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Abstract. For many phenomenological applications involving hadrons in high energy

processes the hadronic structure can be taken care of by parton distribution functions

(PDFs), in which only the collinear momenta of quarks and gluons are important. In prin-

ciple the transverse structure, however, provides interesting new phenomenology. Taking

into account transverse momenta of partons one works with transverse momentum depen-

dent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations

that have a time reversal odd character and lead to new observables. In many theoretical

developments the link to the collinear treatment is used. In this talk I will speculate on

a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study

looking at the roots of the Standard Model of particle physics.

1 Introduction

In the abstract of this talk I emphasized the role of transverse components of the partonic momenta

in parton distribution functions (PDFs), hence generalizing them to transverse momentum dependent

(TMD) PDFs or in short TMDs. This extends upon the highly successful collinear description of high

energy scattering processes where collinear PDFs f (x) only depending on the momentum fraction x in

p = x P+ . . . describe the partonic (quark and gluon) content of a proton with momentum P. One can

think about jet physics, scale dependence, the role of Collins-Soper-Sterman (CSS) formalism to study

transverse momenta in the perturbative regime [1], or soft collinear effective theories (SCET [2]).

While collinear PDFs only can accomodate unpolarized and spin-spin correlations between hadron

and partons, TMDs can accomodate spin-momentum correlations, important in accounting for single

spin asymmetries and understanding azimuthal asymmetries in high energy scattering processes.

Most TMDs still have quite naturally the interpretation of momentum densities, now of the type

f (x, p2
T ), including the transverse component in p = x P + pT + . . ., which incorporate for instance

longitudinal-transverse spin correlations. One of the important issues in dealing with TMDs is that

their operator structure necessarily involves (covariant) transverse derivatives, hence gluon fields.

This leads for some of the TMDs, in particular the time reversal odd ones (important for single spin

asymmetries) to process dependence and the occurrence of multiple functions, for instance for the

socalled quark pretzelocity function and the linear gluon polarization. For these issues, I want to refer

to contributions in the proceedings of DIS2015 [3] or QCD evolution 2015 [4] and references therein.
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In this contribution I will focus on the question if there possibly could be more fundamental rea-

sons for the success of collinear physics in QCD linked to the transition from 1D to 3D with the

warning that the material in the next sections is very preliminary and at many points speculative [5].

I want to argue that the standard model and its particle content may naturally emerge in a world with

an IO(1, 1)⊗ S U(3) spacetime-color symmetry broken down to a threefold IO(1, 3)⊗ [S U(2)×U(1)]

spacetime-electroweak symmetry for the asymptotic fields leaving only the electroweak charges for

these asymptotic particle states. The bosonic excitations are the electroweak gauge bosons, the mass-

less photon and massive W and Z bosons, as well as the Higgs boson. Fermionic excitations come

in three families of colorless (leptonic) excitations living in E(1, 3) or they form three families of

colored (quark) excitations living in E(1, 1). Many features of the Standard Model emerge naturally.

Taking a supersymmetric starting point solves the naturalness problem. There is an underlying left-

right symmetry leading to custodial symmetry in the electroweak sector. In the spectrum one naturally

has Dirac-type charged leptons and Majorana-type neutrinos. The electroweak behavior of the natu-

rally confined quarks, accomodates fractional electric charges and the doublet and singlet structure of

left- and right-handed quarks, respectively. Most prominent feature is the link between the number of

colors, families and space directions.

2 A 1D supersymmetric starting point

As already indicated in the introduction, we take the 1Dworld serious as a starting point with operators

H, P (combined into Pμ or combined in the combinations P± = H ± P) and the boost operator K
generating the 2-dimensional Poincaré symmetry group IO(1, 1),

[H, P] = 0, [K,H] = iP and [K, P] = iH, or [P+, P−] = 0 and [K, P±] = ±iP±, (1)

with Casimir operator P2 = PμPμ = H2 − P2 = P+P−. The IO(1, 1) symmetry can be combined

with an S O(N) symmetry to obtain the IO(1,N) space-time symmetry. with as generators H, Pi, Ki

and J[i j] (combined into Pμ and Jμν, of course after also including discrete space- and time-reversal

symmetries.

