
couplage de Yukawa du quark top, qui est le couplage fermion-Higgs le plus grand du modele stand-
ard et joue donc un rdle important dans la physique du boson du Higgs. L’état final de ce processus
contient au moins 4 jets provenant de quarks b ce qui nécessite d’établir une stratégie d’analyse
avancée ainsi que de développer des méthodes sophistiquées pour 1’identification des jets provenant
de quarks b. L’étiquetage des quarks b n’est pas seulement crucial pour 1’analyse ttH(bb), mais
aussi pour la plupart des analyses de physique au sein de 1’expérience d’ ATLAS. La ré-optimisation
de I’étiquetage des quarks de saveurs lourdes basé sur un apprentissage profond dans ATLAS est
présentée dans cette thése pour deux collections de jets différentes. Diverses améliorations ont été
apportées, entrainant une augmentation importantes des performances allant jusqu’a un facteur deux
dans certaines régions de I’espace des phases. L’ analyse tTH(bb) est effectuée en utilisant 139 fb—!
de données enregistrées par ATLAS durant le RUN II a une énergie dans le centre de masse de
/s = 13TeV. Lintensité du signal, qui est le rapport entre la section efficace mesurée et la section
efficace prédite par le modele standard, a été mesurée a 0, 43f8ﬁg(stat.)fgﬁg(syst.) avec une sig-
nification observée (prévue) de 1,3 (3,0) déviations standard pour la mesure de la section efficace
inclusive. En outre, une mesure simplifiée de la section efficace utilisant des gabarits Monte Carlo
en fonction de I’impulsion transverse du boson de Higgs est effectuée. Cette mesure est limitée par
la difficulté de simuler correctement le bruit de fond dominant tt + bb ainsi que par de grandes

incertitudes systématiques.
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As member of the ATLAS collaboration, the author focused on different projects, the most significant

contributions are described below.

HEAVY FLAVOUR TAGGING  All the work related to heavy-flavour tagging described in the
chapters 9 to 12 was almost exclusively done by the author of this thesis providing a new algorithm
which is now used by almost all physics analyses in ATLAS.

The performance improvements achieved in this thesis are published as public plots in Ref. [1] for
PFlow jets and for VR Track jets in Ref. [2]. Furthermore, a hyperparameter optimisation setup with
GRID GPUs was developed in cooperation with ATLAS IT providing a tool for the collaboration
which is documented in Ref. [3] together with publicly available plots in Ref. [4]. The development
of an extended flavour tagger (adding a bb-jet category) was initiated and several students were
supervised by the author in this regime. The author also took a key role in the flavour tagging group,
besides the algorithm optimisation, giving machine learning tutorials within ATLAS and being the
liaison between the top-physics group and the flavour tagging group as well as the machine learning

liaison of the flavour tagging group.

ttH(bb) ANALYSIS  In the ttH(bb) analysis described in the chapters 13 to 15, the author
of this dissertation was one of the main analysers. The author of this dissertation assumed a leading
role. The author worked on the optimisation of the simplified cross-section analysis in the lepton+jets
resolved channel. This includes the study of different fit models, the development of additional uncer-
tainties as well as the close collaboration with the analysers of the boosted lepton-+jets and resolved
dilepton channels. He furthermore supervised an undergraduate student working on a related project.

The results are documented in Ref. [5].
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INTRODUCTION

The field of high energy physics made major progress in the recent years probing the predictions
of the Standard Model (SM) of particle physics which describes the interactions of the fundamental
building blocks in Nature. The international research facility CERN is hosting the Large Hadron Col-
lider (LHC). A milestone in the research program of the multi-purpose particle detectors ATLAS and
CMS at the LHC was the discovery of the Higgs boson with a mass of about 125 GeV in 2012 [6, 7].
With the increasing amount of particle collisions delivered by the LHC, one major goal of the ATLAS
experiment is to measure the properties of the Higgs boson more precisely. In particular, the Higgs
boson and the heaviest fermion in the SM, the top quark, have a special relationship. The Higgs
boson production mode in association with a pair of top quarks (ttH) was recently observed [8-10],
marking an important discovery. The measurement of this production channel is directly sensitive
to the top Yukawa coupling, describing the interaction of the top quark with the Higgs boson. Since
the Yukawa coupling increases proportionally to the fermion mass, the top Yukawa coupling is the
strongest in the SM.

The two top quarks in the final state of the ttH process offer a distinct signature in the detector.
Since top quarks decay almost exclusively into b-quarks and W-bosons, the identification of b-jets
is an important tool to identify the signal and reject many background processes. Therefore, the AT-
LAS collaboration has developed sophisticated heavy-flavour tagging algorithms which are playing
an important role in most physics analyses. Within this thesis, a deep-learning-based flavour tagger
has been optimised for two different jet clustering algorithms. Various improvements were made,
providing a new heavy-flavour tagger to the collaboration. In addition, an outlook towards a new
machine learning design of the flavour tagger is presented, opening new opportunities for future im-
provements.

The Higgs boson decay channel to a pair of b-quarks (H — bb) has the largest branching fraction in
the SM and also heavily benefits from good b-tagging performance. This decay channel has been ob-
served by CMS and ATLAS [11, 12]; however, the ttH(bb) process itself has not yet been observed.
Both experiments already published first results of the ttH(bb) process with a subset of the LHC
RUN II dataset [13, 14]. In this thesis, the ttH(bb) analysis [5] is presented, performed with the full
LHC RUN II dataset of 139 fb—* proton-proton collisions recorded with the ATLAS experiment at a
centre-of-mass energy of /s = 13 TeV.

Even though the SM is being tested with high precision, there are hints, especially from astrophysical
observations, that there are physics phenomena beyond the SM. The coupling of the top quark to the
Higgs boson is especially sensitive to the presence of new physics. Also, the measurement of the dif-
ferential cross-section of the ttH process in bins of the Higgs transverse momentum in the Simplified

Template Cross-Section (STXS) framework is sensitive to such effects. Such a measurement allows
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to access the CP structure of the Higgs boson and to probe anomalous Higgs self-couplings with an

increased sensitivity of the measurement.

This dissertation is structured into four main parts: In Part I an overview of the Standard Model and
the ATLAS experiment is given, along with a short introduction into the physics simulation at hadron
colliders followed by the current status of ttH measurements at the LHC. The object reconstruction
and particle identification in ATLAS is discussed in Part II together with a short introduction to
machine learning techniques. Part III focuses on the optimisation of the b-jet identification using
a deep-learning-based approach for two different jet collections as well as an outlook into ongoing
developments in flavour tagging. The ttH(bb) analysis is finally introduced in Part IV, where a
detailed description of the analysis strategy and the results for the inclusive cross-section and the

Simplified Template Cross-Section (STXS) measurement are given.



Part I

OVERVIEW






THE STANDARD MODEL OF PARTICLE PHYSICS

The SM of elementary particle physics is the theoretical framework describing the known elementary
particles and their interactions comprising all fundamental forces - the electromagnetic, the strong
and the weak force - except the gravitational force. This theory has been probed over the last decades

with enormous precision, although there are also hints for physics beyond its scope.

The SM is inspired by two main principles: simplicity and symmetries. It is a non-abelian gauge

theory invariant under the gauge group
G=SU3)c®SU2)r @ uU(l)y, (2.1)

described in the framework of Lorentz invariant Quantum Field Theory (QFT) with the Lagrangian
being renormalisable and invariant under local gauge transformation.

This chapter gives a brief overview of the particle content of the SM in Section 2.1 followed by
the description of Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) in Sec-
tions 2.2 and 2.3, respectively. Afterwards, the electroweak unification (sec. 2.4) and the Higgs sector

(sec. 2.6) are introduced. The content of this chapter is mainly inspired by [15-17].

2.1 PARTICLE CONTENT OF THE STANDARD MODEL

The SM comprises all known elementary particles summarised in Figure 2.1. It consists of twelve
fermions (half-integer spin particles), twelve vector bosons (spin-1 particles) and the Higgs boson, a
scalar particle (spin 0).

Fermions are sorted into three generations comprising one charged lepton, one neutrino and two
quarks each. The particles of a different generation have identical quantum numbers with the excep-
tion of their mass. In fact, the ordinary matter is only composed of the first generation fermions. In
addition, every fermion! has also an associated anti-particle with opposite charge.

Quarks carry an electric and a colour charge and are therefore interacting weakly, electromagnetic-
ally and strongly. Each generation has an up-type quark (up-, charm- & top-quark) and a down-type
quark (down-, strange & bottom-quark) with an electric charge of Q = 2/3 and Q = —1/3, respect-
ively. In general, quarks can only occur in bound states due to the colour confinement [21]. The
colour charge was introduced to maintain the Pauli principle and explain the coexistence of quarks
in hadrons in otherwise identical quantum states. These bound states are called hadrons and they can

be either fermions formed out of three quarks denoted as baryons or bosons composed of a quark and

1 In fact, the W-boson also has its anti-particle.
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Figure 2.1.: Overview of the particles in the Standard Model [18]. Adapted the top quark mass according to
Ref. [19] and the Higgs boson mass according to Ref. [20].

an anti-quark denoted as mesons?.

Leptons are the electron e, muon p and tau T and their associated neutrinos ve, v,, and v, respect-
ively. The neutrinos are considered massless in the SM. While the charged leptons (e, i, T) carry
an electric charge Q = —1 and can interact electromagnetically, neutrinos carry neither electric nor

colour charge and therefore are only interacting via the weak force.

The vector bosons are gauge bosons and act as force carriers. The massless photon vy is the me-
diator of the electromagnetic force while the massive Z and W™ bosons are associated to the weak
force. To be strictly accurate, they are all associated to the electroweak theory which unifies the elec-
tromagnetic and weak theory, described in Section 2.4. Furthermore, there are eight types of gluons
g carrying the strong force.

The Higgs boson is the only scalar particle of the SM. The Higgs mechanism and the concept of

electroweak symmetry breaking (EWSB) is discussed in more detail in Section 2.6.

In the following, using the terms electrons, muons and taus comprise always the particles and

anti-particles if not stated differently. The same is valid for quarks and anti-quarks.

2 The LHCb collaboration discovered also penta- and tetra-quark states [22].



2.2 QUANTUM ELECTRODYNAMICS

2.2 QUANTUM ELECTRODYNAMICS

The framework of QFT combines quantum mechanics and special relativity and thus particles are
represented as fields. QED is the theoretical description of the electromagnetic interactions, based
on the abelian U(1) gauge group, being a generalisation of Maxwell’s theory.

A freely propagating fermion field corresponding to a massive spin 1/2 particle is described by the
Dirac Lagrangian

[JDiraC = J)(la - m)lb/ (22)

where § = "9, denotes the contraction with the Dirac matrices y*, the fermion mass m and a free
spinor field .

A local U(1) gauge transformation would lead to an additional term \{@oa] in the Lagrangian, with
o being the electromagnetic coupling constant. It is enforced that the QED Lagrangian is invariant
under this gauge transformation and thus a coupling between the Dirac fermion and the vector field

A (corresponding to the photon) is introduced in the form of a covariant derivative

Dy =0, +1ieA,(x), (2.3)
where e = —|e] is the electron charge.
The QED lagrangian results in
LEp = Lpirac + LMaxwell + Linteraction (2.4)
= (10— ) b~ TP Fy — eby A, 2.5)
=p(iB—m)p— %F“VFM, (2.6)

with F,,v = 0,Ay — 0y A, the field strength tensor. Consequently, the constructed QED lagragian

is invariant under a local U(1) gauge transformation

P(x) = e *Mp(x),  Au(x) = Aulx) — SOua(x). 2.7)

2.3 QUANTUM CHROMODYNAMICS

The strong interactions are described by QCD which is a non-abelian gauge theory based on the
SU(3) group. The Lagrangian can be retrieved in a similar manner as for QED. In this context the
quark field can be written as colour triplets i = (qred, Gblues Ggreen), Which transform under a local

gauge transformation as

ixqAa/2

qr(x) — e qr(x), aeR, ae{l,..., 8} (2.8)
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with k the flavour index, g alocal phase and A the generators of the SU(3) group called Gell-Mann

matrices [23] and a the colour index. They follow the commutation rule
D\a/ }\b] — if((:lb)\C/ (29)
with f¢ | the completely anti-symmetric structure constant. The coupling between quarks and gluons

is introduced analogous to QED as a covariant derivative

LA
Du:au—lgs%‘eg, (2.10)
where G|} are the eight gluon field strength tensors and g5 is the strong coupling strength which can

also be expressed as the coupling constant of the strong interaction

g2
X = ﬁr (2.11)
The final QCD Lagrangian then reads
. 1
Loep =) ax (i —mi) i — G, G (2.12)
Kk
. - . a ] a a
=Y i (10— mi) qi + %qk (" GfiAa) ak— 7 Gfn G, (2.13)
k
with
Gi, =0,.GS—03,GS +gsf§, GhGY. (2.14)

Due to the non-abelian structure of QCD, the term %G nv G“HY is needed in order to maintain local
gauge invariance of the Lagrangian and results in a self-coupling of the gluons illustrated in the two

Feynman diagrams on the right in Figure 2.2.

8s 8s
8s

Figure 2.2.: Possible interactions of the gluon: the interaction with quarks (left), self-interaciton of three gluons
(middle) and the self interaction of four gluons (right).

The self-coupling induces a different energy scaling behaviour compared to QED. The coupling
constant og depends on the energy scale (renormalisation scale) sz [24],

127
33 —2ny¢) ln(qu//\éCD) ’

s (HR) = : (2.15)
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with n¢ the number of ’light” quark flavours (those whose mass is lower than ) and Agcp a non-
perturbative constant indicating the scale at which the coupling diverges. The application of perturb-
ation theory in order to calculate scattering amplitudes is only feasible for scales pur > Agcp, where
X (p.zR) < 1. At low energy scales (larger distances) the effective coupling between two coloured
particles increases and thus coloured objects cannot exist isolated and always form colourless bound
states (hadrons), this effect is called colour confinement. At high energy scales (short distances) the

coupling strength is decreasing, denoted as asymptotic freedom [21, 25].

2.4 ELECTROWEAK UNIFICATION

The electroweak unification was introduced in the 1960s by Glashow, Salam and Weinberg [26—
28]. It unifies electromagnetic and weak interactions within one theory based on the non-abelian
gauge group SU(2); ® U(1)y. The electroweak Lagrangian is composed of several parts, the gauge,

fermion, Higgs and Yukawa part

LEW = Lgauge + Lfermion + LHiggs + LYukawa- (216)

Fermions (leptons and quarks) are represented as left-handed doublets 11 and right-handed sing-
lets P, classified with the quantum numbers of the weak isospin I (SU(2) generators), I3 being the
third component of the isospin, and the weak hypercharge Y (LL(1) generators) as shown in Table 2.1
where the doublets have I3 = 1/2 and the singlets I3 = 0. The Gell-Mann—Nishijima formula [29]

relates these two quantum numbers with the electric charge Q

Y
Q=151+ 5 2.17)
Fields Generations Charges
I 1 mo| I Y Q
1 _
b L (ve> <vu> (VT> +1/2 1 0
e /. - T )| /2 —1 —1
PR, R er KR TR 0 —2 —1
u c t +1/2 1/3 +2/3
d /, s ). b/ —1/2 /3 —1/3
" Uur UuR CR tr 0 4/3 +2/3
R/
dR dR SR bR 0 —2/3 —1/3

Table 2.1.: The fermions are grouped into right-handed singlets and in left-handed doublets. The shown
quantum numbers are the third component of the weak isospin (I3), the weak hypercharge (Y)
and the electric charge (Q). The field column contains the definition of the different fields.
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2.4.1 Gauge Term

Each generalised charge is associated to a vector field, W:L'z’s to I 2,3 and the singlet field B, to Y.

The field strength tensors of the vector fields are given as

WS, =0, WS — 0, W + greapc WL WS, (2.18)
Buv = 0.By — 9By, (2.19)

with e€qpc the totally asymmetric Levi-Civita tensor and g, the gauge coupling constant for the

non-abelian factor SU(2). The Lagrangian for the gauge part then reads

1 1
Lguge = — g W WS — By B, (2.20)

With this formulation, mass terms for the gauge bosons would violate the gauge invariance. How-
ever, it is possible to introduce these mass terms with the mechanism of spontaneous electroweak

symmetry breaking described below.

2.4.2 Fermion Term

As mentioned above, the fermions have different chiralities (left- & right-handed) on which also their
representation depends (see Table 2.1). The covariant derivatives, describing the fermion-gauge field

interaction, are slightly different for the right-handed R and left-handed L case:

.o Y
Df = au—1927aW3+1g1zBu, (2.21)
Y
DR = au+1g1§Bu, (2.22)

with @ = (07 02 03)" being the vector of Pauli matrices satisfying [0, 0;] = 2ieyj1 0k and g;
the gauge coupling constant for U(1)y gauge group. Then, the fermionic part of the lagrangian is
denoted as

Ltermion = )_WLAYHDRU] + D Bk V' DL ., (2.23)

j ig

with the generation index j running over the three lepton and quark generations and & the index for up-
type and down-type fermions. Similar to the gauge term, the fermion masses are also not described
here since they are mixing left- and right-handed fields which would break the gauge symmetry. The

fermion masses are introduced via the Yukawa term in Section 2.4.4.
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2.4.3 Higgs Term

The Higgs mechanism, introduced in the 1960s [30-35], spontaneously breaks the gauge symmetry
SU(2)r ® U(1)y down to the U(1)gym symmetry by introducing an isospin doublet of complex scalar
fields

e"(x)
(x) = (2.24)
°(x)
with the covariant derivative
. o . O1
Du:au—lngwgﬂ?m, (2.25)

which introduces three- and four-point interactions between the gauge bosons and the Higgs field in

the lagrange density
Liiges = (D) Db — V(). (2.26)

The Higgs potential \ 5
V(9) =—w2oTo+ 5 (o70) ", 2.27)

contains in the first term the Higgs mass after the EWSB with the constant 12 and in the second term

the Higgs field self-interaction with the constant A > 0 guaranteeing a lower bound of the potential.

2.4.4 Yukawa Term

The last term of the electroweak Lagrangian is the Yukawa term, introducing fermion mass terms
LYukawa = _ng _}_d)az - G% Qid)d%Q - GE Q{d)cu%z +h.c., (2.28)

with ¢ = 10, ¢ the charge conjugate, h.c. the hermitian conjugated term and the Yukawa couplings

G%d’u described as 3 x 3-matrices.

2.5 THE HIGGS MECHANISM

The Higgs mechanism induces the spontaneous EWSB as described in Section 2.4.3. This mechan-
ism allows mass terms in the electroweak Lagrangian for gauge bosons W+ and Z as well as for
fermions via the Yukawa couplings.

The lowest energy state of the potential in Equation (2.27) is denoted as the vacuum expectation
value (VEV) v. By choosing the parameter p? < 0, the minimum is located at T = 0 with all
real scalar fields having zero VEV as shown in the left plot of Figure 2.3. This configuration would

preserve the SU(2); ® U(1)y symmetry also at the minimum. However, with u? > 0 the minimum

11
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A>0andg? >0

NV

Figure 2.3.: Higgs potential following Equation (2.27). On the left with the parameter choice u?> < 0 with
only a minimum at 0. The middle plot shows the Higgs potential with pu? > 0 as well as the right
plot which is a projection of the middle plot, indicating the minima at bt = 22 /A.

is not located at 0, instead it is at T = 2u?/A, illustrated in the two right plots in Figure 2.3,
resulting in the VEV

() = 20 with v = 2—”, (2.29)

V2 \ VA
picking ¢ as electrically neutral without loss of generality. In fact, the vacuum configuration (¢)
violates the SU(2); ® U(1)y symmetry and spontaneously breaks it down to the electromagnetic

(EM) subgroup U(1)gm. Rewriting the potential in the unitary gauge one gets

1 0
dx)=— / (2.30)
V2 v+ H(x)

where H is a scalar field depicting the Higgs boson and the potential can be written as

2 2 MZ MZ MZ
Ve H2 e B e = Tz s e 2.31)
Y 4v 2 2v 8v

where the Higgs mass results in My = pv/2. Also, the potential contains terms with triple and
quartic self-interactions of the Higgs with couplings proportional to the Higgs mass M.
The kinematic term of Equation (2.26) describes the coupling of the Higgs field to the gauge fields,
and can be expressed via (2.29) and (2.30) as

gav? H

2
(D) Do =S Whw (1 - v)

(2.32)
2 25,2 2
1497 +93v HY2 1
e AT AN (1 + v) +5(0*H) (2, H),

2

containing the physical fields

Wi =

o (W), FiW}), (2.33)

Nis
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depicting the massive charged gauge bosons W+ and the neutral gauge bosons, given as

Ly _ cos By sin By Wi ’ (234)

Aun —sin By cosBw Bu

where the Z,, field describes the massive Z-boson and the A, field the massless photon. As a

consequence the masses are defined in terms of the couplings and the VEV as

1 1
Mw = 592V Mz = E\/m" (2.35)

The weak mixing angle 8y is introduced in the rotation in Equation (2.34) and defined as
92 ~ Mw
=
Jortes U4

which also allows to express the electric charge in terms of the gauge couplings as e = g sin Oy

cos Oy = (2.36)

The fermions also acquire their masses via the interaction with the Higgs field described in the

Yukawa term in Equation (2.28) which can be expressed in the unitary gauge:
- H
Lyukawa = — Z mfl'l)flbf T+ — ’ (237)
- v

with the mass defined as

v v
ms=Gf—= =yf—, 2.38
£ fﬁ Ufﬂ (2.38)

and Yy being the Yukawa coupling. The lepton mass matrix ij has no off-diagonal entries since

the lepton number is conserved for each generation in the SM and reduces with the assumption of

massless neutrinos to

me O 0
0 m, 0 |- (2.39)
0 0 me

However, the quark mass matrix G%’d has off-diagonal entries which can be diagonalised via four

unitary matrices VEL’S resulting in the mass eigenstates

U g = (VER)ikul r,  df g = (VER)ikuf k- (2.40)

13
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By introducing the mass eigenstates in the Lagrange density, its structure is retained except for the
flavour-changing quark interactions mediated by the charged vector bosons. The quark mixing matrix

also denoted as Cabibbo-Kobayashi-Maskawa (CKM) matrix reads then as

d’ d Vuda Vus Vuo d
s’ = Vckm S - Vea Ves Ven S |7 (2.41)
b’ b Via Vis Vi b
with
VIV = Ve (2.42)

The diagonal elements of the CKM matrix are close to one, in particular the [Vyp| term with a value
of 0.999105 4+ 0.000032 [20] which will be of special importance in the following chapters.

2.6 HIGGS BOSON PRODUCTION AND DECAY CHANNELS

In 2012, the ATLAS and CMS collaborations discovered a new particle compatible with the SM
Higgs boson [6, 7], representing one of the major physics goals of the LHC. Further studies over
the last years confirmed its properties being consistent with the SM predictions. Probing the EWSB
sector is important for SM precision measurements as well as for investigations for physics beyond
the SM. The Higgs boson is measured to have a mass of (125.10 + 0.14) GeV [20].

The Feynman diagrams of the four major Higgs production modes at the LHC are shown in Fig-
ure 2.4. The most dominant production mode is the gluon fusion (ggF) process, comprising a fermion
loop dominated by the heaviest fermion, the top quark, followed by the vector boson fusion (VBF)
and the Higgs Strahlung (VH) which both probe the Higgs coupling to the heavy gauge bosons. The
fourth most dominant Higgs production mode is the associated production with a top quark pair (ttH)
allowing a direct measurement of the top Yukawa coupling. The tH production mode is sensitive to
both the magnitude and the sign of the Yukawa coupling. Due to negative inference of the Feynman
diagrams, its cross-section is about one order of magnitude lower than the ttH cross-section. Fig-
ure 2.5 illustrates the cross-sections of important processes, including Higgs productions, at hadron
colliders. Compared to many other SM processes, or even compared to the tt cross-section, the Higgs
production modes are orders of magnitudes lower and therefore sophisticated techniques are neces-
sary to extract the Higgs signals in analyses. For the ttH production mode, the main background is

coming from tt processes whose cross-section is more than two orders of magnitudes larger.

Figure 2.6 shows the different decay modes for a Higgs with a mass of my; = 125GeV. By
far the largest branching ratio is the H — bb decay mode with 58.2%. The second most prob-
able decay mode with 21.4% is the decay to WW™. Even though both of these decay modes have

a large branching ratio, they are challenging to access due to difficulties to distinguish them from
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g BOOOD) a) ggF q b) VBF
A > ----- H
g \RQQQQ) ¢
q ¢) Higgs Strahlung (VH) Vv d) ttH t

Figure 2.4.: Feynman diagrams of the four major Higgs production modes at the LHC: (a) gluon fusion (ggF),
(b) vector boson fusion (VBF), (c) Higgs Strahlung (VH) and (d) associated production with a top
quark pair (ttH).

background processes. The so-called Golden Channels, having the cleanest final state signatures, are
the vy and the ZZ* — 4{ decay modes. Despite their very low branching ratios: 0.2% and 2.6%,

respectively, they are easier to access in physics analyses.

The ttH production combined with the bb decay mode is analysed in this thesis in Part IV and a

more detailed description and motivation for this analysis can be found in Chapter 5.

2.7 THE TOP QUARK

The top quark, with its mass of (172.69 4+ 0.25(stat.) + 0.41(syst.)) GeV [19], is the heaviest particle
in the SM. Due to its large fermion mass, also its Yukawa coupling to the Higgs is the strongest
with y¢ ~ 1 shown in Equation (2.38). This strong coupling induces the dominance in the loop
contributions in Higgs productions (ggF) and decays (H — y7y). Since these loop effects involve
heavy virtual particles they are also sensitive to physics beyond the SM.

Another implication of the high mass is that the top quark can decay into a W-boson and a b-quark. In
fact, the top quark almost exclusively decays via this mode indicated by the value of the CKM matrix
element |Vyy| being close to 1, as already mentioned above. Its decay width of 1.42f8:}§ GeV [20]
leads to a mean lifetime of ~ 5 - 1072° s which is uniquely shorter than the time scale of hadronisa-
tion processes, making the top quark decay as an almost free particle. These properties create a very

recognisable decay signature in the detector.

15
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Figure 2.5.: Cross-section of different processes as a function of the centre-of-mass energy in proton-proton
collisions above /s = 4 TeV and below for proton-antiproton collisions. The dashed line indicates
a centre-of-mass energy of /s = 13 TeV [36].

At hadron colliders, top quarks are predominantly produced in tt pairs. The decay modes are typ-
ically classified according to the decay of the two involved W-bosons. The pie chart in Figure 2.7
shows the individual decay rates of tt. The all-hadronic final state has the largest branching ratio
with 45.7% where both W-bosons decay hadronically. Followed by the lepton+jets (semi-leptonic)
decay channel (43.8%) in which one W-boson decays hadronically and one leptonically. The smal-

lest fraction of 10.5% is allocated to the dileptonic mode (both W-bosons decay leptonically).
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Figure 2.6.: Branching ratio of the Higgs de- Figure 2.7.: Pie chart showing the individual tt

cay with a Higgs mass of mpy = decay modes. The label e/ com-
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modes T+ t/u/e. Also hadronic-
ally decaying Ts are included in the
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2.8 LIMITATIONS OF THE STANDARD MODEL

Figure 2.8 shows different SM cross-section measurements in comparison to their theoretical predic-
tions. They are all in a good agreement with theoretical expectations. However, despite the success
of the SM, it cannot describe all experimental observations sufficiently. Several astrophysical ob-
servations saw that only a small fraction (around 17%) of the matter in the universe is made of the
SM components. Thus, another source of matter has to be present making up 25% of the universe,
corresponding to 83% of all matter in the universe, denoted as dark matter [37] which could consist
of weakly interacting massive particles. There are, however, no suitable candidates within the SM.
Also, astrophysical observations show a stronger expansion of the universe than predicted by cos-
mological theories [38]. This phenomenon appears to be caused by a non-detectable energy, called
dark energy (being the last missing 70%). Moreover, neutrino experiments observed neutrino oscil-
lations [39, 40], indicating that neutrinos do have a mass. However, they are assumed to be massless
in the SM because at the time of the formulation of the SM their mass was not observed. If neutrinos
would have a Dirac mass, it could be easily added to the SM. However, there are no indications yet
for a right-handed neutrino and it is therefore not evident that neutrinos have a Dirac mass. The fact
that the universe consists of far more matter than anti-matter reveals another unexplained physics
behaviour.

Furthermore, there are theory implications suggesting physics beyond the SM e.g. the unification of
the electroweak and strong force as well as the missing gravity in the theory.

Several of these beyond SM physics processes predict new particles that could be found in particle
collider experiments. There is, however, no evidence yet for these beyond SM particles. The search

for these new particles is also one of the main goals of the LHC in the future.

17
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Standard Model Production Cross Section Measurements

Status: May 2020
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Figure 2.8.: A summary of different Standard Model production cross-section measurements (total and fidu-
cial) performed with the ATLAS experiment. They are corrected for leptonic branching fractions

and compared to the corresponding theoretical expectations [41].



THE ATLAS EXPERIMENT AT THE LARGE HADRON COLLIDER

Particle physics explores scales in the order of < 10~'> m which requires large and complex ma-
chines to explore physics at the TeV scale. Such a machine is the LHC [42—44]. Experiments in these
dimensions are only possible within international collaborations. Thus, the Organisation européenne
pour la recherche nucléaire (CERN) is an optimal environment to host such experiments.

The work in this thesis is based on the /s = 13 TeV proton-proton collision data collected with the
ATLAS experiment at the LHC.

This chapter gives a short overview of the LHC and describes the different sub-detector systems of

the ATLAS detector including its magnetic and trigger system.

3.1 THE LARGE HADRON COLLIDER

The largest and most powerful hadron accelerator ever built, the LHC, is situated near Geneva,
Switzerland, with a circumference of 27 km. It consists of 1232 super-conducting dipole magnets
designed to reach a centre-of-mass energy of /s = 14 TeV and currently, during RUN II, operating
at a centre-of-mass energy of /s = 13TeV (y/s = 7/8 TeV in RUN I).

Apart from protons, the LHC can also operate with heavy ions. This dissertation is, however, entirely

based on proton-proton collisions.

LHC

2008 (27 km) Nnh N
oith Area

LHCb

SPS
i, - N
_ ATLAS CNGS ™\
HlRM;:lt i Gran Sasso
Ll
AD
m

H
LINAC 4

Leir
ZDDS (78 m)

N HI\/\( 3
Figure 3.1.: Current CERN accelerator complex with Large Hadron Collider (LHC), Super Proton Synchro-
tron (SPS), Proton Synchrotron (PS), Booster, Antiproton Decelerator (AD), Low Energy Ion
Ring (LEIR), Linear Accelerators (LINAC 3 & 4), CLIC Test Facility (CTF3), CERN to Gran
Sasso (CNGS), Isotopes Separation on Line (ISOLDE), neutrons Time of Flight (n-ToF) and High-
Radiation to Materials High-Radiation to Materials (HiRadMat) Facility (HiRadMat) [45].
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As shown in Figure 3.1, the LHC is part of a large accelerator complex being the final element
in this accelerator chain. The pre-acceleration of protons is performed in several steps beginning
with a linear accelerator (LINAC 2 in RUN II and from RUN III on LINAC 4) where the protons are
injected as hydrogen gas and are accelerated to 50 MeV followed by the Booster where they reach
1.4 GeV. The next step is the Proton Synchrotron (PS) which accelerates the protons to 25 GeV and
the final pre-acceleration is done in the Super Proton Synchrotron (SPS), which injects the protons
into the LHC with an energy of 450 GeV.

The LHC is using eight radiofrequency cavities per beam operating at 400 MHz to accelerate the
protons which are brought to collision at four different points, each hosting an experiment. Two
of them are the multi-purpose experiments ATLAS [46] and CMS [47] pursuing a wide range of
physics, comprising SM precision measurements as well as searches for beyond the SM phenomena
such as Supersymmetry, Exotic particles or Dark Matter searches. These two collaborations are the
largest ones at CERN comprising around 3000 scientist each [48, 49]. The LHCb experiment [50] is
specialised in exploring hadrons containing b- or c-quarks especially investigating CP-violating pro-
cesses. The ALICE experiment [51] is the only experiment fully focusing on heavy-ion collisions'

and therefore particularly specialised on QCD physics.

Apart from the centre-of-mass energy, the instantaneous luminosity is a main characteristic of a
particle collider. For a circular collider with a Gaussian-shaped effective beam area A = 4700y,
where 0y y are the Gaussian beamwidths in the x- and y-direction?, the instantaneous luminosity can

be written as
Ni-N3

L="ey+  —F—
e 4oy oy

F(6c), (3.1

with fre, the revolution frequency, N1 ; the total number of protons in each beam and F(6.) scoping
for geometric effects caused by the crossing angle 6. of the two beams since the beams of the LHC
are not colliding exactly head-on. The revolution frequency of the LHC is fyey = ¢/27km = 11kHz
with nominally 2808 proton bunches. The protons are organised in bunches which can contain up
to 10'! protons. This leads to an instantaneous luminosity of O(103* cm—2s*). Consequently, the
produced events by the LHC, which are the number of collisions, can be retrieved by integrating the
instantaneous luminosity £

N:cr-JLdt:U-.Z, (3.2)

where o is the event cross-section for a given physics process. The evolution of the integrated lumin-
osity .Z of the LHC RUN II delivered to the ATLAS experiment is shown in Figure 3.2 (a) yielding
in total an integrated luminosity of . = 139 fb™* good for physics which means that this data can

be used in analyses. In fact, this data will be used in this thesis.

Due to the large number of protons within a bunch, more than one collision of interest can occur

within a bunch crossing, which is called in-time pile-up. In addition, there are interactions coming

1 ALICE uses proton-proton collisions only for calibration purposes.

2 The coordinate system is defined in Section 3.2.
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Figure 3.2.: The development of the cumulative luminosity collected by the ATLAS experiment during
RUN 1II (a) and the mean number of interactions per bunch crossing splitted into the different
data taking periods (b) [52].

from neighbouring bunch crossings which cannot be resolved fast enough by the detector. These are
called out-of-time pile-up. The mean interactions per crossing is a measure to quantify the pile-up.
Clearly, the suppression of pile-up effects is quite a challenge for physics analyses. The distribution
of the mean interactions per crossing is shown in Figure 3.2 (b). The pile-up profiles differ for each
data taking period since the instantaneous luminosity (corresponding to the slope in Fig. 3.2 (a))
constantly increased, reaching a plateau in 2017/2018, and therefore more interactions per bunch

crossing occur indicated in the plot legend as the average number of interactions per crossing (Lt).

3.2 THE ATLAS DETECTOR

The ATLAS (A Toroidal LHC ApparatuS) detector [46] is a multi-purpose particle detector, used to
study a wide range of physics topics. It is situated 100 m below ground at Point-1 of the LHC. With
its large dimensions of 25 m in diameter, a length of 44 m and a weight of 7000+, it is the largest
detector located at a collider. The detector has a cylindrical structure composed of several detector

layers with an almost full solid angle coverage of 47t schematically illustrated in Figure 3.3.

All detector systems are designed such that they provide optimal performance for the different
physics analyses. Hence it is important that the detector satisfies the following criteria: fast electron-

ics for the readout, high granularity, good object reconstruction efficiency and resolution.

Coordinate System

In order to describe the particles recorded with the ATLAS detector, a right-handed coordinate system
is used as illustrated in Figure 3.4 with its origin at the centre of the detector which is also the nominal

interaction point. The z-axis is defined along the beamline while the y-axis points towards the surface
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Figure 3.3.: Schematic overview of the ATLAS detector [53].

and the x-axis in the direction of the centre of the LHC. To describe the physics objects within the
detector, spherical coordinates are the best choice where the polar angle 0 is the angle between the
z-axis and the direction considered while the azimuthal angle ¢ is measured in the x-y plane with
respect to the x-axis. In fact, the polar angle is usually stated as the pseudorapidity 1 which is a

high-energy approximation of the rapidity y:

1 E+p2 m<E, B 0\
y_zln(E_pz> > In | tan =, 3.3)

— <

() Beam Line

z (towards LHCb)

Interaction
Point

\ x (Centre of LHC)

Figure 3.4.: Coordinate system of the ATLAS detector.
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with E the energy and p, the z component of the momentum vector. The advantage of the pseu-
dorapidity is that the difference An is invariant under Lorentz transformation. Thus the distances of

two objects are calculated via
AR =/ (Ad)2 + (An)2. (3.4)

In some cases, the distance is also calculated using the rapidity instead of the pseudorapidity which
will be denoted as ARy. Furthermore, the x-y-plane defines the transverse plane where the transverse

momentum is an important quantity denoted as

pr=| P pr = 1/ (px)2 + (py)2. (3.5)

Py

Since protons are composite particles and the centre-of-mass system moves with respect to the lab
system, only the transverse momentum component of the initial partons is known to be zero in the

lab system at the time of the collision.

3.2.1 Inner Detector

The innermost detector system is the Inner Detector (ID) [54, 55] enclosing the beam pipe shown
in Figure 3.5. This detector system provides precise tracking information of charged particles. It
is structured into three sub-detectors: the pixel detector, the semiconductor tracker (SCT) and the

transition radiation tracker (TRT).

f R =1082mm

TRT <

L R =554mm
R =514mm
R =443mm
R =371mm
R =299mm

R =50.5mm
R =33.25mm

R=0mm

R =122.5mm
Pixels { R=88.5mm

Figure 3.5.: Overview of the inner detector of the ATLAS experiment divided into three sub-detectors (Pixels,
SCT and TRT) [56].

Pixel Detector

The first part of the ID is the silicon pixel detector comprising 4 cylindrical layers and 2 end-caps

with 3 disc layers each. The layers are located between 33.25 mm to 122.5 mm around the beam pipe
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with a coverage of n| < 2.5. The pixel detector is especially important for the track reconstruction,
the primary vertex reconstruction as well as for secondary vertex finding.

The insertable b-layer (IBL) [57] is the innermost layer, installed in-between RUN I and RUN II,
having the highest granularity with a pixel size of 50 um in R-¢-direction and 250 pm in z-direction.
In particular, the IBL plays a crucial role for b-tagging. Figure 3.6 compares the resolution of the
transverse and longitudinal impact parameters, which are important variables for b-tagging, with
and without the IBL installed in ATLAS. All flavour-tagging studies in Part III of this thesis are
performed for RUN II and therefore include the IBL.

Furthermore, the three remaining layers have a pixel size of 50 um in the R-¢$-direction and 400 um
in the z-direction. This gives an expected hit resolution of 8 pm & 10 wm in the direction of R-¢ and
40 pm & 115 pm in the z-direction for the IBL and the three remaining layers, respectively.

