EPJ Web of Conferences 112,01014 (2016)
DOI: 10.1051/epiconf/201611201014
© Owned by the authors, published by EDP Sciences, 2016

The 3D structure of QCD and the roots of the Standard Model
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Abstract. For many phenomenological applications involving hadrons in high energy
processes the hadronic structure can be taken care of by parton distribution functions
(PDFs), in which only the collinear momenta of quarks and gluons are important. In prin-
ciple the transverse structure, however, provides interesting new phenomenology. Taking
into account transverse momenta of partons one works with transverse momentum depen-
dent PDFs (TMDs), These allow all spin-spin correlations and also spin-orbit correlations
that have a time reversal odd character and lead to new observables. In many theoretical
developments the link to the collinear treatment is used. In this talk I will speculate on
a novel view of the 3-dimensional (3D) structure of QCD, which fits in a broader study
looking at the roots of the Standard Model of particle physics.

1 Introduction

In the abstract of this talk I emphasized the role of transverse components of the partonic momenta
in parton distribution functions (PDFs), hence generalizing them to transverse momentum dependent
(TMD) PDFs or in short TMDs. This extends upon the highly successful collinear description of high
energy scattering processes where collinear PDFs f(x) only depending on the momentum fraction x in
p = x P+ ... describe the partonic (quark and gluon) content of a proton with momentum P. One can
think about jet physics, scale dependence, the role of Collins-Soper-Sterman (CSS) formalism to study
transverse momenta in the perturbative regime [1], or soft collinear effective theories (SCET [2]).
While collinear PDFs only can accomodate unpolarized and spin-spin correlations between hadron
and partons, TMDs can accomodate spin-momentum correlations, important in accounting for single
spin asymmetries and understanding azimuthal asymmetries in high energy scattering processes.
Most TMDs still have quite naturally the interpretation of momentum densities, now of the type
f(x, pzT), including the transverse component in p = x P + pr + ..., which incorporate for instance
longitudinal-transverse spin correlations. One of the important issues in dealing with TMDs is that
their operator structure necessarily involves (covariant) transverse derivatives, hence gluon fields.
This leads for some of the TMDs, in particular the time reversal odd ones (important for single spin
asymmetries) to process dependence and the occurrence of multiple functions, for instance for the
socalled quark pretzelocity function and the linear gluon polarization. For these issues, I want to refer
to contributions in the proceedings of DIS2015 [3] or QCD evolution 2015 [4] and references therein.
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In this contribution I will focus on the question if there possibly could be more fundamental rea-
sons for the success of collinear physics in QCD linked to the transition from 1D to 3D with the
warning that the material in the next sections is very preliminary and at many points speculative [5].
I want to argue that the standard model and its particle content may naturally emerge in a world with
an 10(1, 1) ® S U(3) spacetime-color symmetry broken down to a threefold /0(1,3)Q [SU(2) x U(1)]
spacetime-electroweak symmetry for the asymptotic fields leaving only the electroweak charges for
these asymptotic particle states. The bosonic excitations are the electroweak gauge bosons, the mass-
less photon and massive W and Z bosons, as well as the Higgs boson. Fermionic excitations come
in three families of colorless (leptonic) excitations living in E(1,3) or they form three families of
colored (quark) excitations living in E(1, 1). Many features of the Standard Model emerge naturally.
Taking a supersymmetric starting point solves the naturalness problem. There is an underlying left-
right symmetry leading to custodial symmetry in the electroweak sector. In the spectrum one naturally
has Dirac-type charged leptons and Majorana-type neutrinos. The electroweak behavior of the natu-
rally confined quarks, accomodates fractional electric charges and the doublet and singlet structure of
left- and right-handed quarks, respectively. Most prominent feature is the link between the number of
colors, families and space directions.

2 A 1D supersymmetric starting point

As already indicated in the introduction, we take the 1D world serious as a starting point with operators
H, P (combined into P* or combined in the combinations P* = H + P) and the boost operator K
generating the 2-dimensional Poincaré symmetry group /0(1, 1),

[H,P]=0, [K,H] =iPand [K,P]=iH, or [P*,P"]=0and[K,P*]=+iP*, 1)

with Casimir operator P> = P*P, = H> — P> = P*P~. The I0(1,1) symmetry can be combined
with an S O(N) symmetry to obtain the IO(1, N) space-time symmetry. with as generators H, P, K’
and J/) (combined into P* and J*, of course after also including discrete space- and time-reversal
symmetries.