Positive and negative energy (particle and anti-particle) eigenstates of the momentum operator

have a space-time phase dependence φk(x) = ei k·x with (k0)2−k2 = k−k+−k2
T = M2. These plane waves

are solutions of the Klein-Gordon equation (∂μ∂μ+M2)φ = 0 or, with the appropriate Clifford algebra,

the Dirac equation (i/∂ − M)ξ = 0. For massless excitations in 1D one can distinguish independent

right-movers, depending on x+, and left-movers, depending on x−. Expanded in these modes right-

and left-handed fields can be defined satisfying [P−, φR] = i∂+φR = 0 and [P+, φL] = i∂−φL = 0. For

massive fields left and right modes become coupled, while the other derivatives [P+, φR] = i∂−φR and

[P−, φL] = i∂+φL acquire roles as (front form) canonical momenta [6]. For M = 0 the fermion fields in

1D satisfy γ−ξR = γ
+ξL = 0 and ξR/L are independent good fields [7]. Massive fermion fields satisfy

the constraints

[P−, ξR] = i∂+ξR = −iMξL and [P+, ξL] = i∂−ξL = iMξR. (2)

As an additional ingredient, the Poincaré algebra can be extended to a supersymmetric algebra [8]

with fermionic operators QR/L,

{QR,Q
†
R} = 2P+ = 2 P·n̄, {QL,Q

†
L} = 2P− = 2 P·n and {QR,QL} = 0, (3)

[P±,QR/L] = 0 and [K,QR/L] = ± 1
2
i QR/L. (4)

The supersymmetry charges connect the fields,

[QR/L, φR/L] = ξR/L and {QR/L, ξ
†
R/L} = [P±, φR/L] = i∂∓φR/L. (5)
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The contact with the real world is made by considering the excitations of three real scalar and real

fermionic (Majorana) fields φ and ξ, still in a single space dimension, however. If their masses are zero

one can distinguish right-movers (R) and left-movers (L) as independent degrees of freedom, which for

bosons is a simple doubling but for fermions coincides with right- and left-handed fermions. Including

left-right coupling via a single mass M and a single Yukawa coupling between the boson fields, linked

in the supersymmetric situation to the coupling of fermions and bosons, we have basically the Wess-

Zumino model [9] in two dimensions,

L = 1
2
∂−φR ∂+φR +

1
2
∂+φL ∂−φL +

i
2
ξR∂+ξR +

i
2
ξL∂−ξL − V(φ, ξ)

= 1
2
∂μφS ∂μφS +

1
2
∂μφP ∂μφP + iψ/∂ψ − V(φ, ξ), (6)

where (real) right and left fields for bosons can be combined into (real) scalar (CP-even) and pseu-

doscalar (CP-odd) fields φS/P = (φR ± φL)/
√
2. Real fermion fields can be combined in a (self-

conjugate) spinor ψ = (ξR,−iξL)/
√
2. Supersymmetry strongly restricts the interaction terms. The

most compact expression is in terms of the scalar and pseudoscalar fields containing a mass term cou-

pling left and right fields and a single Yukawa coupling that also governs the fermion-boson coupling,

V(φ, ξ) = 1
2
(M + gφS )

2(φ2
S + φ

2
P) +

1
2
g2φ2

P(φ
2
S + φ

2
P) + ψ(M + gφS + gφPγ

1)ψ + λ F (7)

using γ5 = γ
0γ1. The constraint is given by

λ F =
λ

4g

(
(M + 2gφR

√
2)(M + 2gφL

√
2) − M2

)
=
λ

g

(
(gφS + M/2)2 − g2φ2

P − M2/4
)
. (8)

