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Abstract

In this thesis, we study the forward limit in gauge theories and gravity using the tools of Soft
Collinear Effective Theory (SCET) with Glauber operators. For gauge theories, we derive
relations for the anomalous dimensions of hard scattering operators in terms of diagrams
with Glauber gluon exchanges from unitarity and analyticity considerations. Similar argu-
ments can be applied to the forward scattering amplitude and Glauber operators, leading
to new relations, constraints, and calculation techniques for these operators. We then gen-
eralize the Glauber SCET approach to the problem of gravitational scattering, and we use
this to study classical gravitational scattering. We find an infinite tower of large logarithms
in the classical phase, and we describe how they may be calculated at any desired order in

perturbation theory.
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Chapter 1

Introduction

The last two decades have seen a remarkable development in techniques for perturbative
calculations in quantum field theory. With tools such BCFW recursion relations for tree
amplitudes [42, |43], generalize unitarity [32], and double copy [112, [25], and a deeper
understanding of Feynman integrals|173|, calculations at higher loop and higher multiplicity
are becoming increasingly common, with many results in the literature available up to three
or four loops|122, 141} |79, 90]. The study of scattering amplitudes has long been central
in collider physics. More recently, it has been realized that scattering may be applied in
a seemingly distinct problem, that of the classical two-body problem in General Relativity
(GR). Through a careful analysis of loop integrands, one is able to extract the classical
contributions to the amplitude, leaving the quantum terms behind. Due to the detection of
gravitational waves by LIGO [2| 3] and the subsequent need for high precision theoretical
predictions, the field has seen explosive progress in the past several years, with partial results

being available at fourth order in perturbation theory for the scattering potential|30} 77].

Despite the advances in perturbative calculations, the all-orders structure of scattering
amplitudes is not always well understood. In asymptotic kinematic limits however, the
problem greatly simplifies, and one can learn a great deal. A particularly rich limit is the
near forward, or high energy limit of 2 to 2 scattering. This limit is characterized by a
large center of mass (CoM) energy /s and a small momentum transfer \/—t, leading to a
scenario in which the two incoming high-energy projectiles interact over large distances and
are lightly deflected. Historically, this limit has long been of theoretical interest, where it
was applied in early pre-QCD studies in relativistic scattering theory[62], as the high-energy
limit is highly constrained by unitarity and analyticity. In the 90s, this work was turned
towards QCD, where a number of structures in the amplitude were described, notably
gluon Reggeization|[120], in which the gluon exchanged between the two projectiles becomes

dressed with a power scaling in s, and the BFKL equation [121] 14], which describes the



leading s-dependence of the total cross-section in QCD. More recent studies have reframed
the problem as the scattering of Wilson lines[46, 47], and identified an infinite tower of such

structures, leading to a messy and unclear picture of amplitudes in the high-energy limit.

Somewhat orthogonally, the high-energy limit happens to overlap with the classical
limit in gravitational scattering. Given the large distance between the scattering projectiles
b ~ 1/+/—t, the classical angular momentum of the system is J ~ y/sb > 1, which dominates
over the quantum angular momentum scale i = 1. Despite the classical nature of the
problem, Ref. [9] was able to apply techniques from the QCD literature to calculate the
classical contribution to the gravitational amplitude for the case of massless scattering
at two loops. While not directly relevant to the binary black hole inspiral problem, this
calculation has served as an important theoretical cross-check for explicit calculations|72],
as well as useful input to constrain phenomenological models of black hole mergers|64].
More generally, the high energy limit is formally interesting, as it is a regime where one can
probe transplankian scattering. As long as the momentum transfer ¢ is sufficiently small, s
can be much larger than the Planck mass, as we can reliably calculate in the case of two
stars or black holes scattering off of each other. The high energy limit has also been used

to explore the approach towards black hole formation in perturbative GR.

In recent years, an effective field theory (EFT) approach to this problem in QCD has
been developed within the framework of Soft Collinear Effective Theory [16, |19, 18| 20].
Here, the problem of forward scattering is reframed as the exchange of the so-called “Glauber
modes”. These Glauber modes are are analogous to potential modes in non-relativist set-
tings, as they mediate the forward scattering between highly boosted projectiles. Similarly
to potential modes in non-relativistic EFTs (i.e. NRQCD [128]), these modes get integrated
out of the EFT into a set of potential Glauber operators. These Glauber operators then
are used to organize the calculation of amplitudes and observables in the forward limit, and
the renormalization group (RG) running of these operators generate the structures found
in the 2-to-2 forward amplitude in QCD. The goal of this thesis is to further develop this
Glauber SCET approach to forward scattering. In particular, we show how there is inter-
esting interplay between unitarity and the EFT, which leads to interesting constraints and
new calculational techniques for the RG properties of both Glauber operators as well as
hard scattering operators. We also generalize the Glauber operators to the case of gravity,
where we use the RG properties to show how one can characterize and calculate certain

terms in the classical amplitude to high loop orders.

This thesis is organized as follows. Chapter [2| will review the salient details of SCET
and Glauber operators which are built off of in the rest of this thesis, with a particular
focus on Glauber SCET for QCD. In Chapter [3| we discuss a formalism which allows one to

use Glauber operators to calculate the anomalous dimensions of hard scattering operators.



Chapter [4] extends this formalism to include the Glauber operators themselves and further
studies the formal implications of the methodology. In Chapter [5 we take a step back from
QCD and discuss the construction and matching of Glauber operators in gravity SCET,
and in chapter 6 we apply this EFT to the problem of classical gravitational scattering.



Chapter 2

The
ABC(DFGJkLm*nnOPQ*StwzZ)’s
of SCET

In a typical scattering process, contributions to scattering amplitudes or cross-sections are
dominated by low-energy, or soft, modes and by high-energy modes which are (nearly)
collinear to the scattering states. These regions of phase space dominate as they set internal
propagators (close to) on-shell. Soft Collinear Effective Theory (SCET) (16} (19} 18, 20] then
provides a framework for describing the interactions of these modes and their contributions
to physical observables.

One of the major benefits of working with SCET is that it provides a systematic method
of resumming large logarithms which can cause a breakdown of perturbation theory. In par-
ticular, one encounters (Sudakov) logarithms of the form a,log? Q?/m?, where Q? is the
typical hard or UV scale in the problem, and m? is the low-energy scale. In phenomenolog-
ically relevant cases, the two scales are widely separated, such that the ratio Q2/m? > 1,
and then numerically a, log? Q2 /m? > 1. At the nth order in perturbation theory, we gener-
ically expect a contribution of the form (aslog? Q?/m?)™, and so we have lost calculational
control of the problem. SCET solves this issue through the separation of scales. The EFT
allows us to calculate the log (mQ), while the hard log (QQ) appears as a Wilson coefficient
from integrating out the hard physics. Renormalization group techniques then allow us to
resum the tower of large logs, often into an exponential, restoring calculational control.

SCET has been successfully applied to calculate for a number of scattering processes
relevant for QCD collider physics. More recently, SCET has been generalized to the case of
gravitational scattering. There, the focus has so far been to provide a new perspective on

the origin of gravitational soft theorems |24, 23| [22].



In this section we provide an overview of the relevant features of SCET. In particular,
we describe an EFT called SCETy;, which is used throughout the remainder of this work.
In this chapter, we will provide a description of SCET for QCD. We will return to the case
of gravity in Chapters [f| and [6]

2.1 Modes and Lagrangian

SCET describes the physics of states moving with (nearly) light-like momenta,; it is therefore
useful to introduce a set of lightcone coordinates for each set of collinear states. We may
do so by choosing a lightcone vector n* and corresponding conjugate lightcone vector n*,
which satisfy

n?=n?=0, nn=2 (2.1)

a convenient choice is

nt =(1,0,0,1), nt =(1,0,0,-1). (2.2)
These vectors define a coordinate system, and we may decompose any momentum p* as

nH nH

where p, is the component of the momentum transverse to n and 7,
np,=np =0. (2.4)

Often, we will also use the alternate notation, p™ = 7ni-p and p— = n-p. It will also be useful

to give the product of two vectors in lightcone coordinates, which is given as

1.1 _
p'k:§p+k 5P KM +pi-k,  pP=pTp +pi. (2.5)

Lastly, we note that the L-components of momenta are always space-like. This is most
obvious in the parametrization of n and n given above, where the 1-momenta space the z-y

plane. It is then often appropriate to Euclideanize the 1-components, which is denoted as
pi = 7_‘f7 ﬁf > 0. (26)

Now that the notation is in place, we may describe the EFT. SCET is modal theory:

each field is then decomposed into n-collinear modes with momenta that scale as

En ~ (1, A2, ), (2.7)



soft modes, with momenta that scale as

EE ~ (A A ), (2.8)
and 7i-collinear modes with momenta that scale as

kn ~ (N2, 1, \). (2.9)

These are the low-energy modes which makeup the EFT. Collinear momenta have large k*,
but they are still “low-energy” modes in the sense that they have small invariant masses,
k2 ~ X2, which is the same as the soft modes, k2 ~ A2, Often, one also finds that the
hard modes are relevant to a scattering process. For our purposes, hard modes are any
which have a virtuality of k:%{ ~ A% a < 2. The modes get integrated out of the EFT,
and they generate hard-scattering operators and Wilson coefficients. Soft and collinear
modes are sometimes referred to as being “on-shell” modes, in the sense that they have
k*k™ ~ k? ~ A% Any modes which do not satisfy this, i.e. has KTk~ = k2, are likewise
called “off-shell”. Off-shell modes are also integrated out of the EFT, and doing so builds

up Wilson lines or Glauber operators.

The fact that the various modes have different A-scalings for different components leads
to some complications when attempting to write down the EFT. To deal with this, we
introduce the multipole expansion: we decompose momenta p into a “label component” py
and a “residual component” p,, p* = pg + p) The label component py contains the large

components p; for n-collinear momentum p, we have

g

Py = ?pj +pl, ~(1,0,X). (2.10)
The residual momenta then contain just the small O(A\?) terms; this includes the — compo-
nent of the momentum, but also additional O(A?) components of the + and | components,
as adding a small A% piece to the O(X°) p/ and O(A) pgy will no change their scalings. At
leading power in the A, the + and | components of the residual momenta will not appear

in collinear propagators, as these components are dominated by the labels.

To implement the multipole expansion at the level of the action, we Fourier transform
the collinear fields over the label momenta. Using the n-collinear quark field &, (which we

define below) as an example, we write

Enlz) =) e P, (). (2.11)

Pe#0

At this point, we introduce the “label operator” P*, which picks out the label momenta of



a given field:
,Pufmpg = pgfn,pg‘ (2.12)

We may then rewrite Eq. (2.11]) as

én(x) = Z - Pgn,pe = e 7 Z &npe (T

Pe#0 pe#0
= e Pe (). (2.13)

This is just a rephasing of the collinear fields, but this reorganizes the power-counting so that
the large O(1) and O(\) components of the momenta are encoded into the labels, while all
spacial dependence contains the residual momenta. As a result, we have 9¢,, ~ A\2¢,,. For soft
fields, we introduce “soft labels” k¥ ~ X for the lightcone components, and corresponding
in- dg and ifi- Jg, with the L-component being picked out by P/’ still. We can also combine
these into a “soft label operator”

Ak

nH
PL = 5" 10s + 771 ids + Pl (2.14)

Integration over a momentum now involves both a sum over labels, both large and soft,

as well as integrals over the residual components. We formally write

/ => > / [d*K, (2.15)

ke k¥ ks

Likewise, we break up delta functions into label (Kronecker) deltas and residual deltas:
(271')4(54(]) _ k) — /d4x eiz-(?é*k@)ei:p-(Ps*ks)e’ix-(pr*kr) — Pz,keéps,ks (27T)454(pr o kr) (216)

Here we must be careful though, as having label and residual momenta in the same coordi-
nate will lead to the residual momenta dropping out. For example, for p, k collinear with

no soft labels for simplicity, we have

/d%e” (pe—Fke) el (pr— kr) /d4a:e2 k+) Lat(py —k; )eimy(pu—ku)’
= 8, 1t Opes e (20)10(py = k7)%(0) + O(N),  (2.17)

= (2n)*%(p — k) + O(\?),

where the +O(A\?) comes from the residual p} and k;} that were dropped relative to the
large labels. The §(0)’s that appear are there formally, and recombine with the label deltas



to given

8t 1+ (2m)8(0) = 2m)3(pf = kf)s Oppy ke, (27)26%(0) = (2m)*6(peL — ker). (218)

2™

In SCETy problems, one never encounters residual |-momenta, and therefore it is con-
ventional to go ahead and combine deltas as above for the 1 components. In general, one
does not typically need to be too careful about label vs residual momentum in calculations
once factorization theorems have been established, but the formal manipulations needed to
establish factorization do require a careful treatment. We will see an example of this when

dealing with Glauber operators.

The action for the effective field theoryE at leading power in A is given by

SS’CET = Z Sn({Anu gn})'i_SS({ASa ¢S})+SHS({A717 5n}§ AS’; ¢S)+SGlauber({An7 5n}§ AS’7

n,n

(2.19)
S, and Sg are the actions for the soft and collinear fields. A, and Ag are the collinear
and soft gluon fields and &, and g are the collinear and soft quark fields. Each term
in the action is equivalent to the full QCD, although in the collinear sectors it is typical
to use the equations of motion to rewrite the Lagrangian into a more convenient form.
Sus and Sglauber are the action for hard scattering and Glauber operators, which generate

interactions between the separate sectors.

The leading collinear Lagrangian is then given by

E(O) = ‘Cq(q,og) ("gny An) + an(An)v (2'20)

n

with the leading quark action given by

1

0 —izPr [ .
Eig) =e®Pg, <m' Dy, + ZanLm

Do) o (2:21)

Here, g is the usual QCD coupling constant. The various derivative terms are

iDI = DI + gAM, (2.22)
j 0
Dt = %nP +PH 4+ %m 8.

The overall exponential comes from the multipole expansion, and it simply functions to

enforce the conservation of label momenta, and lead to a momentum conserving delta func-

!The EFT we are describing here is known as SCETyy. There is a similar EFT called SCET}, which also
includes ultrasoft modes with virtuality k2, ~ A*. In the problems at hand, ultrasoft modes do not appear,
and so we use SCET;.

pg).



tion which drops out of the Feynman rules. The fields in the actions satisfy the relation
nEn = 0, and are related to the full quark fields ¢, via

1 7
= <1 + Mllpm_2> &n- (2.23)
The collinear gluon action is given by the full-theory gluon action, with all derivatives

replaced by D,,. It is then straightforward to power-count the collinear fields, and we have
En~ N, AR~ (1,050) ~ ER (2.24)

The soft actions are obtained from the standard QCD action with derivatives replaced
by Pg, and is given by
0 - .
L) = bs(is)s, (2.25)

with the soft covariant derivative given by
iD= P§ + g Ak. (2.26)
Power-counting the soft fields, we find

s ~ N2 AR~ (AN ) ~ ER (2.27)

SCET possesses some important symmetries. Firstly, we note that since each soft and
collinear actions are equivalent to full QCD in the absence of hard scattering or Glaubers,
each is separately invariant under gauge transformations. This places an important con-
straint that the hard scattering and Glauber operators must also be invariant under separate
gauge transformations on the soft and collinear operators. Next we note that, as described
so far, there is some ambiguity in the construction of the EFT. Notably, we have some free-
dom in choosing the lightcone vectors n and 7, as these are not physical quantities. This
additional freedom is called reparamiterization invariance (RPI) [134]. Most relevant here is
RPIH]E| transformations, which is the invariance of the EFT under simultaneous rescalings
of n and n,

n—e n, n—e‘n. (2.28)

Physically, this is a manifestation of the fact that any observable we calculate must be
Lorentz invariant due to the Lorentz invariance of full QCD, which we have broken in the

EFT by introducing the vectors n and n. This symmetry places important constraints on

2There are also RPI; and RPIy transformations, but in SCET11 these only constrain subleading operators,
which we are mostly not interested in here.



how lightcone vectors can appear in hard scattering and Glauber operators, and in Chapter
we will show how this can be exploited to further constrain hard scattering operators and
the forward scattering amplitude through unitarity. Lastly, we note that the labels n and

n are arbitrary, so the theory should be invariant under swapping n and 7.

2.2 Operator Building Blocks, Hard Scattering, and Factor-

ization

To construct hard scattering operators in SCET, one may follow the usual EFT matching
procedure of expanding out full theory diagrams for the process of interest and matching
to the appropriate EFT operator. The requirement that the operator be separately gauge
invariant under soft and collinear gauge transformations greatly restricts what may be
written down, and one may use the equations of motion to simply this further. It turns out
these two constraints are enough to reduce the allowed objects for n-collinear fields down
to three “building blocks” [135]:

Xn»  Bh, P, (2.29)

corresponding to a gauge-invariant quark field, a gauge-invariant gluon field, and a label
derivative. For the soft fields, it is also useful to introduce similar building blocks, but we
add an additional quark and gluon building block for each collinear sector, as the soft fields

have no preferred direction, unlike the collinear fields:
o B (2.30)
The quark building blocks are defined as

Xn = Wi, (2.31)
B = Shag,

where W,, and S,, are semi-infinite Wilson lines in the fundamental SU(N,) representation

with collinear and soft gluons in the n and n directions respectively:

B 0
o S () <rrren(o [ anaieen). e
Sp = pegmsexp (n Psn A5> =FTPexp (ig /_Oo dsn-Ag(z + ns)) ,

10



where P is the path ordering symbol, and FT means Fourier Transform. One generically
will also encounter Wilson lines which run from 0 to +o0o in hard scattering operators, and
whether one uses the (—oo0,0) Wilson lines or (0,+00) Wilson lines depends on the process

and scattering states being considered. The gluon building blocks may be defined as

11

Bl = |WiiD W, = anT[m Dy, iD" W, (2.33)

1
9
1

; [S1iD%, 8| = !

n73

B = St [in- Dg,iD 1Sh.
These building blocks are SU(NN) matrices in the fundamental representation. It also turns
out to be useful to write down soft gluon building blocks and field strength tensors which
are matrices in the adjoint representation. These may be written as
_,L'fABC

BABr _

snt =~ iGg" PSP, Gu AP = —fABCGR (2.34)
n-Fs

with igG's’ Crc = [iDY,iDY] being the soft gluon field strength tensor and S, being the

soft Wilson line in adjoint representation.

The gauge-invariance of these building blocks follows from the configuration of the Wil-
son lines. In general, a Wilson running along some path from points x to y transforms

Wiz, y] = U)Wz, y]U (y), (2.35)

where U(z) is the local SU(N) matrix at point x. Under the so-called “small” gauge

transformations, the gauge parameter goes to 0 at infinity, and so one has
Ulz) 22251, (2.36)

Since all the Wilson lines in the building blocks run out to infinity, this guarantees that the
building blocks are gauge invariant. It should be mentioned, however, that these building
blocks are not invariant under the “large” gauge transformations, which are those which do
not die off at infinity. Unlike the small gauge transformations, which are redundancies in
the theory, large gauge transformations are a genuine symmetry of the theory. Historically,
it has been assumed that the gauge field vanishes at infinity, and so large gauge transforma-
tions have been ignored. It would be interesting to see if requiring invariance under large

gauge transformations in SCET leads to any new constraints on operator construction.

Given the importance of the operator building blocks to the construction of the EFT, it
is worth asking how we should interpret them. One way to do this is by first fixing lightcone

gauge, n- A = 0, say for the n-collinear fields. Doing so trivializes the Wilson lines, setting

11



W,, = 1. The building blocks then reduce to

o T G, B R AL (2:37)
The operator building blocks are then nothing but the quark and gluon fields in lightcone
gauge. If we look at the definitions of the building blocks, we can see that they are equivalent
to performing a gauge transformation with U(xz) = W,,(x). This is obvious for the quark

building block, and for the gluon building block we just have to expand the definition.
1 .
- [Wgwgwn} = WHARW, + Lwiorw,. (2.38)
g g

One way to derive the building blocks is then to perform a gauge transformation which takes
the gluon field from a general gauge to lightcone gauge. This also implies that we could
attempt to quantize the theory in lightcone gauge to make the operator building blocks to
interpolating fields in the theory. While this has been considered previously[106} (94} |82], it
is generally avoided in most SCET applications. Lightcone gauge QCD introduces several
complications, including new degrees of freedom which live at inﬁnityﬂ These complications

generally make it preferable to work in a covariant gauge (usually Feynman gauge).

We are now ready to discuss the application of SCET to hard scattering. As a first
example of a hard scattering operator, we consider the matching for the process of ete™ —
2 jets. The calculation may be reduced to the problem of computing matrix elements of a

quark current,

F(Q*/m*) = (p1,p2| Jr [0) = (p1,p2| P T2/ |0) . (2.39)

In this process, the electrons annihilate into either a photon or a Z-boson, with either a
vector or an axial coupling to the current; we have accounted for this through the unspecified
Dirac structure I in the current. Here, Q% = (p1,p2), and m? is some IR scale that depends
on the details of the calculation. F' is known as the Sudakov Form Factor, and due to its
simplicity it serves as a particularly useful playground for both understanding SCET, as
well as for exploring some of the tools developed here. In particular, we note that F' is only
a function of the ratio Q?/m?, as it does not renormalize.

We are interested in the case of small or negligible quark masses relative to @2, so that
the quarks may be treated as collinear. We also need p; and ps to live in different collinear
sectors so that Q? is large, Q2 ~ pfpg . The IR scale m may be either a gluon mass we use
to regulate IR divergences, or mass for the quarks. The latter case is sometimes called the

massive Sudakov form factor, and it is closely related to the case of electroweak corrections.

3These degrees of freedom turn out to be distinct from the ones introduced when studying large gauge
transformations; see |[130] for details.
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The latter is the massive quark form factor, and it is commonly used for top quark physics.
In either case, the tree level matching is the same, and the two form factors only differ at

loop level.

At leading order, it is straightforward to match the operator in SCET, as we have
JsceT = Xnl'Xn- (2.40)

This fixes both the collinear quark and collinear gluon contributions through the Wilson lines
in the quark building blocks. The Wilson lines then are fixed entirely by the requirement
of m-collinear and 7-collinear gauge-invariance. We may also consider the emission of soft
gluons off of the operator. Scanning through the soft gluon building blocks, listed above
we note that since all building blocks scale as ~ A, which would add additional power-
suppression to the operator. There is however an additional set of soft-gauge invariant
operators we may construct, through pairs of Wilson lines SJLSﬁ or S,ILSn. These scale as
A0 and so we are free to include these in the operator. A quick comparison to full QCD

shows that only SILSE appears, and so the full SCET current is given by
JSCET = XnSHTSaxa- (2.41)

In principle we could have added arbitrarily many powers of S;%Sn and S;ESﬁ, which is
not ruled out by matching at one soft gluon. A careful analysis at arbitrary soft gluon
multiplicity is required to fully rule this out. There are alternative methods of matching

circumvent the need for such calculations[20].

Now we come to the matrix element. In the leading order action for SCET, the soft
and collinear modes all have separate Lagrangians, and there is no cross-talk between the
different modes, outside of Glauber and hard-scattering operators. Therefore, when we
quantize the theory, the Hilbert space itself factorizes, i.e. soft and collinear fields live in
different Hilbert spaces. We therefore find that matrix elements of hard scattering operators
must then factorize into separate soft n-collinear, and n-collinear matrix elements. For the

Sudakov form factor, we write

(pip5| Jscer [0) = (P1| Xn [0) T (0] S1.57 0) {p5| xn 0) , (2.42)
= J TS, (2.43)
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where in the last line we have packaged the matrix elements as

Jn = (P} Xn 10,
S = (0 5155 10) , (2.44)
Jn = <p3‘ X |0) -

This is an all orders in «; statement. Each individual matrix element may be computed by
expanding the Wilson lines and through time-ordered products of Lagrangian interactions
from the appropriate soft or collinear actions. Each matrix element also gets separately

7 Jare Zn JRGHOIIH SBaIe ;/7 SRGHOIIH (f! 45 )

Letting the renormalization scale be u, each matrix element then satisfies a renormalization

group equation
d d g
M@Jn =Y, M@S =75, (2.46)
with the anomalous dimensions defined as
nS— g1, 0y 2.47
’Y,u - n,S IL’L@ n,S-. ( . )

One may use these to resum large logs of Q2/m? by solving these and running from m to
Q.

It is important to mention that we have been a bit blithe with the discussion of factor-
ization, as we have not mentioned Glauber operators. The action for Glaubers is leading
order in A, and so in principle it causes a breakdown of the picture of factorization painted
above. For some operators, it is known that despite this, Glauber modes either do not
contribute or otherwise may be absorbed into the soft contributions. The Sudakov form
factor is one such case, and so the above factorization is safe to use. When we discuss
forward scattering, we will see an example of how Glauber modes can cause this simplified

factorization to fail.

In a generic hard scattering process, the UV scale Q? is typically some large momentum
invariant, with Q2 ~ (p1+p2)? = ppr_ for the Sudakov example. Hard scattering operators
then encode the UV dependence on Q? through a Wilson coefficient, as per standard EFT
expectations. Note this means that the hard coefficient depends on the large labels of the
momenta flowing through the operator. However, we must be careful here, as collinear

interactions can change the large labels. To account for this, we must then sum over all
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configurations of large labels. This may be implemented by specifying the large momentum

component in each building block:
Xnw = 5(W —n: P)Xn7 B’Zl,w = 5(00 —-n- ,P)BZL (248)

The sum over labels then looks like a convolution between the Wilson coefficient and the
SCET operator:

/{dwidwi/dwjdcvj/}C({wi; @j)O({Xn,wm Bn,wi/ 3 X7,@; 0 Bﬁ@j/ }), (2.49)
where the dependence on the soft fields has been suppressed to ease the notation. Of course,
there are also the soft labels in addition to the large collinear labels; these may also induce
convolutions. It is typical to condense all these convolutions using the symbol ®, where the
precise meaning is usually specified on a case-by-case basis. Using this notation, we may

then write a general factorized matrix element of a hard scattering operator as
C®J,Ja®S. (2.50)

In cases where there are convolutions present, the SCET matrix elements (or equivalently
the Wilson coefficient) are convolutionally renormalized. Using the collinear function as an

example, we have

d _ d
T=In@ L = =L@ g s (2.51)
Such convolutional RGE’s are typically much more difficult to solve, and are generally
only possible when there exist transformations on the labels that take the convolution to a

product, most commonly Fourier or Mellin transforms.

Returning to the case of the Sudakov form factor, we are thankfully spared from having
convolutions, as momentum conservation forces the label to be fixed by the states being

scattered. Including the Wilson coefficient, the SCET form factor is given by
F(Q?/m®) = C(Q/p®) Jn (i /m*)TS (? m?) T (® /m?) + O(N). (2.52)

Here we have reintroduced the scale dependence of the matrix elements. As previously
discussed, the Wilson coefficient only depends on the hard scale Q?, while the EFT matrix
elements only depend on the low-energy scale m?. The resummation of large logs of Q?/m?
may then be achieved by running the soft and collinear matrix elements from the scale m

to the scale @, or alternatively by running C' from ) down to m. This equivalence may be
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seen through the p-independence of F. Using this, we find the relation
YA+ 4+, =0, (2.53)

where v is the anomalous dimension of the hard coefficient. Similar relations may be

derived for other hard scattering operators.

2.3 Rapidity Divergences and the Rapidity RGE

There is one final wrinkle in the factorization formula for the Sudakov form factor in Eq.
(2.52)) which we now address. Let us reconsider the soft and collinear modes. Both have the
same virtualites, k2 ~ k2 ~ A2, which is to say both modes live at the same invariant mass

at the scale m?

. These modes are then only distinguished by the size of their rapidities,
kT /k~. Obviously this is not a Lorentz-invariant statement; we could perform a boost in the
z-direction which takes a collinear mode to a soft mode, and vice-versa. We already know
that the EFT breaks Lorentz invariance though, through the two preferred vectors n and n
built into the theory. In principle, we could add a cutoff on integrals over the rapidities to
separate the modes, but by the principles of EFT we must take said cutoffs to infinity or zero.
This leads to additional divergences which are not regulated by dimensional regularization,
as they occur at fixed invariant mass. The prototypical example of such divergent integrals
is

dk™*

L = [ S 100, (2.54)
where f(k) approaches some finite value as k* — 0 or co. Such integrals can arise from
diagrams with Wilson line contributions. If we look at the one gluon term in the definition
of a Wilson line in Eq. (2.33]), for example, we find it generates a Feynman rule
W — _—g‘-An(k), (2.55)

3

which provides the eikonal 1/k™ propagator for the rapidity divergent integral.

In addition to the appearance of rapidity divergences, there are also associated “rapidity
logarithms” which are large for the processes we can apply SCET to and thus need to be
resummed. Like the hard logs we encountered in the previous section, rapidity logs also
take an argument of Q?/m?, but rather than being a ratio of scales, this may be thought
of as a measure of how boosted the collinear states are relative to each other. This is a

statement about the IR physics, which is why it appears in the low-energy theory. If we
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break up the log, we can write it as

2 + — 2
log =5 = logp—1 —i—logp—2 + log V—z, (2.56)
m 14 14 m

where v is some arbitrary rapidity scale. As we have written this, we can clearly identify
an n-collinear, n-collinear, and soft contribution. Resumming rapidity logarithms then
amounts to regulating and renormalizing rapidity divergences, and then running the soft

(or collinear) matrix elements in v to the appropriate rapidity scale[54].

There are a number of rapidity regulators available for use in the literature, but we
choose to use the n-regulator|[57]. This is implemented in the action by modifying the

Wilson line definitions:

2 — —_
—gw* 0P| _ )
W, = Z exp <_n~An , (2.57)
perms nP v
B —gw |2Pg, |72
Sn = p;ns exp (n Ps  wn/2 S

with 2Pg, = n-Pgs — n-Pg. This regulator is functionally quite similar to dimensional
regularization, with n playing the role of ¢, and v being the new scale which acts as a cutoff
in rapidity space, analogous to how p is the momentum cutoff scale. w = w(v) is a dummy
coupling needed to derive the rapidity renormalization group equations, which gets set to

1 after renormalization.