In total, the pixel detector contains 86 M pixels providing a good spatial resolution which make up
around 50% of all ATLAS readout channels.
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Figure 3.6.: Unfolded transverse impact parameter resolution (a) and longitudinal impact parameter resolu-
tion (b) measured from data in 2015 (red) with /s = 13 TeV with the Inner Detector including
the IBL, as a function of pT, compared to that measured from data in 2012, /s = 8 TeV (without
the IBL) [58].

Semiconductor Tracker

The semiconductor tracker (SCT) is a silicon strip detector comprising 4 double layers in the barrel
region and nine planar end-cap discs on each side. The strips have a size of 80 umx 12 cm and cover
a region up to n| < 2.5. The two layers within one layer-module are rotated by a stereo angle of
40 mrad. In general, the semiconductor-based detectors in ATLAS operate at a temperature between
-10°C and -5 °C to suppress different types of electronic noise.

Overall the SCT has a resolution of 17 um in the R-¢ direction and 580 um in the z-direction with a
total of 6.3 M readout channels.
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Transition Radiation Tracker

The outermost part of the ID is the transition radiation tracker (TRT). In contrast to the other ID
detectors, the TRT is not based on silicon but is a gaseous detector system. It consists of around
300k straw tubes with a diameter of 4 mm filled with a gas mixtures’ of Xe (70 %), CO, (27 %)
and O, (3 %) and a gold-plated tungsten wire in the tube centre with a potential different to the tube
surface of 1.5kV. The straws have a length of 144 cm in the barrel region and 37 cm in the end cap.
The single hit resolution is 120 pm in the barrel and 130 um in the end-cap. In fact, the TRT provides
besides the tracking information also a particle ID. This is achieved with emitted transition radiation
at the material boundaries since the straws are interleaved with polypropylene. Especially electrons
can be distinguished from charged pions due to their larger transition radiation.

However, the TRT will be replaced for the High Luminosity LHC (HL-LHC) by a new, fully silicon-
based Inner Tracker (ITk) [60] which will in fact replace the full ID.

3.2.2 Calorimeter System

The calorimeter system is responsible for the precise measurement of the particle energies by absorb-
ing them as well as measuring the shower properties to allow for particle identification. Showers
are cascades of secondary particles which are formed when a highly energetic particle interacts with
dense material. ATLAS uses sampling calorimeters which consist of alternating layers of active ma-
terial (liquid argon & plastic scintillators) and passive detector material (copper, iron, tungsten and
lead). While the active material measures the energy deposit of the particles, the passive material
induces the shower creation. The calorimeter system is composed of two main sub-systems, the elec-
tromagnetic [61, 62] and the hadronic calorimeter [63, 64] as shown in Figure 3.7. The calorimeter

covers an 1 range up to a far forward region of n| < 4.9.

Electromagnetic Calorimeter

The EM calorimeter encloses the ID and is a high granularity sampling calorimeter based on liquid
argon (LAr) technology with absorber plates made out of lead. To provide full coverage in ¢, the
EM calorimeter has an accordion-shaped structure where the active material is placed in the gaps
between the lead absorber plates and the Kapton electrodes. The detector operates at -183 °C with
a total of 170k readout channels. The barrel region of the EM calorimeter, consisting of two parts
with a 4 mm gap between them and a length of 3.2 m each, covers || < 1.475 with its granularity of
An x A = 0.025 x 0.025 in the second layer (middle-layer) and the two end caps cover || < 3.2
with a slightly coarser granularity.

In general, the absorption power at high energies of a calorimeter can be quantified in a material-
independent way by using the radiation length X of its medium. It is defined as the distance over

which the particle energy is reduced via radiation losses by a factor 1/e. The thickness of the barrel

In RUN II, a second gas mixture of Ar (70 %), CO; (27 %) and O (3 %) was used for straw tubes belonging to modules
with large gas leaks [59].
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Figure 3.7.: Cut-away view of the calorimeter system of the ATLAS experiment [46] (and adpated by [65]).

region, given in terms of the radiation length, is 22 Xy and 24 X, for the end-caps. Moreover, the
intrinsic energy resolution of the EM calorimeter is ot/ = 10%/vE @ 0.7% [62, p. 9], where the

first term is the stochastic part and the second one the constant part.

Hadronic Calorimeter

The second calorimeter system is the hadronic calorimeter located around the EM calorimeter consist-
ing of three components with two different detector technologies providing roughly 19,000 readout
channels.

Firstly, the tile calorimeter is made out of alternating layers of steel as absorber material and scintil-
lator plastic tiles as active material being read out via photomultiplier tubes. Out of its three layers,
the first two have the highest granularity with An x Ad = 0.1 x 0.1. The barrel part of the tile
calorimeter covers a region with [n| < 1.0 and the two extended barrels a range of 0.8 < In| < 1.7.
The resolution of the tile calorimeter is ot/ = 50%/v/E & 3% [66, p. 3].

Secondly, the end-cap calorimeters, which are directly outside the EM calorimeter, and the forward
calorimeter are based on the LAr technology. The end-caps use copper as passive material and cover
aregion of 1.5 < In| < 3.2 with their highest granularity of 0.1 x 0.1 (An x A¢) within [n| < 2.5.
Also, the first layer of the forward calorimeter uses copper as absorber scoping for EM activities. The
other two layers make use of tungsten as absorber which is better suitable for hadronic measurements.
In total the forward calorimeter covers a region of 3.2 < |n| < 4.9. The overall resolution of the LAr
based hadronic calorimeters is ot/ = 100%/+E & 10% [67, p. 2].

3.2.3  Muon Spectrometer

Muons mostly traverse the detector without losing energy. Hence they are identified in the muon

spectrometer (MS) [68] which is the outermost detector system of ATLAS with a distance to the
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beam of 5-10 m (see Figure 3.8). It consists of four detector systems grouped into trigger and pre-
cision muon tracking chambers. In total the MS has more than one million readout channels and
is embedded in three superconducting toroidal magnets (one in the barrel and one at each end-cap),
providing a magnetic field in ¢-direction (typically perpendicular to the muon trajectory). The muon
system is not entirely symmetric in ¢ due to some gaps for detector services and support structure
(detector feet). The momentum resolution of the MS is around 10% for 1 TeV muons and around 3%
for 10-200 GeV muons.

Thin-gap chambers (TEC)

Cathode strip chambers (CSC)

, ':” Batrel toroid
1 Resistive-plate
chambers (RPC)
End-cap toroid

Monitored drift tubes (MDT)

Figure 3.8.: Layout of the ATLAS muon spectrometer [69].

Muon Trigger Chambers

The muon trigger chambers are designed for a fast readout to provide trigger information. In the
barrel region with | < 1.05, three layers of resistive plate chambers (RPCs) are used. The RPCs
are made out of parallel plates with a high resistivity and a potential difference between them where
the gap is filled with a gas mixture (94.7% C,H>F4, 5% Iso-C4H1¢, 0.3% SFg). Besides the trigger
information the RPCs also provide an 11 — ¢ measurement with a spatial resolution of 10 mm.

In the end-caps (1.05 < [n| < 2.4) multi-wire chambers filled with a gas mixture of 55% CO
and 45% n-C5Hy, are used. These are called thin gap chambers (TGCs). They use graphite-coated
cathodes and the wires are separated by 1.8 mm. Apart from the trigger information, the TGCs

provide ¢ information with a resolution of 5 mm.

Precision Muon Tracking Chambers

While the muon trigger chambers are always read out, the precision muon tracking chambers are
only read out when a trigger decision was made since the detector technology is slower but provides

a high resolution and precision tracking information.
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The monitored drift tubes (MDTs) are installed in the barrel and end-cap region covering [n| < 2.7.
MDTs are aluminium drift tubes with a diameter of 3 cm filled with an Ar/CO; (93/7%) gas mixture
and a wire in their centres. Typically, each chamber contains 3-8 layers of drift tubes resulting in a
spatial resolution of 35 um [46, p. 165].

Cathod strip chambers (CSCs) are installed in the forward region (2.0 < [n| < 2.7) and are propor-
tional multi-wire chambers (as the TGCs), providing a radial resolution of 40 um and a resolution in
¢ of 5mm [46, p. 165].

3.2.4 Magnet System

Besides the detector systems, the magnet system is of major importance to allow momenta and charge
measurements. It bends the trajectory of charged particles via the Lorentz force depending on their
momentum and charge and consists of two sub-systems.

Firstly, the central solenoid magnet located between the ID and the calorimetry generates a constant
magnetic field of 2 T. The superconducting magnet made out of NbTi is cooled via liquid helium to
a temperature of 1.8 K.

Secondly, the vast toroidal magnet system embedded in the MS comprising one barrel toroid and
two end-cap toroids with eight coils each. The toroidal magnets deliver an inhomogeneous magnetic

field of roughly 0.5 T and 1T in the central and end-cap regions, respectively.

3.2.5 Trigger System and Data Acquisition

In order to handle the high event rates, which are expected to be 40 MHz for ATLAS corresponding
to more than 40 TB/s of data, a trigger system is required to reduce the amount of data to be recorded
without losing important information. Since RUN II the trigger system is structured into two parts,
the Level-1 (L1) hardware trigger and the software-based high level trigger (HLT) [70, 71] sketched
in Figure 3.9.

The L1 trigger uses information from the RPCs, TGCs and the calorimeter to identify high pr elec-
trons, muons, photons, jets and high missing transverse momentum. It has a very fast latency of
2.5 pus and reduces the rate to 100 kHz. The L1 trigger identifies regions of interest (Rols) in 1 and
¢ and passes this information to the HLT.

The HLT is fully software based and uses the full detector information within the Rols to reduce the
event rate down to approximately 1 kHz with a latency of 200 ms.

Afterwards, the data is transferred to a computing centre for further processing and storage.
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Figure 3.9.: Schematic view of the ATLAS trigger and data acquisition system in Run II [71].
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As described in Chapter 2, most elementary particles are unstable and have short lifetimes. To in-
vestigate their properties in a controlled environment particle colliders are used. In particular, hadron
colliders allow to reach higher centre-of-mass energies than e™-e~-colliders. However, the initial
state in hadron collisions is not well defined since hadrons are composite particles and carry only a
fraction of the hadron momentum.

This chapter will give an introduction to the event simulation with Parton Distribution Functions

(PDFs) and Monte Carlo (MC) generators and a quick discourse on the detector simulation.

4.1 EVENT SIMULATION

In order to analyse the data from collider experiments, it is important to have a reliable simulation
of the underlying processes. Simulation is the basis for each physics analysis performed at collider
experiments.

In particle physics, the simulation is based on MC generators which are a stochastic tool incorporat-
ing theoretical predictions, which are well-suited to describe the statistical processes.

The cross-section of a hard scattering-event at hadron colliders 04 g_,x can be factorised into two
components using the factorisation theorem [72]. The PDFs f2 and f5 describe the colliding par-
tons a, b which are contained in the hadrons A, B while the cross-section of the hard scattering itself,

0q,b, can be usually calculated with perturbation theory. The cross-section can be written as

;
A 2\¢B PAPS 2 2
OABoX = Z J dxqdxfy (x1, HF)fb (x2, HF)O'a,b—>X(‘Xs (IJR)/ HR), 4.1)
a,b 0
where pr is the factorisation scale chosen such that it usually corresponds to a characteristic mo-

mentum transfer of the selected process and x1 > the Bjorken x described in more detail below.

4.1.1 Parton Distribution Functions

The PDFs are crucial for the description of proton-proton collisions since protons are not point-like
particles but consist of so-called partons. The first type of partons are the valence quarks which
determine the quantum numbers (charge, etc.) of the proton. In addition, gluons and virtual quark-
antiquark pairs (sea-quarks) coming from vacuum fluctuations are also a part of the proton. A PDF
2 (x, Q?) describes the probability density of a parton a inside a hadron A to carry a certain mo-

mentum fraction x = po/pAa also betoken as Bjorken x evaluated at a specific momentum transfer
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Q2. In general, PDFs cannot be directly predicted' thus they are extracted from several measure-
ments using a complex fit, performed at a specific scale. Several collaborations such as the CTEQ,
MSTW and NNPDF collaborations [74—77] determine the PDFs and provide them for physics ana-
lyses. With the help of the Dokshitzer—Gribov—Lipatov—Altarelli—Parisi (DGLAP) Equations [78—
80], the PDFs can be extrapolated to different scales Q2 and do not have to be measured at each

scale individually. Figure 4.1 shows the proton PDFs for two different factorisation scales.
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Figure 4.1.: The parton distribution functions xf(x, u%) are shown for two different factorisation scales H]zzi
left: u}z; =10GeV? and right: u% =10TeV2. They are obtained with the NNPDF 3.0NNLO global
analysis [77]. Plots were taken from [20].

Processes involving b-quarks can be described in QCD in two different factorisation schemes
arising from the b-quark mass Aqcp < myp < v @ the four-flavour scheme (4FS) and the five-
flavour scheme (5FS). The 4FS treats the b-quarks massive and since myp > Myroton, they do not
appear in the initial state. Consequently, the b-quarks do not have dedicated PDFs, so they decouple
from the QCD perturbative evolution and therefore decouple from the s running and the number
of ’light” flavour quarks is set to ny = 4 in Equation (2.15). Considering the b-quarks as massive
is especially impacting calculations at lower scales, around the production threshold. On the other
hand, at high scales the mass effects are negligible. This case is described by the SFS in which the
initial state b-quarks are considered massless and they are treated in the same manner as the other

light quarks comprising a b-quark PDF and n¢ = 5.

1 In principle lattice QCD could be used to calculate PDFs [73], however, this is very computationally intensive.
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4.1.2 Monte Carlo Generators

Typically, the event generation is divided into two parts: first the matrix element (ME) generation
describing the hard scattering and secondly the parton shower (PS) evolution and hadronisation mod-
elling including initial state radiation (ISR) and final state radiation (FSR). While the ME and most
parts of the PS can be calculated perturbatively, the other processes are non-perturbative. A simplified
illustration of this full simulation process is shown in Figure 4.2. For the modelling of the hadron-
isation, there are different models, the most widely used models are: the Lund string model [81] and
the cluster model [82]. In the Lund string model, the colour connection of a quark-antiquark pair is
described as a string and the potential between them is assumed to be linearly increasing with their
distance. The strings then split according to a fragmentation function forming new quark-antiquark
pairs which continues until only hadrons with on-shell mass remain. The cluster model is based on
QCD pre-confinement, where neighbouring partons build colour-singlet clusters, these clusters then

decay into two hadrons and they then decay further until the final state hadrons are formed.

000y 0 50
000 50000
O.".' 000..... .........

Figure 4.2.: Illustration of a hadron-hadron collision event simulated with a MC event generator. In the centre,
the red circle represents the hard collision while the purple oval depicts the secondary hard scat-
tering process (underlying event) with multi parton interaction. Both are surrounded by a tree-like
structure describing the QCD bremsstrahlung simulated by the PS. The other elements in the
sketch are the hadronisation (light green), hadron decays (dark green) and photon radiation (yel-
low) [83].
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The full process involving matrix element generation, parton shower, underlying event, hadronisa-
tion and fragmentation can be simulated by MC generators like PYTHIA8 [84], HERWIG7 [85, 86]
or SHERPA [87]. However, PYTHIAS provides mainly leading order calculations which are often not
sufficient since the next-to-leading order (NLO) corrections can be fairly large. HERWIG7 provides
many MEs also at NLO. Since the fraction of negative event weights can be quite large (up to
~ 40% for certain generator setups), the generator is only used as parton shower in this thesis. In fact,
there are other generators like POWHEGBOX [88-92] or MADGRAPHS_aMC@NLO [93] providing
higher-order calculations which can be interfaced with PYTHIA8 or HERWIG7 for the simulation of
PS and hadronisation.

Furthermore, the models used to describe the non-perturbative processes have parameters that can
be tuned using collision data. The most common tunes used by the ATLAS experiment are the A14

parameters [94] for PYTHIAS or the H7UE set of tuned parameters [86] for HERWIG7.

4.1.3 Common Generator Setup of used Samples

Throughout this thesis the physics processes for proton-proton collisions at a centre-of-mass energy
/s = 13 TeV are modelled using various combinations of MC generators and settings. The specific
details are stated in the dedicated chapters. Nevertheless, all MC samples using PYTHIA8 or HER-
WIG7 to model the multi-parton interaction (MPI), hadronisation and PS use the same settings if not
differently stated. The mass of the top quark is set to m¢ = 172.5GeV, the Higgs boson mass to
mpy = 125GeV and the mass of the b-quark to my, = 4.8 GeV for PYTHIAS, to mp = 4.5GeV for
HERWIG7 and to mp = 4.75GeV for SHERPA. The simulation of b- and c-hadron decays is per-
formed via the EVTGEN v1.6.0 program [95] with the exception of SHERPA. As mentioned above
the two tunes A14 combined with the NNPDF2.3L0O PDF set [96] and H7UE together with the set
of MMHT2014L0 PDFs [97] are used for PYTHIA8 and HERWIG7, respectively.

4.2 DETECTOR SIMULATION

The last step in the simulation chain is the detector simulation. The MC generators, as described
in Section 4.1, provide information about stable particles in the final state, not taking into account
the detector response. The full ATLAS detector simulation [98] is performed in two steps. The
first step is based on GEANT4 [99] incorporating the geometry of the detector and providing highly
precise modelling of the particle interactions with the detector matter. However, it comes with the
shortcoming of using a large fraction of the available computing power of ATLAS. As an alternative,
fast calorimeter simulation algorithms [100-102] are developed and already used in practice. They
mimic the GEANT4 results, based on thousands of individual parametrisations of the calorimeter
response, using significantly less computing resources with a trade-off in precision. A comparison

of the necessary CPU time for the different detector simulations are shown in Figure 4.3. In practice,
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the fast simulation algorithms are widely used in ATLAS and are called At/Fast-1I. In the second
step, the readout electronics and digitisation is simulated which is adjusted for the different detector
systems.

Taking advantage of the latest machine learning developments in the last years, deep generative
algorithms such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs)

are studied to improve the fast calorimeter simulation [103] showing already promising results.
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Figure 4.3.: Comparison of the CPU time distributions for the full GEANT4 (black), fast GEANT4 (red) and the
fast calorimeter simulation (blue) for 250 tt events. The vertical dotted lines indicate the average
of the distributions [100].
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CURRENT STATUS OF TTH MEASUREMENTS AT THE LHC

The discovery of the Higgs boson in 2012 was a huge success for the LHC. The four main Higgs
production channels at the LHC were described in Section 2.6. This thesis focuses on the ttH pro-
duction channel which was observed by ATLAS and CMS [8-10] combining different Higgs decay
channels. The ttH production allows a direct measurement of the top-Yukawa coupling y which is
the largest Yukawa coupling within the SM. The measurement of y¢ is an essential validity test of
the SM in particular for the Higgs mechanism and is important for both new physics searches and
Higgs precision measurements. A direct y; measurement can be compared to indirect measurements,
e.g. form the loop induced ggF production or the H — yy decay mode, giving hints for possible ef-
fects beyond the SM. Compared to the total Higgs production cross-section, the ttH production only
contributes around 1% at the LHC, as shown in Figure 2.5, but has a recognisable detector signature
with the two associated top quarks.

The H — bb decay mode has the largest branching fraction of 58% (see Fig. 2.6). It was observed by
both ATLAS and CMS [11, 12] and is sensitive to the second-largest Yukawa coupling in the SM, the
b-quark Yukawa coupling yi,. Besides the large branching fraction, the H — bb decay mode also
allows the kinematic reconstruction of the Higgs boson. Therefore, it is possible to further explore

the properties of the Higgs boson in ttH(bb) events.

In this thesis, the ttH production channel is being investigated together with the H — bb decay
mode. This particular process is not yet discovered but CMS already sees an evidence [104].
In this chapter, a short overview of the ttH discovery and of the latest ttH(bb) results is given,
based on the latest analysis results from ATLAS [13] and CMS [14], followed by the introduction to

Simplified Template Cross-Section (STXS) measurements.

5.1 LATEST RESULTS
5.1.1 +ttH Observation

The observation of the ttH production of ATLAS [10] and CMS [8] was an important achievement
for the two experiments. The CMS combination considered five different Higgs decay channels as
shown in Figure 5.1 (b) using the data recorded during RUN I and II of the LHC, resulting in an
observed (expected) significance of 5.2 (4.2) standard deviations. The ATLAS analysis used four dif-
ferent Higgs decay channels in the ttH combination with RUN II data indicated in Figure 5.1 (a)
with an observed (expected) significance of 5.8 (4.9) standard deviations and a cross-section of

o(ttH) = (670 &+ 90(stat.)f}égsyst.). Table 5.1 lists the sensitivities of the individual channels
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Analysis Integrated ttH cross Obs.  Exp.

luminosity [fb™!] section [fb] sign.  sign.
H — vy 79.8 710 1350 (stat.) Toa (syst.) 410 370
H — multilepton 36.1 790 +£150 (stat.) T150 (syst.) 410 280
H — bb 36.1 400 1190 (stat.) & 270 (syst.) 1ldo 160
H—Z7Z* — A4l 79.8 <900 (68% CL) 0c 120
Combined (13 TeV) 36.1-79.8 670 + 90 (stat.) 7130 (syst.) 580 490
Combined (7, 8, 13 TeV) 4.5, 20.3, 36.1-79.8 - 630 510

Table 5.1.: Overview of the results of the single channels used for the ATLAS ttH combination indicating
their respective cross-section and the observed and expected significance [10].

among which the H — vy and multilepton decay channel of the Higgs boson have the largest sig-
nificance. The H — vy decay channel is mainly dominated by statistical uncertainties while in the
multilepton decay channel the statistical and systematic uncertainties have a similar influence. The
H — bb channel has a significantly lower sensitivity and is dominated by systematic uncertainties

mainly due to large uncertainties in the modelling of the tt + bb background.
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Figure 5.1.: Signal strength parameter of the individual channels and the combined signal strength of ttH
shown for the tTH observation of ATLAS [10] (a) and CMS [8] (b).

5.1.2 ttH(bb) Results

Both ATLAS and CMS have already performed searches for ttH(bb) with a subset of the LHC
RUN II dataset shown in Ref. [13] with 36.1 fb~" and [104] with 77.4 fb™", respectively.

The ATLAS analysis uses events where at least one W-boson from one of the two top quarks decays
leptonically and makes use of a complex definition of analysis regions. These analysis regions are
mainly defined based on different b-tagging criteria to better extract the information of the signal and
background processes in dedicated phase spaces. The analysis is optimised using a set of multivari-

ate analysis techniques such as reconstruction and classification Boosted Decision Trees (BDTs), a
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likelihood discriminant and the matrix element method [105]. The combined signal strength! was
measured with an observed (expected) significance of 1.4 (1.6) standard deviations and a value of
uw=0.84+ O.29(stat.)i8:gi(syst.) shown in Figure 5.2 (a).

CMS combined two analyses, where one uses the 2016 dataset with 35.9 fb™—* and the second ana-
lysis is performed with the 2017 dataset with 41.5fb~*. These two analyses cover the lepton-+jets,
dilepton and fully hadronic channels. A matrix element method [105] as well as multivariate tech-
niques are employed. In the lepton+jets channel, a Deep Neural Network is employed to categorise
the events into signal and multiple background processes via a multi-classification approach. At the
same time, the output discriminants of the network are also used in the combined fit. As shown in

fgég (syst.) with

Figure 5.2, the combined signal strength was measured to i = 1.15 & 0.15(stat.)
an observed (expected) significance of 3.9 (3.5) standard deviations.

Both results are mainly dominated by systematic uncertainties and limited by the challenging model-
ling of the tt + bb background. The uncertainties are grouped into different sources and compared
between the two analyses of ATLAS and CMS in Table 5.2. Overall, the systematic uncertainties of
the CMS analysis are considerably smaller than those from the ATLAS analysis. While the uncer-
tainty associated to the tt + >1b modelling is dominating the ATLAS analysis by far, the combined
tt + heavy flavour modelling uncertainty is roughly in the same order as for instance the signal mod-
elling uncertainty in the CMS analysis. ATLAS is accounting for the differences between the 4 and
5 flavour scheme in the tt + bb modelling which is fairly large whereas CMS is not taking them into

account.

-1 -1
ATLAS (s=13TeV, 36.1 fb" _ ‘35‘.9&‘) (2016) +‘41.‘5 o (2017) (13 T‘eV)
ULELELAL LR BLSLELELE DL AL BLELELEL ELELELELE B BLALALLE I i
— tot. m, = 125 GeV CMS Pre"njmary tot stat syst
stat. . | 102 +0.54 +0.86
tot (stat syst) Fully-hadronic s -0.38 o5 054 00
Dilepton -0.24 *102 (*0'54 +0'87) Single-lepton - 1.22 041 1019 w03
(two-u combined fit) — e — -1.05 \ —0.52 —0.91
Dilepton ra 104 7070 0% 05
Single Lepton 0.95 +0.65 (+0-31 +0-57)
(two-u combined fit) e ~0.627-081 054 2016 085 05 0% 0%
---------------------------------------------------------- 0.44 +0.21 +0.39
0.84 +0.64 ; +0.29 +0.57 2017 HEH 1.49 t0‘40 -0.20 toss
Combined —-o-— . -0.61 (-0.29 —0.54)
T T Combined - 1.15 5358 0% 0%
-1 0 1 2 3 4 5 6 L
i — ttH/ stH
Best fit u = 6"/ oy, fi= 6/OSM
(@) (b)

Figure 5.2.: Signal strength of the first RUN II ttH(bb) analyses for (a) the ATLAS analysis [13] and (b) CMS
analysis [104] showing the signal strengths of the different channels and their combination.

1 The signal strength p is defined as the cross-section ratio of the measured cross-section o over the cross-section expected
in the SM ogy: 1 = =2

Osm *
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. Ap
Uncertainty source
ATLAS CMS

tt + >1b modelling +0.46/ — 0.46

tt + >1c modelling +0.09/ —0.11

tt + hf modelling +0.14/ —0.15
Signal modelling +0.22/—-0.05 +0.15/—0.06
Size of simulated sample +0.29/—0.31 +0.10/ —0.10
b-tagging +0.16/ —0.16  +0.08/ —0.07
Jet energy scale and resolution 40.14/—0.14 +0.05/ — 0.04
Total systematic uncertainty +0.57/—0.54 +0.28/—0.25
Statistical +0.29—-0.29  +0.15/—0.15
Total +0.64/—0.61 +0.32/—0.29

Table 5.2.: Comparison of the breakdown of the contributions to the uncertainties in 1 (Ap) for the ATLAS and
CMS ttH(bb) analysis. The ATLAS analysis split the group of the tt production in association
with heavy flavour jets (tt 4+ hf) modelling uncertainties into tt + >1b and tt + >1c¢ modelling
while CMS provided the combined value for it [13, 104].

5.2 SIMPLIFIED TEMPLATE CROSS-SECTION MEASUREMENTS

The Simplified Template Cross-Section (STXS) formalism [106, 107] is a common effort of the LHC
experiments to define a consistent basis for comparable differential Higgs kinematic measurements
performed in exclusive kinematic phase space regions (STXS bins). This simplifies the combinations
of different decay channels as well as between the experiments. Several theory uncertainties are dir-
ectly folded into the measurements. Thus, the kinematic bins are optimised such that they reduce
them as much as possible [107, 108]. For each STXS bin, a separate signal template is defined which
is the signal MC prediction in the targeted kinematic region at truth level. After the discovery of
the most prominent Higgs decay channels, the statistics of RUN II allows now to perform STXS

measurements in the ttH channel.

Cross-section measurements in the ttH production channel split into bins of the transverse mo-
mentum of the Higgs boson pTH are sensitive to the CP structure of the Higgs boson [109] and to
the Higgs self-coupling [110]. Figure 5.3 shows the normalised pX! distribution with the Higgs pro-
duced in the ttH mode and the normalised differential cross-section as a function of pX! for three
different CP-scenarios of the Higgs coupling to the top quark: scalar (CP even) case (solid black)
which corresponds to the predictions of the SM, pseudo-scalar (CP odd) case (dashed blue) and the
CP-violating case (dotted red). In the pseudo-scalar scenario, the values are shifted to higher pi!
values and the differential cross-section is suppressed with respect to the SM case. In the presented

analysis, these properties are, however, not yet investigated due to a too low sensitivity.
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Figure 5.3.: The normalised event distribution (a) and the cross-section (b) as a function of the Higgs transverse
momentum p%‘ shown for three different CP-scenarios of the Higgs boson: CP even (solid black),
CP odd (dashed blue) and CP-violating (dotted red) [109].

The H — bb decay mode is well suited to probe the differential cross-sections due to their large

production rate. Even the high p%l regime can be accessed in which for instance the ttH(H — yy)
decay mode is lacking statistics [111]. Another advantage is that the bb final state of the Higgs can
be fully reconstructed.
Similar to the recommendations for the STXS bins for other Higgs production channels given in
Ref. [106], taking into account the theory considerations from above, the following STXS bins
used for the analysis shown in this thesis are: 0 GeV < p%l < 120 GeV, 120 GeV < pTH < 200 GeV,
200 GeV < pi < 300 GeV, 300 GeV < ph < 450 GeV, and pt! > 450 GeV.
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OBJECT RECONSTRUCTION AND PARTICLE IDENTIFICATION IN
ATLAS

Physics processes produce electrons, muons, taus, quarks, gluons, photons and neutrinos in their final
state. Since only position and energy information can be extracted from the detector, these physics
objects need to be reconstructed. While quarks are forming jets, neutrinos cannot be directly seen;
therefore, it is necessary to define, what the objects measured in the detector are.

Figure 6.1 illustrates the interaction of different particles with the ATLAS detector: charged particles
leave a track in the ID, electrons and photons shower in the EM calorimeter while hadrons shower in
the hadronic calorimeter.

In particular, the ttH(bb) analysis in Part IV makes use of electrons, muons, taus, jets and missing
transverse momentum. The reconstruction of these objects is described in the following chapter. In
addition, heavy-flavour identification is also an important tool for the ttH(bb) analysis. This topic

is covered in the dedicated Chapter 8.

Muon
Spectrometer

Hadronic
Calorimeter

The dashed tracks
are invisible to
the detector

Electromagnetic
Calorimeter

Solenoid magnet

Transition
Radiation
Tracker

Pixel/SCT
detector

Tracking

Figure 6.1.: Sketch of a section of the ATLAS detector in the transverse plane showing the interaction of
particles with the detector material. Adapted from [112].
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6.1 RECONSTRUCTION FROM DETECTOR HITS

All physics objects reconstructed with the ATLAS detector are composed of tracks, vertices or calor-
imeter energy clusters (topo clusters). They are the fundamental building blocks used in all recon-

struction algorithms and are introduced in the following section.

6.1.1 Tracking

Charged particles which are passing through ATLAS leave tracks in the ID. They are reconstructed
from energy deposits or hits in the ID within the tracking acceptance of n| < 2.5. A detailed descrip-
tion of the tracking in RUN II can be found in Ref. [113].

As a first step, hits are assembled by grouping pixels and strips into clusters that reach an energy
deposit above a given threshold. In the next step, three-dimensional space points are defined where
charged particles traverse the active detector material of the ID.

Next, a combinatorial track finding procedure is applied, starting by forming track seeds from a set of
three space points. The combination is done following the preliminary track trajectory adding space
points iteratively. Afterwards, a score is associated to each track indicating if the track correctly
represents the trajectory of a charged primary particle. According to the track score, the ambigu-
ity solver evaluates the tracks in decreasing order to limit shared clusters which typically indicate a
wrong assignment. At this stage, quality criteria are applied where the tracks have to have a min-
imum transverse momentum py >500MeV and | < 2.5. Moreover a minimum of seven pixel
and SCT clusters (twelve are expected), a maximum of either one shared pixel cluster or two shared
SCT clusters on the same layer, not more than 2 holes! in the combined pixel and SCT detectors
and no more than one hole in the pixel detector are required together with impact parameter re-
quirements IdgLI <2 mm and \ZEL sin 0] <3 mm. Here dg’L is the transverse impact parameter (IP)
calculated w.r.t the measured beamline position and sz is the longitudinal difference along the beam-
line between the primary vertex (PV) and the point where dgL is measured. Finally, the reconstructed

tracks are extrapolated into the TRT volume, also adding the TRT hits to the tracks.

6.1.2 Vertexing

A vertex is the origin of tracks and therefore the point of particle interactions or particle decay.
The primary vertex (PV) is of particular interest denoting the hard interaction of the partons in the
colliding protons. Besides the PV, secondary and tertiary vertices are also important, especially in
heavy-flavour tagging covered in Chapter 8.

The primary vertices within an event are iteratively reconstructed with an algorithm [114] which

is briefly described in the following. Firstly, a set of tracks is defined satisfying certain selection

1 A hole is a missing intersection with a sensitive detector element expected from the track trajectory estimation.
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criteria (similar the track requirements in sec. 6.1.1) and a seed position of the first vertex is selected.
Secondly, the tracks and the seed are utilised to estimate the best vertex position with an iterative fit.
In each step, the vertex position is recomputed after down-weighting less compatible tracks. After
the determination of the vertex position, all incompatible tracks are discarded to be used in another
vertex. This procedure is then repeated with the remaining tracks in the event. The vertex with the
largest quadratic pt sum is defined as the PV. For the ttH(bb) analysis in this thesis, only events

with at least one PV are used, to which two or more tracks are associated with pt > 500 MeV.

6.1.3  Topo Clusters

Vertices and tracks are reconstructed from the ID information, whereas the topological cell clusters,
also called topo clusters, are iteratively reconstructed from calorimeter information [115].

Topologically connected cell signals are reconstructed to form 3-D ’energy blobs’ from particle
showers in the active calorimeter volume by extracting the significant signals over electronic noise
and other fluctuations such as pile-up. This clustering is particularly effective in highly granular
calorimeter systems used in ATLAS. The topo clusters are a full or fractional response to a single

particle, merged response to several particles or a combination of the two.

6.2 PHYSICS OBJECTS

The physics objects used in this thesis are jets, electrons, muons, taus and missing transverse mo-
mentum. The definitions of these objects, their reconstruction algorithms and their performances are

described in the following.

6.2.1 Jets

Due to the colour charge carried by quarks and gluons, they cannot be observed as free particles
and form colourless hadrons. Jets are collimated showers formed by these hadrons. In fact, jets do
not have a unique object definition. They rather depend on the chosen clustering algorithm which
depend as little as possible on QCD effects [116]. Namely, the jet algorithm has to be collinear safe,
meaning that the jet configuration does not change by substituting one particle with two collinear
particles, and it has to be infrared safe for which the configuration should not change by adding soft
particles.

In a jet, different detector objects are clustered together such as charged and neutral hadrons, photons
(mostly from 7° decays) as well as electrons and muons can be included. In the detector, the charged
particles in a jet first leave tracks in the ID and then deposit energy in the electromagnetic and
hadronic calorimeters. Also neutral hadrons and photons deposit energy in the calorimeters. At the

LHC, the jet reconstruction is typically performed using the anti-k algorithm [117]. It is a clustering
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algorithm combining four-vector objects into a cone-like object, a jet. The distance parameter di;

between object i and j defined as:

A@
R2’

n Zn)

dij = min (pz}, i) 6.1)

with their transverse momentum pr,;,; and the ARy; between the two four-vector objects i and j,

allows a recursive recombination together with the distance of object i to the beam axis
2np2
di,s = pTiR%, (6.2)

with R being the radius parameter and the exponent n set to —1. The advantage of this choice
(n = —1) is that the clustering prefers high momenta (hard) particles instead of soft ones which
leads to an almost circular shape around the hardest particle as shown in Figure 6.2.

Based on the anti-k¢ algorithm various jet collections are deployed in ATLAS, three of them will be

used in this thesis: EMTopo jets, Particle Flow jets and Variable Radius Track jets.

anti-k,, R=1 |

p,[GeV]

Figure 6.2.: Illustration of the anti-k¢ clustering algorithm showing a circular (cone-like) structure around the
track with the highest momentum [117].

6.2.1.1 EMTopo Jets

The so-called EMTopo jets are calorimeter jets reconstructed at the EM energy scale only using topo
clusters [118] with the anti-k¢ algorithm implemented in the software package FASTJET [119]. For
the scope of this thesis, the radius parameter R = 0.4 is used (for boosted topologies also jets with
R = 1.0 are used). Additionally, the jets have to satisfy pr > 25GeV and n| < 2.5. Until recently,
the EMTopo jets were the primary jet collection, used in physics analyses in ATLAS, showing robust
energy characteristics.

The calibration of EMTopo jets is performed in several steps illustrated in Figure 6.3 correcting the
four-momentum of the jet [120]. After the jet reconstruction, the jet direction is modified at the topo

cluster level, such that the jet originates from the primary vertex. Then, pr-density based pile-up
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Reconstructed pr-density-based Absolute MC-based
jets pile-up correction calibration

Jet finding applied to Applied as a function of Removes residual pile-up Corrects jet 4-momentum
tracking- andfor event pile-up p; density dependence, as a to the particle-level energy
calorimeter-based inputs. and jet area. function of u and Np. scale. Both the energy and

direction are calibrated.

Residual in situ
calibration
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calibration

Reduces flavour dependence A residual calibration
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using calorimeter, track, and  to correct for data/MC
muon-segment variables. differences.

Figure 6.3.: Different steps of the jet four momentum calibration [120].

corrections are applied including jet area information as well as a MC-driven residual correction.

The absolute jet energy calibration corrects the jets to agree in energy and direction with dijet MC
events. Then a global sequential calibration is set to improve the pt resolution and the associated
uncertainties. The final step is the in situ calibration which is only applied to data. If there are still

remaining differences between data and MC, they are corrected at this step.

6.2.1.2 Particle Flow Jets

During RUN II, ATLAS introduced Particle Flow jets, a new jet collection also denoted as PFlow
jets. They combine tracking and calorimeter information in the jet reconstruction [121] also using
the anti-k clustering algorithm with a radius parameter of R = 0.4.

The first step is to match the tracks from charged particles in the ID to the topo clusters from the
calorimeter. In case of a successful match, the energy deposit of the topo cluster is replaced by the
corresponding track momentum. The anti-k{ algorithm then takes as input the topo clusters that
remain after substitution as well as tracks that match the hard-scattering PV. The calibration follows
closely the EMTopo scheme performed in the range 20 GeV < pt < 1500 GeV [120].

The advantage of PFlow jets is their improved energy and angular resolution compared to EMTopo

jets. Also not negligible is the enhanced reconstruction efficiency and pile-up stability.

