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Abstract

In this thesis, we study the forward limit in gauge theories and gravity using the tools of Soft

Collinear Effective Theory (SCET) with Glauber operators. For gauge theories, we derive

relations for the anomalous dimensions of hard scattering operators in terms of diagrams

with Glauber gluon exchanges from unitarity and analyticity considerations. Similar argu-

ments can be applied to the forward scattering amplitude and Glauber operators, leading

to new relations, constraints, and calculation techniques for these operators. We then gen-

eralize the Glauber SCET approach to the problem of gravitational scattering, and we use

this to study classical gravitational scattering. We find an infinite tower of large logarithms

in the classical phase, and we describe how they may be calculated at any desired order in

perturbation theory.
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Chapter 1

Introduction

The last two decades have seen a remarkable development in techniques for perturbative

calculations in quantum field theory. With tools such BCFW recursion relations for tree

amplitudes [42, 43], generalize unitarity [32], and double copy [112, 25], and a deeper

understanding of Feynman integrals[173], calculations at higher loop and higher multiplicity

are becoming increasingly common, with many results in the literature available up to three

or four loops[122, 141, 79, 90]. The study of scattering amplitudes has long been central

in collider physics. More recently, it has been realized that scattering may be applied in

a seemingly distinct problem, that of the classical two-body problem in General Relativity

(GR). Through a careful analysis of loop integrands, one is able to extract the classical

contributions to the amplitude, leaving the quantum terms behind. Due to the detection of

gravitational waves by LIGO [2, 3] and the subsequent need for high precision theoretical

predictions, the field has seen explosive progress in the past several years, with partial results

being available at fourth order in perturbation theory for the scattering potential[30, 77].

Despite the advances in perturbative calculations, the all-orders structure of scattering

amplitudes is not always well understood. In asymptotic kinematic limits however, the

problem greatly simplifies, and one can learn a great deal. A particularly rich limit is the

near forward, or high energy limit of 2 to 2 scattering. This limit is characterized by a

large center of mass (CoM) energy
√
s and a small momentum transfer

√
−t, leading to a

scenario in which the two incoming high-energy projectiles interact over large distances and

are lightly deflected. Historically, this limit has long been of theoretical interest, where it

was applied in early pre-QCD studies in relativistic scattering theory[62], as the high-energy

limit is highly constrained by unitarity and analyticity. In the 90s, this work was turned

towards QCD, where a number of structures in the amplitude were described, notably

gluon Reggeization[120], in which the gluon exchanged between the two projectiles becomes

dressed with a power scaling in s, and the BFKL equation [121, 14], which describes the
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leading s-dependence of the total cross-section in QCD. More recent studies have reframed

the problem as the scattering of Wilson lines[46, 47], and identified an infinite tower of such

structures, leading to a messy and unclear picture of amplitudes in the high-energy limit.

Somewhat orthogonally, the high-energy limit happens to overlap with the classical

limit in gravitational scattering. Given the large distance between the scattering projectiles

b ∼ 1/
√
−t, the classical angular momentum of the system is J ∼

√
sb≫ 1, which dominates

over the quantum angular momentum scale ℏ = 1. Despite the classical nature of the

problem, Ref. [9] was able to apply techniques from the QCD literature to calculate the

classical contribution to the gravitational amplitude for the case of massless scattering

at two loops. While not directly relevant to the binary black hole inspiral problem, this

calculation has served as an important theoretical cross-check for explicit calculations[72],

as well as useful input to constrain phenomenological models of black hole mergers[64].

More generally, the high energy limit is formally interesting, as it is a regime where one can

probe transplankian scattering. As long as the momentum transfer t is sufficiently small, s

can be much larger than the Planck mass, as we can reliably calculate in the case of two

stars or black holes scattering off of each other. The high energy limit has also been used

to explore the approach towards black hole formation in perturbative GR.

In recent years, an effective field theory (EFT) approach to this problem in QCD has

been developed within the framework of Soft Collinear Effective Theory [16, 19, 18, 20].

Here, the problem of forward scattering is reframed as the exchange of the so-called “Glauber

modes”. These Glauber modes are are analogous to potential modes in non-relativist set-

tings, as they mediate the forward scattering between highly boosted projectiles. Similarly

to potential modes in non-relativistic EFTs (i.e. NRQCD [128]), these modes get integrated

out of the EFT into a set of potential Glauber operators. These Glauber operators then

are used to organize the calculation of amplitudes and observables in the forward limit, and

the renormalization group (RG) running of these operators generate the structures found

in the 2-to-2 forward amplitude in QCD. The goal of this thesis is to further develop this

Glauber SCET approach to forward scattering. In particular, we show how there is inter-

esting interplay between unitarity and the EFT, which leads to interesting constraints and

new calculational techniques for the RG properties of both Glauber operators as well as

hard scattering operators. We also generalize the Glauber operators to the case of gravity,

where we use the RG properties to show how one can characterize and calculate certain

terms in the classical amplitude to high loop orders.

This thesis is organized as follows. Chapter 2 will review the salient details of SCET

and Glauber operators which are built off of in the rest of this thesis, with a particular

focus on Glauber SCET for QCD. In Chapter 3, we discuss a formalism which allows one to

use Glauber operators to calculate the anomalous dimensions of hard scattering operators.
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Chapter 4 extends this formalism to include the Glauber operators themselves and further

studies the formal implications of the methodology. In Chapter 5, we take a step back from

QCD and discuss the construction and matching of Glauber operators in gravity SCET,

and in chapter 6 we apply this EFT to the problem of classical gravitational scattering.
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Chapter 2

The

ABC(DFGJkLm2nn̄OPQ2StwxZ)’s
of SCET

In a typical scattering process, contributions to scattering amplitudes or cross-sections are

dominated by low-energy, or soft, modes and by high-energy modes which are (nearly)

collinear to the scattering states. These regions of phase space dominate as they set internal

propagators (close to) on-shell. Soft Collinear Effective Theory (SCET) [16, 19, 18, 20] then

provides a framework for describing the interactions of these modes and their contributions

to physical observables.

One of the major benefits of working with SCET is that it provides a systematic method

of resumming large logarithms which can cause a breakdown of perturbation theory. In par-

ticular, one encounters (Sudakov) logarithms of the form αs log
2Q2/m2, where Q2 is the

typical hard or UV scale in the problem, and m2 is the low-energy scale. In phenomenolog-

ically relevant cases, the two scales are widely separated, such that the ratio Q2/m2 ≫ 1,

and then numerically αs log
2Q2/m2 ≳ 1. At the nth order in perturbation theory, we gener-

ically expect a contribution of the form (αs log
2Q2/m2)n, and so we have lost calculational

control of the problem. SCET solves this issue through the separation of scales. The EFT

allows us to calculate the log
(
m2
)
, while the hard log

(
Q2
)
appears as a Wilson coefficient

from integrating out the hard physics. Renormalization group techniques then allow us to

resum the tower of large logs, often into an exponential, restoring calculational control.

SCET has been successfully applied to calculate for a number of scattering processes

relevant for QCD collider physics. More recently, SCET has been generalized to the case of

gravitational scattering. There, the focus has so far been to provide a new perspective on

the origin of gravitational soft theorems [24, 23, 22].
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In this section we provide an overview of the relevant features of SCET. In particular,

we describe an EFT called SCETII, which is used throughout the remainder of this work.

In this chapter, we will provide a description of SCET for QCD. We will return to the case

of gravity in Chapters 5 and 6.

2.1 Modes and Lagrangian

SCET describes the physics of states moving with (nearly) light-like momenta; it is therefore

useful to introduce a set of lightcone coordinates for each set of collinear states. We may

do so by choosing a lightcone vector nµ and corresponding conjugate lightcone vector n̄µ,

which satisfy

n2 = n̄2 = 0, n· n̄ = 2; (2.1)

a convenient choice is

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (2.2)

These vectors define a coordinate system, and we may decompose any momentum pµ as

pµ =
nµ

2
n̄· p+ n̄µ

2
n· p+ pµ⊥ ≡ (n̄· p, n· p, p⊥), (2.3)

where p⊥ is the component of the momentum transverse to n and n̄,

n· p⊥ = n̄· p⊥ = 0. (2.4)

Often, we will also use the alternate notation, p+ ≡ n̄· p and p− ≡ n· p. It will also be useful

to give the product of two vectors in lightcone coordinates, which is given as

p· k =
1

2
p+k− +

1

2
p−k+ + p⊥· k⊥, p2 = p+p− + p2⊥. (2.5)

Lastly, we note that the ⊥-components of momenta are always space-like. This is most

obvious in the parametrization of n and n̄ given above, where the ⊥-momenta space the x-y

plane. It is then often appropriate to Euclideanize the ⊥-components, which is denoted as

p2⊥ = −p⃗ 2
⊥ , p⃗ 2

⊥ > 0. (2.6)

Now that the notation is in place, we may describe the EFT. SCET is modal theory:

each field is then decomposed into n-collinear modes with momenta that scale as

kn ∼ (1, λ2, λ), (2.7)
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soft modes, with momenta that scale as

kµs ∼ (λ, λ, λ), (2.8)

and n̄-collinear modes with momenta that scale as

kn ∼ (λ2, 1, λ). (2.9)

These are the low-energy modes which makeup the EFT. Collinear momenta have large k±,

but they are still “low-energy” modes in the sense that they have small invariant masses,

k2n ∼ λ2, which is the same as the soft modes, k2s ∼ λ2. Often, one also finds that the

hard modes are relevant to a scattering process. For our purposes, hard modes are any

which have a virtuality of k2H ∼ λa, a < 2. The modes get integrated out of the EFT,

and they generate hard-scattering operators and Wilson coefficients. Soft and collinear

modes are sometimes referred to as being “on-shell” modes, in the sense that they have

k+k− ∼ k2⊥ ∼ λ2. Any modes which do not satisfy this, i.e. has k+k− ≁ k2⊥, are likewise

called “off-shell”. Off-shell modes are also integrated out of the EFT, and doing so builds

up Wilson lines or Glauber operators.

The fact that the various modes have different λ-scalings for different components leads

to some complications when attempting to write down the EFT. To deal with this, we

introduce the multipole expansion: we decompose momenta p into a “label component” pℓ

and a “residual component” pr, p
µ = pµℓ + pµr The label component pℓ contains the large

components p; for n-collinear momentum p, we have

pµℓ =
n̄µ

2
p+ℓ + pµℓ⊥ ∼ (1, 0, λ). (2.10)

The residual momenta then contain just the small O(λ2) terms; this includes the − compo-

nent of the momentum, but also additional O(λ2) components of the + and ⊥ components,

as adding a small λ2 piece to the O(λ0) p+ℓ and O(λ) pℓ⊥ will no change their scalings. At

leading power in the λ, the + and ⊥ components of the residual momenta will not appear

in collinear propagators, as these components are dominated by the labels.

To implement the multipole expansion at the level of the action, we Fourier transform

the collinear fields over the label momenta. Using the n-collinear quark field ξn (which we

define below) as an example, we write

ξ̂n(x) =
∑
pℓ ̸=0

e−ix·pℓξn,pℓ(x). (2.11)

At this point, we introduce the “label operator” Pµ, which picks out the label momenta of
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a given field:

Pµξn,pℓ = pµℓ ξn,pℓ . (2.12)

We may then rewrite Eq. (2.11) as

ξ̂n(x) =
∑
pℓ ̸=0

e−ix·Pξn,pℓ(x) = e−ix·P
∑
pℓ ̸=0

ξn,pℓ(x),

≡ e−ix·Pξn(x). (2.13)

This is just a rephasing of the collinear fields, but this reorganizes the power-counting so that

the large O(1) and O(λ) components of the momenta are encoded into the labels, while all

spacial dependence contains the residual momenta. As a result, we have ∂ξn ∼ λ2ξn. For soft

fields, we introduce “soft labels” k± ∼ λ for the lightcone components, and corresponding

in· ∂S and in̄· ∂S , with the ⊥-component being picked out by Pµ
⊥ still. We can also combine

these into a “soft label operator”

Pµ
S =

n̄µ

2
n· i∂S +

nµ

2
n̄· i∂S + Pµ

⊥. (2.14)

Integration over a momentum now involves both a sum over labels, both large and soft,

as well as integrals over the residual components. We formally write∫
[d4k] =

∑
kℓ

∑
k+s ,k

−
s

∫
[d4kr]. (2.15)

Likewise, we break up delta functions into label (Kronecker) deltas and residual deltas:

(2π)4δ4(p− k) =

∫
d4x eix·(pℓ−kℓ)eix·(ps−ks)eix·(pr−kr) = δpℓ,kℓδps,ks(2π)

4δ4(pr − kr). (2.16)

Here we must be careful though, as having label and residual momenta in the same coordi-

nate will lead to the residual momenta dropping out. For example, for p, k collinear with

no soft labels for simplicity, we have∫
d4x eix·(pℓ−kℓ)eix·(pr−kr) =

∫
d4x e

i
2
x−(p+ℓ −k+ℓ )e

i
2
x+(p−r −k−r )eix⊥·(pℓ⊥−kℓ⊥),

= δp+ℓ ,k
+
ℓ
δpℓ⊥,kℓ⊥(2π)

4δ(p−r − k−r )δ
3(0) +O(λ2), (2.17)

= (2π)4δ4(p− k) +O(λ2),

where the +O(λ2) comes from the residual p+r and k+r that were dropped relative to the

large labels. The δ(0)’s that appear are there formally, and recombine with the label deltas
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to given

δp+ℓ ,k
+
ℓ
(2π)δ(0) = (2π)δ(p+ℓ − k+ℓ ), δpℓ⊥,kℓ⊥(2π)

2δ2(0) = (2π)2δ(pℓ⊥ − kℓ⊥). (2.18)

In SCETII problems, one never encounters residual ⊥-momenta, and therefore it is con-

ventional to go ahead and combine deltas as above for the ⊥ components. In general, one

does not typically need to be too careful about label vs residual momentum in calculations

once factorization theorems have been established, but the formal manipulations needed to

establish factorization do require a careful treatment. We will see an example of this when

dealing with Glauber operators.

The action for the effective field theory1 at leading power in λ is given by

SSCET =
∑
n, n̄

Sn({An, ξn})+SS({AS , ψS})+SHS({An, ξn};AS , ψS)+SGlauber({An, ξn};AS , ψS).

(2.19)

Sn and SS are the actions for the soft and collinear fields. An and AS are the collinear

and soft gluon fields and ξn and ψS are the collinear and soft quark fields. Each term

in the action is equivalent to the full QCD, although in the collinear sectors it is typical

to use the equations of motion to rewrite the Lagrangian into a more convenient form.

SHS and SGlauber are the action for hard scattering and Glauber operators, which generate

interactions between the separate sectors.

The leading collinear Lagrangian is then given by

L(0)
n = L(0)

nξ (ξn, An) + LnA(An), (2.20)

with the leading quark action given by

L(0)
nξ = e−ix·P ξ̄n

(
in·Dn + i /Dn⊥

1

in̄·Dn
i /Dn⊥

)
/̄n

2
ξn. (2.21)

Here, g is the usual QCD coupling constant. The various derivative terms are

iDµ
n = iDµ

n + gAµn, (2.22)

iDµ
n =

nµ

2
n̄· P + Pµ

⊥ +
n̄µ

2
in· ∂.