Practically, the procedure for working with rapidity divergences is almost identical to
dealing with UV divergences. When computing a diagram with the 7 regulator, we first
expand in 7, followed by expanding in e. In particular, this means that all terms of the
form n/e™ — 0. All n and € poles get absorbed into the appropriate counter terms. We may
then calculate anomalous dimensions for both x4 and v running by taking derivatives of the
counter terms with respect to p or v, as in Eq. . The order in which we choose to

run p and v does not matter, as p and v are independent parameters, and we have

d d
— | =0. 2.
[Md,u’ Vdu} 0 (2.58)

This is closely related to the fact that the generators for scale transformations D and Lorentz
boosts M, commute:
[D,M,,] =0. (2.59)

Just as the u-RG controls the scale dependence of matrix elements, the v-RG controls the

rapidity dependence. In fact, we will see later that the above generators may be exactly
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related to the (R)RG of form factors and amplitudes.

If we return now to the example of the Sudakov form factor, we may write the complete

renormalized factorization with all scale dependence as
F(Q?/m?) = C(Q*/u®) Ju(u® fm?; pf [v)TS (12 Jm®; w2 fm?) T (u® fm?; py [v).  (2.60)

Given that the form factor is independent of v, it must be the case that the v-dependence
cancels between the soft and collinear matrix elements. In fact this cancellation is guaran-
teed by the boost invariance of the full theory form factor. The running of v cause a flow
from the soft to the collinear region (or vice-versa); this may equivalently be achieved by
performing boost. Thus boost invariance inevitably leads to the conclusion that the total
form factor must be independent of v. Note that this also implies that the (unrenormalized)
form factor must be independent of 1 as well, since the v-dependence is tied to the 1 poles
through the counter terms. Practically, this means that all 1/7 poles must cancel when one

sums over all soft and collinear contributions at any given order in aj.

Each factorized matrix element J,, S, and J; satisfy an RG for v, just as they do for

. Generically, these rapidity RG equations may be convolutional as well, and we have

d . " _ d
(12, 8%) = Zu @ (I3, S%). v (IS =S (SN, =2 sevo Zus.

(2.61)

For the case of the Sudakov form factor, these convolutions reduce to being multiplicative.
The v-independence of the form-factors places a consistency constraint on the r-anomalous
dimensions:

W+ =0 (2.62)

This is equivalent to the relation between p-anomalous dimensions in Eq. (2.53]), without
~pr as the hard coefficient is already boost invariant. The commutivaty of 1 and v evolution
places one final constraint on the anomalous dimension,

d d 0 0
—_— v — 14 F usp 2'63
Vdu’m Hdury <'u8,u B@g) L % Cusp ( )

where z is some integer that depends on the process and the anomalous dimension of interest.
B is the QCD beta function, and I'cysp is known as the cusp anomalous dimension, which

is related to the anomalous dimensions of Wilson line pairs.

Let us make the above discussions concrete by returning to the Sudakov form factor
once more. We now perform explicit calculations to demonstrate how the (rapidity) renor-

malization procedure works. For loops, we use Feynman gauge for the gluon propagator,
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adding a gluon mass m to regulate the IR. At tree level, we may write the form factor as

FO) =, T, (2.64)
JO =g, SO=1  JO =y,

The one-loop contribution to the collinear matrix element is straightforward to compute.
Using the one-gluon term in the rapidity-regulated Wilson line and the collinear quark-

collinear gluon Feynman rule listed in Appendix [B] we have

[dek] w2 2a- (k + py)
. 22
pu— 2.

9w CF/ |7 |77 (k2 — m2 + 40)((k + p1)2 +i0) (2.65)

2 20 YE 2\ € 1 + 2 2
_ Y 2F< (e)e <M2> —|—<l—logpl>+1og%<1—logp1>—ﬂ+1>.
8T n m € v m 6

To compute this, we have performed the n-k integral by contours, and performed the k|

and 7- k integrals using standard dim. reg. techniques. We also have expanded the result
in 7 — 0 first before ¢ — 0. Notice also that the 1/n term is left unexpanded in €; formally
this term is at finte n, and so it must be kept to all orders in €. The n-collinear matrix
element is identical under the replacement pf — py . Next we have the soft matrix element.
Starting at one loop, we must be careful about direction of the Wilson lines in S. For the
case of pair production that we are considering, the Wilson lines both run from (0, cc). This
may be determined from matching at tree level with one soft gluon emission and keeping

track of the i0 prescriptions. With this, the one loop soft matrix element is

2e 2k- |_77]/77
— _2ig%u? /ddk i |2k,
ig7w*Cr || ](kz_m2+i0)(n.k+io)(ﬁ-k—i0)’

2,2 e 2\ € 2 2 2 2

g w*Cp L(e)eE ([ 1 1 1 1 L 1, 5 p T
- - Py (St Jlog— Sz T

4mr? < n m2) Toa T e TR ) B T T T 2 T g

To obtain this result, we have first computed the kg integral by contours, closing over

(2.66)

the lower half plane. There are two poles, one at kg = /k2 — ki +m?2 — 0, and one at
ko = k, — i0. The former residue may be calculated using standard integration techniques.

To deal with the latter term, one uses the integral

|2k, | 7N i
dk)| —————— = —-+ 0(n). 2.67

/[ Z]—ka—i-A—i—ie 4+ (n) ( )
Details on the calculation may be found in Appendix B.2 of [159]. Lastly, the remaining k|
integral is straightforward. This generates an overall factor of im, which may be combined
with the logv? from the first term to give the log(—u2 — 2'0) which appears in the final

result. We will discuss this im term in more detail after introducing Glauber operators.
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The full one-loop result for the form factor in the EFT is then given by summing over the

soft and collinear contributions. Doing so gives the result

2 1/1 2 1 2 2
[Jn 'S J5 ](1) —uanng l [ + - ( log —= H 1) + < logyj—2 + 1>
2¢2 2 m

A2 —Q2
_Q2 57?]

1

Zlog 21 2.68
T T g (2:68)
Here we have used Q? = p;rpQ_, and the shorthand —Q? = —Q? — i0, as well as setting
w = 1. As claimed, all n- and v-dependence has canceled from the EFT form factor, and

boost-invariance has been restored.

We may now renormalize the form factors. We first account for wave-function renormal-
ization for the collinear quarks, which is the same as for full QCD quarks, as the collinear
quark Lagrangian is identical to the full QCD Lagrangian. This adds a factor of Z}/ % to

each collinear matrix element, with

2 2
gCF 1 1% 1
Zy =1 gt o). 2.69

v +W%e %W+Q (2:69)

Renormalizing as in Eq. (2.126]),we then find the counter terms to be

2020 r YE 2\ € 1 +
Zy =14 W Cr (DO (o L 0Pl YY) | (2.70)
82 n m2 € v
2,2 e 2\ € 2
g w Cp L(e)e® [ 1 1 1
Zs=1 - — — log—— ).
3 R < n mz) "ot o 200

Here, we see that the counter terms depend explicitly on the IR scale m! This is fine
as long as the m-dependence sticks to the rapidity-divergent terms. This is because from
the perspective of the regulator, m? is the scale of the invariant mass hyperbola we have
integrated along to obtain the 1/n divergence, and so m is not an IR parameter from
the perspective of the RRG. It had better be the case though that when we compute the

p-anomalous dimension, the mass dependence drops out.

The p anomalous dimensions are given by

2 + 2 2
gCF P 3 gCF 1%
=t (el ), et

'y/’j is obtained through replacing pf with p, in 7. To obtain the v anomalous dimensions,

we use the fact that the dummy coupling w obeys the RG

Z/dill/w(y)2 = —nuw)? (2.72)

20



which is analogous to the lowest order beta function for a in dim. reg., 8 = —eas + O(a?).

With this, the v anomalous dimensions are found to be

2 2 2 2
9 Cr . s gCr.  p
V= ) log 2 T = T2 log 2 (2.73)
These obey the expected consistency condition of Eq. (2.62)), as we have v5 = —247.

Moreover, we can check that u-v commutivity of Eq. (2.63) is also satisfied, as we have

d , d . g*Cr
- = y— —
IUJd'LL’Y’rL d]/’yn 4772 )

(2.74)

with similar results for the soft anomalous dimensions. As expected, the dependence on
m in 7, has dropped out in the p-derivative. This result also gives us the correct cusp
anomalous dimension, which at one loop is given as

9*Cr

n _
TCusp = 53 (2.75)

2.4 Glaubers and Forward Scattering

In the previous section, we have introduced SCET and discussed several features of the EFT,
with a particular focus on applying the EFT to wide angle, or hard, scattering. However,
this is not the only class of problems for which SCET will apply. The other interesting limit
is that of small angle, or near-forward scattering. This limit is characterized by a large
center of mass energy s and a small momentum transfer ¢.

For massive particles, there are several regimes of forward scattering, which include
potential scattering in the case where the states are moving non-relativistically. The forward
limit is also the regime of classical scattering. This can be seen from the total angular
momentum L of the system. For non-relativistic particles L ~ mur, with r being the
spacial separation between the scattering states. Since 1/r /—t < mw, it follows that
L > 1 = h. Similar considerations lead to the same conclusion in relativistic settings. For
ultra-relativistic or massless particles, which we are interested in here, this limit is known as
the high energy, or the Regge, limit. Rather than potentials, scattering is mediated by the
Glauber mode, a relativistic analogue of potential modes. As we will see, integrating out
Glauber modes gives rise to a set of “potential” operators, which are similar to the potential
operators that arise in nonrelativistic EFTs, such as NRQCD [128]and NRGR [98].

The high energy limit is also theoretically interesting in its own right. The behavior of
scattering amplitudes and cross-sections is heavily constrained by unitarity, and a number of

interesting structures appear. The most familiar of these is that of “Reggeization”, in which
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the t-channel pole of the exchanged particle becomes dressed with a power-law scaling:

ar(t)
% - % (i) , (2.76)

where ap(t) is known as the Regge trajectory. For example, it has been known since the
80s that amplitudes with fermions or gluons exchanged in the ¢-channel are dominated by
Regge scaling up to next-to-leading log (NLL) order|120, 136]. This power-law scaling is
sometimes called a “Regge pole”. A second important structure is that of the “Regge cut”
ﬁ The prototypical example of a Regge cut in QCD is the BFKL equation [121, |14], which
governs the s-scaling of the imaginary part of the amplitude, or by the optical theorem the
forward cross-section. In perturbative QCD), these structures arise from summing large logs

of s/t; for example, leading order Reggeization is found by summing the series

n
Z (asag) log St> . (2.77)
n

Glauber modes provide a very different perspective on the physics. By organizing the
physics into operators with a distinct number of Glauber exchanges, the EFT provides a
natural translation of Regge theory behaviors into statements about the rapidity renormal-
ization group properties of these operators. Moreover, gauge-invariance in automatically
obtained from the gauge-invariance of the Glauber Lagrangian, allowing for the power to
make very precise statements about the amplitude.

Glauber modes are also known to be closely linked to the violation of the factorization
of hard scattering operators we saw in the previous section. This is clear from the action, as
Glauber modes generate interactions between soft and collinear modes at leading power in A,
and thus they muddy the argument that soft and collinear modes live in orthogonal Hilbert
spaces. However, in many hard scattering problems it can be shown that either Glaubers
do not contribute, as their contributions cancel when summed over, or their contributions

may be entirely absorbed into the soft function. The Sudakov form factor is an example of

4These terms come from studies on the high energy limit in the 50s, predating QCD. Schematically, one
can perform a partial wave decomposition on the amplitude A(s,t) ~ >, Pi(cos(6:))A¢(t), with P, being
the Legendre polynomials and 6; being the t-channel scattering angle. One then analytically continued Ag
to be a continuous function of ¢, on the so-called “complex angular momentum plane” [62]|. Using unitarity,
crossing symmetry, and the analyticity of the amplitude in the high energy limit one could constrain the
amplitude. Regge poles then correspond to poles in ¢, while Regge cuts are likewise cuts of the amplitude in
¢-space. For example, Reggeization comes from A,(t) ~ 1/(¢ — ar(t)). The fact that poles in the scattering
amplitude correspond with states in the theory then leads to the interpretation of a Regge trajectory as the
exchange of a particle with angular momentum «r(¢) and propagator , called a Reggeon. Regge cuts
then take on the interpretation of a bound state of Reggeons. The most famous case in QCD is that of the
Pomeron, claimed to be a bound state of two Reggeized gluons. Such an interpretation has lead to a search
for an underlying field theory which describes these degrees of freedom, the “Reggeon field theory”, with
mixed success|46} (47} |89]
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the latter case, as we will explore. There is a class of observables for which this has been
proven, but the general conditions for which factorization violation occur are still mostly
unknown.

In this section, we discuss the aspects of Glaubers and Glauber operators needed for
the rest of this work, summarizing the formalism developed in [159} |93]. We first introduce
the Glauber Lagrangian in QCD and some of its useful properties. Following this, we show
how to write down the 2— 2 forward scattering amplitude within the EFT, and how it
may be organized in terms of Glauber operators. Finally, we look at the RRGs of the EFT

operators, and how they corresponds to more traditional Regge theory notions.

2.4.1 Forward Scattering and Glauber Operators

To describe Glauber operators, we first discuss the kinematics of forward scattering. We
consider the two-to-two scattering of massless states, p1 po — p3p4. For physical onshell

scattering, this sets s = (p; + p2)? > 0 and t = (p3 — p2)?

< 0. Forward scattering is
characterized as the limit of small —t < s, with the obvious choice in power-counting
parameter being A\?> = s/|t|. Taking p; to be f-collinear and py to be n-collinear, we have
s = pl_p;r at leading order in A. The requirement of small ¢ then forces ps to be n-collinear
and p4 to be n-collinear. The momentum exchanged in the ¢-channel is often denoted as

q = p3 — p2 = p1 — p4. Keeping the collinear momenta onshell (i.e. preserving the scalings

in Egs. (2.7) and ({2.9))) fixes ¢ to scale as
g~ (A2 020, (2.78)

This is the promised Glauber scaling. We can also consider the forward scattering of

collinear and soft particles. This leads to modes with slightly different scalings,
Gns ~ (MNATN), gas ~ (AEAN). (2.79)

All three scalings are referred to as Glauber modes, although the latter two are sometimes
called n- or n-Glaubers. For collinear-collinear forward scattering, the large labels are
conserved in the scattering, that is p; = p, , and p; = p; It is then convenient to work in
a frame with ¢ = ¢, i.e. n-¢ = n-q = 0. We can then parameterize the 1-components of

the momenta as

pr=-pr =q1/2, py =-p3y =—qL/2 (2.80)

The on-shell condition p? = 0 then fixes the remaining residual component of the momenta.
q is offshell in the sense of ¢7¢~ < qi, and so it cannot be a dynamical mode in the
EFT. Glauber modes must then be integrated out of the EFT, but since they are infrared
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modes (g% ~ A\?), the resulting operator will be non—localﬂ in contrast to the local operators
of hard scattering. To see how this works, let us first consider collinear quark-antiquark
forward scattering. At tree level, the leading order contribution is given by a t-channel

exchange of a gluon,

p2 p3
[ Gl
8i -
1@ - [an%TAun} G [ﬁnﬂTAvn} . (2.81)
_ 2 qi 2
N q---€---a---
2 P
This is then matched onto an operator of the form
_ 8Tas - N =
Opin = gn2TA§nPiS§nZ‘TA§ﬁ, (2.82)

where we can see the nonlocality built into the operator from the inverse label operators.
This operator is not gauge invariant, but the replacement of &,, with the appropriate building
block x, fixes this. We also find that one is allowed the emission of a soft gluon off of the

Glauber, through diagrams such as

Tl -t -7}

[ 1 (2.83)

Here, ¢ has n-Glauber scaling, while ¢’ has n-Glauber scaling. The soft gluon then carries
away the O(\) components of the momenta so that the Glaubers have the correct scalings.
The full set of Glauber operators is found by integrating out all such diagrams.

For collinear-collinear (nn) scattering, the leading power Glauber operators are

1 1 1 1
A AB B A AB B
Ofls = OF Fios FiO% ; Oy = 0% ﬁos Fio% : (2.84)
1 1 1 1
A AB B A AB B
Ontn = O 777303 7?30% : 055 = OF, Fﬁos FEO% :

On the left-hand side the subscripts indicate that these operators involve three sectors

{n, s,n}, while the first and second superscript determine whether we take a quark or gluon

®Note that this is neither unexpected, since low-energy modes propagate over long distances, nor is it
unquie, as several other EFTs also have non-locality built into them, such as potential NRQCD|[39]. SCETr
already has nonlocality built into it from the soft Wilson lines, which are nonlocal at distances of order 1/\.
It is also worth mentioning that the EFT is still local on the largest distance scales, those at 1/)\?, as the
Glauber mode propagates only over distances of ~ 1/A.

24



operator in the n-collinear or n-collinear sectors. The collinear operators are defined as

ih

08t = v, By, o3t = 5745088, 5 (P + PHBTE . (2:85)

The soft operator is universal (i.e. independent of the scattering states), and is given as

o4B _ 8ms{7>ﬁ8,fsnmﬂ LB STS, — gSTS B PL — 2B STS, L,

n 7 AB
— “ Y SEiG Sn } . (2.86)
Collinear-soft (ns) scattering only involves two of the three modes, and the operators are

0% = OqA anA’ 049 = OqA OgnA7 091 = @gA (f)an7 099 = (/)gA (/)gn
1

P2 P2 P2 P2
(2.87)
with
O A = 8ra, (@Eg TA%ng), (2.88)
094 = 8ray (% FABCBE g : (7>+7>T)Bgf“).
The Glauber Lagrangian may then be written as
> OZA ?B 7312 0P 4+ emeP 3 0 OZA 1 O]n (2.89)

4,J=q,9 {n,n}1,3=49,9

This is the complete Glauber Lagrangian from tree-level matching. It is manifestly gauge
invariant, being constructed out of gauge-invariant SCET operator building blocks, and as
such it contains interactions at all orders in a due to the presence of Wilson lines. Notice
that this form of the Lagrangian implies the collinear operators always come together as a

sum over particle species, specifically in the combination
0t 1+ 094, (2.90)

This will have important implications for the RG properties of the operators.

An particularly important property of the Lagrangian is that loops do not generate any
corrections to the Lagrangian (at leading power in \), either non-trivial Wilson coefficients

or new operators.

It is particularly convenient for formal manipulations to write the Glauber Lagrangian

25



in transverse momentum space rather than in position space. To start, we first notice that
all soft and collinear operators are evaluated at x; = 0, as we have already pulled out all
x| dependence into the overall exponential, and since there are no residual 1-momentum
scales of O(\?), this is the only z-dependence. In the action, we may then perform the
x| -integration, which leads to an overall label-conserving delta function. We may make the

labels explicit by writing
O aw) = [*(ar = PO, OF(=d\) = p [*(dL — PO, (2.91)
so that we have
04 — / 2q,0A(q), O = / P2q, OA(—q)). (2.92)

If we include the overall |-label conserving delta function into the soft operator, we write

d2q, d? .
/w%&r—ZZ/ﬁzd/ UL ia(g)085 (0, g )OP () (299)
,]=4,9 J—
+ Y [ies /dﬂ@%D@MFM) (291)
nnl,] q,9

Here, [d2%] = 1/2datdx—e/2@"P™+2"PT) g the measure for the lightcone positions, with
the overall label exponentials. The soft operator in transverse momentum space is then

given as

Os(q1, —q)) =(8ma,)(2m)*6%(q1 + ¢ — P){QJ_' 41 Sn Sn — 94, B S S — 95, SaBSL d

AB
9B SFSBY,, — Y nz’ég”sn} : (2.95)

It is also useful to add a second integral over the lightcone positions in Og5, via
e [ Paidd ~
[ 50ua(o) = [1@ae) [ S50 01,808 (01, 55,0 (~d. ),
C] n q T
(2.96)

with
0§%(q,—q\;%,7) = 6%z — #)0§% (¢, —q., 7). (2.97)

This final modification will see use when discussion the factorization of the amplitude.

Lastly, we mention that Glauber operators have been found for fermionic Glauber ex-

changes, relevant for quark-gluon back scattering. This process is, however, A-suppressed
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relative to forward scattering, and so it is not relevant to the discussions here.

2.4.2 Glauber Loops and Amplitude Factorization

When calculating in the EF T, we encounter loops with Glauber momentum running through
them, from time-ordered products (T-products) of Glauber operators. The prototypical
cases of are the box and cross-box diagrams that appear at one loop. These diagrams are

straightforward to write down, and they are

B [ko:I:]
= Balar) / (k= + Dy +0)(—kT + Ap +140)’ (2.98)

- [d? k]
= IQ(‘]L) / (k‘_ + A, + ’iO)(l{?+ + An + Z.O)’

with A, = p3 + (kL + ¢1/2)%/p3 and An = p; + (kL + q1/2)%/py. I2(gL) contains
the integrals over the Glauber 1/ k:i propagators, and is identical for both diagrams. It
is fairly clear that the integrations over k* are logarithmically divergent in both A+ and
k~, reminiscent of rapidity divergent integrals. However, the n-regulator for the soft and
collinear sectors does not regulate the divergences, as they only see the large and soft labels,
while Glauber k* are residual. Moreover, these divergences are not regulated by dim. reg.
These divergences require a new regulator, which is called the 7’ regulator. It may be

implemented at the level of the action by writing

d?q, d? - d+in-0 ;
Sa= Y / d°] / TUT 048(g,, ) [o:{*m) ol O i O iy
L

s
i,j=q,9

Y [ [ quO“ﬂ 2 Bt Bs £ O i (a9)

=0’
14
i 4,j=q,9

Just as with the n-regulator, w’ is a dummy parameter that gets set to 1 at the end of the
calculation, and v/ is the scale that gets introduced with the regulator. 3,5 is a formal boost
parameter with 3,5 ~ A, as is needed to maintain homogeneity in the power-counting, since
Os ~ X while 9 ~ A\2. For the box and cross-box diagrams, this regulator has the effect of
adding a factor of |2k,|~" to the integrands, with 2k, = k* — k~. The lightcone integrals
may now be performed by changing variables from (k*, k™) to (ko, k. ), with 2kg = (kT +k7),

and we have

[dkodk.] |2k~
7 2.100
2(‘“)/(1%—1« T A +i0)(—ko — ks + A + i0)’ (2.100)
—I( )/ [dkodk”zk‘ "
Y i — ke + Ay +00) (ko + s + Ap £ 30)
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The kg integrals may be performed by contours. For the cross-box diagram, the poles both
sit below the reals axis, and we may close the contour on the upper half-plane which sets
the integral to zero. For the box diagram, we perform the kg integral, and use Eq. to

obtain the final result,

= I>(q1) (—1 + O(n’)> . (2.101)

This result is finite in the ' — 0 limit, and so despite the rapidity divergence, Glauber

loops do not induce any new RGs.

It is also useful to look at the N-loop Glauber box diagrams, with N 4+ 1 Glauber
exchanges. Without going into the details (see Section 9.1 of [159] for the full calculation),
the result may be found to be
(—ig®)M*!

=2IN+1(q1) (

NCESVR (2.102)

Morally, we may interpret this result as teaching us that a diagram with N Glauber ex-
changes gives a 1/N! combinatorial factor, as well as a factor of iw for every Glauber loop.
These observations continue to hold in the presence of soft and collinear loops, including
with more complicated, nonplanar graph topologies. The latter fact is of particular note,
since it tells us that Glaubers build up the imaginary part of the amplitude, and hence are
closely linked with unitarity cuts. The 1/N! meanwhile allows us to exponentiate the sum

of the box diagrams. If we look at the 1-integrals, we find they are given as

In(qr) = / <H [dd;;f“]> 5 (Z kil — qJ_> : (2.103)

where y is the Fourier transform of a Glauber potential,

d—2 '
x(b1) = / Me‘“’l"“. (2.104)
a7

Combining this with Eq.(2.102)), we find the sum of boxes to be
- 2/dd_2bleibi"ﬂ (a’fx(bﬂ - 1) . (2.105)

Therefore the sum of the Glauber box diagrams reproduces classical eikonal exponentiation

at leading order.

We may understand this result physically as follows. Since Glauber modes only prop-
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agate in transverse space, they are instantaneous in time and longitudinal position. The
1’ regulator breaks the instantaneity in the longitudinal direction. This then mandates an
ordering of the Glauber exchanges along longitudinal space, as dictated by the collinear
propagators moving in the x= or " directions. This ordering is what leads to the 1/N!,
since it picks out exactly one of the N! configurations of Glauber exchanges. Taking ' — 0

at the end of the calculation restores the instantaneous nature of the Glauber potential.

As can be seen in the above discussions, each Glauber loop will generate a power of i.
In fact, we can expect that all factors of ¢ in SCET matrix elements to come from Glauber
loopsﬂ As an example, let us revisit the Sudakov form factor calculation of Eq. .
Written explicitly, the result contains an é¢m through the rapidity log, 10g(—1/2 — ie) =
10g(l/2) — ¢m. Although the calculation is performed for a soft loop, the origin of this iw
term is still Glauber. To see this, we can calculate the diagram with a Glauber exchange

between the collinear legs:

MZe‘ka‘—n/Vﬂ?’
(k% —m?2)(n-k + Ay, +ie)(—n- k + A + ie)’

—FO2ig2Cy) / dK]

Crg*, (1 p
= F© oz m) (= +log ), (2.106)

which is exactly the im term in Eq. . However, it now sees as though we have
doubled the im term, coming from both the Glauber and the soft graphs. Indeed, we have
double-counted the Glauber region, as part of the soft integration region overlaps with the
Glauber region, when k* — 0. This can be resolved by expanding the soft integrand in
the Glauber region, and subtracting this integral from the full soft loop. This Glauber
sub-region of the soft loop is sometimes referred to as the zero-bin, or Glauber-bin, and the
procedure of subtracting out these overlapping regions is known as zero-bin subtractionsﬂ

For the calculation at hand, the zero-bin for the soft loop is given as

2€| 2k, |~
@ _ it i 1|2k 2.1
S g w C'F/[ ](ki —m?2 +i0)(n- k +40)(7i- k — i0)’ (2.107)
Crg®, (1 ’
) ;Tg i <6+log:;2>- (2.108)

The complete result for the soft diagram is then given by S = §—5(©)

the im term in Eq. (2.107)). Essentially, the Glauber graph and Glauber-bin subtraction

, which simply cancels

5Note that the claim here is for factors of imr, and not 7. Loop calculations rather generically will lead to
terms that depend on even zeta values ((2n), which are proportional to 72". Additional factors of im can
also appear in Wilson coeflicients as well.

"In other SCET applications, one can also encounter soft- or Glauber-bin subtractions for collinear loops.
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cancel, leaving the unsubtracted soft graph behind as the final resultﬂ This correspon-
dence between Glauber loops and im’s turns out to be a very useful tool for exploring the

implications of unitarity on the EFT, as we will see in the following chapters.

This brings us to the “factorization” of the forward amplitude for collinear-collinear
scattering. Glaubers break factorization since they couple soft and collinear modes together.
If we treat Glauber exchanges as small perturbations, we may still “factorize” in the sense
of factorization of matrix elements. However, we lose the stronger meaning of factorization,
whereby the amplitude may be written as a single factorized matrix element. Instead, the
forward amplitude turns out to be a sum of soft-collinear factorized matrix elements, which
each occur at a distinct number of Glauber exchanges. We start with the time evolution
operator in SCET, which is given as

T—(1—i0)o0

T
U(a,b) =  lim /[Dqﬁ] exp {2/ d*x (Lpsn(z) + Eg(az))} . (2.109)
-T
Here, a and b are the field boundary conditions at —7" and T respectively, and L, () are

the soft and collinear Lagrangians. The Glauber part of U may be written as a time-ordered

exponential, which we then write in a series expansion as
Texp [z / d4xﬁg(az)} _ {1 i / dolo(z) + i2 / dad'y T {Lo(@)Loly)} + ] ,
d i -
:Lﬂ@jZ:H/f ‘“OM+OMmmm4(mm)

q
x H/cﬂ' S 08+ 08 (1 7))

é?k},iB }<{qu} (d b {ad {3,

=142 > U

k=1k'=1

In the second line, we have not written out the soft operator explicitly, as it is quite compli—
cated in general, and it involves a sum over all possible products of (’)AB and (’)S:Z//"n For
example, at k = k' = 1, we have

05(1 1)(QLana:ﬁ7i‘,) = O?B(QL,QS_,@,QE Z OZ”A O‘yn (QQJiJ) (2111)
4,J=4,9

8This matching between the soft zero-bin subtraction and the Glauber contributions is sometimes known
as the soft-Glauber correspondence [159]. Not every observable in SCET obeys this correspondence, with
the forward scattering amplitude being a notable counter example.
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If we consider the scattering of projectiles x and k', we then can write the scattering
amplitude as
o0 oo
M=) <P§PZ ’U(k,m
k=1k'=1
We can see from the second line of Eq. (2.110) that each matrix element in the sum will

naturally factorize into a convolution of an n-collinear, soft, and n-collinear matrix element.

pi'v5 ) . (2.112)

connected

Foregoing a careful analysis for the moment, this may be written as

iMER {AN} {ANHBum} {BM}
e =3 / / R KRR o (OB UR R I (B RE)
(2.113)

Here, we have introduce notation for the Glauber convolutions,

_ o [4° l’l l; sU(S 2.114
Lovy NIMY HH l’2 FOQ = a)d QU —ay). (2114)

zljli

These convolutions have the effects of Glauber loops built into them, as can be seen from
the factor (—i)N*+M /NIM!.

