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Abstract. One could use trajectories of test particles to evaluate a gravitational potential.
In particular, in the case of the Galactic Center one could use photon trajectories to analyze
a shadow structure. Another way is to use bright stars near the Galactic Center to evaluate
a gravitational potential and constrain parameters of a model for the Galactic Center. In
particular, one could obtain constraints on parameters of black hole, stellar cluster and dark
matter concentration. Earlier, we constrained parameters of Rn and a Yukawa potential from
observational data for the S2 star trajectory. Now gravity theories with a massive graviton
are a subject of intensive studies. People proposed different experimental ways to evaluate a
graviton mass. Recently, the joint LIGO & VIRGO collaboration reported not only a discovery
of gravitational waves and binary black holes, but the team claimed also that found a constraint
on a graviton mass as 1.2× 10−22 eV. We show that an analysis of the S2 star trajectory could
constrain a graviton mass with a comparable accuracy and this constraint is consistent with
LIGO’s one.

1. Introduction
In spite of a great success of a general relativity (GR) development in a more than a century
we know only a few cases where we really need a strong gravitational field approximation to
describe a physical reality. If we speak about observable manifestations of black hole features we
need models with a strong gravitational field to describe 1) a final stage of inspiraling (merging
and ring down) binary black holes; and 2) shapes of shadows around black holes. Perhaps, very
soon observers will need GR corrections and later a full GR approach to fit observational data
for bright stars near the Galactic Center. Assuming that a radiation in a spectral line is emitted
from a region near a black hole horizon, it was found (and after that it was observed the X-ray
Kα-line) that an observed shape of the spectral line can be an important indicator of a strong
gravitational field near a black hole, moreover, one can evaluate a black hole spin analyzing a

7 To whom any correspondence should be addressed.
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spectral line structure [1, 2, 3]8 (see also more recent reviews [11, 12] on the subject). Another
phenomenon, where one really needs a strong gravitational field approach, is simulations of a
shadow formation started since [13, 14, 15, 16] (see also calculations of shadows for different
cases [17, 18, 19, 20, 21, 22] and recent reviews on the subject [23, 24]).

The problem is connected with attempts to resolve the smallest spot at the Galactic Center
with VLBI interferometry in mm-band [25]. As it was noted earlier, observations of bright star
trajectories near the Galactic Center could provide an efficient tool to evaluate a gravitational
potential in particular, analyzing these trajectories one can obtain constraints on parameters of
black hole and stellar cluster [26] and on parameters of dark matter distribution [27, 28, 29].

Two groups of astronomers with VLT and Keck telescopes observe stars near the Galactic
Center, see [30, 31, 32] and references therein. An analysis of S2 like star trajectories gives
an opportunity to obtain stringent constraints on alternative theories of gravity, including Rn

theory which is a generalization of the classical GR and n = 1 corresponds to GR [33, 34] (there
are also stringent constraints from Solar system data [35]), and Yukawa gravity [36]. In the
paper we will obtain a graviton mass constraint from analysis of trajectories of bright stars at
the Galactic Center.

2. Gravity Theories with Massive Graviton
A gravity theory with massive graviton was introduced in M. Fierz and W. Pauli [37]. However,
later on some unexpected properties of such theories have been found such as van Dam–Veltman–
Zakharov (vDVZ) discontinuity [38, 39, 40] (however, nonlinear solution was constructed for the
Schwarzschild problem [41] providing a continuity at m→ 0 with the massless Einstein theory)
and a presence of ghosts (and related instabilities) and other pathologies from quantum field
theory point of view [42]. However, there is a significant progress to overcome such problem and
build a consistent theory without Boulware – Deser ghosts [43, 44, 45, 46] (a great step has been
done in the paper [47] where the authors developed a ghost free massive gravity). Here, we will
not discuss theoretical aspects of massive gravity theory and we will consider only observational
features of such an approach.

In spite of the problems of current theoretical models of massive gravity in seventies
Goldhaber and Nieto obtained a graviton mass constraint based on the assumption that a
Compton wave length of graviton is around λg = 580 kpc (it is around a typical distance between
galaxies), and mg < 2×10−62 g=1.1×10−29 eV [48]. It was shown that in the relativistic theory
of gravitation (RTG), developed by Logunov and his group, a non-vanishing mass of graviton
substitutes Λ-term in the conventional ΛCDM cosmological model and one could find that a
Compton wave length for graviton has a cosmological value, so that mg < (1.3− 3.2)× 10−66 g
(depending on a way for an evaluation of the quantity) [49, 50, 51], see also estimates obtained
recently mg < 5.2 × 10−66 − 1.2 × 10−65 g taking into account constraints on quintessence
parameters [52]. Constraints on λ in Yukawa potential from Solar system data is given in [53]
and analyzing these data, C. Will obtained a graviton mass constraint mg < 7.2×10−23 eV at the
2σ level [54]. Analyzing weak gravitational lensing data (gravitational potential reconstruction
for galactic clusters based on image deformations of background galaxies), Choudhury et al.
found that a Compton wavelength of massive graviton has to be λ > 100 Mpc=3×1021 km [55],
therefore, mg < 6×10−32 eV. Finn and Sutton suggested to use binary pulsars s PSR B1913+116
and PSR B1534+112 to evaluate a graviton mass and they obtained mg < 7.6× 10−20 eV with
90% confidence level [56]. Larson and Hiscock proposed to use future LISA data for observations
of gravitational radiation from interacting white dwarf binary star systems, including helium
cataclysmic variable (HeCV) systems and in this case one can expect to reach the following
graviton mass bound mg < 1×10−24 eV [57]. For a subsample of 400 close white dwarf binaries