The overall exponential comes from the multipole expansion, and it simply functions to

enforce the conservation of label momenta, and lead to a momentum conserving delta func-

1The EFT we are describing here is known as SCETII. There is a similar EFT called SCETI, which also
includes ultrasoft modes with virtuality k2

us ∼ λ4. In the problems at hand, ultrasoft modes do not appear,
and so we use SCETII.
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tion which drops out of the Feynman rules. The fields in the actions satisfy the relation

/nξn = 0, and are related to the full quark fields ψn via

ψn =

(
1 +

1

in̄·Dn
i /Dn⊥

/̄n

2

)
ξn. (2.23)

The collinear gluon action is given by the full-theory gluon action, with all derivatives

replaced by Dn. It is then straightforward to power-count the collinear fields, and we have

ξn ∼ λ, Aµn ∼ (1, λ2, λ) ∼ kµn. (2.24)

The soft actions are obtained from the standard QCD action with derivatives replaced

by PS , and is given by

L(0)
Sψ = ψ̄S(i /DS)ψS , (2.25)

with the soft covariant derivative given by

iDµ
S = Pµ

S + g AµS . (2.26)

Power-counting the soft fields, we find

ψS ∼ λ3/2, AµS ∼ (λ, λ, λ) ∼ kµs . (2.27)

SCET possesses some important symmetries. Firstly, we note that since each soft and

collinear actions are equivalent to full QCD in the absence of hard scattering or Glaubers,

each is separately invariant under gauge transformations. This places an important con-

straint that the hard scattering and Glauber operators must also be invariant under separate

gauge transformations on the soft and collinear operators. Next we note that, as described

so far, there is some ambiguity in the construction of the EFT. Notably, we have some free-

dom in choosing the lightcone vectors n and n̄, as these are not physical quantities. This

additional freedom is called reparamiterization invariance (RPI) [134]. Most relevant here is

RPIIII
2 transformations, which is the invariance of the EFT under simultaneous rescalings

of n and n̄,

n→ e−αn, n̄→ eαn̄. (2.28)

Physically, this is a manifestation of the fact that any observable we calculate must be

Lorentz invariant due to the Lorentz invariance of full QCD, which we have broken in the

EFT by introducing the vectors n and n̄. This symmetry places important constraints on

2There are also RPII and RPIII transformations, but in SCETII these only constrain subleading operators,
which we are mostly not interested in here.
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how lightcone vectors can appear in hard scattering and Glauber operators, and in Chapter

3 we will show how this can be exploited to further constrain hard scattering operators and

the forward scattering amplitude through unitarity. Lastly, we note that the labels n and

n̄ are arbitrary, so the theory should be invariant under swapping n and n̄.

2.2 Operator Building Blocks, Hard Scattering, and Factor-

ization

To construct hard scattering operators in SCET, one may follow the usual EFT matching

procedure of expanding out full theory diagrams for the process of interest and matching

to the appropriate EFT operator. The requirement that the operator be separately gauge

invariant under soft and collinear gauge transformations greatly restricts what may be

written down, and one may use the equations of motion to simply this further. It turns out

these two constraints are enough to reduce the allowed objects for n-collinear fields down

to three “building blocks” [135]:

χn, Bµn⊥, Pµ
⊥, (2.29)

corresponding to a gauge-invariant quark field, a gauge-invariant gluon field, and a label

derivative. For the soft fields, it is also useful to introduce similar building blocks, but we

add an additional quark and gluon building block for each collinear sector, as the soft fields

have no preferred direction, unlike the collinear fields:

ψ
n/n̄
S , Bn/n̄µS⊥ . (2.30)

The quark building blocks are defined as

χn =W †
nξn, (2.31)

ψnS = S†
nψS ,

where Wn and Sn are semi-infinite Wilson lines in the fundamental SU(Nc) representation

with collinear and soft gluons in the n̄ and n directions respectively:

Wn =
∑
perms

exp

(
−g
n̄· P

n̄·An
)

= FTPexp

(
ig

∫ 0

−∞
ds n̄·An(x+ n̄s)

)
, (2.32)

Sn =
∑
perms

exp

(
−g
n· PS

n·AS
)

= FTPexp

(
ig

∫ 0

−∞
ds n·AS(x+ ns)

)
,

10



where P is the path ordering symbol, and FT means Fourier Transform. One generically

will also encounter Wilson lines which run from 0 to +∞ in hard scattering operators, and

whether one uses the (−∞, 0) Wilson lines or (0,+∞) Wilson lines depends on the process

and scattering states being considered. The gluon building blocks may be defined as

Bµn⊥ =
1

g

[
W †
niD

µ
n⊥Wn

]
=

1

g

1

n̄· P
W †
n[in̄·Dn, iD

µ
n⊥]Wn, (2.33)

BnµS⊥ =
1

g

[
S†
niD

µ
S⊥Sn

]
=

1

g

1

n· PS
S†
n[in·DS , iD

µ
S⊥]Sn.

These building blocks are SU(N) matrices in the fundamental representation. It also turns

out to be useful to write down soft gluon building blocks and field strength tensors which

are matrices in the adjoint representation. These may be written as

B̃ABµSn⊥ =
−ifABC

n̄· PS
iG−µ⊥D

S SDCn , G̃µν ABS = −ifABCGµν CS , (2.34)

with igGµν CS TC = [iDµ
S , iD

ν
S ] being the soft gluon field strength tensor and Sn being the

soft Wilson line in adjoint representation.

The gauge-invariance of these building blocks follows from the configuration of the Wil-

son lines. In general, a Wilson running along some path from points x to y transforms

as

W [x, y] → U(x)W [x, y]U †(y), (2.35)

where U(x) is the local SU(N) matrix at point x. Under the so-called “small” gauge

transformations, the gauge parameter goes to 0 at infinity, and so one has

U(x)
x→∞−−−→ 1. (2.36)

Since all the Wilson lines in the building blocks run out to infinity, this guarantees that the

building blocks are gauge invariant. It should be mentioned, however, that these building

blocks are not invariant under the “large” gauge transformations, which are those which do

not die off at infinity. Unlike the small gauge transformations, which are redundancies in

the theory, large gauge transformations are a genuine symmetry of the theory. Historically,

it has been assumed that the gauge field vanishes at infinity, and so large gauge transforma-

tions have been ignored. It would be interesting to see if requiring invariance under large

gauge transformations in SCET leads to any new constraints on operator construction.

Given the importance of the operator building blocks to the construction of the EFT, it

is worth asking how we should interpret them. One way to do this is by first fixing lightcone

gauge, n̄·A = 0, say for the n-collinear fields. Doing so trivializes the Wilson lines, setting

11



Wn = 1. The building blocks then reduce to

χn
n̄·An=0−−−−−→ ξn, Bµn

n̄·An=0−−−−−→ Aµn. (2.37)

The operator building blocks are then nothing but the quark and gluon fields in lightcone

gauge. If we look at the definitions of the building blocks, we can see that they are equivalent

to performing a gauge transformation with U(x) = Wn(x). This is obvious for the quark

building block, and for the gluon building block we just have to expand the definition.

1

g

[
W †
niD

µ
nWn

]
=W †

nA
µ
nWn +

i

g
W †
n∂

µWn. (2.38)

One way to derive the building blocks is then to perform a gauge transformation which takes

the gluon field from a general gauge to lightcone gauge. This also implies that we could

attempt to quantize the theory in lightcone gauge to make the operator building blocks to

interpolating fields in the theory. While this has been considered previously[106, 94, 82], it

is generally avoided in most SCET applications. Lightcone gauge QCD introduces several

complications, including new degrees of freedom which live at infinity3. These complications

generally make it preferable to work in a covariant gauge (usually Feynman gauge).

We are now ready to discuss the application of SCET to hard scattering. As a first

example of a hard scattering operator, we consider the matching for the process of e+e− →
2 jets. The calculation may be reduced to the problem of computing matrix elements of a

quark current,

F (Q2/m2) = ⟨p1, p2| JΓ |0⟩ = ⟨p1, p2| ψ̄ Γψ |0⟩ . (2.39)

In this process, the electrons annihilate into either a photon or a Z-boson, with either a

vector or an axial coupling to the current; we have accounted for this through the unspecified

Dirac structure Γ in the current. Here, Q2 = (p1, p2), and m
2 is some IR scale that depends

on the details of the calculation. F is known as the Sudakov Form Factor, and due to its

simplicity it serves as a particularly useful playground for both understanding SCET, as

well as for exploring some of the tools developed here. In particular, we note that F is only

a function of the ratio Q2/m2, as it does not renormalize.

We are interested in the case of small or negligible quark masses relative to Q2, so that

the quarks may be treated as collinear. We also need p1 and p2 to live in different collinear

sectors so that Q2 is large, Q2 ∼ p+1 p
−
2 . The IR scale m may be either a gluon mass we use

to regulate IR divergences, or mass for the quarks. The latter case is sometimes called the

massive Sudakov form factor, and it is closely related to the case of electroweak corrections.

3These degrees of freedom turn out to be distinct from the ones introduced when studying large gauge
transformations; see [130] for details.
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The latter is the massive quark form factor, and it is commonly used for top quark physics.

In either case, the tree level matching is the same, and the two form factors only differ at

loop level.

At leading order, it is straightforward to match the operator in SCET, as we have

JSCET = χ̄nΓχn̄. (2.40)

This fixes both the collinear quark and collinear gluon contributions through theWilson lines

in the quark building blocks. The Wilson lines then are fixed entirely by the requirement

of n-collinear and n̄-collinear gauge-invariance. We may also consider the emission of soft

gluons off of the operator. Scanning through the soft gluon building blocks, listed above

we note that since all building blocks scale as ∼ λ, which would add additional power-

suppression to the operator. There is however an additional set of soft-gauge invariant

operators we may construct, through pairs of Wilson lines S†
nSn̄ or S†

n̄Sn. These scale as

λ0, and so we are free to include these in the operator. A quick comparison to full QCD

shows that only S†
nSn̄ appears, and so the full SCET current is given by

JSCET = χ̄nS
†
nΓSn̄χn̄. (2.41)

In principle we could have added arbitrarily many powers of S†
n̄Sn and S†

nSn̄, which is

not ruled out by matching at one soft gluon. A careful analysis at arbitrary soft gluon

multiplicity is required to fully rule this out. There are alternative methods of matching

circumvent the need for such calculations[20].

Now we come to the matrix element. In the leading order action for SCET, the soft

and collinear modes all have separate Lagrangians, and there is no cross-talk between the

different modes, outside of Glauber and hard-scattering operators. Therefore, when we

quantize the theory, the Hilbert space itself factorizes, i.e. soft and collinear fields live in

different Hilbert spaces. We therefore find that matrix elements of hard scattering operators

must then factorize into separate soft n-collinear, and n̄-collinear matrix elements. For the

Sudakov form factor, we write

〈
pn1p

n̄
2

∣∣ JSCET |0⟩ = ⟨pn1 | χ̄n |0⟩Γ ⟨0|S†
nSn̄ |0⟩

〈
pn̄2
∣∣χn̄ |0⟩ , (2.42)

= JnΓSJn̄, (2.43)
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where in the last line we have packaged the matrix elements as

Jn = ⟨pn1 | χ̄n |0⟩ ,

S = ⟨0|S†
nSn̄ |0⟩ , (2.44)

Jn̄ =
〈
pn̄2
∣∣χn̄ |0⟩ .

This is an all orders in αs statement. Each individual matrix element may be computed by

expanding the Wilson lines and through time-ordered products of Lagrangian interactions

from the appropriate soft or collinear actions. Each matrix element also gets separately

renormalized, as we write

JBare
n = Zn J

Renorm
n , SBare = Zs S

Renorm. (2.45)

Letting the renormalization scale be µ, each matrix element then satisfies a renormalization

group equation

µ
d

dµ
Jn = γnµJn, µ

d

dµ
S = γSµS, (2.46)

with the anomalous dimensions defined as

γn,Sµ = −Z−1
n,S µ

d

dµ
Zn,S . (2.47)

One may use these to resum large logs of Q2/m2 by solving these and running from m to

Q.

It is important to mention that we have been a bit blithe with the discussion of factor-

ization, as we have not mentioned Glauber operators. The action for Glaubers is leading

order in λ, and so in principle it causes a breakdown of the picture of factorization painted

above. For some operators, it is known that despite this, Glauber modes either do not

contribute or otherwise may be absorbed into the soft contributions. The Sudakov form

factor is one such case, and so the above factorization is safe to use. When we discuss

forward scattering, we will see an example of how Glauber modes can cause this simplified

factorization to fail.

In a generic hard scattering process, the UV scale Q2 is typically some large momentum

invariant, with Q2 ∼ (p1+p2)
2 = p+1 p

−
2 for the Sudakov example. Hard scattering operators

then encode the UV dependence on Q2 through a Wilson coefficient, as per standard EFT

expectations. Note this means that the hard coefficient depends on the large labels of the

momenta flowing through the operator. However, we must be careful here, as collinear

interactions can change the large labels. To account for this, we must then sum over all
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configurations of large labels. This may be implemented by specifying the large momentum

component in each building block:

χn,ω = δ(ω − n̄· P)χn, Bµn⊥,ω = δ(ω − n̄· P)Bµn⊥. (2.48)

The sum over labels then looks like a convolution between the Wilson coefficient and the

SCET operator:∫
{dωidωi′dω̄jdω̄j′}C({ωi; ω̄j)O({χn,ωi ,Bn,ωi′ ;χn̄,ω̄j ,Bn̄,ω̄j′}), (2.49)

where the dependence on the soft fields has been suppressed to ease the notation. Of course,

there are also the soft labels in addition to the large collinear labels; these may also induce

convolutions. It is typical to condense all these convolutions using the symbol ⊗, where the

precise meaning is usually specified on a case-by-case basis. Using this notation, we may

then write a general factorized matrix element of a hard scattering operator as

C ⊗ Jn ⊗ Jn̄ ⊗ S. (2.50)

In cases where there are convolutions present, the SCET matrix elements (or equivalently

the Wilson coefficient) are convolutionally renormalized. Using the collinear function as an

example, we have

JB
n = Zn ⊗ JR

n , µ
d

dµ
JR
n = γnµ ⊗ JR

n , γnµ = −Z−1
n,S ⊗ µ

d

dµ
Zn,S . (2.51)

Such convolutional RGE’s are typically much more difficult to solve, and are generally

only possible when there exist transformations on the labels that take the convolution to a

product, most commonly Fourier or Mellin transforms.

Returning to the case of the Sudakov form factor, we are thankfully spared from having

convolutions, as momentum conservation forces the label to be fixed by the states being

scattered. Including the Wilson coefficient, the SCET form factor is given by

F (Q2/m2) = C(Q2/µ2)Jn(µ
2/m2)ΓS(µ2/m2)Jn̄(µ

2/m2) +O(λ). (2.52)

Here we have reintroduced the scale dependence of the matrix elements. As previously

discussed, the Wilson coefficient only depends on the hard scale Q2, while the EFT matrix

elements only depend on the low-energy scale m2. The resummation of large logs of Q2/m2

may then be achieved by running the soft and collinear matrix elements from the scale m

to the scale Q, or alternatively by running C from Q down to m. This equivalence may be
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seen through the µ-independence of F . Using this, we find the relation

γH + γnµ + γn̄µ + γSµ = 0, (2.53)

where γH is the anomalous dimension of the hard coefficient. Similar relations may be

derived for other hard scattering operators.

2.3 Rapidity Divergences and the Rapidity RGE

There is one final wrinkle in the factorization formula for the Sudakov form factor in Eq.

(2.52) which we now address. Let us reconsider the soft and collinear modes. Both have the

same virtualites, k2n ∼ k2s ∼ λ2, which is to say both modes live at the same invariant mass

at the scale m2. These modes are then only distinguished by the size of their rapidities,

k+/k−. Obviously this is not a Lorentz-invariant statement; we could perform a boost in the

z-direction which takes a collinear mode to a soft mode, and vice-versa. We already know

that the EFT breaks Lorentz invariance though, through the two preferred vectors n and n̄

built into the theory. In principle, we could add a cutoff on integrals over the rapidities to

separate the modes, but by the principles of EFT we must take said cutoffs to infinity or zero.

This leads to additional divergences which are not regulated by dimensional regularization,

as they occur at fixed invariant mass. The prototypical example of such divergent integrals

is

I± =

∫
dk±

k±
f(k), (2.54)

where f(k) approaches some finite value as k± → 0 or ∞. Such integrals can arise from

diagrams with Wilson line contributions. If we look at the one gluon term in the definition

of a Wilson line in Eq. (2.33), for example, we find it generates a Feynman rule

W (1)
n =

−g
n̄· k

n̄·An(k), (2.55)

which provides the eikonal 1/k+ propagator for the rapidity divergent integral.