At tree leve]ﬂ the collinear functions for quarks and gluons are given by

i

Jqu...AM(O) M’ITLnTAl...TAngun’ (2.115)

n(M) =9
JQE‘M)AM( ) _ _ gMEZHTAl‘--TAJWb#VEnuv

where b*” is the product of two momentum space field strength tensors at one gluon,

y 1
efr(mb“ €ny = @Giu(en,pz)G:M(ez,pg), (2'116)

1. lepusv
_ _ ., DPy-pyntn
=eh, |nepagl” — 0y —ph Y 4+ P e, (2.117)
n-p2
where in the first line the collinear momentum space field strength is G},,, (€, p) = pu€, —pu€y.
T4 is the SU(N) generator in the adjoint representation, 74 = if4". The collinear function
for antiquarks may be found by replacing u, — v, and T4 — T4 in the quark function.

The tree level soft function is only non-zero for diagonal elements, i.e. N = M in Eq. (6.13]):

M M-—1
Sz{vflﬁ}{B”’}(o)({éNL}, (O }) =200 M (=) TT G0 T 8% (40— €51).  (2.118)
j=1

9Tree level here means the absence of soft or collinear loops.
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This is essentially the identity operator for the Glauber convolutions, which suggests the

compact notation,

M M-—1
SURIPO — oy Lo, Lian = [0 [T 8 (4 — €50). (2.119)
j=1 k=1

Placing all the tree-level functions into the factorization formula then reproduces the sum

of Glauber box diagrams:

0 .
_ —1 _
> [// JK(N)S(N,M)JA’(M)] => Juw <21N(QL)(]V)|> Jerary,  (2.120)
M,N L(M,N) N :

which matches Eq. up to the collinear tree factors. We have suppressed the color
indices for ease of notation.

The physical picture of this factorization is that when collinear projectiles forward scat-
ter, they emit a burst of Glauber exchanges, which may scatter with virtual soft fluctuations.
The soft fluctuations then emit their own Glauber burst which interacts with the second
collinear projectile. The number of Glauber exchanges in this second burst is allowed to
be different from the first burst, and the soft sector is necessary for transitions between
different numbers of Glauber exchanges, as Glaubers do not self interact or otherwise split.
An important and useful fact is that transitions of 1 — N or M — 1 are kinematically for-
bidden for M, N # 1, and so S(;,n) = S(ur,1) = 0. This provides some nice simplifications
for the rapidity RGEs and analyses of Reggeization.

2.4.3 Rapidity RGE

The Glauber operators match onto the full QCD amplitude, which, other than the usual
coupling and wave-function renormalization, does not get renormalized. Moreover, as dis-
cussed, Glauber operators do not get corrected by loop-level effects. Therefore the UV RGE
is trivial, and the Glauber soft and collinear functions have vanishing p-anomalous dimen-
sionﬂ However, the collinear and soft matrix elements are rapidity divergent, which leads
to a very non-trivial rapidity RGE. In addition to the expected convolutions in transverse
momentum space, we can also expect mixing between operators with different numbers of
Glauber exchanges.

The collinear functions are renormalized as

JEan{farL};en) :Z/L(N) Ty (kN1 €0) Zovan (kL) {0 s em,v). (2121)
N

10The e-dependence in Eq. |D comes from infrared-divergences.
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We have introduced the notation for a single Glauber convolution

/lN N'/H L ’m 'k —au). (2.122)

Similarly the soft function is renormalized as

NM)({EMJ-} {Oh1 }iem) Z// sv,y (L} {kar }; 6,m,v) (2.123)

x S(I,J) ({kMJ_}a {kMJ_}S €, V)ZS(J,M) ({kML}y W?Mﬂ% €,1,V)

Given that this is rather cumbersome to write out (and read) explicitly, we often just use
the convolution symbol instead. With this, the bare functions may be compactly written

as
JBM) ZJ ®Zn(NM)7

S(NvM) - Z Zs(n.) @ S(P},J) ® Zs(J.M)- (2.124)
1,7

By the consistency of the rapidity RGE, we have the following relation between the soft
and collinear counterterms:

Zn(I,J) =Zg

S0 (2.125)

where the inverse is both on the convolutional space, as well as a matrix inverse on indices
(I,J). Given the above relation, we will generally drop the n and S labels on the counter-

terms altogether. The RGEs straightforwardly follow, and we have

0

Vo, ) = ZJw ® V(5.
7j=1
(9
Z’sz ®Sk] Zs(zk ®’Y k,j) (2126)

27 (4.4) K’ (7))

where the anomalous dimension is defined as

d 1
Yig = Z <VdVZn(i,k)> ® L (k)" (2.127)

k

The fact that the same anomalous dimension appears in both the soft and the collinear
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RGEs follows from the consistency condition in Eq. . Symmetry of the EFT under
n — n also further implies that the anomalous dimensions matrices are symmetric, i.e.
Vig) = VG

A consequence of the vanishing of S(; ) and Sy,1) is that the counterterms Z(; yy and
Z(n,1), as well as the anomalous dimensions (1, y) are also zero. This immediately implies
that the RGE for the one-Glauber operator does not mix with any other operators in the
EFT. Moreover, from definition of the Glauber convolution Eq. , we can see that
this RGE is actually multiplicative, since the one momentum integral gets eaten up by the
delta function: [ L) = i/ qi. It is conventional to absorb these overall factors into the
definitions of the soft function S(; ;) and the anomalous dimension, and the rapidity RGE

becomes

0
v ds) = Y00 Ik0)- (2.128)

We can easily solve this, since rapidity divergences are only ever singly logarithmic. Running
from the collinear rapidity scale at v = p; = /s down to the soft rapidity scale at v = \/—t,

we have

s —Y(1,1)/2
J,{(l)(V =V —t) = <—t> Jﬁ(l)(l/ =V —S). (2.129)
This is precisely the statement of Reggeization. In the absence of soft radiation, the one
Glauber operator generates a single t-channel pole, which gets dressed with the exponentials
from the v-running. Comparing Eq. (2.76) with Eq. (2.129) (and including the n-collinear

running as well), we can make the identification of the Regge trajectory with ~(; 1)

ar(t) = =1 (2.130)

Although the naive definition of gluon Reggeization in Eq. (2.76) breaks down at NNLL,
Eq. (6.33) provides a very clean and natural definition for gluon Reggeization at all orders
in perturbation theory. More importantly, this definition is manifestly gauge-invariant, as

the Regge trajectory is shown to be a anomalous dimension of a gauge-invariant operator.
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Chapter 3

Unitarity, Anomalous Dimensions,
and All That Part I

3.1 Introduction

Canonical perturbation theory inadequately describes field theories when dimensionful pa-
rameters form large hierarchies that lead to numerically large logarithms. Typically, per-
turbation theory can be salvaged by re-summing these logs using the renormalization group
(RG) which takes advantage of the invariance of physical quantities under the change in
subtraction scales. There exists another class of logs, which may be with associated with
IR divergences, that are not immediately summable by naive RG methods. For instance,
often we run into logs whose argument involves a mass(es), e.g. ln(p2 /M 2). These logs
may be summable using the RG if the masses are acting as “intermediate” scales, in the
sense that there is some physical IR scale below the scale of the mass. In such cases one can
work within an EFT and integrate out the mass. Below the mass scale the IR divergences
get converted to a UV divergence and the logs become amenable to canonical RG methods.

Effectively what this process amounts to is encapsulated in the following relation
ln(pQ/MQ) = ln(p2/,u2) - 1n(M2/,u2) (3.1)

where the RG scale p, is taking on double duty as both the invariant mass factorization
and RG scales. Any log which is summable by RG can be considered an invariant mass log,
as the RG flow corresponds to a Wilsonian flow in the invariant mass [} Notice that the

RG is a manifestation of factorization. That is, the RG scales distinguishes between low

Tt is important to emphasize here that the logs of interest in this paper are only large when working in
Minkowskian signature.
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and high virtuality modes such that an amplitude can be written as a product

M = H(Q, 1)S(pi, 1) (3.2)

where @ is the short distance (hard) scale and p; are the small momenta. The log of the
mass in Eq. goes into the hard function while the other log is part of the soft. This
is nothing more than an operator product expansion. The key point we are reviewing here
is that the logs are summable because amplitudes factorize in invariant mass.

The RG anomalous dimension is determined by calculating the UV poles arising from
operator insertions and following the Feynman rules from a given Lagrangian. Reference
[49] noted that the RG anomalous dimensions could be calculated using unitarity/on-shell
methods that have facilitated modern higher order radiative corrections. They showed that
the RG anomalous dimensions are intimately related to the phase of the S-matrix, essentially
as a consequence of the fact that the imaginary part of the amplitude is the discontinuity

in logarithms. A general log in an amplitude relates the large log to the phase via
Aln(—¢*/m* —ic) = Aln(¢*/m?) — iAnr. (3.3)

This fact is, not only formally interesting, but also leads to technical simplifications as
unitarity methods can be used to effectively “gain a loop” in the sense that one can calculate
using cut diagrams [49]. This method was used to simplify two loop SMEFT anomalous
dimensions in [29, [84]. This relation between cuts and logs in scattering amplitudes was
used in the past by the Russian school to calculate fixed order logs, see e.g. [87].

However, the method in [49] does not address the issue of rapidity logs since it utilizes
the variation of matrix elements under scale transformations and, in the full theory, rapidity
logs (such as in Eq. ) are independent of p. In this paper we show that one can extract
the rapidity logs and their associated anomalous dimensions by generalizing the ideas in
[49] and replacing the dilatations utilized in their derivation by an special type of complex
boosts, once the amplitude is properly factorized into soft and collinear sectors.

At first sight it might seem strange to relate the phase of the S-matrix to the anomalous
dimensions, as surely such a relation cannot hold for a general process. If we consider a

semi-classical approximation, for instance, the phase will correspond to the classical action
Mgo ~ eisd, (3.4)

which is not related to any RG anomalous dimension [} However, for the canonical semi-

classical scattering process of near forward, or eikonal scattering, the amplitude is charac-

2The RG anomalous dimensions is associated with the hard quantum contribution, as discussed below.
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terized by large rapidity logs of the form log(s/t), which are controlled by the RAD, which
in this case, is called the “Regge trajectory” and is related to the phase. In fact, it has
been known for a long time that the Regge trajectory can be calculated from the phase
of the S-matrix in planar Yang-Mills theory[120], and moreover, can be calculated exactly
within the BDS ansatz |28] of N = 4 SUSY [147]. The phase contains both classical as
well as quantum mechanical contributions, the latter of which is related to the RAD. In
this paper we will not be discussing the case of Regge Logs as they necessitate a slightly
different formalism that the one introduced here. Here will discuss the Regge trajectory

calculation in a forthcoming publication [154].

In this chapter we will be focusing processes for which there is a hard scattering. We
show how unitary can be used to extract RAD at the two loop level in two distinct cases.
The simplifications which arise using this phase/RAD relation are two-fold, as we will
demonstrate: It simplifies the integrals as the phase arises due to the contribution from
gluons whose momentum resides in the Glauber region where k* ~ (0,0, k) in light cone-
coordinates. Expanding around this region trivializes many of the integrals. Moreover,
after expanding around the Glauber region, the integrals are all finite in dimensional reg-
ularization, as no rapidity divergences arise, since the anomalous dimensions are rapidity
finite. Thus, there is no need to introduce a rapidity regulator that can complicate higher

loop calculations?]

This chapter is structured as follows. First, we review the results in [49] showing how
the phase of the (hard part) of the S-matrix can be used to extract the RG anomalous
dimensions for observables. The generalization of these results to the case of rapidity
anomalous dimensions follows once the factorization is proven, which is accomplished by
invoking the Soft Collinear Effective Theory (SCET)[18, |17, 20]. Once we have established
a relationship between the phase and the RAD, we illustrate the use of the formalism in
two examples. First for a local operator, the Sudakov form factor and then for a non-local
operator, the two parton transverse momentum soft function. This chapter is based on the

paper [156].

3Tt should be mentioned that this statement is true only after summing over all contributions to a
given process; individual Feynman diagrams can still be rapidity divergent as will be seen in the explicit
calculations. Moreover, the form factor itself can be rapidity divergent, but it is straightforward to account
for iterative terms which build up the form factor. Alternatively, one may work entirely in the full theory,
where no rapidity divergences ever appear.
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3.2 The Master Formulae

3.2.1 The RG Master Formula

Reference [49] derives a relation between the S-matrix phase and the RG anomalous dimen-

sion. One starts by considering a generic form factor E|

F(p1...pn) = /ddxeiq'x out(P1---pn | F(x) | 0)4n, (3.5)

where we will take all states outgoing in this way all of the invariants will be postive. This
choice ensures that all the invariants are positive. Consider the action of the following

complex dilatation (D) on this form factor

P F(pr..pn) = F(=p1... — pn) = /ddmeiq.x out{0 | F(2) | P1.--Pn)in (3.6)

where in the last line we utilized crossing symmetry and bar denotes the anti-particle. It
follows that

D7 F(pr.pn) = /ddmz‘q-m inP1o P | F*(2) | 0)%,. (3.7)

Mechanically this transformation returns invariants back to their original form but now on
the other side of the cut.

Then inserting CPT(CPT)~! appropriately into the matrix element we have
eiD”f(pl...pn) = F(p1...pn)*. (3.8)
Next one treats [’ as a perturbation to the S-matrix
S=8y+iF (3.9)
such that the unitarity relation SST =1 gives
SoFT — FS =0, (3.10)
where F? terms wont contribute to our matrix elements. Then we have
F = SoF'S,. (3.11)

Restricting ourselves to the subset of matrix elements with no incoming particles we can

“Following the notation in [49], any calligraphic character corresponds to a matrix element and not an
operator.
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effectively write
F = SoFT, (3.12)

and using ((3.8)
e TP = SF*. (3.13)

Or in words: the anomalous dimensions equals the phase of the S-matrix. Now to make
this result more user friendly one writes the S-matrix element as & = 1 4+ iM. Expanding
(3.13) to first order in perturbation theory

—777;(})}—(0)* = MO ) A () Fx0), (3.14)

where v, is the anomalous dimensions of F'. Since the RHS corresponds to a matrix equa-
tion, we can consider any set of intermediate states between M and F*. As emphasized
in [49], this result needs to be refined due to the existence of “IR anomalous dimensions”
(v1r), which corresponds to p dependence introduced when regulating IR divergences. So
to extract v one must mod out by the appropriate matrix elements which capture the IR
divergences. It is important to emphasize that g is not related in any way to the rapidity
anomalous dimensions. In the language of EFT, the relation applies to the hard

matching coefficients.

3.2.2 The Rapidity Anomalous Dimensions Master Formula

We now wish to generalize the RG formalism to the RRG case which follows once one uses
the intuition gained from the work in [54] on the RRG. In the case of RAD, the relevant
generator becomes K., the boost generator in the Z direction, instead of dilatations, D.
However, it is not the canonical boost in the following sense. We notice from that
if we want to move the singularity in the rapidity logs to the other side of the cut, as in
the case of the invariant mass logs, we will need to boost the large + light-cone momenta
separately and independently, which is obviously not a symmetry of the action. This can

be implemented by boosting each collinear sector separately:

ph =t e, P = (€pt, e Tpy L vl ) (3.15)

p% = (p'FJLra p’rga pgj_) — (e—’Yp%F’ 671?%7 pgl)

Using this operation we are able to transform p, — —p, by choosing v = 4w, and by
furthermore rotating by 7 around the L direction. For each sector this rotation will act

trivially on the amplitude since each sector is invariant under rotations along the jet axis
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E This modified transformation, whose generator we denote as K, acts as follows

emkz]:(pl, ...,pn) = .7'—(—]91, e —pn) = F(pla -'-apn)> (316)

The modified boost generator acts only on the collinear sectors’ momenta along the lightcone

directions, so we may make the identification

K. = K, (3.17)

i=n,n

where K is the boost in the ith collinear sector’s z-direction,

0 0
n __ + —
K = Z (pj ot —p; 6p_> ) (3.18)
{pjen} J J
Ki= >, (Pjap——Pjaﬁ)
{pjen} J J

Dependence on py only appears in rapidity logarithms In | pii | /v in the collinear functions,
where the absolute value follows from the definition of the regulator. Therefore, when

operating on the these functions we may make the replacement

- 0
K, ~—-v—. 1
Vo (3.19)
Using the rapidity RGE equation
0 _
20 - =—A~nng 2
VayOn/n T Jn/rw (3 O)
we have
K. Jum=-7"® Jum- (3.21)
Thus we can write
Py - (e”KZJn> ®RS® (emkz J,g) ,
= e TRTNIE ] RS @ J,
WO F (3.22)

®We are not considering observables which may be sensitive to the angle between transverse momenta in
differing jet directions, when there are more than two.
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where we have introduced the notation

1
ea®b:b+a®b—|—§a®a®b+... (3.23)

Now we use unitarity just as in the RG case to write
e OIS — SFF = (14 iM)F*. (3.24)

From here on out, we will drop the convolution as all further discussion and example do
not rely on its (non)presence, but it is to be understood that it is present as necessary.

It is worth going into the details of this result in the context of the effective theory. The
rapidity regulator is defined such that the arguments of the logs involve | p1 |, and given
that pL are defined to be large, the action of —piap% will simply yield — | p+ |. Thus
the action of the exponentiated generator will yield the phase, as shown in the previous
equation, and thus J(—p) # J*(p). On the other hand, we know that the action on the
entire form factor should result in a conjugation, implying that the soft function contains a

phase such that

In(=p)Ja(=p)S = ™ T (p) Ja(p)S

Il
N
3
N
I
=

*

Il
N
3
O
S
nn
\_)ﬁ
w
[\)
=

since J is real. We may conclude that
S* = e™r S, (3.26)

This is a useful result since it means that we can calculate -, using the master formula
Eq. by only considering soft graphs, via the replacement of F with S. Physically
this result is a result of the fact that the phase of the amplitude comes from the soft region
(determined by the direction of the Wilson line).

An obvious question which arises is, is it the RG anomalous dimension or the RAD
which is related to the phase of the S-matrix? The answer is that the phase of the hard
scattering piece gives the RG while the phase of the IR piece gives the RAD ﬁ As previously
emphasized since when we calculate we include all of the modes, we could just as well
calculate in the full theory, but if we do so we must still subtract out the hard piece, which
is typically a simpler calculation since it involves integrals with fewer scales.

Another important distinction from the RG case is the fact that in SCET the imaginary
part is divergent, as phase space is unbounded due to the use of the multipole expansion
which is necessitated by the power counting [100], and we must amend Eq. to account

5Since IR divergences are independent of v they will not pose any obstruction.
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for this fact. Defining the renormalized operator

FR=71F5 (3.27)
we have to revisit the result (3.12])
F = SyFf, (3.28)
which leads to [1]
Fp = 50 }_B : (3.29)

Then writing Sp = 1 4+ M we have

-1

eifr'yf,f'*B (Z ) f-'*B + MJ,—_-*B( )

(3.30)
ZF ZF1
Expanded to one loop order, this gives
ye D O = % ((M]—"*)(l) - 21m[Z;1]<1>f*<0>) : (3.31)

3.2.3 Calculating in the Full Theory Versus the Effective Theory

The result (3.30) was derived within the EFT where the hard part (H) had already be
removed. To work in the full theory we must repristinate H and allow for it to be complex.

This is a trivial exercise with the result being that the new master formula is
s H*
e~ R — —5® Fh (3.32)

leaving

Rx
S log[ <1+ 3 Wy ‘éééﬁm’m)]. (3.33)

This amendment to the EFT formula acts to remove any phase that might be generated by
the hard part and is not relevant to the RAD. It is important to note that in this paper
we will be doing all of our calculations in the effective theory. We have included the result
for those who would prefer to work in the full theory.

There are several advantages to working in the full theory. One can use the amplitudes
tool box to skip having to write down Feynman diagrams. Furthermore, and perhaps more
importantly, there may be no need to introduce a rapidity regulator which can lead to both

nettlesome integrals as well as calculational subtleties. At the same time it is also true

"The distinction between F and F become murky in the EFT as the operators are tailored to the states
in a very specific way.
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that the effective theory one need not regulate the rapidity divergences since we know that
the RAD is finite. However, to remove the rapidity regulator we would need to combine
integrands coming from various diagrams. The EFT calculation is also simplified by the

fact that we only need to calculate soft graphs.

On the flip side, in the full theory integrals are in general more difficult, though given
the library of known integrals this may be an irrelevant fact. In the EFT one draws all
possible Feynman diagrams, of which, there can be many since the theory is modal, i.e.
split into regions. However, as we have discussed above, one need only concern oneself with
the soft sector. In cases where the rapidity anomalous dimension is IR finite, we may simply
ignore scaleless integrals. This is not the case when calculating RG anomalous dimensions
where typically we would need to split such integrals into UV and IR pieces. Thus whether

one chooses to work in the full or effective theory is a matter of convenience/taste.

3.2.4 The structure of iterations

Formula Eq.(3.12)) has some interesting properties when we consider its expansion in the
coupling as it contains redundant information. Consider the expansion of Eq.(3.12])

2

T gR*(2) _ gR*(2) 4 o <’Y§(1) GR¥(1) +7§(2)SR*(0)> _ %( v)2GRA0) - (3.34)

where here, for the sake of illustration we focus only on the terms which are second order
in the coupling. S™(™) is the n'th order contribution to the soft function. All of the terms

2)

aside from the one proportional to the target 75 ~ are Abelian in the sense that they are

scale as C% and can be considered redundant information that need not be calculated. That
these terms cancel in the extraction of 75(2) is a manifestation of non-Abelian exponentiation
[139, 96], which states, effectively, that the sum of the graphs for the product of any number
of Wilson lines will exponentiate [95] at the level of diagrams where the only diagrams that
contribute are those that are within a “web” at a given order in the coupling. In the case of
two Wilson lines, as for the Sudakov form factor, a web consists of diagrams which are two
particle eikonally irreducible in that they can not be disconnected by cutting the two Wilson
lines. At the order we are working webs will always have color weights which are linear in
CF which is sometimes called “maximally-non-Abelian”. Anomalous dimensions for Wilson
line operators will always consist solely of webs, given that the coupling is independent of

the rapidity scale v and thus the solution to the RRG is always a simple exponential.

It is worthwhile to understand how the non-web pieces cancel in the result for s @,
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The RHS of the Eq. (3.12)) has a second order contribution of the form

Z* * Z* . % k Z* * . % . k
(728®SR )(2) _ (ng(l—HM)@SR )(2) — gk (2)+<7§)(1) SR (1)+ZM(1)®SR (1)+ZM(2)SR )
(3.35)

Equating Eq.(3.34) and Eq.(3.35)) we find
2
.0V * v * ™ v * . * . *
i (SO 4B O — = (77 0)2 810N = iM ) @ S i (M) Sy, (3.36)

where the counter-terms have been used to subtract the UV divergences from the final term
on the RHS. Once we accept that 7;’(2) has a maximally non-Abelian structure, and we
utilize the fact that all of the other terms on the LHS are NOT maximally non-Abelian, we
may simply discard all of the C% pieces of the RHS to extract 73(2).

An obvious question arises when one consider that the unitarity method, originally
designed to calculate RG logs, leads to an equation of the exact same form as Eq. .
Why are the RG logs not also strictly given by webs? The answer is that when one applies
(3.33]) in the RG case it is applied to the hard piece only, whereas as we are actually excising
the hard piece from the full theory result. Furthermore, non-Abelian exponentiation has
only been proven to apply to Wilson line observables, but our methods are more general than
that. In the next chapter we will apply these techniques to the case of forward scattering

where the collinear lines do not eikonalize.

3.3 The Sudakov Form Factor

As our first example we consider Sudakov form factor which involves one IR (a mass) and
one UV scale (@) and has the interesting property of containing double logarithms at each
loop order which dominate its asymptotic behavior. As usual to extract that anomalous
dimensions we consider all out-going particles, i.e. we will be considering this form factor
in the time-like @? > 0 region. The double logs arise from overlapping soft and collinear
divergences, and since the virtuality of the relevant modes (soft and collinear) are the same
the result includes a rapidity divergence. The resummation of these logs is an ancient
subject (see for instance [58]) upon which we hope to shed some new light as using our
methodology can greatly simplify higher order computations. We will be considering two
distinct ways of representing the IR scale, by giving the gluon or quarks a mass. The massive
gluon is in some sense the simpler case since the mass cuts off all IR divergences, but is not
terribly useful beyond one loop, since beyond that order we lose gauge invariance unless
we are willing to Higgs the theory. It would in fact be interesting to use the techniques

introduced here to calculate higher order corrections to the electroweak Sudakov form factor
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[56, 55], but this goes beyond the scope of this paper. On the other hand, using a quark
mass has the advantage of maintaining gauge invariance at all orders but needs dimensional
regularization to handle the soft IR divergences. This form factor is not physical, since it is
not IR safe, but in the case of the massive quark it is possible to generate a physical result
by introducing a theory below the scale of the mass which will absorb the IR divergences

into long distance matrix elements [92].

3.3.1 The Massive Gluon Sudakov Form Factor (MGFF)

Let us now calculate the one loop value for ’yf using our master formula Eq.(3.31)). We
are interested in the matrix element of the soft function that appears in the Sudakov form

factor which is given by the product of two soft Wilson lines
S=8,50 (3.37)
where in position space we have
Sp = PeiJo” AAAQm)mdX (3.38)
Using our master formula we are interested in the matrix element

(prph | (MSHD 0y = (piph | M| X)X | S ] 0), (3.39)
X

where, as previously discussed we need only concern ourselves with the soft piece to extract

the RAD. The intermediate state must involve both n and n (eikonlized) partons, i.e.

> pEph +a)(pEpl x| (3.40)
X x

As we have emphasized it is the Glauber region of the softs that generates the phase. So
we include the Glauber operator in our action |§| . The soft contribution will not contribute
to the phase once we perform the zero-bin subtraction. Returning to Eq.(3.31]), we see that

8The reader might be bothered by the fact that the Glauber operator includes fermionic fields and the
soft function has not such field with which to contract (i.e. its a pure Wilson line). But this is just a technical
misdirection as it is simple to just replace soft exchanges by Glauber exchanges.

45



there is only one diagram with a non-vanishing cut and it is given by

N --4- 4 -€-~
T w

~ s, (m-p)n-p
B = 2i— ze [ %k ———~
> =i op [ Gt

I
x 0y (n-pa-k—k)o (a-pn-k+k%). (3.41)

We can also see that the k| integral is UV divergent. This is not too surprising, since as
previously mentioned, the phase-space integrals in the effective theory are often divergent
due to the multipole expansion. Performing the integral, we find

O R EEN
C T,

B = iCrag B2 (4m)T(e) M %,

I

2
= iCra, {1 +hn 2 ] . (3.42)

n P
€UV M?

We must also include the counter-term piece in Eq. (3.31]), but, by construction, the
imaginary part of the counter-term is nothing more than the negative of the divergent part
of Eq.(3.39), so there is no need to perform any calculation, one may simply drop the
divergent part of Eq.(3.39). Nonetheless as a check we may extract the counter-term from
the full SCET (all sectors) one loop correction to the current. The imaginary part of the
Sudakov form factor soft function one-loop counter-term is given by

a,Cr

Im [Z;'] = — Begy” (3.43)

Using the master formula in conjunction with , we obtain a finite result, and

we deter- mine the RAD to be

_ Cras %22 (3.44)
™ H

Which agrees with the standard result for the soft RAD [54] for the massive gluon Sudakov

form factor.

S

71/_

3.3.2 The Massive Quark Sudakov Form Factor (MQFF)

The inclusion of a quark mass avoids the gauge invariance issue, however at one loop the

relevant integral is scaleless and technically vanishes. However after separating and UV and
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IR divergences we can write

n --4-0-—4-4\
N 00 J2—2€
| "’3@ = iCFas ﬂQE/ k72L
ﬁ--»—-o-»—-;v” 0 1
1 1
=iCras(— — —). (3.45)
€UV €IR
including the counter-term piece we find
s aCp 1
= —, 3.46
L, (3.46)

which agrees with result derived using the canonical method. As a check we can see that

integrating the equation for the soft function
dS =~,S(dnv) (3.47)

by taking S = 1 on the RHS we reproduce the term %% In(Q/m) in the full theory
result[104].

3.3.3 Massive Quark Form-Factor at Two Loops

The RAD of the Sudakov form factor with massive matter lines has two incarnations. If
there is no IR scales below the quark mass then the form factor is an IR divergent quantity,
as is its RAD. This is the case discussed in the previous section. In more physical cases,
there is an IR scale below the mass (typically the QCD scale) and all IR divergences get
absorbed into a non-perturbative low energy matrix element. This latter version, which
we will focus on in this paper, is relevant e.g., for resummations in boosted top quark
production and was first calculated in [104], where a dispersive techniques was utilized to
circumvent the need to regulate the IR using a gluon mass which breaks gauge invariance
beyond one loop. Here we demonstrate that we can extract the RAD by direct calculation
by use of Eq. without any reference to a gluon mass. The one loop contribution

shown in figure (1) is scaleless and given by

(1) = —iasCr (1 - 1) | (3.48)

euv €IR

The UV divergence will be killed by the counter-term for the current and the IR divergence
will be dropped since it will be factorized into a low energy matrix element. Thus (mgl)l’ =0).

As a consequence of this fact, all of the iterative terms in (3.36|) vanish.
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Figure 3.1: Cut diagrams contributing to the 2-loop Sudakov RAD. Greens lines are soft
(zero-bin subtracted) while dotted are Glauber. All of the diagrams are scaleless except for
the first.