Defining M/2g ≡ v, we introduce fields φS + v ≡ vΦS and vΦP ≡ φP which can be re-defined as

ΦS = cosh η and ΦP = sinh η or if one likes one can use an imaginary representation for ΦP by

writing η = iθ. The bosonic part of the potential including constraint becomes

V(Φ) =
v2M2

2
Φ2

SΦ
2
P =

v2M2

2
Φ2

S (Φ
2
S − 1) (9)

or V(Φ) = 1
8

M2v2 sinh2(2η). Defining |Φ|2 ≡ (Φ2
S + Φ

2
P)/2 = Φ

2
R + Φ

2
L we have |Φ|2 = cosh(2η)

and we have Φ2
S = |Φ|2 + 1/2 and Φ2

P = |Φ|2 − 1/2. Looking at the minimum of the potential

(η = 0 or θ = 0) we see that the boson field acquires a vacuum expectation value which is right-left

symmetric, ΦR = ΦL = |Φ| = 1/
√
2 (or ΦS = 1 and ΦP = 0). The real excitations around the vacuum

are Majorana modes Ψ = Ψc = (ξ,−iξ)/
√
2 and real scalar bosonic modes ΦS /

√
2 = Φ = Φc =

(1 + H)/
√
2. Note that φS = vH. The 1D pseudoscalar field φP can be identified as a vector field

writing i∂μΦR/L = (i∂μ ± gAμ)φS /
√
2. In the ground state Aμ = 0 and around the vacuum one has

Aμ ≈ φP(nμ − n̄μ) or A+ = −A− ≈ φP. This suggests working with a complex field Φ rather than

left and right fields that are CP symmetric, ΦR = Φ
∗
L. For a single field a global U(1) symmetry is

not relevant and local symmetries don’t lead to dynamics either, but taking multiple scalar fields the

symmetry pattern becomes much richer.

3 Symmetric extension to three fields

The symmetric extension to N real boson and fermion fields (we take N = 3) has interesting conse-

quences for the dynamics, which is studied by looking at the possible fluctuations around the vacuum,

in the symmetric basis 〈Φ〉T = (1, 1, 1)/
√
3. Including complex phases we consider S U(3) fluctua-

tions, although the lagrangian is only invariant under S O(3) transformations of the fields, which is

also the symmetry of the groundstate. We propose to use the S O(3) symmetry in combination with
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Figure 1. SU(3) quantum number assignments for bosonic (φ) and fermionic (ξ) excitations. The right-moving

positively charged (φ+R, ξ
+
R ) and neutral (φ0

R, ξ
0
R) fields are in an isospin doublet with Y = +1, while the right-

moving negatively charged (φ−R, ξ
−
R ) fields are in a weak isosinglet with Y = −2. The left-moving negatively

charged (φ−L , ξ
−
L ) and neutral (φ0

L, ξ
0
L) fields are in an isospin doublet with Y = −1 while the left-moving positively

charged (φ+L , ξ
+
L ) fields are in a weak isosinglet with Y = +2. The asymptotic fermion fields become the right-

and left-handed leptonic fields, ξ±R/L → e±R/L and ξ0R/L → ν0R/L.

inversion and time reversal symmetry, to extend the d = 2 Poincaré symmetry to a d = 4 Poincaré

symmetry. Implemented in Weyl mode, the asymptotic fields become real representations of IO(1, 3)
living in E(1, 3).

At this stage part of the freedom in fluctuations around the vacuum has been incorporated. The

already accounted for real S O(3) rotations are identified with the subalgebra generated by the S U(3)

generators λ2, −λ5 and λ7, constituting the algebra of the factor group of the subgroup G′ = S U(2) ×
U(1) with generators λ1/2, λ2/2, λ3/2 and λ8/2. This subgroup contains the S U(3) Cartan subalgebra

consisting of I3 = λ3/2 and Y = λ8
√
3 that will serve as electroweak charge labels. Labelling the

(massless) bosonic states using this Cartan subalgebra, gives fields φ[I3,Y]
R/L (x, t) living in E(1, 3). For

two fields this would have been just a U(1) charge assigment after combining two real fields into

complex fields. The basic recoupled bosonic and fermionic starting point for the three fields and their

electroweak quantum numbers is illustrated in Fig. 1.