In addition to the appearance of rapidity divergences, there are also associated “rapidity

logarithms” which are large for the processes we can apply SCET to and thus need to be

resummed. Like the hard logs we encountered in the previous section, rapidity logs also

take an argument of Q2/m2, but rather than being a ratio of scales, this may be thought

of as a measure of how boosted the collinear states are relative to each other. This is a

statement about the IR physics, which is why it appears in the low-energy theory. If we
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break up the log, we can write it as

log
Q2

m2
= log

p+1
ν

+ log
p−2
ν

+ log
ν2

m2
, (2.56)

where ν is some arbitrary rapidity scale. As we have written this, we can clearly identify

an n-collinear, n̄-collinear, and soft contribution. Resumming rapidity logarithms then

amounts to regulating and renormalizing rapidity divergences, and then running the soft

(or collinear) matrix elements in ν to the appropriate rapidity scale[54].

There are a number of rapidity regulators available for use in the literature, but we

choose to use the η-regulator[57]. This is implemented in the action by modifying the

Wilson line definitions:

Wn =
∑
perms

exp

(
−gw2

n̄· P
|n̄· P|−η

νη
n̄·An

)
, (2.57)

Sn =
∑
perms

exp

(
−gw
n· PS

|2PSz|−η/2

νη/2
n·AS

)
,

with 2PSz = n̄· PS − n· PS . This regulator is functionally quite similar to dimensional

regularization, with η playing the role of ϵ, and ν being the new scale which acts as a cutoff

in rapidity space, analogous to how µ is the momentum cutoff scale. w = w(ν) is a dummy

coupling needed to derive the rapidity renormalization group equations, which gets set to

1 after renormalization.

Practically, the procedure for working with rapidity divergences is almost identical to

dealing with UV divergences. When computing a diagram with the η regulator, we first

expand in η, followed by expanding in ϵ. In particular, this means that all terms of the

form η/ϵn → 0. All η and ϵ poles get absorbed into the appropriate counter terms. We may

then calculate anomalous dimensions for both µ and ν running by taking derivatives of the

counter terms with respect to µ or ν, as in Eq. (2.51). The order in which we choose to

run µ and ν does not matter, as µ and ν are independent parameters, and we have[
µ
d

dµ
, ν

d

dν

]
= 0. (2.58)

This is closely related to the fact that the generators for scale transformationsD and Lorentz

boosts Mµν commute:

[D,Mµν ] = 0. (2.59)

Just as the µ-RG controls the scale dependence of matrix elements, the ν-RG controls the

rapidity dependence. In fact, we will see later that the above generators may be exactly
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related to the (R)RG of form factors and amplitudes.

If we return now to the example of the Sudakov form factor, we may write the complete

renormalized factorization with all scale dependence as

F (Q2/m2) = C(Q2/µ2)Jn(µ
2/m2; p+1 /ν)ΓS(µ

2/m2; ν2/m2)Jn̄(µ
2/m2; p−2 /ν). (2.60)

Given that the form factor is independent of ν, it must be the case that the ν-dependence

cancels between the soft and collinear matrix elements. In fact this cancellation is guaran-

teed by the boost invariance of the full theory form factor. The running of ν cause a flow

from the soft to the collinear region (or vice-versa); this may equivalently be achieved by

performing boost. Thus boost invariance inevitably leads to the conclusion that the total

form factor must be independent of ν. Note that this also implies that the (unrenormalized)

form factor must be independent of η as well, since the ν-dependence is tied to the η poles

through the counter terms. Practically, this means that all 1/η poles must cancel when one

sums over all soft and collinear contributions at any given order in αs.

Each factorized matrix element Jn, S, and Jn̄ satisfy an RG for ν, just as they do for

µ. Generically, these rapidity RG equations may be convolutional as well, and we have

(JB
n , S

B) = Zn ⊗ (JR
n , S

R), ν
d

dν
(JR
n , S

R) = γn/Sν ⊗ (JR
n , S

R), γn/Sν = −Z−1
n,S ⊗ ν

d

dν
Zn,S .

(2.61)

For the case of the Sudakov form factor, these convolutions reduce to being multiplicative.

The ν-independence of the form-factors places a consistency constraint on the ν-anomalous

dimensions:

γnν + γn̄ν + γSν = 0. (2.62)

This is equivalent to the relation between µ-anomalous dimensions in Eq. (2.53), without

γH as the hard coefficient is already boost invariant. The commutivaty of µ and ν evolution

places one final constraint on the anomalous dimension,

ν
d

dν
γµ = µ

d

dµ
γν =

(
µ
∂

∂µ
+ β

∂

∂g

)
γν = z ΓCusp, (2.63)

where z is some integer that depends on the process and the anomalous dimension of interest.

β is the QCD beta function, and ΓCusp is known as the cusp anomalous dimension, which

is related to the anomalous dimensions of Wilson line pairs.

Let us make the above discussions concrete by returning to the Sudakov form factor

once more. We now perform explicit calculations to demonstrate how the (rapidity) renor-

malization procedure works. For loops, we use Feynman gauge for the gluon propagator,
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adding a gluon mass m to regulate the IR. At tree level, we may write the form factor as

F (0) =ūnΓvn̄, (2.64)

J (0)
n = ūn, S(0) = 1, J

(0)
n̄ = vn̄.

The one-loop contribution to the collinear matrix element is straightforward to compute.

Using the one-gluon term in the rapidity-regulated Wilson line and the collinear quark-

collinear gluon Feynman rule listed in Appendix B, we have

= ig2w2CF

∫
[ddk]

|n̄· k|1+η
µ2ϵνη 2n̄· (k + p1)

(k2 −m2 + i0)((k + p1)2 + i0)
, (2.65)

=
g2w2CF
8π2

(
Γ(ϵ)eϵγE

η

(
µ2

m2

)ϵ
+

1

ϵ

(
1− log

p+1
ν

)
+ log

µ2

m2

(
1− log

p+1
ν

)
− π2

6
+ 1

)
.

To compute this, we have performed the n· k integral by contours, and performed the k⊥

and n̄· k integrals using standard dim. reg. techniques. We also have expanded the result

in η → 0 first before ϵ→ 0. Notice also that the 1/η term is left unexpanded in ϵ; formally

this term is at finte η, and so it must be kept to all orders in ϵ. The n̄-collinear matrix

element is identical under the replacement p+1 → p−2 . Next we have the soft matrix element.

Starting at one loop, we must be careful about direction of the Wilson lines in S. For the

case of pair production that we are considering, the Wilson lines both run from (0,∞). This

may be determined from matching at tree level with one soft gluon emission and keeping

track of the i0 prescriptions. With this, the one loop soft matrix element is

= −2ig2w2CF

∫
[ddk]

µ2ϵ|2kz|−ηνη

(k2 −m2 + i0)(n· k + i0)(n̄· k − i0)
, (2.66)

=
g2w2CF
4π2

(
−Γ(ϵ)eϵγE

η

(
µ2

m2

)ϵ
+

1

2ϵ2
+

(
1

2ϵ
+

1

2
log

µ2

m2

)
log

µ2

−ν2 − i0
− 1

4
log2

µ2

m2
− π2

24

)
.

To obtain this result, we have first computed the k0 integral by contours, closing over

the lower half plane. There are two poles, one at k0 =
√
k2z − k2⊥ +m2 − i0, and one at

k0 = kz − i0. The former residue may be calculated using standard integration techniques.

To deal with the latter term, one uses the integral∫
[dkz]

|2kz|−ηνη

−2kz +∆+ iϵ
= − i

4
+O(η). (2.67)

Details on the calculation may be found in Appendix B.2 of [159]. Lastly, the remaining k⊥

integral is straightforward. This generates an overall factor of iπ, which may be combined

with the log ν2 from the first term to give the log
(
−ν2 − i0

)
which appears in the final

result. We will discuss this iπ term in more detail after introducing Glauber operators.
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The full one-loop result for the form factor in the EFT is then given by summing over the

soft and collinear contributions. Doing so gives the result

[JnΓSJn̄]
(1) =ūnΓvn̄

g2CF
4π2

[
1

2ϵ2
+

1

ϵ

(
1

2
log

µ2

−Q2
+ 1

)
+

(
1

2
log

µ2

m2
+ 1

)2

+
1

4
log

µ2

m2
log

−Q2

m2
− 5π2

24

]
. (2.68)

Here we have used Q2 = p+1 p
−
2 , and the shorthand −Q2 ≡ −Q2 − i0, as well as setting

w = 1. As claimed, all η- and ν-dependence has canceled from the EFT form factor, and

boost-invariance has been restored.

We may now renormalize the form factors. We first account for wave-function renormal-

ization for the collinear quarks, which is the same as for full QCD quarks, as the collinear

quark Lagrangian is identical to the full QCD Lagrangian. This adds a factor of Z
1/2
ψ to

each collinear matrix element, with

Zψ = 1 +
g2CF
16π2

(
−1

ϵ
− log

µ2

m2
+

1

2

)
. (2.69)

Renormalizing as in Eq. (2.126),we then find the counter terms to be

Zn = 1 +
g2w2CF
8π2

(
Γ(ϵ)eϵγE

η

(
µ2

m2

)ϵ
+

1

ϵ

(
1− log

p+1
ν

))
, (2.70)

Zs = 1 +
g2w2CF
4π2

(
−Γ(ϵ)eϵγE

η

(
µ2

m2

)ϵ
+

1

2ϵ2
+

1

2ϵ
log

µ2

−ν2 − i0

)
.

Here, we see that the counter terms depend explicitly on the IR scale m! This is fine

as long as the m-dependence sticks to the rapidity-divergent terms. This is because from

the perspective of the regulator, m2 is the scale of the invariant mass hyperbola we have

integrated along to obtain the 1/η divergence, and so m is not an IR parameter from

the perspective of the RRG. It had better be the case though that when we compute the

µ-anomalous dimension, the mass dependence drops out.

The µ anomalous dimensions are given by

γnµ =
g2CF
4π2

(
− log

p+1
ν

+
3

4

)
, γSµ =

g2CF
4π2

log
µ2

ν2
. (2.71)

γn̄µ is obtained through replacing p+1 with p−2 in γnµ . To obtain the ν anomalous dimensions,

we use the fact that the dummy coupling w obeys the RG

ν
d

dν
w(ν)2 = −η w(ν)2, (2.72)
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which is analogous to the lowest order beta function for αs in dim. reg., β = −ϵαs+O(α2
s).

With this, the ν anomalous dimensions are found to be

γnν =
g2CF
8π2

log
µ2

m2
, γSν = −g

2CF
4π2

log
µ2

m2
. (2.73)

These obey the expected consistency condition of Eq. (2.62), as we have γSν = −2γnν .

Moreover, we can check that µ-ν commutivity of Eq. (2.63) is also satisfied, as we have

µ
d

dµ
γνn = ν

d

dν
γµn =

g2CF
4π2

, (2.74)

with similar results for the soft anomalous dimensions. As expected, the dependence on

m in γν has dropped out in the µ-derivative. This result also gives us the correct cusp

anomalous dimension, which at one loop is given as

Γ
(1)
Cusp =

g2CF
4π2

. (2.75)

2.4 Glaubers and Forward Scattering

In the previous section, we have introduced SCET and discussed several features of the EFT,

with a particular focus on applying the EFT to wide angle, or hard, scattering. However,

this is not the only class of problems for which SCET will apply. The other interesting limit

is that of small angle, or near-forward scattering. This limit is characterized by a large

center of mass energy s and a small momentum transfer t.

For massive particles, there are several regimes of forward scattering, which include

potential scattering in the case where the states are moving non-relativistically. The forward

limit is also the regime of classical scattering. This can be seen from the total angular

momentum L of the system. For non-relativistic particles L ∼ mvr, with r being the

spacial separation between the scattering states. Since 1/r
√
−t ≪ mv, it follows that

L ≫ 1 = ℏ. Similar considerations lead to the same conclusion in relativistic settings. For

ultra-relativistic or massless particles, which we are interested in here, this limit is known as

the high energy, or the Regge, limit. Rather than potentials, scattering is mediated by the

Glauber mode, a relativistic analogue of potential modes. As we will see, integrating out

Glauber modes gives rise to a set of “potential” operators, which are similar to the potential

operators that arise in nonrelativistic EFTs, such as NRQCD [128]and NRGR [98].

The high energy limit is also theoretically interesting in its own right. The behavior of

scattering amplitudes and cross-sections is heavily constrained by unitarity, and a number of

interesting structures appear. The most familiar of these is that of “Reggeization”, in which
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the t-channel pole of the exchanged particle becomes dressed with a power-law scaling:

1

t
→ 1

t

(
s

−t

)αR(t)

, (2.76)

where αR(t) is known as the Regge trajectory. For example, it has been known since the

80s that amplitudes with fermions or gluons exchanged in the t-channel are dominated by

Regge scaling up to next-to-leading log (NLL) order[120, 136]. This power-law scaling is

sometimes called a “Regge pole”. A second important structure is that of the “Regge cut”
4. The prototypical example of a Regge cut in QCD is the BFKL equation [121, 14], which

governs the s-scaling of the imaginary part of the amplitude, or by the optical theorem the

forward cross-section. In perturbative QCD, these structures arise from summing large logs

of s/t; for example, leading order Reggeization is found by summing the series

∑
n

(
αsα

(1)
R log

s

−t

)n
. (2.77)

Glauber modes provide a very different perspective on the physics. By organizing the

physics into operators with a distinct number of Glauber exchanges, the EFT provides a

natural translation of Regge theory behaviors into statements about the rapidity renormal-

ization group properties of these operators. Moreover, gauge-invariance in automatically

obtained from the gauge-invariance of the Glauber Lagrangian, allowing for the power to

make very precise statements about the amplitude.

Glauber modes are also known to be closely linked to the violation of the factorization

of hard scattering operators we saw in the previous section. This is clear from the action, as

Glauber modes generate interactions between soft and collinear modes at leading power in λ,

and thus they muddy the argument that soft and collinear modes live in orthogonal Hilbert

spaces. However, in many hard scattering problems it can be shown that either Glaubers

do not contribute, as their contributions cancel when summed over, or their contributions

may be entirely absorbed into the soft function. The Sudakov form factor is an example of

4These terms come from studies on the high energy limit in the 50s, predating QCD. Schematically, one
can perform a partial wave decomposition on the amplitude A(s, t) ∼

∑
ℓ Pℓ(cos(θt))Aℓ(t), with Pℓ being

the Legendre polynomials and θt being the t-channel scattering angle. One then analytically continued Aℓ

to be a continuous function of ℓ, on the so-called “complex angular momentum plane” [62]. Using unitarity,
crossing symmetry, and the analyticity of the amplitude in the high energy limit one could constrain the
amplitude. Regge poles then correspond to poles in ℓ, while Regge cuts are likewise cuts of the amplitude in
ℓ-space. For example, Reggeization comes from Aℓ(t) ∼ 1/(ℓ− αR(t)). The fact that poles in the scattering
amplitude correspond with states in the theory then leads to the interpretation of a Regge trajectory as the
exchange of a particle with angular momentum αR(t) and propagator (2.76), called a Reggeon. Regge cuts
then take on the interpretation of a bound state of Reggeons. The most famous case in QCD is that of the
Pomeron, claimed to be a bound state of two Reggeized gluons. Such an interpretation has lead to a search
for an underlying field theory which describes these degrees of freedom, the “Reggeon field theory”, with
mixed success[46, 47, 89]
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the latter case, as we will explore. There is a class of observables for which this has been

proven, but the general conditions for which factorization violation occur are still mostly

unknown.

In this section, we discuss the aspects of Glaubers and Glauber operators needed for

the rest of this work, summarizing the formalism developed in [159, 93]. We first introduce

the Glauber Lagrangian in QCD and some of its useful properties. Following this, we show

how to write down the 2→ 2 forward scattering amplitude within the EFT, and how it

may be organized in terms of Glauber operators. Finally, we look at the RRGs of the EFT

operators, and how they corresponds to more traditional Regge theory notions.