Figure one shows all the diagrams that arise at O(a?). All of the diagrams are are
scaleless save for figure (1) where the massive quark is running through the loop. We

conclude that we can read off the anomalous dimension at two loops from diagram,

(EES EE SRS TEN

3\\@ B 7r2 ﬂ46dd—2klddq . % . ﬁ
G reirortes: [ e [ ke m -
CpTra?T(2e)0(2+2)2 [ pu2\*
=i F7TF T <m2> , (3.49)

1 1 u? 5 1, ,ur 5. 2 7% 14
62 3¢ "m?2 18 3 2 '

2
— e R N P T Qg0 LT 1
=inCrTp - ( log + lo —i-glogm2 36 27

This integral can be evaluated by evaluating the g-integral first before the k| -integral; this

is recursively one-loop and can be handled by, e.g. Feynman parameters.

We can extract that RAD by dropping all the poles, since the counter-term contribution
assures us of a UV finite result, and the previous argument above permits us to drop the

IR divergent pieces. Thus we are left with

2 2 2
« 9 ,u 5 w s 14
v =CrTr —W; < flog § log pon v ) . (3.50)

By keeping the quark masses in the loops and using M .S we are inherently working in a
non-decoupling (ND) scheme. It is therefore prudent to change back to the usual EFT/M S

scheme where the quarks are taken to be massless. The relation between these schemes is

48



[51]

oD = ay(1 + (T(m?2,0) — 221 y). (3.51)
3T €

where II is the scalar part of the vacuum polarization at & = 0. We must make this

replacement in the one loop IR divergent result and subsequently drop all the IR divergent

terms. Thus the results will only be sensitive to the O(e) piece of II

alr (1 w?r o
I(m2,0) = 28 (21062 £ 4+ T 52
(m2,0) ?me(z og 1+ ). (3.52)

The net sum gives for the RAD

a? (1 m? 5 m? 14
S = _CpTr—5 [ =log? — + = log — + — .
o Cr F3772<2 og u2+30g,u2+9> (3.53)

which agrees with the result given in |[104]. Note that had we worked with the full IR
divergent Sudakov form factor, we would have seen a CrC4 term as well, with contributions
from figures (2-6). Given that these diagrams are scaleless, the CrC4 term would be pure
IR divergence. In the above result, the IR divergences have been absorbed into a low energy
matrix element as described in the set-up of this section, leading to only the CrTrny color

structure appearing in the anomalous dimension.

3.4 Form Factors of non-Local Operators: The Soft Function

Next we will apply the unitarity technique to calculate the RAD of a non-local operator.
In particular we will consider the soft function that arises in the factorization of a class of
hard scattering observables. We will choose one particular operator but the method can
be applied more generally. We are interested in operators whose matrix elements include
rapidity divergences/logs. As such, we will choose observables whose diagrams include soft
and collinear modes of the same virtuality, the classic example of which are differential cross
sections where one measures the transverse momentum (p, ) of some set of particles, with
p1 < Q, where () is the hard scattering scale. Schematically the cross section takes the

form

do

- H(Q,1)Cn(py/m,m - p/v) @ CrlprL/p, - p' /v) @ S(u/v,p1/w), (3.54)

where ® denotes a convolution in the momentum variables. n-p and 72+ p’ are the incoming
light-cone momenta, which are integrated over weighted by PDF’s. The collinear pieces are

transverse momentum parton distribution functions (TMPDFs) while the soft function is

49



the vacuum expectation value of Soft Wilson lines in the fundamental representation
1
S(b1) = 570 | 87 (b1:0,00)85 (b0, ~00)57¢(0; 0, ~00)S“(0;0,00) | 0), (3.5

where for convenience we have Fourier transformed to impact parameter space. One can
also consider double, or higher, order n-parton scattering in which case the soft function
becomes the non-local product of n pairs of Wilson lines with each in a different light cone-
direction. The arguments below are easily generalizable beyond the two parton scattering
we consider here. In trying to use our unitarity methods however, we are immediately met
with the fact that S is a real valued function. We can circumvent this problem by looking
at a different matrix element which shares the same RAD. In analogy with what we did
for the Sudakov form factor we will consider particle production with four outgoing states.
Recall that this step was also necessary to eliminate the factor of S on the left-hand side
of Eq.. A similar calculation was done for the RG anomalous dimensions for parton
distributions in [49].

We will consider the matrix element with all out going partons

M(by) =D (pnbatnin | X)(X | S(0) | 0). (3.56)
X

The “crossed” Wilson line is then

1
S(b1) = 57(0 | S (b1500,0)85 (0150, ~00) S (0500, 0)8(0:0, ~00). | 0),  (3.57)

We have dropped the dependence on x4 since the RAD cannot depend upon the parton
light-cone momentum fraction. At one loop there are only two diagrams. The diagrams
where the Glauber connects partons with the same impact parameter will be scaleless and
can be dropped. Furthermore, there are no soft exchanges since they have no cut piece
(recall the phase comes from the Glauber piece of the soft) except for self-energy diagrams

which vanish. Thus at one loop we have two diagrams which give the identical result:

(3.58)
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Figure 3.2: 2-loop cut diagrams with soft loops. Diagram (1) is the iterative soft-Glauber
graph, diagrams (2) and (3) come from the one-loop amplitude, and diagrams (4) and (5)
are the real-emission contributions. Diagrams (7-10) involve two Glauber exchanges, and
cancel when summed over. Not shown are the graphs given by taking n < n.

with b2 = bfe’*E /4. Dropping the UV divergence, we have exactly the one-loop RAD

s(1) _ %s 72 2
7 == (QCF)ln<b u ) (3.59)

3.4.1 TMD Two-Loop Rapidity Anomalous Dimension

The graphs which contribute at two loops are shown in figure (2). Graph (1) factors into
the product of the one-loop soft-graph and the one loop cut:

ddkfldd_%{}gL @ -

k2 (ki +ie)(ky —ie)k2,

e_igL'(ElL_EQL)
b

= —4¢*Cr(2CF — CA)/

ig* (CF — 2CrCa) T(1/2 — n/2)T(n/2)T (=& — n/2)T (=) (B*u*)**"
1672 2073/20 (1 + n/2) e(2e+nve
(3.60)

2
A

, 2T (—¢)2e™E - 1
= i(2C% — CrCa) = {()(bz 2

1
7 M)s—;g"‘;z(lfu—[zb)

2 2 3
+~LyLy + gLZ’ +2L;L, + C(2)(Ly + Ly) + C(S) :
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with L, = log u?/v%. The C% term cancels the iteration terms 'ys'/(l)FT(l) —iﬁ/Q(VZ(l))zFT(O)
when added to the cut-renormalization QIm[Zgl]FT(O), while the CrC 4 term contributes to

the 2-loop rapidity anomalous dimension.

We next consider the diagrams which contain one-loop corrections to the amplitude,
which are the soft “eye” and the fermion vacuum polarization graphs. For the fermion

vacuum polarization we have

i

2

ddkldd_Qk‘QL T [k/l

Iy by %
= r[Br 5 (K1 + Koy )5 le 72,
k3, k3 (k1 + Koy )? 2

‘ :2g2C’FTan/

.4 2 72,,2\2
—ig D(e)D(2 — £)°0(~2¢) (B4?)

— T 61
48 OFTEny T(4—2)(14¢) e 2w’ (3:61)
a2 1 1.5 2 2 10 1 28

= i—2CpT 4 (4L SL2 4 Ly 4 =C(2) + =—|. .62
ZWCF an|:382+8(9+3b)+3b+9 b+3C()+27] (3.62)

There is only one other term with the color structure C'yTrn s, which comes from the two-
loop renormalized coupling. This comes from multiplying the one-loop diagram in Eq. (77?)

by Z,, and gives

i %s 72,2y — ;%s N
ZC'FBO%_ (b*u*) ’Lﬂ_CF 3 3 + —Ly +

2D (—e) a? 11C4  4Tpng 1 1 1
€ 2e2 2 4

1t + <@
(3.63)

with fp being the 1-loop beta-function coefficient, fo = 11/3C4 — 4/3Trns. Adding the

Trng-terms, we obtain

2
o2[-1 5 2., 10 28
quark terms = CFTFnFﬁ [352 + 9% ng + aLb + 27] , (3.64)

which, after dropping the UV poles and dividing by —m, is exactly the Trny terms in the

two-loop TMD rapidity anomalous dimension.

52



For the soft-eye graph, we find

-n
Alky- (ko1 + k1)]?
n-k1n-kq
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—4L2L, +4C(2)Ly — 2¢(2) L, + 6C(3)} — {31512 + i <637 + 22L,,>

134

§+Lb+131g(2)+404H.

22
—L
9 27

3

On the final line we have written the n- and e-expansions such that the terms in the first
set of curly brackets come from the rapidity divergent term the line above, and the terms

in the second set of square brackets all come from the second set of curly brackets.

In principle, we should also take into account the flower graph, which is given by con-
tracting the two soft gluon emission vertex off a Glauber with itself (see [160] for the

appropriate Feynman rule), however this diagram is scaleless and thus can be ignored .

2k% |71

v

k2E2 n-ky i ko

e b1kar, (3.66)

/ d42kq deky

; >1 = 4g4CFCA

There are two different real emission graphs which involve the Lipatov vertex (the cou-
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pling of a soft gluon to the Glauber). The first of these is given by

-

dn- kidn- kgddiQku_ddfwﬁgl
E%J_]%EJ_ n-kin- ko
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14

e Lk
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The second single real emission vertex is given by

AR by dn- kod@=2ky | d%2ky, -

- 4
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+ %L;’j +4L3L, +4¢(2) Ly + 2¢(2) L, + 2384(3)} : (3.70)

Adding up all the (non-abelian) terms gives the final result

CrCa + CpTpny terms

2
a2[11 67  20(2) 11 , 134
Qo | 2o 20 L B8 12 4e(2) Ly — —m Ly + 14¢(3) —
47r[362 0: T ¢ 3 Lo +4C(2)Le = ==Ly + 14((3)

a2 4 20 4 40 112
CrTrn—2| — — + — + L2+ —Lp+ — |. 71
+iCr an47r[ 32 Toe Tyt T gt oy (371)

404

= ZOFCA 77

We see that all the 1/n poles, log v terms, 1/ UV divergences, and non-local divergence

terms have all cancelled in the sum over diagrams, as expected. Dropping the 1/¢ poles

54



gives exactly —im times the two-loop TMD rapidity anomalous dimension:

o2 11

134 404 a2 [4 5, 40 112
o= -creuh] -1 |- |
472 3

L? 4 4¢(2)Ly — —— Ly + 14((3) — — Ly + —
b <( ) b 9 b C(?)) 9 b 27
(3.72)

This agrees with the known result [83].

Lastly, we note that the rapidity anomalous dimension for the TMD soft function has
been calculated to four loops in [80, |142]. This calculation was accomplished by using the
correspondence between soft and rapidity anomalous dimensions [172]. It would certainly

be interesting to explore any implications this has in the context of the work presented here.

3.5 Discussion

In this chapter we have shown that all the large logs that show up in a certain class of S
matrix element are controlled by the phase. This includes RG logs of invariant mass ratios,
as was first shown [49], as well as large logs of rapidity ratios. We have demonstrated
how one can calculate the rapidity anomalous dimensions for both local and non-local
operators at two loops. By focusing on the S-matrix phase we are able to extract these
anomalous dimensions by calculating the much simpler set of cut diagrams. Furthermore,
since we are calculating the rapidity finite anomalous dimensions directly, instead of having
to calculate counter-terms, the integrals do not need a rapidity regulator, which, in general,
makes integrating more challenging. If one chooses to calculate using Feynman diagrams,
as opposed to using on-shell methods, then individual diagrams will in general need to be
regulated, whereas finite integrals will only arise once one combines diagrams. In the case
of the massive Sudakov form factor there was no need to a rapidity regulator even at the
diagramatic level. In the next chapter, we will show how the ideas presented here may be

extended to the case of forward scattering and Glauber operators.
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Chapter 4

Unitarity, Anomalous Dimensions,
and All That Part II

4.1 Introduction

Despite the remarkable progress made in our understanding of resummed perturbative field
theory, it is fair to say that when it comes to the near forward scattering (Regge) limit,
s > t there are still many open questions. Gribov’s original approach [99] to the problem
has led to a number of perspectives including the classic work of Balitsky, Fadin, Kuraev
and Lipatov [88], Lipatov’s effective action |124], and more modern approaches in terms of
Wilson lines[13, 46| 47, (171} 90].

What complicates the perturbative series in the Regge limit is the existence of large logs
of the ratio s/t that appear at each order in perturbation theory. The resummation of large
logs is not an exotic phenomena as logs of the ratios of invariant masses are summed via
a canonical renormalization group analysis which follows from factorization of mass scales,
or equivalently decoupling. However, Regge logs grow as a ratio of rapidities and are not
summable in this way.

The resummations of rapidity logs has a long history. In the context of hard scattering,
the Collins-Soper equation [59] resums logs in hard scattering transverse momentum dis-
tributions, while the BFKL [121] [14] and its generalization the BJIMWLK equation [110}
105] resum rapidity logsE] in near forward scattering processes. A universal formalism which
allows for the resummation of rapidity logs for both hard scattering and in the Regge limit
was developed in |57} |54]. The universality of this approach stems from fact that it is based
upon an operator formalism within the confines of an effective field theory, which in the

case of hard scattering, corresponds to SCET |16, |17, [18] and its’ generalization in the

"'We will use the acronym RRG to refer to the rapidity renormalization group equation.
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near forward scattering limit (GSCET) [159] E| . The EFT approach to forward scattering
systematizes the problem in the sense that the resummation of rapidity logs is reduced to

finding the anomalous dimensions for a set of well defined gauge invariant operators in the
effective theoryf}

What makes the Regge problem more complex than the case of hard scattering is that
at each order of perturbation theory, there are new operators, broken up into irreducible
representations of color of various dimensions, that appear at the same (leading) order
in t/s which leads to a complex mixing matrix for non-local operators. However, it has
been known for a long time that the perturbative series in the Regge limit has a very rich
structure that can serve to greatly simplify the system. This structure is manifested in the
results found [120] for the gluon near forward amplitude in the anti-symmetric octet (84)

channel. In particular, it was shown that at NLL the glue-glue scattering amplitude in this

s+ e\ 0 N —s+ie\*®
—1 —t

.\ alt) .
<S + Zf) (1 + e—wra(t))

channel takes the form

»

M, = (9575 Co(pa,par)]> (90T Cy (Do, Py )]

~

»

= [gsT(fa/ Cg (paa pa’)] "

; 90Ty Cy(po,pv)]  (4.1)

with Cy(t) being the so-called "impact factor” and «(t) is the gluon Regge trajectory.
Note that the result is anti-symmetric under crossing in the kinematic variable and Bose
symmetry follows since the color factor is crossing odd. Similar results holds for the case
of the non-crossing symmetric quark scattering amplitude[120], albeit with different impact
factors Cy and representations of the color generators. For details on the structure at two
loops and the breakdown of the result beyond NLL see [78]. This result is valid to next to
leading log (NLL) and is exact in the planar limit. It is fair to say that this result seems
unexpected as it implies several remarkable facts. The power law in s/t has the form of a
solution to a simple differential equation which arises when running local operators, whereas
non-local operators obey integro-differential equations whose solutions are in general not
simple power laws. Such power laws correspond to “Regge poles” as opposed to “Regge
cuts” that arise in the complex angular momentum plane (see e.g. [119]). Furthermore,

there seems to be only one quantity associated with an “anomalous dimension”, «(t) ,while

2The Glauber mode breaks factorization in the case of hard scattering. In all SCET proofs to date [20]
utilized the version of SCET which did not include Glaubers|16], it was simply assumed (given the proofs
of Collins, Soper and Sterman (|60]) in the full theory) that the Glauber mode cancelled in the relevant
observables.

3The EFT approach is related to but quite distinct from the Reggeon field theory approach. For instance,
Reggeon exchange should not be equated with Glauber exchange. For a discussion of these distinctions see
193].
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we would expect at least two such anomalous dimensions at two loops, and more beyond.
Other hints of underlying structure were pointed out in [65] where it was shown that the
constants appearing in the one-loop quark and gluon impact factors involve the finite part
of the two-loop Regge trajectory, though the impact factors are polluted by additional
constants that are not related to the Regge trajectory. Intuitively this iterative structure
would seem to be a consequence of unitarity as forward scattering is a semi-classical process
which leads to the exponentiation of the classical (shock wave) action. On the other hand
the anomalous dimensions and the associated logs are a quantum effect so there is no a
priori reason to expect any natural relation between the iterative (phase) structure and the
aforementioned anomalous dimensions relation. The are other interesting relations between
the lower loop results and higher order contributions to the cusp anomalous dimensions
[116, (117} 67, 68], which will not be relevant to our discussion.

In [143] it was shown that the iterative structure is elegantly exposed within the EFT
formalism [159]. In particular, the authors used the EFT approach to show that, given the
form of the amplitude , the finite part of the two-loop Regge trajectory must be encoded
in the order € piece of a one loop correction (with no contamination) while the divergent
pieces arise from a simplified (in a manner to made clear below) two loop calculation which,
at the technical level, is effectively one loop. Their results also shows that in the EFT one
reduces the calculation of the two loop Regge trajectory to three diagrams. Finally, the
authors were able to derive the maximally matter dependent contributions to the Regge
trajectory to all loop orders.

In this chapter, we will generalize the result in [143] in several ways. Firstly due to
the reliance of |143] on the use of the form of the amplitude their results can only
used in the 84 channel and only to NLL, away from the planar limit, whereas our relations
will be valid in all channels and to all orders. In allowing for more general processes
we will also uncover additional relations among various anomalous dimensions which will
contribute to Regge cuts. Furthermore, our results show that simplifications in calculating
the Regge trajectory, in the case of anti-symmetric octet are universal and, moreover, the
Regge trajectory as well as other anomalous dimensions, can be calculated directly via
cut diagrams in the EFT. That Regge logs can be extracted by cut diagrams in the full
theory was shown in [87], though working in the EFT systematizes the methodology, and

streamlines the calculations, especially at higher orders.

4.2 Implications of Eq.(4.1))

The form of the amplitude (4.1]) implies that the form rapidity RG equations (6.21]) in the
EFT must be strongly constrained at least up to NLL and to all orders in the planar limit.

58



At NLL, where we keep all terms which scale as a?log(s/t), with alog(s/t) ~ 1, we need
to run the one Glauber operator at two loops and the octet of the two Glauber operator at

one.

The form of implies that the RRG equation (in the 84 channel) has a power law
solution (s/t)®. This is prima facia consistent with the one Glauber exchange where the
factorized form will reduce to a product (Regge Pole) since the exchanged momentum is
fixed to be q; = /—t. However, once we allow for two Glauber exchange we expect a
convolution (Regge cut). Moreover, in principle, we can have mixing between one and two
Glauber exchanges, i.e. ’yfé # Finally, even if the two Glauber exchange RRG had a
power law solution, the form of implies that integral of (2 9) has to be fixed by (1 1).
This also implies that there can be no mixing between the one and two Glauber sectors of
the theory, e.g. v(12) = 0. Calculating in the EFT it has been found that [93], not only
is y(1,2) = 0, but all transitions between one and multi-Glauber exchanges vanishes. i.e.

beyond the one and two Glauber sector.

If we go to the planar limit this leads to an infinite number of constraints since the
solution to the RG have a pole structure, i.e no convolutions, such that the RRG has a
simple exponential solution as in Eq. . Moreover, there is no mixing between the
different Glauber sectors to all order in perturbation theory. From here on out we would

like to keep things as general as possible and will not assume planarity.

We gain further control of the RRG structure in the planar limit where Eq. is valid
to all orders, which implies that the full RRG system is multiplicative, i.e. its a pure pole.
Moreover all of the anomalous dimensions v, , are fixed in terms of 7(q 7). It has been known
for a long time that the planar limit leads to pure Regge poles [120], and how this phenomena
occurs in the EFT was explained in [93]. Here we briefly summarize the arguments. In the
EFT the basic reason for the all-order pole structure is remarkably simple and it has to
do with the so-called “collapse rule” put forth in [159] which states that a Glauber burst
can not be interrupted. In figure (1.1) a collinear interruption between Glauber bursts
(meaning multiple Glauber exchange with possible soft interactions) leading to a vanishing
contribution. Figure (1.3) is planar and non-vanishing and leads to pole behavior, while
figure (1.2) is non-planar and leads to cut behavior. Thus we conclude that, in accordance
with Eq., the collapse rule implies there can be no convolution, when considering the
RRG for J or J, since all the Glauber loop momenta can be run through a single collinear

line.

4There is no reason in general why non-planar diagrams could not generate cut structures either in the
next to leading order two Glauber anomalous dimension or the leading order three Glauber anomalous
dimension.
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Figure 4.1: Different configurations of Glauber bursts. Here the bubble outlined in red
represents an arbitrary number of Glauber exchanges. The first diagram presents a planar
configuration of two Glauber bursts, which are interrupted by the collinear gluon-quark
vertex. This class of diagrams all vanish by the collapse rule. Diagram (2.) represents a
non-planar set of Glauber exchanges which are in general non-vanishing and will generate
non-pole solutions. Lastly Diagram (3.) is a planar Glauber burst which is not interrupted.

4.3 Explaining the Iterative Structure

As mentioned in the introduction an interesting piece of data regarding the perturbative
series is that the finite part of the two loop anomalous dimensions can be extracted from the
O(e) piece of the one loop calculations. By comparing this form to Eq. the authors of
[143| were able to derive a relation between the two loop Regge trajectory and the constant
pieces of the one and two Glauber exchange graphs: Ség, S;Q), S&), in the color octet
channel, where the superscript denotes the order of the correction beyond the Glauber

exchange. In particular, they derived the relation

ad = —250 (4.2)
a® = —2 (SP—SF)S@), (4.3)

where the Si(n) are defined via

Sty = S +asiV +ars? + )
Sty = inS{” (@S +ars) + ...
8T
S = = (4.4)

" alt) = ;a(i) (;) , (4.5)

where & is the rescaled coupling constant (see [143]). Not only is this useful to explain why

the two loop Regge trajectory shows up in a one loop calculation, but it also simplifies the
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calculation of the two loop trajectory itself, as it drastically reduces the number of diagrams
one needed to calculate, since we don’t need to consider two loop soft corrections to one
Glauber exchange (Sﬁ), and only need to calculate three diagrams |143]. Moreover, these
three two loop diagrams all involve a Glauber loop which reduces the relativistic loop order

by one.

In this paper we will utilize the recently developed formalism [156] to generalize the
results in |143] to all orders and in any color channel. Moreover, the formalism will also
generate relations between anomalous dimensions of operators with differing number of
Glaubers.

4.4 Unitarity Methods

4.4.1 Application to Regge Kinematics

In the previous chapter, we introduced a method for analyzing rapidity anomalous of hard
scattering form factors. We would now like to apply this methodology to the present case of
interest, near forward scattering. The use of unitarity in this regime is certainly not new, and
goes back to, at least, [120]. However, here we will exploit unitary in a systematic fashion
within the confines of an EFT to generate relations for anomalous dimensions to all order
in pertrubation theory. If we try to apply the same arguments as we did above, regarding
correlations between the logs and the phase, to this case, it becomes clear that a straight
forward application will fail. To understand this we recall that the near forward scattering
process is semi-classical and as such the amplitude comes with a phase e**< which is not
directly associated with the quantum rapidity logs. This can be most straightforwardly seen
in QED, where the photon does not Reggeize, but there is certainly a phase which arises
from the semi-classical solution. In QCD there is a quantum rapidity log that Reggeizes
the gluon, but its’ relationship to the 17 that arises do to the Glauber loop, at face value,

is unclear. Consider quark-antiquark scattering, with a gluon mass regulator m, we have

) r N - 92 2 2
oy ) o ()] 252 e (25) v (25)
m —_— —_—
ia? 3 [ s —t 22 [P 170 272
S |—4ln{ — |In(— |+ =In(— |+ — + =~
o (5 e () e (5) < 5

;2 r 2
v s -In () -7,

t

(4.6)
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where the various color and spinor prefactors are given by

S7(L]';_7,) = — |:UnTATB/;LUn:| |:UnTATB/2ﬁUn:| s Sﬁfﬁ) = CF [unTA/;iun] [UnTA/;LUn] s
st;—z = CA |:’L_LnTA/§Un:| |:1_}ﬁTA/2hUﬁj| y Sg%) = TFTLf [ﬂnTA/;ﬁun] |:’l_)ﬁTA/;lU,—L:| . (47)

We see that the im does not come with the same color structure as the rapidity log(s), which
is inherently non-Abelian and thus we must consider an object which directly ties the phase

to the rapidity logs.

4.4.2 Amplitudes of definite signature

We can get hint as to the proper direction by first recalling that the im in Eq.
arises from the box Glauber diagram. Moreover, the cross-boxed diagram, which would
carry a non-Abelian color factor and could correlate with the rapidity log, vanishes in the
effective theory (see Section 5 of [159]). However, if we consider the crossed-amplitude
(s > u=—s+0(t/s)), the box will come with a non-Abelian color factor. In fact, if we
consider the linear combination Mg — M, the Glauber contribution will generate exactly
the C4 color factor that must appear with the rapidity log. This combination is what is
known as a “negative signature amplitude” and it (along with the positive signature case)
have been an object of study in the forward scattering amplitude for many decades (see e.g.
66]).

Much can be gleaned about the definite signature amplitudes from dispersion relations.
In particular, it has been pointed out [48] that these objects have exactly the reality proper-
ties needed to fully control the phase from the logarithms. Generally, this is used to simplify
calculations by allowing one to drop/ignore im terms that might complicate the calculation.
Here we are able to exploit this connection by combining signature with the factorization of

the amplitude into multi-Glauber operators. One can decompose the 2-to-2 amplitude as

Moo = M) + M),
1
M) = 2 (Maoa(s, 1)  Masa(u, 1), (4.8)
where Ma_,2(s,t) is the s-channel amplitude and Ma_,2(u,t) is the u-channel amplitude.

Therefore the (4) and (—) signature amplitudes are even or odd under (s <> u) crossing.

Both are functions of the crossing symmetric combination of logarithms[48§],

1 —s — i€ —u — i€ |s|  im
L=-(1 1 =log o — = 4.9
2<0g . tlog — ) %8 g (4.9)
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where we have used u = —s in the high-energy limit. It was further shown in [48] that the
coefficients of L are either purely real for the odd-signature amplitude or purely imaginary
for the even-signature amplitude. These reality properties then allow us to exactly relate

the logarithms to the phase.

4.4.3 Signature Symmetry and the Complex Boost

In order to make use of the connection between the rapidity logs and the i7’s, we now utilize
the boost operator K, defined in section 1} Then, by acting on L with ™= we have

- 1 _eplmi __ g YR

eriep b (1og T3 T Lo T 18l L” —IL*. (4.10)
2 —t —t |t]

The boost only acts non-trivially on the log(—s) the log is evaluated right below the branch

cut, while the log(—u) is evaluated away from the branch cut and a rotation by 27i has no

effect. The definite signature amplitudes then transform as
e ME (L) = ME) (LX) = FMEB) (L)~ (4.11)

The last equality follows from the reality properties of the amplitudes and the Schwartz

reflection principle.

4.4.4 The Master Formulae

We now use the factorization to write the definite-signature amplitudes as

e e}
) _ () o 6 o 7O 4 ) o g
MB =i 37 18 @ 88 @ I8 + 15 @ S

()
Gy E ey ® Sagy ® } (4.12)

K’ (7)

i,j=1
where the (s/u) superscripts denote whether the matrix element is computed in the s- or
u-channels. Each component, J, S etc, is decomposed in terms of color irreps, whose indices
we have suppressed. Since the amplitude may only depend on p;} and p, through the

rapidity logs in the collinear functions, we may write

. G 10 . 10
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(4.13)
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Using the rapidity RRG equation we have
FME = ik g (&)

— 4 © J’gsz e—@%ﬁ%i,j) ®S(§) ® e—%ﬂv(k,z)(@j,gf)
M%::l[( (@) ) (5.k) ( (l))

(u) —®ir id (w) —ir 7(u)
+ (Jﬁ(i)e ®FTY( ,g>> ®S(j,k) ® (e 3 V(k,l)®JH,(l)> } (4.14)

Note that the action of K, generates a factor of 1/2, as compared to the action of K,
when acting on an amplitude [156]. This comes from the fact that we are looking at the
signatured amplitude and the action of the generator on the difference/sum of the two

channels naturally leads to twice the anomalous dimension.

To extract the Regge trajectory, we focus on the odd-signature amplitude. Using the

vanishing of 1 — j transitions, we can rewrite Eq.(4.11)) as
Mg_)e*iﬂ”}’(l,l) — M(*)* _ eiﬂ-f(zM(Z_Q)7 (415)

where we have used the fact that the one Glauber exchange is multiplicative (Regge pole).

We now use that the action of the boost is to transform L to L*, or shift log(s) —
log(s) + im. With this, we can write the master formula for the Regge trajectory as

M emiman = pr - pm) . (4.16)
= ls—e?mig

Notice that in the second term the action of the boost generator e™K= does not conjugate
./\/l(>_2), since L is formed from one Glauber (the log) and two Glauber (the im) exchange
grai)hs.

As a last step, we apply the unitarity relation (M) — M) = §(MM*)() where
(MM*) ) =1/2(M ME — M M), we arrive at the master formula

Mg*) (6—i7r’7(1,1) _ 1) = —Z(MM*)(_) + [M(zg) - M(ZE)

(4.17)

s—)eQMJ

A few comments are in order. First, we note that while this formula does involve more
terms than just unitarity cuts (first term on the RHS), there are two major simplifications
that it provides. The first is that the terms in the square brackets always come from graphs
with at least two Glauber insertions, and so must have at least one Glauber loop. This
provides many of the same technical simplifications as only working with cut graphs, as
Glauber loops are easier to perform than soft or collinear loops. The second simplification

is that only terms proportional to rapidity logarithms contribute to the terms in the square
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brackets, as all other contributions vanish in the subtraction. The coefficients of the rapidity
logarithms are generally easier to compute than the rapidity-finite terms. Moreover, one
can also combine the two integrands (with the appropriate changes in sign in the second) to
yield a rapidity finite integral that needs no regulator which can complicate the evaluation

at higher loops.