6.2.1.3 Variable Radius Track Jets

In boosted topologies, especially for the boosted H — bb decays, the two b-jets are very collimated
and the hadronisation products of the two b-quarks start to overlap at a certain pr value. In order to
avoid these overlaps and to improve b-tagging performance, a jet algorithm with a variable radius
(VR) parameter is employed [122] based on track jets formed from charged-particle tracks with
pr > 0.5 GeV and n| < 2.5. They will be further called VR Track jets. The radius parameter from

the conventional anti-k algorithm from equations (6.1) and (6.2) is now pr dependent:

R = Retr(pr) = —, (6.3)
PT

where p is a parameter that controls how fast the effective jet size decreases with pr. In addition, a
cut-off parameter is introduced to prevent too large jet radii Ry.x as well as another cut-off to avoid

the jet to shrink below the detector resolution Rp,,. These parameters are optimised for H — bb
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events [123, 124] resulting in the following parameters: p = 30 GeV, Ry = 0.02 and Ry, = 0.4.
Furthermore, only jets with at least two constituents, pt > 10 GeV and [n| < 2.5 are considered [125].
The track jets are not separately energy-calibrated, the energy is calculated via the sum of the track

momenta of the tracks associated to the jet.

6.2.2 Electrons

Electrons are reconstructed using the information of the ID and the calorimeter system. The typical
signature of an electron is that they leave a track in the ID and are then absorbed in the electromag-
netic calorimeter where they leave an electromagnetic shower. The ttH(bb) analysis and the flavour

tagging studies in this thesis use the algorithms described in detail in Ref. [126, 127].

6.2.2.1 Reconstruction

The electron object is constructed using a dynamic clustering algorithm with variable-size clusters,
so-called superclusters. The reconstruction is performed in the region Mepseer] < 2.47 excluding the
transition region of the barrel and end-cap (1.37 < Mejuster] < 1.52).

At first, topo clusters (described in sec. 6.1.3) are selected and loosely matched to ID tracks. Simul-
taneously, the conversion vertices matched to the topo clusters are built. Next, the superclusters are
built from matched clusters and a first position correction and energy calibration is applied. Tracks
are then matched to the electron superclusters. The energy scale and resolution of electrons are
calibrated using Z — ee decays and validated in Z — ({y decays [127]. In addition, the energy res-
olution of the electron is optimised using a multivariate regression algorithm based on the properties

of shower developments in the electromagnetic calorimeter.

6.2.2.2 Identification

Further quality criteria are required for an electron object, passing several identification selections
to improve the purity of the selected objects. The prompt electrons are identified using a likelihood
discriminant which uses quantities measured in the ID and the electromagnetic calorimeter. These
quantities are chosen such that they discriminate well prompt isolated electrons from other energy
deposits like jets, converted photons or genuine electrons stemming from heavy-flavoured hadron
decays. Important observables for the likelihood calculation are based on the track quality in the ID,
the lateral and longitudinal development of the electromagnetic shower described by shower shape
variables as well as the particle identification in the TRT. The algorithm uses probability density
functions as input which are derived for the signal from Z — ee (Et > 15GeV) and ]/ — ee
(ET < 15GeV) events.

The efficiency of the electron identification is provided in three operating points: Loose, Medium
and Tight, yielding different purities. Figure 6.4 shows the data efficiency as a function of Et and
as a function of the average number of bunch crossings for all three operating points. They are

all optimised in 9 | and 12 Et bins. For this thesis the Medium and Tight operation points are



used with an average target efficiency of 88% and 80% associated with an increased background

process rejection of ~ 2.0 and ~ 3.5 with respect to the inclusive target efficiency, respectively (for

20GeV < E1 < 50GeV).
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6.2.2.3 Isolation Criteria

Electrons are typically required to be spatially separated from other particles. There are two kinds of
isolation variables: calorimeter-based and track-based.
The calorimeter-based isolation is calculated via the sum of the transverse energy of positive-energy

topo clusters with a barycentre falling in a AR = 0.2 of the electron barycentre (other than the
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Measured electron identification efficiency in Z — ee data events as a function of Et (a) and as a
function of the average number of interactions per bunch crossing () (b), for the Loose, Medium
and Tight operating point. The right plot also shows in grey the shape of the (jt) distribution. The

electron clusters themselves). In addition, leakage and pile-up corrections are applied.

For the track-based isolation the sum of the transverse momentum of tracks within a cone centred
around the electron track are considered, where the cone radius decreases with pt. Moreover, only
tracks are taken into account which have pr > 1GeV and n| < 2.5 as well as satisfy certain track
quality criteria and have a loose vertex association®. In this thesis the Gradient isolation working
point (WP) is chosen which gives an efficiency of 90% at pr = 25GeV and 99% at pt = 60 GeV

uniform in n.

2 Vertices defined as loose association vertex are either used in the PV fit or satisfy specific IP criteria (|Azg|sin® < 3 mm).
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6.2.3 Muons

Muons leave a track in the detector and traverse the calorimeter system typically without significant
energy loss. Therefore, the muon is mainly reconstructed in the ID and the MS sub-detector systems.

The RUN II muon reconstruction and performance is described in detail in [128].

6.2.3.1 Reconstruction

The muon reconstruction has two stages: first the independent reconstruction in the ID and MS
and secondly the combination of the two to form the muon tracks. The reconstruction in the ID is
performed as for any other charged particle.

In the MS at first a search for hit patterns is performed in each muon chamber to form segments. In
the MDTs and nearby trigger chambers, hits are aligned on the trajectory in the bending plane of
the detector using a Hough transformation and the segments are reconstructed with a straight line
fit to hits found in each layer. The hits of the RPCs and TGCs provide measurements for the plane
orthogonal to the bending plane and in the CSCs a combinatorial search in the 1 and ¢ plane is
utilised to build the segments. Given this information, muon track candidates are constructed by
fitting segments from different layers using a global x? fit.

The combined reconstruction is based on various algorithms defining four different types of muons.
The combined (CB) muons are first independently reconstructed in the ID and MS and then their
information is combined with an outside-in approach, extrapolating reconstructed tracks from the MS
to the ID (complementary an inside-out approach is also used). The segment-tagged (ST) muons are
mainly reconstructed from tracks in the ID extrapolated to typically one track segment in the MDTs
and CSCs. The third type are the calorimeter-tagged (CT) muons where an ID track is matched to an
energy deposit in the calorimeter compatible with a minimal ionising particle. This muon type has
the lowest purity and is optimised for the region m| < 0.1 with 15GeV < pr < 100GeV. There
are also extrapolated (ME) muons that are only reconstructed in the MS extending the acceptance to

2.5 < In| < 2.7 but they are not used in this thesis.

6.2.3.2 Identification

Similarly to the electron identification, the muon identification is performed applying quality criteria
to suppress background processes.The goal is to identify prompt muons with high efficiency and a
good momentum resolution which requires a certain amount of hits in the ID and the MS. To cover
different needs of physics analyses, four different muon WPs are available: Loose, Medium, Tight
and high pr. For the scope of this thesis, the Medium and Loose WPs are used.

For the Medium WP only combined muons are taken into account. The combined muons are required
to have three or more hits in at least two MDT layers except for the [n| < 0.1 region where only one
MDT layer is sufficient combined with no more than one hole layer due to a gap in the MS. This WP
tries to minimise systematic reconstruction and calibration systematic uncertainties associated with

the muon. The Medium WP reconstruction efficiency with pr > 20 GeV is 96.1%.



6.2 PHYSICS OBJECTS

The Loose WP maximises the reconstruction efficiency with good-quality muon tracks. In this case,
all muon types are utilised. In fact, the combined muons are used as they are from the Medium
selection. Additionally, the calorimeter-tagged and segment-tagged muons are taken into account for
m| < 0.1. The reconstruction efficiency for muons with pr > 20 GeV is 98.1%.

Figure 6.5 shows the reconstruction efficiency measured in data for the two described WPs obtained

from Z — pp and J{ — pp events.
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Figure 6.5.: The reconstruction efficiency as a function of the muon pt for the Loose (a) and the Medium (b)
muon selection obtained from Z — pp and J{ — pp events with 0.1 < n| < 2.5. The Data/MC
ratio in the lower pad includes systematic and statistical uncertainties while the efficiencies only
show statistical uncertainties [128].

6.2.3.3 Isolation

Analogously to the electron isolation strategy, the muon isolation is assessed via track- and calorimeter-
based variables with very similar definitions. The track-based variable pya°¢3 is the scalar p sum
of all tracks, excluding the muon track, with pr > 1GeV in a radius of AR = min(10GeV /p¥,0.3)
around the muon transverse momentum pJ. The calorimeter isolation variable is constructed from
the sum of transverse energies around the muon track, as described for electrons. However, for the
scope of this thesis the isolation WP FixedCutTightTrackOnly is utilised which is only using the
track-based isolation satisfying pyareone3? / ph < 0.06. The isolation efficiencies are measured using

Z — pu events.

6.2.4 Taus

T-leptons can decay either leptonically (into electrons or muons) or hadronically. The leptonic decays
are similarly reconstructed as electrons or muons. The T decays with a hadronic final state are seeded
by jets which are required to have pr > 10 GeV and In| < 2.5 excluding the barrel-end-cap transition
region [129]. Tau leptons are calibrated to correct their energy deposit in the detector to the average

value at generator level. The T identification is based on BDTs discriminating T-jets from the quark-
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and gluon-initiated background jets. Three different efficiency WPs are defined: Loose, Medium
and Tight. In this thesis the Medium T-WP and the requirement pt > 25 GeV is used as well as an

isolation criterion of AR, < 0.2 between a T, candidate and any selected electron or muon.

6.2.5 Missing Transverse Momentum

The missing transverse momentum, also denoted as ERS is the negative vector sum of fully calibrated
electrons, muons, photons, hadronically decaying t-leptons and jets denoted as the hard term as well
as soft objects coming from additional tracks associated to the PV [130]. The partons inside the
proton are following a momentum distribution (see sec. 4.1.1) and the centre-of-mass system of the
hard scattering is not at rest w.r.t. the lab system. Therefore, the known quantity in an ideal detector
is the transverse momentum pr which is O at the time of the interaction. However, not all objects are
always detected, e.g. neutrinos leave the detector unseen. So E?iss is a measure of the neutrinos that
escape detection. The vector of the missing transverse momentum can be split into a scalar part E%iss

and an azimuthal angle $p™* which are defined as

E?iss _ \/(Er;(qiss)z + (Egiss)zl (64)

(bmiss — tan~! (EgiSS/El’;iSS), (6.5)

with Ey ,, the x and y components of the missing transverse momentum

Bo=- 2 Pw- ) P (66)

i€hard objects j Esoft signals

In general, overlaps of jets with electrons, muons or photons are taken into account and are corrected.
The E%‘iss is of interest in this thesis because the leptonic final states in the ttH(bb) analysis contain

neutrinos which are not detected and only appear as missing transverse momentum.



MACHINE LEARNING

The collection of large datasets requires sophisticated techniques to analyse those. In this context,
Machine Learning (ML) is one of the fastest-growing fields in computer science allowing the pro-
gram to learn patterns in a multi-dimensional phase space.

Especially high energy physics is well suited to apply ML techniques with its broad range of pos-
sible applications and its vast amount of labelled data (MC simulation). Already at detector level ML
comes into play by deploying neural networks on FPGAs for the trigger [131] or to spot machine fail-
ures [132]. In the reconstruction step, new ML techniques are developed for charged particle tracking,
in particular to cope for the increasing luminosity during RUN III of the LHC and the HL-LHC [133,
134]. ML is not only able to outperform conventional algorithms but is also able to mimic algorithms
which cannot be replaced by ML per se. One example for this case is the detector simulation with
GEANT4 [99, 135] which is one of the most CPU consuming tasks within ATLAS. As pointed out
in Section 4.2, Generative Adversarial Networks (GANSs) and Variational Auto-Encoders (VAEs) are
studied to improve the fast calorimeter simulation [103]. Apart from the object reconstruction, also
the object identification is improved using neural networks for instance in the t-identification [136]
or in b-tagging algorithms [137], which will be the main application discussed in this thesis. In phys-
ics analyses, sophisticated ML methods help to reconstruct and discriminate signal processes [104,
138].

7.1 GENERAL INTRODUCTION

Machine Learning is a very broad umbrella term covering all kinds of algorithms which are not per
se optimised for a specific task but are flexible enough to adapt to different problem sets by tuning
(training) their parameter set.

ML requires besides the model itself also preparation and follow-up processing steps. In which
extent they are necessary always depends on the available data, the model and its later application.
Figure 7.1 shows such an example workflow (the single steps are explained in more detail in the

dedicated sections e.g. sec. 9.2).

pre- ext:gi::}n / feature machine evarl:gzlgln & post
processing encoding selection learning el processing

Figure 7.1.: Machine Learning workflow showing additional steps besides machine learning training itself.

Generally, two types of machine learning are distinguished: Supervised learning requiring fully

labelled training data and Unsupervised learning not requiring any labelled data. There are also
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intermediate approaches called Semi-Supervised learning. In the context of this thesis supervised

approaches are used based on Neural Networks (NNs) and Boosted Decision Trees (BDTs).

In the following, a statistical parametric (ML) model is denoted as Pyodel (Xi; 0) parametrised with
the parameters 8 while Pqy, is the true but unknown distribution. A data set of length N is given
as X = (X1,%2,...,XN ), in which each data point i has a feature set X; = (xg,xiz, ...,X{VL) with M

features and true labels y; in case of supervised learning.

7.1.1 Dataset Handling

It is important to ensure an unbiased training process. For this purpose, at least three orthogonal
datasets are needed as indicated in Figure 7.2. The training sample is utilised for the actual algorithm
training. The validation set is typically used to choose between different models and to optimise
the model further such as hyperparameter optimisation. While for the training itself mostly a loss
function is used (see sec. 7.2.3) to find the best parameter set, on the validation set, the performance
measures dedicated for the problem set are evaluated (e.g. signal over background ratio) to fine-tune
the model choice. The testing sample is only used to evaluate the final performance and is not in-
volved in the training process. In the case of samples with low statistics, one can use cross-validation
or also called k-folding [139] where pairs of training and test-/validation sets are partitioned into k

subsets.

v

train test split

v

Figure 7.2.: Sketch of the dataset handling for ML training, validating and testing a model.

Typically, in particle physics the event number! variable is used to split the dataset into the training

and testing set. The advantage is that at every point it is clear which events were used for the training.

1 The event number is a unique integer number associated to each event not correlated with any physical observable.



7.2 PERFORMANCE EVALUATION
7.2 PERFORMANCE EVALUATION

Even though every ML application is different, the model performance is the decisive measure in the
end. Depending on the task, different metrics are used to judge the performance. In the following,

the most common approaches are discussed.

7.2.1 Maximum Likelihood

The Maximum Likelihood Estimation (MLE) is an approach to optimise parameters 0 of a probability
distribution using a likelihood function. A likelihood function .Z(6; X), also simply called likelihood,
is a joint probability distribution of a finite data distribution X depending on parameters only. It
provides a compatibility measure of the statistical, parametric model Ppoq4e1(X; 0) to data for given

values of the unknown parameters

Z(6;X) = [ | Pmoda(X; 0). (7.1)
xeX

The optimum is the maximised likelihood. It is more convenient to minimise the negative log-
likelihood

0" = argmein(—ln.f(e; X)) = argrrgn - Z INProder(X;0) |, (7.2)
xeX
since the product of several terms much smaller than one, is numerically unstable to compute. Even

though the solution can be found analytically in some cases, it is mostly computed numerically.

7.2.2  Multi-Classification Likelihood Discriminant

A multi-classification model typically has C outputs, one for each class c associating a score for
being compatible to that specific class. The multi-classification allows a more detailed interpretation
of the results than just a binary classification. Nonetheless, it is often useful to have one single
discriminating variable.

Generally, the best discriminant for a neural network with a multiple-class output is given by a
monotonically decreasing function combining all output nodes with a signal over background ratio,

as an example shown for three classes which will be used later in this thesis

Psignal
, 7.3
K1 - Pokgt + (1 —=K1) - Pokg2 7

with Pgignal, Pokg1,2 the NN output node corresponding to the signal class and the two background
classes, respectively. Hereby, k1 is considered to be an effective parameter defined between O and

1 which allows tuning the relative performance/rejection of background 1. This is only valid if
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the values of the output nodes sum up to one. By taking the logarithm of this function it is still

monotonically decreasing and results in the following discriminant

Psignal )
=lo . 7.4
g<k1 “Pokgl + (1 —K1) - Pokg2 7.4)

This likelihood discriminant has the advantage that it is tuneable and one can give the emphasis to
better discriminate a specific background class.

By adding more output classes it is also necessary to add per additional class another effective para-

S k=1 (7.5)

meter k; satisfying the relation

7.2.3 Loss Function

A loss function J, also called cost function, quantifies the deviation of a model with respect to its
true values and is minimised during the model training. For supervised learning, loss functions are
typically functions of the target labels. The choice of the optimal loss function requires a profound
understanding of the problem. Different choices of the loss function could yield other optimal solu-
tions.

Generally, the combined loss of a dataset X can be calculated via the average of the individual losses

of the single data points X;

B P
3(0;X) = 5 > 3(Yi, Progel (%4;0)). (7.6)

When dealing with regression problems, the most frequently used loss function is the mean square
error (MSE)

Imse(0; X) Prnodel (X1 0))2. (7.7)

nl\/]z

In the case of binary classification, the negative loglikelihood of a Bernoulli distribution is used, the
so-called binary cross-entropy
1 N
gbinary—cross—entropy(e; X) = _N Z Yi- log(Pmodel({{i; e)) + (] —Ul) : log“ - Pmodel({{i; 9)), (78)

i=1

which can be extended to multi-classification with C classes

N
1 >
Hcategorlcal Cross- entropy (6; X Z Z Ye 10g Podet (¢[X; 0). (7.9)

1:1 c=1



7.3 NEURAL NETWORKS

The probability of the data point being of class ¢ is given by Ppodel(c|Xi; 0) and Y. is a binary
indicator specifying whether the class ¢ matches the true class of X;.

Often, loss functions are also customised for specific tasks. Another loss is the exponential loss

N
. 1 o .
Hexponential(e; X) = N Z € ylendel(Xue); (7.10)
i=1

which is of particular interest for the utilised BDT algorithm described in Section 7.4.

7.3 NEURAL NETWORKS

The concept of Neural Networks was already introduced in the 1940s [140] but only became feasible
for wide applications with the easy access to large computing power, where especially GPUs were a
big step forward. Neural networks are composed of artificial neurons connected via weights to each
other, forming a network. The most basic network is a so-called feed-forward network as illustrated
in Figure 7.3. This simplified example has one input layer, one hidden layer and one output node.

Mathematically this network can be described as a matrix function

‘<b
®—0 -

output layer hidden layer input layer

Figure 7.3.: Neural network with two input nodes in red, one hidden layer with two nodes in green and one
output node in blue. Inspired from Ref. [141]. The sketch is inverted for illustration purposes to
better match the form of Equation (7.11).

Pl = f2(b2 + W, %)), (7.11)

with weight matrices Wj, bias terms b; and activation functions fj. Expressing Pr‘;'()]}el in full matrix
notation yields

1 1 1 1
by, I Wir Wizl %,

/ . (112

P =12 | b2, ]+ w2, w2, |
, , , 1 1 1 1
b3 Wo1 Waol [X21

In this notation, it is easier to see that each layer is a linear system in the form b + W - x, where the
bias is a constant offset. Only the choice of the activation function (more details below) introduces
a non-linearity. Consequently, a NN can approximate any arbitrary function by giving the network
enough freedom (amount of hidden layers and nodes per hidden layer). The free parameters 8 which

can be optimised are the weights and the bias values. This simple example already has nine free op-
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timisable parameters, more complex networks easily reach several ten-thousands of free parameters.
In this thesis mainly deep feed-forward networks are utilised but there are a vast number of different
neural network architectures available for every kind of application (see a comprehensive overview
of modern machine learning in high energy physics in Ref. [142]).

The terminology of deep learning [143] is used for NNs with multiple hidden layers. Driven by the
fast-evolving field and the large industry interest in deep learning, several sophisticated and user-
friendly software packages are available, which make NNs accessible to a wide audience. In par-
ticular, Tensorflow [144], KERAS [145] and pytorch [146] are the most used and advanced software
packages. However, there are many more different frameworks available. In order to easier exchange
models between different tools, an open-source format ONNX [147] is used which also gives the fu-
ture possibility to easier integrate ML models into ATLAS software infrastructure. For the time
being, the JSON-based software package Iwtnn [148] is used to deploy KERAS models in ATLAS

software.

The training of NNs is performed in batches i.e. the training data is divided into equally sized
segments. The weights of the NN are updated after every batch. It is important that every batch is
an adequate representation of the full dataset, typically realised by shuffling the full dataset before
slicing the sample. A full iteration over the entire dataset is called epoch.

In general, NNs have so-called hyperparameters which are all the non-trainable parameters fixing the
architecture and training process of a NN. Besides the number of hidden layers and nodes per hidden
layers, the most important hyperparameters are discussed in the following. Also, the batch-size is a

hyperparameter which needs to be optimised.

Optimiser

The weights 0 of NNs, and therefore the model itself, are optimised using gradient descent. This
requires a loss function which has to be sub-differentiable with respect to the inputs Xj and parameters
0. After a first, usually random, initialisation of the weights 0, they are iteratively updated following
the simplified formula

0i1 = 0: —AiVod(6;X), (7.13)

where A; represents the learning rate which is tuneable and therefore a hyperparameter. Choosing
the learning rate too large can prevent convergence because the optimisation is jumping over the
minimum. On the contrary, a too low learning rate slows down the optimisation and the optimiser
might get stuck in a local minimum. A learning-rate scheduler can prevent both extremes. In this
thesis, the Adam optimiser [149] is used which uses estimates of the first and second moment of the

gradient.
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Backpropagation

For the gradient-descend method, it is required to be able to calculate the gradient of the loss function
with respect to all trainable parameters. However, for NN it is not feasible to calculate it analytically.
The computational graph, which is the mathematical representation of the NN, is very complex and
even shows certain discontinuities in some parts. Consequently, lots of nested gradients need to be
calculated and the chain rule? needs to be employed to fully determine the gradient. To efficiently
calculate the gradient, backpropagation [150] is used. So basically, it computes these nested gradi-
ents applying the chain rule gradually to the full computational graph. The gradient computation is

optimised by reusing sub-expressions and keeping track of parameter dependencies.

Activation Functions

As previously mentioned the activation functions f(z) are essential to allow the NNs to learn non-
linear patterns. In the beginnings of NNs, simple step functions were used but then were gradually
replaced by monotonically increasing functions such as tanh or logistic functions also denoted as
sigmoid. These activation functions, however, suffer from vanishing gradient issues significantly
slowing down the training. Nowadays, the Rectified Linear Unit (RELU) [151] activation function

is widely used, defined as

0 for z<0 , 0 for z<0
freLu(z) = , freru(2) = , (7.14)
z for z>0 1 for z>0

with the simple derivative f’(z) speeding up computations and not being affected by rapidly van-
ishing gradients. Besides RELU there are also other improved activation functions such as Leaky
RELU [152] or Softplus [153].

In general, the output nodes are treated differently and a different activation function is applied com-
pared to the hidden layers. For regression tasks, the linear activation function is used, whereas for
classification problems the output should mostly be interpretable as probabilities. For the binary

classification, this can be achieved using the sigmoid function

1

= — 1
Tte=’ (7.15)

fsigmoid (Z)

returning values between 0 and 1. A generalisation to multi-class classification with C > 2 classes ¢

is the softmax activation function

C
fsoftmax (Zc) ==c . flﬂﬁlhng Z fsoftmax (Zc) =1, (7.16)
j=1 c=1

The chain rule states how to compute the derivative of composite functions which is summarised in this formula % =

dy dz
dz dx-
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where the output for each class ¢ can be interpreted as the probability of the data point being compat-

ible with class c.

Regularisation

Besides the training performance, an important feature of a ML model is the ability to be generalis-
able and to not depend on fluctuations in the training data, i.e. avoid overfitting. In order to realise
this, the capacity of the model needs to be sometimes limited producing a simpler and more robust
model. In practice, mostly stochastic regularisation is used, such as Dropout [154], batch normal-
isation [155] or early stopping [156]. The Dropout method randomly drops a certain percentage
of node connections to neighbouring layers avoiding complex neuron co-adaptions. The batch nor-
malisation re-normalises and re-scales the values of a batch and the early stopping terminates the
training process after certain criteria for instance that the loss is not decreasing over a certain amount

of epochs.

7.4 BOOSTED DECISION TREES

BDTs were one of the most commonly used multivariate technique in the last years in high energy
physics, before NNs became more and more popular, and still have their raison d’étre. The avail-
ability of BDTs, inside the widely used statistics and data handling package ROOT [157], via the
TMVA [158] package made it easily integratable in the analysis software workflows. Therefore,
BDTs were deployed for various problem sets, such as in object identification [159] or discriminat-
ing signal and background processes in physics analyses.

A decision tree is structured as sketched in Figure 7.4 (left). It has, as the name suggests, a tree-like
structure with branches connected via nodes. At each node, a cut decision based on a specific at-
tribute is made. This is repeated until a stop criterion is met such as the maximal tree depth or the
minimum events in a leaf node. A decision tree on its own is a weak learner and very sensitive to

small changes in the training data.

Boosting allows to create from an ensemble of weak learners, single decision trees, a powerful
and robust model illustrated in Figure 7.4 (right). In the scope of this thesis, the Adaptive Boost
(AdaBoost) [161] from the TM VA [158] package is used. A boosting algorithm iteratively combines

. .. (t) . . L
T single decision trees P_ ., into a single discriminant

.
PEDL(R:) = 3 Pl (X4), (7.17)
=1
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Figure 7.4.: Schematic view of a single decision tree on the left and an illustration of the boosting of trees on
the right [160].

with o the weights associated to each decision tree. The value of the weight o« is chosen for

AdaBoost such that it minimises the loss function

N
BDT,(t—1) /- -
Je = E Hexponential(PmOdel(t )(Xi) + “tpr(;(}del(xi))/
i=1

(7.18)

where the loss function Jexponential i the exponential loss from equation 7.10. In addition, from
one iteration to another, wrongly classified training events get larger weights associated to be more
sensitive to those in the following tree.

Nowadays more advanced BDT libraries are available with different boosting algorithms giving a
better out-of-the-box performance. The most popular and successful libraries are XGBOOST [162],
LIGHTGBM [163] and CATBOOST [164].
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INTRODUCTION TO HEAVY-FLAVOUR TAGGING

Heavy-flavour identification, also called tagging, plays an important role in particle physics ana-
lyses. Several interesting physics processes, such as the ttH(bb) process described in Part IV or the
VH(H — bb, H — cc) process [165, 166], have b- or c-quarks in their final state. Flavour tagging
is a crucial tool to better select the signal and reject the background processes, and is therefore im-
portant for both searches and precision measurements.

Since quarks cannot occur as free particles, not the quarks itself are being tagged, but rather the
colour neutral states, the b- and c-hadrons. A focus of this thesis is b-tagging in ATLAS and this
chapter provides an overview of the techniques used in ATLAS.

The b-hadrons have a lifetime of around 1.5 ps [20], thus they decay only after 2.5 mm when car-
rying a momentum of 30 GeV. Moreover, b-hadrons have a relatively high mass of ~ 5GeV [20]
as well as a high decay multiplicity of around an average of 5 stable, charged particles illustrated
in Figure 8.1 (a) for B hadrons. Another decay property is a relatively high semi-leptonic decay
fraction. Figure 8.1 (b) illustrates the pt fraction a b-hadron carries inside a jet which is large, i.e.

peaking around 70%. The typical anatomy of a b-jet looks then as depicted in Figure 8.2 with a decay
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Figure 8.1.: (a) Decay multiplicity of the b-hadron B® into charged stable products compared for different
MC generators [167]. (b) Jet-fragmentation of the transverse momentum component of b-hadrons
with unfolded data [168].

length L of the b-hadron indicated in the red dotted line ending in the secondary vertex where the
hadron decays. If the b-hadron decays into a c-hadron, even a tertiary vertex is present in the jet. The
displacement of the secondary vertex with respect to the primary vertex is given by the decay length

and the displacement of a track with respect to the PV is parametrised with impact parameters (IPs)
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denoted as dg in the figure. Typically, the tracks coming from b-hadron decays have large do due to
the long decay length and the large mass of the b-hadron.

The c-hadrons have similar properties as b-hadrons, but a shorter lifetime, a lower decay multiplicity
and are lighter and thus dy is smaller, which results in similar but not identical jet topologies of
c- and b-jets, making it difficult to distinguish these two kinds of jets. Within the light-flavour jets,
most of the tracks are originating directly from the quark fragmentation. This makes b-jets in general
well separable from light-flavour jets. Nevertheless, displaced vertices can also occur coming from
long-lived particles, photon conversion, poorly measured tracks or detector material interactions.

All these b-hadron/jet properties are targeted by different baseline algorithms extracting different

, tracks
------ b-hadron

------ c-hadron

------ impact
parameter secondary
vertex

do
\70 — primary vertex

Figure 8.2.: Schematic view of a b-jet (in blue) including a secondary and a tertiary vertex. In gray light jets.

information for b-tagging. The schematic in Figure 8.3 shows the structure of b-tagging in ATLAS
during RUN II [169]. The baseline algorithms can be categorised in three categories: the IP based
algorithms IP2D/IP3D and RNNIP, the vertex-based algorithms SV1 and JETFITTER, and the soft-
muon-based tagger SMT.

The information that the baseline algorithms provide is then combined by the so-called high-level
taggers MV2 (based on BDTs) and the deep learning-based tagger DL.1 which will be studied in de-
tail in Chapter 9 - 12. The baseline algorithms are explained in more detail in the following, together
with the description of the used variables for the high-level tagger DL1. All plots will be shown for
PFlow jets in tt events if not differently stated. The Variable Radius Track jets distributions will be

summarised in the dedicated chapter.
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Figure 8.3.: Two level structure of the ATLAS heavy-flavour identification structured into baseline and high-
level algorithms. The high-level algorithms combine the output of the baseline algorithms into a
final discriminant.

8.1 TRAINING DATASET

All heavy-flavour taggers from RUN II were so far optimised for EMTopo jets as described in [169].
The retraining and optimisation of the DL 1 tagger is performed in the scope of this thesis for PFlow

jets and VR Track jets.

8.1.1 Jet Flavour Labelling

Since jets are clustered objects it is necessary to define a labelling scheme defining criteria when a
jet is a b-jet, c-jet or light-flavour jet in the simulation. These so-called truth-labels are retrieved
iteratively by matching hadrons with a minimum pt of 5 GeV to the jets. A jet is denoted a b-jet
if a b-hadron is within AR(jet, b-hadron) < 0.3. In the next step, the AR matching is repeated for
c-hadrons for the jets not labelled as b-jets and afterwards for T-leptons. All remaining jets not
classified as either b-, c- or T-jets are categorised as light-flavour jets which include besides the light-
quarks also gluons.

In addition, there is also an extended labelling available, providing more information about double-b,

double-c and bc-categories.

8.1.2 Modelling

The algorithm studies are performed using tt events generated with POWHEGBOX v2 [88-92] at
next-to-leading-order with the NNPDF 3.0NLO PDF and hdamp =1.5 myop [170]. The hadronisation,
MPI and PS settings are described in Section 4.1.3.

The number of jets at high transverse momenta is small in tt samples. To populate this phase space
with sufficient statistics, Z’ — bb/c¢/qq samples are employed. The events are fully simulated with
PYTHIAS8 (A14 tune) and the leading-order PDF set NNPDF2.3LO. To get a flat jet pr distribution
also throughout the high jet pr spectrum, the mass of Z’ is varied and the natural width of the Z’

resonance has to be artificially widened using dedicated weighting factors on an event-by-event basis.
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Combined with a branching ratio of one third for each decay mode (bb, c¢ and light-flavour quark
pair) the jet pr spectrum is equally flat and populated for the different quark classes at high transverse
momenta (Fig. 9.3 shows this behaviour).

For both sample setups, the full detector simulation with GEANT4 is used.

8.1.3 Selection

The selection of PFlow jets and VR Track jets is slightly different due to the different clustering pro-
cedure. Common for both jet collections is the || < 2.5 requirement. For the tt sample lepton+jets

and dileptonic events are taken into account (see Fig. 2.7).

8.1.3.1 PFlow jets

The jets which are re-clustered with the particle flow algorithm using a radius parameter of R = 0.4
are required to have a minimum jet pt of 20 GeV. For jets in the range of 20 GeV < pt < 60 GeV
and | < 2.4, an additional jet vertex tagger (JVT) [171] cut JVT > 0.5 is applied for pile-up
suppression. If the jet overlaps with an electron or muon which originates from a W-boson decay

(this can only be identified at the generator level), it is removed.

8.1.3.2 VR Track jets

The jets clustered as VR Track jets need to satisfy pr > 10 GeV. Moreover, an additional overlap

removal is applied, removing jets which coincide i.e. AR(jet;, jet;) < min(Rjet;, Rjer;)-

8.2 IMPACT PARAMETER ALGORITHMS

The IP based algorithms are making use of the long decay path of the b-hadron which results in a
displaced vertex. Therefore, the IP, which is the point of closest approach of tracks from the b-hadron
decay to the primary vertex, is larger than for tracks coming from the PV. The IP can be split into two
components, the transverse part do (sketched in Fig. 8.2) and the longitudinal part zp sin 8. From
these IP variables, the lifetime signed significances sq, = do/0q, and s;, = zosin®/0sino,
shown in Figure 8.4, are calculated, corresponding to the IP divided by its uncertainty. The sign
is determined by extrapolating the track to the PV. If the jet axis has to be extended from the PV
backwards to cross the track, or its projection, a negative sign is assigned otherwise it is positive.
The tracks used in the IP algorithms have to satisfy several track quality criteria. Tracks have to
have p‘TraCk > 1GeV, the IPs have to fulfil |[dg| < 1mm and |zp sin 6] < 1.5mm. Additionally, a
requirement on the number of hits in the silicon layers is demanded leliits > 7 as well as an upper
< 2and NP> < 1,

. . oqe . . S
limit of silicon and pixel layer holes: Ny holes S

holes
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Figure 8.4.: The signed IP significances shown for light-, c- and b-jet tracks for (a) the transverse and (b) the
longitudinal component in tt events [137].

8.2.1 IPxD

The IPxD taggers [159] comprise two different algorithms: the IP2D which is only using the trans-
verse IP dg since it is less prone to pile-up and the IP3D making use of both the transverse and
longitudinal IP and their correlations. The track categorisation is based on pixel layer hit patterns
defined by reference templates for b, ¢ and light assuming the tracks to be uncorrelated. The final
discriminant is a Log-likelihood ratio (LLR) of probabilities of the tracks being b-, c- or light-flavour
like defined on jet level

(8.1)

i
IPXxDic,c1 = Z log (plzbc> .

i€&tracks
The probability density functions to calculate py,, pc and p; are extracted from reference histograms
in MC simulations. Table 8.1 summarises the six different output variables of the IPxD tagger and

Figure 8.5 shows the variable distributions.

Variable Description
The LLR based on the lifetime signed IP significance to separate:
IPxDy b- from light-flavour jets.
IPxD, b- from c-jets.
IPxDcy c- from light-flavour jets.
Table 8.1.: IPxD output variables (x stands for 2 or 3).
8.2.2 RNNIP

The second IP-based tagger is the Recurrent Neural Network IP tagger (RNNIP) [172]. It uses the

same information as the IPxD algorithms requiring in addition at most one shared hit of multiple
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Figure 8.5.: Distributions of the LLR variables from the IP2D (a)-(c) and the IP3D (d)-(f) algorithms. Variables
are defined in Table 8.1. Only jets where the algorithm succeeded are plotted.
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tracks. A recurrent neural network (RNN) can process input sequences of variable length which is
important since jets contain different amounts of tracks. The input sequence to the RNNIP is ordered
by the lifetime signed transverse IP significance sq,. A so-called long term short term memory
(LSTM) network is employed which allows to preserve correlations between the tracks. This is
an important difference compared to IPxD. The other difference is the ability of RNNIP to use hit
information instead of the category embedding from IPxD. As shown in [172] it outperforms IPxD
especially for decay topologies with higher decay multiplicities and longer decay distances. The
RNNIP tagger used for the DL1 training in this thesis (in Chapter 9-11) is an optimised version
of the RNNIP in Ref. [172]. The optimisation was done separately for PFlow jets and VR Track
jets. Due to its multi-class output, it provides three different probabilities per jet of being b-, c- or
light-flavour like as shown in Table 8.2 and illustrated in the Figure 8.6. The spikes in the RNNIP,,,
(Fig. 8.6 (a)) and RNNIP,,, distribution (Fig. 8.6(c)) arise from jets without any tracks. The jets
without tracks, which correspond more or less to empty vectors, are also passed through the RNNIP
network and thus the spikes occur at these values (~ 0.2 for p; and ~ 0.7 for pp) chosen by the
network.

Furthermore, there is another tagger improvement made using a Deep Sets architecture resulting in

the DIPS tagger [137]. This will be discussed again in more detail in Chapter 12.

Variable Description
The output nodes of the RNNIP tagger indicating the probability of the jet being a:
RNNIP,,,  light-flavour jet.
RNNIP, b-jet.
RNNIP,,  c-jet.

Table 8.2.: RNNIP output variables.

8.3 DISPLACED VERTEX RECONSTRUCTION

It can be extracted from the IP information if a displaced vertex is present in a jet. Nevertheless, it is
important to know if it is a real vertex from a b- or c-hadron or originating from mis-reconstructed
fragmentation tracks where light-flavour jets are faking b-jet topologies. It is also possible that
tracks with low IPs can contribute to a displaced vertex. In ATLAS two different algorithms are used
to identify these: the inclusive displaced secondary vertex reconstruction algorithm (SV1) [159, 173]

and JetFitter [174] a decay chain multi-vertex reconstruction algorithm.

8.3.1 Secondary Vertex Algorithm

The SV1 algorithm tries to reconstruct a single displaced vertex in a jet using tracks. Due to the
finite tracking resolution in ATLAS, it is not always possible to resolve the full decay cascade of b-

or c-hadrons in every jet. This also means that not all decay vertices can be extracted. Therefore, the

73



74

INTRODUCTION TO HEAVY-FLAVOUR TAGGING

T
E VS =13TeV, PFlow jets, tf Sim.