2.4.1 Forward Scattering and Glauber Operators

To describe Glauber operators, we first discuss the kinematics of forward scattering. We

consider the two-to-two scattering of massless states, p1 p2 → p3 p4. For physical onshell

scattering, this sets s = (p1 + p2)
2 > 0 and t = (p3 − p2)

2 < 0. Forward scattering is

characterized as the limit of small −t ≪ s, with the obvious choice in power-counting

parameter being λ2 = s/|t|. Taking p1 to be n̄-collinear and p2 to be n-collinear, we have

s = p−1 p
+
2 at leading order in λ. The requirement of small t then forces p3 to be n-collinear

and p4 to be n̄-collinear. The momentum exchanged in the t-channel is often denoted as

q = p3 − p2 = p1 − p4. Keeping the collinear momenta onshell (i.e. preserving the scalings

in Eqs. (2.7) and (2.9)) fixes q to scale as

q ∼ (λ2, λ2, λ). (2.78)

This is the promised Glauber scaling. We can also consider the forward scattering of

collinear and soft particles. This leads to modes with slightly different scalings,

qns ∼ (λ, λ2, λ), qn̄s ∼ (λ2, λ, λ). (2.79)

All three scalings are referred to as Glauber modes, although the latter two are sometimes

called n- or n̄-Glaubers. For collinear-collinear forward scattering, the large labels are

conserved in the scattering, that is p−1 = p−4 , and p
+
2 = p+3 . It is then convenient to work in

a frame with q = q⊥, i.e. n· q = n̄· q = 0. We can then parameterize the ⊥-components of

the momenta as

p⊥1 = −p⊥4 = q⊥/2, p⊥2 = −p⊥3 = −q⊥/2. (2.80)

The on-shell condition p2i = 0 then fixes the remaining residual component of the momenta.

q is offshell in the sense of q+q− ≪ q2⊥, and so it cannot be a dynamical mode in the

EFT. Glauber modes must then be integrated out of the EFT, but since they are infrared
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modes (q2 ∼ λ2), the resulting operator will be non-local5, in contrast to the local operators

of hard scattering. To see how this works, let us first consider collinear quark-antiquark

forward scattering. At tree level, the leading order contribution is given by a t-channel

exchange of a gluon,

p3p2

p1 p4

n

n̄

q =

[
ūn
/̄n

2
TAun

]
8iπαs
q2⊥

[
v̄n̄
/n

2
T̄Avn̄

]
. (2.81)

This is then matched onto an operator of the form

Onn̄ = ξ̄n
/̄n

2
TAξn

8παs
P2
⊥
ξ̄n̄
/n

2
T̄Aξn̄, (2.82)

where we can see the nonlocality built into the operator from the inverse label operators.

This operator is not gauge invariant, but the replacement of ξn with the appropriate building

block χn fixes this. We also find that one is allowed the emission of a soft gluon off of the

Glauber, through diagrams such as

s

p3p2

p1 p4

n

n̄

n

n̄

q

q′ k

(2.83)

Here, q has n-Glauber scaling, while q′ has n̄-Glauber scaling. The soft gluon then carries

away the O(λ) components of the momenta so that the Glaubers have the correct scalings.

The full set of Glauber operators is found by integrating out all such diagrams.

For collinear-collinear (nn̄) scattering, the leading power Glauber operators are

Oqqnsn̄ = OqA
n

1

P2
⊥
OAB
S

1

P2
⊥
OqB
n̄ , Ogqnsn̄ = OgA

n

1

P2
⊥
OAB
S

1

P2
⊥
OqB
n̄ , (2.84)

Oqgnsn̄ = OqA
n

1

P2
⊥
OAB
S

1

P2
⊥
OgB
n̄ , Oggnsn̄ = OgA

n

1

P2
⊥
OAB
S

1

P2
⊥
OgB
n̄ .

On the left-hand side the subscripts indicate that these operators involve three sectors

{n, s, n̄}, while the first and second superscript determine whether we take a quark or gluon

5Note that this is neither unexpected, since low-energy modes propagate over long distances, nor is it
unquie, as several other EFTs also have non-locality built into them, such as potential NRQCD[39]. SCETII

already has nonlocality built into it from the soft Wilson lines, which are nonlocal at distances of order 1/λ.
It is also worth mentioning that the EFT is still local on the largest distance scales, those at 1/λ2, as the
Glauber mode propagates only over distances of ∼ 1/λ.
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operator in the n-collinear or n̄-collinear sectors. The collinear operators are defined as

OqA
n = χ̄n

/̄n

2
TAχn, OgA

n =

[
i

2
fABCBBn⊥µ

n̄

2
· (P + P†)BCµn⊥

]
. (2.85)

The soft operator is universal (i.e. independent of the scattering states), and is given as

OAB
S = 8παs

{
Pµ
⊥S

T
n Sn̄P⊥µ − gP⊥

µ B̃
nµ
S⊥S

T
n Sn̄ − gSTn Sn̄B̃

n̄µ
S⊥P

⊥
µ − g2B̃nµS⊥S

T
n Sn̄B̃n̄S⊥µ

− g
nµn̄ν
2

STn iG̃
µν
S Sn̄

}AB
. (2.86)

Collinear-soft (ns) scattering only involves two of the three modes, and the operators are

Oqqns = OqA
n

1

P2
⊥
OqnA
s , Oqgns = OqA

n

1

P2
⊥
OgnA
s , Ogqns = OgA

n

1

P2
⊥
OqnA
s , Oggns = OgA

n

1

P2
⊥
OgnA
s ,

(2.87)

with

OqnA
s = 8παs

(
ψ̄nS T

A /n

2
ψnS

)
, (2.88)

OgnA
s = 8παs

( i
2
fABCBnBS⊥µ

n

2
· (P+P†)BnCµS⊥

)
.

The Glauber Lagrangian may then be written as

LG = e−ix·P
∑
i,j=q,g

OiA
n

1

P2
⊥
OAB
S

1

P2
⊥
OjB
n̄ + e−ix·P

∑
{n,n̄}

∑
i,j=q,g

OiA
n

1

P2
⊥
OjnA
s . (2.89)

This is the complete Glauber Lagrangian from tree-level matching. It is manifestly gauge

invariant, being constructed out of gauge-invariant SCET operator building blocks, and as

such it contains interactions at all orders in αs due to the presence of Wilson lines. Notice

that this form of the Lagrangian implies the collinear operators always come together as a

sum over particle species, specifically in the combination

OqA
n +OgA

n . (2.90)

This will have important implications for the RG properties of the operators.

An particularly important property of the Lagrangian is that loops do not generate any

corrections to the Lagrangian (at leading power in λ), either non-trivial Wilson coefficients

or new operators.

It is particularly convenient for formal manipulations to write the Glauber Lagrangian
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in transverse momentum space rather than in position space. To start, we first notice that

all soft and collinear operators are evaluated at x⊥ = 0, as we have already pulled out all

x⊥ dependence into the overall exponential, and since there are no residual ⊥-momentum

scales of O(λ2), this is the only x⊥-dependence. In the action, we may then perform the

x⊥-integration, which leads to an overall label-conserving delta function. We may make the

labels explicit by writing

OiA
n (q⊥) =

[
δ2(q⊥ − P⊥)OiA

n

]
, OiA

n̄ (−q′⊥) = p
[
δ2(q′⊥ − P⊥)OiA

n̄

]
, (2.91)

so that we have

OiA
n =

∫
d2q⊥OiA

n (q⊥), OiA
n̄ =

∫
d2q′⊥OiA

n̄ (−q′⊥). (2.92)

If we include the overall ⊥-label conserving delta function into the soft operator, we write∫
d4xLG =

∑
i,j=q,g

∫
[d2x̃]

∫
d2q⊥d

2q′⊥
q2⊥ q

′ 2
⊥

OiA
n (q⊥)OAB

S (q⊥,−q′⊥)OiB
n̄ (−q′⊥) (2.93)

+
∑
n,n̄

∑
i,j=q,g

∫
[d2x̃]

∫
d2q⊥
q2⊥

OiA
n (q⊥)OjnA

s (−q⊥). (2.94)

Here, [d2x̃] = 1/2dx+dx−ei/2(x
+P−+x−P+) is the measure for the lightcone positions, with

the overall label exponentials. The soft operator in transverse momentum space is then

given as

OS(q⊥,−q′⊥) =(8παs)(2π)
2δ2(q⊥ + q′⊥ − P)

{
q⊥· q′⊥STn Sn̄ − gq⊥µ B̃

nµ
S⊥S

T
n Sn̄ − gSTn Sn̄B̃

n̄µ
S⊥q

′⊥
µ

− g2B̃nµS⊥S
T
n Sn̄B̃n̄S⊥µ − g

nµn̄ν
2

STn iG̃
µν
S Sn̄

}AB
. (2.95)

It is also useful to add a second integral over the lightcone positions in Onsn̄, via∫
d4xOnsn̄(x) =

∫
[d2x̃][d2x̃′]

∫
d2q⊥d

2q′⊥
q2⊥ q

′ 2
⊥

OiA
n (q⊥, x̃)OAB

S (q⊥,−q′⊥; x̃, x̃′)OiB
n̄ (−q′⊥, x̃′),

(2.96)

with

OAB
S (q,−q′⊥; x̃, x̃′) = δ2(x̃− x̃′)OAB

S (q,−q′⊥, x̃). (2.97)

This final modification will see use when discussion the factorization of the amplitude.

Lastly, we mention that Glauber operators have been found for fermionic Glauber ex-

changes, relevant for quark-gluon back scattering. This process is, however, λ-suppressed
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relative to forward scattering, and so it is not relevant to the discussions here.

2.4.2 Glauber Loops and Amplitude Factorization

When calculating in the EFT, we encounter loops with Glauber momentum running through

them, from time-ordered products (T-products) of Glauber operators. The prototypical

cases of are the box and cross-box diagrams that appear at one loop. These diagrams are

straightforward to write down, and they are

= I2(q⊥)

∫
[d2k±]

(k− +∆n + i0)(−k+ +∆n̄ + i0)
, (2.98)

= I2(q⊥)

∫
[d2k±]

(k− +∆n + i0)(k+ +∆n̄ + i0)
,

with ∆n = p−3 + (k⊥ + q⊥/2)
2/p+2 and ∆n̄ = p−4 + (k⊥ + q⊥/2)

2/p−1 . I2(q⊥) contains

the integrals over the Glauber 1/k2⊥ propagators, and is identical for both diagrams. It

is fairly clear that the integrations over k± are logarithmically divergent in both k+ and

k−, reminiscent of rapidity divergent integrals. However, the η-regulator for the soft and

collinear sectors does not regulate the divergences, as they only see the large and soft labels,

while Glauber k± are residual. Moreover, these divergences are not regulated by dim. reg.

These divergences require a new regulator, which is called the η′ regulator. It may be

implemented at the level of the action by writing

SG =
∑
i,j=q,g

∫
[d2x̃]

∫
d2q⊥d

2q′⊥
q2⊥ q

′ 2
⊥

OAB
S (q⊥,−q′⊥)

[
OiA
n (q⊥)w

′ 2 |in̄· ∂⃗ + in· ⃗∂|−η′

ν ′−η
′ OiB

n̄ (−q′⊥)

]

+
∑
n,n̄

∑
i,j=q,g

∫
[d2x̃]

∫
d2q⊥
q2⊥

OiA
n (q⊥)w

′ 2 |βnsin̄· ∂⃗S + in· ⃗∂|−η′

ν ′−η
′ OjnA

s (−q⊥). (2.99)

Just as with the η-regulator, w′ is a dummy parameter that gets set to 1 at the end of the

calculation, and ν ′ is the scale that gets introduced with the regulator. βns is a formal boost

parameter with βns ∼ λ, as is needed to maintain homogeneity in the power-counting, since

∂S ∼ λ while ∂ ∼ λ2. For the box and cross-box diagrams, this regulator has the effect of

adding a factor of |2kz|−η
′
to the integrands, with 2kz = k+ − k−. The lightcone integrals

may now be performed by changing variables from (k+, k−) to (k0, kz), with 2k0 = (k++k−),

and we have

= I2(q⊥)

∫
[dk0dkz] |2kz|−η

′

(k0 − kz +∆n + i0)(−k0 − kz +∆n̄ + i0)
, (2.100)

= I2(q⊥)

∫
[dk0dkz] |2kz|−η

′

(k0 − kz +∆n + i0)(k0 + kz +∆n̄ + i0)
.
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The k0 integrals may be performed by contours. For the cross-box diagram, the poles both

sit below the reals axis, and we may close the contour on the upper half-plane which sets

the integral to zero. For the box diagram, we perform the k0 integral, and use Eq. 2.67 to

obtain the final result,

= I2(q⊥)

(
−1

4
+O(η′)

)
. (2.101)

This result is finite in the η′ → 0 limit, and so despite the rapidity divergence, Glauber

loops do not induce any new RGs.

It is also useful to look at the N -loop Glauber box diagrams, with N + 1 Glauber

exchanges. Without going into the details (see Section 9.1 of [159] for the full calculation),

the result may be found to be

= 2IN+1(q⊥)
(−ig2)N+1

(N + 1)!
. (2.102)

Morally, we may interpret this result as teaching us that a diagram with N Glauber ex-

changes gives a 1/N ! combinatorial factor, as well as a factor of iπ for every Glauber loop.

These observations continue to hold in the presence of soft and collinear loops, including

with more complicated, nonplanar graph topologies. The latter fact is of particular note,

since it tells us that Glaubers build up the imaginary part of the amplitude, and hence are

closely linked with unitarity cuts. The 1/N ! meanwhile allows us to exponentiate the sum

of the box diagrams. If we look at the ⊥-integrals, we find they are given as

IN (q⊥) =

∫ ( N∏
i=1

[dd−2ki⊥]

k2i⊥

)
δ

(∑
i

ki⊥ − q⊥

)
, (2.103)

=

∫
dd−2b⊥e

ib⊥·q⊥(iχ(b⊥))
N ,

where χ is the Fourier transform of a Glauber potential,

χ(b⊥) =

∫
[dd−2q⊥]

q2⊥
e−ib⊥·q⊥ . (2.104)

Combining this with Eq.(2.102), we find the sum of boxes to be

= 2

∫
dd−2b⊥e

ib⊥·q⊥
(
eig

2χ(b⊥) − 1
)
. (2.105)

Therefore the sum of the Glauber box diagrams reproduces classical eikonal exponentiation

at leading order.

We may understand this result physically as follows. Since Glauber modes only prop-
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agate in transverse space, they are instantaneous in time and longitudinal position. The

η′ regulator breaks the instantaneity in the longitudinal direction. This then mandates an

ordering of the Glauber exchanges along longitudinal space, as dictated by the collinear

propagators moving in the x− or x+ directions. This ordering is what leads to the 1/N !,

since it picks out exactly one of the N ! configurations of Glauber exchanges. Taking η′ → 0

at the end of the calculation restores the instantaneous nature of the Glauber potential.

As can be seen in the above discussions, each Glauber loop will generate a power of iπ.

In fact, we can expect that all factors of iπ in SCET matrix elements to come from Glauber

loops6. As an example, let us revisit the Sudakov form factor calculation of Eq. (2.107).

Written explicitly, the result contains an iπ through the rapidity log, log
(
−ν2 − iϵ

)
=

log
(
ν2
)
− iπ. Although the calculation is performed for a soft loop, the origin of this iπ

term is still Glauber. To see this, we can calculate the diagram with a Glauber exchange

between the collinear legs:

=F (0)(2ig2CF )

∫
[ddk]

µ2ϵ|2kz|−η
′
ν ′η

′

(k2⊥ −m2)(n· k +∆n + iϵ)(−n̄· k +∆n̄ + iϵ)
,

= F (0)CF g
2

8π2
(iπ)

(
1

ϵ
+ log

µ2

m2

)
, (2.106)

which is exactly the iπ term in Eq. (2.107). However, it now sees as though we have

doubled the iπ term, coming from both the Glauber and the soft graphs. Indeed, we have

double-counted the Glauber region, as part of the soft integration region overlaps with the

Glauber region, when k± → 0. This can be resolved by expanding the soft integrand in

the Glauber region, and subtracting this integral from the full soft loop. This Glauber

sub-region of the soft loop is sometimes referred to as the zero-bin, or Glauber-bin, and the

procedure of subtracting out these overlapping regions is known as zero-bin subtractions7.

For the calculation at hand, the zero-bin for the soft loop is given as

S(G) = −2ig2w2CF

∫
[ddk]

µ2ϵ|2kz|−ηνη

(k2⊥ −m2 + i0)(n· k + i0)(n̄· k − i0)
, (2.107)

=
CF g

2

8π2
(iπ)

(
1

ϵ
+ log

µ2

m2

)
. (2.108)

The complete result for the soft diagram is then given by S̃ = S−S(G), which simply cancels

the iπ term in Eq. (2.107). Essentially, the Glauber graph and Glauber-bin subtraction

6Note that the claim here is for factors of iπ, and not π. Loop calculations rather generically will lead to
terms that depend on even zeta values ζ(2n), which are proportional to π2n. Additional factors of iπ can
also appear in Wilson coefficients as well.