Lastly, we give the equivalent formula for the even-signature sector. Due to an extra

sign in Eq. (4.14)), we find

(eml_(z _ 1> M) = _9Re[MF)]. (4.18)

Unlike with the odd signature formula, the even signature relation cannot be simplified

further using unitarity. Note that Mgﬂ = 0 to all orders so to extract information from

this equation we will need to go to higher orders.

4.5 Calculating the Regge Trajectory through Two Loops

4.5.1 Leading order one Glauber anomalous dimension: 7((11)1)

We now verify the master formula in Eq. (4.17). At one loop, it simplifies to

_ 1 NE
Mt ><o>7(<11’)1) _ 2 (MTM( >) ‘ (4.19)

™

The tree-level odd signature amplitude for quark-antiquark scattering is given by

(-0 _1 5 : _ 5
My =5 - ' = )
[P R PR . [P S
p1 P4 D1 D4
3 _
_ [unTA?un} Wtas [vﬁTAgvﬁ]. (4.20)

In the first line we have introduced the notation of taking the odd-signature piece of the
diagram, which can be computed by subtracting the crossed u-channel diagram from the
s-channel diagrams. Note that we do not need to include the contributions of the terms
in the square brackets of Eq. at this order, as only the tree-level matrix elements
of Jy(2), S(2,2), and j,{/(z) contribute, and these contain no rapidity logarithms[93]. If we
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compute the cut, we then find

(MTM(—)>(1) — 7 )
ﬁ
2

_ —4nag { (TATB TBTA) n TATBT/L } L(1+¢)0(—¢)? <M2>€7

/ 2 T(—2¢) —t
_ Cpa I'(14e)l'(—¢ Smas [ ﬁ
-y T(—2¢) T t 2]
_ TFV((ll?l)M(_)’(O)~ (4.21)

Which yields the standard result for the leading order Regge trajectory

0 T(=)2T(e+1) (£ N >
7((11’)1) B Czﬂs I'(—2¢) ( ) B C;WS( +lo g<,u ))+O(6)' (4.22)

Through one loop this relation is almost trivial since the amplitude is linear in log|s/¢|
at this order. On the other hand, this calculation is significantly simpler than the direct

calculation of the anomalous dimension (see [159]).

4.5.2 Next to leading order anomalous dimension for one Glauber oper-

2
ator: 7((1,)1)

(2)
(1,1)’

we are focussing on the one Glauber operator. At this order Eq. (4.17) becomes

Now we move onto the two-loop Regge trajectory, i.e. ~y which is still pure octet since

(=)(0) (2) (51 (1) 1T (1) (-0 1 \@
My v ML e T 9 (’7(1,1)> M == (MTM( )> (4.23)

7 )2 )2
+;[M(22)()_M(22)()

sﬁeQm':|

Since y(1,1), Mg_)(l), and the two-loop cut are all real, the only imaginary parts of this
formula come from the iterative 7(21 1 term and the difference term. In particular, the
difference term must be entirely imaginary, as at this order, only Jy(2), S(2,2), and j,i/(g) can

generate a log(s), the coefficient of which is purely imaginary. Then by looking at the real
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Figure 4.2: Two-loop cut diagrams contributing to the two loop Regge trajectory. Diagrams
(a), (b), and (c) build up the Regge trajectory and the iterative soft contributions in the
single Glauber operator, while the collinear loops (f) and (g) only build up the collinear
iterative terms. Diagrams (d) and (e) vanish when summing over their mirror images and
taking the odd-signature piece.

and imaginary parts separately, we obtain the following set of formulas:

—)(0)_ (2 (1) (1 1 W2

MO+ MO0, = = (MIMO) T, (4.24)
1) \2, ()0 2 )2 )2

(30, MO0 = 2 QO - Q| . (4.25)

The reality of the term in the brackets follows from the fact that the Glauber loop gives an

i as does the difference between the logs in the two amplitudes.

We first use Eq. (4.24) to obtain the two loop anomalous dimension starting with the
1)

diagrams needed for the one-loop single Glauber term Mg_) ( , of which there are two soft

contributions:

. nso —¢€)? 02\ €
@ - —z’M(f)(O)QTFWf : ?g - 2)6)1“(6) <“t> . (4.26)
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The soft eye graph is given by
g ()

" o Caas 2\ [T(2 = €)? (1 — €)?2
G| =-mowl (%) {Fimag™ - 25 —05"

n
EES T I

T(n/2)T(1/2 — n/2)T(1 + e+ /2)T(—€ — n/2) [ v2\"?
+ D(1+n/2)I(1/2 —e—n/2)4—¢ (—t> } (4.27)

Adding these together, we find
V;"M‘."” 7;7>7‘w7>” (_
O+ O
T et e oeae

—iMOO (%) (ﬂz> [_ o0, LA+ (=e)® (1 N ;L>

)

—t I'(—2¢) n
20,4 110,4 4TFTLf 670,4 QOTan
- - — Q)0 — =2 4.2
2 3 30 T g <) 9 (4.28)
928C 4 1104 404Cy  2Tpng 112n,Tp )
o - e - H e+ T 4 T gy - L) o).

where we have introduced L, = log(u2/ — t).

We have only three classes of cut diagrams to compute. There are two diagrams involving
the soft eye graph on either side of the cut. These are just the soft eye graph convoluted
with the Glauber box diagram, and they evaluate to

(=)

57T
_ameooCad (Y[ (MR-t o TA=e? ) €
M ir (—t> {<F(4—26)F() 229 )> B(l,1+¢)  (429)
L(n/2)T(1/2 —n/2)L'(1+ €+ n/2)I'(—€ —n/2) v\
(L + n/2)T(1/2 — ¢ — nj2)d— B{,1+e+n/2) (_t> }
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Similarly, there are 2 cut diagrams with soft fermion loops:

(=)

PR SRt b ’;>0‘—>——;L—>—+‘>—

(:> (:> CaTpnpa T(2 — ¢)? 2\ >
P P (0 A LFT O T(e)B(1.1 K-
ST M . Ta—20l@BLITI )

754‘#«——3——4 .- ﬂ<‘f—<——i——<—0‘<—

(4.30)
Here, B(a,b) is the coefficient of the one-loop bubble integral in 2 — 2¢ dimensions:
e d*=k B(a,b Ca
) [ D gy, (431)
[ktle[(kL 4+ q0)?) i

with
Tl —a—-egT(1-b—-el'(-14+a+b+e)
Bla,b) = T(@)T(OT(2 —a—b— 2 ' (4:32)

Lastly, we move onto the cut H-graph. The uncut H-graph was computed in [143], and

the cut graph is almost identical. We have
(=)

e ) CAa2T(n/2)0(1/2 = n/2) [ 52\ (12"
mwm“ =- MO 1%71’ /T2 <t> <t) (4.33)

x [By(n/2)e 15 = 2B(1,1)B(1 +1/2,1 +¢€)] .
By is the coefficient of a two-loop bubble integral:

2 / [d% k11 ][d” Ky ] _ B(n/2)
k2 k3 (ki — @)% (kor — q10)2 (k1o — ko1 )?]0/? (4mr)2—2¢

(§3)~272e7n/2, (4.34)
To linear order in 7, By is given by [113} [118]

BQ <g> = B(lv 1>2 62’YEE + 727<B<17 1)2 eQ’YEe (¢(0)(1 + 26) - ¢(0)(—€)>

+ F(_E)E(F(f;z))r(%) 3By (1,1, -261— 26,2 + ¢ 1)) FOR),  (4.35)
= B(1,1)% 275 + g (—613 + C(f) - 76%(3) + O(e)) +0(n?).
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Adding up the cut graphs, we then have

cu g =M () ()" (5) [ (5 e ) (o) 5 -5

a7 —t €
8CATpny 134C%  4ACA((2)  40CaTyny  808CA 9
— — —22C4%C(2
+ €2 3e + € + 3e 9 ac)
(4.36)
68C3 224C4 Trn
+ 5B + #Ff —8Cy TanC(2)} .
where a1 = —7(171)%“. The cut graphs are rapidity divergent only because we have not

included the collinear contributions. Nonetheless the Eq.(4.17) assures us that the LHS of
Eq.(4.24) will also be rapidity divergent. From the two loop formula in Eq. (4.24)), we then
find that the two-loop RAD to be given by

2\ 2€
@ _ (s 2 e B 11C4  4nTr B 67C4 2C4 20TFny
Tan T (4%) Ca <t> [ 3e? * 3e? 9 L (2 9
404C 11C 112Trn 4Trn
- 27A + SAg(2)+2CAC(3)+ 2; f_ g Le@)]. (4.37)

This agrees with the standard result [87] (85, 86, 37], after accounting for different choices
of normalization. As a further check, we can expand our results to O(e?) and compare with

the results given in [89], where we again find agreement.

4.5.3 The Role of the Collinear Modes

Notice that when we calculated the cut diagrams we did not include collinear contributions
we will not show dont contribute to 'y((f )1).

all collinear functions J(;) must reduce to something proportional to Mj. That is, there is

In [143,|93] it was argued that in the planar limit,

no convolution and the result must lead to a Regge pole. Intuitively this follows from the
collapse rule which tells us that Glaubers come in a burst and can only be connected to one
collinear line. As such, the contribution to the collinear function from planar graphs only
depends upon the physical transverse momentum exchanges ¢, and serves to reproduce the

iterative term Mgf)’y((ll )1) in Eq.(4.24). We now show how this comes about by way of an
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example. Consider the planar double Glauber vertex correction graph:

n

()

MmO Ca (87as) / dk A M)
4 ki (kL +d10)2(C+p)*(C+p+q)?

AR SR S

x (2m)26, () (p+0) 01 (p+k+0)2) np' oy (0 +k)?). (4.38)

Here ¢ is the collinear loop momentum, and k is the Glauber loop momentum. N () is
the numerator, and it is independent of k regardless of whether the collinear projectiles
are gluons or quarks. Therefore the only k-dependence in the integrand is in the Glauber

propagators and the delta functions, and we can integrate over k to obtain

e, ()

n R
B B A ik i B

_ (0 Ca B(1,1) (#*\° N (€) 0(=n-£) (2m)34(£%)
=M e S (—t> /ddﬁ (C+p2(L+p+q)? (4.39)

. N(0) 6(=n-£) (27)54 (£2)
- m((i)”] (M§ )(0)/61% (f+p)2(€+10+q+)2 )

If we now turn to the one-loop collinear contribution to MEI_)), we find

g\ )
T 0, N(0)
=MV [t e 00)

This is almost identical to the term in the round brackets in Eq. (4.39)), and indeed they
are equal. We can see this by doing the contour integration over n- ¢ in Eq. (4.40) Thus we

have

v SN A\ O
n =[] * (4.41)
nf<f:04%<:f—<~ fﬁ———»———‘———»———r

which matches exactly with what we expect for the one-loop iterative terms. An identical

set of manipulations work for the other collinear planar graph.

Let us consider the two-loop non-planar collinear cut graphs. These must give a van-

ishing contribution if we wish to maintain a Regge pole behavior.
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These have vanishing contributions to the odd-signature amplitude:

+ —0. (4.42)

4.6 Bootstrapping the Anomalous Dimensions

1

( )) from 7((171) in the octet channel

4.6.1 Determining 7(21 9

Consider the following form of the master formula at second order in the coupling

MW \2 (0 _ 2 [( ik, (-]
(i) MO = S [ (¢ —) MG
2t 1 -)(0

iy @ M, (4.43)

where the second line is defined as

_ 7 . . Ay Ag: :
,7((217)2) ® M(ZQ)(O) _ §JN(2;SS)A1A2 ® (Vé1§2,3132 ® S((;)Q()S)BlBQ’DlDz + S((g?g(;) 142;C1Co ® 7(02126;2 DlDz)
@ T P = (s ). (4.44)

Here we repristinated the color indices as they will play in important role in our analysis.
Now we would like to ask what constraints does this equation put on (27 At this order
both the soft function and the jet functions are trivially given by and respec-
tively. In Eq. both side of the equation are projected down to the 8 4 irrep. due to

the minus signature.

Thus Eq. (4.43) is given by

—92 2e 2 9 d’ d/
iz (Caas) 2 4 4(=)(0) 42Ca 4o, (o) (@) / [d*1] ] [d¥ k] g

<—t> (47‘(’)2 [ ) ] Ml g T 92 H MO 1671'0{5 li(lj_ _ qJ_)2 ki(kj_ _ QL)2’Y(272)( 1y J_7QJ_)7
(4.45)

We immediately notice a remarkable simplification. The LHS is proportional to B[1,1]?,
which implies that the integral projects out the piece of 7(82“‘2) which is independent of k| and

1, since any non-trivial dependence on these variables would necessarily, by dimensional
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analysis, lead to terms proportional to B[1,1 + €]. So we are left with the relation

9\ 2¢ 2 4 2 d’ d’
fi (aCa) 24 4(-) g s (q7) / [d"11] [d"ki] g )
£} 24 pht = Z¢
(ﬁ) (4m)? L 1M 7 M 16ma, (L —q1)? /‘Ci(h—QDﬂ(z’Q)(qL)MO
94 de (Qi) —14e; —2-2€ 2 8 (=)
= Lt () (T BIL ) (00 M
(4.46)
Therefore
Vo) = Cacsq? (4.47)

8
(2,2)

zero in Eq. . Note that the fact that the convolutive piece gets projected out implies
that there is a power law (Regge pole) solution at NLL in accordance with Eq.. We
can now see how the running up to NLL reproduces the form of . The RRG equation
for JA14284 ig given by

where the P reminds us that in principle there are other terms in + whose integral yields

d A1A28A [dd/kl] A1A28A
yd—yJ (ki) = mm’m(h’ q1)J (k1)
1

= Y JA1A28A’ (4.48)

which had to be the case if Eq.(4.1)) is to hold.

If we want to predict the full 7(; 7) we need some additional data, which can be gleaned

by recalling that that J414284 can be factorized into a time ordered product of two 0B
operators defined in Eq.([2.85))

JAABA (k) = / daidey (p| T(OF (k1 a)OF* (ki —qu,a3) | )%, (4.49)

This operator will run due to the anomalous dimensions of the individual O%Al, as well
as an additional renormalization due to the semi-local nature of the operator. The key
distinction between the two types of renormalizations is that the former will not generate
any convolution while the ladder will. The anomalous dimensions of O?LAI were calculated
in [159],

Yor = Y(1,1) (4.50)

which is as we would expect for one Glauber exchange. We will generate such contribution
to the anomalous dimensions from each of the Glaubers, the first of which carries momentum

k1 and the other k| —q, . These contributions are shown in the first two diagrams of figure

(3)-
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Figure 4.3: A diagramatic representation of y(z2). In (a), the red line stretching between
the two Glauber exchanges represents the convolutive term k of the anomalous dimension,
while the blue dots in (b) and (c) represent insertion of the Regge trajectory.

In addition there is another contribution to 7(;2) stemming from diagrams that are of
the form of the last diagram in figure (3) which span both exchanges and lead to a non-trivial

convolution. Thus we make the following ansatz for the two Glauber jet RRG equation

d

Vd*VJAlAQSA(M) = /[d2_26k] 072 (k. — 1) (v, (k) + v (ke — q1)) + K (1, k)] JA4284 (k).

(4.51)

Now we can fix K(l,,k;) by imposing that Eq.(4.46|) be obeyed and find

_ 11 () il
K2l —ki)? K(kr—q+10)%  ki(gr —k1)?

K(l1,k1)=asCy [ (4.52)
which agrees with the explicit calculation performed in [93]. We have thus shown that
we can fix the full two Glauber octet anomalous dimension directly from the one Glauber
operator. That this had to happen for the integrated anomalous dimension assuming the
result in Eq.(4.1), but that the full result could follow from the one Glauber operator is a

new result as far as we are aware.

4.6.2 Constraining Other Color Channels from Positive Signature Am-
plitudes

Let us now explore the information stored in the positive signature amplitude relation

Eq.(T3) _
(esz _ 1> M) = _9Re[M ). (4.53)

We garner new information from this result since the minus signature is not sensitive to
channels other than the octet at the two Glauber level. The plus signature amplitude starts

at two Glauber exchange at order a? however this contribution if purely imaginary. Thus
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the RHS of Eq.(4.18)). starts at O(a?) i.e. two loops.

(18500 60) o 70) L 10) o g o (D(L8s) ., 7(0)
Do) )82 @ iy T w5y @0y Bue))ts = ),

(4.54)

4
il @) _ (O
—Rel M) = (7))

Only the 85 and singlet representation in the decomposition 3 ® 3 contribute for quark
states. Extracting the LHS from the full theory calculations [45, 97, 5], and using the
known results for 7?25’2) (a Regge pole) and singlet (Regge cut)[107] leads to agreement with
Eq.(4.54). By calculating the amplitude up to order €2, we can use the same strategy as in

the case of the 84 to determine the singlet and 8g as well.

Notice that this method of calculation does not arise from a cut diagram and thus lacks
that calculational advantages of the negative signature case. But it does lead to significant
simplification relative to the canonical method of calculating the anomalous dimensions
from the 1/n pole in that there is no need for a rapidity regulator since one can simply use
the full theory result. Of course the full theory result involves many more diagrams than

the EFT which can isolate the sources of the rapidity divergence.

We may generate other sum rules at higher order as well. At three loops O(a*) the
RRGE involves mixing between different M; ;), so to facilitate this we introduce the nota-
tion

1 (s
Vg) ® MEH) J(()) ® (S(i,k) @ Yk,j) T Vik) © S(ij)) ® J,g,()j) + (s ¢ u).

Then the two loop even signature formula at NLO is given by

3) _. (2) (+)(0) 1) (0) (+)(0)
—2Re[M]®) =ix Va2 @ Moy T Vaa) @ Mz +Vas) @ Mpys
1) (+)(1) in (1) 1) (+)(0)
Y2 @ Mg T 517022 @2 @ Moy |- (4.55)

We can generate two constraints by considering the real and imaginary parts since the

anomalous dimension are purely real and the Glauber loops are are purely imaginary,

2

Yan ® MGy + 78)2) @ Mizy = = Rel M| (4.56)
0 (© JO) | T o) ()0 _

Yam © Mg T © MG + 50k @ Yan © My =0 (457)

Note that My 3) is purely real as it contains two Glauber loops. Here both formulas provide
non-trivial relations about the various anomalous dimensions. In particular, Eq.
provides an interesting relation between the one-loop anomalous dimensions that appear at
this order, while Eq. contains the information for the two loop 7(22). Notably, Eq.
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(4.57)) constrains terms with different numbers of convolution integrals. However, unlike
the lower order relation, in this case there are many color channels (multiple singlets and

octets) which will mix.

4.7 Discussion

In this paper, we have uncovered further structure in the two to two scattering amplitude
in the Regge limit. This has been accomplished by working with the EFT for near forward
scattering in a double expansion in « and ¢/s which allows us always work with well defined
gauge invariant matrix elements. We have demonstrated that anomalous dimensions can
be extracted via cut diagrams thus effectively reducing the loop order. Our result
generalizes the result in [143] in that it works at all orders and for all color channels. We have
also shown that the two Glauber rapidity anomalous dimensions can be bootstrapped from
the one Glauber case. These results follow from a combination of factorization, unitarity and
crossing symmetry. We have given generalized relations between amplitude and anomalous
dimension for both the positive and negative signature amplitudes, each of which generates
a separate set of constraints on the anomalous dimension. The positive signature constraint
allowed us to simply extract the 84 channel two Glauber anomalous dimensions and our
result agree with those in [107, [93].

It would be interesting to use this formalism to compute the three loop Regge trajectory.
Progress in this direction has been made within the context of Reggeon field theory [89].
It seems reasonable to believe that our results genearted in the context of an EFT of
QCD could also yield insights into the Reggeon approach. In the EFT approach using
our formalism should help significantly reduce the complexity of the calculation, reducing
most of the work to computing Mg_) through two loops. In fact, the full three loop QCD
amplitude is known, and so in principle one could avoid computing the cut by simply
extracting the imaginary part.

Another avenue worth pursuing is to explore the even signature formula. In principle,
one could use this for a very clean derivation of the leading order BFKL equation, and as
a useful probe of the mixing between different Glauber operators at next to leading order
and beyond. At three loops, one has matrix elements that are both imaginary, such as
S(2,2), and real, such as S(33), and so one may be able to find interesting relations between

anomalous dimensions that appear at different orders through iterative terms.
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Chapter 5

SCET Gravity and Graviton
Glauber Operators

We now turn our attention from QCD to gravity. In this chapter, we describe the extension
of SCET to gravity. First, we give an overview of the SCET gravity building blocks, after
which we give the construction and matching of the SCET gravity Glauber Lagrangian.
This chapter is based on the appendices of [155].

5.1 The EFT and Gauge Symmetry

We are interested in constructing SCET for a massless real scalar minimally coupled to the

graviton. The full theory action for this is given by
S = SScalar + SEHa (51)

where the scalar action is given as

1 1
SScalar = 5 /ddm\/ _gigwjalt(bau(bv (52)

and the graviton action is the usual Einstein Hilbert action,

Sgn = 2M§E, / d*z\/—gR, (5.3)

with R being the Ricci scalar. The EFT we construct will be an expansion in the small
parameter A2 = —t/s, just as in QCD. To control the loop expansion, we take ag = — K%t ~
A0 where k% = 167G = 1/2M1§1. ag < 1 plays the same role as a, in QCD. We will save

a more thorough discussion of the power-counting for the next section, and proceed with
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these as given.

We will always be considering the active point of view of gauge transformations where we
consider the coordinate system fixed, and the map moves points, along with the geometric
structures, to other points on the manifold, leaving a physically equivalent state of the
system. While the coordinates are left invariant, fields transform are not, such that, e.g.

for a scalar ¢(x), the diffeomorphism f acts

o) = ¢'(f(2)), (5:4)

¢ (x) = o(f (). (5:5)

In this picture the fields are unchanged under a coordinate transformation. We use the

term “diff. covariant” for such transformations.

In this picture the invariance of the Einstein-Hilbert action follows by first acting with

the diffeomorphism such that the action transforms as

/ d /g (@) R(z) - / da/—g (F0) R (f()) (5.6)

The invariance of the action then follows by changing coordinate from x to f(x). We repeat
this elementary definition because we will consider three types of gauge symmetries which,

when we have operators connecting various sectors, necessitates careful treatment.

In the EFT each sector, soft, collinear and anti-collinear has its own diffeomorphism
invariance, each of which is a subset of the full invariance group. Given a map in a fixed
coordinate system z# — x* + ¢#(x) the scalings of the derivatives of e is restricted by the
scalings of the associated components of the metric which can be either read off from the
form of the two point function in a covariant gauge EL or by imposing consistency with the

Ward identity [149] such that for the collinear sectors we have the scaling

gn’ ~ p—"f 2, (5.7)
Imposing that the gauge transformation does not destroy this scaling imposes constraints
on the momentum support of the gauge parameters e”(x) such that
P},
—

0"el 4 otey ~ (5.8)

!Power counting in the case of non-covariant gauge fixings complicated power counting. A classic example
of this arise in HQET where if one naively chooses the gauge v - A = 0, then one might conclude that the
heavy quark does not interact|133].
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The gauge transformation should furthermore not push the mode outside its range of mo-

mentum support so

OHe” ~ phe”. (5.9)
so that we may further conclude that
"
p
e~ 7” (5.10)

It’s important to keep in mind that these ~ relations are only meant to equate scalings in
A. For soft gauge transformations all of the components of the gauge field scale as A so that
we have the constraint

Op€y ~ ppes ~ A (5.11)

and e ~ \0.

5.2 Gauge Invariant Building Blocks

5.2.1 The Collinear Sector

In this section we discuss the gauge invariant operator building blocks for scalar and graviton
collinear operators starting with a scalar field. This is accomplished (see [75]) by considering
a (codimension one null hypersurface) “platform” at minus null infinity (where diffs are no
longer gauge redundancies) and shooting out a geodesic in a direction p = k orthogonal to
the hypersurface which is coordinatized by z#. We assumed that the point x and & are in
the same convex neighborhood such that there is unique geodesic which connects the two

point. One then labels the points in the bulk as
at =zt + &%s + XH(s). (5.12)

where X#(—o00) = 0. 2" is the unit vector orthogonal to the platform. The end-point of
the geodesic in the bulk is taken at s = 0. In flat space X#(0) = 0, i.e. we choose the point

to be at " = 0. This allows us to define a gauge invariant (geometric) quantity
x(zt — XH(0)). (5.13)

Taking the point of interest (the argument of the field) to be at s = 0, we see that X},(0)
is the change in the value of the coordinate in going to our genearalized coordinate system
and is found by integrating the geodesic equation which we do order by order in the metric

fluctuation. Thus we will building up gauge invariance order by order.
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At second order X} is given by

1 1 1 2 1 1 v n(l 1 v
Xn=- —q. P2 FS——)FM_ —n- P2 FS——)FM_ —n- P2 <2Fl(/-aﬂ —in- prgir—)s— + (Durlj—(—k)> —n. P2 Pgr-)ﬁ- >+O(h§t)'
(5.14)

In the above, I'™) and I'® are the one and two graviton terms in the Christoffel symbols.

D, is the operatorﬂ

n My . n
D) = —z?“n‘ P — sz + ?“n 0, (5.15)

and D} is defined analogously.

We then define the translation operator V! via
1
Vot =1+ XD+ S XL XIDiDy + -y (5.16)
Then

Xn = [Vn_1¢n] >
(5.17)

is diff. invariant order by order in metric perturbations. To leading order in the metric,

K [ 1 ( D}ty

= — T L 2

The operators P only act within the brackets. Notice that we are solving the geodesic

equation in an expansion in G, thus the action will only be invariant under diffs where

For a tensor field we need to additionally include a tensor to counter-act the transfor-
mation. [115], which is defined with W,, as the gravitational Wilson line, which acts on

tensors T as

1 Al An / / L pl et
(W T g = W W W W (Vn L ) . (5.19)
where we have defined

Wy = D(X,)A. (5.20)

Here we have introduced some new notation, namely indices with capital Roman letters
are active diffeomorphism singlets. Thus under the diff. z*# — a* 4+ *, W,, transforms
according to

Wy g =W, g+0pe’ + ... (5.21)

2The label operator which acts on the O()\O) momentum obeys the following equivalence P = i0.
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In this way a vector the vector W; 5Vu(Z) is invariant under diffs. The inverse is defied as

(Wa), (W, 1)’ = 0. (5.22)

Let us now consider building blocks for the metric. QCD is pure connection theory

where the natural building block is

B} =W, "D, W,,. (5.23)

where D is in the adjoint representation. Since the Wilson line obeys n - DW,, = 0, only
BZ | and n - B are non-zero. Furthermore, using the gluon equations of motion the latter
can be written in terms of the former and the matter current. For the gravitational case we

can do something similar. Define the invariant derivative W, IVuWn, acting on a vector

WV Wafa = WoVu(VWE fa) = W, N0 (VW5 fa) — Do (VWi fa))
= dofp+ W3 W O.WE fa — W gt W g Ty (2)WiA fa(5.24)

n

We then defined the diff. invariant connection

Bhc =W, W, HOWE) — W, W, PWA T (7) (5.25)

Just as with the standard Levi-Civita connection, we may write the gauge-invariant con-

nection in terms of gauge-invariant metrics, via
1, -
Bic = 5(9 YA (Dpepc + Dogps — Ppesc) - (5.26)
The gauge-invariant metrics (and associated metric perturbations) are given as
— K -1

where gnuy = Nuw + 5hnu is the collinear metric. It turns out that this metric satisfies the

lightcone-gauge condition [23], analagous to the QCD gluon building block.

At linearized order we have

v Py Py PPy
bri;%B = 551L(SBJ' (hn/w - ﬁhmﬁ- - ﬁhny—i— + ;-7732}%_‘_4_) + O(H). (5.28)

which all comes from the Jacobian factors at this order, as the translational piece is quadratic

in the field. The transverse components of the metric have been picked out. In SCET
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[19], the other, non—vanishingﬁ (non-transverse) components can be eliminated using a field
redefinition. In the present case [23] bp4y = bhpyy = 0 due to the tethering of the field to
infinity, as may be checked by using egs. and . Notice that the one graviton
term in the graviton building block is proportional to the + L + L component of the
linearized Riemann tensor, which is manifestly gauge-invariant under small diffs.

In SCET, once the operator building blocks have been fixed, writing down the relevant
Glauber operators is relatively simple in that each building blocks scales with a non-zero
power of A, but in gravity this is no longer the case. Every insertion of h,, beyond the
first is accompaniied by a factor of s, and since k%t ~ aQ)\O in our power-counting, the
combination x b, ~ ozg ?\0. Thus one can insert an arbitrary number of graviton blocks
into an operator without changing the A scaling or mass-dimension. In other words we
may consider any polynomial in h,4p as a building block. At first this may not seem like
a big concern since, as discussed in the introduction, we can calculate beyond two loops
in ag before we run into model dependent counter-term contributions of the same size.
Nonetheless we might be interested say in calculating in N = 8, where it is perhaps true
that there are no counter-terms[Y] in which case the calculation would remain predictive to
all orders in ag.

We will in fact show that, constraints from diffeomorphism will fix the functional depen-
dence of operators on b, since in the full theory metric perturbations arise either as a full
metric tensor (i.e. 7+ h) or inverse metric tensor; therefore, the graviton building blocks

can only come in the combinations

K
OnAB = NAB + §bnAB,

K

(8, )4 =0 = 2%+ O(x?). (5-29)
Thus in the absence of counter-terms beyond the Einstein-Hilbert action, we will still main-
tain predictive power.