Positive and negative energy (particle and anti-particle) eigenstates of the momentum operator
have a space-time phase dependence ¢(x) = ¢/** with (k*)>—k* = kk* —k* = M?. These plane waves
are solutions of the Klein-Gordon equation (6"0,, + M 2)¢ = 0 or, with the appropriate Clifford algebra,
the Dirac equation (i — M)é = 0. For massless excitations in 1D one can distinguish independent
right-movers, depending on x*, and left-movers, depending on x~. Expanded in these modes right-
and left-handed fields can be defined satisfying [P~, ¢g] = id g = 0 and [P*, ¢.] = id_¢; = 0. For
massive fields left and right modes become coupled, while the other derivatives [P*, ¢g] = i0_¢g and
[P, ¢1] = i0. ¢, acquire roles as (front form) canonical momenta [6]. For M = 0 the fermion fields in
1D satisfy y~&ég = y*¢, = 0 and &g, are independent good fields [7]. Massive fermion fields satisfy
the constraints

[P, &Rl = i0:6r = —iME,  and  [P*,&1] = i0-€£1, = iMég. @)

As an additional ingredient, the Poincaré algebra can be extended to a supersymmetric algebra [8]
with fermionic operators Qgyr.,

(Ok, Qf) = 2P* =2P-i, {Q, 0]} =2P"=2Pn and {Qk, Q1) =0, 3)

[P*,0rl] =0 and [K, Q] = £3i Qe 4
The supersymmetry charges connect the fields,

[Qr/L> Pr/L] = €y and {QR/L,f,E/L} = [P*, ¢rjL] = i0=Pr)L- &)
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The contact with the real world is made by considering the excitations of three real scalar and real
fermionic (Majorana) fields ¢ and &, still in a single space dimension, however. If their masses are zero
one can distinguish right-movers (R) and left-movers (L) as independent degrees of freedom, which for
bosons is a simple doubling but for fermions coincides with right- and left-handed fermions. Including
left-right coupling via a single mass M and a single Yukawa coupling between the boson fields, linked
in the supersymmetric situation to the coupling of fermions and bosons, we have basically the Wess-
Zumino model [9] in two dimensions,

L = J0-$rOvbr+ 304PLO-PL+ § ErDibn + 56,061~ V($,€)
= 1005 Oups + 30" 0p Oup + iUPY — V(9,), (6)

where (real) right and left fields for bosons can be combined into (real) scalar (CP-even) and pseu-
doscalar (CP-odd) fields ¢s/p = (¢ £ ¢1)/ V2. Real fermion fields can be combined in a (self-
conjugate) spinor ¢ = (&g, —i&)/ V2. Supersymmetry strongly restricts the interaction terms. The
most compact expression is in terms of the scalar and pseudoscalar fields containing a mass term cou-
pling left and right fields and a single Yukawa coupling that also governs the fermion-boson coupling,

V(g,&) = S(M+gds) (95 +¢3) + 25°03(5 + 3) + WM + gds + gdpy' W+ AF  (7)

using ys = y"y'. The constraint is given by
A A
AF = 4 ((M + 2g¢x V2)(M +29¢,. V2) - M) = ; ((g¢s + M/27 - 67— M*/4). (8)

Defining M/2g = v, we introduce fields ¢s + v = v®g and v®p = ¢p which can be re-defined as
®g = coshn and ®p = sinhn or if one likes one can use an imaginary representation for ®p by
writing n7 = i6. The bosonic part of the potential including constraint becomes