— b-jlets
Ciets E

1 light-flavour jets J

7277 stat. unc. ]

0= b-jets
Ccets ]

1 light-flavour jets_|

777 stat. unc. 3

7
[ VS=13TeV, PFiow jets, tf Sim.

Normalised
Normalised
3

102

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 = |
0.0 0.2 0.4 06 0.8 1.0
RNNIP,,

(a) (b)

7 —

[ V5=13TeV, PFlow jets, tf Sim. 3 bets

= Ccrjets -

E 1 light-flavour jets J
7777 stat. unc. |

Normalised
3

1071

o0 o0z 04 o6 08 10
RNNIP,,

©

Figure 8.6.: Output nodes of the RNNIP multi-class network representing the probabilities for the jets being
(a) a light-flavour jet, (b) a c-jet and (c) a b-jet.

reconstruction of only a single vertex, if possible, is a good approximation for b-jets.

In the first reconstruction step, all two-track vertices are matched together rejecting those which are
compatible with tracks coming from long-lived particles (K, /A), photon conversions or hadronic
interactions with the material of the detector. In the next step, the two-track vertices are combined to

form the secondary vertex (SV) while all tracks which are not consistent with the SV are removed.

Variable Description

N%I?Ath Number of tracks associated to the SV.

Ng}’&mx Number of reconstructed two-track vertices candidates within the jet.

1111511\51 Invariant mass of the SV calculated from the associated tracks.

vl Energy fraction of the SV associated tracks with respect to all tracks of the jet.

AR(jet, SV) AR between the jet axis and the direction of the secondary vertex relative to the
primary vertex.

Ly Reconstructed SV transverse decay length.
L)S(;/Z] Reconstructed SV decay length.
S Decay length significance, L5y, / oLsy-

Table 8.3.: Overview of variables extracted from the SV reconstructed with the SV1 algorithm.



8.3 DISPLACED VERTEX RECONSTRUCTION

From the reconstructed SV, several important properties can be extracted such as the vertex mass,
the decay length and its significance or the number of associated tracks and two-track vertices as
well as the AR between the jet and the SV. All properties are summarised in Table 8.3 and the

corresponding distributions are shown in Figure 8.7.

8.3.2 Decay chain multi-vertex reconstruction

The second displaced vertex finder is JETFITTER (JF) [169, 174] which reconstructs the decay cas-
cade topology of weakly decaying b- and c-hadrons. It assumes that the primary, secondary and
tertiary vertices are aligned in one line, in the flight direction of the heavy-flavour hadron. This
assumption helps to better cope with the finite detector resolution and also allows e.g. the recon-
struction of single track vertices. After an initial track selection removing tracks associated with the
PV, the axis through the vertices is retrieved using a modified Kalman Filter [175]. The resulting

topology is characterised by several variables listed in Table 8.4 and shown in Figure 8.8.

Variable Description

miJrlfv Invariant mass of tracks associated to one or more displaced vertices.
fiF Charged jet energy fraction in the secondary vertices.

Sty Decay length significance of the displaced vertex.

N{irk vertices Number of 1-track displaced vertices.

NJ>F 2_trk vertices Number of vertices with more than one track.
=

ARJF(ﬁjet, Pvix) AR between the jet axis and the vectorial sum of all track momenta associated to
displaced vertices.

JF

Ntrks

JF
vertices

Number of tracks associated to SV.

Number of reconstructed displaced vertices.

Table 8.4.: JETFITTER variable overview.

Additionally, special variables for the c-hadron identification are extracted using only the JETFIT-
TER vertex which is closest to the PV. The variables, as shown in Table 8.5 and Figure 8.9, are
chosen such that they make use of the different topologies of b- and c-hadron decays. Typically, only
a single SV is present in a c-jet justifying the choice of only considering one SV in the calculation of
the variables. Moreover, c-hadrons have a lower decay multiplicity due to their lower mass and thus
the average energy that a single decay product carries is larger compared to b-hadrons. Consequently,
also the rapidity, as defined in Equation (3.3), with respect to the jet axis is larger, visualised in Fig-
ure 8.9 (g)-(1).

Recently a new approach is being studied, using Graph Neural Networks [176] to identify the sec-

ondary vertex [177], which is showing promising results.
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Figure 8.7.: Variable distributions of the reconstructed SV with SV1 as defined in Table 8.3. Only jets where

the algorithm succeeded are plotted.
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Variable Description

L{(Fljz Displacement of SV from PV.

L Transverse displacement of SV from PV.

nrlin(YtJiC ), rnax(Ygrlf(c ), avg(YtJr};c ) Minimal, maximal and average rapidity of tracks within
the jet.

min(YtJrif sv)s max(YtJif sv) avg(Y[Jif sy) Minimal, maximal and average rapidity of SV tracks.

mijlfvc Invariant mass of tracks associated to SV.

plfe Energy of tracks associated to SV.

f{;c Charged jet energy fraction of SV w.r.t all tracks in jet.

Nfii Number of tracks associated to SV.

Table 8.5.: Overview of the JETFITTER variables optimised for c-jet identification [169].
8.4 SOFT MUON TAGGER

As mentioned above, the b-hadrons have a large semi-leptonic decay branching ratio of BR(B —
uwvX) ~ 11% and BR(B — C — pvX) = 10%. The Soft Muon Tagger (SMT) [169, 178] is
designed to exploit the properties of the muons coming from heavy-flavour decays. The term soft is
used even though the muon typically carries a non-negligible pt together with a large relative prTel
with respect to the jet axis, but is soft compared to muons coming from electroweak boson decays.
The usage of the tagger is, however, limited since it is only applicable for semi-leptonic decays and
limited by the muon reconstruction and association to jets. Nonetheless, it is a useful supplement
next to the IP and SV algorithms.

Originally a BDT was used to combine several variables describing the muon topology [178]. These
variables are listed in Table 8.6 and illustrated in Figure 8.10. For the recommendations for PFlow
jets and VR Track jets the dg of the soft muon was corrected so that its sign calculation also takes into
account the jet axis. In addition, the BDT was replaced by a Neural Network and the longitudinal IP
as well as the IP significances of the soft muon were added in the training. The multi-class output of

the NN is summarised in Table 8.7 and shown in Figure 8.11.
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Variable Description
AR(L, jet) AR between the soft muon and the jet

prTel Transverse momentum of muon relative to the jet axis.
8 scattering neighbour significance

M momentum imbalance significance

R charge-to-momentum double ratio of ID and MS
do(u) transvere soft muon impact parameter

zp|sin O[(p) longitudinal soft muon impact parameter
Sd, (1) significance of transvere soft muon impact parameter

Szo (1) significance of longitudinal soft muon impact parameter

Table 8.6.: Overview of SMT variables describing the soft muon topology.
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Figure 8.10.: SMT input variable distributions as defined in Table 8.6. Only jets where the algorithm succeeded
are shown.
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Output nodes of the SMT NN tagger indicating the probability of the jet being a:

Variable Description
SMT,, light-flavour jet.
SMTp,  b-jet.

SMTp,  c-jet.

Table 8.7.: SMT NN output variable distributions. Only jets where the algorithm succeeded are shown.
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Figure 8.11.: Output nodes of the SMT multi-class network representing the probabilities for the jets being (a)

a light-flavour jet, (b) a c-jet and (c) a b-jet.
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8.5 HIGH-LEVEL TAGGERS

The baseline taggers described in sections 8.2 — 8.4 are only optimised for specific b-hadron decay
properties. In order to combine this information into a single powerful discriminant, so-called high-
level taggers are designed. As indicated in the schematic 8.3, two different high-level taggers are
employed in ATLAS: the BDT based tagger MV2 and the Deep Learning based heavy-flavour tagger
(DL1).

The MV2 tagger will be briefly described in Section 8.5.2 and will be employed in the analysis of the
ttH(bb) process in Part IV. The DL1 tagger will be studied in full detail in the following chapters.

8.5.1 Working points

Ideally, the full spectrum of the final b-tagging discriminant would be calibrated and used in the
physics analyses. This continuous calibration would require a separate calibration in very fine effi-
ciency bins leading to an immense complexity and necessary workload which is not feasible to do
in the required time scales in ATLAS. Therefore, four different b-tagging working points (WPs) are
defined covering various needs of the physics analyses. The efficiency of a specific flavour j (b, c or

light) is defined as .
Ng)ass(D > Tf )
N/

total

¢ = , (8.2)
where Ng,ass (D > Ty) are the number of jets of flavour j passing the cut T¢ on the tagger discriminant
D and Ngotal are all jets of flavour j before the cut. The WPs are defined based on the b-jet efficiency
¢b9¢ evaluated on a tt sample. The WPs used in ATLAS are listed in Table 8.8. Each WP is charac-

b-jet efficiency tag score

Description b-jet efficiency

(85, 100]% 1
loose 85%
) [77,85]% 2
medium 77%
) [70,771% 3
tight 70%
ioht 0% [60,70]% 4
very ti o
Y18 [0, 601% 5

Table 8.8.: Summary of the single cut WPs for ) .
b-tagging in ATLAS. Table 8.9.: Pseudo-continuous WP in ATLAS

with the corresponding tag score.

terised besides the b-jet efficiency by its c- and light-flavour jet rejection which is the inverse of the

efficiency ¢/light

. The misidentification improves with lower signal efficiency and thus rejects more
background with a trade-off against lower signal statistics.

Every jet passing the criteria of a WP is then defined as a b-jet in physics analyses. Additionally, a
pseudo-continuous WP is defined with five tag score bins. The tag scores are retrieved based on the
single cut WPs listed in Table 8.9. The tag score indicates which b-tagging WP a jet passes. Most

of the c- and light-flavour jets end up in the first bin [85, 100]% which is equivalent to not passing
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any b-tagging WP, while the last bin [0, 60]% mainly contains b-jets which corresponds to passing
the tightest (60%) WP. The pseudo-continuous b-tagging WP provides important additional inform-
ation compared to the single cut WPs. It is a kind of an indicator of the quality of the b-jet, which
is especially useful for multivariate (Machine Learning) methods. The b-tagging requirement can be
loosened and by providing the pseudo-continuous tag score as an additional input, the information is

retained while gaining more statistics.

8.5.2 MV2

The baseline MV?2 algorithm, which used to be the recommended tagger for EMTopo jets for RUN 11
analyses, uses 24 variables as input for the BDT training. These 24 variables comprise kinematic
information pr and [n| as well as the output of the baseline taggers IPxD, SV1 and JETFITTER. Fig-
ure 8.12 shows the performance overview of MV2, DL1 and their baseline taggers in terms of the

background (c- and light-flavour jets) rejection as a function of the b-jet efficiency. The training

- e — c T — ]
£ | ATLAS Simulation ] 2 105 ATLAS Simulation a
[0} - — MV2 (0] E - — MV2 3
) L Vs=13TeV, 1t DLt © E Vs=13TeV, it DL E
3, ,| Jetp_.>20GeV,n|<25 .. |p3D kol .| Jetp_220GeV, (<25 .. |p3D )
& 10% T E 5 0% T E
e —- sV ] 3 E —-svi E
F - JetFitter ] K F - JetFitter ]
L B _‘g 103:{\ 3
L — - E ,\\\ B
10 ;‘\~\ _ 2 ; T ‘.\\\5 ;
E e E 10°E N E
B T ] B ) ]
- T ] 10 s =
1= 1
o 2 g 2p
> E E E
S 15 E 2 155
o T e 4 o T -
9 055 T E 9 05F T
© N A AR R R N e 0l AR AR
T 05 06 07 0.8 0.9 1 T 05 06 07 038 0.9 1
b-jet tagging efficiency b-jet tagging efficiency
(@ (b)

Figure 8.12.: Comparison of b-tagging algorithms optimised and evaluated on EM7Topo jets. Plot (a) shows
the c-jet rejection and (b) the light-flavour jet rejection. The baseline taggers IP3D, SV1 and
JETFITTER are shown as well as the two high-level taggers MV2 and DL1 compared in the ratio
in the lower pads w.r.t MV2 [179].

of MV2 was performed with a so-called hybrid sample which is a mixture of a tt and Z’ events to
cover a large pr spectrum. The BDT uses b-jets as signal class and c- and light-flavour jets as one
background class. To balance the c versus light-flavour performance, a c-jet fraction of 7% and a
light-flavour jet fraction of 93% was found to be best at least for a wide range of analyses. This
tagger is called MV2c10.

In addition, different sets of input variables were studied adding RNNIP or SMT information. Fur-
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thermore, a dedicated c-tagger is constructed with the JETFITTER c-variables and c-jets as signal

class in the training.

8.6 CALIBRATION AND MONTE CARLO CORRECTIONS

The heavy-flavour tagging algorithms are optimised on MC simulation. Ideally, data and MC would
show consistent flavour efficiencies. However, the simulation typically deviates from data due to
detector and modelling effects, and correction factors (scale factors) need to be retrieved including
their uncertainties. The calibration is realised for the four single cut WPs in Table 8.8 as well as for
the pseudo-continuous tag scores [180—-183].

The scale factors

. ¢

) _ ata

Kdata-MC = 75~ (8.3)
EMe

are measured for all three flavours j. These scale factors are provided per jet and they are then com-
bined to get a b-tagging weight defined on event level which can be used in the physics analyses. For
b-jets the b-jet efficiency is calibrated while for c- and light-flavour jets the mistag rate is calibrated.
All three calibrations are performed independently in data samples which are enriched in the specific
jet flavour. The b-jet efficiency is determined on dileptonic tt events [179] while for the calibration
of the c-jets mis-tag rate lepton+jets tt events are employed, investigating the hadronic W-boson
decays to c-jets [183].

If a tagger performs very well and the light-flavour rejection is too high, it is not possible to calib-
rate the light-flavour mistag rate without large uncertainties on the scale factor due to unavoidable
heavy-flavour contamination of the light-flavour sample. To overcome this, so-called flipped taggers
are investigated. The goal is to have a flipped tagger which has a much smaller b-jet efficiency with
an unchanged light-flavour mistag rate. So, the flipped tagger can be calibrated and the scale factors
then propagated to the non-flipped tagger. The flipping itself is realised by inverting the sign of the
Sq, variable (see Fig. 8.4). This negative-tag method is described in more detail in Ref. [182] using

Z+jets events.

In addition to the data to MC calibrations, differences between different MC generators also have
to be corrected for [184]. The MC to MC scale factors kpyc-mc are calculated as a function of the jet
pr. They can be retrieved comparing the nominal MC generator (POWHEGBOX + PYTHIAS) with

the alternative generator

Edata(pT) €nominal MC (pT) _ Kdata-MC (pT)

= (8.4)
€nominal MC (pT) Ealternative MC (pT) KMC-MC (pT)

Kalternative (pT) =



DEEP LEARNING BASED HEAVY-FLAVOUR TAGGER

The Deep Learning based heavy-flavour tagger (DL1) was introduced during RUN II as a second
high-level heavy-flavour tagger, besides MV2. The tagger is designed to combine the information of
the baseline taggers (introduced in Chapter 8) into a final discriminant. Studies to include more basic
detector-level variables rather than by human brain designed observables are also ongoing, shown in
the outlook in Chapter 12, including track and hit based information directly in the DL1 training.

The performance of the first version of DL1 [185] optimised for EMTopo jets is shown in Figure 8.12.
The overall performance of DL1 is slightly better than MV2. The main advantage of DL1 is its multi-
class output which means that the network predicts for every jet the probabilities for being compatible
with the three main flavour classes: b-jets, c-jets and light-flavour jets. In general, this can be also
realised with a BDT, however, NNs are more flexible and have more possibilities to customise their

structure.

In this thesis, the DL1 algorithm is being re-optimised and adapted for PFlow jets and VR Track
jets introducing a new machine-learning workflow for the flavour tagging group in ATLAS. The
general design will be introduced in Section 9.1 followed by the description of the preprocessing in
Section 9.2. The dedicated optimisation for PFlow jets is shown in Chapter 10 and for VR Track jets
in Chapter 11.

9.1 GENERAL DL1 DESIGN

The underlying NN structure of the DL1 tagger is a deep feed-forward neural network with three out-
put nodes corresponding to the b-, c- and light-flavour jet probabilities illustrated in Figure 9.1. The
RELU activation function is used for each hidden layer and the last (output) layer makes use of the
softmax activation function, such that the resulting network scores can be interpreted as probabilities.
The final output score is calculated from the multi-class output as described in Equation (7.4) and

results for the b-tagging discriminant into the log-likelihood

. Po
Dp(fe) = log <fc ey _m), 9.1)

with pp, pc and p; being the probabilities for the jet to be a b-jet, c-jet or light-flavour jet, re-
spectively. The c-jet fraction f. allows to tune how much emphasis is given to the c-jet or to the
light-flavour performance (rejection). While the c-jet rejection increases as a function of f., the
light-flavour jet rejection decreases. This parameter has to be tuned separately for each tagger and

depends on the needs of the physics analyses. The advantage compared to MV2 is that this tuning
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hidden layers

output layer

Figure 9.1.: Neural Network structure of the DL1 tagger.

is possible after the training and the c-jet fraction in the training sample does not have to be adapted.

Another advantage of the multi-class output is that one can by changing the log-likelihood to

_ Pe
De(fp) = log (fb'pb+(1_fb)'pl), (9.2)

perform c-tagging without the need of retraining the tagger. Here fy, is now the b-jet fraction. These
possibilities have far-reaching positive effects on the workflow within ATLAS. First of all, less per-
son power is necessary since only one tagger has to be trained and maintained. Also, fewer variables
have to be calculated and stored in the files used for the physics analyses saving computing and stor-
age resources.

DL1 is a family of three different taggers illustrated in Figure 9.2: baseline DLI, DLIr and DLIrmu.
They differ in their input variables used for the NN training. The baseline DLI uses the same vari-
ables as MV2 with the additional JETFITTER variables optimised for c-jet identification. All the
variables are summarised in Table 8.1 for IPxD, in tables 8.4 and 8.5 for the two sets of JETFITTER
variables and the SV1 variables are listed in Table 8.3. In addition to the baseline tagger information,
also the kinematic variables pr and | are passed to the training to explore correlations between the
kinematics and the baseline tagger variables. The kinematics are, however, treated differently since

it is not intended to classify jets based on differences in the kinematic distributions between the fla-
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vours (more details in sec 9.2). The DLIr configuration includes in addition the flavour probabilities
provided by the RNNIP algorithm as outlined in Table 8.2. The last tagger version DLIrmu exploits
also the soft-muon information from Table 8.7 besides all variables also used in DLIr.

The umbrella term DL/ is used for the tagger family but typically also the baseline version is called
DLI. To avoid ambiguities in the text, the baseline version will be denoted as baseline DLI while
in plots and schematics the expression DL/ will be kept to be consistent with the official ATLAS
naming.

Adam, which is a gradient descent optimiser (see sec. 7.3), is utilised as optimiser together with a
learning rate scheduler which reduces the learning rate after a certain amount of epochs if the loss did
not change. All other hyperparameters differ slightly between the various trainings and are explained

in the dedicated sections.

jet high-level
kinematics taggers

baseline taggers

11

Figure 9.2.: Structure of the different types of DL1 taggers, depending on their variables used in the training.

9.1.1 Software Chain

The software chains for training & development and for the application in the ATLAS software
ATHENA [186] are completely disentangled from each other. The training software is based on
industry-standard open-source software using python3.6 [187]. For data handling the numpy [188]
and pandas [189] packages are used together with the file format hdf5 [190]. In general, a heavy
use of human readable file formats as JSON [191] and yaml is made to make the code structure well
configurable for users. For the training itself TensorFlow [144] is employed with the keras2 [145]
frontend. The visualisation package matplotlib [192] as well as the tools from scikitlearn [193] are
included in the training process. The full workflow is based on Docker [194] images which allow
to run the software on any computing resource without worrying about the package installation and
their versions.

The C++ based LightWeight Tagger Neural Network (Iwtnn) package [148] integrates the NN based
taggers in in the ATLAS software ATHENA.
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9.2 PREPROCESSING AND INPUT VARIABLE TREATMENT

To guarantee a robust training, it is necessary to perform several preprocessing steps. The first im-
portant step is the choice and preparation of the training sample. For the training of the DL1 taggers
a mixture of two samples is taken, as described in Section 8.1.2, denoted as hybrid sample [185].
Figure 9.3 shows their jet py distributions for each jet flavour. The tt sample (solid lines) has a
rapid fall in pt compared to the Z’ sample (dashed lines) which has a flat py spectrum up to roughly
4.5 TeV and a total range up to 6 TeV'. The use of the Z’ sample allows a more robust training at

high pt. From these two samples a so-called hybrid sample is created. In the following only PFlow

O e L L L
8 [ Vs=13TeV, PFlowjets 1 bets, tt |
g 10 3 c-jets, tt 3
<23 - 1 light-flavour jets, tf 1
I T°TT1 bejets, Z/ .

107" Cjets, Z' E

- T7773 light-flavour jets, Z'

L 77 stat. unc. 7
1072 E
10° = R T =
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107 = =
10'55— / =

3 fh: N N I . 1 1A

0 1000 2000 3000 4000 5000 6000

pr/GeV

Figure 9.3.: pr distribution of the tt sample (solid lines) and Z’ sample (dashed lines). The tt b-jet distribution
is normalised to unity and all other distributions are normalised to the tt b-jet distribution.

jets are considered, the differences for VR Track jets are discussed in the dedicated Chapter 11. Since
the extended Z' sample is only available with the pile-up profile of the 2017 data taking period, only
this MC production is used for both tt and Z’. The 2017 pile-up profile is a good representation of
the overall RUN II pile-up profile as shown in Figure 3.2. The jets from the tt sample are chosen to
populate the lower pr-range up to a specific value & ensuring sufficient statistics and the extended Z’

sample is populating only the higher pt-regions larger than . This results in the following selection:

This Z' sample is also called extended Z’, there is also another sample version which only has a pr range up to roughly
3-4TeV (which will be important for the VR Track jets training), also denoted as standard Z'.
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b-jets b-hadron pt < 250 GeV
tt selection : § ¢ jets jet pr < 250 GeV
light-flavour jets jet pr < 250 GeV,

and the Z’ selections are chosen orthogonal. As indicated, the b-jet selection is using the b-hadron
pr. Together with the choice of the fraction of tt to be 70% in the hybrid sample, a smooth transition
between the two samples is realised. The pr distributions including the hybrid selections are shown
in Figure 9.4 (a) separately for tt and Z’. In Figure 9.4 (b), the pr distributions from both samples
are merged. As intended, the b-jet distribution shows a smooth transition while the c-jet distribution

has a kink and the light-flavour distribution a spike. In the previous iteration of the tagger, the
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Figure 9.4.: pr distribution of the tt and Z’ sample with the hybrid selection applied with a tt fraction of
70%. In plot (a) the samples separated normalised to the tt b-jet distribution and (b) the samples
merged into one distribution per flavour normalised to the b-jet distribution.

pr and [n| distributions?

were weighted to match the b-jet pr distribution. The weighting solves
three issues: mitigate the discontinuity between samples, solving the problem of having imbalanced
classes and reducing the influence to classify w.r.t the jet kinematics. Even though the correlations
of the kinematics with the baseline tagger information is important, the goal is to avoid to train on
differences in the kinematic distributions to distinguish between the flavours since the tagging is
targeting an independent jet-by-jet classification. The classes are imbalanced, i.e. different fractions
of b-, c- and light-flavour jets are present in the sample. Figure 9.5 shows the flavour fractions of
the hybrid sample. The light-flavour jets are dominating, followed by b-jets and the c-jets constitute
the smallest fraction. By reweighting in pt and [n|, the weighted sum is 1/3 for each flavour across
the full pr and n| spectra. However, it turned out that the weighting approach introduced some
instabilities in the learning process of the network. Therefore, the resampling method is employed,
as illustrated in Figure 9.6. Instead of weighting the distributions, single jets are either removed from
the majority classes (undersampling) or jets from the minority classes are duplicated (oversampling)

to match a given distribution. This method is also an indirect weighting but to the NN jets with event

2 Due to the symmetric ATLAS detector and the symmetry of physics processes in =£1], the absolute value is used.
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b-jets (34.4%)

light-flavour jets
(50.6%)

c-jets (15.0%)

Figure 9.5.: Flavour composition of the hybrid sample.

Undersampling Oversampling

Copies of the

opie y,
minority class;//-

Original dataset Original dataset

Figure 9.6.: Illustration of the resampling method to cope for imbalanced classes. The undersampling approach
is shown on the left and the oversampling approach is shown on the right [195].

weight equals one are passed. Luckily, sufficient MC statistics is available, so it is possible to only
make use of the undersampling method by removing jets from the majority classes. The b-jet pr
and [n| distributions are taken as reference and the c- and light flavour jets are undersampled. From
the full sample statistic, a subset from each flavour class is extracted such that in each pp—|n| bin the
same amount of jets per flavour is available. The binning used for the undersampling procedure is
optimised to be more granular in the lower pr region, especially in the sample transition region, and
to be wider for higher pr. In total 434 pr bins and 10 [n| bins are utilised for the resampling. The
resulting pt spectrum of the training hybrid sample is depicted in Figure 9.7. The small differences
originate from the usage of an equidistant binning in the plot. The hybrid || distribution is shown
before resampling in Figure 9.8 (a) and after resampling in Figure 9.8 (b).

The baseline taggers are not always succeeding, e.g. if there is no secondary vertex in the jet, the
SV1 or JETFITTER algorithm cannot extract any information and a default value is returned. The
fraction of default values for the IPxD, SV1 and JETFITTER are illustrated for the hybrid sample
in Figure 9.9. While the IPxD algorithms have almost no default values, the SV1 and JETFITTER
have significantly more cases where they cannot reconstruct a displaced vertex. Due to the design of
JETFITTER also single track vertices can be reconstructed and it therefore finds more often displaced
vertices than SV1. It is also nicely visible that in both cases the b-jets have the smallest fraction

of default values since a secondary vertex is expected to be present in the jet. The next category is
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Figure 9.7.: pr distribution of the undersampled hybrid sample.

c-jets, which usually also have a secondary vertex although it is more difficult to reconstruct them.
Light-flavour jets have the most default values since displaced vertices rarely appear.

BDTs can easily deal with default values which are set to a value way off the spectrum which is
normally done within ATLAS. However, the learning process of Neural Networks suffers from this
kind of default value treatment. Therefore, the default values are replaced by the mean of the inclus-
ive distribution. It is also possible to choose a different approach but the mean value is the simplest
solution. In some cases, the default values are also set to the edge value of the distribution for phys-
ics reasons. The energy fractions (f%‘”, f]JEF, fgc) are set to zero if it is not possible to reconstruct
a displaced vertex since in this case no energy is carried by a SV. In addition, the default values of
the variables Sil;z’ Ny;rtices’ N{l-:trk vertices® Ngrl;;s’ NJ;Z-trk vertices® Nngkcs’ Ng"}/rLVtx and N%lgxth are set

to the lower edge of the distributions. Two example distributions are shown with the default value

set to the mean for m’X (<mJF ) = 2.6GeV) in Figure 9.10 (a) and to the lower edge value for f]{:F

iny inv
(f]JEF = 0) in Figure 9.10 (b). The default values are combined with a binary check variable for each
baseline algorithm indicating if the algorithm returned default values. This allows the network to
distinguish between the cases where the default value is a true default value or is actually coming
from the underlying physics process. The binary indicator variables are listed in Table 9.1.

The last preprocessing step is to balance the ranges of the input variables such that they are all in
the same order of magnitude to improve the learning process of the NN. Therefore, all variables are
shifted to a mean of zero and a standard deviation of one, with the exception of the binary check vari-

JF

ables. The two kinematic variables, the JETFITTER mass m; . and the SV1 energy fraction il are
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Figure 9.8.: The | distributions of the hybrid sample (a) tt and Z’ merged without any further processing and
(b) resampled to match the b-jet spectrum. The b-jet distributions are normalised to unity and the
c-jet and light-flavour jet distributions to the normalised b-jet distribution.
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Figure 9.9.: Bar chart indicating the amount of default values per baseline tagger and flavour.

Variable Description
Binary check variables for the baseline tagger:
SVlipefaur  SV1
IP2Dispefaurr  1P2D
IP3DisDefault IP3D

JF;sDefault JETFITTER
JE} Default c-identification optimised JETFITTER

SMTispefaute  Soft Muon Tagger

Table 9.1.: Binary check variables indicating if a baseline algorithm returned default values.

shown in Figure 9.11 with the full preprocessing applied. All remaining variables which are summar-
ised in Figure 9.12 are also fully preprocessed. Furthermore, outliers coming from jets in extreme
phase spaces are removed from certain distributions, which are far off the spectrum and would only

disturb the training process.
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Figure 9.12.: All remaining variables used for the DL1 tagger family after fully preprocessing (resampled,
scaled and shifted). All distributions normalised to unity.



PARTICLE FLOW JETS TRAINING OF THE DEEP LEARNING BASED
HEAVY-FLAVOUR TAGGER

b-tagging is crucial for most physics analyses in ATLAS. Therefore it is important to provide a
collaboration-wide tagger recommendation as well as its calibration. In this thesis, the b-tagging
algorithm is studied and optimised to be provided for the whole collaboration. All studies in this
chapter use particle flow jets, which is the default jet collection in ATLAS since 2020.

The previous b-tagging algorithm was optimised for EMTopo jets. To improve the b-tagging per-
formance even further the algorithms are reoptimised (retrained) for PFlow jets. The main focus
lies on the DLIr tagger, which includes the RNNIP information and should become the new default
b-tagger in ATLAS.

First, some general training optimisation studies are shown in Section 10.1, followed by a dedicated
hyperparameter optimisation on ATLAS GRID GPUs in Section 10.2, continued with a comparison

of the different tagger variants and the final performance overview in Section 10.3.

10.1 TRAINING OPTIMISATION

This section describes several smaller studies dealing with different improvements and physics im-

plications for the training of the tagger.

10.1.1  Smoothing Final Discriminant

The discriminant Dy, as defined in Equation (9.1) is used to determine the working points (WPs)
which define if a jet is considered to be a b-jet. In Figure 10.1 the discriminant of the 2018 baseline
DLI version [185] (previous tagger iteration) is shown. The WPs are indicated as vertical dashed
lines. Especially the 60% WP is critical since it is exactly at an edge of a peak in the b-jet distribution.
This can lead to a jump in the efficiency if a slight change occurs. Ideally, the distribution should
be smoother to avoid such edge cases. Several studies were performed adapting the NN architecture
to trace down the cause of this effect. It turned out that the usage of Dropout caused this peaky
distribution. This most probably happens since the information about the default value is crucial for
a good training and if this information does not get properly propagated through the network (which
can happen by dropping certain node connections) it can influence the training process. Typically,
Dropout makes the training more robust but in this specific case, it causes an effect which should be
avoided. Therefore, in the following model optimisation Dropout is not used.

However, Dropout was not the only reason for this effect though the dominant one. Switching to the
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Figure 10.1.: Baseline DLI discriminant from the previous tagger iteration (2018), the vertical dashed lines
are indicating the official b-tagging working points.

newer keras version (from keras! to keras2) and using the resampling approach was also resulting in
a smoother output distribution. Figure 10.2 shows the final discriminant for a training with the new
setup and a comparable sample size to what was used in the previous iteration. The hyperparameters
for this setup are summarised in Table 10.1. The distribution is much smoother, especially for b-jets

and thus a more robust working point definition is possible.

I I _
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Figure 10.2.: Baseline DLI discriminant for a revised training after removing Dropout, updating to Keras2 and
making use of resampling. The dashed lines show different b-jet efficiencies corresponding to
the b-tagging WPs.

10.1.2  Training Sample Statistic Implications

In the previous iteration of the DL1 tagger [185], a training set statistic of 5.1M jets was used and the
reweighting approach was applied. In this section, the implications of the training sample statistic
are being tested. The preprocessing is the same for all samples as described in Section 9.2 and is

based on the resampling approach.
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Hyperparameter Value

N hidden layers 8

Nnodes/layer [72, 57, 60, 48, 36, 24, 12, 6]
learning rate 0.01

Training batch size 4000

Training sample size 5.1M jets

Table 10.1.: Hyperparameters used for the revised baseline DLI training using Keras2 and resampling.

The training sample size is altered between 4.5M and 22M jets to study its influence on the learning
process. In a first step, three different training statistics are tested (4.5M, 6.2M and 8.3M) while
keeping the network architecture identical. The resulting performances are shown in Figure 10.3
as the blue (4.5M), orange (6.2M) and green (8.3M) lines. For both the c-jet and light-flavour jet
rejection no big differences are visible between the trainings with 4.5M or 6.2M input jets. There is
a small improvement in the light-flavour jet rejection by using 8.3M jets in the training. In general,
all plots of this type have binomial uncertainties indicated as their width. They are larger for the
light-flavour jet rejection since more jets are rejected yielding a lower statistic, especially for lower

b-jet efficiencies.
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Figure 10.3.: Performance comparison of different DLIr tagger setups for different training sample statistics,
(a) shows the c-jet rejection and (b) the light-flavour jet rejection as a function of the b-jet effi-
ciency. The coloured band indicates the binomial uncertainty.

In the next step, the NN architecture is adapted to be more complex, leaving the NN more freedom

to adjust the weights with larger training statistics, in this case 8.3M jets. Clearly, the performance



98

PARTICLE FLOW JETS TRAINING OF THE DEEP LEARNING BASED HEAVY-FLAVOUR TAGGER

improves for both c-jet and light-flavour jet rejection. Finally, the maximally available sample size
of 22M jets is employed which is limited by the amount of available c-jets in the tt sample due to the
undersampling approach. The performance improves by almost 20% in the light-flavour jet rejection
and in the c-jet rejection at a b-jet efficiency of 60% compared to the training with 4.5M training jets

shown in Figure 10.3.

Hyperparameter Baseline NN Complex NN (8.3M) NN (22M)

Nhidden layers 8 8 8

N odes/tayer : 1,29 (72, 57] (128, 72] (256, 128]
Nhodes/layer : 34 — 8 (60, 48, 36, 24, 12, 6]

Learning rate 0.01 0.01 0.01
Activation function =~ ReLu ReLu ReLu
Training batch size 3000 5000 15000

Table 10.2.: Overview of hyperparameters used for the training statistic studies.

The hyperparameters of the different networks are listed in Table 10.2. The complexity of the
networks are enhanced by increasing the number of nodes in the first and second hidden layers. In
addition, the training batch size is raised for larger statistics. Besides speeding up the training, since
fewer iterations over the training sample are necessary, also the performance increased by adapting
the batch size.

To perform the NN training with 22M jets it is necessary to change the training procedure. Usually,
the training sample is loaded into memory and the computation unit can directly access the data.
These 22M jets, however, do not fit into the memory anymore and a different procedure needs to be
established. The training sample needs to be read from the disk in batches during the training. In
order to speed this up, the process is parallelised with so-called pipelining. The CPU is reading the
batches from the disk and preparing it. The training itself is then performed on the GPU in parallel

as illustrated in Figure 10.4. This can be realised with tools from keras and TensorFlow.

GPU Training on Training on Training on Training on
batch 1 batch 2

batch n-1 batch n
time

>

Figure 10.4.: Schematic of the parallel training with CPUs and GPUs. The CPU reads the batches from the
disk and prepares them to feed them to the GPU, which is performing the training.

However, not only the training procedure but also the preprocessing needs to be adapted. The

shuffling of the training dataset which is normally done by the keras framework, needs to be done
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now by hand before the training. The shuffling is done to ensure an adequate representation of the

training sample in each training batch.

10.1.3  Performance Monitoring

To monitor the training process and directly check for possible overfitting as well as getting a first
performance measure, several quantities are evaluated and stored during the training. The monitoring
is designed such that it is possible to check the evolution already during the training.

Besides the loss and accuracy shown in Figure 10.5, also the c-jet and light-flavour jet rejection for

the 77% WP are evaluated, as illustrated in Figure 10.6. The presented training is performed with the
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Figure 10.5.: Training and validation (a) loss and (b) accuracy as a function of the training epoch. DLIr
training with 22M training jets as indicated in Table 10.2.

input variables for DLIr and 22M training jets using the hyperparameters listed in Table 10.2. All
distributions evaluated on the tt validation set show fluctuations up to epoch 100 and then converge.
The Z’ sample is only used for the high pr extension in the training while the physics sample of
interest is tt. Therefore tt only is used as validation sample to monitor the performance. The worse
performance of the hybrid training sample in terms of the loss in Figure 10.5 (a) and the accuracy in
Figure 10.5 (b) is due to the different sample composition. Generally, the tt sample shows a better

performance.

To further check the stability of the training, several epochs are evaluated in more detail in Fig-
ure 10.7. Also there, the same trend is visible: while the first epochs still show fluctuations with
respect to each other, the results for the epochs 120 and 150 are almost identical. For instance, the
improved c-jet rejection in epoch 3 is coming with a trade-off in its light-flavour jet rejection. In
addition, the two epochs 120 and 150 are performing best overall for the light-flavour jet rejection

and also very well in the c-jet rejection.
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Figure 10.6.:
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Light-flavour jet rejection (green) and c-jet rejection (orange) as a function of the training epoch
evaluated on the validation tt sample during the training. DLIr training with 22M training jets
as indicated in Table 10.2.
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Figure 10.7.: Epoch comparison of DLIr training for (a) the c-jet rejection and (b) light-flavour jet rejection.
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Due to the convergence of the background rejections, overfitting can be excluded. This can be also
shown by evaluating the c-jet rejection for a subset of tt of the training sample and the validation
sample shown in Figure 10.8. There are differences visible but there is no clear trend of the validation

set being less performant than the training sample.
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Figure 10.8.: c-jet rejection as a function of the b-jet efficiency evaluated on the training and validation tt
sample for pt < 250 GeV. DLIr training with 22M training jets as indicated in Table 10.2.

10.1.4 Optimisation of c-jet Fraction

The free parameter f. in the final discriminant indicated in Equation (9.1) needs to be optimised
for the individual trainings. A scan through different values of f. is shown in Figure 10.9 for the
DL]r training with 22M training jets as shown in Table 10.2. It nicely demonstrates the performance
shift from the c-jet rejection towards the light-flavour jet rejection by lowering the value of f. and
vice versa. Finding the optimal value for f. requires the input from physics analyses stating which
quantity (c-jet or light-flavour jet rejection) is more important. In the end, a compromise has to be
made covering the requirements of most analyses. A comparison of different f. performances with
the previous recommendation of baseline DLI is illustrated in Figure 10.10. The recommendations
for EMTopo jets (DL1 (2018)) used a f. value of 0.08 which roughly corresponds to the actual
fraction of c-jets in tt. From these plots it turns out that f. = 0.018 is better suited for the new DLIr
tagger, making a compromise between a better c-jet and light-flavour jet rejection. The fact that the f.

value needs to be smaller is due to the different composition of the training sample. Before, the c-jets
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Figure 10.9.: Scanning of several f. values for the DLIr tagger with 22M training jets. (a) shows the c-jet
rejection and (b) the light-flavour jet rejection.
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were only weighted to match the kinematic distributions of the b-jets, now with the undersampling
approach, the same amount of c-jets and b-jets (and light-flavour jets) are included in the training.
Thus the training sees more different c-jet topologies and can learn them better. To retrieve a similar

relative performance increase for c-jets and light-flavour jets, the f. value needs to be smaller.