We also know that in the full theory we build invariant operators out of covariant
derivatives. Thus we expect the effective theory operators to be built from invariant forms
of the connection. With this in mind we introduce the function of the building block b, 45

A sAw 2 Y 11 g0
Bnp = 5ﬂ 05(=== | 5(8, )" (DPabnrv + Dugnra — Dadnav) | )- (5.30)
kn-P |2
This is the simply the + component of the Levi-Civita symbol built out of gauge-invariant

metric building blocks. Using the metric compatibility condition implies we can write this

3The analogous field in QCD will be in the light cone gauge as well.
4Presently N = 8 is known to be finite up to five loops [Bern'2018|.
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as
B = 2 (0, Pancn. (531)

The B,’s have the same A scaling and mass dimension as the b,’s, and differ only at
O(k). They also inherit the useful properties of the b, building blocks. In particular,
%nj =0 and %ni‘ = 0, which follows from the lightcone gauge condition b, , = 0. These
also have vanishing trace. We will see that this operator (function of h,45) will naturally

arise in the matching.

5.2.2 The Soft Sector
In the soft sector, we will just see the appearance of soft Wilson lines .5,,, which are defined

similarly to Eq. (5.19):

1At A / / RPN
(S T gt = S8, S0 S0 (Zn b ) , (5.32)

Vm

with

_ ) 1 ) )
z, 14 Xgn(_ZPSM) + ngnXg'n(_ZPSu)(_ZPSV) + ...,

S A = (—iPsy) (x4 Xen)?, (5.33)
L L L —@u 1 e 1 , pY 1w 3
xto— = pWe_ = p@e_~ _(opk_~ p —iPg, T i n).
Sn —n- 8% - on 8?; - n 8% YT n-ds T + ( iPs ) n- 3% +O(ky)

The soft label operator Pg is written as

p_ o o 1
Py = 5 i0g + -5 i0s + P, (5.34)

where all of the components are O()). Notice that when acting on collinear fields P§ will

only act upon the transverse momentum.

5.2.3 Useful Wilson Line Identities

Here we list some useful properties of the gravitational Wilson lines that will be utilized
in the matching procedure. These are presented in Appendix C of [23], but we reproduce

them here for completeness. Firstly, the Wilson lines satisfy a “Product Rule”:

[Wn¢1¢2] = [Wn¢1”Wn¢2]a (5.35)

where the square brackets denote that the Wilson line operator only acts on the terms

enclosed in the square brackets. This result follows from the fact that the Wilson line is a
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translation operator and we may consuder the project of two tensors an just a single tensor.

Similarly, there is an integration by parts (distributional) identity,
(WA Ty = det(W,) Ty [Wa(Th)], (5.36)

where det(1,,) is the determinant of the Jacobian matrix. These identities are obeyed by
the soft Wilson lines as well. This latter identity will be important for the construction
of the soft graviton operator and follows from peforming a change of coordinates. This
identity implies a factor of the determinant of the Jacobian always appears with inverse
Wilson lines; it is therefore useful to package the determinant together with the Jacobian

determinant.

5.3 Matching the Glauber Lagrangian

We begin by presenting the matching of the Glauber operator at tree level. The Glauber
operators are constructed by considering the scattering of projectiles in two distinct rapidity

sectors of {n, n, s}, and the projectiles may be taken to be either scalars or gravitons.

5.3.1 Collinear Glauber Operators

We start by considering n-n scattering, collinear soft scattering will follow in a similar
fashion. We perform the matching using the same conventions as [159], where the external
lines are chosen to be ¢(ph) + ¢(pt) — ¢(ph) + ¢(p}), where the superscript denotes the
collinear sector of each momentum. All calculations are in the de Donder gauge, and we

write the polarization tensors for h = 2 as products of spin-1 polarization vectors on shell

Y (pi) = € (pi)eL(pi), (5.37)

and we will suppress the £ label. To simplify notation further, we write e*(p;) = €!’. For
the on-shell states we are considering, we also have 612 =0 and p;-¢; = 0.

For the chosen kinematics, momentum conservation gives p; + p2 = p3 + psa. The
momentum transfer is given by ¢ = ps — po = p1 — ps. For n-n scattering the Glauber
momentum scales as ¢* ~ (A%, A2, \). This then implies that the large ~ A\° components of

the collinear momenta are conserved, giving p; = p; and p; = p, . We choose to work in

a frame where q* = ¢~ = 0, which allows us to write the momenta as
7 I 1 P nt 1
p_ -+ p oo — + o
P = ?]ﬁ + 7101 + 5%_, Py = ?pg + 7192 - §ql> (5.38)
i nt 1 n# nt 1
_ - + _ - -
Py = 5Py T 5Py 5l Ph= e+ pd -5l
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Figure 5.1: Tree level matching for n-n Glauber operators. These are the full theory
diagrams with a ¢-channel pole. For scalar-scalar scattering this is sufficient to extract
the Glauber operator, but for scalar-graviton scattering, one must also include s- and u-
channel graphs, as well as the 4-point contact term. These additional contributions will be
automatically accounted for order by order in expansion parameters in the EFT given that
we build operators out of gauge invariant building blocks.

The on-shell condition p? = 0 also lets us fix the small ~ A\? component of the momenta,
pi =pi = —q¢2 /p; and p; = p; = —¢% /p3. The Mandelstam variables s and ¢ may then

be written in terms of these variables as
s =p;py + O\, t=q2. (5.39)

Note that the expression for s has corrections which are subleading in the power-expansion,
whereas t is exact in the chosen frame of ¢ = ¢;. We have s ~ A\? and t ~ A2, and for

physical kinematics s > 0 and t < 0.

We now match the Glauber operators onto the tree-level graphs shown in Fig. (5.1)).

85



We expand each diagram to leading power in A, and we have

r 2
PR L L

L2 qi L2
-, ) ) ) ) o
; I‘é(n'P2€2'63—n'p2P3'€2n'€3—n'P2p2'€3n'€2 +P2'P3n'€2n'€3) 2 [K&n p2:|
N _ = Znp?,
i n-p3 ¢ L2
2
J[Es pg} 2 |k (n-pler-eqs —n-pips-ern-eq —nprpr-€an €1 + propan-€rneey)
A I Sl Bl e ,
L2 @ |2 n-p?

B -
2 n-p3 a7

T _ _ _ _ N2
Ii(n'Pg €2' €3 — NP2 P3- €2 N €3 — NP2 P2* €3 N* €2 +P2'P3n'62n'63) ] 2

2
| E (np% €1'€4 — N P1P4 €1 N €4 — NP1 P1" €4N €] + P1-Pan- €17 64)
2 n-p3 ’

(5.40)

The double copy relation [26] are manifested in the last four lines.

One may then write down the Lagrangian for Glauber operators to match the amplitudes

Ly =>" Z@n o OJ (5.41)
n,m 4,5 l
Here 7 and j run over the particle species of the projectiles, which in this case is just scalars
and gravitons. To match onto the full-theory diagrams in Eq. (5.40]), where there are no
soft-graviton emissions. We find the collinear operators to be
0 =

b [ (P4 PY)] xald 4 Flba ),

Oh_

n

[((n P(Br, b)) + A (2 P(Bo, hn)j)Q] + O[b3]... (5.42)

1\3\:&

with OL given by swapping n <+ n. With this choice of normalizations the soft operators
reduces to Og = 2773 A is an unknown constant that can be fixed by going to higher orders
in the metric. This trace term vanishes on shell at leading order in h so was not detected in
the on shell matching result . Notice that for the operators we have written (%8, b,),
this is because we have only matched at quadratic order in the field and at this order this is
no distinction between b, and 9B,. In the next section we will show that constraints from
the full theory will fix the field to be 9B, that A = —1, F' = 0 and that there are no powers
of the h beyond quadratic.

The Glauber Lagrangian exactly reproduces the full-theory diagrams to leading power

in the A-expansion. Since x, ~ (Bn,bhn) ~ A, - P ~ A, the collinear operators scale as
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O, ~ kA? while for the soft operator Og = 2P? ~ \? for zero soft graviton emissions, and
thus £2" ~ £2A%. Given that the measure scales as 1/\? we see that Sg ~ s? /M}?l ~ 5%
The matching and construction of the full soft operator is more involved, and will be
discussed in the next section.

It is interesting to see how the Ward indentities are satsified in the EFT given that
when we matched we did not bother with the contact interactions that in the full theory
are required to ensure they are satisified. The terms which would arise from contact terms
in the full theory, arise in the EFT Ward identity from the last term in [5.28| which end up

killing the factor of 1/¢? in the ampltiude.

5.3.2 Soft-Collinear Glauber Operators

We can perform analogous matching calculations for n-s and n — s scattering. We focus
here on n-s scattering, as the results for ns scattering are given simply by replacing n < 7.
We take the n-s scattering to be given by ¢(ph) + ¢(p7) = ¢(ph) + ¢(p}). The momentum
transfer q is defined identically as ¢ = p3 —p2 = p1 —p4, but ¢ now has scaling g ~ (X, A2, ).
Expanding the full-theory diagrams in these kinematics, the result is identical to eq..

For the Glauber operators, we may write the Glauber Lagrangian as
1
Lre=>3"%" O;P—iogn. (5.43)
nooij

The collinear operators in £™* are identical to those in £"". The soft operators meanwhile
are identical to the collinear case with the replacement of collinear fields with soft fields
Xsn; Bsn and hgp.

The soft fields xsn, Bsn and hg, scale as ~ A\, while the soft momenta scale as i0g ~ A.
The soft operators Og, then scale as ~ xkA*. Since O} ~ kA2, we find the n-s Glauber
Lagrangian scales as ~ x?A*. The scaling of the measure d*z ~ A3 for the soft Glauber
operator since the soft momenta are all order A\. Therefore, the Glauber actions will scale

as
SET = / A LE" ~ a2, (5.44)
SE = / d* L ~ agh Tt (5.45)

Given that the actions for the kinetic terms in the soft and collinear Lagrangians are nor-
malized to scale as ~ A?, we can clearly see that the Glauber operators are enhanced, as
discussed in the main body of the text. We also see that the action for n-s Glaubers is down

by A compared to the n-n action. However, time-ordered products of n-s and n-s Glaubers
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Figure 5.2: Tree level matching for n-s Glauber operators. These are the full theory di-
agrams with a t-channel pole. We can obtain the matching for n-s scattering by taking
n <> n.

have the same enhancement as n-n Glaubers.

5.3.3 Collinear Operators to All Orders

We recall that the n-collinear sector is equivalent to full GR in the absence of soft or 7n-
collinear particles. Thus we may match by building operators in the full theory that are
diff. scalars, i.e. not invariants, and then lift them to their diff. invariant form in the EFT.
We also restrict the form of the operators by using two symmetries. The first is the shift
symmetry on the scalar field inheretid from the full theory and the other is RPI-III |134]
which is the symmetry of the EFT under the rescaling n — an and n — 1/an. From the

tree-matching, we can see that each collinear operator transforms as O,, — o?O!, and so

n
each collinear operator must have two lightcone vectors i contracted with it. Finally the
operators must start off bilinear in the fields. With all this, we may write down the most
general form of the collinear operator [

O; = (W, )5 fio(9ns Vi, Dudn)] 207, (5.46)

where f;o has mass-dimension 3 and transforms covariantly under diffeomorphisms. Note
that only the combination of D, ¢, can appear, as a scalar minimally coupled to gravity
has an additional shift symmetry ¢,, — ¢, + ¢ for constant c. For scalars, there is only one

possibility for f which we can write down:

K
I3o = 5 Dp®hDon. (5:47)

5 A

n" is a diff. scalar so we write it as n”.
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Using Wilson line identity (5.35]), we find the operator is given by

O == | 7 Pxn %, (5.48)

which is equivalent to to the scalar operator given in Eq. (5.42), with F = 0. For the

gravitons, there are two operators which we can write down:
h 2971 (Vn)2 fh QVnVn (5 49)
fl,po:; po ) 2,pa:; p Yo .

The factor of 2/k is needed by dimensional analysis and since we need the term quadratic
in the metric perturbation to be linear k. We note that since f,; is symmetric, only the
symmetric piece of ViV will contribute. fh vanishes when plugged into Eq. li as we

have
(W, ) s 9h] = 2P (nap + blip) =0, (5.50)

where we have used the lightcone-gauge condition for h”, b}, = 0 and assumed metric
compatibility. Thus the only non-vanishing operator we can construct is f. It takes some
work to see that this is equivalent to the graviton operator in Eq. (5.41). Writing out the

covariant derivatives in terms of the connection, we may write the graviton operator as

a o

(W) 5, Vava] P = 2 (2P + Sn P8, d) (P + S P

K

= 0 P24 + 5 (2 PBad)”, (5.51)

where in the first line we have used %n’fr = 0 and in the second line we have used the fact
that n- P = 0 when not acting on collinear operators. From here we must now invoke the
equations of motion for collinear gravitons. By acting with a Wilson line and restricting to

the ++ component, the equations of motion become

K

5 (0 PB3)" = —r(n Pxa)’. (5.52)

- P28, 4 +

Using this, we may remove the term in Eq. (5.51)) linear in 98,,, and we obtain

(W, 1), vivs] atal = —g [((ﬁ-P‘Bné)z—((ﬁ-P%nﬁ)Z]—2(92. (5.53)

RN

Despite the fact that the equations of motion introduce scalar fields, we see that this is the

same scalar operator that we have already introduced. Therefore, the graviton and collinear
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operators are uniquely determined to be, up to overall numerical factors,

Oy =S P O4=3|((A-PBE)" — (- PBL)|. (554)

supports the conclusion reached after Eq. . A similar procedure gives the n-collinear
as well as the S,, and S; operators as well.

Lastly, in principle we could attempt to circumvent the power-counting and mass-
dimension constraints by adding additional factors of (kV)™. However, such operators
can only appear when matching to higher-derivative terms in the full graviton action, such
as R3, etc. This follows from the fact that Einstein-Hilbert action is normalized such that

powers of x only arise multiplying the graviton.

5.4 The Graviton Soft Operator to All Orders

In this section, we shall describe the construction and matching of the gravitational mid-
rapidity Glauber soft operator. Using the observations made in the previous section, we
shall show that the operator basis has a finite number of terms, and that the matching can

be performed at the level of a single soft graviton emission.

5.4.1 Soft Gauge Symmetry in Soft-Collinear Gravity

As mentioned in section there is a fly in the ointment when it comes to soft gauge
invariance. For hard scattering operators collinear fields can not transform under soft
transformations, as they would throw the lines off shell. However, care must be taken
when applying this argument to collinear bilinears. To understand why utilize the power
of the label formalism whereby the large momenta are explicitly removed from the field by

rephasing. For instance, for a collinear field we would write

On(x) = Z e, (0,m - x,w ) (5.55)

np

such that ¢,.,(x) carry no large momenta. In this was a collinear composite operator gbilgbn
carries no large label. As such it produces quanta with momentum scaling as (A, A2, \) with
invariant mass of order A\?. A soft gauge transformation will not change this scaling. As
such, we should think of the collinear forward bilinear as carrying gauge charge. The same
is true in QCD, and in fact this line of reasoning is consistent with the placement of Wilson
lines in the soft operators in section 6.3 of [159].

The notion of soft gauge-invariance in gravity is much more subtle in gravity that in

QCD. In QCD, one is able to construct soft operators which are completely gauge invariant
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at the level of the Lagrangian. In gravity meanwhile, this approach appears to work in the
linearized theory, but it tends to break down once nonlinearities are includedlﬂ The solution,
which can be found by performing explicit matching calculations, is that operators need to
be soft diffeomorphism scalars, rather than diffeomorphism invariants. In particular, under
an infinitesimal soft gauge transformation g, — gsuw + 0,8, + 0., the operator needs to

transform as a total derivative,
O—-0+V,,(0). (5.56)

Then the action S = [ d%z O will be gauge invariant up to boundary terms. This is the
approach taken in [23] for constructing interactions between collinear fields and ultra-soft
gravitons in an SCET7 context.

For constructing the Glauber operators, we can implement this as follows. By acting on
collinear operators with inverse soft Wilson lines, we end up with objects that transform
covariantly under soft diffeomorphisms. More explicitly, we may take the gauge-invariant

combination of operators appearing in the Glauber Lagrangian,

1
—Op, 5.57
and we may convert this into a soft diffeomorphism scalar by acting with an inverse Wilson
line:
0 [s-lo-} (5.58)
Pi n n ,I)i n . .

The action of the soft Wilson line is to translate the collinear operator from a point x to

the point Ygz(x), where Ygz () is related to Xgz by
Xsn (Ysa(2)) = Yon (Xsa(z)) = 2. (5.59)

The operator evaluated at Ygz then transforms as a scalar under soft diffeomorphisms.

Schematically, we may then decompose the soft operator as
Os = [i(Ps)S} Ci /—g50iSsgi(Ps). (5.60)
i

In the above, the operators O; are soft diffeomorphism scalars built out of covariant deriva-
tives and soft fields, the C; are some numerical coefficients, and the functions f; and g;
are scalar functions of the soft label operators. We have also included an explicit factor of

the determinant of the metric, which is required by gauge-invariance. The Wilson line S’

5See 91| for a recent example of this.
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denotes the transpose, in the sense that S, acts on fields to the left, while S; acts on fields
to the right. In the next section, we will discuss constraints on the functions f;, ¢;, and the

operators O;.

5.4.2 The Basis of Soft Graviton Operators

We now describe the construction of the soft operator basis. These operators must have
mass dimension 2 and scale as ~ A2, and must be consistent with soft diffeomorphism
symmetry. To make operators which are consistent with gauge invariance in the sense
discussed in the previous section, every term must contain one n inverse Wilson line S, and
one 71 inverse Wilson line, as well as a factor of the soft metric determinant, /—gs. We
then build our operators out of soft label operators 735 and soft covariant derivatives Vg,,.
The soft label operators do not transform under soft diffeomorphisms, and so they can only
appear outside the Wilson line pair; similarly, the soft covariant derivatives can only appear
between the two Wilson lines.

Constraints from reparameterization invariance are crucial here. Since the light-cone
vectors n and 7 are soft diffeomorphism invariant, they must appear entirely outside the
Wilson line pair. As can be seen from their definitions in Eq. , the collinear operators
each have RPI weight 2 in their respective direction. Thus to make the Glauber operator

RPI-III invariant, we are forced to write the Glauber operator as

1 nfn” . e P07 1

Onsn = Op— —5Or 5.61
where we have written v o
ntn nfn

Oq — pv, pa ) 5.62

T 2 5 ()2 (562

We have left the factors of n and n to make the RPI invariance as explicit as possible.
The form of the soft operator in Eq. then completely fixes all dependence on the
light-cone vectors, once the Wilson lines are taken into account, as the soft sector otherwise
has no explicit preferred direction dependence, unlike the collinear operators.

Next, we have constraints from the hermiticity of the full Glauber operator. As described

in Section 6.3 of [159], equality of L5 and (Lg)! requires the soft operator to satisfy

(0s)" = O (5.63)

n<n -’

This is a slight variation on the statement that there is a symmetry between the n and n
sectors, given that swapping n and 7 is equivalent to taking an adjoint. In the context of
the full Glauber operator, this reduces to the usual symmetry under exchanging n and 7.

An additional constraint is that the total label momentum flowing through each term in
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the Glauber Lagrangian is conserved. Therefore we have equality between Pg and 73;, and
we may interchange them freely.

We find it useful then to introduce the notation

(St = det [(S, )] ZnSns, - Snk2,, (5.64)
(St = St . Su2, 210 det[ (S, 1) 0] (5.65)

In the above, Z, acts on all fields to the right, including the Jacobian factors, and

similarly Z! acts on all fields to the left. (S,)bl 5" is then an inverse Wilson line in the
sense of Eq. (5.36)), as it satisfies

[S;IT]HL“M“ Qsl — TVi-Vn [(Sn)lil---lln ] . (566)

V1...Un

Lastly, there are two useful identities which will be used to simplify the operator basis.
The first follows from the properties of the gauge invariant metric building blocks §», which
is defined analogously to the collinear metric building blocks in Eq. lb Using hf =0,
we have

T 1. Qi Sh Tyat...0m __
nlfanZ (Sn )5115227511/% glnu? = n“"”(n;w + h,uz/) (Sn )gllgn - O (567)

Similarly, replacing a light cone vector n with a derivative also leads to a vanishing operator,
v T s e Qp Sn T Qn
Py (STt g, i = Phn’ (e +05) (SO0 =0, (5.68)

where in the final equality we have used n-Pg = 0 when acting to the left of the Wilson
lines, as soft n - k momenta cannot flow into OF.
With these constraints, we can now write down a list of all possible operators that satisfy

them. There are eight such operators:

O1 = P2(SI)™ Gupguo(S2)7e + (STV™ gupguo (Sa)77, P2,
O2 = (S 9up9vo 9™’V 50V 55(Sa)5y

O3 = (SLY™ RS . (Sa)%y

O4 = PE(SI)"" 5980900 9ux (21 AP, (5.69)
05 = Pg(Sg)ﬁiggupgﬁ)\gw(Sﬁ)ii%ypga

O6 = PP (SI)" 1590 GupGuo (Sn)eT + (ST up9uogun (Sn) s PEPS,

O7 = PE(Si) " a9up0uoiV s5(Sa) Ty + (S0 9up9uoi V 55(Sa )5 50 PE,

Os = PE(STY" 2 9899001V 5 (S0)7% + (SIV™ 989001V 5,(S7) 75 PS.

In the above, we are implicitly assuming the Lorentz indices are contracted with lightcone
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vectors as in Eq. . Not making this assumption can lead to several more allowed
operators, as identities such as Egs. would no longer apply. This could be an
important consideration when trying to construct the operator basis to subleading level,
but for the current purposes it is enough to consider those in Eq. .

5.4.3 Matching

We now perform the matching of the Wilson coefficients for the soft operator. It will be
sufficient to match at 0, 1, or 2 soft graviton emissions. Moreover, we may perform this
matching taking the external collinear projectiles to be scalars. We can in principle replace
one or both of the scalars by collinear gravitons, but we will obtain the same result for the
soft operator. This is due to the universal nature of the coupling of Glauber gravitons to
either soft or collinear particles, as well as the universal eikonal coupling of soft particles.
At zero soft graviton emissions, the Glauber operator must reproduce the tree scalar-
scalar amplitude given in Eq. . The soft operator in this case must reduce to Og =
2773 From their definitions in Eq. , the soft Wilson lines simply become the identity,
the covariant derivative becomes Pg, and P2 = P? since no soft k* flows through the

operator. This then places the constraint of
2=2C1 — Cy+ C5 4+ 2Cs + 2C5. (5.70)

At one soft graviton emission, we have 7 full theory diagrams which contribute. We cal-
culate on-shell, with arbitrary graviton polarization tensors, and soft graviton momentum k.
Using momentum conservation to write k = ¢’ — ¢, the amplitude contains several momen-
tum structures which generate matching conditions. Several of the momentum structures
generate degenerate matching conditions, and in the end the one graviton matching yields

5 constraints:

2=C1—C5+2Cs — Cr,
0=C1—Cy+ Oy,

0=4C1 —4C5 + Cy + 205 — 4Cg — 4C7 + Csg, (5.71)
8 =4Ct1 + Cy — 2C5 + 4C¢ + Cs,
4=Cy — Cs.

Combining this with the constraint from zero graviton emissions, we are able to fix 6 of the

eight coeflicients:
Ci=2, Cy=4+4C5 Cs5=0, 06:1_02/27 C;=0, Cg=-205—-C4. (5.72)
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Figure 5.3: The matching for one soft graviton emission. In (a), we show the 7 full-theory
diagrams which can contribute. In (b), we have the lone SCET diagram, which reproduces
the gravitational Lipatov vertex.

At two soft graviton emissions, there are 40 full-theory Feynman diagrams which con-
tribute. We calculate all such diagrams directly, using Feyncalc [138] 166} [165, 164] to
streamline the computation. We performed the calculation using harmonic gauge, and we
used the Feynman rules for the three and four graviton vertices [69]. The calculation may
be streamlined using other choices of gauge-fixing or choice of interpolating fields [52], but
given that the soft operator is gauge-invariant by construction, we would expect the result
to be identical (up to field redefinitions). As a non-trivial cross-check of the calculation, we
verified that the result for the full amplitude satisfies the graviton Ward identity in both
external graviton polarization tensors.

In the EFT, we have 3 contributions to the amplitude; one from the two-graviton con-
tribution in the soft operator, and two involving T-products of EFT operators, including
the one-graviton emission in a T-product with a Lagrangian insertion. Because we used
the graviton equations of motion to simplify the basis of soft operators, the first two rows
of full-theory diagrams do not exactly match the contribution from the single soft graviton
emission from the EFT. However, we do cancel the non-local graviton propagator generated

by the T-product. Similarly, the full soft propagator in the remaining diagrams on the
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second row and those on the third match the soft propagator in the EF'T T-product of the
n-s and nS Glauber operators. The difference between the full amplitude and the EFT
T-product contributions is then local, containing only Glauber | propagators and eikonal
1/n-k and 1/n-k terms.

It is then enough to match to the eikonal propagators. From the 1/n- (ki + ko)? terms
we are able to fix Cy = 2, and the remaining eikonal contributions of the form 1/n-k} sets

the remaining coefficient C's = —4. Thus we have the full set of coefficients for the operator

basis in Eq. (5.69):

C1=2, Cy=2 Cy3=-4, C;=0, C;=0, C=0, Cr=0, Cs=0.| (5.73)

This gives the full soft operator of

T S

- 4(571 )ﬁiRupua(Sﬁ)iUJr' (574)
There are a few interesting points worth mentioning about this soft operator. Firstly, the
only operators with non-zero Wilson coefficients all have Wilson lines with only two Lorentz
indices; all operators O4_g have at least one Wilson line with three or more indices in each
term. One way to potentially understand this is that only Wilson lines which have the same
transformation under diffeomorphisms as the metric are allowed in the soft operator (i.e.
traceless symmetric rank-2 tensors). This is motivated by the QCD soft operator, only soft
Wilson lines in the adjoint representation appear. The soft graviton operator also shows

striking parallels to the QCD soft operator, which can be written as

~ BC
05%cp = drann” {Pgnws,? Si 4+ SESinwPE + S g (iDs)2Sn — 28TigG s Wsﬁ} ,
(5.75)

where in the above §,, and Sy are soft gluon Wilson lines, Dg is the soft gluon covariant
derivative, and G is the gluon field strength tensor in the adjoint representation. Comparing
the soft graviton operator with the soft gluon operator, we can see that term-by-term we
can obtain the soft graviton operator by replacing gluon Wilson lines with graviton Wilson
lines, gluon field strength with the Riemann tensor, and adjoint color indices with Lorentz
indices, contracted with an external n and 7 vectors. Some similarity might have been
expected simply from double copy considerations, but it is somewhat surprising that this
manifests at the level of the operators. It could be interesting to explore this correspondence

further in the future.
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5.4.4 Matching the Scalar Soft Function

We now match the soft scalar terms in the soft operator. Here, in constructing the operator
basis, we are aided by an additional symmetry of mass scalars, that is a symmetry of shifting
by an additive constant,

o —o+ec (5.76)

The EFT of course must also respect this symmetry. This then requires that all scalars
must come with a derivative in the combinations V ,¢. This then fixes the derivatives in the
soft operator, leaving only the distinct ways indices can be contracted between the Wilson

lines and the derivatives. Thus, there are only two scalar operators one can write down:

S 12 oV
mmml.l/zl{np][np} <2nnqqq,_q Lo 2
s 2 2 1 \/*qlq nqg € ( ) n.qz L ( )

gAY i — it pnegnint —ntqY —n7gh
1 g 1 nd

+2(¢"q" + ¢"d") — (¢" + ¢*)(n-¢'7” + n-qn”) — (¢" + ¢¥)(n- ¢'7" + 7- gn*)

+ (n- ¢ + 7- gnt)(n-¢7" + a-qn®) — (@3 + ¢B)(nPa” + n'at) — 2¢- q’n“”>.

We can then match the coefficients of these operators by considering the scalar-scalar for-
ward scattering with the emission of two additional soft scalars. In the EF'T there are three
contributions, one which is a time-ordered product involving the gravitational Lipatov ver-
tex, two from a time-ordered product of an n-s and an 7ns scalar-scalar Glauber operator,
and one from the soft scalar operator. Meanwhile in the full theory there are 9 diagrams. We
are able to straightforwardly perform the calculations, and we find the Wilson coefficients
to be

cl=0, CY=-2 (5.77)

This completes the matching of the soft function for the specified matter fields. In
general, we can expect additional soft operator contributions for matter fields of different
spins and different couplings to gravity. Note that this does include a soft fermion emission
operator. In gravity, each additional matter field comes with a factor of k, which reduce the
mass dimension of the field by one; therefore two fermion fields come with a mass dimension
of 1, and can satisfy the mass dimension constraint. This with QCD, where a soft fermion
bilinear has mass dimension 3 and is thus ruled out. Finally note that, as pointed out

in the context of NRQCD |[158], an advantage of building operators with gauge invariant
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interpolating fields is that we we do not need to consider operators with ghosts on external

legs.
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Figure 5.4: Diagrams for matching two soft graviton emissions. In (a) we show the 40
full-theory diagrams. In (b) we have the SCET diagrams. The first two are time-ordered
products of known EFT operators, while the third is an insertion of the two-graviton term
in the soft operator.
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Figure 5.5: Matching for two soft scalar emissions. In (a), we show the 9 full-theory
diagrams. In (b), we show the EFT contributions. The first two involve time-ordered
products of EFT operators, while the third is an insertion of the two scalar term of the soft
operator.
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Chapter 6

Forward Scattering in Gravity

6.1 Introduction

Quantum gravity as an effective field theory, at least formally, is well understood|76] as
long as all invariants are sufficiently small compared to the fundamental scale M. In this
regime the non-renormalizability of gravity is tamed save for the fact that as we aspire
to higher accuracy we introduce more unknown UV parameters that must be fixed from
experiment, or matched from some UV completion. The renormalization group flow into
the IR is not terribly interesting since all logs are power suppressed and there is no limit in

which a resummation can be done systematically.