The fluctuations around the vacuum in space-time and internal space is also reflected in the co-

variant derivative. We consider the possibilities

E(1, 1) : iDμΦ
i = i∂μΦi + g

∑
a∈G

Aa
μ(Ta)

i
jΦ

j, (10)

E(1, 3) : iDμΦ
i = i∂μΦi + g

∑
a∈G′

Aa
μ(Ta)

i
jΦ

j. (11)

The first expression for the covariant derivative applies to the fields in E(1, 1) and accounts for local

S U(3) gauge invariance. It involves eight (color) gauge fields also living in E(1, 1). The second

expression for the covariant derivative is relevant for (asymptotic) fields in E(1, 3), coupling for the

real continuous S O(3) transformations field and space rotations in such a way that there are no gauge

fields for that part, and account for the complex fluctuations through four (electroweak) gauge fields

living in E(1, 3). Such a transition from 1D to 3D, in whatever way we implement it, does require that

the Poincaré symmetry and internal symmetry are direct products [10].

To achieve this, we note that the embedding of S O(3) directions into S U(3) is not unique. The

discrete symmetry group A4 governs the possible oriented embeddings. For singlet representations

of the embedding group (A4) one can consider S U(3) ⊃ S O(3) × A4 × [S U(2) ⊗ U(1)] → S O(3) ⊗
[S U(2) ⊗ U(1)], decoupling space-time and internal symmetries. The unitary transformation matrix

for these singlet states [11–14] is the matrix W. Its specific role now is that it rotates the symmetric
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embedding of the vacuum into the electroweak embedding,

W†
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1/3√
1/3√
1/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ with W =
1√
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1

ω2 1 ω
ω 1 ω2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (12)

where ω = exp(i 2π/3). Since the starting point only had S O(3) as a symmetry group, the vacuum

indeed is not invariant under S U(2) ⊗ U(1) transformations, but it is neutral for Q = I3 + Y/2. The

symmetry pattern and its breaking thus is summarized as

IO(1, 1) ⊗ S U(3) ⊃ IO(1, 1) × S O(3)︸���������������︷︷���������������︸
IO(1,3)

⊗ S U(2)I ⊗ U(1)Y︸��������������︷︷��������������︸
→ U(1)Q

.

All bosons and fermions, however, still do originate as (finite dimensional) representations of the

basic S U(3) symmetry group, which will become important later. There are three families of particles

corresponding to singlets of A4. In 3D the interaction changes from a confining potential to a 1/r
(or Yukawa) potential between the (electroweak) charges, which thus can be free, in contrast to the

(color) S U(3) charges that live in 1D.

4 Bosons and Fermions in the Standard Model

After the introduction of the covariant derivatives in Eqs 10 or 11, part of the potential is included in

the term

DμΦ∗DμΦ = ∂μΦ∗∂μΦ +
N CA

2
g2AμAμΦ

∗Φ. (13)

With CA(G = S U(3)) = 4/3, the second term in Eq. 10 is precisely −V(Φ) and we are left with the

1 + 1 dimensional QCD lagrangian (without a Higgs mass-term),

L = 1
2
∂μH∂μH − 1

4
FμνFμν + Ψ(i/D − M − gvH)Ψ, (14)

but with a scalar field, which does not seem harmful [15]. We return to the electroweak and family

structue of the colored fermions (quarks) in the next section.