10.1.5 Choice of SMT variables

The soft muon information as described in Section 8.4 is included in the DLIrmu tagger. There are
three different variable combinations available to describe the soft muon information as described in
Section 8.4: the variable set with the old d¢ sign calculation, the updated dy sign calculation (see
Table 8.6) and the soft muon NN combining this information (see Table 8.7). To choose the best
variable set as input for the DLIrmu training, all these variable sets are tested and their results are
compared in Figure 10.11. As expected the soft muon variables with the old d¢ sign definitions
perform the worst indicated as the red line in the plot. The combination of the new variable set com-
bined with the soft muon NN delivers the best results. Using the new soft muon variables alone gives
similar and only marginally worse results than the combination with the NN. The usage of the soft
muon NN variables gives a similar performance in terms of the light-flavour jet rejection and slightly
worse performance in the c-jet rejection compared to using the new soft muon variables directly.
The three latter variable combination sets with the updated dy sign calculation differ maximally by
roughly 2%.

In the end, the soft muon NN output was chosen as input set to the DLIrmu tagger, to not duplicate
the transferred information to the network by including the high-level information of the soft muon
NN and its input variables. In addition, it is also important to have a standalone tool as the soft muon
NN and therefore this set of input variables for the DLIrmu is chosen.

In general, it would be also a possibility to add an intermediate (additional) output with a separate
loss for the soft muon information to the DL.1 tagger which would also provide the soft muon inform-
ation separately and would also pass more information to the final network in a similar manner to the

UMAMI network described later in Section 12.1.
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Figure 10.11.: Performance comparison for different sets of soft-muon variables as input for the DLIrmu tag-
ger shown for (a) the c-jet rejection and (b) light-flavour jet rejection.

10.2 HYPERPARAMETER OPTIMISATION ON GRID GPUS

The training optimisation from Section 10.1 gave a significant gain in the tagger performance even
though the hyperparameters were so far only optimised by hand and no systematic scan was per-
formed. There are several possibilities to do a hyperparameter scan. The classic approach is the
grid-search in which a set of trainings with pre-defined hyperparameter combinations is compared to
each other. This allows to cover a large phase space, however, it is also costly in computations. Often
a certain phase space of the hyperparameters can be excluded by only evaluating a subset of them.
Besides the hyperparameter optimisation itself, a new technical infrastructure is introduced and stud-
ied in cooperation with ATLAS IT [196]. To test this new infrastructure, a heavy computational
workload is required, and the grid-search is a good use case. The detailed technical setup of the
hyperparameter optimisation is described in Chapter A.

Making use of this workflow, a hyperparameter optimisation is performed for a training of the DLIr
tagger. A subset of around 300 hyperparameter combinations is tested across five dimensions (3
layers, batch size and learning rate) as listed in Table 10.3 providing in total 450 combinations. The
hyperparameters are chosen such that they vary the most important hyperparameters starting from

the network architecture of the complex NN for 22M training jets in Table 10.2.

Each training is performed for 130 epochs to reach the convergence as e.g. shown in Figure 10.6
to avoid fluctuations. Figure 10.12 shows the scatter plots of the validation loss and the c-jet and

light-flavour jet rejection. Clearly, the validations loss seems not to be a good measure for choosing
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Hyperparameter Values
Nhidden layers 8

Nhodes/tayer : 1% 128, 256, 512
N odes/tayer : 2™ 96, 128, 256
Nhodesftayer © 3 60, 128

Nodestayer : 4" — 8% fixed to [48, 36, 24, 12, 6]
learning rate 5 values between 10~* and 0.01
Training batch size 5 values between 20000 and 40000
Activation function =~ ReLu

Training sample size  22M jets

Table 10.3.: Hyperparameter combinations yielding in total 450 combinations.

the best set of hyperparameters. The scatter plots show for both the c-jet rejection and the light-
flavour jet rejection a big spread and not a common trend. Even worse, several points are clustering
horizontally for similar values of the validation loss but spanning a wider range in the background
rejections. This means that even if the loss stays the same, the physics results change.

Therefore, another measure to quantify the performance of a hyperparameter set needs to be chosen.
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Figure 10.12.: Results of the hyperparameter optimisation showing a scatter plot between the validation loss
and (a) the c-jet rejection and (b) the light-flavour jet rejection at the 77% WP.

The hyperparameter combinations are individually ranked by their c-jet and light-flavour jet rejection
at the 77% WP. Typically, in the cases where the c-jet rejection is better the light-flavour jet rejection
is worse and vice versa. Afterwards the two rankings are iteratively scanned from the top to the
bottom and the first hyperparameter combination which is found in both rankings is chosen as the
best combination. This is not necessarily the best ranked hyperparameter set from the individual
ranks.

All hyperparameter combinations are visualised in the parallel coordinates plot in Figure 10.13 where
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the red line indicates the best hyperparameter combination.
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Figure 10.13.: Parallel coordinate plot showing the different hyperparameter combinations for the DLIr hyper-
parameter scan. The red line indicates the best combination.

The best hyperparameter combination compared to the by-hand optimised network is shown in
Figure 10.14. The differences are only very small comparing the orange (by-hand optimised NN)
and green curve (best combination). While the c-jet rejection improves slightly, the light-flavour
jet rejection is a bit worse for the optimised hyperparameters. This difference can be corrected by
adapting the f. value shown in the red curve (by-hand optimised NN with f. = 0.02) delivering
the same performance as the optimised hyperparameters. It was also checked that the batch size has
no big influence on the performance, as example shown in Figure 10.15, since only values between
20000 and 40000 are scanned and for the by hand-optimised network a batch size of 15000 is used.
Since the batch size has no influence and the performance differences are marginal, the by-hand
optimised hyperparameters are kept with the certitude that the network is well optimised and the

optimised f. value can be kept.

Hyperparameter Values

Nhidden layers 3

Nrodes/layer (256,128, 60,48, 36,24,12, 6]
learning rate 0.01

Training batch size 15000

Activation function ReLu

Free (trainable) parameters 59,275

Fixed parameters 1,140

Training sample size 22M jets

Table 10.4.: Final network architecture for the DLIr tagger.
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10.3 PERFORMANCE OVERVIEW AND TAGGER VARIANTS COMPARISON

As shown in the sketch 9.2, three different versions of the DL1 tagger family are investigated. The
DLIr version was discussed in detail above. The other two variants, the baseline DLI1 and DLIrmu
are also retrained. The retraining of the baseline DLI is done to have a backup solution in case the
DLIr tagger would have not been calibratable. This luckily turned out to not be the case [197]. The
DLIrmu variant is also retrained but not calibrated since the light-flavour jet rejection is too high
and thus the uncertainties would be too large to ensure a proper calibration. Different studies were
performed to adapt the NN architecture for the baseline DLI and DLIrmu. The DLIr architecture
described in Table 10.4 was found to perform also well for these other two variants. The only differ-
ence is the batch size which is set to 20000 for the baseline DLI and DLIrmu to speed up the training

a bit with no impact on the performance.

The DLIr tagger outputs are shown in Figure 10.16 for all three output nodes providing the prob-
abilities for every jet to be a b-, c- or light-flavour jet. In general, b-jets have the largest separation
from the other two flavour categories (Fig. 10.16 (a)). While the c-jets still show a small separation

(Fig. 10.16 (b)), the light-flavour jets are not well separable (Fig. 10.16 (c)). These outputs are then
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Figure 10.16.: The network output distributions of the DLIr tagger for (a) the b-jet node (b) the c-jet node and
(c) the light-flavour jet node.
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combined into the final b-tagging discriminant of the DL/ r tagger which is shown in Figure 10.17. It
is a smooth curve with the b-jets taking larger values with respect to the c-jets and light-flavour jets.
The standard ATLAS WPs are indicated as dashed lines indicating the cut on the Dy, discriminant.

The distributions of the baseline DLI and DLIrmu tagger discriminants are shown in Figure 10.18.
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Figure 10.17.: DLIr b-tagging discriminant separately shown for b-jets (blue), c-jets (orange) and light-
flavour jets (green). The vertical dashed lines are indicating the official b-tagging working
points.

Also, their curves are very smooth and have no sharp edges and thus the WP definition does not
suffer from the effect described in Section 10.1.1. The b-jet distributions are peaking more strongly
for DLIr than for baseline DLI for high Dy, and even more for DL1rmu which is expected to happen
since the networks have more information available to classify b-jets. The f. values were separately
optimised and for the baseline DLI the same value as for DLIr f, = 0.018 is used, while for DL1rmu

a value of f. = 0.03 was found to give better performance.

The pr dependent performance is representatively evaluated for the 77% WP. Figure 10.19 and
10.20 show the pt dependent background rejection for a tt and an extended Z' sample, respectively.
In this case, the b-jet efficiency of e, = 77% is kept constant per pt bin. Overall, the expected
trend that DLIr outperforms the baseline DLI and DLIrmu outperforms DLIr is visible in all four
plots in every bin. The pr spectrum up to 250 GeV is shown for the tt sample and the extended
Z’ covers the higher pr spectrum from 250 GeV upwards. The improvements in the tt sample are
almost constant over the full p range (Fig. 10.19) between the three tagger variants. Therefore, the

additional RNNIP and soft muon information contribute to the performance gain in this lower pr
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Figure 10.18.: The (a) baseline DLI and (b) DL1rmu discriminants, the vertical dashed lines are indicating the
different working points.
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regime. Looking at the higher pr regime (Fig. 10.20), the first two bins show a similar behaviour
while going to higher pr values the soft muon information is not helping anymore. Hence, the RN-
NIP information improves the high pt b-tagging while the soft muon information is not. This comes
from the fact, that the RNNIP tagger was optimised on the high pr extended Z' sample while it is

getting more difficult to extract and associate the muon information to the b-hadron decay for high

pT-

The Figures 10.21 and 10.22 show the inclusive 77% WP, which is defined on an inclusive tt
sample including all data taking periods', and is evaluated on the tt and extended Z' sample, re-
spectively. The b-jet efficiency plot for tt in Figure 10.21 (c) reveals that the b-jet efficiency is not
flat as a function of pr but increasing with pr. All three taggers show the same trend in terms of
the increasing b-jet efficiency. Consequently, the c-jet rejection (Fig. 10.21 (a)) and the light-flavour
jet rejection (Fig. 10.21 (b)) are much flatter than for the above case where the b-jet efficiency was
maintained for every single bin. Similar to the constant b-jet efficiency the three taggers have the
same performance behaviour with respect to each other (baseline DL1 < DLIr < DLIrmu).

In contrast, the performance behaviour on the extended Z' sample changes more drastically with the
inclusive b-jet efficiency. As illustrated in Figure 10.22 (c), the b-jet efficiency decreases drastically
for higher p values. The RNNIP information stabilises this decrease a bit as well as the soft muon
information while the baseline DLI shows a larger decrease down to about 5% at 5 TeV compared to
slightly more than 10% for DLIr and DLIrmu. This behaviour is also reflected in the background re-
jection. For both, the c-jet rejection (Fig. 10.22 (a)) and the light-flavour jet rejection (Fig. 10.22 (b))
show an inverted performance compared to what is usually expected. Already in the second pr bin
for the c-jet rejection the performance order is inverted which means that the baseline DLI has a
higher rejection than DLIr and DLIr higher than DLIrmu. For the light-flavour rejection, this effect
is starting in the 4™ pr bin. However, appearances are deceiving since the lower b-jet efficiencies in
the higher pr bins cause this inversion. Therefore, the background rejections are higher but also less

b-jets are passing this selection.

The comparison of the full b-jet efficiency spectrum is illustrated in Figure 10.23 for the tt sample.

Including the RNNIP information in the tagger training improves the c-jet rejection constantly by
about 15% over a wide b-jet efficiency range (60% to ~ 80%). Similarly, the additional soft muon
information gives another ~ 20% between 60% and ~ 75% b-jet efficiency. For higher b-jet effi-
ciencies the performance differences are decreasing for the c-jet rejection but are still around 5% to
~ 15% at a b-jet efficiency of 85%, which is the loosest WP used in ATLAS.
The light-flavour jet rejection (Fig. 10.23 (b)) improves with the RNNIP information by almost 25%
over the full b-jet efficiency spectrum relevant for the WP definition, it even increases more for a
b-jet efficiency of ~ 84% compared to the baseline DLI. Another 10% performance gain is achieved
adding the soft muon information, again applicable over the full b-jet efficiency range relevant for
the WPs.

1 As areminder, these performance plots are only evaluated on the 2017 data taking period pile-up profile.
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Figure 10.21.: pt dependent performance for an inclusive b-jet efficiency of 77% defined on an inclusive tt
sample (official ATLAS cut value) for the (a) c-jet rejection, (b) light-flavour jet rejection and
(c) the b-jet efficiency as a function of pr for the tt sample.

Even though the DLIrmu tagger performs best, it cannot be used in physics analyses since it is not
possible to calibrate the light-flavour mis-tag rate. As pointed out in Section 8.6, if the light-flavour
jetrejection is too high, the uncertainties on the scale factors are getting really large due to drastically
reduced statistics. While this can be overcome for DLIr by using a flipped tagger (see sec. 8.6), this

is not possible for the SMT information.
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Figure 10.22.: pr dependent performance for an inclusive b-jet efficiency of 77% defined on an inclusive tt
sample (official ATLAS cut value) for the (a) c-jet rejection, (b) light-flavour jet rejection and
(c) the b-jet efficiency as a function of pr for the extended Z' sample.
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.. Performance comparison of the three different DL1 tagger versions: baseline DLI (blue), DLIr
(red) and DLIrmu (orange) for the (a) c-jet rejection and (b) light-flavour jet rejection as a
function of the b-jet efficiency.



10.3 PERFORMANCE OVERVIEW AND TAGGER VARIANTS COMPARISON

10.3.1 Comparison to previous Recommendations

Before the DL1r taggers were retrained and reoptimised, the recommended taggers were the MV2c10
tagger and the previous iteration of the baseline DLI tagger (DL1 (2018)), both optimised on EMTopo
jets. The new recommendation is now to use the DLIr tagger for particle flow jets, provided to
the whole ATLAS collaboration. A comparison of the two previous recommendations and the new

recommendation is shown in Figure 10.24. Compared to MV2c10, the new DLIr improves by up to

70% and 120% for the c-jet and light-flavour jet rejection, respectively, evaluated at the 60% WP.

This major improvement leads to gains, especially in analyses which heavily depend on b-tagging

such as the ttH(bb) analysis.
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Figure 10.24.: Performance comparison of the previous recommendations (MV2 and DL1 (2018)) and the

newly optimised DLIr tagger for the (a) c-jet rejection and (b) light-flavour jet rejection as a
function of the b-jet efficiency.



VARIABLE RADIUS TRACK JETS TRAINING

Track jets are of special interest for boosted topologies and have a variable radius depending on
their jet pr, described in more detail in Section 6.2.1. The first dedicated training for these jets
is presented in the following. The basic training principle with the preprocessing chain and the
architecture is taken from the PFlow jets training described in chapters 8 and 10. The adaptations for

the application to VR Track jets and their performance are described in this chapter.

11.1 TRAINING SAMPLE CREATION

The input features for the different tagger versions (see Fig. 9.2) are the same as for PFlow jets. The
pr distribution of the VR Track jets, as shown in Figure 11.1, is quite different compared to the PFlow
jets. The pr spectrum of the extended Z' sample is not as flat as for PFlow jets for high transverse
momenta and consequently, the statistics is not as high in the high pt regime. Additionally, the

standard Z' is also shown which has a steeper decrease in p than the extended version.

. _—— . ————— _—
& 10°= s =13TeV, VR track jets Cod etz 3 % 19 y5-13TeV, VRirackjets [— 3 ext.Z' 3
g E  b-ets Z' w7 stat.unc. ] g F  light-flavour jets Z' w7 stat.unc. ]
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Figure 11.1.: pr distributions of the tt sample , Z’ sample and extended Z’ for (a) b-jets and (b) light-flavour
jets.

The hybrid sample definition for the VR Track jets turned out to not be as straight forward as for
PFlow jets. Already in the retraining of RNNIP for VR Track jets, it was found that the extended Z’
sample hurt the training and the training on the hybrid sample could not reproduce the training on
the dedicated samples (tt and extended Z’ separately). The solution in this case was to use only the
leading and subleading jets from the standard Z' sample as well as lowering the sample transition
cut to pr = 125GeV.

For the DL1 training, these studies were repeated and also here it was observed that the hybrid

117



118

VARIABLE RADIUS TRACK JETS TRAINING

definition from PFlow jets applied to VR Track jets degrades the performance (background rejection).
The pr distributions for b- and light-flavour jets in Figure 11.2 reveal several differences among them.
The pr distributions are shown for all jets in an event (inclusive), for the four leading jets (the four
jets with the highest pr in an event) and the two leading jets. The number of light-flavour jets at
low pr is reduced when considering the four leading jets and even more by only considering the first
two leading jets. This is expected since soft initial and final state radiation is dominated by light
constituents. Since the tt sample is used to populate the lower pr range, the four leading jets are
chosen to be taken into account for the training.

The standard Z' sample retains more statistics compared to the extended Z' by requiring only the
first two or four leading jets. Both scenarios: using either the standard Z' or the extended Z' in
the training were investigated. Different training studies were performed to optimise the hybrid
composition. The extended hybrid sample showed strong overfitting and the training only converged
by regulating it with Dropout. However, Dropout introduced the uneven distributions of the output
discriminants as already described for PFlow jets in Section 10.1.1. In addition, the training with the
standard Z' sample showed adequate results when applied to the extended Z' sample which was not
the case the other way around. The additional advantage is that the standard Z' sample is available
for all three data taking periods and thus more statistics can be used in the training. Since Z’ is
used for the higher pr regime, only the two leading jets are utilised. To ensure a smooth transition
between the two samples, the pr cut for tt is chosen to be higher (400 GeV) compared to the PFlow
jets, the lower pr cut for Z’ is reduced to 125 GeV and an upper limit of 3 TeV is applied. All hybrid
selections are summarised in Table 11.1.

The choice of the hybrid training sample turned out to be the most critical part of the VR Track jets

training. Once this was solved the further training was analogous to the PFlow jets procedure.

Jet Flavour tt standard Z'

all flavours 4 leading jets 2 leading jets

b-jets b-hadron pr < 400GeV  125GeV < b-hadron pr < 3TeV
cjets jet pr < 400 GeV 125GeV < jet pr < 3TeV

light-flavour jets

Table 11.1.: Selections used to build the hybrid training sample for VR Track jets.

The resampled pr and [n| distributions are illustrated in Figure 11.3. The 2-D binning has been
optimised for the VR Track jets to cope for the different pt range with respect to PFlow jets. In
total, 20M jets are left after the resampling and can be used for the training. The resulting variable

distributions with the full preprocessing applied are shown in Figures 11.4 and 11.5.
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Figure 11.2.: pr distributions for all jets in an event (inclusive), the four leading jets and the two leading jets

for the tt sample (a) & (b), Z’ (c) & (d) and extended Z' (¢) & (f). The left column shows the
b-jet pr distributions and the right column the light-flavour jet p spectra. The distribution with
the label inclusive is normalised to unity and all other distributions are then normalised to the
inclusive integral.
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Figure 11.3.: (a) the pr and (b) the [n| distribution of the hybrid sample resampled to match the b-jet spectrum.
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11.4.: First part (of 2) of input variables used for the DL1 tagger family training, fully preprocessed

(resampled, scaled, shifted and default values replaced).
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Figure 11.5.: Second part (of 2) of input variables used for the DL1 tagger family training, fully preprocessed
(resampled, scaled, shifted and default values replaced).
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11.2 TAGGER TRAINING

After the hybrid training sample was optimised ensuring a robust training, the training itself is similar
to the PFlow jets training. Similar to the hyperparameter optimisation described in Section 10.2 a
small scan is performed with again no better configuration found than the by-hand designed architec-
ture which is summarised in Table 11.2. In fact, the architecture is the same as for PFlow jets (see

Table 10.4) except the increased training batch size.

Hyperparameter Values

Nhidden layers 8

N nodes/layer (256,128, 60,48,36,24,12,6]
learning rate 0.01

Training batch size 45000

Activation function ReLu

Free (trainable) parameters 59,275
Fixed parameters 1,140

Training sample statistic 20M

Table 11.2.: Final network architecture for the DLIr tagger for VR Track jets.

The training is monitored to ensure that no overfitting is occurring and to see if the training is
robust. Figure 11.6 shows the loss and accuracy for both the training and validation sample. Also

here, the loss and accuracy converge after around 110 epochs. After a first decrease in the training
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Figure 11.6.: Training and validation (a) loss and (b) accuracy as a function of the training epoch. DLIr
training with 20M training jets as indicated in Table 11.2.

loss, it stays constant around epoch 60 until a small drop occurs around epoch 85 and again a smaller
drop around epoch 95. Interestingly, after these drops, the validation loss stabilises more and more.
These drops are coming from the learning rate scheduler which reduces the learning rate, when the

training loss did not change after a certain amount of epochs. Often, if the learning rate is too large,
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the network is jumping over the minimum and by decreasing the learning rate it can help the network
to find the minimum. This seems to exactly happen in this case.

In addition, the background rejection at the 77% WP is monitored for the validation sample illustrated
in Figure 11.7. After fluctuations in the first epochs, similar to the loss, the background rejection
also converges. The network does not show signs for overfitting, on the one hand verified by the
convergence of the validation loss and on the other hand, the same performance comparison as shown
for PFlow jets in Figure 10.8 also yielded the same conclusion.

The f. values were chosen to be identical to the values from the PFlow jets which provided again a

good compromise between the c- and light-flavour jet rejection.
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Figure 11.7.: Light-flavour jet rejection (green) and c-jet rejection (orange) as a function of the training epoch
evaluated on the validation tt sample during the training. DLIr training with 20M training jets
as indicated in Table 11.2.
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11.3 PERFORMANCE OVERVIEW AND TAGGER VARIANTS COMPARISON

The architecture of the DLIr tagger defined in Table 11.2 is used also for the baseline DLI and
DLIrmu training. The resulting final b-tagging discriminant is shown in Figure 11.8 for all three
variants. The same behaviour as for the PFlow jets training is also observed here, the distributions
are smooth enough to allow a good WP definition and the b-jets are peaking more towards higher

values the more information is used in the training.
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Figure 11.8.: The (a) baseline DLI, (b) DLIr and (c) DLIrmu discriminants, the vertical dashed lines are
indicating the WPs.

The pr dependent performance comparisons are shown in Figures 11.9-11.11. A constant effi-
ciency per pr bin is maintained for the plots in Figure 11.9 and 11.10. For lower transverse mo-
menta, the performance is evaluated on a tt sample (Fig. 11.9) where the DLIr tagger outperforms
the baseline DLI tagger and the DLIrmu tagger again the DLIr tagger in each pt bin whereby espe-
cially for the last two bins the performance differences are well compatible between the three variants
within their uncertainties. The higher transverse momenta regime is investigated on a standard Z'
sample (Fig. 11.10). Also similar to the observations for PFlow jets, the biggest performance gain at

high pr is achieved by employing the RNNIP information.
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The performance as a function of p for the 77% fixed cut WP is shown in Figure 11.11. The b-jet

efficiency of the tt sample (Fig. 11.11 (e)) is consistent between the three tagger variants, also here

it is not constant over the full pr range but raises in the beginning and flattens out. This is again
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Figure 11.9.: pt dependent performance for a constant b-jet efficiency of 77% per bin for the (a) c-jet rejection
and (b) light-flavour jet rejection for the tt sample.
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Figure 11.10.: p dependent performance for a constant b-jet efficiency of 77% per bin for the (a) c-jet rejec-
tion and (b) light-flavour jet rejection for the extended Z' sample.

in contrast to the behaviour at high transverse momenta demonstrated on the standard Z' sample

(Fig. 11.11 (f)). In this case, the b-jet efficiency decreases with pr, however, not as drastically as

for PFlow jets. Similarly, the baseline DLI b-jet efficiency falls faster than for DLIr and DLIrmu.

While the performance order is retained on the tt sample for the b-jet rejection (Fig. 11.11 (a))

and light-flavour-jet rejection (Fig. 11.11 (¢)), i.e. baseline DLI < DLIr < DLIrmu, this order is

inverted for the c-jet rejection at high pr on the standard Z' sample (Fig. 11.11 (b)) due to the lower

b-jet efficiency. However, the light-flavour jet rejection (Fig. 11.11 (d)) does not suffer so much from

this effect. Still, it is also visible at pt > 2 TeV but in this regime, the statistical uncertainties are so

large that they cover this effect.
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Figure 11.11.:

pr dependent performance for an inclusive b-jet efficiency of 77% defined on an inclusive tt
sample (official ATLAS cut value) for the (a) & (b) c-jet rejection, (c) & (d) light-flavour jet
rejection and (e) & (f) the b-jet efficiency. The evaluation is done on a tt sample (left column)
and on a standard Z' sample (right column).
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The inclusive p performance as a function of the b-jet efficiency is shown in Figure 11.12 com-
paring the three tagger variants. A similar picture emerges compared to PFlow jets. The additional
RNNIP information improves the c-jet and the light-flavour jet rejection by about 10% (with some
fluctuations) to a b-jet efficiency of 80%. At this point, the light-flavour jet rejection increases while
the c-jet rejection decreases. The general trend when including the additional soft muon information
follows the one of DLIr with an increased performance of about 10% in the light-flavour jet rejection
(increases slightly more at a b-jet efficiency of 80%). Additionally, an improvement of around 25%
in terms of the c-jet rejection is achieved up to a b-jet efficiency of 75% where it starts decreasing
again. The larger improvement in the c-jet rejection compared to the light-flavour rejection is due
to the f. value of 0.03. It was decided to keep this consistent with the PFlow jets results since in
general the DLIrmu tagger cannot be calibrated.

Also, for VR Track jets the tagger DLIr will become the new recommendation for physics analyses
in ATLAS. Thus the comparison to the previous recommendation in ATLAS (MV2c10 and baseline
DLI optimised on EMTopo jets) is important to quantify the improvements achieved with the newly
optimised DLIr tagger. Figure 11.13 shows this comparison as a function of the b-jet efficiency with
large improvements in both c- and light-flavour jet rejection of up to 60% and 120% at 60% WP,
respectively. The light-flavour jet rejection performance gain is more constant over the full b-jet
efficiency spectrum while for the c-jet rejection there is almost no gain for b-jet efficiencies larger

than 80% and the rejection is only slightly better for b-jet efficiencies around 75%.
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Figure 11.12.: Performance comparison of the three different DL1 tagger versions: baseline DLI (blue), DLIr
(red) and DLIrmu (orange) for the (a) c-jet rejection and (b) light-flavour jet rejection as a
function of the b-jet efficiency.



11.3 PERFORMANCE OVERVIEW AND TAGGER VARIANTS COMPARISON

2 | —— MV2c10 i
% \ —— DL1(2018) (f.=0.08) |
5 —— DL1r (2019) (f. = 0.018)
)
VS =13 TeV, VR track jets, tt Sim.
4 leading jets
10! — —
\
ol e b b by b by s
D e e
o 14 =
T 31
Ly —
e e T T Y T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 11.

b-jet efficiency

(@)

13.: Performance comparison of the previous recommendations (MV2 and DL1 (2018)) and the
newly optimised DLIr tagger for the (a) c-jet rejection and (b) light-flavour jet rejection as a

function of the b-jet efficiency.

s L e O e
= L —— MV2c10 4
% I —— DL1 (2018) (f,=0.08) -
3, —— DLIr (2019) (- =0.018) |
5 = |
o C ]
3 r 1 ]
=t Vs =13 TeV, VR track jets, tt Sim. -
§’ : 4 leading jets :
10% = =
10" = =
ool b b b b e
2.5:\\\\lwwwwlwwwwlwwwwlwwwwlww\\lwwwwlwwww_:
o 20F :
S ]
011.5:— —
1.0 [pp—————t e T e P
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

b-jet efficiency

(b)

129






ONGOING DEVELOPMENTS IN FLAVOUR TAGGING

The retraining campaign described in the two previous chapters delivered a large performance gain
for b-tagging in ATLAS. The NN-based tagger architectures provide a flexible basis for further de-
velopments in this domain. The next logical step is to perform a joint training of the DL1 tagger and

the successor of RNNIP, described in more detail below.

12.1 UMAMI

Inspired from the Japanese word UMAMI for the fifth basic taste, or the fifth flavour, a new end-to-end
tagger is being developed. It joins the developments of the high-level tagger optimised in this thesis
and the recent improvements in the track based tagger Deep Impact Parameter Sets (DIPS) [137],
the successor of RNNIP. The advantage of the Deep Sets architecture [198] of the DIPS tagger
compared to RNNIP is its sum pooling layer. A pooling operation is a lossy summary of a set of
features. Mostly an average, maximum or sum pooling is used which takes the average of several
layers, the maximum value or their sum. For RNNIP the order in which the tracks are passed to the
network matters due to its underlying Recurrent Neural Network structure. The tracks are ordered by
the signed impact parameter s 4,. However, the tracks originating from b-hadron decays do not have
a physically motivated ordering per se. With the new architecture, the ordering is obsolete since the
sum pooling layer is permutation invariant. As demonstrated in Ref. [137], and shown in Figure 12.1,
the DIPS architecture outperforms RNNIP. Another important advantage is its parallelisability which

reduces the training time by more than a factor three [137] as well as its evaluation time.
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Figure 12.1.: Performance comparison of the RNNIP (green) and the DIPS (purple) algorithms in terms of the
(a) c-jet rejection and (b) the light-flavour jet rejection as a function of the b-jet efficiency. The
uncertainty bands originate from the standard deviation of five trainings [137].

12.1.1 DIPS Network

The DIPS architecture is shown in Figure 12.2 as a part of the UMAMI architecture. The sub-networks
¢ and F represent the DIPS part. Each track is characterised by its track variables listed in Table 12.1.
The corresponding variable distributions are shown in Figure 12.3 for the hybrid sample composed
of tt and extended Z' for PFlow jets as it was used for the DL1 PFlow jets training (see Section 9.2
for more details). The scaling and shifting of the variables is described in Ref. [137]. Due to the
long tails in the pAT@¢ and the AR distributions, their logarithms are used. The shifting and scaling is
only applied to the following variables: log(p?‘lc) (Fig. 12.3 (c)), log(AR) (Fig. 12.3 (d)), nPixHits
(Fig. 12.3 (i)) and nSCTHits (Fig. 12.3 (1)). All other variables have already a mean close to zero and
are therefore not shifted and the differences in their values do not necessitate an additional scaling.

Each track in a jet is first processed through a network ¢ as indicated in Figure 12.2. In the next

step, all n track networks, corresponding to the number of tracks in a jet, are summed up and further

processed via the network F. This can be summarised into

pi=F (Z ¢(%§)> , (12.1)
i=1

where X! are the track input features and P is the vector of the b-, c- and light-flavour jet class

probabilities corresponding to the DIPS output nodes.
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Figure 12.2.: Network structure of the combined DL1 and DIPS tagger UMAMI.
Input | Description Preprocessed
Sd, do/0q0: Transverse IP significance
$,0 20 sin 0/0,0sino: Longitudinal IP significance
log pfrac log pirack /plet: Logarithm of fraction of the jet pr carried by v
the track
log AR Logarithm of opening angle between the track and the jet axis v
IBL hits Number of hits in the IBL: could be 0, 1, or 2
PIX1 hits Number of hits in the next-to-innermost pixel layer: could be
0,1,0r2
shared IBL hits | Number of shared hits in the IBL
split IBL hits Number of split hits in the IBL
nPixHits Combined number of hits in the pixel layers v
shared pixel hits | Number of shared hits in the pixel layers
split pixel hits Number of split hits in the pixel layers
nSCTHits Combined number of hits in the SCT layers v
shared SCT hits | Number of shared hits in the SCT layers

Table 12.1.: Input features for the DIPS algorithm [137]. The right column Preprocessed indicates if the
variables are shifted to mean zero and scaled to significance of one.
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12.1 UMAMI

12.1.2  Joint Architecture

The DLIr tagger already used the information of the RNNIP in the training. However, the used RN-
NIP information was limited to the outputs of the standalone RNNIP algorithm which are the three
flavour class probabilities. A joint architecture allows to pass more information to the jet-network
which is the U NN in the sketch 12.2. In this case, a layer with 30 nodes (units) is concatenated
with the other jet features which are processed through one NN layer with 72 nodes. Apart from
this, a full back-propagation up to all the track NNs ¢ is done in the training allowing a joint optim-
isation. The DIPS part has also an intermediate loss which maintains the possibility to evaluate the
DIPS performance separately and also is an implicit help for the network to optimise this network
branch. After the combination of the DIPS part and the jet features a final feed-forward network U is
employed inspired by the DL1 architecture with also three output nodes corresponding to the flavour
probabilities.

Both networks, F and U have their dedicated losses. While the loss of the U network J(U) is sensitive
to the track and the jet features, the loss of the F network J(F) is only sensitive to the tracks. The

overall optimisation is performed on the combined loss

d(comb.) = J(U) +A-J(F) = J(UmMaMI) + A - J(DIPS), (12.2)

where the parameter A defines the importance of the two losses.

12.1.3 UMAMI Training

The training of the UMAMI tagger is only in a preliminary phase and no dedicated optimisation stud-
ies were performed so far. Due to technical reasons, only the standard version of DIPS from [137]
is studied and not the optimised version with a looser track selection. The A parameter from Equa-
tion (12.2) is set to 1 and a training statistic of 6M jets is used. The corresponding loss and accuracy
curves for the training and validation set are shown in Figure 12.4. As expected, the loss J(U) is
better (lower) than the DIPS loss J(F) since J(U) encodes the track and jet information. The training
losses for DIPS and UMAMI show a constant downwards trend also still after 160 epochs. In general,
the DIPS validation loss and accuracy are fluctuating more than for UMAMI. Around epoch 100 it
seems that the DIPS part is starting to overfit, the loss is increasing. Figure 12.5 shows the back-
ground rejection as a function of the training epochs for both sets of the network outputs (DIPS and
UmaMiI). Here, the same effect is visible, while the c-jet rejection stays almost constant after epoch
100 (Fig. 12.5 (a)), the light-flavour jet rejection decreases. This behaviour also propagates to the
UMAMI performance where the light-flavour jet rejection starts decreasing as well around epoch 100
but seems then to stabilise again, correcting in some sense for this behaviour of the DIPS network.
A similar effect is already visible around epoch 45 for the light-flavour jet rejection but recovering

again slightly around epoch 80.
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Figure 12.4.: Epoch-dependent training and validation loss (a) and accuracy (b) for the DIPS and UMAMI
outputs.
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Figure 12.5.: Light-flavour jet rejection (red) and c-jet rejection (blue) as a function of the training epochs for
the (a) DIPS and (b) UMAMI output nodes of the tagger. The vertical dashed lines indicate the
performance of the current recommendations RNNIP and DLIr.

The UMAMI background rejection reveals a slightly different picture. The light-flavour jet rejection
reaches a maximum around epoch 20 and then continuously decreases until it stabilises more around
epoch 90 with the small decrease and recovery mentioned above. The c-jet rejection follows an op-
posite trend, after some larger fluctuations in the beginning, it starts to increase and reaches after

certain fluctuations a still pretty noisy plateau after epoch 100.

To avoid the regions where overfitting occurs, an epoch around the maximum for the light-flavour
jet rejection in UMAMI is used for further comparisons, corresponding to epoch 17. The background
rejection versus b-jet efficiency plots are shown in Figure 12.6 for the intermediate DIPS output and
for UMAMI in Figure 12.7. DIPS outperforms RNNIP in terms of the light-flavour jet rejection and
is slightly worse for the c-jet rejection. This effect can be compensated by adapting the f. parameter.
Thus the intermediate DIPS output of the joint UMAMI training provides already promising results.

The final UMAMI performance (Fig. 12.7) improves compared to DLIr in the light-flavour jet rejec-
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tion over the full b-jet efficiency range and degrades for the c-jet rejection. Again, these differences

can be compensated with the f. parameter.
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Figure 12.6.: DIPS (orange) performance compared to RNNIP (blue) in terms of (a) the c-jet rejection and (b)
the light-flavour jet rejection as function of the b-jet efficiency.

12.1.4  Possible Improvements and Outlook

This first study creating a combined architecture of DIPS and DL1 shows already promising results.
Nevertheless, there are lots of possibilities to improve and understand the tagger better avoiding over-
fitting.

The next steps would be to make use of the optimisations described in Ref. [137] by loosening the
track selection and including the impact parameters do and zp sin 0 in the training. Furthermore,
extensive optimisation studies need to be done on the network itself: the loss function from Equa-
tion (12.2) needs to be optimised, in particular the A parameter. The number of hidden layers and
their number of nodes requires some tuning. In addition, attention techniques are worth to be tested.
They allow to adapt the importance of the different tracks in the jet by assigning them a weight de-
pending on a certain feature e.g. the impact parameter or pr. Another possibility is to test different

pooling operations besides the sum operation, e.g. the average or the maximum.

In conclusion, this new architecture is most probably the next step in flavour tagging in ATLAS

and requires still lots of R&D work which go beyond the scope of this thesis.
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Figure 12.7.: UMAMI (orange) performance compared to DLIr (blue) in terms of (a) the c-jet rejection and (b)
the light-flavour jet rejection as function of the b-jet efficiency.

Especially at large transverse momenta, further improvements are necessary to achieve a better
performance. In that regime methods based on the hit information in the Inner Detector are studied
within ATLAS. A charged particle can be identified as hits in the ID and in case a b-hadron decays
between two ID layers, an increase in hits is observed. This is an ideal use case for so-called Graph
Neural Networks [199]. Not only in the tagger algorithm development itself, but also in the calibra-
tion, especially in the light-flavour jet calibration, NN techniques would bring a gain. It would be for
instance possible to employ Invertible Neural Networks [200] to allow a better calibration with the

flipped taggers.
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ANALYSIS OVERVIEW

Since the Yukawa coupling of a fermion is directly proportional to its mass, the top quark as heaviest
elementary particle has therefore also the largest Yukawa coupling. The measurement of the ttH
process allows a direct measurement of this coupling. After the first RUN II ttH(H — bb) analysis
from ATLAS [13] was published on a subset of the dataset of 36 fb™* (see sec. 5.1.2), the analysis
presented in this thesis is performed with the full RUN II proton-proton collision dataset of 139 fb™—*
at the centre-of-mass energy of /s = 13 TeV [5]. A measurement of the Simplified Template Cross-
Section (STXS) as a function of the Higgs pr is performed for the first time using ttH(bb) events.