U2 M2 02 M2

V@) = 050, = ——05(®5 - 1) ©)
or V(@) = %szz sinh2(277). Defining D] = (<D§ + CD%)/Z = (D%e + CD% we have |®]* = cosh(2n)
and we have CD§ = |®P + 1/2 and <I)f) = |®]> - 1/2. Looking at the minimum of the potential
(n = 0 or 8 = 0) we see that the boson field acquires a vacuum expectation value which is right-left
symmetric, g = O, = |O| =1/ V2 (or ®g = 1 and ®p = 0). The real excitations around the vacuum
are Majorana modes ¥ = W¢ = (&, —i¢)/ V2 and real scalar bosonic modes ®g/ V2 = ® = ¢ =
(1 + H)/ V2. Note that ¢s = vH. The 1D pseudoscalar field ¢p can be identified as a vector field
writing i0,Pr/r = (0, + gA,)ds/ V2. In the ground state A, = 0 and around the vacuum one has
A* ~ ¢p(n* — ") or A = —A” =~ ¢p. This suggests working with a complex field @ rather than
left and right fields that are CP symmetric, ®z = @;. For a single field a global U(1) symmetry is
not relevant and local symmetries don’t lead to dynamics either, but taking multiple scalar fields the
symmetry pattern becomes much richer.

3 Symmetric extension to three fields

The symmetric extension to N real boson and fermion fields (we take N = 3) has interesting conse-
quences for the dynamics, which is studied by looking at the possible fluctuations around the vacuum,
in the symmetric basis (®)7 = (1,1,1)/ V3. Including complex phases we consider S U(3) fluctua-
tions, although the lagrangian is only invariant under S O(3) transformations of the fields, which is
also the symmetry of the groundstate. We propose to use the S O(3) symmetry in combination with
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Figure 1. SU(3) quantum number assignments for bosonic (¢) and fermionic (£) excitations. The right-moving
positively charged (¢5, &%) and neutral (qﬁg, .fg) fields are in an isospin doublet with ¥ = +1, while the right-
moving negatively charged (¢, &) fields are in a weak isosinglet with ¥ = —2. The left-moving negatively
charged (¢7, &) and neutral (¢°, £) fields are in an isospin doublet with ¥ = —1 while the left-moving positively
charged (¢, &;) fields are in a weak isosinglet with ¥ = +2. The asymptotic fermion fields become the right-
and left-handed leptonic fields, &3 )L = €xy and fg oL vg e

inversion and time reversal symmetry, to extend the d = 2 Poincaré symmetry to a d = 4 Poincaré
symmetry. Implemented in Weyl mode, the asymptotic fields become real representations of /0(1, 3)
living in E(1, 3).

At this stage part of the freedom in fluctuations around the vacuum has been incorporated. The
already accounted for real S O(3) rotations are identified with the subalgebra generated by the S U(3)
generators Ay, —As and A7, constituting the algebra of the factor group of the subgroup G’ = SU(2) X
U(1) with generators A, /2, 1,/2, A3/2 and Ag/2. This subgroup contains the S U(3) Cartan subalgebra
consisting of I3 = A3/2 and ¥ = Ag V3 that will serve as electroweak charge labels. Labelling the
(massless) bosonic states using this Cartan subalgebra, gives fields ¢[RI;’LY'(x, t) living in E(1,3). For
two fields this would have been just a U(1) charge assigment after combining two real fields into
complex fields. The basic recoupled bosonic and fermionic starting point for the three fields and their
electroweak quantum numbers is illustrated in Fig. 1.

The fluctuations around the vacuum in space-time and internal space is also reflected in the co-
variant derivative. We consider the possibilities

E(1,1): iD,®" =i, ® + gZA;(Ta);ch, (10)
acG

E(1,3):  iD,0 =ig,® +g > ALT)®. (11)
acG’

The first expression for the covariant derivative applies to the fields in E(1, 1) and accounts for local
SU(3) gauge invariance. It involves eight (color) gauge fields also living in E(1,1). The second
expression for the covariant derivative is relevant for (asymptotic) fields in E(1, 3), coupling for the
real continuous S O(3) transformations field and space rotations in such a way that there are no gauge
fields for that part, and account for the complex fluctuations through four (electroweak) gauge fields
living in E(1, 3). Such a transition from 1D to 3D, in whatever way we implement it, does require that
the Poincaré symmetry and internal symmetry are direct products [10].