7In other SCET applications, one can also encounter soft- or Glauber-bin subtractions for collinear loops.
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cancel, leaving the unsubtracted soft graph behind as the final result8. This correspon-

dence between Glauber loops and iπ’s turns out to be a very useful tool for exploring the

implications of unitarity on the EFT, as we will see in the following chapters.

This brings us to the “factorization” of the forward amplitude for collinear-collinear

scattering. Glaubers break factorization since they couple soft and collinear modes together.

If we treat Glauber exchanges as small perturbations, we may still “factorize” in the sense

of factorization of matrix elements. However, we lose the stronger meaning of factorization,

whereby the amplitude may be written as a single factorized matrix element. Instead, the

forward amplitude turns out to be a sum of soft-collinear factorized matrix elements, which

each occur at a distinct number of Glauber exchanges. We start with the time evolution

operator in SCET, which is given as

U(a, b) = lim
T→(1−i0)∞

∫
[Dϕ] exp

[
i

∫ T

−T
d4x (Lnsn̄(x) + LG(x))

]
. (2.109)

Here, a and b are the field boundary conditions at −T and T respectively, and Lnsn̄(x) are
the soft and collinear Lagrangians. The Glauber part of U may be written as a time-ordered

exponential, which we then write in a series expansion as

T exp

[
i

∫
d4xLG(x)

]
=

[
1 + i

∫
d4xLG(x) + i2

∫
d4xd4y T {LG(x)LG(y)}+ ...

]
,

= 1 + T

∞∑
k=1

∞∑
k′=1

[
k∏
i=1

∫
[d2x̃]

d2qi⊥
q2i⊥

[OqAi
n +OgAi

n ](qi⊥, x̃i)

]
(2.110)

×

 k′∏
j=1

∫
[d2x̃′j ]

d2q′j⊥
q2j⊥

[OqBj
n +Ogbi

n ](q′j⊥, x̃
′
j)


×O{Ai}{Bj}

S(k,k′) ({qi⊥}, {q′i⊥}, {x̃i}, {x̃′j}),

= 1 +

∞∑
k=1

∞∑
k′=1

U(k,k′).

In the second line, we have not written out the soft operator explicitly, as it is quite compli-

cated in general, and it involves a sum over all possible products of OAB
S and Oin/n̄A

sn/n̄ . For

example, at k = k′ = 1, we have

OAB
S(1,1)(q⊥, q

′
⊥, x̃, x̃

′) = OAB
S (q⊥, q

′
⊥, x̃, x̃

′) +
∑
i,j=q,g

OinA
sn (q⊥, x̃)Ojn̄B

sn̄ (q′⊥, x̃
′). (2.111)

8This matching between the soft zero-bin subtraction and the Glauber contributions is sometimes known
as the soft-Glauber correspondence [159]. Not every observable in SCET obeys this correspondence, with
the forward scattering amplitude being a notable counter example.
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If we consider the scattering of projectiles κ and κ′, we then can write the scattering

amplitude as

iMκκ′ =
∞∑
k=1

∞∑
k′=1

〈
pκ3p

κ′
4

∣∣∣U(k,k′)

∣∣∣pκ′1 pκ2〉
connected

. (2.112)

We can see from the second line of Eq. (2.110) that each matrix element in the sum will

naturally factorize into a convolution of an n-collinear, soft, and n̄-collinear matrix element.

Foregoing a careful analysis for the moment, this may be written as

iMκκ′ =
∑
MN

∫∫
⊥(N,M)

J
{AN}
κ(N) ({l⊥i}, ϵ, η)S

{AN}{BM}
(N,M) ({l⊥i}; {l′⊥i}, ϵ, η)J̄

{BM}
κ′(M) ({l

′
⊥i}, ϵ, η).

(2.113)

Here, we have introduce notation for the Glauber convolutions,

∫∫
⊥(N,M)

=
iN+M

N !M !

∫ N∏
i=1

M∏
j=1

[dd
′
li⊥]

l2i⊥

[dd
′
l′j⊥]

l′2j⊥
δ̄d

′
(
∑

li⊥ − q⊥)δ̄
d′(
∑

l′j⊥ − q⊥). (2.114)

These convolutions have the effects of Glauber loops built into them, as can be seen from

the factor (−i)N+M/N !M !.

At tree level9, the collinear functions for quarks and gluons are given by

J
qA1...AM (0)
n(M) = gM ūnT

A1 ...TAM
/̄n

2
un, (2.115)

J
qA1...AM (0)
n(M) = gM ϵ⋆nµT A1 ...T AM bµνϵnν ,

where bµν is the product of two momentum space field strength tensors at one gluon,

ϵ⋆nµb
µνϵnν =

1

n̄· p2
Gn+µ(ϵn, p2)G

+µ
n (ϵ⋆n, p3), (2.116)

= ϵ⋆nµ

[
n̄· p2gµν⊥ − n̄µpν2⊥ − pµ3⊥n̄

ν +
p⊥2 · p⊥3 n̄µn̄ν

n̄· p2

]
ϵnν , (2.117)

where in the first line the collinear momentum space field strength is Gnµν(ϵ, p) = pµϵν−pνϵµ.
T A is the SU(N) generator in the adjoint representation, T A = if ·A·. The collinear function

for antiquarks may be found by replacing un → vn and TA → T̄A in the quark function.

The tree level soft function is only non-zero for diagonal elements, i.e. N =M in Eq. (6.13):

S
{AN}{BM}(0)
N,M ({ℓN⊥}, {ℓ′M⊥}) = 2δN,MM !(−i)M

M∏
j=1

ℓ2j⊥

M−1∏
k=1

δ̄d
′
(ℓj⊥ − ℓ′j⊥). (2.118)

9Tree level here means the absence of soft or collinear loops.
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This is essentially the identity operator for the Glauber convolutions, which suggests the

compact notation,

S
{AN}{BM}(0)
N,M = 2δN,M1⊥(M), 1⊥(M) =

M∏
j=1

ℓ2j⊥

M−1∏
k=1

δ̄d
′
(ℓj⊥ − ℓ′j⊥). (2.119)

Placing all the tree-level functions into the factorization formula then reproduces the sum

of Glauber box diagrams:

∑
M,N

[∫∫
⊥(M,N)

Jκ(N)S(N,M)J̄κ′(M)

](0)
=
∑
N

Jκ(N)

(
2IN (q⊥)

(−i)N

N !

)
J̄κ′(M), (2.120)

which matches Eq. (2.102) up to the collinear tree factors. We have suppressed the color

indices for ease of notation.

The physical picture of this factorization is that when collinear projectiles forward scat-

ter, they emit a burst of Glauber exchanges, which may scatter with virtual soft fluctuations.

The soft fluctuations then emit their own Glauber burst which interacts with the second

collinear projectile. The number of Glauber exchanges in this second burst is allowed to

be different from the first burst, and the soft sector is necessary for transitions between

different numbers of Glauber exchanges, as Glaubers do not self interact or otherwise split.

An important and useful fact is that transitions of 1 → N or M → 1 are kinematically for-

bidden for M,N ̸= 1, and so S(1,N) = S(M,1) = 0. This provides some nice simplifications

for the rapidity RGEs and analyses of Reggeization.

2.4.3 Rapidity RGE

The Glauber operators match onto the full QCD amplitude, which, other than the usual

coupling and wave-function renormalization, does not get renormalized. Moreover, as dis-

cussed, Glauber operators do not get corrected by loop-level effects. Therefore the UV RGE

is trivial, and the Glauber soft and collinear functions have vanishing µ-anomalous dimen-

sions10. However, the collinear and soft matrix elements are rapidity divergent, which leads

to a very non-trivial rapidity RGE. In addition to the expected convolutions in transverse

momentum space, we can also expect mixing between operators with different numbers of

Glauber exchanges.

The collinear functions are renormalized as

JB
κ(M)({ℓM⊥}; ϵ, η) =

∑
N

∫
⊥(N)

JR
κ(N)({kN⊥}; ϵ, ν)Zn(N,M)({kN⊥}, {ℓM⊥}; ϵ, η, ν). (2.121)

10The ϵ-dependence in Eq. (6.13) comes from infrared-divergences.
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We have introduced the notation for a single Glauber convolution

∫
⊥(N)

=
iN

N !

∫ N∏
j=1

[dd
′
kj⊥]

k2j⊥
δ̄d

′
(
∑

kj⊥ − q⊥). (2.122)

Similarly the soft function is renormalized as

SB
(N,M)({ℓM⊥}, {ℓ′M⊥}; ϵ, η) =

∑
I,J

∫∫
⊥(I,J)

ZS(N,I)({ℓM⊥}, {kM⊥}; ϵ, η, ν) (2.123)

× SR
(I,J)({kM⊥}, {k′M⊥}; ϵ, ν)ZS(J,M)({k′M⊥}, {ℓ′M⊥}; ϵ, η, ν).

Given that this is rather cumbersome to write out (and read) explicitly, we often just use

the convolution symbol instead. With this, the bare functions may be compactly written

as

JB
κ(M) =

∑
N

JR
κ(N) ⊗ Zn(N,M),

SB
(N,M) =

∑
I,J

ZS(N,I) ⊗ SR
(I,J) ⊗ ZS(J,M). (2.124)

By the consistency of the rapidity RGE, we have the following relation between the soft

and collinear counterterms:

Zn(I,J) = Z−1
S(I,J), (2.125)

where the inverse is both on the convolutional space, as well as a matrix inverse on indices

(I, J). Given the above relation, we will generally drop the n and S labels on the counter-

terms altogether. The RGEs straightforwardly follow, and we have

ν
∂

∂ν
Jκ(i) =

∞∑
j=1

Jκ(j) ⊗ γ(j,i),

ν
∂

∂ν
S(i,j) = −

∞∑
k=1

γ(i,k) ⊗ S(k,j) −
∞∑
k=1

S(i,k) ⊗ γ(k,j), (2.126)

ν
∂

∂ν
J̄κ′(i) =

∞∑
j=1

γ(i,j) ⊗ J̄κ′(j),

where the anomalous dimension is defined as

γi,j = −
∑
k

(
ν
d

dν
Zn(i,k)

)
⊗ Z−1

n(k,j). (2.127)

The fact that the same anomalous dimension appears in both the soft and the collinear
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RGEs follows from the consistency condition in Eq. (2.62). Symmetry of the EFT under

n → n̄ also further implies that the anomalous dimensions matrices are symmetric, i.e.

γ(i,j) = γ(j,i).

A consequence of the vanishing of S(1,N) and S(N,1) is that the counterterms Z(1,N) and

Z(N,1), as well as the anomalous dimensions γ(1,N) are also zero. This immediately implies

that the RGE for the one-Glauber operator does not mix with any other operators in the

EFT. Moreover, from definition of the Glauber convolution Eq. (2.122), we can see that

this RGE is actually multiplicative, since the one momentum integral gets eaten up by the

delta function:
∫
⊥(1) = i/q2⊥. It is conventional to absorb these overall factors into the

definitions of the soft function S(1,1) and the anomalous dimension, and the rapidity RGE

becomes

ν
∂

∂ν
Jκ(1) = γ(1,1)Jκ(1). (2.128)

We can easily solve this, since rapidity divergences are only ever singly logarithmic. Running

from the collinear rapidity scale at ν = p+2 =
√
s down to the soft rapidity scale at ν =

√
−t,

we have

Jκ(1)(ν =
√
−t) =

(
s

−t

)−γ(1,1)/2
Jκ(1)(ν =

√
−s). (2.129)

This is precisely the statement of Reggeization. In the absence of soft radiation, the one

Glauber operator generates a single t-channel pole, which gets dressed with the exponentials

from the ν-running. Comparing Eq. (2.76) with Eq. (2.129) (and including the n̄-collinear

running as well), we can make the identification of the Regge trajectory with γ(1,1)

αR(t) = −γ(1,1). (2.130)

Although the naive definition of gluon Reggeization in Eq. (2.76) breaks down at NNLL,

Eq. (6.33) provides a very clean and natural definition for gluon Reggeization at all orders

in perturbation theory. More importantly, this definition is manifestly gauge-invariant, as

the Regge trajectory is shown to be a anomalous dimension of a gauge-invariant operator.
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Chapter 3

Unitarity, Anomalous Dimensions,

and All That Part I

3.1 Introduction

Canonical perturbation theory inadequately describes field theories when dimensionful pa-

rameters form large hierarchies that lead to numerically large logarithms. Typically, per-

turbation theory can be salvaged by re-summing these logs using the renormalization group

(RG) which takes advantage of the invariance of physical quantities under the change in

subtraction scales. There exists another class of logs, which may be with associated with

IR divergences, that are not immediately summable by naive RG methods. For instance,

often we run into logs whose argument involves a mass(es), e.g. ln
(
p2/M2

)
. These logs

may be summable using the RG if the masses are acting as “intermediate” scales, in the

sense that there is some physical IR scale below the scale of the mass. In such cases one can

work within an EFT and integrate out the mass. Below the mass scale the IR divergences

get converted to a UV divergence and the logs become amenable to canonical RG methods.

Effectively what this process amounts to is encapsulated in the following relation

ln
(
p2/M2

)
= ln

(
p2/µ2

)
− ln

(
M2/µ2

)
(3.1)

where the RG scale µ, is taking on double duty as both the invariant mass factorization

and RG scales. Any log which is summable by RG can be considered an invariant mass log,

as the RG flow corresponds to a Wilsonian flow in the invariant mass 1. Notice that the

RG is a manifestation of factorization. That is, the RG scales distinguishes between low

1It is important to emphasize here that the logs of interest in this paper are only large when working in
Minkowskian signature.
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and high virtuality modes such that an amplitude can be written as a product

M = H(Q,µ)S(pi, µ) (3.2)

where Q is the short distance (hard) scale and pi are the small momenta. The log of the

mass in Eq. (3.1) goes into the hard function while the other log is part of the soft. This

is nothing more than an operator product expansion. The key point we are reviewing here

is that the logs are summable because amplitudes factorize in invariant mass.

The RG anomalous dimension is determined by calculating the UV poles arising from

operator insertions and following the Feynman rules from a given Lagrangian. Reference

[49] noted that the RG anomalous dimensions could be calculated using unitarity/on-shell

methods that have facilitated modern higher order radiative corrections. They showed that

the RG anomalous dimensions are intimately related to the phase of the S-matrix, essentially

as a consequence of the fact that the imaginary part of the amplitude is the discontinuity

in logarithms. A general log in an amplitude relates the large log to the phase via

A ln
(
−q2/m2 − iϵ

)
= A ln

(
q2/m2

)
− iAπ. (3.3)

This fact is, not only formally interesting, but also leads to technical simplifications as

unitarity methods can be used to effectively “gain a loop” in the sense that one can calculate

using cut diagrams [49]. This method was used to simplify two loop SMEFT anomalous

dimensions in [29, 84]. This relation between cuts and logs in scattering amplitudes was

used in the past by the Russian school to calculate fixed order logs, see e.g. [87].

However, the method in [49] does not address the issue of rapidity logs since it utilizes

the variation of matrix elements under scale transformations and, in the full theory, rapidity

logs (such as in Eq. (6.21)) are independent of µ. In this paper we show that one can extract

the rapidity logs and their associated anomalous dimensions by generalizing the ideas in

[49] and replacing the dilatations utilized in their derivation by an special type of complex

boosts, once the amplitude is properly factorized into soft and collinear sectors.