This chapter describes the ttH(bb) analysis overview giving insights in its motivation, challenges
and strategy. After a short analysis summary in Section 13.1, the event selection is explained in
Section 13.2 followed by a description of the modelling of the signal and background processes in
Section 13.3. The analysis strategy is presented in Section 13.4 and the profile likelihood fit is intro-

duced in Section 13.5. In the last Section 13.6 a summary of the systematic uncertainties is given.

13.1 THE ANALYSIS IN A NUTSHELL

As was shown in the pie-chart in Figure 2.7, the tt pair can either decay fully hadronically, semi-
leptonically (lepton+jets) or dileptonically. In the scope of this thesis the lepton+jets channel' was
studied where one W-boson decays leptonically and the other one hadronically as shown in the
Feynman diagram in Figure 13.1. This channel offers a large statistics and has a relatively clean
topology with the lepton in the final state allowing to suppress the multijet background. Since only
one neutrino is present in the final state, the kinematics of the event can be fully determined taking
into account the missing transverse momentum EFS. Due to the fairly high branching ratio, also
higher pr regimes have sufficient statistics (compared to the dilepton channel) which is important for
the STXS measurements. The lepton+jets channel is further split into a resolved (lower prt) regime
and a boosted regime. While this thesis focuses on the analysis of the resolved lepton+jets channel,
the dilepton and the boosted channel were optimised separately. Nevertheless, all three channels are

combined in a joint likelihood fit for the final results presented in this thesis.

The detector signature of the lepton+jets channel includes exactly one isolated lepton. For this
analysis only decays into electrons and muons are considered, thus the term lepton { is exclusively

used for electrons and muons in the following. Nonetheless, the leptonic decay of the taus into elec-

1 The lepton+jets channel will be also denoted as single lepton channel.
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Figure 13.1.: Feynman diagram of the Higgs production with associated top quarks. The Higgs is decaying
into a pair of b-quarks. The final state of this process contains at least four b-jets and exactly one
lepton from the W decays.

trons and muons is also considered. In addition, six quarks and therefore six jets are present in the
final state where at least four of them are b-jets. Consequently, b-tagging is crucial for this ana-
lysis and the analysis would heavily benefit from the improvements shown in Part III. However, this
analysis was still performed with EMTopo jets and therefore does not include these improvements.
Nevertheless, a short perspective will be given in Chapter 15 with PFlow jets and the new b-tagging
improvements. The complex final state topology of ttH(bb) poses great challenges, especially the
overwhelming tt + jets background. In particular, the main irreducible background is coming from
tt + bb production for which an example Feynman diagram is shown in Figure 13.2. This process is

poorly constrained by data measurements and has large theory uncertainties which limit the analysis.

lon]

9 T

Figure 13.2.: Example Feynman diagram showing the tt production associated with a gluon initiated bb pair.

A schematic overview of the analysis strategy is illustrated in Figure 13.3. The first step is the

event selection (see sec. 13.2), where a first phase space is chosen enhancing the ttH(bb) signal con-
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tribution. In the next step, different multivariate techniques are employed which are based on Boosted

Decision Trees (BDTs) for the resolved lepton+jets channel. The reconstruction BDT is matching

the jets to the final state partons from the top-quark and Higgs decays. The preselected events are

split into signal-depleted categories (control region, CR) and signal-enriched categories (signal re-

gion, SR) optimised for the STXS measurement. In the signal regions, an additional BDT is used to

separate signal and background processes. All regions are then used in a combined profile-likelihood

fit taking into account the systematic uncertainties and also including the boosted lepton+jets and

dilepton channel.

Event selection *

Reconstruction
BDT

-

Split into signal
(SR) & control
regions (CR)

-

|

. avg -
Using ARbb in CR

classification BDT
in SR

Boosted Signal
regions

Dilepton regions

=

* Combined profile
likelihood fit

Figure 13.3.: Sketch of the ttH(bb) analysis strategy for the resolved lepton-+jets channel. The profile likeli-
hood fit is performed in a combination with the lepton-+jets boosted and the dilepton channel.
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13.2 EVENT SELECTION

In this section, the selection of the events used in the resolved lepton+jets channel is introduced. The
dedicated selections for the boosted lepton+jets and the dilepton channels can be found in Ref. [5]

and are orthogonal to the lepton+jets criteria.

The events for this analysis are extracted from the dataset recorded with the ATLAS experi-
ment during the LHC RUN II which corresponds to the proton-proton collision data-taking periods
from 2015-2018 with a centre-of-mass energy of /s = 13TeV and an integrated luminosity of
(139.0£2.4) tb—* [201].

The physics objects used in this analysis are described in Chapter 6.

Single-lepton triggers are used to record all events for this analysis which show a high efficiency
above their trigger threshold. The events have to fulfil a lepton isolation criterion and pass the low pr
trigger threshold for electrons corresponding to 24 (26) GeV in the data taking period 2015 (2016-
2018) and for muons 20 (26) GeV. Alternatively, events with a looser identification criterion or even
without any isolation criteria are accepted if they satisfy a higher trigger threshold [202]. A summary
of the different trigger settings is shown in Table 13.1. Furthermore, at least one primary vertex has

to be present in each event.

lepton pr threshold identification requirement  isolation criterion
2015 2016-2018 2015 2016-2018 2015 2016-2018
24GeV  26GeV medium  tight - loose
electrons  60GeV 60 GeV medium  medium - -

120GeV  140GeV loose loose — —

20 GeV 26 GeV medium medium loose medium
50 GeV 50 GeV medium medium - -

muons

Table 13.1.: Single-lepton trigger settings used for this analysis shown for the data taking periods 2015 and
2016-2018 separately.

EMTopo jets are used as described in Section 6.2.1 with a radius parameter R = 0.4 (small-R jets).
To reduce pile-up effects, the Medium WP of the jet vertex tagger (JVT) is applied [203]. In addition,
jets with radius R = 1.0 reclustered from small-R jets [204] are employed to veto boosted events
which allows to ensure orthogonality between the resolved and boosted lepton+jets channel. Events
which pass the boosted selection are removed from the resolved lepton+jets channel.
b-jets are identified using the high-level b-tagging algorithm MV2c10 described in Section 8.5.2,
making use of the single-cut WPs and pseudo-continuous b-tagging introduced in Section 8.5.1. The
correction factors to data are retrieved as described in Section 8.6 for the b-jet efficiency [179],

c-jet [183] and light-flavour jet [182] mis-tag rate separately.
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13.3 MODELLING OF SIGNAL AND BACKGROUND PROCESSES

Electrons (see sec. 6.2.2) and muons (see sec. 6.2.3) have to fulfil pr > 10 GeV and the Medium and

Loose identification operation point, respectively.

In order to avoid double-counting of jets or leptons, a so-called overlap removal is performed. If a
jetis within ARy = 0.2% of an electron candidate, the closest jet is removed. An electron is rejected,
in case there is still a jet within AR, = 0.4 of the electron. Muons are directly discarded if a jet is
within ARy < 0.4 of the muon. This suppresses muons coming from heavy-flavour decays inside

jets. If this jet has less than three tracks however, the jet is discarded instead and the muon is kept.

At least five jets are required to be present in the event, where not less than four jets have to be
tagged with the 70% b-tagging WP. In addition, exactly one lepton with pt > 27 GeV needs to be in
the event satisfying the 7Tight identification criterion for electrons and the Medium criterion for muons.
Furthermore, no additional lepton with pt > 10 GeV fulfilling the Medium and Loose identification
operation point for electrons and muons, respectively, is allowed. Moreover, events including more

than two hadronic T candidates are removed to ensure orthogonality to other ttH channels.

13.3 MODELLING OF SIGNAL AND BACKGROUND PROCESSES

The physics analyses which are searching for new processes are typically performed in a blinded
way. This means that the analysis is optimised without looking at the data in regions sensitive to the
ttH(bb) signal to avoid introducing a bias. Therefore the optimisation is performed on simulated
signal and background samples. Even though the ttH production and the H — bb decay channel
are already independently discovered [11, 12], the ttH(bb) channel has not yet been observed and it
is thus a physics search which is done in a blinded way?>.

To simulate the detector response both the full detector simulation GEANT4 and the fast simulation
AtlFast-1I are utilised (see sec. 4.2). The pile-up interactions are simulated using PYTHIAS.186 [84]
(A3 tune [205]) and all events are reweighted to the respective pile-up profiles observed in data dur-
ing RUN II corresponding to 34 proton-proton interactions per bunch-crossing on average. Generally,
the generator settings described in Section 4.1.3 also apply for the modelling of the signal and back-
ground processes used for the ttH(bb) analysis.

All simulated samples which are used in this analysis are summarised in Table 13.2. The table shows
both the nominal samples which are used for the baseline modelling and the alternative samples
which are used for sanity checks and to estimate systematic uncertainties.

If not differently stated the ME generator is used at NLO precision in QCD together with the PDF set
NNPDF 3.0NLO [77] for five-flavour scheme (5FS) samples and the PDF set NNPDF 3.0NLOnf4 [77]

for the four-flavour scheme (4FS) samples.

For ARy, the rapidity instead of the pseudorapidity is used for its calculation.
For the optimisation of the analysis, the signal contribution in every bin considered in the analysis has to be < 7.7%, which
is the blinding threshold.
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Process ME generator ME PDF PS Normalisation

Higgs boson

ttH POWHEGBOX v2 NNPDF 3.0NLO PYTHIA8.230 NLO+NLO (EW) [107]
POWHEGBOX v2 NNPDF3.0NLO HERWIG7.04 NLO+NLO (EW) [107]
MADGRAPHS5_aMC@NLO v2.6.0 NNPDF3.0NLO PYTHIA8.230 NLO+NLO (EW) [107]

tHjb MADGRAPHS5_aMC@NLO v2.6.2 NNPDF3.0NLOnf4 PYTHIA8.230 -

tWH MADGRAPH5_aMC@NLO v2.6.2 [DR] NNPDF3.0NLO PYTHIAS.235 -

tt and single-top

tt

POWHEGBOX v2
POWHEGBOX v2
MADGRAPH5_aMC@NLO v2.6.0

NNPDF3.0NLO
NNPDF 3.0NLO
NNPDF 3.0NLO

PYTHIAS.230
HERWIG7.04
PYTHIAS8.230

NNLO+NNLL [206-212]
NNLO+NNLL [206-212]
NNLO+NNLL [206-212]

tt+ bb POWHEGBOXRES NNPDF3.0NLOnf4  PYTHIA8.230
SHERPA v2.2.1 NNPDF3.0NNLOnf4 SHERPA -

tw POWHEGBOX v2 [DR] [213-215] NNPDF3.0NLO PYTHIAS.230 NLO+NNLL [216, 217]
POWHEGBOX v2 [DS] [213-215] NNPDF3.0NLO PYTHIAS.230 NLO+NNLL [216,217]
POWHEGBOX v2 [DR] [213-215] NNPDF3.0NLO HERWIG7.04 NLO+NNLL [216, 217]
MADGRAPH5_aMC@NLO v2.6.2 [DR] CT10NLO PYTHIAS.230 NLO+NNLL [216, 217]

t-channel POWHEGBOX v2 [213-215] NNPDF3.0NLOnf4 PYTHIAS.230 NLO [218,219]
POWHEGBOX v2 [213-215] NNPDF3.0NLOnf4 HERWIGT7.04 NLO [218,219]
MADGRAPHS5_aMC@NLO v2.6.2 NNPDF3.0NLOnf4 PYTHIA8.230 NLO [218, 219]

s-channel POWHEGBOX v2 [213-215] NNPDF 3.0NLO PYTHIAS.230 NLO [218,219]
POWHEGBOX v2 [213-215] NNPDF3.0NLO HERWIG7.04 NLO [218,219]
MADGRAPH5_aMC@NLO v2.6.2 NNPDF3.0NLO PYTHIAS.230 NLO [218,219]

Other

Wi jets SHERPA v2.2.1 (NLO [2j], LO [4j]) [87,220] NNPDF3.0NNLO SHERPA [221-225] NNLO [226]

Z+ jets SHERPA v2.2.1 (NLO [2j], LO [4j]) [87,220] NNPDF3.0NNLO SHERPA [221-225] NNLO [226]

VV (had.) SHERPA v2.2.1 NNPDF3.0NNLO SHERPA [220, 221] -

VV (lep.) SHERPA v2.2.2 NNPDF3.0NNLO SHERPA [220, 221] -

VV (lep.) +jj SHERPA v2.2.2 (LO [EW]) NNPDF3.0NNLO SHERPA [220, 221] -

ttw MADGRAPH5_aMC@NLO v2.3.3 NNPDF3.0NLO PYTHIAS.210 NLO+NLO (EW) [107]
SHERPA v2.0.0 (LO [2j]) NNPDF3.0NNLO SHERPA NLO+NLO (EW) [107]

ttel MADGRAPH5_aMC@NLO v2.3.3 NNPDF 3.0NLO PYTHIAS.210 NLO+NLO (EW) [107]
SHERPA v2.0.0 (LO [1j]) NNPDF3.0NNLO SHERPA NLO+NLO (EW) [107]

ttZ (qq,vv) MADGRAPH5_aMC@NLO v2.3.3 NNPDF3.0NLO PYTHIA8.210 NLO+NLO (EW) [107]
SHERPA v2.0.0 (LO [2i]) NNPDF3.0NNLO SHERPA NLO+NLO (EW) [107]

tttt MADGRAPH5_aMC@NLO v2.3.3 NNPDF3.1NLO PYTHIAS.230 NLO+NLO (EW) [227]

tZq MADGRAPH5_aMC@NLO v2.3.3 (LO) CTEQ6L1 [228] PYTHIAS.212 -

tWz MADGRAPHS5_aMC@NLO v2.3.3 [DR] NNPDF3.0NLO PYTHIA8.230 -

Table 13.2.: Overview of all simulated MC samples used in this analysis. The nominal sample is always the
first row for each process. If not differently stated the ME generator is at NLO precision in QCD.
The abbreviations [DR] and [DS] stand for the diagram removal scheme [229] and the diagram
subtraction scheme [170, 229], respectively. The higher-order cross-section used to normalise
these samples is listed in the last column and refers to the order of QCD processes if no additional
information is provided. If no information is present in this column, there is no higher-order
k-factor applied to this process. The table is taken from [5].

13.3.1 ttH Signal Modelling

The signal of this analysis is the associated production of the Higgs boson with a tt pair (ttH)
which is modelled in the SFS with the generator POWHEGBOX [88-92] and the PS and hadron-

isation is simulated with PYTHIAS. For the event generation, both the renormalisation and had-

ronisation scale are set to g = U = {/ mr(t) - mp(t) - mp(H), where mr is the transverse
mass of a particle defined as mt = /m? —i—p% and the hgamp parameter (see sec. 4.1) is fixed
0 hgamp = 3/4 - (m¢ + mg + mp) = 352.5 GeV. In general, all Higgs boson decay modes
are taken into account, however the analysis is optimised for the H — bb decay and only small

fractions of other decay modes are present in the final selection (at maximum 6% in some regions
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of the resolved lepton+jets channel). All ttH samples are normalised to the ttH cross-section of
ot = (507 £50) fb [107] which is determined at NLO accuracy in QCD and incorporating NLO

electro-weak corrections.

13.3.2 tt+jets Background

The dominant background in this analysis is coming from the tt pair production in association with
additional jets. Depending on the flavour of the additional jets, these events are categorised accord-
ingly [230]. In simulated events, the labelling of the additional jets is done in a slightly different way
than for the flavour-tagging algorithms described in Section 8.1.1. So-called particle jets are formed
with the anti-k algorithm with the radius parameter R = 0.4, only taking into account particles with
a mean lifetime T > 3-107'" s which do not originate from the top-quark or W-boson decays.
Then, a AR matching is performed as for flavour tagging with AR(jet, hadron) < 0.4 associating the
flavour label to the jet. The different components are listed in Table 13.3 with the main categories:

tt+ >1b, tt + >1c and tt + light.

tt + jets category  description

a tt pair and
tt+>1b at least one additional jet containing at least one b-hadron
tt+1b exactly one additional jet containing exactly one b-hadron
tt+ 1B exactly one additional jet containing at least two b-hadrons
tt+>2b at least two additional jets containing at least one b-hadron each
tt+>1c at least one additional jet matched to at least one c-hadron
tt + light all the other cases excluding the above ones

Table 13.3.: Overview of the different tt + jets components. The inclusive tt + >1b category is again split
into three exclusive categories which will be used to estimate systematic uncertainties.

The main background tt + bb is modelled separately in the 4FS (described below), in contrast to

the tt + >1c and tt + light events. The modelling of the two latter categories is performed in the SFS.

Additionally, tt + >1b events are also simulated in the 5FS but they are only used for studies and to
define a subset of the modelling systematics. To generate the SFS events POWHEGBOX v2 is used

with the renormalisation and factorisation scale set to ug = g = mr(top) and hdamp = 1.5 - mypp.

The PS and hadronisation processes are simulated using PYTHIAS.

tt + bb Background

As indicated above, the irreducible tt 4+ bb background is the dominant background and the main
challenge of this analysis. It is modelled in the 4FS using as generator POWHEGBOXRES [231, 232]
and OPENLOOPS [233, 234] with the factorisation scale i = 1/2 <Zi:t,{,b,6 mr(i) + 2 pT(j))

where j represents any additional partons. The renormalisation scale is set to
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UR = {‘/mT(t) -mr(t) - mr(b) - mp(b) together with hdamp = 1/2Z;_¢ i p,pmr(1). For all in-
volved processes the mass of the b-quarks is set to my = 4.95 GeV.

The tt + >1b process can be further split into three subcategories: tt + 1b, tt + 1B and tt + >2b
(see Table 13.3) which will be used for a systematic uncertainty estimation in Section 13.6.2. Their
relative fractions are shown in Figure 13.4 for the nominal modelling in the 4FS and the alternative

SFS setup both described above as well as for POWHEGBOX+HERWIG7.

-— I~ —l— . -1
2 = — PowhegBoxRes+P|yth|aS (4FS)
© 0.6 PowhegBox+Pythia8 (5FS) |
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Figure 13.4.: Relative fraction of the tt + >1b subcomponents: tt + 1b, tt + 1B and tt 4+ >2b shown for the
nominal 4FS (blue) and the two alternative predictions: POWHEGBOX+PYTHIA8 5FS (orange)
and POWHEGBOX+HERWIG7 5FS (red).

13.3.3  Other Processes

Besides the main backgrounds coming from tt + jets events described above, there are also other con-
tributing background processes. The ttV background which is the production of a vector boson (W,
Z) in association with a tt pair is simulated at NLO in QCD with the MADGRAPH5_aMC @NLO
v2.3.3 generator with ug = pp = 0.5 x ) ; mr(i). All the other backgrounds are listed in Table 13.2
with their generator settings and described in more detail in [5]. In the following, these background

processes will be summarised as Other since their single contributions are very small.

13.3.4 Fake Leptons

Fake leptons are photons or jets which are wrongly reconstructed as leptons. They are mostly ori-
ginating from multijet processes where one jet is misidentified as electron or muon. The isolation

requirements demanded on trigger and event selection level in combination with the required lepton
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quality criteria eliminate most fake leptons in the lepton+jets channel. The contribution of the fake
background is negligible in the lepton+jets channel and small in the dilepton channel where it is

estimated from MC simulation.

13.3.5 Inclusive Modelling

The modelling in data is shown in Figure 13.5 for the inclusive resolved lepton+jets selection de-
scribed in Section 13.2. The illustrated distributions are the AR} variable, which is the average AR
between all possible b-tagged jet (70% WP) pairs in an event, and the number of jets per event as
well as the number of jets passing the 70% and 60% b-tagging working points. Both the number
of jets (Fig. b) and number of b-tagged jets at the 60% WP (Fig. d) show a clear slope in the data
over MC ratio, not fully covered by the uncertainties. The number of b-tagged jets at the 70% WP
(Fig. ¢) has a normalisation offset, a slope is not visible due to only having two bins. Similarly, the
ARZV{% distribution shows a constant normalisation offset. This offset was already seen before in the
previous analysis [13] corresponding to a normalisation factor of the tt + >1b background of 1.25.

Since this background is dominating in this phase space, it matches the offset seen also here.

13.4 ANALYSIS STRATEGY

This analysis is mainly targeting the STXS measurement in bins of pF (see sec. 5.2) but also the
inclusive cross-section measurement of the ttH signal. The events passing the lepton+jets selection
described in Section 13.2 are further divided into two types of analysis regions: signal regions (SRs)
and control regions (CRs). All regions are defined to be orthogonal (disjoint) to each other. Further-
more, several multivariate techniques are employed to reconstruct the Higgs candidate and to classify

the ttH signal outlined in Section 13.4.2.

13.4.1 Region Definition

The analysis regions in the lepton+jets channel are categorised as a function of the number of jets per
event into SRs and CRs. The analysis region definitions are listed in Table 13.4. The two CRs con-
tain events with exactly five jets and they are split according to the high and low b-tagging criteria,
respectively. The CR; 41 1 Fequires not less than four b-tagged jets to pass the 60% WP while in the
CRS;4b 1o at least one of the b-tagged jets (with the 70% WP) is not allowed to meet the 60% WP
criterion ensuring orthogonality. For the signal regions, events are selected containing six or more
jets and they are further subdivided into five reconstructed pt! categories: 0-120 GeV, 120-200 GeV,
200-300 GeV, 300-450 GeV and > 450 GeV. The pl! is reconstructed using the information of the
reconstruction BDT as described in Section 13.4.2. These pt! categories correspond also to the
truth Higgs transverse momentum bins used for the STXS measurement, where the truth p'f is only

defined on simulation level as the pt of the truth Higgs object. Figure 13.6 shows the background
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event, the number of jets passing the (c) 70% and (d) 60% b-tagging WP per event. The uncer-
tainty band contains the systematic and statistical uncertainties described in Section 13.6 except
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Figure 13.5.: Inclusive lepton+jets distributions showing the (a) ARan variable, (b) the number of jets per

the normalisation of the tt + >1b background which is only defined after the likelihood fit.
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Region SR;% CR5>j4b hi CR5>j4b lo
pH/Gev [0,120) | [120,200) | [200,300) | [300,450) | > 450 inclusive
#leptons =1
#jets > 6 =5

@70% =>4
#b-tag

@60% - >4 <4
Fit input classification BDT Yield AR;VE

Table 13.4.: Analysis region definition of the lepton+jets channel split into signal regions with > 6 jets sub-
divided into five p%l bins and control regions with five jets categorised into two regions as a
function of the b-tagging WP. In the last row, the variable which is used as fit input is listed.

contributions in each analysis region. The tt + jets production dominates the regions by far and only
smaller fractions are coming from ttV or from Other processes. The largest fraction of tt + jets con-
sists of the tt + >1b background which corresponds to more than 70% of the total background in all
SRs followed by the tt + >1c process which is about 10%. The region CR?4b hi Shows an increased
tt + >1b fraction (~ 84%) while CRS;4b | is enhanced in tt 4+ >1c and tt + light compared to the
other regions which allows the fit to better extract information and constraints for these processes.
The signal contribution in the different lepton+jets regions are illustrated in Figure 13.7. The black
solid line shows the signal (S) over background (B) ratio and the red dashed line the S/ V/B ratio. It
is clearly visible that the values for S/+/B decrease with p%‘ in the SRs. Especially the two SRs with
the highest pX! values show lower values which is also due to the boosted veto* (the boosted regions
are only defined for pt! > 300 GeV).

The dilepton and the boosted lepton+jets channel follow a similar strategy defining the analysis
regions. The flow chart including the different selections is shown for all three channels in Figure B.1.
In total, 16 regions (11 SRs and five CRs) are defined which will be used in the statistical analysis
described in Chapter 14.

13.4.2  Multivariate Techniques

Multivariate techniques allow to better reconstruct and classify physics topologies. As demonstrated
in Part III, in flavour tagging a heavy use of Neural Networks is made. In this analysis, BDTs are used
to reconstruct the Higgs candidate and to classify between the ttH signal and background processes.

BDTs are introduced in Section 7.4. In addition, a likelihood discriminant method is used to separate

The boosted veto makes sure that the events used in the boosted signal regions are not utilised in the resolved regions to
maintain orthogonality.
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Figure 13.6.: Pie charts showing the background composition in the resolved lepton+jets analysis regions. The
ttH signal is excluded here.
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Figure 13.7.: Contribution of the ttH signal (S) in the different resolved lepton+jets analysis regions. The
black solid line associated to the left vertical axis shows the signal over background (B) ratio and
the red dashed line the S/+/B distribution corresponding to the right vertical axis.

the signal and background. All the described multivariate techniques are used in the signal regions in
the resolved lepton+jets channel, the techniques used in the boosted lepton+jets and dilepton channel

are described in [5].
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Reconstruction BDT

To extract further information from the complex final state of the ttH process (see Fig. 13.1), the
different partons in the final state coming from the Higgs and tt system need to be matched to the jets
in an event. Each possible combination of leptons and jets is a permutation. For an event containing
six jets, the possible permutations that would need to be tested would amount to 720, without making
any assumptions. With the additional b-tagging information this is reduced to 48 permutations and
with a pr ordering® only 12 permutations need to be tested. For each permutation, several quantities
are calculated such as the invariant mass of the object candidates and their angular distances. The
permutation with the correct parton to jet assignment is used as signal class in the BDT training and
all other permutations as background. In total 15 variables related to the topological information of
the tt system and four related to the Higgs system are used in the BDT training (the entire variable
list is shown in Table B.1). An additional training is performed excluding the topological Higgs
information to avoid a bias on background processes. Depending on the use-case either of these two
reconstruction BDT versions are used. The training is performed inclusively on all ttH signal events
modelled with the MADGRAPHS5_aMC@NLO v2.3.2 generator in the resolved lepton+jets channel
with at least 6 jets where at least 4 are b-tagged at the 85% WP.

The permutation with the largest BDT score is then selected for the event reconstruction. This allows
to reconstruct the kinematics of the Higgs boson candidate. The efficiency to correctly reconstruct
the Higgs boson candidate is 43% for all signal events passing the lepton+jets selection with at least
6 jets. In the different STXS bins, the Higgs boson reconstruction efficiency is ranging from 35% in
the lowest STXS bin up to 59% in the highest STXS bin summarised in Table 13.5. In addition, the
performance is also shown in Figure 13.8 as the migration matrix indicating the purity of the truth

Higgs pt! and the reconstructed pX.

pit [GeV] SRZY)

Inclusive 43%

[0,120) 35%
[120,200)  45%
200,300) 57%
300, 450)
450, 00)

59%

Table 13.5.: Efficiency of the Higgs boson candidate to be correctly reconstructed in a given STXS bin with
the reconstruction BDT. The efficiency is calculated for all signal events which are selected in the
resolved lepton-+jets signal regions [5].

Here, without the loss of generality, it is assumed that one of the two final partons of the Higgs and the hadronic W
decay, respectively, carries the higher p. This reduces the combinatorics while the physics behind is not affected since
the important information is the association of the jets to the Higgs boson and the W.
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P E€0,120) GeVv

P €120, 200) GeV

P €200, 300) GeV

P €300, 450) GeV

B €450, ©) GeV

Figure 13.8.: Migration matrix between the ﬁTH (truth pTH) on the y-axis and the reconstructed p%‘ on the x-
axis in bins of the lepton-+jets signal regions. In each row, the fraction of truth-matched Higgs
boson candidates given in percentages is shown for the different reconstruction pTH bins and thus
the values in the matrix indicate the purity in each bin.

Likelihood Discriminant

Various one-dimensional probability density functions of different variables, like the invariant masses
and angular distributions from reconstructed objects are used to calculate the likelihood discrimin-
ant [13]. Two background hypotheses are considered for the tt + 1b and tt + >2b processes separ-
ately and averaged and weighted with their respective fractions in tt samples. The signal p*¢ and
background hypotheses p*€ are retrieved from the product of the single variable probability density
functions and averaged over all parton permutations, weighted by the b-tagging information. In the
likelihood discriminant calculation, however no correlations are considered. As input for the clas-
sification BDT the ratio pi2/(p®e + p®e) is utilised per event. The likelihood discriminant is only

used in the lepton+jets SR and shown in Figure 13.9.

Classification BDT

As mentioned above, in the lepton+jets SRs a classification BDT is trained to better separate the
signal and background processes. The training is performed on the ttH signal and the dominant
tt + jets background on events with > 6 jets from which at least 4 have to be b-tagged with the 85%
WP. This more inclusive phase space compared to the baseline SR definition provides more statistics
that can be used in the training. The classification BDT combines in total 18 different discriminating
input variables such as the likelihood discriminant and the ARy variable, as shown in Table 13.6,

which are the two highest-ranked variables in the training. In addition, the information provided
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Figure 13.9.: Distribution of the likelihood discriminant in the lepton+jets SRs. All uncertainties including

their correlations are considered in the uncertainty band excluding k(tt + >1b) which is only
defined after the fit.

by the reconstruction BDT is used, i.e. the reconstruction BDT score and the resulting kinematic

variables of the Higgs and tt systems as well as angles between the reconstructed objects. Moreover,

the information from the pseudo-continuous b-tagging is part of the classification BDT input. It
was verified that all input variables have an adequate modelling. An overview of all input variables
ordered by their importance for the training is shown in table 13.6. The importance of a variable is
retrieved by evaluating how often it is used for a decision in the BDT. Figure 13.10 shows the BDT
distribution for the ttH signal and the tt + jets background.
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Ranking | Variable Definition
1| LHD Likelihood discriminant
2 ARivf Average AR for all b-tagged jet pairs
3 | qmin AR Mass of the combination of two b-tagged jets with the smallest
bb AR
4 1 ARG PT AR between the two b-tagged jets with the largest vector sum pr
57 | BDT output  Output of the reconstruction BDT
6 mI;ngS Higgs candidate mass
7t ARI;IngS AR between b-jets from the Higgs candidate
8t ARy 11 AR between Higgs candidate and tt candidate system
of MH,biep 10p Mass of Higgs candidate and b-jet from leptonic top candidate
101 ARy lep top AR between Higgs candidate and leptonic top candidate
11 An%lax Maximum An between any two jets
12 B]-SEt 5t largest jet b-tagging discriminant
14 | nHises 30 Number of b-tagged jet pairs with invariant mass within 30 GeV
bb of the Higgs-boson mass
13 Bj“zt 3" Jargest jet b-tagging discriminant
15 B]it 4th Jargest jet b-tagging discriminant
. 1.5A2, where A, is the second eigenvalue of the momentum
17/ Aplanarity o [235] built with all jets
16t Higgs Sum of b-tagging discriminants of jets from best Higgs candidate
b-tag from the reconstruction BDT
13 | H Second Fox—Wolfram moment computed using all jets and the
;

lepton

Table 13.6.: Variable importance ranking of the input variables to the classification BDT in the lepton+jets
signal regions. The variables marked with a T are extracted from the information of the recon-
struction BDTs and an additional star indicates that the topological information of the Higgs is
used in the reconstruction BDT.
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Figure 13.10.: Classification BDT in the lepton+jets SRs shown for the ttH signal (red) and the tt + jets
background (blue). The uncertainty band includes all uncertainties except for k(tt + >1b)
which is only defined after the fit. Both distributions are normalised to unity.

13.5 PROFILE LIKELIHOOD FIT

To extract the ttH signal from data, a complex fit model is required. A detailed description of
the statistical methods for high energy physics can be found in Ref. [236] based on the Neyman-
Pearson lemma [237] which states that to reject a hypothesis H in favour of hypothesis H; the most
powerful test is the ratio of their likelihoods. For the analysis presented here, a profile-likelihood
fit is employed to extract the signal strength, incorporating the predicted yields and uncertainties in
every bin of the analysis regions to fit them to data.

Given a binned data distribution with ny events per bin, the expectation value of the number of events

in a given bin 1 can be expressed as

Emi(mk,0)l = ) ta-sai(0)+ D kp-bpi(0), (13.1)
HLaEH kﬁek

where s ; are the predicted signal events of category o and bg ; the predicted background events of
category {3 in bin i. The set of signal-strength parameters p are the so-called parameters of interest

where one element L is defined as

- 13.2
Ko 0% (13.2)

with the signal cross-section 0™ and the expected SM cross-section ogy,. For an inclusive cross-
section measurement only one signal-strength parameter is used, while for the STXS measurement
in this analysis five signal-strength parameters are employed. The set of background normalisation
factors k with elements kg allow a freely floating normalisation of a certain background process

B. In this analysis, only the tt + >1b background is chosen to have a freely floating normalisation
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which is determined in the fit to data, while all other processes are normalised to their predicted
cross-sections and kg is set to one. Besides these two types of normalisation factors only acting on
the normalisation of the signal and background templates without assuming any prior knowledge,
the set of nuisance parameters © provides additional degrees of freedom. The nuisance parameters
correspond to the systematic uncertainties acting both on the shape and normalisation of the signal
and background templates implemented in the likelihood as Poissonian or Gaussian priors also called
penalty terms. Their central value is defined to be zero and any deviation from this nominal value is
commonly denoted as a pull where a +1 deviation corresponds to a one standard deviation variation.
The binned likelihood function is given as
m n
L% 0 =]] (Emilw kO™ emi(uko) (13.3)

Tli!

i

corresponding to a product of Poisson probabilities for all bins. The likelihood ratio then results in

, (13.4)

with the single-hat parameters corresponding to the parameter values maximising the likelihood and
the double hat indicates that the values of those parameters maximise the likelihood for a given set
of u. As already pointed out in Section 7.2.1, it is statistically more stable to minimise the negative

log-likelihood resulting in the test statistic
qu =—2InA,. (13.5)

In this analysis the compatibility of data to the background-only hypothesis is measured correspond-
ing to iy = 0 V pe € p in Equation (13.4) with the corresponding test statistics denoted as (.
The discovery significance Z, which is the significance of a deviation from the background-only

hypothesis, is given as

Z= 4. (13.6)

The RooStat framework [238, 239] provides the technical implementation of these statistical tools.

The bins i of Equation (13.1) are bins of the classification BDT distribution in the signal regions,
and of a simple AR variable in the control regions. In each signal region, with the exception of the
highest pTH region, the shape of the BDT as discriminant variable is used. Due to the low statistics
in the highest pt! region SR;?{) (pt € 1450, 00) GeV), only one single bin and therefore only the
normalisation is used. The boosted region, however, takes the shape of the BDT distribution into
account, since it has sufficient statistics to do so. In the two CRs, the average AR between all b-
tagged jet pairs in an event (AR%ng)) is utilised taking into account both the normalisation and shape

in the fit.
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13.6 SYSTEMATIC UNCERTAINTIES

The ttH analysis is heavily affected by systematic uncertainties from different sources. There are
two main categories of systematic uncertainties: the experimental uncertainties originating mainly
from the reconstruction of the various physics objects and their calibrations and secondly the mod-
elling uncertainties related to the signal and background process modelling in MC. In total, 216
nuisance parameters, corresponding to the systematic components, and the free-floating tt + >1b
normalisation factor are included in this analysis. They are sorted into subcategories in Table 13.7.
The systematic uncertainties can either affect both the shape and the normalisation (SN) or only the
normalisation (N) of a process also indicated in Table 13.7.

To each uncertainty component, one nuisance parameter is associated. Especially the experimental
uncertainties often have several independent components coming from one type of uncertainty, e.g.
the b-jet efficiency calibration provides 45 uncertainty components and thus 45 nuisance parameters
are considered in the analysis.

In addition, for every bin considered in the analysis one nuisance parameter is assigned to take into

account the uncertainties coming from the finite statistics of the MC samples.

13.6.1 Experimental Uncertainties

The experimental uncertainties have in general a rather low impact on the final fit. Only the uncer-
tainties associated to jets and b-tagging have a more important influence. All experimental nuisance
parameters are correlated across all analysis channels, regions and processes and typically affect both
the shape and normalisation except the luminosity uncertainty.

The total uncertainty on the integrated luminosity of the full RUN II dataset was measured to be
1.7% [201]. To account for differences between data and simulation in the pile-up modelling one

additional uncertainty is considered [240].

Jets and Heavy-Flavour Tagging

The uncertainties associated to jets dominate the experimental uncertainties. Even though the single
components are in the range of 1%—5% of relative uncertainties, the large number of jets in the tar-
geted final state enhances their effect. The uncertainties on the jet energy scale and resolution amount
to 31 and 9 nuisance parameters, respectively [120]. The uncertainties for the jet energy scale are
extracted from test-beam and LHC data as well as from simulation. Further uncertainty sources are
also considered such as those related to the jet flavour assuming a conservative uncertainty of +50%
on the quark-gluon fraction. Moreover, pileup corrections are taken into account as well as uncer-
tainties from jet kinematics (n-dependence, high pr jets) as well as detector simulation differences
(GEANT4 vs. AtlFast-II). The jet energy resolution is measured in dijet events as a function of pt
and rapidity using RUN II data and MC simulation from which also its uncertainties are extracted.

Furthermore, one uncertainty is related to the jet vertex tagger calibration accounting for differences
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Systematic uncertainty Type Components
Experimental uncertainties
Luminosity N 1
Pile-up modelling SN 1
Physics Objects
Electrons SN 7
Muons SN 15
Jet energy scale SN 31
Jet energy resolution SN 9
Jet vertex tagger SN 1
| SN 3
b-tagging
Efficiency SN 45
Mis-tag rate (c) SN 20
Mis-tag rate (light) SN 20
Modelling uncertainties
Signal
ttH cross-section N 2
H branching fractions N 3
ttH modelling SN 4
tt + jets Background
tt cross-section N 1
tt + >1c normalisation N 1
tt + >1b normalisation N (free floating) 1
tt + light modelling SN 4
tt + >1c modelling SN 4
tt + >1b modelling SN 17
Other Backgrounds
ttW cross-section N 2
ttZ cross-section N 2
ttW modelling SN 1
ttZ modelling SN 1
Single top cross-section N 3
Single top modelling SN 7
W-+jets normalisation N 3
Z+jets normalisation N 3
Diboson normalisation N 1
41 cross-section N 1
Small backgrounds cross-sections N 3

Table 13.7.: Overview of all sources of systematic uncertainty considered in the analysis. The expression
"SN" means that both the shape and normalisation are taken into account while "N" stands for
the normalisation effects only. The right column states the number of components in which the
systematic is split for these processes.
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between data and simulation measured in Z — p— 't events analogous to [203].