8 Results of iron Kα-line simulations in the framework of a simple model are given in [4, 5, 6, 7, 8, 9, 10].
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with high signal-to-noise ratio gravitational wave and optical data with magnitudes brighter
than 25, the combined upper limit on the graviton mass is at the level of mg = 6 × 10−24 eV
[58]. One can expect even a better estimates for ASTROD-I mission [59] because it will be
possibly a next generation of space borne gravitational interferometers in space for gravitational
wave detections. Many years ago, Sazhin proposed to use pulsar timing for gravitational wave
detection [60] (see, also a more detailed discussion in [61]). Graviton mass constraints were
obtained in [62], but later in erratum the authors noted that their approach was not correct
[63], however, in paper [64] it was concluded, that one can obtain a graviton mass bound at a level
mg = 3× 10−22 eV, if bi-weekly observation of 60 pulsars is performed for 5 years with a pulsar
rms timing accuracy of 100 ns and the estimate can be improved in the case if more observations
for more pulsars a longer observation period would be done, moreover, such an estimate will be
improved with a pulsar array technique [65]. There are other suggestions to evaluate a graviton
mass, some of them are rather exotic and based on hardly verified assumptions [46]. Systematics
of proposed experiments and observations is not well investigated, moreover, some weaknesses
of the proposals for a graviton mass evaluation are pointed out in the review [46].

3. Graviton Mass Estimate from Gravitational Wave Signal
If a graviton has a mass mg, then in this case a speed of gravitational wave propagation could
differ from c and we have a dispersion relation [54, 66, 67]

v2g
c2

= 1−
m2
gc

4

E2
, (1)

where E is a graviton energy. Gravitons with different energies propagate with different
velocities. Assume that we have gravitational waves and electromagnetic waves from the same
source (from supernovae explosion, for instance). In this case we have [54, 66, 67]

1− vg
c

= 5× 10−17

(
200 Mpc

D

)(
∆t

1 s

)
, (2)

where ∆t = ∆ta − (1 + z)∆te is the time difference, where ∆ta and ∆te are the differences in
arrival time and emission time of the two signals, respectively, and z is the redshift of the source.
Usually ∆te is unknown, however, one could find an upper limit for ∆te (for instance from a

theoretical model), therefore, one could evaluate 1− vg
c

, therefore, mg. Following [54, 66, 67] and

assuming that the frequency of gravitational wave is ν and hν � mgc
2 (h is Planck’s constant),

therefore, we have
vg
c
≈ 1 − 1

2

h

λgν
, where λg =

h

mgc
or λg ≈

1

2

1√
1− vg/c

. If one has an

upper limit for 1− vg/c, it can be re-written as a lower limit for λg, as the following expression
[54, 66, 67]

λg = 3× 1012km

(
200 Mpc

D

ν

100Hz

)(
1

ν∆t

)
. (3)

It is a lucky case if one observe electromagnetic and gravitational radiation from the same source.
But even in the case if only gravitational radiation has been detected as it was noted [54] because
gravitational wave signal with a massive graviton will be different from signal for a graviton with
a vanishing mass and in this case for D ≈ 200Mpc, ν ≈ 100Hz, ν∆t ∼ ρ−1 ≈ 0.1 The result is
λg > 1013 km. Based on ideas expressed in [54, 66, 67], the LIGO/VIRGO collaboration obtained
the same estimate for the Compton wavelength of a massive graviton [68, 69, 70].
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4. Graviton Mass Estimates from Trajectories of Bright Stars near the Galactic
Center
We use a modification of the Newtonian potential corresponding to a massive graviton case
[71, 54, 67]:

V (r) = − GM

(1 + δ)r

[
1 + δe

−
( r
λ

)]
, (4)

where δ is a universal constant (we put δ = 1). In our previous studies [36] we found constraints
on parameters of Yukawa gravity. As it was described in [72, 73] we used observational data
from NTT/VLT [30]. If we wish to find a limiting value for λx, so that λ > λx with a probability
P = 1−α (where we select α = 0.1) normalized depending on λx has to be equal to the threshold
depending on degree of freedom ν and parameter α or in other words, χ2(λx) = χ2

ν,α. Computing

these quantities we obtain λx = 2900 AU ≈ 4.3 × 1011 km. Now we obtain the upper limit on
a graviton mass and we could claim that with a probability P = 0.9, a graviton mass should be
less than mg = 2.9× 10−21 eV (since mg = h c/λx) in the case of δ = 1 [72].

5. Conclusions
As it was noted earlier, our graviton mass estimate is slightly greater than estimate with
LIGO interferometer, however, a) our estimate was obtained in independent way with other
observational data; b) our estimate is consistent with LIGO’s one; c) our estimate will definitely
improved with forthcoming facilities such as GRAVITY, E-ELT and TMT because more precise
observations of bright star orbits will give an opportunity to reconstruct a gravitational potential
at the Galactic Center in a more accurate way, therefore, one can expect a better estimates for
λ parameter and a graviton mass. However, such a progress will be not very rapid because of
an exponential dependence of a potential on λ.
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