However, we know this can not be the only kinematic regime for which we can maintain
calculational control as, after all, we certainly can predict astronomical orbits with high
accuracy. This super-Planckian scattering, corresponding to the limit s > t, i.e. the so-
called “Regge” regime, must be within our calculational reach even though the graviton
coupling scales as s /M;?l and t/Mgl when the emission occurs off of energetic/soft partons.
Note that even if we work in the regime s > Mgl > t, we are immediately faced with a
severe power counting challenge given the growth of coupling in the super-Planckian limit.
In fact, matters are made worse by the existence of large (“Regge”) logs of the ratio s/t,
and, more importantly, this regime of forward scattering is enhanced due to the t-channel
graviton exchange by a factor of 1/¢.

The super-Planckian limit is a double edged sword. On the one hand, the growth of
the cross section in s, at fixed ¢, leads to, at least naively, a violation of unitarity, but
also pushes the process into the semi-classical (eikonal) regime (for an extensive review
of progress using the eikonal approximation see [72]) over which we would expect to have
calculational control. In the case of massless particle scattering, the classical picture of the

initial state consists of two Aichelburg-Sexl shock wave metrics, and for impact parameter
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b ~ 1/t large compared to the effective Schwarzchild radius Rg = 2G+/s, is tractable by
classical GR[81]. As the impact parameter diminishes we reach the regime of black hole
production and a thermal final state, as per Hawkings’ result. Thus it seems that, at
least for t < Rg, super Planckian scattering is dominated by IR physics. We might glibly
conclude that we may maintain calculational control by simply working at large impact
parameter such that only-non local interactions will contribute, since contact interactions
will be suppressed for localized incoming wave packets. However, this is premature as it
is possible for local operators to mix with non-local operators via soft exchanges of gauge
bosons. In fact this occurs in NRQCD [50, (128| [39], the theory of non-relativistic bound
states. But as we shall discuss gravity does not allow for this mixing to happen for the class

of observables which are of relevant to this work.

The goal of this chapter is to build a Lagrangian formalism which allows one to calculate
systematically in a double expansion in ag = t/Mgl and a¢ = st/M;}l. These ratios control
quantum and classical corrections respectively. In addition we will be working to leading
order in \ = \/1% Our motivating factors for generating this formalism are: Formally, we
would like define, in a gauge invariant operator formalism, the notion of a Regge trajectory
and a BFKL equation for gravity, and to search for commonalities between QCD and gravity
that go beyond what is known in the double copy relations |35 |34]. Practically, to show
that this a Lagrangian effective field theory formalism can greatly simplify calcuations of

the Regge trajectory, as well as higher order corrections in the PM expansion.

Significant effort has been put into the calculation of higher order PM corrections to the
classical scattering angle for the purposes of increasing the accuracy of parameter extractions
for binary inspirals. While the PM expansion is not a systematic expansion in either the
relativistic or non-relativistic regimes, it does resum a subset of relativistic corrections
and is believed to increase the accuracy of models which interpolate between the PN and
relativistic parts of the inspiral such as the effective one body model [44]. There are various
ways of approaching these corrections, including using the classical world line approach
[98] in the PM expansion [74], the QFT world line approach [140, 77|, and the S-matrix
approach [148, 36| |33]. All of these calculations utilize the physical limit, s ~ m, and since
we will be considering light-like scattering, our results will only agree with a subset of the
contributionsﬂ The massive and massless eikonal theories are not continuosly connected,
and thus the mass effects must arise from distinct theory, only to be touched upon below,

from the massless case.

As concrete calculations in this chapter we will show a simple way to extract the, mass

independent, classical log at 3PM, as well as the leading order Regge trajectory for which

1The soft loops, are insensitive to the existence of a mass.

102



the two calculations in the literature [15 |137] seems to disagredﬂ It is our hope that
by illuminating the all orders structure of the series we may be able to perform suitable
resummations.

The technical details of our calculations will be couched in terms of EFT language.
However, in an effort to make the physics accessible to a more general audience, we have
relegated most of the EFT details to appendices. The EFT is the scaffolding that allows
for all orders proofs of factorization of the leading order in t/s contribution to forward
scattering. That is, the amplitude can be written as a convolution of soft and collinear

functions

(0) = (On)(05)(On), (6.1)

Readers interested in generating fixed order results can do so using the full theory and using
the method of regions [167, 21, 168] to find the appropriate integrands dictated by the EFT.
However, the resummations are based upon operator rapidity anomalous dimensions which
are defined within the EFT.

There are several existing approaches in the literature to studying the super-Planckian
limit. Early work tended to focus on obtaining the leading classical Eikonal phase through a
variety of approaches [1}, /170, 145]. Amati, Ciafaloni, and Veneziano (ACV) expanded string
amplitudes in the semi-classical limit[11, |7, 9, |10], which allowed them to extract the two
loop contribution to the classical phase. More recent approaches involve Wilson lines [137,
129] and double copy considerations [162} 163, 6, 161, 146, 153, (151} |152]. Lipatov [126]
introduced “effective actions” for high energy scattering which involved ”Reggeon fields”,
which is quite distinct from our approach; several other effective actions approaches closely
related to Reggeon fields have also appeared in the literature [114, 8, 12, 123]. Recently the
authors of [93], have given a nice explanation of the differences between Reggeon fields, in

the context of QCD, and the theory formulated in [159], upon which our theory is based.

6.2 Lessons from YM Theory

To gain insight into gravity in the Regge limit it behooves us to consider the case of YM
theory which is, in some ways, simpler than gravity, since the coupling is dimensionless
so power counting is almost trivial, but in other ways more complicated due to the color
structures that arise as we increase the orders of our calculations. However, as we shall see,
the structure of the gravitational theory is considerably simpler than QCD once we know

how to tame the seemingly non-perturbative coupling behavior, as will be discussed in the

2The Regge trajectory is IR divergent and thus the local pieces are regulator dependent. However, the
results in [15||137] also disagree in their log(t) dependence of the trajectory which should be independent of
the regulator.
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next section.

YM theory has the nice property that hard processes are power suppressed EL as a
consequence of the fact that it is classically conformal. Let us first consider the case of a
generic hard scattering process away from the forward limit, where we integrate out the
hard modes and match onto a theory of light-like scatterers. The systematics of this theory
are based on a double expansion in a; and A/Q, where Q ~ s ~ t is the hard scattering scale
and A is the appropriate IR scale for the observable of interest. The amplitude will contain
large (double) logs of the ratio Q/A? whose resummation can be achieved by working in the
EFT called SCET, (Soft-Collinear Effective theory) |17, |16} |L8]. Some of these logs are due
to loops or large virtuality (“hard loops”) which can be resummed using renormalization
group techniques, while other logs, of the ratio s/t are actually due to the large ratio of
rapidities which can be resummed using rapidity renormalization group (RRG) methods|57,
54].

Once we consider the Regge limit the power counting changes drastically, as the higher
dimensional near forward scattering operator which arises from the exchange of a so-called
“Glauber gluon”, becomes order one. This is not to say that there are no near forward
interactions in a hard scattering event (all invariants being large), however, it can be proven
IGIIEL that for sufficiently inclusive observables these interactions cancel up to corrections
which are suppressed by the hard scattering scale. Thus in the Regge regime (no hard
scattering) the forward scattering interaction dominates and amplitude. The interactions
are characterized by the exchange of a Glauber gluon with light-cone momentum scalings
p* ~ /3(A\%, A2, )), which are off-shell (pyp— < p?) and can be integrated out, leading
to an interaction which is non-local in the transverse direction. Theses gluons are called
“Glauber modes” as the analagous mode in QED is relevant for quantum optics. The
canonical definition of SCET does not include these modes, which lead to a generalized
version of SCET, GSCET, [159]. The resummation of these Glauber exchanges leads to
the eikonal phase characteristic of the semi-classical nature of the near forward scattering
process.

Let us consider the form of the one loop amplitude

Qs

t S
M ~ ; (1 +imCrasT[e] <2> + Chag log<t) + .. (6.2)
1 _
Here we have ignored color which leads to complex structure at higher orders. It is important
to note that there are no hard loop correction to any order for forward scattering kinematics,

as such contributions are all power suppressed by factors of ¢/s [159]. The imaginary term

3For on-shell operators. i.e. those which only contain physical polarizations.
4All factorization proofs for hard scattering observables in SCET, to date, assume that Glaubers do not
contribute.
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in Eq. is the avatar of the classical phase and the large log(_it), which needs to
be resummed to regain calculational control in the asymptotic limit, leads to the “Regge
trajectory”lﬂ There is storied history of the resummation of these logs that goes under the
name of “Reggeization”. Gribov’s original approach [99] to the problem has led to a number
of perspectives including the classic work of Balitsky, Fadin, Kuraev and Lipatov [88],
Lipatov’s effective action [124], and more modern approaches in terms of Wilson lines|13,
46|, 47, 171} [90]. For an historical review see [66]. In some instances, e.g. in the anti-
symmetric octet color channel, the resummations of these logs leads to so-called Regge
form of the amplitude where the amplitude can be written as ﬁ

M ~ C(as) (:)a(t) :

(6.3)
a(t) is the, infrared divergent, Regge trajectory. This form of the amplitude holds up to
next-to leading log in general 78] and to all orders in the planar limit [120]. Amplitudes of
this form have “Regge pole” behavior since they arise when there is a pole in complex angular
momentum plane. This is as opposed to the case where cuts arise and the amplitude takes
on a more complicated form. Recent progress has shown that there are relations between
a(t) and the series in «y that defines C' |65, [144]. In addition, it has been shown that, by
considering ampltiudes with definate crossing symmetry, that unitarity implies that there
are relations between the Regge trajectory and the eikonal phase |[157], as well as between

various anomalous dimensions.

6.3 The Gravitational Case

Now let us return to the gravitational case. We would expect the amplitude in the grav-
itational case to take a form identical to (6.3)). However, as discussed in the introduction
the hard scattering S-channel operators are enhanced by powers of s /M;?l- For instance, for
scalar scattering the tree level s-channel graviton exchange will generate a local operator

with a Wilson coefficient that scales as s /Mﬁl.

®The Regge trajectory is defined at the running of the octet operator.
5In momentum space the eikonal phase is not manifest, but instead the series C' includes both classical
(eikonal) and quantum contributions.
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Any observable sensitive to this operator will not be under calculational control. In fact, we
could insert higher dimensional operators with unknown Wilson coefficients at the vertices,
and they too would be super-leading. Notice that simply specifying the kinematics as being
Regge does not eliminate the contributions from such operators. However, if we consider a
set of observables (O) as being those for which the incoming wave packets have a compact
region of support and are separated in the transverse direction by an amount greater than
Schwarzchild radius, then operators which interpolate for a fixed number of partial waves
wont contribute. It is interesting to note that this is NOT the end of story, as soft emissions
can mix local and non-local operators. In fact, this is exactly what happens in the case of
non-relativistic bound states [169, [131], such a quarkonium where the annihilation diagram
generates a local color octet T* ® T*d(z) potential that gets corrected by a soft exchance

as in this diagram [7]

that generates a counter term for a non-local potential V(x) ~ T% which would contribute

to the set of observables O. Physically we can imagine two widely separated partons one of
which emits a soft quanta which shifts its momenta, leading to a head on annihilation after
which the quantum is reabsorbed and the final state is again well separated. In NRQCD this
poses no challenge to the power counting since the annihilation graph is down by ag ~ Lﬂ

We may worry that something similar can happen in the gravitational case and indeed it
would, however only if the the matter propagator assumes the dispersion relation £ = %,
that is the soft exchange would cause the source line to recoil and thus the matter lines
are not eikonal, and must behave quantum mechanically which, in turn, implies mv ~ 1/r
or L ~ 1, which is outside the set O. This argument applied to massive partons, whereas
here we are interested in the massless case. However, the same conclusion can be reached
in the massless case as the diagrams with the exchange of a soft graviton will be insensitive
to g ~ v/t for observables within O. Had this not been the case it would have meant that
the matching from the UV completion of gravity to Einstein-Hilbert gravity would have to
exponentially suppress all of the dangerous operators.

Finally, one may worry that the exclusion of the s-channel operators will pose a challenge
to the Ward identity once we put gravitons on external states. In the EFT the Ward identity

must be satisfied order by order in each of the expansion parameters. As we shall see, by

"In the EFT NRQCD [50, [128| [39], this gluon is called “Ultra-Soft” because all of its momentum com-
ponents scale as mwv?, where v is the relative velocity in the bound state.
8In the bound state the power counting is such that a ~ v.
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building operators using explicitly gauge invariant building blocks we are assured that that
the Ward identities will be satisfied and the contribution from local interactions (s-channel

processes) will automatically be included ﬂ

6.4 Glauber Gravitational SCET

6.4.1 Power Counting

There are multiple kinematic scenarios of interest depending upon whether or not the scat-
terers are massive or not. In this chapter we will consider massless case. As mentioned in

the introduction the EFT will be valid when the following hierarchy is satisfied
5> My > t. (6.4)

As in the case of QCD we will be working to leading order in the parameter A = \/t/s.

However, we will be working to all order in the parameters

t st
ag=-5<1 ac=—7 <1, (6.5)
Mpl Mpl
which control the quantum and classical loop corrections. a¢g = Aff—ﬁ < 1 implies that
l

classical non-linearities are sub-leading such that we are not in the pregime where black
hole formation occurﬂ However, we can study the approach to black hole formation as a
function of ac.

As opposed to QCD, the gravitational Glauber interaction is power enhanced, i.e. 1/\.
Such a state of affairs is usually a death knell for any EFT since power counting forces us
to rescale the action such that the superleading interaction scales as unity, which would
make the kinetic pieces sub-leading, and the theory would have no propagating degrees of
freedom. However, since the Regge limit is a semi-classical in nature the amplitude has
sufficient structure that calculational control can be maintained. To see this note that the
semi-classical nature of the process ensures that the amplitude can be written in impact

parameter space 72| in the form

Mb,s) ~ [ (1+ S 0y Ci(bs))) e Timo@eDib) _ 1) 6.6
Q

=0

9This may seem strange from the point of view that local interactions are suppressed. However, unphysical
polarizations on external lines can lead to leading order local contributions which will automatically be
accounted for in the EFT operators.

"Here ¢ is the typical momentum in one graviton (Glauber) exchange, which is called tingividuar in [9}
10|, and should not be confused with the physical ¢ which results from a coherent field of Glaubers which
constitutes the shock wave.
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(0)

where 5001 is the Fourier transform of the leading order Glauber result

0y = Gt (2b*)T (). (6.7)

The function D(bs) is a series of logs.

Given this form of the amplitude we may treat the kinetic term as being as the same
order as the Glauber interaction. Furthermore this form of the amplitude allows us to
cleanly separate the classical from the quantum E . This need not have been the case

given that we have three dimensionful parameters (s, ¢, Mgl), the dimensionless couplings

A, ag and ac are not independent (0;—28 = «¢). This would not be a problem save for the
fact that the theory contains (Glauber) operators which scale as inverse powers of A\ which
complicates the power counting. At the diagrammatic level we may distinguish classical
and quantum corrections when considering soft gravitons as any soft loop that does not
involve an eikonal line will be quantum mechanical. In the massless case, as we consider
here, we run into the complications

Notice that a direct calculation of terms which scale as powers of ac would not suffice to
extract the classical piece since, as we can see from the form of the amplitude, the expansion
of the exponent will yield powers of a¢ (from the leading term) that will hit quantum terms
in the prefactor and generate classical scaling contributions ( faé = a¢). Figure one shows
the general structure of the series. We see that the classical contribution skips orders in
the PM expansion since we need an extra Glauber exchange to get a factor of s/Mgl to
accompany a quantum suppression of t/Mgl. The RRG sums all the logs along the green
lines, as each step to the right generates another log, whereas vertical motion does not.
The bottom green line generates the leading order Regge trajectory. These logs can arise
from either soft or collinear emissions. As we will discuss below in the EFT all diagrams get
contributions from soft and collinear partons. In the soft sector it is easy to determine which
diagrams are classical and which are quantum, as any loop which does not involve an eikonal
line is necessarily quantum. The RRG running of the soft function sums diagrams which
involve adding rungs between Glauber lines will include both quantum as well a classical
piece. It also sums soft eye graphs which are purely quantum mechanical. In the collinear
sector the massless parton can split E and the existence of a collinear propagator in every
loop is no longer sufficient to ensure classicality. Nevertheless, if one is only interested in
logs one can calculate solely in the soft sector since the logs are all fixed by the anomalous

dimensions which can be calculated by choosing to work either in the soft sector or the

111 the massive case there is an alternative path one can take by working in an EFT of potentials. Then the
super classical terms that show up in iterations are canceled when matching onto the EFT [Neill:2013ws].

2When working in the limit where s ~ m?, collinear emissions are no longer relevant and the source
always behaves classically, and can be treated as in NRGR [98|.
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Figure 6.1: The structure of the perturbative series. The blue circles correspond to classical
contributions in the Post-Minkowskian expansion. The pink circles are super classical (box
diagrams) while the greens lines indicate quantum corrections from soft and collinear loops.
The classical contributions occur at odd orders in the PM expansion. Each soft/collinear
loop generates a log while Glauber loops generate im.

collinear sectors EL as will be discussed below. As one goes to higher orders in the quantum
expansion one must include power corrected Glauber operators which can be lifted up by
subsequent Glauber exchange. In this chapter we will not be working to sufficiently high
order for this to be an issue.

If one wishes to power count by diagrams instead of operators, it is simple to read off the
scaling of a given diagram. Each matter vertex gives as factor of s, while each matter line
gives a factor of 1/4/s. All vertices give a power of 1/M,; and given that the amplitude for
scalars is scaleless the remaining units are made by powers of ¢ with a minimum exponent
of —1. Note that each operator scales homogeneously with A but not in ag, or a¢, thus
even though those couplings are ratios of scales we should think of them in the same as
we would ag in YM theory. Also all amplitudes are analytic in s since there are no hard
momenta flowing through the loops. This seems to fly in the face of the Regge logs, but
in the EFT the s dependence only shows up as a boundary value for the solution to the
RRGE. Counting using operator insertion is simpler, since each Glauber exchange generates

a factor of MLQI while each soft vertex generates a factor of | /ag. There is additional overall
p

131n the EFT the full amplitude has no rapidity divergences which cancel between the collinear and soft
sectors.
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factor of 7 in the matrix element. Thus the soft eye graph, e.g., in figure (6.28) which in

this case arises due to the time ordered product of two collinear soft Glauber operators is of

S

order <§2> where the quantity in the brackets is the scaling of the leading order Glauber
pl
exchange.

6.4.2 The Action

As mentioned in the introduction, the scaffolding of our calculations will be Glauber SCET,
and here will will quickly review this topic in preparation for the introduction of the crucial
factorization theorem upon which our analysis hinges. For the case of hard scattering
a version of SCET for gravity was developed in [24) 149]. Here we will be considering the
complementary case which describes the Regge region. Some of atomistic gauge invariant
objects upon which we build our theory can be ported over from the EFT for gravity for
the case of hard scattering in [24} [149]. The EFT for near forward scattering in gravity is
structurally very similar to the case of YM theory [159]. The starting point for building the
EFT is to determine the modes necessary to reproduce the IR physics of the full theory.
The relevant modes are fixed by determining, given the relevant kinematics, the kinematic
regions for which IR singularities arise. There is no distinction between the modal analysis
in gravity and in YM theory, though the power counting of the modes fields components are
different (see below). For high energy scattering the relevant modes |E| correspond to soft (s),
collinear (n) and anti-colinear (7) where the light cone momentum scale as p§ ~ (A, A\, \),
pho~ (1,A2,)) and p& ~ (A2,1,)), respectively. Here A\ ~ \/t/./s is the power counting
parameter. Any prediction will be made in the context of a triple expansion in A, a¢ and
ag, though we will only work to leading order in A. Both soft and collinear scalar modes
exist in the theory and both fields scale as v/X. The scalar soft mode loops will not generate
rapidity logs and wont play a role at the order we will be working. In the de Donder gauge

the polarization of the collinear graviton field will scale as (in the (4, —, L)) basis

by
hit, ~ 3 (6.8)
and the soft graviton scales as .
The total Lagrangian is written as
L=L,+Ls+Ls+ Lg. (6.9)

where £, + L7 + L correspond to the Lagrangian for soft and collinear modes while Lg

'4This corresponds to what is known as SCETIIL There is also an SCETI where where the Ultra soft
modes replaces the soft mode and has p ~ A2. The choice of observables determines which of the two
theories should be applied.

110



accounts for the factorization violating interactions, i.e they connect modes in different
sectors, that take place due to Glauber exchange. The theory has three distinct gauge
symmetries (diffeomorphism invariances), collinear, anti-collinear and soft, and one can
build the action from gauge invariant operator building blocks. It is because the leading
order action can be factored in this way that is it relatively simple to write down factorization
theorems when the Glauber mode is included, as it is the only mode which has the ability
to connect various sectors. Here we are only interested in bosonic scattering so the collinear
partons will be labelled ¢ and h for the scalar and graviton respectively. Glauber exchanges

will generate the following set of non-local (in the transverse plane) gauge invariant operators

1 1 1

Oﬁfn = 02 732 Osﬁog Oan = 02732 Os PQ OZ)

Ot = O,‘?L’Pl O, P—Oh Oth — (’)Zpl 0, Pfoh. (6.10)
1 1 1 1

On the left-hand side the subscripts indicate that these operators involve three sectors
{n, s,n}, while the first and second superscript determine whether we take a (scalar) quark

or graviton operator in the n-collinear or n-collinear sectors.

6.4.3 The Need for Power Suppressed Operators

If we are interested in higher order corrections we will need to include operators suppressed
by powers of A\. This is due to the superleading A-scaling of the leading power Glauber
Lagrangian, which scales as (’);fsn ~ ]\;2 ~ /\12 ag. As we can see in Fig. we may
add leading power Glaubers to obtain power enhancements. A power suppressed operator
Oy, which scales as O ~ A%k > 0 may then be inserted into a diagram with k£ 4 1
Glaubers to have the same A scaling as the tree amplitude, and more Glauber insertions
then served to further raise the enhancement. Sub-leading operators represent quantum
corrections and thus if we are interested in classical pieces one would think that they can be
ignored at the outset. In general this is true, as the interference like terms between super
classical and quantum will not contribute to the classical phase in Eq. . However,
there are exceptions, as there are power corrections to the Glauber operators that lead
to classical corrections that must be included in the classical phase. The need for power-
suppressed operators is not unique to the SCET approach to forward scattering in gravity
presented here. In the Heavy Particle Effective Theory (HEFT) formalism for example,
power suppressed, or quantum, operators are known to be necessary for higher order classical
results [63, |40, |41}, 103].
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6.4.4 Factorization of the Amplitude from Glauber SCET for YM

Using this action we can write down a factorized form for the amplitude that looks effectively
two dimensional. To include effects of the Glaubers within the EFT following [159, (144 |93]

we start with the time evolution operator

T
UlabT) = Tim / [D¢] exp {z /_ Td4 v (L9 (x )+£g(0)(x))], (6.11)

T—00(1—i0

one then expands in the number of Glauber potential insertions attaching to the n and n

projectiles, given by ¢ and j respectively, so that

exp [z /_ 'z (EH(O)(x))] = 1+¥ZU@J). (6.12)

For any number of Glauber potential insertions, one can then factorize the soft and collinear
operators to give a factorized expression for the amplitude for scattering of projectile xk with

k' is

gD / / Jen (i e:m)Sovan (i {0} e ) war (11 )

(6.13)

where, following the notation in [93], we defined

// N+M/HH B st (5 1y — )67 (5 s — ). 6.1
Lovan  NIMI - 2 Lo e

x and k' label the external states, i.e. scalars or gravitons. Note that in Eq.(6.13) all of the

Glauber light cone momentum integrals have been performed, as have all of the soft and

collinear loops, that is why J, .S depend upon the regulators ¢ and 1. All of the Glauber
loops correspond to box integrals [T_SIWhiCh are rapidity finite and give a result independent of
the perp momenta, since the Glauber light-cone momenta are dropped in the soft function.
After performing the Glauber energy integral by contours we then use the result for the

rapidity regulated k. integration

[dk.] 2k, _ 1
2 N — 1
/ -2k, + A+ic v 4 (6.15)

15Cross box integrals vanish with this regulator.
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More generally it was shown in [159] that the n-Glauber box diagram generates a factor of
% which is necessary to form the semi-classical phase. This explains why the amplitude is
defined with the factorial prefactors in Eq.(6.14]).

The jet function are defined as time ordered products, e.g. at the one and two Glauber

gluon level

Iy = [ dt | T(OF + Ok o) | )

J(ki,K)) = /dﬁdﬁ@ | T((05 + Op) (kL,23)(05, + Op)(kv,at) | p), (6.16)

The jets are written in this way because the combination (Oﬁ + O, see equation 1)
for the definition, is an eigen-vector of Vd%. At tree level the individual jet functions for n
Glauber exchange
0 1 [ RF\"
Jq(m) = (n-p"* (5)

I = (bee’)? (np)"™ (5

)" (6.17)

where L
P1L - paLitn

6.18
n-p2 (6.18)

b,uz/ =n- PIQT/ - ﬁupTJ_ - ﬁVpZJ_ +

For p1/p4 the incoming and out going momenta respectively. The tree level soft function

for (i,7) is given by
0 J Jj—1 )
S((i;)(m; 1) =200 [T 1A [T 0% (e — 10) (6.19)
a=1 n=1

Note that S((?)l) = 2ili and Jl(o) =(n -p)Qg, such that the leading order, one Glauber, tree

level exchange gives
2
K
My = —s*—. 6.20
0= 55 (6.20)

We will need the form of the tree level results for the purposes of renormalization.
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6.4.5 Summing the Logs using the Rapidity Renormalization Group (RRG)

While the amplitude is free of rapidity divergences, the individual components are not, and
they obey the RRG equations

0 d J
Vo Ju(i) = Z Ji(i) @ V(i)

7=1
a o o0
VS = = D Viw @ S = D Sk © Vg (6.21)
=1 =

7(i,j) are the rapidity anomalous dimensions, which will be defined below.

In Yang-Mills theory Each J; and S; ;) is decomposed into irreducible representations
of the SU(N) gauge symmetry and operators with different numbers of Glaubers, but
in the same irrep, can mix (for a discussion of the general structure see [93]). This is one
complication that will obviously not arise in the case of gravity which will present a different
set of challenges. Another significant simplification that arises in the gravitational case is
that Sy n o< 0y v due to RPI invariance which is the invariance of the physics under small
deformations of the choice of light cone directions for the partons [134]. Which is to say
that, in the EFT we must choose a large light cone momentum around which to expand
and there is arbitrariness in that choice. Technically this correponds to invariance under a
shifts of the light cone directions n and 7 that leave the inner products n-n =n-n =0 and
n-n = 2 invariant. In the case at hand we will utilize the fact that RPI implies that every
amplitude scales as n®a’ with a = Any amplitude can only depend upon the product
of the two large incoming (conserved) light cone momenta n - pn - p. Each insertion of a

1

Glauber graviton generates a factor of (n-p~!,n - p~!) from the associated collinear and

anti-collinear propagator to which they connect i.e. if the collinear/Glauber momenta are

p/k then
1 1
~ . (6.22)
p—k)? (k- EL
(P=k®  npm-k— )

Thus the number of insertions of Glaubers on the top and the bottom must be the same.
This is a significant simplification from QCD where diagrams such as the “tennis court”
diagram arise at three loops which vanish in gravity. This result holds independent of the
type of collinear parton being considered. In QCD we lose this constraint because the

numerators cancel out these additional powers of the light cone momenta. Operationally,

'SThis is called RPIII in the language of [134].

114



the vanishing of diagrams with a different number of Glauber connections on the top and
bottom of the diagram arises due to the vanishing of the tensor integrals. It might seem
curious that we can find a diagram which is not RPI invariant given that the action is RPI
invariant. But one must recall that J and J are composed of time ordered products of
non-RPI invariant operators. Thus if we wrote the amplitude in the form J ® S ® J, we
will only get a non-vanishing (RPI invariant) result if J and .J have the same number of
Glaubers attached to them.

Now that we know that S is diagonal this simplifies the RRG equations considerably.

In addition it allows us to write down the following simple constraint
Ty @+ ® Ty — i ® Sy — Swy @75 =0, (6.23)

which follows from the fact that the full result must be independent of the v. Note that

since S is diagonal we have simplified its index structure.

With this simplification we have

J{uheny) = A Tk e0)Z) (i (L} e )

(@)
S (tid e = [ . / AL s o S 040, 2P e )

where the left hand sides are bare quantities which have poles in 1. Note that there is
€ dependence in the renormalized quantities because these objects are not IR safe. The

integrations are defined by

_ (= (K] N~
/L(A) - Al / H (ki)é 0% ( Z kT —q1). (6.25)

a=1,A a=1,A

The anomalous dimensions are defined by imposing

V%Ji({ZLi}’ e,n,v) =0, (6.26)
and are then given by
i d _
7P = —(VEZZ"])(Z{) L (6.27)

where the bold faced lettering denotes the convolutional nature of the equation. Due to our
choice of normalization in the convolution eq.(6.14]), the Z factor has units of plus two.
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6.5 The Rapidity Renormalization Group and the Regge Tra-

jectory

Let us calculate the leading order running of the S(; 1), which will yield the Regge trajectory.
This correction is down by a factor of g relative to the Glauber contribution. There is
only one diagram to calculate in the EFT, the so-called “eye-graph”, which if opened up
into the full theory would correspond to the soft graph topologies corresponding to vacuum
bubble, box and cross box graphs. The flower graph also contributes at this order but does
not contain any rapidity divergences. The same can be said for the scalar vacuum bubble.
To calculate the anomalous dimensions we are only interested in the rapidity divergent term

which is given by

I Kt s? w? [d¥ k]
= —1 3 —2¢)¢° / —_—
éis 8mn ( i k2 (ki —qu1)?