Since this analysis relies heavily on b-tagging, it is also a source of systematic uncertainties. The
b-tagging calibrations are described in Section 8.6 and provide uncertainties as a function of the
different b-tagging working points and the jet pr (the inefficiency calibration depends also on jet
MD. A principal component analysis (eigenvalue decomposition) yields uncorrelated uncertainties
which are in the range of 2%—-10% for the b-jet efficiency calibration and between 10% to 25% and
15% to 50% for the c-jets and light-flavour jets mis-tag rate calibration, respectively. In total, the

flavour-tagging uncertainties are decomposed into 85 components.

Leptons

Even though the systematic uncertainties related to leptons have a small effect, 22 different uncer-
tainty sources are taken into account [127, 128]. They are coming from the trigger, reconstruction,
identification and isolation efficiencies for electrons (four components) and muons (ten components).
Moreover, three (five) independent uncertainty components for electrons (muons) are arising from

the lepton momentum scale and resolution.

Missing Transverse Momentum

The systematic uncertainties associated to the missing transverse momentum have only a small im-
pact on the final result because E™* is only used in the event reconstruction. Since the EXS is
calculated from the reconstructed physics objects and a soft term (see sec. 6.2.5), the energy scale
and resolution uncertainties from the physics objects are propagated to the E?i“ together with an

additional component for the soft term.

13.6.2 Modelling Uncertainties

In contrast to the experimental uncertainties, the modelling uncertainties are not correlated across all
background and signal processes, but typically they are still correlated across channels and analysis
regions with some exceptions. The uncertainties are split into several components depending on the
signal and background processes as well as into different physics effects in MC generators.

While the cross-section, branching fraction and normalisation uncertainties only affect the normal-
isation of the physics processes, all other modelling uncertainties are also sensitive to shape effects
(see Table 13.7).

SIGNAL MODELLING

To determine the signal cross-section uncertainty, which is only relevant for the measurement

of the signal strength (not for the cross-section measurement), the PDF and «g in the fixed-order
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calculation are varied, resulting in an uncertainty of £3.6% [107, 241-245]. The effect of the PDF
variations on the shapes of the distributions used in the analysis is negligible.

To quantify the impact of ISR, a simultaneous variation of the renormalisation pg and factorisa-
tion scales pr by a factor 0.5 (higher parton radiation) and a factor 2 (lower parton radiation) are
performed in the ME together with a variation of ocISSR in the PS to retrieve its uncertainty. Similarly,
the uncertainty on the FSR is evaluated, varying agSR in the PS. The effect of these systematic un-

certainties in the analysis is evaluated using event weights.

To evaluate modelling uncertainties, often so-called two-point systematics are used. They are
retrieved by comparing two different MC generators setups, extracting an uncertainty from their dif-
ferences. The nominal generator setup and the alternative setups are summarised in Table 13.2.

The two systematic uncertainties related to PS & hadronisation and NLO matching are retrieved
in this way by comparing the nominal setup POWHEGBOX+-PYTHIAS to POWHEGBOX+HERWIG7
and to MADGRAPHS_aMC @NLO+PYTHIAS, respectively.

The ISR down variation was found to have the largest impact on the total cross-section as well
as on the pH! shape estimating the uncertainty caused by missing higher-order terms in the perturb-
ative QCD calculations. This amounts to an uncertainty of 9.2% for the total cross-section and
to 10%—-17% for STXS bin migration uncertainties retrieved using the Stewart-Tackmann proced-
ure [246] which uses scale variations in the fixed-order calculations to estimate the uncertainties.

An uncertainty dedicated to the Higgs boson branching fraction for the H — bb decay mode amounts
to 2.2% [107]. Apart from the bin migration uncertainties, all signal process related nuisance para-

meters are correlated across all STXS bins, i.e. between all signal templates.
tt +jets MODELLING

The tt + jets modelling uncertainties are categorised in the subcategories tt + >1b, tt + >1c¢
and tt + light since they are typically affected differently by the systematic uncertainties. Thus all
systematic uncertainties associated to tt + jets are uncorrelated across these three subcategories and
therefore have separate nuisance parameters. Nevertheless, the uncertainty of one category is correl-
ated across all bins (with some exceptions as explained below). The tt+ >1b and tt + >1c processes
are fairly sensitive to differences in the precision of the ME calculation or the utilised flavour scheme.
The tt + light processes profit from already well known precise measurements. Table 13.8 lists all

systematic sources related to the tt + jets process.

On the inclusive tt cross-section (NNLO+NNLL) an uncertainty of +6% is taken only applied to
tt + light samples due to their dominance in the inclusive phase space [206-212]. This uncertainty
comprises several effects from varying different quantities like the factorisation and normalisation
scales, the PDFs, og as well as the top-quark mass.

The normalisation of the tt + >1c component was a free-floating parameter in the previous iteration
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Uncertainty source Description Components
tt cross-section +6% tt + light
tt + >1b normalisation  Free-floating tt+>1b
tt + >1c normalisation +100% tt+>1c
NLO matching MADGRAPH5_aMC @NLO+PYTHIAS vs. POWHEGBOX+PYTHIAS ~ All
PS & hadronisation POWHEGBOX+HERWIG7 vs. POWHEGBOX+PYTHIAS All
i t+>
ISR Varying CXISSR (PS). 1péeiir (ME) in POWHEGBOXRES+PYTHIA8 t‘f +>1b )
in POWHEGBOX+PYTHIAS tt + >1c, tt + light
i t+>
FSR Varying oJ;SR PS) in POWHEGBOXRES+PYTHIA8 tE +>1b )
in POWHEGBOX+PYTHIAS tt + >1c, tt + light
tt + >1b fractions POWHEGBOX+HERWIG7 vs. POWHEGBOX+PYTHIAS8 tt+1b/1B, tt + >2b
p2P shape Shape mismodelling measured from data tt+ >1b

Table 13.8.: Overview of the systematic uncertainties associated to the tt + jets modelling grouped in three dif-
ferent section. The first section comprises normalisation and cross-section uncertainties while the
uncertainties in the second section are designed such that they do not influence the normalisation
of tt + >1b, tt + >1c, and tt + light. The third section comprises uncertainties specifically as-
signed to the tt 4+ >1b mis-modelling effects. All systematic uncertainty sources are uncorrelated
across the three sub-components [5].

of the analysis [13]. In the following, tt + >1c is normalised to the SM prediction with a 100%
uncertainty. The tt + >1b normalisation is kept free-floating in the fit.

The systematic uncertainties listed in the middle row of Table 13.8 are retrieved as described for
the ttH modelling, with the exception that in all alternative samples the tt + >1b fraction is re-
weighted to be the same as for the nominal generators, leaving it to the fit to extract this information
from data via the normalisation factor k(tt + >1b). For the ISR uncertainty the pug and pug in the
ME are varied by a factor 0.5 (2.0) and ocISSR in the PS is set to 0.140 (0.115) rather than the nom-
inal value 0.127. To retrieve the FSR uncertainty ocESR is changed to 0.1423 and 0.1147 in place of
the nominal value (XI;SR = 0.127. The variations for both systematic uncertainties (ISR, FSR) are
performed on the respective nominal samples, i.e. POWHEGBOXRES+PYTHIA8 (4FS) for tt + >1b
and POWHEGBOX+PYTHIAS (5FS) for tt + >1c and tt + light. For the determination of the NLO
matching and the PS & hadronisation uncertainties, both being two-point systematics, no alternative
4FS generator samples with sufficient statistics are available . This uncertainty is not meant to cover
differences between the 4FS and the SFS modelling since it was found that the 4FS represents data
better than SFS and therefore no dedicated uncertainty coping for this difference is being used in this
analysis. Consequently, the relative difference between POWHEGBOX+PYTHIAS (5FS) and MAD-
GRAPH5_aMC@NLO+PYTHIAS8 (5FS) as well as POWHEGBOX+HERWIG7 (5FS) for the NLO

matching and PS & hadronisation uncertainty is used instead, respectively.

The predicted fraction of the tt + >1b subcomponents (tt + >2b and tt + 1b/1B) as shown in
Figure 13.4 are varying for different MC generators. Therefore, an additional uncertainty is asso-
ciated to account for these differences. The discrepancies between the POWHEGBOX+PYTHIAS

tt (5FS) and POWHEGBOX+HERWIG7 tt (5FS) models are used to estimate this effect, resulting in
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a normalisation difference of F19.5% and +41.2% for the tt + >2b and tt + 1b/1B components,
respectively®. The nuisance parameter associated to this uncertainty is correlated across all analysis
regions. The NLO matching and PS & hadronisation uncertainties are adapted to be independent of

the respective tt + >1b sub-component normalisations.

p?b Shape Uncertainty

The transverse momentum of the reconstructed Higgs candidate pTH is not well modelled as shown in
Figure 13.11. Especially the p%l distribution in the resolved lepton+jets channel (see Fig. 13.11 (a))
shows a clear slope in the data over MC prediction ratio. A similar behaviour also occurs in the
dilepton channel (see Fig. 13.11 (c)). Only the signal regions are examined since they are split into

p'; bins while the control regions are inclusive in pTH. To cope with this effect, an additional uncer-

T
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Figure 13.11.: Distribution of the reconstructed p{j before the fit for the (a) resolved and (b) boosted
lepton+jets and (c) the dilepton SRs. All uncertainties including their correlations are con-
sidered in the uncertainty band excluding k(tt 4+ >1b) which is only defined post-fit [5].

tainty is retrieved only taking into account shape effects of the tt + >1b process. In a first step, the
inclusive pre-fit normalisation k(tt + >1b) in the resolved lepton+jets signal regions (Fig. 13.11 (a))

is determined via ~
_ Ndata — NMmc (non-tt + >1b)

>1b) =
k(tt + >1b) N ((E 1 S10)

=152, (13.7)

where Nga, is the number of data events, Nyc(tt + >1b) the number of predicted tt + >1b events
and Nyic(non-tt + >1b) the amount of background events not originating from the tt + >1b cat-
egory (the signal process is excluded in the calculation). Using the data information in this step is

legitimate, even though the analysis is performed in a blinded way, since the signal contribution in

While writing this thesis, it was found that those values are not correct and the actual differences are smaller (F7.4% and
+10.8% for tt + >2b and tt + 1b/1B) as indicated in Figure 13.4. Given that the systematic uncertainty used for the
preliminary result (conference note [5]) is conservative, the fit was not redone for this thesis, but will be redone with the
correct values for the paper.
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each pH-bin region is small prior to applying the classification BDT. Next, the weight per pX! bin i

is calculated following the formula

N — Nijc(non-tt 4+ >1b) 1

“i= NL(ti + >1b) K(tE+ >1b)’

(13.8)

which takes into account the pre-fit normalisation from Equation (13.7). The same procedure is
repeated for the dilepton channel and the results from the lepton+jets channel are also applied to the
boosted channel. The resulting weights are shown in Figure 13.12. These weights are applied as an
additional nuisance parameter (p2Pshape) in the fit in the corresponding reconstructed pt! bin and
are correlated between all channels. This uncertainty is constructed such that a pull of one standard

deviation in the fit would be equivalent to fully reweighting the tt + >1b samples with wj.

— 1.4 T | T 171 | T T 7T | T T 7T | T T 7T T T T T T T | T
8_ B - . 4— lepton+jets ]|
© [ V5 =13TeV, 139 fb~!, Sim. & dilepton
c
¢ 1.2 7
Ei - ]
S 1of —F———— -
0.8F _____F____ .
0.6 .
0.4 .
0.2 -
0 0 _I | 111 1 | 11 1 | 11 1 | 11 1 | 111 1 | 111 1 | I_
el 100 200 300 400 500 600
pt/Gev

Figure 13.12.: The weights corresponding to the p%’bshape uncertainty retrieved via Equation (13.8) for
lepton+jets (blue) and dilepton (red). The vertical error bars represent the statistical uncer-
tainty and the horizontal error bars indicate the bin width while for the last bin all events with
pT > 450 GeV are included.

In order to give the fit enough flexibility for the signal extraction when dealing with the back-
ground mismodelling, the NLO matching and PS & hadronisation uncertainties corresponding to the
tt + >1b sub-category are decorrelated between the lepton+jets and dilepton channels. To get addi-
tional freedom, the NLO matching uncertainty is decorrelated for tt + >1b between the p? bins of
the SRs. This was studied in blinded fits where only signal depleted bins are used where the criterion

was the goodness of fit.
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OTHER BACKGROUND PROCESSES

The systematic uncertainties associated to background processes other than tt + jets are summarised

in Table 13.9 with their respective sources and the corresponding descriptions. These uncertainties

play a subordinate role compared to the tt + jets uncertainties.

Sample

Uncertainty source

Description

single-top production cross-section
[76, 218, 219, 247] NLO matching

PS & hadronisation
tW —tt inference @NLO [229]

+5%

POWHEGBOX+PYTHIA8 vs. MADGRAPH5_aMC @NLO+PYTHIAS8
POWHEGBOX+PYTHIA8 vs. POWHEGBOX+HERWIG7

[DR] vs [DS] in POWHEGBOX+PYTHIAS

ttv NLO cross-Section [248] +15% (split into PDF and scale uncertainties)

NLO maching MADGRAPHS5_aMC@NLO-+PYTHIA8 vs. SHERPA

PS & hadronisation
W+ jets cross-section +40%
W+HF-jets normalisation £30% (uncorrelated between events with = 2 and > 2 HF-jets)
Z+jets normalisation +35% (uncorrelated across jet bins)
Diboson over-all +50% (incl. cross-section & additional jet production [249])
four-top normalisation 4+50% (variation of ur and pg, PDFs and «g [250])
tZq cross-section 4+0.9% (PDFs) +7.9% (factorisation & renormalisation)
tWz cross-Section [250] +50%

Table 13.9.: Overview of systematic uncertainties associated to the modelling of all background processes
other than tt + jets. The abbreviation DR denotes the diagram removal scheme (nominal), DS is
short for diagram subtraction scheme and HF stands for heavy flavour.
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To extract the signal, a profile likelihood fit is performed as described in Section 13.5. In total, 16 or-
thogonal analysis regions are used in the combined fit: five SR;G&) and two CR?4b from the resolved
lepton+jets channel as defined in Section 13.4.1, two signal regions from the boosted lepton+jets
channel as well as four SR;Hj and three CRs from the dilepton channel (an overview of all analysis
regions is shown in Figure B.1). The binning in each region was optimised in the seek of the best
sensitivity and together they have 53 bins.

Both, the inclusive cross-section measurement and the STXS measurement use the same strategy.
The only difference is that in the STXS case, the signal template is split up into five parts according
to the truth Higgs transverse momentum and for every signal template a separate signal normalisation

(signal strength) w is considered in the fit.

14.1 INCLUSIVE CROSS-SECTION MEASUREMENT
14.1.1 Expected Performance

The analysis is optimised on MC simulation and the performance is evaluated via the Asimov dataset
instead of data. This dataset is built from the nominal background and signal simulation. There-
fore, by construction, the signal strength and the background normalisation are 1 and the nuisance
parameters are not pulled. Nevertheless, uncertainties on the signal strength and the background nor-
malisation as well as the expected significance can be extracted in the profile likelihood fit.
To speed up the fitting and to facilitate its convergence, the shape and normalisation of systematic
uncertainties are pruned if they are below a threshold of 1%. The pruning is performed on a bin-by-
bin basis for each sample and analysis region. In the previous publication [13] it was shown that
this pruning threshold reduces the computing time for the fit significantly and no change in the un-
certainty on the signal strength nor in pulls or constraints of the nuisance parameters was found. In
addition, to reduce the impact in the calculation of systematic uncertainties coming from statistical
fluctuations in MC samples, smoothing algorithms are employed. In Figure 14.1 a selection of sys-
tematic uncertainties is shown with their 1o impact on the nominal modelling.

The expected inclusive signal strength from the combined fit of all three channels results in
Winel, = 1 .OOfgg? and k(tt+ >1b) = 1.00 4+ 0.07 with an expected significance of 3.4 standard devi-
ations. To retrieve the statistical uncertainty, a separate fit is performed with the free parameters iy,

and k(tt+ >1b)!. The systematic uncertainty is then calculated by quadratically subtracting the stat-

For the data fit later, all nuisance parameters are set to their respective post-fit values from the nominal fit to retrieve the
statistical uncertainty.
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Figure 14.1.: Comparison of the nominal prediction (black) with the one standard deviation up (red) and down
(blue) variation of the (a) ttH NLO matching uncertainty in the pr € [120,200) GeV bin, (b)
the tt + >1b NLO matching uncertainty in the pt € [0,120) GeV bin, (c) the tt + >1b FSR
uncertainty in the py € [200,300) GeV bin and (d) the tt + >1b p%’bshape uncertainty in the
pr € [200,300) GeV bin. The dashed lines indicate the original 10 variation and the solid lines
the 10 variation after smoothing and symmetrisation.

istical uncertainty from the total uncertainty which results in p,;. = 1.00 £ 0.18 (stat.) fg:g; (syst.)

dominated by the systematic uncertainty.

Comparing this result to the result previously published on a subset of the RUN II data (36.1fb™ ")
shown in Figure 5.2 (a), a significant improvement in terms of the systematic uncertainty was made,
being almost a factor two smaller. The statistical uncertainty only decreased by about 40% even
though the statistics of the dataset increased by about a factor 3.8, caused by a tighter event selection
in this analysis. In the previous publication with 36.1 fb™*, the tt + >1b background was modelled
in the 5FS and uncertainties incorporating the differences between the 4FS and 5FS were assigned
which had the second-largest impact in the analysis. This time, this uncertainty is not used because
the tt + >1b background is modelled with the 4FS. Together with improvements in the b-tagging
calibration allowing a better region definition, this resulted in an increased sensitivity.

In data, the k-factors and nuisance parameter pulls can deviate from 1 and thus modify the sensitiv-
ity of the analysis. To calculate a more realistic significance, the nuisance parameter pulls and the
k(tt + >1b) value from data are taken into account building a pseudo-dataset and fitting it. This
pseudo-dataset is built by using the nuisance parameter pulls from a data fit where the signal strength

is set to the SM expectation @ = 1. The realistic expected significance is determined to be 3.0
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standard deviations which is an improvement compared to the expected sensitivity of 1.6 standard

deviations from the previous publication.

14.1.2 Fit Results on Data

The combined profile likelihood fit of the inclusive cross-section to data gives a best-fit signal strength
of

Winel, = O.43f8:%8 (stat.) fgég (syst.) = 0.43f8§g,

measured with an observed significance of 1.3 standard deviations above the background-only hypo-

thesis. The tt 4+ >1b background normalisation factor results in

K(tE+ >1b) = 1.26 + 0.09.

The inclusive signal strength is compatible with the 36.1 fb~* result (see Fig. 5.2 (a)) within their
uncertainties. Even though the expected sensitivity improved from an expected significance of 1.6 to
3.0 standard deviations, the observed significance decreased from 1.4 to 1.3 standard deviations due

to the low signal strength.

Moreover, Figure 14.2 shows the comparison of the fit with the combined inclusive signal strength
and the fit where each of the three channels (resolved and boosted lepton+jets and dilepton channel)
have an individual signal strength, the so-called 3-p fit. The fit procedure is otherwise identical to
the nominal fit. The single p values are compatible with the inclusive | obtained in the nominal
fit within their uncertainties. The signal strength from the resolved lepton+jets has the smallest
uncertainty and is thus the most sensitive. The tt 4+ >1b normalisation factor from the 3- fit resulted
in k(tt+ >1b) = 1.26f8:8§ which is in good agreement with the result from the nominal fit. The
compatibility is also checked with a x?-test comparing the negative log-likelihood values of the 3-
p and nominal fit. A probability of 83% is found to get a difference equal or larger than the one
observed between the 3-p and the nominal fit. A log-likelihood scan of the signal strength in the
nominal (combined 1) fit is shown in Figure 14.3. It shows the difference in the log-likelihood for
different values of the signal strength with respect to the best-fit value. By definition, The best-fit
value of the measured signal-strength lies exactly in the minimum of the distribution.

Furthermore, another kind of fit is performed in which a separate fit in each channel is done not
considering any correlations between the channels and the following signal strengths were found:

l+jets resolved +0.47
incl. - 0'2370.46’

l+jets boosted +1.27
incl. - _0'7271.61 ’

dilepton __ +0.91
incl. - 0’9570.84'
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Generally, the values of p are smaller in all three cases than in the nominal combined fit but are
compatible with each other within their uncertainties. While the result of the dilepton channel is
very similar, the two lepton+jets results change more drastically in the separate p fit. This indicates
that the boosted channel needs constraints on tt + jets and on k(tt + >1b) from the other channels.
Especially when only fitting the boosted signal regions, the signal strength turns negative and a more
than 100% uncertainty is associated to it with regard to a L = 1. The observed differences are caused
by correlations of nuisance parameters affecting the different channels which are not taken into ac-

count when fitting the channels separately.

ATLAS Preliminary {s=13 TeV, 139 fb™*

— Total Stat. Tot. ( Stat. Syst.)
l+jets resolved Fe- 0.32 fg_’jg J:géf fgﬁ?
I+jets boosted -4 0.36 tg_’gg tg:jg ig,gg

Dilepton ——e——i 0.98 tg_'gg tg.'gg ir(()).'783
Inclusive red 0.43 tg_'gg tg.'fg igg?
1 1 L i L L | L L L | L L L | L L L | L L L
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M. = o™/ oy for m =125 GeV

Figure 14.2.: Fitted values of the ttH signal strength parameter in the individual channels and in the inclusive
signal strength measurement. The results of the three individual channels are retrieved with the
3-u fit and the inclusive scenario is the nominal combined fit with one signal strength [5].

The correlation matrix of the nuisance parameters and the signal strength for the nominal in-
clusive data fit is shown in Figure 14.4. The largest correlations are coming from the tt + >1b
fraction nuisance parameter with: the tt + >1b NLO matching in the dilepton CRs, the tt + >1b
ISR nuisance parameter and the dilepton tt + >1b PS & hadronisation nuisance parameter, ran-
ging from 48% to 62%. The tt + >1b NLO matching nuisance parameter for the truth pr bin
0< P‘f < 120 GeV is strongly anti-correlated with ine;. (-51%) as well as with the p% bshape nuis-
ance parameter (-43%) and the lepton+jets tt + >1b PS & hadronisation nuisance parameter (-27%).
The largest anti-correlation occurs between the tt + >1b NLO matching nuisance parameter in the

lepton+jets CRs and the lepton+jets tt + >1b PS & hadronisation nuisance parameter (-68%).
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Figure 14.3.: Result of a likelihood scan of the signal strength ... The difference in the negative log-
likelihood —AIn(£) is calculated with respect to the best-fit value of the nominal fit indicated as
vertical orange line.

14.1.3  Fit Performance

In Figure 14.5 a summary of the predicted event yields (pre-fit) and the predicted yields fitted to data
(post-fit) compared to the observed event yields in data are shown for all lepton+jets regions. For
the pre-fit case, the signal strength and the tt + >1b normalisation k(tt + >1Db) are fixed to unity
and no related uncertainty is considered whereas in the post-fit case the values from the nominal fit
results are applied. The post-fit uncertainties then take into account the correlations of all nuisance
parameters and their constraints. While the predicted pre-fit event yields show some dis-agreements
with data, the post-fit yields agree well in all regions. In several regions, the predicted pre-fit yields
are lower than the observed data yields which is well corrected after the fit. The corresponding event

yields are also listed in table B.2.

In addition, for all important variable distributions, which are all BDT input variables, all fit inputs
and additional kinematic variables, the data/MC agreement was checked and was found to be overall
very good post-fit as illustrated in Figure 14.6. To calculate the p-values in this plot, all correlations of
the uncertainties are considered. The shown p-values are peaking at one and only a few distributions
show up in the tail. Typically, one would expect a flat distribution of the p-values, however, due
to the dominance of systematic uncertanties in the analysis, this peak at one occurs. Importantly,
the signal (brown) and control (pink) regions have values close to one indicating a good post-fit
modelling. The classification BDT distributions of the resolved lepton+jets regions entering the fit

are shown in Figure 14.7 and the AR;VE distributions in Figure 14.8 before the fit and after the fit.
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Figure 14.4.: Correlation matrix of the nuisance parameters and signal strength after the nominal inclusive fit
to data. All values are given in percent. Each parameter has to have at least one correlation
above 20% to be included here. For the tt + >1b NLO matching uncertainties ‘SRbinN’, with
N = 1..5, corresponds to the truth pt bins 0 < p%‘ < 120 GeV, 120 < pTH < 200 GeV,
200 < p%l < 300 GeV, 300 < pTH < 450 GeV and p-‘lj > 450 GeV, respectively.
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Figure 14.5.: Predicted and observed event yields in all regions of the lepton+jets channel (a) before the fit
and (b) after the fit to data [5]. The uncertainty band of the pre-fit distribution (a) contains all
uncertainties except the uncertainty of k(tt + >1b) which is only defined post-fit. In the post-fit
version (b) all uncertainties with their correlations are considered.
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Furthermore, the post-fit distributions of the number of jets and the reconstructed pt! are illustrated
in Figure 14.9. The agreement with data in the number of jets improved but is still not optimal®. In
particular, for eight and nine jets the data prefers fewer events and this effect is not covered by the
uncertainties. In general, the agreement of the prediction and data improved after the fit as well as
the associated model uncertainty caused by correlations and constraints of the nuisance parameters
mainly associated to the tt + >1b background.

The quality of the fit is further examined obtaining the global goodness of fit which amounts to 86%
indicating a good fit quality. It is evaluated using the so-called saturated model [251] which is a
model with as many parameters as data points to perfectly describe the data such that it can be used
to compare to the actual fit model to evaluate its quality: the global goodness of fit.

In Figure 14.10 a summary plot of all events passing the analysis selection is shown as a function of
log;,(S/B) which is determined from the signal (S) and background (B) predictions in the different
bins entering the fit. Two scenarios are shown: the fit results with the best-fit signal strength (red)
and the SM prediction (orange). The data is in good agreement with the nominal fit results nicely
visible in the ratio panel. While in most bins the data also agrees well with the SM prediction, in the
last three bins, which are most sensitive to the signal, the SM scenario (i, ;y = 1) overestimates the

event yields.
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Figure 14.6.: Goodness of fit test as a function of the p-value retrieved from the x? value and the number of
degrees of freedom. The p-value is calculated for the BDT input distributions (blue), the signal
(brown) and control (pink) regions as well as separately again for the top 5 ranked variables
entering the BDT training. Plot retrieved from internal communication with Ana Luisa Carvalho.

2 After the writing of this thesis, an issue was found in the analysis affecting all inclusive plots: certain systematic uncer-
tainties were not drawn in the inclusive distributions. Therefore, the drawn uncertainties, in particular for the number of
jets, were too low and, in fact, with the corrected uncertainties the predictions agree within the systematic uncertainties
with data. This issue does not affect the fit results, only the inclusive distributions. This will be corrected in the paper
publication.
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Figure 14.7.: Comparison between data and prediction for the BDT discriminant in the resolved single-lepton
SRs before (a-c& g-h) and after (d-f& i-j) the inclusive fit to data shown for (a,d) 0 < p]T'l <
120 GeV, (b.e) 120 < ph! < 200 GeV, (c.f) 200 < pH < 300 GeV, (g.i) 300 < p} < 450 Gev
and (h,j) pTH > 450 GeV (yield only). The ttH signal yield (solid red) is normalised to the fitted
w value from the inclusive fit. The post-fit uncertainty band includes all uncertainties and their
correlations while for the uncertainty on the pre-fit distributions the uncertainty on k(tt + >1b)
is not defined [5].
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Figure 14.8.:
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Comparison between data and prediction for the ARan discriminant in the resolved single-lepton
CRs before (left) and after (right) the inclusive fit to data shown for (a,b) CR> 41 1o and (c,d)
CR> 4b hi - The ttH signal yield (solid red) is normalised to the fitted p value from the inclusive

fit. The post-fit uncertainty band includes all uncertainties and their correlations while for the
uncertainty on the pre-fit distributions the uncertainty on k(tt + >1b) is not defined [5].
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Figure 14.9.: Post-fit distributions of the (a) number of jets and (b) the reconstructed Higgs boson candidate pt
in the lepton+jets resolved SRibe signal regions. The ttH signal yield (solid red) is normalised
to the fitted p value from the inclusive fit. The uncertainty band includes all uncertainties and

their correlations [5].
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Figure 14.10.: Post-fit yields of signal (S) and total background (B) as a function of log;,(S/B), compared
to data. Final-discriminant bins in all dilepton and single-lepton analysis regions are combined
into bins of log;,(S/B), with the signal normalised to the SM prediction used for the compu-
tation of log;,(S/B). The signal is then shown normalised to the best-fit value and the SM
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data over ttH signal-plus-background yields for the best-fit signal strength (solid red line) and
the SM prediction (dashed orange line) [5].
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14.1.4 Dominant Uncertainties

The uncertainty associated to the fit result is mainly driven by systematic uncertainties which are
described in Section 13.6. The impact of the different nuisance parameters and hence the systematic
uncertainty sources are evaluated and ranked by their impact on the signal strength Ay which is the
shift in piye, evaluated in a separate fit, with fixed nuisance parameter 0 + A6 3, with respect to the
nominal fit. A is the shift on Winc. When shifting a nuisance parameter from its fitted value 0 by
one standard deviation A® upwards and downwards. The 20 highest ranked nuisance parameters
according to their post-fit impact are shown in Figure 14.11. The upper axis represents the scale for
the pre-fit and post-fit impact on . The pre-fit (post-fit) impact is given as 6 + A (8 + AB), with A
(AB) the pre-fit (post-fit) uncertainties. While A@ is set to one which is the pre-fit prior corresponding
to one standard deviation, the post-fit value of A8 is typically smaller due to constraints from the fit.
Both the pre-fit and post-fit impacts are shown as empty and filled rectangles, respectively. The lower

axis indicates the scale of the pull of a nuisance parameter defined as egee O with 09 the nominal pre-fit

value. The pulls are indicated as black points with their respective error bar. The background normal-
isation k(tt + >1b) is drawn with its actual value and since its pre-fit impact is not properly defined,
it is not shown. The six highest-ranked nuisance parameters are all associated to the tt + >1b mod-
elling where the two dominant systematic uncertainties are coming from the NLO matching which
are retrieved from the comparison of the two generators MADGRAPHS5_aMC @ NLO+PYTHIAS and
POWHEGBOX+PYTHIAS. Besides the uncertainties from the tt + >1b modelling, also tW and
signal modelling related nuisance parameters are showing up in the ranking. However, their im-
pact is small compared to the tt + >1b nuisance parameters. In addition, the impact on the signal
strength is evaluated in groups of systematic uncertainty sources listed in Table 14.1. A consistent
picture is drawn, the tt + >1b modelling dominates the systematic uncertainties followed by the
signal modelling and the tW modelling. The largest instrumental uncertainty is originating from the
flavour-tagging calibration. Moreover, the available MC statistics for the background (Background-
model statistical uncertainty) is of similar size as the flavour-tagging uncertainties, which can be
reduced by generating more events.

The largest pulls are coming from the tt + >1b ISR and the p2Pshape uncertainty. The tt + >1b
ISR nuisance parameter is pulled by about 1.40, mainly correcting for the mismodelling of extra radi-
ation in tt + >1b events. Thus a softer renormalisation and factorisation scale is favoured by data in
the ME calculation and should be taken into account in the MC production for a future analysis. Ex-
tensive studies were performed understanding this pull in detail. In particular, the distribution of the
number of jets, which are used to categorise events, is corrected as shown pre-fit in Figure 13.5 (b)
and post-fit in Figure 14.9 (a) due to this pull. The shape of the BDT distributions used as input
for the fit are not found to be affected by this pull. In addition, it was checked if decorrelating the
tt + >1b ISR nuisance parameter across all analysis regions would have an impact, but no real dif-

ferences were spotted. The largest pull was seen in the dilepton CR?S jhi while all other pulls not

The parameters with a hat (e.g. 0) correspond to the best-fit values and those without a hat are the corresponding pre-fit
values.
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Figure 14.11.: Ranking of the 20 nuisance parameters with the largest post-fit impact on p in the fit. Nuisance

parameters corresponding to MC statistical uncertainties are not included. The empty blue
rectangles correspond to the pre-fit impact on p and the filled blue ones to the post-fit impact on
u, both referring to the upper scale. The impact of each nuisance parameter, Ay, is computed by
comparing the nominal best-fit value of p with the result of the fit when fixing the considered
nuisance parameter to its best-fit value, 0, shifted by its pre-fit (post-fit) uncertainties +A0
(+£A0). The black points show the pulls of the nuisance parameters relative to their nominal
values, 0g. For k(tt + >1b) the pre-fit prior is 1 and not 0 as for the uncertainties and thus
the pull is also w.r.t 1. These pulls and their relative post-fit errors, AB /A8, refer to the lower
scale. For the tt + >1b NLO matching uncertainties ‘SRbinN’, with N = 1..5, corresponds
to the truth pr bins 0 < pH < 120 GeV, 120 < pt' < 200 GeV, 200 < pH < 300 GeV,
300 < ]D'T1 < 450 GeV and p'ﬁ > 450 GeV, respectively. The ‘ljets’ (‘dil’) label refers to the
single-lepton (dilepton) channel [5].
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Uncertainty source Au

tt + >1b modelling +0.249 -0.236
ttH modelling +0.142  -0.057
tW modelling +0.083 -0.076

b-tagging efficiency and mis-tag rates +0.053 -0.046
Background-model statistical uncertainty +0.045 -0.046

Jet energy scale and resolution +0.031 -0.030
tt + >1c modelling +0.029 -0.031
tt + light modelling +0.020 -0.020
Luminosity +0.013  -0.002
Other sources +0.027 -0.026
Total systematic uncertainty +0.30 -0.27
tt + >1b normalisation +0.029 -0.054
Total statistical uncertainty +0.20 -0.19
Total uncertainty +0.36  -0.33

Table 14.1.: Breakdown of the contributions to the uncertainties in (. The contribution of the different sources
of uncertainty is evaluated after the fit. The Ap values are obtained by repeating the fit after having
fixed a certain set of nuisance parameters corresponding to a group of systematic uncertainties, and
subtracting in quadrature the resulting total uncertainty of p from the uncertainty from the full fit.
The same procedure is followed when quoting the effect of the tt + >1b normalisation. The total
uncertainty is different from the sum in quadrature of the different components due to correlations
between nuisance parameters existing in the fit [5].

related to the tt + >1b ISR nuisance parameters stayed the same. The nuisance parameter related
to the pYPshape uncertainty in the tt 4+ >1b background is pulled by about one standard deviation,
which is covering the mismodelling of the pH distribution as shown in Figure 13.11 by construction.
Therefore, this pull is equivalent to applying a data-driven weight as a function of p'{l. The post-fit
modelling illustrated in Figure 14.9 (b) is hence very good. In a bias-study, the influence on the
sensitivity of the p}’bshape uncertainty was evaluated by decorrelating the free-floating parameter
k(tt+ >1b) in every STXS bin, and the bias was found to be negligible. Furthermore, the tt + >1c
normalisation uncertainty is pulled by about a factor 0.6 and strongly constrained. In the previous
publication, the tt + >1c normalisation factor was a free-floating parameter in the fit with a best-fit
value of k(tt + >1c) = 1.63 £ 0.23 [13]. In the analysis presented here, tt + >1c is not free-
floating which is now reflected in this pull. Also, the largest constraints are seen for the tt + >1c

normalisation uncertainty as well as for the tt + >1b modelling uncertainties.

14.2 STXS MEASUREMENT

Since the analysis regions were designed for the STXS measurement, no big changes are necessary
to perform the fit compared to the inclusive cross-section measurement. As described in Section 5.2,
the signal template is split into five truth pt! bins, also corresponding to the reconstructed pX! bins of

the SRs and the STXS bin migration uncertainties are removed since each signal template has now a
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dedicated signal strength parameter. The resulting best-fit values for the signal strength are shown in

Figure 14.12. And the tt + >1b background normalisation was measured to be
k(tt+>1b) = 1257397,

which is very similar to the observed value in the inclusive fit. In Figure B.2 the pre-fit and post-fit
yields are summarised for the lepton+jets regions. Moreover, the pre-fit and post-fit distributions in
the lepton+jets signal regions are shown in Figure 14.13. Likewise, the pre-fit distributions show
some normalisation off-sets while the post-fit distributions are well modelled. The good overall mod-
elling is also confirmed by the good global goodness of fit of 83%. With a x2-test the compatibility
of the STXS fit with the SM prediction is evaluated, where all signal strength parameters are fixed to
one. This test gives a compatibility of 42.5%.

The uncertainties associated to the signal strength parameter are overall fairly large. All u values are
consistent with each other within their uncertainties as well as with the inclusive measurement. Even
though some signal strength parameters are negative, the total signal yield in every single bin used
in the fit is never zero or negative after the fit since this is compensated by the other signal strength
parameters. The first two signal strength parameters (Ligre[0,120) Gev @Nd HEHe[120,200) Gev) are
dominated by systematic uncertainties. In contrast to this, the three remaining signal strength para-

meters are mainly dominated by the statistical uncertainty.
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Figure 14.12.: Signal-strength measurements in the individual STXS p'T'( bins, as well as the inclusive signal
strength [5]. Both results are retrieved with a combined fit of all three channels.

The impact on the signal strength is separately retrieved for each individual signal strength para-
meter. The ranking of the 20 most impacting nuisance parameters is shown in Figures 14.14 and

14.15 for each p separately. In general, the pulls and constraints are very similar to the inclusive
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Figure 14.13.: Comparison between data and prediction for the BDT discriminant in the resolved single-
lepton SRs before (a-c & g-h) and after (d-f & i-j) the STXS fit to data shown for
(ad) 0<ph <120GeV, (be) 120 < pH <200 GeV, (c.f) 200 < pH < 300 Gev, (g.i)
300 < pHt < 450 GeV and (h,j) pXt > 450 GeV (yield only). The ttH signal yields (solid re-
dish lines) are normalised to the fitted u values from the STXS fit. The post-fit uncertainty
band includes all uncertainties and their correlations while for the uncertainty on the pre-fit
distributions the uncertainty on k(tt + >1b) is not defined.