At first sight it might seem strange to relate the phase of the S-matrix to the anomalous

dimensions, as surely such a relation cannot hold for a general process. If we consider a

semi-classical approximation, for instance, the phase will correspond to the classical action

MSC ∼ eiScl , (3.4)

which is not related to any RG anomalous dimension 2. However, for the canonical semi-

classical scattering process of near forward, or eikonal scattering, the amplitude is charac-

2The RG anomalous dimensions is associated with the hard quantum contribution, as discussed below.
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terized by large rapidity logs of the form log(s/t), which are controlled by the RAD, which

in this case, is called the “Regge trajectory” and is related to the phase. In fact, it has

been known for a long time that the Regge trajectory can be calculated from the phase

of the S-matrix in planar Yang-Mills theory[120], and moreover, can be calculated exactly

within the BDS ansatz [28] of N = 4 SUSY [147]. The phase contains both classical as

well as quantum mechanical contributions, the latter of which is related to the RAD. In

this paper we will not be discussing the case of Regge Logs as they necessitate a slightly

different formalism that the one introduced here. Here will discuss the Regge trajectory

calculation in a forthcoming publication [154].

In this chapter we will be focusing processes for which there is a hard scattering. We

show how unitary can be used to extract RAD at the two loop level in two distinct cases.

The simplifications which arise using this phase/RAD relation are two-fold, as we will

demonstrate: It simplifies the integrals as the phase arises due to the contribution from

gluons whose momentum resides in the Glauber region where kµ ∼ (0, 0, k⊥) in light cone-

coordinates. Expanding around this region trivializes many of the integrals. Moreover,

after expanding around the Glauber region, the integrals are all finite in dimensional reg-

ularization, as no rapidity divergences arise, since the anomalous dimensions are rapidity

finite. Thus, there is no need to introduce a rapidity regulator that can complicate higher

loop calculations3.

This chapter is structured as follows. First, we review the results in [49] showing how

the phase of the (hard part) of the S-matrix can be used to extract the RG anomalous

dimensions for observables. The generalization of these results to the case of rapidity

anomalous dimensions follows once the factorization is proven, which is accomplished by

invoking the Soft Collinear Effective Theory (SCET)[18, 17, 20]. Once we have established

a relationship between the phase and the RAD, we illustrate the use of the formalism in

two examples. First for a local operator, the Sudakov form factor and then for a non-local

operator, the two parton transverse momentum soft function. This chapter is based on the

paper [156].

3It should be mentioned that this statement is true only after summing over all contributions to a
given process; individual Feynman diagrams can still be rapidity divergent as will be seen in the explicit
calculations. Moreover, the form factor itself can be rapidity divergent, but it is straightforward to account
for iterative terms which build up the form factor. Alternatively, one may work entirely in the full theory,
where no rapidity divergences ever appear.
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3.2 The Master Formulae

3.2.1 The RG Master Formula

Reference [49] derives a relation between the S-matrix phase and the RG anomalous dimen-

sion. One starts by considering a generic form factor 4

F(p1...pn) =

∫
ddxe−iq·x out⟨p1...pn | F (x) | 0⟩in (3.5)

where we will take all states outgoing in this way all of the invariants will be postive. This

choice ensures that all the invariants are positive. Consider the action of the following

complex dilatation (D) on this form factor

eiDπF(p1...pn) = F(−p1...− pn) =

∫
ddxe−iq·x out⟨0 | F (x) | p̄1...p̄n⟩in (3.6)

where in the last line we utilized crossing symmetry and bar denotes the anti-particle. It

follows that

eiDπF(p1...pn) =

∫
ddxe−iq·x in⟨p̄1...p̄n | F ⋆(x) | 0⟩⋆out. (3.7)

Mechanically this transformation returns invariants back to their original form but now on

the other side of the cut.

Then inserting CPT (CPT )−1 appropriately into the matrix element we have

eiDπF(p1...pn) = F(p1...pn)
⋆. (3.8)

Next one treats F as a perturbation to the S-matrix

S = S0 + iF (3.9)

such that the unitarity relation SS† = 1 gives

S0F
† − FS†

0 = 0, (3.10)

where F 2 terms wont contribute to our matrix elements. Then we have

F = S0F
†S0. (3.11)

Restricting ourselves to the subset of matrix elements with no incoming particles we can

4Following the notation in [49], any calligraphic character corresponds to a matrix element and not an
operator.
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effectively write

F = S0F
†, (3.12)

and using (3.8)

e−iπDF⋆ = SF⋆. (3.13)

Or in words: the anomalous dimensions equals the phase of the S-matrix. Now to make

this result more user friendly one writes the S-matrix element as S = 1 + iM. Expanding

(3.13) to first order in perturbation theory

−πγ(1)µ F (0)⋆ = M(0)F⋆(1) +M(1)F⋆(0), (3.14)

where γµ is the anomalous dimensions of F . Since the RHS corresponds to a matrix equa-

tion, we can consider any set of intermediate states between M and F⋆. As emphasized

in [49], this result needs to be refined due to the existence of “IR anomalous dimensions”

(γIR), which corresponds to µ dependence introduced when regulating IR divergences. So

to extract γ one must mod out by the appropriate matrix elements which capture the IR

divergences. It is important to emphasize that γIR is not related in any way to the rapidity

anomalous dimensions. In the language of EFT, the relation (3.14) applies to the hard

matching coefficients.

3.2.2 The Rapidity Anomalous Dimensions Master Formula

We now wish to generalize the RG formalism to the RRG case which follows once one uses

the intuition gained from the work in [54] on the RRG. In the case of RAD, the relevant

generator becomes Kz, the boost generator in the ẑ direction, instead of dilatations, D.

However, it is not the canonical boost in the following sense. We notice from (6.21) that

if we want to move the singularity in the rapidity logs to the other side of the cut, as in

the case of the invariant mass logs, we will need to boost the large ± light-cone momenta

separately and independently, which is obviously not a symmetry of the action. This can

be implemented by boosting each collinear sector separately:

pµn = (p+n , p
−
n , p

µ
⊥) → (eγp+n , e

−γp−n , p
µ
n⊥) (3.15)

pµn̄ = (p+n̄ , p
−
n̄ , p

µ
n̄⊥) → (e−γp+n̄ , e

γp−n̄ , p
µ
n̄⊥).

Using this operation we are able to transform pµ → −pµ by choosing γ = iπ, and by

furthermore rotating by π around the ⊥ direction. For each sector this rotation will act

trivially on the amplitude since each sector is invariant under rotations along the jet axis
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5. This modified transformation, whose generator we denote as K̄z, acts as follows

eiπK̄zF(p1, ..., pn) = F(−p1, ...,−pn) = F⋆(p1, ..., pn), (3.16)

The modified boost generator acts only on the collinear sectors’ momenta along the lightcone

directions, so we may make the identification

K̄z ≡
∑
i=n,n̄

Ki
z, (3.17)

where Ki
z is the boost in the ith collinear sector’s z-direction,

Kn
z =

∑
{pj∈n}

(
p+j

∂

∂p+j
− p−j

∂

∂p−j

)
, (3.18)

K n̄
z =

∑
{pj∈n̄}

(
p−j

∂

∂p−j
− p+j

∂

∂p+j

)
.

Dependence on p± only appears in rapidity logarithms ln | p±i | /ν in the collinear functions,

where the absolute value follows from the definition of the regulator. Therefore, when

operating on the these functions we may make the replacement

K̄z ≃ −ν ∂
∂ν
. (3.19)

Using the rapidity RGE equation

ν
∂

∂ν
On/n̄ = γn/n̄ν Jn/n̄, (3.20)

we have

K̄z Jn/n̄ = −γn/n̄ν ⊗ Jn/n̄. (3.21)

Thus we can write

eiπK̄zF =
(
eiπK̄zJn

)
⊗ S ⊗

(
eiπK̄zJn̄

)
,

= e−iπ(γ
n
ν +γ

n̄
ν )⊗Jn ⊗ S ⊗ Jn̄,

= eiπγ
s
ν⊗F ., (3.22)

5We are not considering observables which may be sensitive to the angle between transverse momenta in
differing jet directions, when there are more than two.

40



where we have introduced the notation

ea⊗b = b+ a⊗ b+
1

2!
a⊗ a⊗ b+ ... (3.23)

Now we use unitarity just as in the RG case to write

e−iπ(γ
n
ν +γ

n̄
ν )⊗F⋆ = SF⋆ = (1 + iM)F⋆. (3.24)

From here on out, we will drop the convolution as all further discussion and example do

not rely on its (non)presence, but it is to be understood that it is present as necessary.

It is worth going into the details of this result in the context of the effective theory. The

rapidity regulator is defined such that the arguments of the logs involve | p± |, and given

that p± are defined to be large, the action of −p± ∂
∂p±

will simply yield − | p± |. Thus

the action of the exponentiated generator will yield the phase, as shown in the previous

equation, and thus J(−p) ̸= J⋆(p). On the other hand, we know that the action on the

entire form factor should result in a conjugation, implying that the soft function contains a

phase such that

Jn(−p)Jn̄(−p)S = eiπγ
s
νJn(p)Jn̄(p)S = (Jn(p)Jn̄(p)S)

⋆ = (Jn(p)Jn̄(p)S
⋆), (3.25)

since J is real. We may conclude that

S⋆ = eiπγ
s
νS. (3.26)

This is a useful result since it means that we can calculate γν using the master formula

Eq. (3.24) by only considering soft graphs, via the replacement of F with S. Physically

this result is a result of the fact that the phase of the amplitude comes from the soft region

(determined by the direction of the Wilson line).

An obvious question which arises is, is it the RG anomalous dimension or the RAD

which is related to the phase of the S-matrix? The answer is that the phase of the hard

scattering piece gives the RG while the phase of the IR piece gives the RAD 6. As previously

emphasized since when we calculate we include all of the modes, we could just as well

calculate in the full theory, but if we do so we must still subtract out the hard piece, which

is typically a simpler calculation since it involves integrals with fewer scales.

Another important distinction from the RG case is the fact that in SCET the imaginary

part is divergent, as phase space is unbounded due to the use of the multipole expansion

which is necessitated by the power counting [100], and we must amend Eq.(3.13) to account

6Since IR divergences are independent of ν they will not pose any obstruction.
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for this fact. Defining the renormalized operator

FR = Z−1
F FB, (3.27)

we have to revisit the result (3.12)

F = S0F
†, (3.28)

which leads to 7

FB = S0
ZF
Z⋆F

FB
⋆. (3.29)

Then writing S0 = 1 + iM we have

eiπγ
s
νF⋆B =

(Z⋆F )
−1

Z−1
F

F⋆B + iMF⋆B (Z⋆F )
−1

Z−1
F

. (3.30)

Expanded to one loop order, this gives

γs(1)ν F⋆(0) =
1

π

(
(MF⋆)(1) − 2Im[Z−1

F ](1)F⋆(0)
)
. (3.31)

3.2.3 Calculating in the Full Theory Versus the Effective Theory

The result (3.30) was derived within the EFT where the hard part (H) had already be

removed. To work in the full theory we must repristinate H and allow for it to be complex.

This is a trivial exercise with the result being that the new master formula is

e−iπγ
s
νFR∗ =

H⋆

H
S ⊗ FR∗, (3.32)

leaving

γsν =
i

π
log

[
H⋆

H

(
1 + i

∑
X

⟨ψf | X⟩⟨X | FR∗ | 0⟩
⟨ψf | FR∗ | 0⟩

)]
. (3.33)

This amendment to the EFT formula acts to remove any phase that might be generated by

the hard part and is not relevant to the RAD. It is important to note that in this paper

we will be doing all of our calculations in the effective theory. We have included the result

(3.33) for those who would prefer to work in the full theory.

There are several advantages to working in the full theory. One can use the amplitudes

tool box to skip having to write down Feynman diagrams. Furthermore, and perhaps more

importantly, there may be no need to introduce a rapidity regulator which can lead to both

nettlesome integrals as well as calculational subtleties. At the same time it is also true

7The distinction between F and F become murky in the EFT as the operators are tailored to the states
in a very specific way.
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that the effective theory one need not regulate the rapidity divergences since we know that

the RAD is finite. However, to remove the rapidity regulator we would need to combine

integrands coming from various diagrams. The EFT calculation is also simplified by the

fact that we only need to calculate soft graphs.

On the flip side, in the full theory integrals are in general more difficult, though given

the library of known integrals this may be an irrelevant fact. In the EFT one draws all

possible Feynman diagrams, of which, there can be many since the theory is modal, i.e.

split into regions. However, as we have discussed above, one need only concern oneself with

the soft sector. In cases where the rapidity anomalous dimension is IR finite, we may simply

ignore scaleless integrals. This is not the case when calculating RG anomalous dimensions

where typically we would need to split such integrals into UV and IR pieces. Thus whether

one chooses to work in the full or effective theory is a matter of convenience/taste.

3.2.4 The structure of iterations

Formula Eq.(3.12) has some interesting properties when we consider its expansion in the

coupling as it contains redundant information. Consider the expansion of Eq.(3.12)

eiγ
ν
s πSR∗(2) = SR∗(2) + iπ

(
γν(1)s SR∗(1) + γν(2)s SR∗(0)

)
− π2

2
(γν(1)s )2SR∗(0) + ... (3.34)

where here, for the sake of illustration we focus only on the terms which are second order

in the coupling. SR∗(n) is the n′th order contribution to the soft function. All of the terms

aside from the one proportional to the target γ
ν(2)
s are Abelian in the sense that they are

scale as C2
F and can be considered redundant information that need not be calculated. That

these terms cancel in the extraction of γ
ν(2)
s is a manifestation of non-Abelian exponentiation

[139, 96], which states, effectively, that the sum of the graphs for the product of any number

of Wilson lines will exponentiate [95] at the level of diagrams where the only diagrams that

contribute are those that are within a “web” at a given order in the coupling. In the case of

two Wilson lines, as for the Sudakov form factor, a web consists of diagrams which are two

particle eikonally irreducible in that they can not be disconnected by cutting the two Wilson

lines. At the order we are working webs will always have color weights which are linear in

CF which is sometimes called“maximally-non-Abelian”. Anomalous dimensions for Wilson

line operators will always consist solely of webs, given that the coupling is independent of

the rapidity scale ν and thus the solution to the RRG is always a simple exponential.

It is worthwhile to understand how the non-web pieces cancel in the result for γ
ν(2)
s .
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The RHS of the Eq. (3.12) has a second order contribution of the form

(
Z⋆S
ZS

S⊗SR∗)(2) = (
Z⋆S
ZS

(1+iM)⊗SR∗)(2) = SR∗(2)+(
Z⋆S
ZS

)(1) S
R∗(1)+iM(1)⊗SR∗(1)+iM(2)S

R∗(0).

(3.35)

Equating Eq.(3.34) and Eq.(3.35) we find

i(γν(1)s (SR∗(1))+γν(2)s SR∗(0))π−π
2

2
(γν(1)s )2SR∗(0) = iM(1)⊗SR∗(1)+i(M(2)S

R∗(0))sub, (3.36)

where the counter-terms have been used to subtract the UV divergences from the final term

on the RHS. Once we accept that γ
ν(2)
s has a maximally non-Abelian structure, and we

utilize the fact that all of the other terms on the LHS are NOT maximally non-Abelian, we

may simply discard all of the C2
F pieces of the RHS to extract γ

ν(2)
s .

An obvious question arises when one consider that the unitarity method, originally

designed to calculate RG logs, leads to an equation of the exact same form as Eq. (3.33).

Why are the RG logs not also strictly given by webs? The answer is that when one applies

(3.33) in the RG case it is applied to the hard piece only, whereas as we are actually excising

the hard piece from the full theory result. Furthermore, non-Abelian exponentiation has

only been proven to apply to Wilson line observables, but our methods are more general than

that. In the next chapter we will apply these techniques to the case of forward scattering

where the collinear lines do not eikonalize.

3.3 The Sudakov Form Factor

As our first example we consider Sudakov form factor which involves one IR (a mass) and

one UV scale (Q) and has the interesting property of containing double logarithms at each

loop order which dominate its asymptotic behavior. As usual to extract that anomalous

dimensions we consider all out-going particles, i.e. we will be considering this form factor

in the time-like Q2 > 0 region. The double logs arise from overlapping soft and collinear

divergences, and since the virtuality of the relevant modes (soft and collinear) are the same

the result includes a rapidity divergence. The resummation of these logs is an ancient

subject (see for instance [58]) upon which we hope to shed some new light as using our

methodology can greatly simplify higher order computations. We will be considering two

distinct ways of representing the IR scale, by giving the gluon or quarks a mass. The massive

gluon is in some sense the simpler case since the mass cuts off all IR divergences, but is not

terribly useful beyond one loop, since beyond that order we lose gauge invariance unless

we are willing to Higgs the theory. It would in fact be interesting to use the techniques

introduced here to calculate higher order corrections to the electroweak Sudakov form factor
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[56, 55], but this goes beyond the scope of this paper. On the other hand, using a quark

mass has the advantage of maintaining gauge invariance at all orders but needs dimensional

regularization to handle the soft IR divergences. This form factor is not physical, since it is

not IR safe, but in the case of the massive quark it is possible to generate a physical result

by introducing a theory below the scale of the mass which will absorb the IR divergences

into long distance matrix elements [92].