To achieve this, we note that the embedding of S O(3) directions into S U(3) is not unique. The
discrete symmetry group A4 governs the possible oriented embeddings. For singlet representations
of the embedding group (A4) one can consider SU(3) D SO3) X A4 X [SU2)®@ U(1)] =- SO3) ®
[SU(2) ® U(1)], decoupling space-time and internal symmetries. The unitary transformation matrix
for these singlet states [11-14] is the matrix W. Its specific role now is that it rotates the symmetric
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embedding of the vacuum into the electroweak embedding,

Vi/3 0 1 1 1 1
whl Vi3 | =] 1 with W=—1] 0o 1 w |, (12)
\V1/3 0 V3w 1w

where w = exp(i2n/3). Since the starting point only had S O(3) as a symmetry group, the vacuum
indeed is not invariant under S U(2) ® U(1) transformations, but it is neutral for Q = I3 + Y/2. The
symmetry pattern and its breaking thus is summarized as

101,1H)®SU@B) > 1I0(1,1)xS03)@SUR); @ U(l)y.

10(1,3) > U(l)g

All bosons and fermions, however, still do originate as (finite dimensional) representations of the
basic S U(3) symmetry group, which will become important later. There are three families of particles
corresponding to singlets of A4. In 3D the interaction changes from a confining potential to a 1/r
(or Yukawa) potential between the (electroweak) charges, which thus can be free, in contrast to the
(color) S U(3) charges that live in 1D.

4 Bosons and Fermions in the Standard Model

After the introduction of the covariant derivatives in Eqs 10 or 11, part of the potential is included in
the term

NCy

D'O*D,® = §DO,D+ grAFA, D' D. (13)
With C4(G = SU(3)) = 4/3, the second term in Eq. 10 is precisely —V(®) and we are left with the
1 + 1 dimensional QCD lagrangian (without a Higgs mass-term),

1 S0
% = 1¢"Ho,H- 2 F*F, +YGD — M — gv H)Y, (14)

but with a scalar field, which does not seem harmful [15]. We return to the electroweak and family
structue of the colored fermions (quarks) in the next section.

For the covariant derivative in Eq. 11 we have C4(G”) = 2/3 and the second term is only —V(®)/2.
This leaves the scalar field massive with My = M/ V2. This is an experimentally interesting scenario
for the standard model if the fermion mass is identified with the top quark mass, M = M,. For the
bosons, we have (in principle arbitrarily) assigned right to the triplet and left to the anti-triplet. The
fields can be rotated into a single scalar field with a nonzero vacuum expectation value as is done in
the usual standard model treatment, even if they formed triplets at the start,

0
1 .
O, = —exp(—3 Z )| 1+H |,
2 a=123 0
1 1+ H
O = — exp(+4 0 ,) 0
V2 a=123 0

The electroweak charges and corresponding generators of gauge transformations are identified with
the S U(2); ® U(1)y transformations but with a single coupling constant within S U(3). The charged
fields are neither Iz = A3/2 or Y = Ag V3 eigenstates but they are eigenstates of Q = I3 + Y/2. The
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breaking of the S U(2); x U(1)y symmetry to U(1), after the choice of ground state being neutral,
produces three massive and one massless gauge boson. As discussed in a slightly different context
[16], the S U(3) embedding gives a weak mixing angle, sin 6y = 1/2 after rewriting in

3
. . 9 i
DO = 5D+ 3 (; Wi + B,l/lg)CD (15)

the neutral combination gWBI3 +(g/2 \/§)B,1Y in terms of Z* and A”. One obtains (using the dimen-
sionful coupling in d = 2) e = g/2 and masses M‘ZV = M?/4, M% = M%,V/ cos? @y = M?/3 and Mi =0.
In zeroth order, the weak mixing is fine and the Higgs mass and gauge boson masses are related and
they are of the right order with M = M,. Taking v = M/2g = 1, one even is tempted to compare
e/M = 1/4 with Vdra ~ 0.3. Besides providing a global zeroth order picture for electroweak bosons,
we note that the left-right symmetric starting point also ensures custodial symmetry [17, 18].