142 STXS MEASUREMENT

cross-section measurement. Again the tt + >1b ISR uncertainty has the largest pull followed by
the p2Pshape uncertainty. Even though certain instrumental nuisance parameters show up in the
ranking, the dominant contributions are originating from the tt + >1b modelling. The p2Pshape
uncertainty is generally getting more dominant in the higher STXS bins, since the shape effect gets

more prominent for larger p? values as shown in Figure 13.12.
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Figure 14.14.: Ranking of the 20 nuisance parameters with the largest post-fit impact on p in the STXS fit,
for (a) 0 < pH < 120 GeV, (b) 120 < pH' < 200 GeVand (c) 200 < pH < 300 GeVand
(d) 300 < p'T* < 450 GeV. Nuisance parameters corresponding to MC statistical uncertainties
are not included. For experimental uncertainties that are decomposed into several independent
sources, NP X corresponds to the X" nuisance parameter, ordered by their impact on . For
the tt + >1b NLO matching uncertainties ‘SRbinN’, with N = 1..5, corresponds to the truth
pr bins 0 < pH < 120 GeV, 120 < pH < 200 GeV, 200 < pH < 300 GeV, 300 < pH <
450 GeV and py' = 450 GeV, respectively. The ‘ljets” (‘dil’) label refers to the single-lepton
(dilepton) channel [5].
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Figure 14.15.: Ranking of the 20 nuisance parameters with the largest post-fit impact on p in the STXS fit,
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p%‘ < 120 GeV, 120 < p‘T4 < 200 GeV, 200 < pTH < 300 GeV, 300 < p%‘ < 450 GeV
and p}T1 > 450 GeV, respectively. The ‘ljets’ (‘dil’) label refers to the single-lepton (dilepton)
channel [5].






OUTLOOK

The ttH(bb) analysis presented in Chapters 13 and 14 is dominated by systematic uncertainties
among which the modelling of the tt + bb background is by far the largest uncertainty. In the fol-
lowing, ideas to further reduce the systematic uncertainties and ideas to improve the general analysis
strategy will be discussed. The multivariate techniques, namely the reconstruction and classification
BDTs, are well suited to be replaced by Neural Networks opening new possibilities in the recon-
struction and classification of events. And in particular, the improvements achieved within this thesis
in the b-tagging algorithm performance described in detail in Part III are a great basis for further
improvements. In the following two different optimisation possibilities are demonstrated: a new tag-
ger incorporating the tt + 1B category and a first look into possible improvements using the newly

optimised b-tagging algorithm DLIr.

15.1 FIRST STUDIES WITH THE NEW DEEP LEARNING BASED bb-TAGGER

Depending on the chosen MC generator, the fraction of tt 4+ 1B events contained in the tt + jets
category as shown in Figure 13.4 varies between 11% and 13%. The tt + 1B events contain two
b-hadrons within one jet in addition to the tt system as shown in the Feynman graph in Figure 13.3.
Due to the flexible structure of the deep-learning-based heavy flavour tagger presented in Part III,
it is possible to introduce an additional category to the multi-classification. The extended flavour
labelling as described in Section 8.1.1 can be used to identify jets containing two b-hadrons, further

denoted as bb-jets.

15.1.1 Training Dataset

The tt samples described in Section 8.1.2 are complemented by Z(— )+ bb-jets events from
which the bb-jets are extracted. The Z+ jets events are simulated with the SHERPA v2.2.1 generator
using the PDF set NNPDF 3.0NNLO as indicated in Table 13.2. While the light-flavour, c- and b-jets
are extracted from the tt sample, the bb-jets are taken from the Z+ jets sample only.

The jets are clustered with the Particle Flow algorithm.

15.1.2  Training Setup

The neural network architecture is adapted from the DL1 tagger described in Section 9.1 adding a

fourth classification category, the bb-jets category. The variables used for the training are the same
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as for the DLIrmu tagger (see. fig 9.2) and the pt and [n| distributions are reweighted to match the
b-jet distributions. The same preprocessing steps are performed as for the DL1 tagger trainings. Four
example variable distributions are shown in Figure 15.1 which are the most promising input variables
for the classification of bb-jets. The charged energy fraction of the secondary vertex, calculated from
the JETFITTER algorithm optimised for c-jet identification (a), is shifted to lower values for bb-jets
compared to b-jets. This can happen since only the SV closest to the primary vertex is taken into
account and hence often only one b-hadron is considered in the calculation which is typically the
softer b-hadron since it is closer to the PV and thus more likely to be less boosted than the other.
The mass of the vertex from the SV1 algorithm (c) is flatter for bb-jets compared to b-jets and
also reaches larger values. In the SV1 algorithm only one secondary vertex is reconstructed and
hence in some cases only one b-hadron is part of the SV and for the higher values both b-hadrons
are reconstructed in one SV. Unfortunately, the distribution is cut at 6 GeV since the algorithm is

optimised for single b-jets and thus not optimal for bb-jets.
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Figure 15.1.: Example input variable distributions for the extended DL/ rmu tagger training with a bb-category:
(a) charged jet energy fraction of JF w.r.t. all tracks in the jet fJEFC (b) IP2D (c) the invariant
mass of the SV calculated from the associated tracks and (d) AR(jet, SV).
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15.1.3  First Training Results

A first training was performed for 200 epochs. Figure 15.2 shows the distribution of the b-jet output
node (a) and the bb-jet output node (b) which indicate the probability of a jet being a b- or bb-jet,
respectively. Both distributions show a nice separation of the b- and bb-jets. To further evaluate
the performance, a simplified version of the log-likelihood discriminant from Equation (7.4) is used
Dyp, = log (‘%") , only taking into account the output-nodes of the b- (py) and bb-jets (ppy ). This
simplification is made since the main goal is to compare the performance between these two classes.
For further studies, all output-nodes should be taken into account. At a bb-jet efficiency of 30%, a
b-jet rejection of 64 is obtained. Moreover, a rejection of around 5 for bb-jets is achieved at a b-jet
efficiency of 70%.
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Figure 15.2.: Output distributions of the extended DLIr tagger with an additional bb-category for the (a) b-jet
class output node and (b) the bb-jet output node.

15.1.4 Outlook

This first study of an extended heavy-flavour tagger incorporating an additional bb-category showed
already promising results. Nevertheless, there are still many improvements possible. Especially, the
resampling approach presented in Section 9.2 offers a more stable training. Moreover, the newly
introduced UMAMI tagger (see sec. 12.1) exploiting track information in an end-to-end training can

extract more information to better classify bb-jets.

15.2 FIRST LOOK AT PFLOW JETS AND THE NEW DL1R TAGGER IN ttH(bb)

The ttH(bb) analysis benefits from improvements in b-tagging in many ways: smaller calibration
uncertainties reflect in smaller systematic uncertainties in the analysis and an improved tagging per-
formance allows to better classify events. The improvements made in this thesis in the b-tagging

performance are therefore crucial for further analysis improvements. In this section, a first look is
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taken into possible sensitivity improvements due to the new DLIr tagger using PFlow jets.

A simplified setup is used: no systematic uncertainties are taken into account, only the resolved
lepton+jets regions are considered and the sensitivity is only evaluated using MC simulation.
The region definitions are the same as described in Section 13.4.1 with the exception that events
from the boosted lepton+jets channel are not vetoed. For EMTopo jets, the same simplifications
apply, but apart from that the same setup as described in Chapter 13 is used for them (i.e. the
MV2c10 tagger), to have a setup for a direct comparison here. Instead of the MV2c10 b-tagging
algorithm, the DLIr tagger developed in Chapter 10 is employed for PFlow jets. To incorporate
the new b-tagging algorithm in the full analysis chain, the reconstruction and classification BDTs
are also evaluated using the information of DL/r but no retraining is performed with respect to the
version for EMTopo jets. The signal (S) over background (B) ratio (black) as well as S/ VB (red)
are shown in Figure 15.3 for both the EMTopo jets (dotted-dashed lines) and PFlow jets (solid lines).
Overall, the new setup with PFlow jets and DLIr shows an increased S/B and S/ V/B ratio in each

resolved lepton+jets region with respect to the EMTopo jets.
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Figure 15.3.: Contribution of the ttH signal (S) in the different resolved lepton+jets analysis regions shown for
PFlow jets (solid lines) which use the new DLIr tagger and EMTopo jets (dotted-dashed lines)
which still use the MV2c10 tagger. The black lines are associated to the left vertical axis showing
the signal over background (B) ratio and the red lines show the S/+/B distribution corresponding
to the right vertical axis.
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A statistical only Asimov fit is performed yielding a signal strength of
uPFlow — 1,00 +0.19. (15.1)
Moreover, the same fit is carried out for EMTopo jets resulting in

pEMTopo 3 00 4 0.22. (15.2)

incl.

The new jet collection and the improvements from DLIr are already reflected in the results for this
simplified setup. These results are a good basis for further improvements which are under develop-

ment towards a RUN 1II legacy paper.
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SUMMARY AND CONCLUSION

In this thesis, two closely linked topics were presented: the reoptimisation of the deep-learning based
heavy-flavour tagging algorithm in ATLAS and the search for the Higgs boson production in associ-
ation with a pair of top quarks in the H — bb decay channel (ttH(bb)) with the full LHC RUN II
dataset. The final state of the ttH(bb) process contains at least four b-jets and thus heavily benefits

from improvements in b-tagging.

The reoptimisation of the deep-learning based heavy flavour tagger was performed for two differ-
ent jet collections: ParticleFlow jets and Variable Radius Track jets. All future physics analyses in
ATLAS will be using ParticleFlow jets and thus a well optimised b-tagging algorithm is crucial for
these physics results. The input feature handling for the neural network training as well as the net-
work architecture itself were optimised. Significant improvements were achieved, with up to a factor
of two in the background rejection for certain phase space regions. Moreover, a hyperparameter op-
timisation workflow was developed using GRID GPUs to be provided for the use in the collaboration.
In addition, a new idea for a heavy-flavour tagger was presented, combining track and jet information
in an end-to-end training. This will most probably be the new direction of flavour tagging in ATLAS

and is currently being optimised.

The ttH(bb) analysis is carried out with a dataset of 139 fb—* of proton-proton collisions at a
centre-of-mass energy of /s = 13TeV recorded with the ATLAS detector. The measurement is
directly sensitive to the top Yukawa coupling which is the strongest Yukawa coupling in the Standard
Model. The targeted channel in this thesis is the resolved lepton+jets channel which has at least six
jets in the final state, where at least four are b-jets. One W-boson from the decay of the associated
top-quark pair is decaying leptonically. The final state partons are matched to the jets in the event
using a reconstruction BDT. In this analysis, the dominant background process is coming from
tt + jets events, especially from tt 4+ >1b events. For the final result, this channel is combined with
the boosted lepton-+jets channel optimised for p¥l > 300 GeV and the dilepton channel. The signal

strength of the inclusive cross-section measurement resulted in
0.20 0.30
Wincl, = 0.43:).1 o (stat.) f0.27 (syst.),

with an observed (expected) significance of 1.3 (3.0) standard deviations. The normalisation factor of
the tt + >1b background 1is free-floating in the fit and was measured to be
k(tt+ >1b) = 1.26 + 0.09. The measurement is mainly dominated by systematic uncertainties. Par-

ticularly, the uncertainties associated to the modelling of the tt 4+ >1b background process have the
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largest impact on the overall uncertainty.

Furthermore, a differential measurement of the Higgs boson transverse momentum was performed,
for the first time in the ttH(bb) channel. This was done in the STXS framework which allows an
easier comparison between different channels and between experiments. The signal strength was
measured in the five Dbins: 0 GeV < p%‘ < 120 GeV, 120 GeV < pTH < 200 GeV,
200 GeV < pH < 300 GeV, 300 GeV < pH < 450 GeV, and pt! > 450 GeV. The signal strengths
associated to the first two pF bins are dominated by their systematic uncertainty while the remaining
signal strength parameters are limited by the statistical uncertainty. In general, the uncertainties are
fairly large and the different signal strength parameters from the STXS measurement are in agree-
ment with the measured signal strength in the inclusive cross-section.

It was possible to reduce the systematic uncertainties compared to the previous analysis by almost
a factor of two, mainly related to the background modelling of tt + >1b. This improvement was
mainly achieved by using a 4 flavour scheme based modelling of tf + bb events, more statistics in
the MC simulation and reducing double-counting of certain uncertainty sources.

To further improve the analysis, the multivariate techniques will need to be revised. In particular,
the reconstruction BDT could be replaced by a neural network to improve the event reconstruction
using customised architectures. In addition, the improvements achieved in this thesis concerning the

b-tagging will be important for the future analysis.
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HYPERPARAMETER OPTIMISATION ON GRID GPUS - TECHNICAL
SETUP

To process all the data from the LHC, including simulation, reconstruction etc., powerful comput-
ing resources are necessary. The Worldwide LHC Computing Grid (WLCG) combines about 170
computing centres around the world to one powerful computing infrastructure with about 1 million
computer cores and 1 exabyte of storage [252]. The vast majority of these computing resources are
CPUs. However, in the last couple of years, more and more shared GPU resources became available.
Generally, not every institute which is doing ML has GPUs available. Therefore a setup usable by
the whole ATLAS collaboration is tested together with ATLAS IT, giving everyone access to GPU
resources.

In general, the WLCG software stack is not suitable for ML since it is not flexible enough to cope
for the quickly evolving and diverse ML software. At this point, the Linux container images, often
called Docker images, come into play. They contain a full software stack packed in a container image
and are fully isolated from the host environment. This allows the user to choose its custom software.
Starting with freely accessible base-images, GitLab can automatically build such a custom image
and the site administrators only have to provide the virtualisation software singularity [253] to allow
the user to execute the container images. Typically, the base images are already optimised for GPU
usage.

An example workflow is shown in Figure A.1. The hyperparameter optimisation software [3] gen-
erates JSON configuration files containing the information about the hyperparameters of the network
architecture. Each configuration file contains a different set of hyperparameters. These configuration
files, as well as the training and validation dataset, are uploaded to the WLCG sites (via the rucio
data management [254]). A container image built from Gitlab containing the training software is
then deployed to various WLCG sites running a large number of jobs over the different hyperpara-
meters (config files). This procedure is illustrated in Figure A.2. Each job uses the same training and
validation sample and a certain amount of hyperparameters are tested. The output is again JSON files
containing the information about the performance of the NN such as the training and validation loss
and the background rejection at the 77% WP. This heavily parallelisable workload is running in a
fraction of the time which would be necessary running them one after each other.

The final workflow for ML developments would then for instance look as displayed in Figure A.3.
The interactive development is done on the laptop accessing shared and centrally provided comput-
ing resources such as a JupyterHub'. The code is pushed into a GitLab repository where a container

image is automatically built and this can then be deployed to the WLCG. In general, the hyperpara-

1 At CERN this is available via https://hub.cern.ch.
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meter scan can be also performed on any other computing cluster with a job scheduling system and

singularity available.
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Figure A.1.: Schematic workflow deploying hyperparameter optimisations to the WLCG.
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Variables associated to the topological information of the tt system

Mass of the leptonically decaying top quark tiep,
Mass of the hadronically decaying top quark tpag.

Mass of the hadronically decaying W-boson Whg.

t

Mass of Wh,q. and the b-quark from the leptonically decaying top quark blep.

Mass of Wiep. and the b-quark from the hadronically decaying top quark b,
AR(Whad,, by, )

AR(Whad, bt.y)

AR(Y, bltep.)

AR(L, bl )

(
(
(
R(biep.s Ohaa.)
(
(
(

>

AR(q7 from Wyyg, q2 from Wi,q.)

>

R(bf.q, g1 from Whaq.)
AR(by,q., q2 from Whag )
Min(AR(bf,q, 1 from Whaa ), AR(bf,, q2 from Whaa )

AR(L, bltep.) — Min(AR(bf, 4, q1 from Whaa ), AR(bL,,, q2 from Wiag))

Variables associated to the Higgs boson candidate

Mass of the Higgs boson candidate M

My and 1 from Wy,q,

AR(b; from Higgs candidate, b, from Higgs candidate)
AR(b; from Higgs candidate, ()

Table B.1.: Input variables of the reconstruction BDT in the lepton-+jets channel.
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SRZS). p €[0.120) GeV | SRZY . p# € [120.200) GeV | SRZ% . p € [200.300) GeV | SRZS . p#f € [300.450) GeV | SRZY . ph € [450,00) GeV
Pre-fit Post-fit Pre-fit Post-fit Pre-fit Post-fit Pre-fit Post-fit Pre-fit Post-fit
1iH 21329 93+74 11315 49+39 509+78  26+21 139+20  59+46 3.09+049  126+1.00
f+21b 3160+500  4450=160 | 1530+240 204085 7204140 85543 215560 23420 55+26 43482
i+ 21e 510£540  960+210 | 220£230 40487 96100 17938 26+27 4611 6975 12933
f+light 4r,tH | 2002120 250+140 | 100+59  105+57 46+24 52426 135+79  154+88 3222 35422
W 70+12 7311 | 431:090 446+087 | 247+0.52 254+048 | 1.05£032 1.09+031 | 047015  048:0.14
T+z 7711 79410 | 446+66 46064 30.1+49 31149 11524 11823 205+0.64 212064
Single top Wt 7140 80 43 4026 44227 179476  187+78 85+7.9  9.5£9.0 6.0+53 6.1+5.4
Other top sources | 46+24 48 £25 23+16 2416 13210 14210 43+28  45%27 108£054  1.09+0.54
V &VV +jets 6024 63 24 2911 3011 197£83  20.6+82 78434  81%34 190088  1.92+0.84
Total 43504820 6026 +84 | 2100+370 2747+52 1000190 1198 +31 301+71 336+ 15 8028 72.8+7.0
Data 6047 2742 1199 331
SRpooseds P € [300,450) GeV | SRpoosted, P € [450,00) GeV CRY,, CRY,, .
Pre-fit Post-fit Pre-fit Post-fit Pre-fit Post-fit Pre-fit Post-fit
ttH 35.1+4.1 15+12 85+1.1 3.6+2.8 61.7+8.1 26+20 62.1+8.6 26+21
tr+21b 246 + 46 297+27 55+23 51.0+£9.8 1370+ 180 1595+ 80 1000 +240  1102+51
tt+>1c 84 +90 157 +37 21£23 40+11 390+410 630 + 140 56 +£59 90+23
tf + light, 4z, tH 59+26 62 +25 1810 16.9+7.6 270 + 120 270 + 100 25+16 26+ 16
tt+W 1.86+0.39 1.89+0.36 0.55+0.18 0.57+0.17 2.53+0.53  2.62+046 | 0.54+0.13 0.53+0.12
tt+7Z 10.7+2.1 11.0+2.1 221+0.60 2.34+0.60 26.4+3.7 259+3.5 23.5+34 22.8+3.1
Single top Wt 13.1+8.0 14.0+8.3 6.1+£5.8 49+43 58+£32 60 +32 27+20 28 +£20
Other top sources 43+32 44+3.0 0.80+0.78  0.88+0.78 41x16 41+16 27+ 11 28+ 11
V& VV + jets 124+5.7 13.1+5.6 43+23 42420 42+16 43+15 242+8.8 249+8.8
Total 470 +110 575+23 11737 124.4+9.7 2257500 2700 +52 1250 £250 1348 +38
Data 581 118 2696 1362

Table B.2.: Summary of the pre-fit and post-fit event yields in the lepton+jets SRs (top) as well as the CRs and
boosted SRs (bottom). Post-fit yields are after the inclusive fit in all channels. All uncertainties are
included, taking into account correlations in the post-fit case. The uncertainty in the tt + >1b is
not defined pre-fit and therefore only included in the post-fit uncertainties. For the ttH signal, the
pre-fit yield values correspond to the theoretical prediction and corresponding uncertainties, while
the post-fit yield and uncertainties correspond to those in the inclusive signal-strength measure-
ment [5].
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Figure B.1.: Schematic illustration of the event selection presented in a tree structure describing the different
selection steps concluding in the different analysis regions for the dilepton, lepton+jets resolved
and boosted channels. The numbers in the last row are indicating how many bins are used in the
final fit and above the variable is listed used for the fit [5].
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Figure B.2.: Predicted and observed event yields in all regions of the lepton+jets channel (a) before and (b)
after the STXS fit to data. The uncertainty band of the pre-fit distribution (a) contains all un-
certainties except the uncertainty of k(tt 4+ >1b) which is only defined post-fit. In the post-fit
version (b) all uncertainties with their correlations are considered. The ttH signal is split into the
five STXS truth pX! bins.



FRENCH SUMMARY

Depuis plusieurs décennies, les prédictions du Modele Standard (MS) de la physique des particules
sont testées et validées. L’un des grands succes du Grand collisionneur de hadrons (LHC) au CERN
a été la découverte du boson de Higgs en 2012. Avec le grand nombre de collisions proton-proton
enregistrées avec les expériences au LHC, des mesures précises du boson de Higgs sont désormais
possibles.

ATLAS et CMS ont récemment découvert le processus de production ttH en utilisant les données
prises durant le RUN II du LHC. Le processus ttH(H — bb) permet de mesurer directement le
couplage de Yukawa du quark top, qui est le couplage fermion-Higgs le plus grand du modele stand-
ard et joue donc un rdle important dans la physique du boson du Higgs. L’état final de ce processus
contient au moins 4 jets provenant de quarks b ce qui nécessite d’établir une stratégie d’analyse
avancée ainsi que de développer des méthodes sophistiquées pour 1’identification des jets provenant
de quarks b. L’étiquetage des quarks b n’est pas seulement crucial pour 1’analyse ttH(bb), mais
aussi pour la plupart des analyses de physique au sein de I’expérience ATLAS. La ré-optimisation
de I’étiquetage des quarks de saveurs lourdes basé sur un apprentissage profond dans ATLAS est
présentée dans cette thése pour deux collections de jets différentes. Le processus ttH(bb) est mesuré
en utilisant 139 fb—" de données enregistrées par ATLAS durant le RUN II a une énergie dans le
centre de masse de /s = 13 TeV.

C.1 LE TAGUEUR DE SAVEURS DE QUARK LOURD BASE SUR UN APPRENTISSAGE
APPROFONDI

L’identification des saveurs lourdes, également appelée tagging, joue un réle important dans les ana-
lyses de physique des particules. Plusieurs processus physiques intéressants, tels que le processus
ttH(bb) [5] ou le processus VH(H — bb, H — ¢¢) [165, 166], contiennent des quarks b ou ¢
dans leur état final. L’étiquetage des saveurs est un outil crucial pour mieux sélectionner le signal et
rejeter les processus de bruit de fond, ce qui est important pour la recherche de nouveaux processus
ainsi que les mesures de précisions.

Puisque les quarks ne peuvent pas se présenter sous forme de particules libres, ce ne sont pas les
quarks eux-mémes qui sont étiquetés, mais plutdt les états de couleur neutre correspondant aux had-
rons b et c. Dans cette these I’étiquetage des saveur dans 1’éxpérience ATLAS est présenté.

Les hadrons b ont une durée de vie d’environ 1.5 ps [20]. Ainsi ces hadrons produits a des impul-
sions de 30 GeV ne se désinteégrent donc qu’apres avoir traversé 2.5 mm dans le détecteur. De plus,
les hadrons b ont une masse relativement élevée de ~ 5GeV [20] ainsi qu’une grande multiplicité

dans leur désintégration environ 5 particules stables et chargées en moyenne. Une grande fraction
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de ces désintégration correspond a la création d’un boson W et d’un quark connu sous le nom de

désintégration semi-leptonique.

La réoptimisation des utils d’étiquetage des saveurs lourdes basée sur un apprentissage profond a
été réalisée pour deux collections de jets différentes : les jets ParticleFlow et les jets variable radius
track. Dans le future, toutes les analyses de physique dans ATLAS utiliseront des jets ParticleFlow.
Ainsi avoir un algorithme d’étiquetage bien optimisé est crucial pour mener ces analyses. La gestion
des fonctions d’entrée pour la formation du réseau de neurones utilisé ainsi que I’architecture du
réseau elle-mé&me ont été optimisées. Un apercu de I’architecture du réseau de neurones utilisé dans

I’étude est présenté Figure C.1.

\\\\
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\ \\\ \ ‘
MR

R
i
o

\\
!
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Figure C.1.: Structure du réseau de neurones de 1’outil DL1.

Des améliorations significatives ont été obtenues, pouvant atteindre un facteur deux sur le rejet
du bruit de fond pour certaines régions de 1’espace de phase, comme le montre la Figure C.2 pour
PFlow jets et la Figure C.3 pour EMTopo jets.

De plus, un travail d’optimisation des hyperparametres a été développé a I’aide de GPU sur le grille
de calcul pour I’utilisation dans la collaboration. En outre, une nouvelle idée d’étiquetage de saveurs

lourdes a été présentée, combinant les informations sur les traces déposées dans le détectuer et les
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informations sur les jets dans un entrainement complet. C’est une stratégie prometteuse d’étiquetage

des saveurs qui pourra étre utilisée éventuellement dans 1’expérience ATLAS et doit encore faire

I’objet d’études plus approfondies.

c L L e e L B o L L e 1 e e e Lt
2 L Mv2c10 —DLWr(?ﬂiQ)h:UUlS)_ 2 [ Mv2c10 e DL1r (2019) (f. = 0.018)
8 —— DL1 (2018) (f, = 0.08) 8 F —— DL (2018) (£, =0.08) 1
o o
= r 1 S0 S =
2, 2L F
o 5 F
| VS =13 TeV, PFlow jets, tf Sim. % r VS =13 TeV, PFlow jets, tf Sim.
10" |- 5 L
L 1 5wl =
[ 1 10" = =
=~ L
ol v v b v b b e b b e b ey ol v v b b v b v b e b e e by
L L e e B LA e
o 15 — o
s ] ©
c [ 1 o -
1.0 b et ——— e o e e e e e e . ==
060 065 070 075 0.80 085 0.90 095 1.00 065 070 0.75 0.80 085 0.90 095 1.00
b-jet efficiency b-efficiency
(@ (b)

Figure C.2.: Comparaison des performances des recommandations précédentes (MV2 et DL1 (2018)) et de
I’outil DLIr nouvellement optimisé pour PFlow jets pour la rejection des jets de c (a) et des jet
de saveur 1égeres (light-jets) (b) en fonction de I’efficacité des jets de b.
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Figure C.3.: Comparaison des performances des recommandations précédentes (MV2 et DL1 (2018)) et de
I’outil DLIr nouvellement optimisé pour VR Track jets pour la rejection des jets de c (a) et des jet
de saveur 1égeres (light-jets) (b) en fonction de I’efficacité des jets de b.
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C.2 ANALYSE ttH(bb)

Le mode de production du boson de Higgs en association avec une paire de quarks top (ttH) a été
récemment observé [§—10], marquant une découverte importante. La mesure de ce canal de produc-
tion est directement sensible au couplage de Yukawa, décrivant I’interaction du quark top avec le
boson de Higgs. Comme le couplage de Yukawa augmente proportionnellement a la masse du fer-

mion, le couplage de Yukawa du quark top est le plus fort dans le MS.

Dans cette thése, I’analyse ttH(bb) [5] est présentée, réalisée avec I’ensemble des données prises
durant le RUN II correspondant a 139 b~ enregistrées avec I’expérience ATLAS a une énergie dans
le centre de masse de /s = 13 TeV.

Méme si le Modele Standard est testée avec une grande précision, des observations astrophysiques
prouvent qu’il y a des phénomenes physiques au-dela du Modele Standard. La mesure des sections ef-
ficaces différentielle du processus ttH dans le cadre des mesures différentielles "Simplified Template
Cross-Section" (STXS) [106, 107] est sensible a de tels effets. Ces mesures permettent d’accéder a
la structure CP du boson de Higgs et de sonder les auto-couplages de boson de Higgs anormaux

conduisant a une sensibilité élevée de la mesure.

Le canal analysé dans cette thése est le canal lepton+jets dans le régime résolu (resolved) com-
prenant au moins six jets dans I’état final, dont quatre au moins sont des jets de b. Dans ce canal,
un boson W provenant de la désintégration des paires de quark top doit se désintégrer en leptons.
Les partons de I’état final sont appariés aux jets dans I’événement en utilisant des arbres de décision
boostés (BDT). Dans cette analyse, le bruit de fond dominant provient des événements tt + jets, et
en particulier des événements tt + >1b. Pour le résultat final, ce canal est combiné avec le canal
lepton-+jets optimisé pour pt > 300 GeV et le canal dilepton. L’intensité du signal, qui est le rapport
entre la section mesurée et la section prévue dans le Modele Standard, est présenté pour les différents

canaux dans la Figure C.4. La mesure inclusive de la section transversale a pour valeur:
0.20 0.30
Hincl. = O~43i0,1 o (stat.) io.27 (syst.),

avec une signification observée (attendue) de 1,3 (3,0) déviations standard. Le facteur de nor-
malisation du bruit de fond tt + >1b est flottant dans 1’ajustement et sa valeur mesurée est de
k(tt 4+ >1b) = 1.26 £ 0.09. La mesure est principalement dominée par les incertitudes systématiques.
En particulier, les incertitudes associées a la modélisation du bruit de fond tt + >1b ont un impact

le plus important sur I’incertitude globale.

De plus, une mesure différentielle de la section efficace en fonction de I’impulsion transverse du
boson de Higgs pour le processus ttH a été effectuée, pour la premiére fois dans le canal ttH(bb).
Cette mesure a été effectuée dans le cadre des mesures STXS qui permet une comparaison plus facile

entre les différents canaux et entre les expériences. L'intensité du signal a été mesurée dans les cinq
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régions (bins): 0 GeV < pH < 120 GeV, 120 GeV < pH < 200 GeV, 200 GeV < pH < 300 GeV,
300 GeV < pH < 450 GeV, et pH > 450 GeV. Les résultats de cette mesure sont présentés sur la
Figure C.5. Les intensités de signal associées aux premiers bins de p'; sont dominées par les in-
certitudes systématiques tandis que les autres parametres d’intensité de signal sont limités par les
incertitude statistiques. En général, les incertitudes sont assez grandes et les intensités du signal
mesuré a partir des sections efficaces différentielles sont en accord avec I’intensité du signal mesuré
inclusivement.

Les incertitudes systématiques dans ces mesures ont été reduites par rapport a I’analyse précédente
d’a peu pres un facteur deux, grace aux modifications apportés a la modélisation du bruit de fond
tt + >1b et a I’estimation des incertitudes associées.

L’analyse peut encore étre améliorée en utilisant d’autres techniques multivariées. En particulier, la
reconstruction grace a des BDT pourrait étre remplacée par un réseau de neurones pour améliorer la
reconstruction des événements en utilisant des architectures personnalisées.

Finalement, les améliorations réalisées dans cette theése concernant I’étiquetage des jets de quark b

amélioreront davantage les mesures futures.

T T T T T
ATLAS Preliminary {s=13 TeV, 139 fb™

—Total Stat. Tot. ( Stat. Syst.)
l+jets resolved FeoH 0.32 fg'jg f8;§f fg,'g?
l+jets boosted =o—1 0.36 tggg tg_'jg fg,gg

Dilepton L | 0.98 055 (105 ‘o7
Inclusive red 0.43 tg;g tg_'fg fgf?
N B L L ol

) 0 2 4 6 8 10

M = o™/ o for m =125 GeV
Figure C.4.: Valeurs ajustées du paramétre d’intensité du signal ttH dans les canaux individuels et pour la

mesure inclusive. Les résultats des trois canaux individuels sont mesur par un ajustement 3-p et
le scénario inclusif est 1’ajustement combiné nominal [5].
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Figure C.5.: Mesures de la force du signal dans les différents bins STXS pTH, ainsi que la force du signal
inclusive [5]. Les deux résultats sont obtenus par un ajustement combiné des trois canaux.



ACRONYMS

CERN Organisation européenne pour la recherche nucléaire
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Rol region of interest

L1 Level-1

PDF Parton Distribution Function
DGLAP Dokshitzer—Gribov—Lipatov—Altarelli—Parisi
MC Monte Carlo

MPI multi-parton interaction

PS parton shower
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SV1 inclusive displaced secondary vertex reconstruction algorithm
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MOTS CLES:

RESUME: ATLAS et CMS ont récemment découvert le pro-
cessus de production ttH en utilisant les données prises dur-
ant le RUN II du LHC. Le processus ttH(H — bb) permet de
mesurer directement le couplage de Yukawa du quark top, qui
est le couplage fermion-Higgs le plus grand du modéle stand-
ard et joue donc un roéle important dans la physique du boson
du Higgs. L’état final de ce processus contient au moins 4 jets
provenant de quarks b ce qui nécessite d’établir une stratégie
d’analyse avancée ainsi que de développer des méthodes soph-
istiquées pour l'identification des jets provenant de quarks b.
L’étiquetage des quarks b n’est pas seulement crucial pour
lanalyse ttH(bb), mais aussi pour la plupart des analyses de
physique au sein de I'expérience d’ATLAS. La ré-optimisation
de I’étiquetage des quarks de saveurs lourdes basé sur un ap-
prentissage profond dans ATLAS est présentée dans cette thése
pour deux collections de jets différentes. Diverses améliorations

boson de Higgs, LHC, ttH, quark top, ATLAS

Recherche de la production ttH(bb) dans le canal lepton+jets et étiquetage de quarks de saveur lourde par apprentis-

ont été apportées, entrainant une augmentation importantes des
performances allant jusqu’a un facteur deux dans certaines ré-
gions de I’espace des phases. L’analyse ttH(bb) est effectuée en
utilisant 139 fb~! de données enregistrées par ATLAS durant le
RUN II & une énergie dans le centre de masse de /s = 13 TeV.
L’intensité du signal, qui est le rapport entre la section efficace
mesurée et la section efficace prédite par le modéle standard,
a été mesurée a 0,43:(;%8(stat.)igé(;(syst.) avec une significa-
tion observée (prévue) de 1,3 (3,0) déviations standard pour la
mesure de la section efficace inclusive. En outre, une mesure sim-
plifiée de la section efficace utilisant des gabarits Monte Carlo
en fonction de 'impulsion transverse du boson de Higgs est ef-
fectuée. Cette mesure est limitée par la difficulté de simuler
correctement le bruit de fond dominant tt 4+ bb ainsi que par de
grandes incertitudes systématiques.

TITLE:

at the ATLAS Experiment

KEYWORDS: Higgs boson, LHC, ttH, top quark, ATLAS
ABSTRACT: Since several decades, the predictions of the

Standard Model (SM) of particle physics are being probed and
validated. Omne major success of the Large Hadron Collider
(LHC) at CERN was the discovery of the Higgs boson in 2012.
With the increasing amount of proton-proton collisions recorded
with the experiments located at the LHC, precise Higgs meas-
urements are now possible and rare processes are accessible.

ATLAS and CMS recently discovered the production process
of a Higgs boson in association with a pair of top quarks us-
ing LHC RUN II data. The ttH(H — bb) process allows for a
direct measurement of the Top-Yukawa coupling which is the
strongest fermion-Higgs coupling in the Standard Model and
plays therefore an important role in Higgs physics. The chal-
lenging final state with at least 4 b-jets requires an advanced
analysis strategy as well as sophisticated b-jet identification
methods. b-tagging is not only crucial in the ttH(bb) analysis,
but most physics analyses within ATLAS are making use of

Search for ttH (H — bb) Production in the Lepton + Jets Channel and Quark Flavour Tagging with Deep Learning

it. The reoptimisation of the deep-learning-based heavy flavour
tagger in ATLAS is shown in this thesis for two different jet
collections. Various improvements were made resulting in a
drastic performance increase up to a factor two in certain re-
gions of the phase space. The ttH(bb) analysis is performed
using 139 fb~! of RUN II ATLAS data at a centre-of-mass en-
ergy of /s = 13TeV. The signal strength, being the ratio of
the measured cross-section over the predicted cross-section in
the SM, was measured to be 0.43f82%8(stat.)fggg[syst.) with
an observed (expected) significance of 1.3 (3.0) standard devi-
ations in the inclusive cross-section measurement. In addition,
a simplified template cross-section (STXS) measurement in dif-
ferent Higgs pT bins is performed which is possible because of
the ability to reconstruct the Higgs boson. The measurement is
limited by the capability to describe the challenging irreducible
tt + bb background and by systematic uncertainties.

ZUSAMMENFASSUNG: Seit mehreren Jahrzehnten wer-
den die Vorhersagen des Standardmodells (SM) der Teilchen-
physik erprobt und validiert. Mit der zunehmenden Anzahl von
Proton-Proton-Kollisionen, die mit den Experimenten am LHC
aufgezeichnet werden, sind nun prézise Higgs-Messungen mog-
lich.

ATLAS und CMS haben kiirzlich den ttH-Produktionsprozess
mit Hilfe von LHC RUN II-Daten entdeckt. Der ttH(H —
bb)-Prozess erméglicht eine direkte Messung der Top-Yukawa-
Kopplung, welche die starkste Fermion-Higgs-Kopplung ist
und daher eine wichtige Rolle im SM einnimmt. Der an-
spruchsvolle Endzustand mit mindestens 4 b-Jets erfordert
eine fortschrittliche Analysestrategie sowie elaborierte b-Jet-
Identifikationsmethoden. b-Tagging ist nicht nur in der
ttH(bb)-Analyse von entscheidender Bedeutung, sondern die
meisten Physik-Analysen innerhalb von ATLAS machen davon
Gebrauch. Die Re-Optimierung des Deep-Learning-basierten

Heavy-Flavour Taggers in ATLAS wird in dieser Arbeit fiir
zwei verschiedene Jet-Definitionen gezeigt. Es wurden ver-
schiedene Anderungen vorgenommen, die zu einer signifikanten
Verbesserung von bis zu einem Faktor zwei in der Untergrundun-
terdriickung in bestimmten Phasenraumregionen fithrten. Die
tTH(bb)-Analyse wurde mit 139fb~! RUN II ATLAS-Daten
bei einer Schwerpunktsenergie von /s = 13'TeV durchgefiihrt.
Die Signalstarke, d.h. das Verhéltnis des gemessenen Wirkung-
squerschnitts zum vorhergesagten Wirkungsquerschnitt im SM,
wurde mit O,43tg:$g(stat.)fgég(syst.) mit einer beobachteten
(erwarteten) Signifikanz von 1,3 (3,0) Standardabweichungen
fir den inklusiven Wirkungsquerschnitt gemessen. Zusétzlich
wurde zum ersten Mal eine vereinfachte differenzielle Wirkung-
squerschnittsmessung in verschiedenen Higgs prp-Bereichen
durchgefiihrt. Die Messung wird durch systematische Unsich-
erheiten begrenzt, hauptsichlich im Zusammenhang mit dem
anspruchsvollen irreduziblen tt 4+ bb Untergrund.
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