3.3.1 The Massive Gluon Sudakov Form Factor (MGFF)

Let us now calculate the one loop value for γSν using our master formula Eq.(3.31). We

are interested in the matrix element of the soft function that appears in the Sudakov form

factor which is given by the product of two soft Wilson lines

S ≡ SnS
†
n̄ (3.37)

where in position space we have

Sn = Peig
∫∞
0 dλA(λn)·ndλ. (3.38)

Using our master formula we are interested in the matrix element

⟨pn1pn̄2 | (MS⋆)(1) | 0⟩ =
∑
X

⟨pn1pn̄2 | M | X⟩⟨X | S⋆(1) | 0⟩, (3.39)

where, as previously discussed we need only concern ourselves with the soft piece to extract

the RAD. The intermediate state must involve both n and n̄ (eikonlized) partons, i.e.∑
X

→
∑
x

| pn3pn̄4 + x⟩⟨pn3pn̄4 + x | . (3.40)

As we have emphasized it is the Glauber region of the softs that generates the phase. So

we include the Glauber operator in our action 8 . The soft contribution will not contribute

to the phase once we perform the zero-bin subtraction. Returning to Eq.(3.31), we see that

8The reader might be bothered by the fact that the Glauber operator includes fermionic fields and the
soft function has not such field with which to contract (i.e. its a pure Wilson line). But this is just a technical
misdirection as it is simple to just replace soft exchanges by Glauber exchanges.
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there is only one diagram with a non-vanishing cut and it is given by

n

n̄

= 2i
αs
π
CF µ̄

2ϵ

∫
[ddk]

(n̄ · p′)n · p
k2⊥ +M2

× δ+(n · pn̄ · k − k2⊥)δ+(n̄ · p′n · k + k2⊥). (3.41)

We can also see that the k⊥ integral is UV divergent. This is not too surprising, since as

previously mentioned, the phase-space integrals in the effective theory are often divergent

due to the multipole expansion. Performing the integral, we find

n

n̄

= iCFαs µ̄
2ϵ(4π)ϵΓ(ϵ)M−2ϵ,

= iCFαs

[
1

ϵUV
+ ln

µ2

M2

]
. (3.42)

We must also include the counter-term piece in Eq. (3.31), but, by construction, the

imaginary part of the counter-term is nothing more than the negative of the divergent part

of Eq.(3.39), so there is no need to perform any calculation, one may simply drop the

divergent part of Eq.(3.39). Nonetheless as a check we may extract the counter-term from

the full SCET (all sectors) one loop correction to the current. The imaginary part of the

Sudakov form factor soft function one-loop counter-term is given by

Im
[
Z−1
F

]
= −αsCF

2ϵUV
. (3.43)

Using the master formula (3.31) in conjunction with (3.42), we obtain a finite result, and

we deter- mine the RAD to be

γsν =
CFαs
π

ln
M2

µ2
. (3.44)

Which agrees with the standard result for the soft RAD [54] for the massive gluon Sudakov

form factor.

3.3.2 The Massive Quark Sudakov Form Factor (MQFF)

The inclusion of a quark mass avoids the gauge invariance issue, however at one loop the

relevant integral is scaleless and technically vanishes. However after separating and UV and
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IR divergences we can write

n

n̄

= iCFαs µ̄
2ϵ

∫ ∞

0

d2−2ϵk⊥
k2⊥

= iCFαs(
1

ϵUV
− 1

ϵIR
). (3.45)

including the counter-term piece we find

γsν =
αsCF
π

1

ϵIR
, (3.46)

which agrees with result derived using the canonical method. As a check we can see that

integrating the equation for the soft function

dS = γsνS(d ln ν) (3.47)

by taking S = 1 on the RHS we reproduce the term αsCF
π

1
ϵIR

ln(Q/m) in the full theory

result[104].

3.3.3 Massive Quark Form-Factor at Two Loops

The RAD of the Sudakov form factor with massive matter lines has two incarnations. If

there is no IR scales below the quark mass then the form factor is an IR divergent quantity,

as is its RAD. This is the case discussed in the previous section. In more physical cases,

there is an IR scale below the mass (typically the QCD scale) and all IR divergences get

absorbed into a non-perturbative low energy matrix element. This latter version, which

we will focus on in this paper, is relevant e.g., for resummations in boosted top quark

production and was first calculated in [104], where a dispersive techniques was utilized to

circumvent the need to regulate the IR using a gluon mass which breaks gauge invariance

beyond one loop. Here we demonstrate that we can extract the RAD by direct calculation

by use of Eq. (3.33) without any reference to a gluon mass. The one loop contribution

shown in figure (1) is scaleless and given by

(1) = −iαsCF
(

1

ϵUV
− 1

ϵIR

)
. (3.48)

The UV divergence will be killed by the counter-term for the current and the IR divergence

will be dropped since it will be factorized into a low energy matrix element. Thus (γ
(1)ν
s = 0).

As a consequence of this fact, all of the iterative terms in (3.36) vanish.
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Figure 3.1: Cut diagrams contributing to the 2-loop Sudakov RAD. Greens lines are soft
(zero-bin subtracted) while dotted are Glauber. All of the diagrams are scaleless except for
the first.

Figure one shows all the diagrams that arise at O(α2). All of the diagrams are are

scaleless save for figure (1) where the massive quark is running through the loop. We

conclude that we can read off the anomalous dimension at two loops from diagram,

n

n̄

= 64π2CF TF SΓ

∫
µ̄4εd̄d−2k⊥d̄

dq

(q2 −m2) ((q + k⊥)2 −m2) (k2⊥)
2
tr

[
(/q + /k⊥ +m)

/n

2
(/q −m)

/̄n

2

]
,

= i
CF TF α

2
s

π

Γ(2ε)Γ(2 + 2ε)2

εΓ(4 + 2ε)

(
µ2

m2

)2ε

, (3.49)

= iπ CF TF
α2
s

π

(
− 1

6ε2
− 1

3ε
log

µ2

m2
+

5

18ε
− 1

3
log2

µ2

m2
+

5

9
log

µ2

m2
− π2

36
− 14

27

)
.

This integral can be evaluated by evaluating the q-integral first before the k⊥-integral; this

is recursively one-loop and can be handled by, e.g. Feynman parameters.

We can extract that RAD by dropping all the poles, since the counter-term contribution

assures us of a UV finite result, and the previous argument above permits us to drop the

IR divergent pieces. Thus we are left with

γsν = CF TF
α2
s

π2

(
−1

3
log2

µ2

m2
+

5

9
log

µ2

m2
− π2

36
− 14

27

)
. (3.50)

By keeping the quark masses in the loops and using MS we are inherently working in a

non-decoupling (ND) scheme. It is therefore prudent to change back to the usual EFT/MS

scheme where the quarks are taken to be massless. The relation between these schemes is
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[51]

αNDs = αs(1 + (Π(m2, 0)− αs
3π

TF
ϵ
)). (3.51)

where Π is the scalar part of the vacuum polarization at k = 0. We must make this

replacement in the one loop IR divergent result and subsequently drop all the IR divergent

terms. Thus the results will only be sensitive to the O(ϵ) piece of Π

Π(m2, 0)ϵ =
αTF
3π

ϵ

(
1

2
log2

µ2

m2
+
π2

12

)
, (3.52)

The net sum gives for the RAD

γsν = −CF TF
α2
s

3π2

(
1

2
log2

m2

µ2
+

5

3
log

m2

µ2
+

14

9

)
(3.53)

which agrees with the result given in [104]. Note that had we worked with the full IR

divergent Sudakov form factor, we would have seen a CFCA term as well, with contributions

from figures (2-6). Given that these diagrams are scaleless, the CFCA term would be pure

IR divergence. In the above result, the IR divergences have been absorbed into a low energy

matrix element as described in the set-up of this section, leading to only the CFTFnf color

structure appearing in the anomalous dimension.

3.4 Form Factors of non-Local Operators: The Soft Function

Next we will apply the unitarity technique to calculate the RAD of a non-local operator.

In particular we will consider the soft function that arises in the factorization of a class of

hard scattering observables. We will choose one particular operator but the method can

be applied more generally. We are interested in operators whose matrix elements include

rapidity divergences/logs. As such, we will choose observables whose diagrams include soft

and collinear modes of the same virtuality, the classic example of which are differential cross

sections where one measures the transverse momentum (p⊥) of some set of particles, with

p⊥ ≪ Q, where Q is the hard scattering scale. Schematically the cross section takes the

form

dσ

dp⊥
= H(Q,µ)Cn(p⊥/µ, n · p/ν)⊗ Cn̄(p⊥/µ, n̄ · p′/ν)⊗ S(µ/ν, p⊥/µ), (3.54)

where ⊗ denotes a convolution in the momentum variables. n · p and n̄ · p′ are the incoming

light-cone momenta, which are integrated over weighted by PDF’s. The collinear pieces are

transverse momentum parton distribution functions (TMPDFs) while the soft function is
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the vacuum expectation value of Soft Wilson lines in the fundamental representation

S(b⊥) =
1

Nc
⟨0 | Scen (b⊥; 0,∞)S†ed

n̄ (b⊥; 0,−∞)Sden̄ (0; 0,−∞)S†ec
n (0; 0,∞) | 0⟩, (3.55)

where for convenience we have Fourier transformed to impact parameter space. One can

also consider double, or higher, order n-parton scattering in which case the soft function

becomes the non-local product of n pairs of Wilson lines with each in a different light cone-

direction. The arguments below are easily generalizable beyond the two parton scattering

we consider here. In trying to use our unitarity methods however, we are immediately met

with the fact that S is a real valued function. We can circumvent this problem by looking

at a different matrix element which shares the same RAD. In analogy with what we did

for the Sudakov form factor we will consider particle production with four outgoing states.

Recall that this step was also necessary to eliminate the factor of S on the left-hand side

of Eq.(3.11). A similar calculation was done for the RG anomalous dimensions for parton

distributions in [49].

We will consider the matrix element with all out going partons

M(b⊥) =
∑
X

⟨pnp̄n̄qnq̄n̄ | X⟩⟨X | S̄(b) | 0⟩. (3.56)

The “crossed” Wilson line is then

S̄(b⊥) =
1

Nc
⟨0 | Scen (b⊥;∞, 0)S†ed

n̄ (b⊥; 0,−∞)Sdfn (0;∞, 0)S†fc
n̄ (0; 0,−∞). | 0⟩, (3.57)

We have dropped the dependence on x± since the RAD cannot depend upon the parton

light-cone momentum fraction. At one loop there are only two diagrams. The diagrams

where the Glauber connects partons with the same impact parameter will be scaleless and

can be dropped. Furthermore, there are no soft exchanges since they have no cut piece

(recall the phase comes from the Glauber piece of the soft) except for self-energy diagrams

which vanish. Thus at one loop we have two diagrams which give the identical result:

b⊥

n̄

n

+ b⊥

n̄

n

= 2i g2CF

∫
d̄d−2k⊥
k2⊥

e−ik⊥·b⊥

= 2i g2CF
Γ(−ϵ)
4π

(b̃2µ2)ϵ (3.58)

= −CF
i g2

2π

(
1

ϵ
+ ln

(
b̃2µ2

)
+O(ϵ)

)
,
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Figure 3.2: 2-loop cut diagrams with soft loops. Diagram (1) is the iterative soft-Glauber
graph, diagrams (2) and (3) come from the one-loop amplitude, and diagrams (4) and (5)
are the real-emission contributions. Diagrams (7-10) involve two Glauber exchanges, and
cancel when summed over. Not shown are the graphs given by taking n↔ n̄.

with b̃2 = b 2⊥e
γE/4. Dropping the UV divergence, we have exactly the one-loop RAD

γs(1)ν =
αs
π
(2CF ) ln

(
b̃2µ2

)
. (3.59)

3.4.1 TMD Two-Loop Rapidity Anomalous Dimension

The graphs which contribute at two loops are shown in figure (2). Graph (1) factors into

the product of the one-loop soft-graph and the one loop cut:

n̄

n

= −4g4CF (2CF − CA)

∫ d̄dk1d̄
d−2k2⊥

∣∣∣2kz1ν ∣∣∣−η
k21 (k

+
1 + iϵ)(k−1 − iϵ)k⃗22⊥

e−i⃗b⊥·(k⃗1⊥−k⃗2⊥),

=
ig4 (C2

F − 2CFCA)

16π2
Γ(1/2− η/2)Γ(η/2)Γ(−ε− η/2)Γ(−ε)

2ηπ3/2Γ(1 + η/2)

(b̃2µ2)2ε+η

e(2ε+η)γE
,

(3.60)

= i(2C2
F − CFCA)

α2
s

π

[
2Γ(−ε)2e−εγE

η
(b̃2µ2)ε − 1

ε3
+

1

ε2
(Lν − Lb)

+
2

ε
LbLν +

2

3
L3
b + 2L2

bLν + ζ(2)(Lb + Lν) +
ζ(3)

3

]
,
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with Lν = logµ2/ν2. The C2
F term cancels the iteration terms γ

ν(1)
s F †(1)−iπ/2(γν(1)s )2F †(0)

when added to the cut-renormalization 2Im[Z−1
F ]F †(0), while the CFCA term contributes to

the 2-loop rapidity anomalous dimension.

We next consider the diagrams which contain one-loop corrections to the amplitude,

which are the soft “eye” and the fermion vacuum polarization graphs. For the fermion

vacuum polarization we have

n̄

n

= 2g2CFTFnf

∫
d̄dk1d̄

d−2k2⊥

k⃗22⊥k
2
1(k1 + k2⊥)2

Tr[ /k1
/̄n

2
(/k1 + /k2⊥)

/n

2
]e−i⃗b⊥ ·⃗k2⊥ ,

=
−ig4

4π3
CFTFnf

Γ(ε)Γ(2− ε)2Γ(−2ε)

Γ(4− 2ε)Γ(1 + ε)

(b̃2µ2)2ε

e−2εγE
, (3.61)

= i
α2
s

π
CFTFnf

[
1

3ε2
+

1

ε
(
5

9
+

2

3
Lb) +

2

3
L2
b +

10

9
Lb +

1

3
ζ(2) +

28

27

]
. (3.62)

There is only one other term with the color structure CfTFnf , which comes from the two-

loop renormalized coupling. This comes from multiplying the one-loop diagram in Eq. (??)

by Zα, and gives

−iCFβ0
α2
s

2π

Γ(−ε)
ε

(b̃2µ2)ε = i
α2
s

π
CF

(
11CA
3

−
4TFnf

3

)[
1

2ε2
+

1

2ε
Lb +

1

4
L2
b +

1

4
ζ(2)

]
,

(3.63)

with β0 being the 1-loop beta-function coefficient, β0 = 11/3CA − 4/3TFnf . Adding the

TFnf -terms, we obtain

quark terms = CFTFnF
α2
s

4π

[
−1

3ε2
+

5

9ε
− 2

3
L2
b +

10

9
Lb +

28

27

]
, (3.64)

which, after dropping the UV poles and dividing by −π, is exactly the TFnf terms in the

two-loop TMD rapidity anomalous dimension.
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For the soft-eye graph, we find

n̄

n

= 2g4CFCA

∫ d̄d−2k2⊥d̄
dk1

∣∣∣2kz1ν ∣∣∣−η
k⃗22⊥(k1 + k2⊥)k

2
1

[
4[k1· (k2⊥ + k1)]

2

n· k1 n̄· k1

+
{
(d− 2)n· k1 n̄· k1 + 4k22⊥ − 2(k1 + k2⊥)

2 − 2k21
} ]
e−i⃗b⊥ ·⃗k2⊥ ,

= −ig
4CFCA
8π3

[
Γ(1/2− η/2)Γ(−ε− η/2)Γ(−2ε− η/2)

4−εη Γ(1/2− ε− η/2)

(b̃2µ2)2ε+η/2

e(2ε+η/2)γE

(
µ2

ν2

)−η/2

+
Γ(ε)Γ(−2ε)

2Γ(1 + ε)

(
Γ(2− ε)2

Γ(4− 2ε)
− 2

Γ(1− ε)2

Γ(2− 2ε)

)
(b̃2µ2)2ε+η/2

e−(2ε+η/2)γE

]
, (3.65)

= −iCFCAα
2
s

4π

[{
4Γ(−ε)2e−2εγE

η
+

3

ε3
+

2

ε2
(2Lb − Lν) +

1

ε

(
2L2

b − 4LbLν + 3ζ(2)
)

− 4L2
bLν + 4ζ(2)Lb − 2ζ(2)Lν + 6ζ(3)

}
−
{

11

3ε2
+

1

3ε

(
67

3
+ 22Lb

)
+

22

3
L2
b +

134

9
Lb +

11

3
ζ(2) +

404

27

}]
.