For the fermionic excitations, the starting S U(3) triplets &g and anti-triplets &, in 1D match those
of the bosons, implying the underlying supersymmetry of the elementary fermionic and bosonic d =
2 excitations. Also in this case one fixes one direction for the S U(3) representations (the S O(3)
embedding) and uses the (remaining) symmetry to fix the electroweak structure as an S U(3) triplet
or anti-triplet. The fermions then have electroweak charges corresponding to isospin doublets and
singlets as shown in Fig. 1. We like to identify the three possible singlets of A4 with three families.
For this we note that the off-diagonal charge operator in terms of real fields (£* ~ & + i&3) in the
electroweak basis is

0 0 —i 1 0 O . v1i/2 0 v1/2
Qew = 0 0 O = VQ 0 0 0 VTQ with VQ = 0 1 0 , (16)
i 0 0 0 0 -1 ivl/2 0 —iv1/2

while in the symmetric basis for the fields one has

(0 i i
O = — | -i 0 i

0
0
V3l i i o

-1

1 0
=w|0 0 w'. (17)
0 0

They are related by Qs = WV; Oew Vo W' = Ugps Qew U ;CIPS via the tribimaximal mixing matrix [19]

V273 NI/3 0
-VIj6 VI/3 -+V1]2
-Vij6 V173 V12

This looks like a promising zeroth order description for leptons providing arguments for the role of
the discrete symmetry group A4, which is a subgroups of both § O(3) and S U(3), in the structuring of
families and the mixing matrices. The details of this, however, need to be worked out. Finally note
that (without looking at the role of the masses) the extension of 1D fermion fields leads to 3D ’good’
light-front fields ¥ = (&g, —€£1) with two-component spinors &g/, and € = io2. The rotations are
represented by J = 0/2, boosts by K = +io/2 for right and left fields, respectively. The coupling of
fermions to the pseudoscalar fields, combined into a 3D vector field, becomes the @A‘P coupling.

Unps = WV;= ) (18)

5 Quarks and Gluons

The fermionic modes & can also just live in E(1,1) and be arranged in three families of S U(3)¢
color triplets, which are identified as colored quarks but living in E(1,1) where color is confined via
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Table 1. Fermionic excitations with their assigments in S O(1, 1) X SU3)¢c and SO(1,3) x SU(2); X U(1)y
symmetry schemes. The column labeled space L indicates one of the basic (left/right) modes of the 1D theory
(the colored fermionic modes). The columns labeled (7' T») contain charge eigenstates of two basic modes that
can be combined with the L-mode, giving allowed /5 states within S U(3).

space electroweak charge | color

L (T, T>) I I Y 0 ¢
VL & & & 1/2 +1/2 -1 0 1
e & & & 12 -1/2 | -1 -1 1
et + & - 0 0 +2 +1 1
VR 0 & 0 12 -1/2 [ +1 0 1
e p & s 12 +12 | +1 +1 1
€r x x r 0 0 -2 -1 1
ur & G 172 +12 [ +13 [ +2/3 3
o | & & & | 12 -2 | 413 <13 | 3
ur, & ¢ &) 0 0 -4/3 | -2/3 3
dr i G 0 0 +2/3 | +1/3 | 3
ug 3 ¢ &) 12 —1/2 | -1/3| -2/3 3
dr » €@ & 12 +12 | -1/3 | +1/3 3*
Ug o & &) 0 0 +4/3 | +2/3 3
dr | & (GG 0 0 —2/3 | -1/3 3