Kis?w?

g (3 20B[L 1] <2t> . (6.28)

i

Since there is only one Glauber exchanged the renormalization is multiplicative, as

opposed to convolutive. We then can write
Sﬁ,n = 2(31,1)5517 (6.29)

Here we have introduced Z as the multiplicative renormaliation factor. The anomalous

dimension in this case will also be written as ¥(; 1), since the RRG is multiplicative.

Recalling that that at leading order S(;;) = 2it, and that two factors of xs/2 get
absorbed into the J’s we find

—t

(3 - 26)B[1,1] <u2) o (6.30)

55 K2t w?

which leads to the RRG equation

1,1 -
—0D — 58 ) (t)Sk, (6.31)



with ’y(Sl’l) being given by

- K2t —t\ "¢
B = 120801 (5) (6.32)

We way then identify wg(t) = _%:yg 1)(15) as the graviton Regge trajectory

K2t
3272

(3_26)3[1,1]@;)_6 i (—§+310g;+2+0(e)). (6.33)

t) = -
wet) 1672

We can compare is this leading order Regge trajectory found in the literature. Our
results agree with those given in [15], for the physical non-local piece. The only other result
that we are aware of for the Regge trajectory was given in [137]. The log(t) coefficient seems
to disagree with ours result, but the result in [137] has dependence on both ¢ as well as an
impact parameter z (the transverse separation between the Wilson lines), so it’s not clear

how to compare.

6.5.1 The Systematics of the Regge Trajectory

The Regge trajectory is defined as the IR divergent anomalous dimensions of S(; 1) which
is not physical. Nonetheless, it is of considerable theoretical interest. In this chapter we

have calculated the leading order trajectory which sums terms of the form ﬁ log<_it). For
pl

this to be a sysematic resummation we would need ﬁ log<_it> ~ 1, at least for Einstein
pl

Gravity, since the existence of counter-terms starting at order (ML,?Z)(} will dominate higher
order terms in the re-summation if the criteria above is not met. The same conclusion
applies to the running of higher dimension soft operators (or collinear for that matter), and
their subsequent BFKL type of equations. There is evidence that N = 8 supergravity is
finite, having the same UV behavior as N = 4 SYM theory [27]. If this were indeed the case
then resummation program for N = 8 [162} |163] would indeed be systematic. However, even
that conclusion would be model dependent, as the lack of divergences, while compelling,
does not necessarily imply that the counter-terms, the existence of which are still being
debated [111], don’t contribute to the amplitude. If the theory were truly UV complete

then these contributions would vanish and resummation would be systematic.

6.6 The Gravitational BFKL Equation

In this section we derive the gravitational BFKL equation, which was first given for the total
cross section in [127]. As shown in [93], the BFKL equation is derived in the EFT through

'"Note that there is an additional factor of 1/2 because the trajectory is defined as M ~ (s/ — t)~.
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Figure 6.2: Diagrams needed for the renormalization of S(39). The first two diagrams are
soft eye insertions into a Glauber rung, while the third diagrams is H graph.

the renormalization of S52). We perform this renormalization, and then we generalize
this result and renormalize Sy ) for arbitrary N. It is worth emphasizing that there is
nothing special about NV = 2 other than the fact that this is the first soft operator which
obeys convolutional running. There are also BFKL like equations for higher V. The caveats

about the systematics in the previous discussion of the Regge trajectory apply here as well.

6.6.1 Renormalizing S 1)

There are only two loop topologies which renormalize S 5) corresponding the H graphs and
eye graphs as shown in figure . Graphs such as those involving scalar contributions to
the Glauber polarization have no rapidity divergences. The H-graph, shown on the right
hand side of figure with no additional Glauber rungs, is calculated using the Feynman
rule for the Lipatov vertex in Fig. , and is given by

—2n/
ikbs3 N(’<¢m k’ﬁ)

8 g/(wn—kw2+iq(mf+kg+W“¢Z””V+¢Q(@;—k;+ﬁh@Zf”V-+u)DG
(6.34)

ky—kT
l//

[k, )[dr) w'™

iMyg =

)

where we have defined

D¢ = dy dad3dy,

1
./\/(k‘m k/ﬁ) = <q3_((k‘n — kﬁ)Q + qi) — (d1 + d4)(d2 + d3) — ﬁ(dﬂh + d2d3)(d1 +do +ds +dy — 2(]3_)

n vn

1
T Uk [(d1 — d3)(da — da)(d1dy + dadg) + d5(d1dy — dads)(di — dg — d3 + d4)
kb +ky |
— d3(dydy + d2d3)]>w2 % : (6.35)

dy =k, 2, dy = (knt +q1)%, ds = k2, dy = (kni +q1)%, ds = (kni — kn1)?.
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To compute the H-graph we must be sure to handle the n regulators properly, as discussed in
[93], by integrating over the O(\?) Glauber k;,, and k; components of momenta, expanding
in 7 and taking w’ — 1. In principle we must make a choice of +ie in the eikonal factors
of (k! +ie) and (k5 =+ i€), but as discussed in [159, 93], any additional contributions are
removed by zero-bin subtractions [132](which vanish), and so the result for the integral is
independent of the choice. Changing variables to k" — k, = k¥ and k" + k; = k3, we can
perform the k° integral by contours and integrate over k3 to obtain the divergent piece of

the graph

(d1d4 + d2d3)q2 d2d? + d2d>
g )L (6:36)
5 5

where for notational clarity we have relabelled k,,| and k| by k£, and [| respectively. Note

My = / (@ ku]d L] < !

—9
2671 didadsds \T*

that there is no corresponding ghost graph. The reason is that collinear soft operator is
composed of gauge invariant building blocks. Something similar happens in NRQCD [15§]
as well as Glauber SCET [159]. This is not to say that ghosts dont show up at higher
orders. Indeed, if we were to include a vacuum polarization in the soft or collinear sectors

themselves, we would require ghost loops to keep the theory unitary.

The other relevant topolgy is the double box with an soft eye subgraph. These topologies
will never contribute to any classical observable as they corresponds to cross terms between
the classical exponent and the quantum corrections in . These diagrams are simply the
one loop soft eye diagram convoluted with the Glauber box diagram in |-momenta. This
is because the soft loop is insensitive to the Glauber k* ~ A2, while soft [T ~ \. Given the
soft eye has been computed already in Eq. , we may write down the divergent result

for the sum of the two soft eye boxes as

(6.37)

, KOs w? / [d” kL ][d¥ 1] (ki + q1)*(3 — 2¢)
iMspp = —

32mn kiﬁi(kL+€L+qL)2
In the above, we have already performed the small Glauber k* ~ )2 integrals.
The factorized O(ag) matrix elements is then written as

iMp +iMspp = Jj5) @ Sl © Ty (6.38)

Expanding out the convolutions, the amplitude becomes

- 1 [k ][d? ¢, ] 0 1 0
I @850 <°)—/ T (k1)SD (ki 00) TP (01). (6.39
(2) ® (272) ® J(2) 4 ki(kJ_ + qJ_)QEQL(EJ_ + ql)Q (2) ( J_) (272)( 1 J_) (2) ( J_) ( )

Since J((g)) and J((O) are independent of the transverse momentum (from their definition in

2)
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Eq.(6.17)), we can extract S((21)2) from the amplitudes in Egs. (6.36)) and (6.37)). The bare

|§| one loop soft function then given by

2 T2
iw [HKGR(M,&) + 82 (k. — €0)3 (01 + q1)* (wa (kL) +we(kl + ‘M))} ;

8T
(6.40)
where wg is the Regge trajectory given in Eq. (6.33), and Kgp is the convolutional kernel

(K100 —qu)* + (kL —qu)*) | (B0 —q)* + (kL —qu)']
(kp —£1)? (ki —£0)*

Ker(ki, l1) = <Q4L - 241
(6.41)
The leading RRGE is then given by

0 Sy (1 01) = & [47p.] W (ki,p1)S 01) + Spgo(k ¢
Vo (22) (kL l1) = 2] P —a ) (7(2,2)( 1,01)S2,2)(p1,01) + S22)(k1, p1)V22) (PL, J_))-
(6.42)

Using the result of Eq. (6.19)) for S, ((;)2), we can then extract the anomalous dimension 7(z 9):

K2

47TKGR(’U,PL) +25" 2k — p1)pi (pr — q1)*(we(pL) + welpr —q1))-

(6.43)
This rapidity RGE reproduces the gravitational analogue of the BFKL equation, given by

Y2y (kL pL) =

Lipatov [127], in his Eq. (80). It is interesting to compare this anomalous dimension to the
one computed in QCD. There, one has[93]

'Y(AQTS,Q{(%& =da, fHBC fRBOR (K, 00) (6.44)

+ 264 P54 P22 () — 0107 (01 — q1)*(r(€L) + ar(ll — q1)),
where ap is the gluon Regge trajectory, and the QCD kernel is given by

(g — k1) + k(0L —qu)?
(01 —Fky)?

KYM(I{?J_, EJ_) = qi + (645)
The QCD and gravity anomalous dimensions have obvious structural similarities, in that
they are both the sums of a kernel representing a gluon/graviton exchange and a Reggeiza-
tion term on each Glauber exchange. Quite remarkably, there is also a relation between the

convolutional kernels. Specifically, one has

Kar(ky, 1) = (Kym(kL,£1))? + scaleless, (6.46)

18We will drop the B superscript from here on. Bare objects depedence upon € and 7 will be made explicit.
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Figure 6.3: Prototypical diagrams needed to renormalize S(y11 n41). The diagram on the
left is the IV + l-rung Glauber box with a soft eye insertion, and the diagram on the right
is the multi-rung H diagram. The soft graviton exchange can be between any two Glauber
rungs, and the soft eye can similarly be inserted into any individual rung. The H graph
contribution fo S(3 9) has no additional Glauber rungs.

where the “+scaleless” means terms which lead to scaleless integrals in the convolutions
and thus vanish. It has long been appreciated that there exists a double copy relation
between the QCD and gravitational Lipatov vertices [127} |125| |161], so it is perhaps not too
surprising that this extends to the emission piece of the anomalous dimension. The authors
are unaware of any previous mentions of this squaring relation in the literature, although

it could have been noticed as early as [127].

6.6.2 The BFKL Equation for all Soft Functions

We now extract the one loop anomalous dimensions of Sy n41) for arbitrary N. There
is a very limited class of diagrams which can contribute: N-Glauber boxes with a soft eye
insertion on one rung, or N-Glauber boxes with a graviton exchanged between two rungs,
i.e. the H diagram with additional Glauber rungs. We may write the contribution of the

amplitude then as

gk (0 1) +(0)
ZZMJH + ZZM{?EB = Jinen) ©Snvarnen) @ vy (6.47)
Jj>k J

where M}f denotes a graviton exchange between Glauber rungs j and k, and M{QEB de-
notes an insertion of the soft eye on rung j. Adding additional Glauber rungs does not
complicate the calculation of the diagrams, since, as discussed above, the soft loops are
insensitive to the Glauber k*. Each additional Glauber loop, beyond the first, adds a fac-

tor of (—i)i2/<;2§[dd/ ki1]/k; 2, as well an additional factor that arises, from performing the
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Glauber lightcone integrals, of (—1/2)" /(N + 1)!. The result for MéEB is then

; N+1 g N+1
(—i)NHLA+2N 24N )2 A% ko1 ]
ZMSEB 22N+ (N +1)! H Z kmi —qL (6.48)

T2

y / A0y k(3 — 2e)
0 (kj —€0)?

The multi-rung H graph may similarly be computed as

AN+1,442N 24N, 2 NAL g NA+1
gk (FD)T TR s*Tw [d" K]
WMy = 232N (N +1)! /(H 12 Zk 1L —qL (6.49)

=1 ml

[d¥ 0]
Kk kpi: 01,00 — ki — k
X/Ei(ﬁj_—kjj__kkL)Q (kjo ksl 00 — ki1 —kg1),

where K is given by

(6.50)

221 R22) (KM 4 el
K (k1 ki 01, 0) = ((k1+k2)4—2(k1+k2) 2 (ks + ky01) | (kily + ky 1))

(k1 —61)? (k1 — &)
The amplitude in terms of the convolutions is given by
N+1 ’ N—+1 ’
JO o g 2 JO (LN KNS II (A K1 ] II (A7 €1 ]
(N+1) (N+1,N+1) @ (N = 222N (N + 1)12 k2 2

=1 n=1
(6.51)

X S((]1\2+1 N+1) ({ka_} {Enl} (Zk 1 — QJ_> 5d/ (Z lnt — QJ_> .

(1)

Comparing the sum of Egs. (6.48)) and (6.49), we can obtain S(N+1 N41)

TN+1 12,2
(1) AN+ Dw
S(N+1,N+1) - n 87_‘_K(kzLa k:jL7€ZL7 ]L H Epj_gd pL - ka
<J p#i,j
+ D Grwa(ty) [T 6007 (41 — kpl)] : (6.52)
J pF#j
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The leading RRGE is then given by

0 (1)
va Sy (ki) {0}) = —A(N+1) <’Y(N+1’N+1)({kil_}?{Egi})S(NJrl,NJrl)({géL}?{gjl})

(6.53)
S (i v (6 b (62D )
Recalling the definition of S((N) +1,N41)
S AsB B 1t ) = 26351041 Hz H&?d (A (6.54)

we find the anomalous dimension is given by

2
. KR _
VNN =~ (N + 1) [Z gK(k‘u, kjiilia,€1) H G 82 (s — ki)
i<y mi
(6.55)

+ Y wally) [ G (lms — kmL):|~
J

m#j

A few comments are in order. Firstly, we note that although it appears that the anomalous
dimension might be imaginary for even N, this is somewhat illusory, as the factor of iV+1
drops out in the convolution. This is also the case with the overall factor of (N + 1)!.
Secondly, we note that this does return 72y in Eq. (6.43) when setting N = 1. To see
this, we apply L momentum conservation to set ks = g — k1 and #» = ¢ — ¢1. This also
reproduces 7(1,1) after setting N = 0. We simply drop the terms involving K since there is

no convolution at the one Glauber level, and we have

Y1) = it we(qr). (6.56)

The reason for the discrepancy of a factor of ig? between this anomalous dimension and the
Regge trajectory computed in Section is that this factor comes from the convolution for
S(1,1), and in Section this factor has been absorbed into the anomalous dimension, as the
convolution is trivial. For N > 2, this cannot be consistently done, and so the factor from
the convolution has been pulled out. Lastly, we mention that the anomalous dimension is
symmetric under k;; <> ¢; . This is not obvious given the definition of the kernel K in Eq.
(6.50). Under the support of the L delta-functions in the convolutions, one can see that

Y(n,N) is indeed symmetric.
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6.7 Extracting the Classical Logs

6.7.1 The 3PM Classical Log

As per our power counting discussion the first classical logs that can appear are at 3PM
(two loop) order since we are looking for contributions that scale as ac = G?st relative
to the leading order Glauber exchange which starts at O(G). The relevant logs can be
extracted from the classical piece of the anomalous dimensions of the soft function. At each
PM order there will be one classical log. We could equally as well calculate them from the
collinear piece. By working in the EFT we can considerably reduce the amount of effort
it takes to extract the log since we only need to calculate the 1/n pole, moreover to get
the log (at any PM order) we never need to calculate more than a one loop diagrams. The
price to be paid is the need to iteratively solve the RRG equations to the necessary order.
At (2n + 1) order we need to iterate the n — 1 times, so that there is no need to solve the
RRG at all at 3PM.

The eikonal form of the amplitude is given explicitly by
(14 iAg) e — 1 =iM(s,b), (6.57)

where M(s,b) is the Fourier transform of the amplitude,

M(s,b) = / dd_2qLA/“;;Lﬁ)eiQL'b. (6.58)
As prevsiously mentioned there exist terms in the series expansion of M(s, b) that scale
classically which arise from mixing between quantum and super-classical terms. However,
these terms are easily discarded at the beginning of the calculation as they are guaranteed
not to contribute to the classical phase. To see this explicitly we may consider a graph
with quantum loops with any number of Glauber enhancements that contributes to the
amplitude at the classical level. Its Fourier transfrom will be equal to the product of the
Fourier transform of the purely quantum piece and of (possibly iterated) Glauber box with
a symmetry factor. This term will cancel with the aforemention mixed terms in eq.
For example, consider a purely quantum contribution which is down by a factor of (Migl)"
I(k). To bring it up to classical scaling we need n Glaubers. Peforming the light cone
integrals generates a factor of 1/(n + 1)! and the Fourier transform then just leads to the
products ﬁ[ (b)dp(b)™. We compare this to the cotribution which arises from expanding
out the exponential to order dp(b)”. The difference in the combinatorial factors 1/(n+1) is
compensated for by the fact that in the diagram we may insert I(k) in any of n + 1 places.

The general rule that we need not worry about enhanced quantum corrections is violated
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by any quantum insertion which gives non-trivial dependence on the Glauber light cone
momentum, as this spoils the factorization in impact parameter space. As an example of
this are the power suppressed operators, mentioned in section [6.4.3

Thus to get the 3PM log we need only calculate the H graph rapidity divergent contri-

bution which is given at one loop by

2 =2\ 2¢ _
Z-Mgs,@—_log(ﬁt) 2G3s? (ﬁt) (—6 3463(1,1)3(1,1+6)+B(1,1)2>7 (6.59)

which leaves for the 3PM classical log in impact parameter space

5218 _ j10g <,,2) G352 (526%)* T(1 — 36)T(—e)? <3F(—6)F(1 + €)? 5 (8= 2)T(1 + 2¢) )

—t) b2 qloegdte 30 (2¢) r(—2)2 T'(—3¢)
, 4G3s2 (1 (i202)™

This reproduces the result 73, 71]. As a cross-check, this also reproduces the O(€®) of the
eikonal phase given in |102, 38, [70] for N = 8 supergravity. However, our result at order
¢* seems to disagree with the “possible guess” made for this term. Note the Log(s) comes
from the fact that to eliminate all of the large logs from the collinear sector, and push them
into the soft sector we choose 12 = s.

The phase is imaginary indicating that it is a consequence of real radiation. At next
order (5PM) the leading log will be real since it will arise from S(3,3) which has an additional

Glauber, each of which generates a factor of ¢. This process will continue as NV is increased.

6.7.2 Extracting Classical Logs to any PM Order

This procedure may be generalized to extract classical logarithms at any PM order by solving
the rapidity RGEs for higher Glauber soft functions. To see this consider the (2N + 1)PM

term. This contribution to the amplitude will scale as

2 2
MEN+DPM Gs® n Gts (Gs)Nal. (6.61)

Since each Glauber loop generates an enhancement of ~ s/ Mp2l, a classical term will generally
involve N Glauber loops and N soft loops. To obtain the (2N 4 1)PM term, we then need
to calculate the N-loop correction to S(ni1 n41), as this is the only operator in the EF'T
that has the appropriate number of s/M,; enhancements. That is, only need to consider
one of the soft operators at each order in the PM expansion. As a concrete example, we
have already computed the one loop correction to S(; 2, which gave the 3PM correction to

the amplitude. To calculate the log at 5PM, it seems that we need the two loop correction
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to S3.3). However we can get that log indirectly via the RRG. By computing the one
soft loop correction to S(yy1,n41), We can extract the lowest-order anomalous dimension
and write down the leading RRGE. The solution of this equation generates a series of logs
in powers of aglog(s), and so by picking out the Nth order term in the series, we have
selected the classical log generated by the RRG. Moreover, this tells us that the (2N +1)PM
contribution will generically contain log™ (s). At 3PM, we see this with the single log(s),
and at 5PM we can expect the logarithmic term to be a log?(s). These logs predicted by
the one loop RRG’s will also be the leading logs at each PM order. Rapidity anomalous
dimensions are independent of v and therefore of log(s), so the RRG can only generate a
single power of log(s) at each order. An m-loop diagram can then at best generate an ag
correction to the anomalous dimension; any 048 log™(s) terms must then be predicted by
the one loop RRG. We may then predict the classical ag log™ (s) contribution to S(y41,n+41)
just through solving the one loop RRGE. To get sub-leading logs at a given order we need
to calculate the two loop anomalous dimension but the order of necessary iterations is one
less. To avoid having to subtract out quantum interference terms we simply only include the
classical contribution to the anomalous dimensions as we did in the case of 3P M. However,
at higher orders we would expect to have to include sub-leading Glauber operators (as
discussed in section to reproduce the subleading logs.

We should mention that if we are interested in the classical problem of scattering objects
with typical size r, then this scale introduces a new set of logarithms of the ratio r/b. In

our theory, the scale r fits into the hierarchy as follows
s> M2 > 1/r* > t. (6.62)

This scale shows up as a matching scales in the problem, the relevant log will be an RG
and not an RRG log. The associated counter-term will correspond to a higher dimensional
operator of the form ¢*¢(E, B)", where (F, B) are the electric and magnetic pieces of the
Weyl curvature [53| 31}, (101}, 4, {108, 109].

6.8 Conclusions and Future Directions

We have presented an effective field theory which is valid for massless particles in the (super-
Planckian) Regge regime. To avoid sensitivity to the UV completion of GR we restrict
ourselves to observables which get no contributions from, uncontrolled, local interactions.
By utilizing a factorization theorem we have shown how to systematically resum large
rapidity logs for the scattering of massless particles. We have calculated the one loop
graviton Regge trajectory, the BFKL equation as well as the classical rapidity log at 3PM

that is a consequence of radiation losses. The factorization theorem makes manifest the
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all orders form of the series. At 2N 4+ 1 order in the PM expansion one generates a series
of Logs starting at logV~! down to log N. The logs have complex/real coefficients for N
even/odd. This is a consequence of the fact that each Glauber loop gives an additional
factor of 7. The leading classical Log at each order can be calculated by utilizing the one
loop anomalous dimensions shown in Eq. and by iterating the RRGE N — 1 times.
The next to leading logs will follow from the two loop anomalous dimensions and so on.
While in this chapter we have only considered massless particles, the leading logs we
have calculated will also apply to the case of massive particles, as the log follows from the
soft function which is insensitive to the partonic masses. As discussed in the in Chapter 5,
the couplings of soft gravitons to collinear particles is universal, and therefore the soft sector
is independent of the particle species being scattered. Furthermore, any logs computed via
the RRGE will then be universal as well. This can be seen explicitly via the equality of the
3PM eikonal phase in the high-energy limit computed in various gravitational theories with
both massive and massless scalars and various degrees of supersymmetry [9, [73, 71| (see also
[150]). In a future publication we will extend the formalism to the case of massive partons
with s > m > My. We expect that other simplifications will arise once one accounts
for unitarity constraints. In QCD is has been shown that unitarity imposes very strong
constraints on the structure of the anomalous dimensions [156]. In particular, by consid-
ering amplitudes of definite signature it was shown that anomalous dimensions (including
Regge trajectories) are related to cut amplitudes. Moreover, the full anomalous dimensions
(including both the Regge pole and cut pieces) of the two Glauber operator anti-symmetric
octet operator, can be determined from the anomalous dimension of the single Glauber

exchange operator[157]. We expect similar simplifications to arise in gravity.
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Appendix A

Conventions and Notation

Here, we list the conventions and notation used through this thesis.

We use the mostly minus metric 7, = Diag(1,—1,—1,—1) for all contexts, including

the gravitational scattering considered here, and define the usual MS factor

Ia26 — /1,26(47[')76667]5, (Al)
where we use d = 4 — 2¢ and
at) = L (A.2)
- (2m)d '

For transverse momentum integration, we will use the notation d’ = 2 — 2e.

For the light cone coordinates we define two null vectors n/n* = (1,0,0,£1) and de-

compose four vectors as follows

ﬁ‘u _ n“ m _ I
Pl=n-poytnpo+pi=0-pa-ppl), (A-3)
such that
p =n-p, pr=n-p. (A.4)

We use the super /subscript L to denote indices which are transverse to the lightcone vectors.

In particular, the transverse part of the metric is
Hv puv 1 7532 1 VL :
m =0t - gt — on'h = Diag(0,0,—1,—1). (A.5)

We often use the notation (p-k); = plmﬁykzy to denote products between the transverse

components of momenta. We may also Euclideanize the components to write p-k| =

Pk
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The phase space on shell delta function will be written as
6 (p® —m?) = 2m)d(p? — m)0(7-p + n-p). (A.6)
We also use the notation
5(k) = (2m)404 (k). (A7)

We focus on 2-to-2 scattering in the limit of s >> |t|, s > 0, ¢ < 0, which in the s-channel
we take to be (plap2 — p3ap4)7

P2 p3

[l Gl

S

e ---€-- -4 - -
P1 P4

We work in a frame such that ¢ = ¢, and

p1 = (n-p1,7p1,q1L/2), p2 = (n-p2, P2, —q1 /2), (A.8)

with ps = p2+q and py = p1—q. We then have Mandelstams t = qi and s = n-p1n- pa+O(t).
We will also need the u-channel process, which we can take to be (p1,p3) — P2, p4), which

diagrammatically is

We perform all calculations involving gluons in Feynman gauge, so that the propagator
is given by

M p V:_igl“/ A9
NELTTEE YT ETY Vi s (A.9)

Similarly, we use de Donder gauge for all graviton calculations, where the graviton propa-

gator is given in d-dimensions as

u,v p PO _ ¢ 1 Hp VO KO VP 2 KV PO A.10
22229999908 p2+i62<n no NN g_a ") (A.10)

Note that we use the same curly line for both gluons and gravitons, though it should be

clear from context which is being represented.

For the coupling constants we use as = g2/(4m) for the gauge theory case, where g
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is the Yang-Mills coupling constant, and x* = 167G = 1/2M3, with G being Newton’s

constant and Mp; being the Planck mass.
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Appendix B

Feynman Rules

Here we list all of the SCET Feynman rules used in calculations performed in this thesis. For
all calculations involving gluons, we use Feynman gauge, and for all calculations involving
gravitons, we use de Donder gauge. We just list the non-standard Feynman rules within
the EFT; any Feynman rule not listed here are equivalent to their full-theory counterparts,

e.g. the soft quark propagator is given by the full QCD quark propagator.

B.1 Collinear Quark and Gluon Feynman Rules

e Collinear quark propagator

e i inp (B.1)
27 pn-p+p? +ic

3l

e (Collinear gluon propagator

1 b v _inMV (B.2)

N SRRV = — ;
n-pn-p+pi—|—ze

e Collinear quark-collinear gluon vertex

A p
n
it

L L
L Vupu+¢2¢7u _ PaiPi 7 (B.3)

= igTA £ 2 2LV
n-p1 - p2 n-pi1n-p2

ny +
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B.2 QCD Glauber Operators

e Collinear-collinear quark-antiquark Glauber

n---»--¢--»--n

ql ! _ 87T’L2as [ﬁTA] ® [VLTA} (B.4)
! qi 2 2
R R
e Collinear-collinear gluon-antiquark Glauber
B, u C,v
n-%mmlmﬁ
D2 X p2T4q o
| = §ma, fA5C n-pan” —ntpy, —nVph + pgl-ngn“n”] VTA]
q : qi 1 31 21 - po 2
R
(B.5)
e Soft-collinear quark-quark Glauber
§——4—>— 5
qw i _ Bmios [ﬁTA] ® [VLTA} (B.6)
! qi 2 2
(R R
e Soft-collinear gluon-quark Glauber
n---b--¢--»--7
E _87TaszBC |:7iTA:| |:n knill o n‘u@u . ’I’Lljkli + ej_ k:J_ n”n”
1 o — 2 2 1 n- kf
LB P 1?4‘%(j (p1 —pa)]
S 09099909009990990 ~ 5
(B.7)

132



e Collinear-collinear quark-quark Glauber with soft emission

n---»--¢--p--n

qT:
; 8770[5‘ ABC< , nt n“qJ_ (j’f)
JC* —55509f ¢ +dip—ndg——-ngo————
T: / "2 L 2 2 nqd g
o--a--9-----7
X [?TA} ® {ZTA] (B.8)

B.3 Gravity Glauber Operators

e Collinear-collinear scalar-scalar Glauber

n------- ¢------ n
: 2 1k
gl ! i) 2 [En ] B9
| i |5 P2 Qi 5" P1 (B.9)
Ro------ 4------- n
e Soft-collinear graviton-scalar Glauber
n------- ¢------ n
: K_ 2 K P1 papﬁn“ny
: = ~i3m p2]22[2 e — o)+ B
n ' 2 q7 n-p1
1,V : P, 0
S 000000000900000000 ~ S
P e, B0 _ L (a 8)a, p) pipin’n
— n =py 07V + , (B.10)
2 2 n- Pl

with T(ab) — ab 4 ba

e Collinear-collinear scalar-scalar Glauber with soft emission
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n---»--¢--»--n

D 7/”L7V
(1211717100 :i[ﬁﬁ‘ 2} [En, 2} K <2n LA
v "2 13" | | e | P 1 (¢ —q)

nhnV n-¢'ntn? — ntq” — n¥q"
9 2 1. —d) =2 12
+2 g a—d) — 20 ma
n-qgntn? — ntq'’ — n¥q'?
_ qi q q q + 2(quqlu + ql/q/p,)

n-q'
— (¢" + ¢")(n-¢'n” + n-qn”) = (¢" + ¢")(n- ¢'0* + 71- gn)
+ (n-¢'n* + fi- gnt) (n- ¢'n” + n-qn”)

— (@} + ¢B) (¥ + n¥it) — 2¢- q'n‘“’) (B.11)
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