For the covariant derivative in Eq. 11 we have CA(G′) = 2/3 and the second term is only −V(Φ)/2.
This leaves the scalar field massive with MH = M/

√
2. This is an experimentally interesting scenario

for the standard model if the fermion mass is identified with the top quark mass, M = Mt. For the

bosons, we have (in principle arbitrarily) assigned right to the triplet and left to the anti-triplet. The

fields can be rotated into a single scalar field with a nonzero vacuum expectation value as is done in

the usual standard model treatment, even if they formed triplets at the start,

ΦL =
1√
2

exp
(− i

2

∑
a=1,2,3

θaλa
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1 + H
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

ΦR =
1√
2

exp
(
+ i

2

∑
a=1,2,3

θaλa
)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + H
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The electroweak charges and corresponding generators of gauge transformations are identified with

the S U(2)I ⊗ U(1)Y transformations but with a single coupling constant within S U(3). The charged

fields are neither I3 = λ3/2 or Y = λ8
√
3 eigenstates but they are eigenstates of Q = I3 + Y/2. The
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breaking of the S U(2)I × U(1)Y symmetry to U(1)Q after the choice of ground state being neutral,

produces three massive and one massless gauge boson. As discussed in a slightly different context

[16], the S U(3) embedding gives a weak mixing angle, sin θW = 1/2 after rewriting in

iDμΦ = i∂μΦ +
g

2

( 3∑
i=1

Wi
μλi + Bμλ8

)
Φ (15)

the neutral combination gW0
μ I3 + (g/2

√
3)BμY in terms of Zμ and Aμ. One obtains (using the dimen-

sionful coupling in d = 2) e = g/2 and masses M2
W = M2/4, M2

Z = M2
W/ cos

2 θW = M2/3 and M2
A = 0.

In zeroth order, the weak mixing is fine and the Higgs mass and gauge boson masses are related and

they are of the right order with M = Mt. Taking v = M/2g = 1, one even is tempted to compare

e/M = 1/4 with
√
4πα ≈ 0.3. Besides providing a global zeroth order picture for electroweak bosons,

we note that the left-right symmetric starting point also ensures custodial symmetry [17, 18].

For the fermionic excitations, the starting S U(3) triplets ξR and anti-triplets ξL in 1D match those

of the bosons, implying the underlying supersymmetry of the elementary fermionic and bosonic d =
2 excitations. Also in this case one fixes one direction for the S U(3) representations (the S O(3)

embedding) and uses the (remaining) symmetry to fix the electroweak structure as an S U(3) triplet

or anti-triplet. The fermions then have electroweak charges corresponding to isospin doublets and

singlets as shown in Fig. 1. We like to identify the three possible singlets of A4 with three families.

For this we note that the off-diagonal charge operator in terms of real fields (ξ± ∼ ξ1 ± iξ3) in the

electroweak basis is

Qew =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 −i
0 0 0

i 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = VQ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 0 0

0 0 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ V†
Q with VQ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1/2 0

√
1/2

0 1 0

i
√
1/2 0 −i

√
1/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , (16)

while in the symmetric basis for the fields one has

Qs =
1√
3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 i −i
−i 0 i
i −i 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = W

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 0 0

0 0 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ W†. (17)

They are related by Qs = WV†
Q Qew VQW† = UHPS Qew U†

HPS
via the tribimaximal mixing matrix [19]

UHPS = WV†
Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2/3

√
1/3 0

−√1/6 √
1/3 −√1/2

−√1/6 √
1/3

√
1/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (18)

This looks like a promising zeroth order description for leptons providing arguments for the role of

the discrete symmetry group A4, which is a subgroups of both S O(3) and S U(3), in the structuring of

families and the mixing matrices. The details of this, however, need to be worked out. Finally note

that (without looking at the role of the masses) the extension of 1D fermion fields leads to 3D ’good’

light-front fields Ψ = (ξR,−εξL) with two-component spinors ξR/L and ε = iσ2. The rotations are

represented by J = σ/2, boosts by K = ±iσ/2 for right and left fields, respectively. The coupling of

fermions to the pseudoscalar fields, combined into a 3D vector field, becomes the Ψ/AΨ coupling.