the instantaneous confining linear potential of the gauged S U(3) symmetry. In order to study the
electroweak structure of quarks (their valence nature) one has to study their interactions with the
electroweak gauge bosons. This is achieved by mapping the structure of the excitations into three
spatial directions in a frozen color scheme in which we just consider fermions of one particular color
(say r). Take the case of all &g states with color r and all &, being 7. Taking a step back and looking
at what was done in order to find leptons where the frozen colors were in essence space dimensions.
The one-dimensional state would be labeled by a single momentum component, which is extended
to states labeled by a 3-dimensional momentum vector in E(1,3). For two space dimensions, the
fermions could be labeled by their helicity in E(1,2), charge eigenstates being (£7¢7), (£7¢™) and
(£%€°). For leptons in three space dimensions 5‘2 was combined with (5262) to find an asymptotic
charge eigenstate with (Q, Is) = (0, +1/2), which we already discussed as the left-handed Majorana
neutrino v;. For colored eigenstates we specify how states are 'viewed’ in 3 dimensions by combining
the (frozen) anti-red £ state with the (frozen) rr combinations (£5, £%), (£5&5) or (€xéz). Then only
the combination (£4&7) leads to acceptable S U(3) quantum numbers (roots), being an asymptotic
acceptable S U;(2) weak eigenstate with I3 = 1/2, which has Uy(1) charge Q = +2/3, identified as
the weak iso-doublet quark state u; with color r belonging to a color triplet. Combining the (frozen)
color 7 state £ with the (frozen) r7 combination (£)£%), (&7 &5) or (£,&5) gives only for (£;&5) an
acceptable (frozen) color 7 state with (Q, I3) = (-2/3, 0), the weak iso-singlet antiquark state ii;. The
full set of electroweak assignments of quarks as viewed in three space dimensions is shown in Table 1
and illustrated in Fig. 2. The resulting allowed S U(3) quantum numbers are for each family a left-
handed quark doublet and right-handed antiquark doublet and two singlets of opposite handedness.
The way in which the electroweak structure emerges resembles the rishon model [20], but rather than
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having two fractionally charged fields (V and T') in 3D, our basic modes are charged or neutral fields
living in 1D. The family mixing would also for quarks originate from symmetries in fixing a direction,
but in zeroth order there is only a single heavy quark, the top quark (with M, = M), so the mixing
would be simpler. The complete mechanism for masses and mixing for quarks and leptons, however,
requires further study.

6 Conclusions

Instead of extending the standard model of particle physics, I have described an attempt to start at a
more basic level with just a single space dimension (1D) and as starting point a fully supersymmetric
set of three real fields describing bosonic and fermionic excitations. With this supersymmetric, su-
perrenormalizable starting point, there is no naturalness or hierarchy problem. The S O(3) symmetry
of the classical ground state, including parity and time reversal, is then in Weyl mode realized as
excitations living in 3D. The bosonic degrees of freedom are rearranged into the Higgs particle and
the electroweak gauge bosons, while fermions are arranged in three families with two charged (Dirac)
and one neutral (Majorana) lepton arranged in left-handed weak isospin doublets and singlets and
corresponding right-handed antileptons. All these excitations appear as asymptotic states in 3D. The
excitations of the fields also can live in 1D. The S U(3) gauge theory has an instantaneous confining
interaction and no physical gauge degrees of freedom. But this is not how these degrees of freedom
show up asymptotically. We argue that the quarks reveal themselves in 3D as good (front form) com-
ponents of fractionally charged Dirac fields arranged in a lefthanded weak isospin doublet and two
righthanded singlets (and corresponding right- and left-handed antiparticles).

In this way a minimal scenario is created to obtain the standard model of particle physics with
also in 3D elementary fields and confinement of color being implicit. Most prominent is that it links
the number of colors, families and space directions. The Higgs or top quark mass are the natural basic
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scales for wave-lengths of the one-dimensional excitations producing the right orders of magnitude
for masses of top quark, Higgs particle and gauge bosons. There are many details that need to be
investigated to see if the proposed scheme can be made consistent, the embedding mechanism for the
family structure, the origin of mixing matrices and the emergence of the scale of QCD, where the 1D
and 3D descriptions meet. The conjectures as put forward here will likely not invalidate the existing
highly successful field theoretical framework for the standard model. Hopefully it could lead to the
calculation of parameters as deviations from a zeroth order description. For the QCD part, it also may
provide insights why and to what extent collinear effective theories or the many effective theories for
QCD at low energies, work. It might provide handles on universality breaking effects such as the
“proton radius puzzle’, the reason being that atomic Hydrogen involves all degrees of freedom of just
one family while muonic Hydrogen is different in this respect. It could also be interesting to look
at more (or maybe less) than three fields, which may also be relevant in the context of the evolution
of our universe, in which the world above hadronic scales, i.e. the visible part at nuclear, atomic,
molecular scales up to astronomical scales, lives in three space dimensions.
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