5 Quarks and Gluons

The fermionic modes ξ can also just live in E(1, 1) and be arranged in three families of S U(3)C
color triplets, which are identified as colored quarks but living in E(1,1) where color is confined via

01014-p.6
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Table 1. Fermionic excitations with their assigments in S O(1, 1) × S U(3)C and S O(1, 3) × S U(2)I × U(1)Y

symmetry schemes. The column labeled space L indicates one of the basic (left/right) modes of the 1D theory

(the colored fermionic modes). The columns labeled (T1 T2) contain charge eigenstates of two basic modes that

can be combined with the L-mode, giving allowed I3 states within S U(3).

space electroweak charge color

L (T1 T2) I I3 Y Q c
νL ξ0L ξ0L ξ0L 1/2 +1/2 −1 0 1

e−L ξ−L ξ−L ξ−L 1/2 −1/2 −1 −1 1

e+L ξ+L ξ+L ξ+L 0 0 +2 +1 1

νR ξ0R ξ0R ξ0R 1/2 −1/2 +1 0 1

e+R ξ+R ξ+R ξ+R 1/2 +1/2 +1 +1 1

e−R ξ−R ξ−R ξ−R 0 0 −2 −1 1

uL ξ0L (ξ+R ξ+R) 1/2 +1/2 +1/3 +2/3 3

dL ξ−L (ξ0R ξ0R) 1/2 −1/2 +1/3 −1/3 3

uL ξ0L (ξ−L ξ−R) 0 0 −4/3 −2/3 3∗

dL ξ+L (ξ0L ξ0R) 0 0 +2/3 +1/3 3∗

uR ξ0R (ξ−L ξ−L ) 1/2 −1/2 −1/3 −2/3 3∗

dR ξ+R (ξ0L ξ0L) 1/2 +1/2 −1/3 +1/3 3∗

uR ξ0R (ξ+L ξ+R) 0 0 +4/3 +2/3 3

dR ξ−R (ξ0L ξ0R) 0 0 −2/3 −1/3 3

the instantaneous confining linear potential of the gauged S U(3) symmetry. In order to study the

electroweak structure of quarks (their valence nature) one has to study their interactions with the

electroweak gauge bosons. This is achieved by mapping the structure of the excitations into three

spatial directions in a frozen color scheme in which we just consider fermions of one particular color

(say r). Take the case of all ξR states with color r and all ξL being r̄. Taking a step back and looking

at what was done in order to find leptons where the frozen colors were in essence space dimensions.

The one-dimensional state would be labeled by a single momentum component, which is extended

to states labeled by a 3-dimensional momentum vector in E(1, 3). For two space dimensions, the

fermions could be labeled by their helicity in E(1, 2), charge eigenstates being (ξ−ξ−), (ξ+ξ+) and

(ξ0ξ0). For leptons in three space dimensions ξ0L was combined with (ξ0Lξ
0
L) to find an asymptotic

charge eigenstate with (Q, I3) = (0,+1/2), which we already discussed as the left-handed Majorana

neutrino νL. For colored eigenstates we specify how states are ’viewed’ in 3 dimensions by combining

the (frozen) anti-red ξ0L state with the (frozen) rr combinations (ξ0R, ξ
0
R), (ξ

+
Rξ
+
R) or (ξ

−
Rξ

−
R). Then only

the combination (ξ+Rξ
+
R) leads to acceptable S U(3) quantum numbers (roots), being an asymptotic

acceptable S UI(2) weak eigenstate with I3 = 1/2, which has UQ(1) charge Q = +2/3, identified as

the weak iso-doublet quark state uL with color r belonging to a color triplet. Combining the (frozen)

color r̄ state ξ0L with the (frozen) rr̄ combination (ξ0Lξ
0
R), (ξ

+
Lξ
+
R) or (ξ−Lξ

−
R) gives only for (ξ−Lξ

−
R) an

acceptable (frozen) color r̄ state with (Q, I3) = (−2/3, 0), the weak iso-singlet antiquark state ūL. The

full set of electroweak assignments of quarks as viewed in three space dimensions is shown in Table 1

and illustrated in Fig. 2. The resulting allowed S U(3) quantum numbers are for each family a left-

handed quark doublet and right-handed antiquark doublet and two singlets of opposite handedness.

The way in which the electroweak structure emerges resembles the rishon model [20], but rather than
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Figure 2. Fermionic excitations

and their electroweak quantum

numbers for leptons and for

quarks (of a given color).

Combinations such as ξ0R(ξ
0
Rξ

0
L)

with (I3,Y) = (−1/6, 1/3) or
ξ0R(ξ

+
Rξ
+
L ) with (I3,Y) = (1/6, 1)

don’t fit in this scheme.

having two fractionally charged fields (V and T ) in 3D, our basic modes are charged or neutral fields

living in 1D. The family mixing would also for quarks originate from symmetries in fixing a direction,

but in zeroth order there is only a single heavy quark, the top quark (with Mt = M), so the mixing

would be simpler. The complete mechanism for masses and mixing for quarks and leptons, however,

requires further study.

6 Conclusions

Instead of extending the standard model of particle physics, I have described an attempt to start at a

more basic level with just a single space dimension (1D) and as starting point a fully supersymmetric

set of three real fields describing bosonic and fermionic excitations. With this supersymmetric, su-

perrenormalizable starting point, there is no naturalness or hierarchy problem. The S O(3) symmetry

of the classical ground state, including parity and time reversal, is then in Weyl mode realized as

excitations living in 3D. The bosonic degrees of freedom are rearranged into the Higgs particle and

the electroweak gauge bosons, while fermions are arranged in three families with two charged (Dirac)

and one neutral (Majorana) lepton arranged in left-handed weak isospin doublets and singlets and

corresponding right-handed antileptons. All these excitations appear as asymptotic states in 3D. The

excitations of the fields also can live in 1D. The S U(3) gauge theory has an instantaneous confining

interaction and no physical gauge degrees of freedom. But this is not how these degrees of freedom

show up asymptotically. We argue that the quarks reveal themselves in 3D as good (front form) com-

ponents of fractionally charged Dirac fields arranged in a lefthanded weak isospin doublet and two

righthanded singlets (and corresponding right- and left-handed antiparticles).

In this way a minimal scenario is created to obtain the standard model of particle physics with

also in 3D elementary fields and confinement of color being implicit. Most prominent is that it links

the number of colors, families and space directions. The Higgs or top quark mass are the natural basic
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scales for wave-lengths of the one-dimensional excitations producing the right orders of magnitude

for masses of top quark, Higgs particle and gauge bosons. There are many details that need to be

investigated to see if the proposed scheme can be made consistent, the embedding mechanism for the

family structure, the origin of mixing matrices and the emergence of the scale of QCD, where the 1D

and 3D descriptions meet. The conjectures as put forward here will likely not invalidate the existing

highly successful field theoretical framework for the standard model. Hopefully it could lead to the

calculation of parameters as deviations from a zeroth order description. For the QCD part, it also may

provide insights why and to what extent collinear effective theories or the many effective theories for

QCD at low energies, work. It might provide handles on universality breaking effects such as the

’proton radius puzzle’, the reason being that atomic Hydrogen involves all degrees of freedom of just

one family while muonic Hydrogen is different in this respect. It could also be interesting to look

at more (or maybe less) than three fields, which may also be relevant in the context of the evolution

of our universe, in which the world above hadronic scales, i.e. the visible part at nuclear, atomic,

molecular scales up to astronomical scales, lives in three space dimensions.
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