On the final line we have written the η- and ε-expansions such that the terms in the first

set of curly brackets come from the rapidity divergent term the line above, and the terms

in the second set of square brackets all come from the second set of curly brackets.

In principle, we should also take into account the flower graph, which is given by con-

tracting the two soft gluon emission vertex off a Glauber with itself (see [160] for the

appropriate Feynman rule), however this diagram is scaleless and thus can be ignored .

n̄

n

= 4g4CFCA

∫ d̄d−2k2⊥d̄
dk1

∣∣∣2kz1ν ∣∣∣−η
k21 k⃗

2
2⊥n· k1 n̄· k2

e−i⃗b⊥ ·⃗k2⊥ . (3.66)

There are two different real emission graphs which involve the Lipatov vertex (the cou-
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pling of a soft gluon to the Glauber). The first of these is given by

n̄

n

= −2g4CFCA

∫ d̄n̄· k1d̄n· k2d̄d−2k1⊥d̄
d−2k2⊥

∣∣∣ n̄·k1+n·k2ν

∣∣∣−η
k⃗21⊥k⃗

2
2⊥ n̄· k1n· k2

e−i⃗b⊥ ·⃗k1⊥

×
(
−2n̄· k1n· k2 − 2k⃗21⊥ − 2k⃗22⊥

)
δ(+)(−n̄· k1n· k2 − (k⃗1⊥ − k⃗2⊥)

2),

= i
CFCAg

4

4π3
Γ(η/2)Γ(1− ε)Γ(−ε− η/2)

(η + 4ε)Γ(1 + η)

(b̃2µ2)2ε+η/2

e(2ε+η/2)γE

(
µ2

ν2

)−η/2
, (3.67)

= −iCFCA
α2
s

2π

[
4Γ(−ε)2e−2εγE

η
+

3

ε3
+

2

ε2
(2Lb − Lν) +

1

ε
(2L2

b − 4LbLν + ζ(2))

− 4L2
bLν − 2ζ(2)Lν

]
. (3.68)

The second single real emission vertex is given by

n̄

n

= −g4CFCA
∫ d̄n̄· k1d̄n· k2d̄d−2k1⊥d̄

d−2k2⊥

∣∣∣ n̄·k1+n·k2ν

∣∣∣−η
k⃗21⊥k⃗

2
2⊥ n̄· k1n· k2

e−i⃗b⊥·(k⃗1⊥−k⃗2⊥)

×
(
−2n̄· k1n· k2 − 2k⃗21⊥ − 2k⃗22⊥

)
δ(+)(−n̄· k1n· k2 − (k⃗1⊥ − k⃗2⊥)

2),

= −2ig4CFCA
Γ(η/2)Γ(−ε)2Γ(1 + ε)Γ(−2ε− η/2)

26+ηπ5/2Γ(1/2 + η/2)Γ(−2ε)Γ(1 + ε+ η/2)

(b̃2µ2)2ε+η/2

e(2ε+η/2)γE

(
µ2

ν2

)−η/2
,

(3.69)

= iCFCA
α2
s

4π

[
4Γ(−ε)2e−2εγE

η
− 1

ε3
+

2

ε2
Lν +

1

ε

(
2L2

b + 4LbLν + ζ(2)
)

+
8

3
L3
b + 4L2

bLν + 4ζ(2)Lb + 2ζ(2)Lν +
28

3
ζ(3)

]
. (3.70)

Adding up all the (non-abelian) terms gives the final result

CFCA + CFTFnf terms

= iCFCA
α2
s

4π

[
11

3ε2
− 67

9ε
+

2ζ(2)

ε
− 11

3
L2
b + 4ζ(2)Lb −

134

9
Lb + 14ζ(3)− 404

27

]
+ iCFTFnf

α2
s

4π

[
− 4

3ε2
+

20

9ε
+

4

3
L2
b +

40

9
Lb +

112

27

]
. (3.71)

We see that all the 1/η poles, log ν terms, 1/ε3 UV divergences, and non-local divergence

terms have all cancelled in the sum over diagrams, as expected. Dropping the 1/ε poles
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gives exactly −iπ times the two-loop TMD rapidity anomalous dimension:

γsν = −CFCA
α2
s

4π2

[
− 11

3
L2
b + 4ζ(2)Lb −

134

9
Lb + 14ζ(3)− 404

27

]
− CFTFnf

α2
s

4π2

[
4

3
L2
b +

40

9
Lb +

112

27

]
(3.72)

This agrees with the known result [83].

Lastly, we note that the rapidity anomalous dimension for the TMD soft function has

been calculated to four loops in [80, 142]. This calculation was accomplished by using the

correspondence between soft and rapidity anomalous dimensions [172]. It would certainly

be interesting to explore any implications this has in the context of the work presented here.

3.5 Discussion

In this chapter we have shown that all the large logs that show up in a certain class of S

matrix element are controlled by the phase. This includes RG logs of invariant mass ratios,

as was first shown [49], as well as large logs of rapidity ratios. We have demonstrated

how one can calculate the rapidity anomalous dimensions for both local and non-local

operators at two loops. By focusing on the S-matrix phase we are able to extract these

anomalous dimensions by calculating the much simpler set of cut diagrams. Furthermore,

since we are calculating the rapidity finite anomalous dimensions directly, instead of having

to calculate counter-terms, the integrals do not need a rapidity regulator, which, in general,

makes integrating more challenging. If one chooses to calculate using Feynman diagrams,

as opposed to using on-shell methods, then individual diagrams will in general need to be

regulated, whereas finite integrals will only arise once one combines diagrams. In the case

of the massive Sudakov form factor there was no need to a rapidity regulator even at the

diagramatic level. In the next chapter, we will show how the ideas presented here may be

extended to the case of forward scattering and Glauber operators.
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Chapter 4

Unitarity, Anomalous Dimensions,

and All That Part II

4.1 Introduction

Despite the remarkable progress made in our understanding of resummed perturbative field

theory, it is fair to say that when it comes to the near forward scattering (Regge) limit,

s ≫ t there are still many open questions. Gribov’s original approach [99] to the problem

has led to a number of perspectives including the classic work of Balitsky, Fadin, Kuraev

and Lipatov [88], Lipatov’s effective action [124], and more modern approaches in terms of

Wilson lines[13, 46, 47, 171, 90].

What complicates the perturbative series in the Regge limit is the existence of large logs

of the ratio s/t that appear at each order in perturbation theory. The resummation of large

logs is not an exotic phenomena as logs of the ratios of invariant masses are summed via

a canonical renormalization group analysis which follows from factorization of mass scales,

or equivalently decoupling. However, Regge logs grow as a ratio of rapidities and are not

summable in this way.

The resummations of rapidity logs has a long history. In the context of hard scattering,

the Collins-Soper equation [59] resums logs in hard scattering transverse momentum dis-

tributions, while the BFKL [121, 14] and its generalization the BJIMWLK equation [110,

105] resum rapidity logs1 in near forward scattering processes. A universal formalism which

allows for the resummation of rapidity logs for both hard scattering and in the Regge limit

was developed in [57, 54]. The universality of this approach stems from fact that it is based

upon an operator formalism within the confines of an effective field theory, which in the

case of hard scattering, corresponds to SCET [16, 17, 18] and its’ generalization in the

1We will use the acronym RRG to refer to the rapidity renormalization group equation.
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near forward scattering limit (GSCET) [159] 2 . The EFT approach to forward scattering

systematizes the problem in the sense that the resummation of rapidity logs is reduced to

finding the anomalous dimensions for a set of well defined gauge invariant operators in the

effective theory3.

What makes the Regge problem more complex than the case of hard scattering is that

at each order of perturbation theory, there are new operators, broken up into irreducible

representations of color of various dimensions, that appear at the same (leading) order

in t/s which leads to a complex mixing matrix for non-local operators. However, it has

been known for a long time that the perturbative series in the Regge limit has a very rich

structure that can serve to greatly simplify the system. This structure is manifested in the

results found [120] for the gluon near forward amplitude in the anti-symmetric octet (8A)

channel. In particular, it was shown that at NLL the glue-glue scattering amplitude in this

channel takes the form

M8A
2→2 = [gsT

c
aa′Cg(pa, pa′)]

s

t

[(
s+ iϵ

−t

)α(t)
+

(
−s+ iϵ

−t

)α(t)]
[gaT

c
bb′Cg(pb, pb′)]

= [gsT
c
aa′Cg(pa, pa′)]

s

t

[(
s+ iϵ

−t

)α(t)
(1 + e−iπα(t))

]
[gaT

c
bb′Cg(pb, pb′)] (4.1)

with Cg(t) being the so-called ”impact factor” and α(t) is the gluon Regge trajectory.

Note that the result is anti-symmetric under crossing in the kinematic variable and Bose

symmetry follows since the color factor is crossing odd. Similar results holds for the case

of the non-crossing symmetric quark scattering amplitude[120], albeit with different impact

factors Cq and representations of the color generators. For details on the structure at two

loops and the breakdown of the result beyond NLL see [78]. This result is valid to next to

leading log (NLL) and is exact in the planar limit. It is fair to say that this result seems

unexpected as it implies several remarkable facts. The power law in s/t has the form of a

solution to a simple differential equation which arises when running local operators, whereas

non-local operators obey integro-differential equations whose solutions are in general not

simple power laws. Such power laws correspond to “Regge poles” as opposed to “Regge

cuts” that arise in the complex angular momentum plane (see e.g. [119]). Furthermore,

there seems to be only one quantity associated with an “anomalous dimension”, α(t) ,while

2The Glauber mode breaks factorization in the case of hard scattering. In all SCET proofs to date [20]
utilized the version of SCET which did not include Glaubers[16], it was simply assumed (given the proofs
of Collins, Soper and Sterman ([60]) in the full theory) that the Glauber mode cancelled in the relevant
observables.

3The EFT approach is related to but quite distinct from the Reggeon field theory approach. For instance,
Reggeon exchange should not be equated with Glauber exchange. For a discussion of these distinctions see
[93].
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we would expect at least two such anomalous dimensions at two loops, and more beyond.

Other hints of underlying structure were pointed out in [65] where it was shown that the

constants appearing in the one-loop quark and gluon impact factors involve the finite part

of the two-loop Regge trajectory, though the impact factors are polluted by additional

constants that are not related to the Regge trajectory. Intuitively this iterative structure

would seem to be a consequence of unitarity as forward scattering is a semi-classical process

which leads to the exponentiation of the classical (shock wave) action. On the other hand

the anomalous dimensions and the associated logs are a quantum effect so there is no a

priori reason to expect any natural relation between the iterative (phase) structure and the

aforementioned anomalous dimensions relation. The are other interesting relations between

the lower loop results and higher order contributions to the cusp anomalous dimensions

[116, 117, 67, 68], which will not be relevant to our discussion.

In [143] it was shown that the iterative structure is elegantly exposed within the EFT

formalism [159]. In particular, the authors used the EFT approach to show that, given the

form of the amplitude (4.1), the finite part of the two-loop Regge trajectory must be encoded

in the order ϵ piece of a one loop correction (with no contamination) while the divergent

pieces arise from a simplified (in a manner to made clear below) two loop calculation which,

at the technical level, is effectively one loop. Their results also shows that in the EFT one

reduces the calculation of the two loop Regge trajectory to three diagrams. Finally, the

authors were able to derive the maximally matter dependent contributions to the Regge

trajectory to all loop orders.

In this chapter, we will generalize the result in [143] in several ways. Firstly due to

the reliance of [143] on the use of the form of the amplitude (4.1) their results can only

used in the 8A channel and only to NLL, away from the planar limit, whereas our relations

will be valid in all channels and to all orders. In allowing for more general processes

we will also uncover additional relations among various anomalous dimensions which will

contribute to Regge cuts. Furthermore, our results show that simplifications in calculating

the Regge trajectory, in the case of anti-symmetric octet are universal and, moreover, the

Regge trajectory as well as other anomalous dimensions, can be calculated directly via

cut diagrams in the EFT. That Regge logs can be extracted by cut diagrams in the full

theory was shown in [87], though working in the EFT systematizes the methodology, and

streamlines the calculations, especially at higher orders.

4.2 Implications of Eq.(4.1)

The form of the amplitude (4.1) implies that the form rapidity RG equations (6.21) in the

EFT must be strongly constrained at least up to NLL and to all orders in the planar limit.
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At NLL, where we keep all terms which scale as α2 log(s/t), with α log(s/t) ∼ 1, we need

to run the one Glauber operator at two loops and the octet of the two Glauber operator at

one.

The form of (4.1) implies that the RRG equation (in the 8A channel) has a power law

solution (s/t)α. This is prima facia consistent with the one Glauber exchange where the

factorized form will reduce to a product (Regge Pole) since the exchanged momentum is

fixed to be q⊥ =
√
−t. However, once we allow for two Glauber exchange we expect a

convolution (Regge cut). Moreover, in principle, we can have mixing between one and two

Glauber exchanges, i.e. γ8A1,2 ̸= 04. Finally, even if the two Glauber exchange RRG had a

power law solution, the form of (4.1) implies that integral of γ(2,2) has to be fixed by γ(1,1).

This also implies that there can be no mixing between the one and two Glauber sectors of

the theory, e.g. γ(1,2) = 0. Calculating in the EFT it has been found that [93], not only

is γ(1,2) = 0, but all transitions between one and multi-Glauber exchanges vanishes. i.e.

beyond the one and two Glauber sector.

If we go to the planar limit this leads to an infinite number of constraints since the

solution to the RG have a pole structure, i.e no convolutions, such that the RRG has a

simple exponential solution as in Eq. (4.1). Moreover, there is no mixing between the

different Glauber sectors to all order in perturbation theory. From here on out we would

like to keep things as general as possible and will not assume planarity.

We gain further control of the RRG structure in the planar limit where Eq.(4.1) is valid

to all orders, which implies that the full RRG system is multiplicative, i.e. its a pure pole.

Moreover all of the anomalous dimensions γn,n are fixed in terms of γ(1,1). It has been known

for a long time that the planar limit leads to pure Regge poles [120], and how this phenomena

occurs in the EFT was explained in [93]. Here we briefly summarize the arguments. In the

EFT the basic reason for the all-order pole structure is remarkably simple and it has to

do with the so-called “collapse rule” put forth in [159] which states that a Glauber burst

can not be interrupted. In figure (1.1) a collinear interruption between Glauber bursts

(meaning multiple Glauber exchange with possible soft interactions) leading to a vanishing

contribution. Figure (1.3) is planar and non-vanishing and leads to pole behavior, while

figure (1.2) is non-planar and leads to cut behavior. Thus we conclude that, in accordance

with Eq.(4.1), the collapse rule implies there can be no convolution, when considering the

RRG for J or J̄ , since all the Glauber loop momenta can be run through a single collinear

line.

4There is no reason in general why non-planar diagrams could not generate cut structures either in the
next to leading order two Glauber anomalous dimension or the leading order three Glauber anomalous
dimension.
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Figure 4.1: Different configurations of Glauber bursts. Here the bubble outlined in red
represents an arbitrary number of Glauber exchanges. The first diagram presents a planar
configuration of two Glauber bursts, which are interrupted by the collinear gluon-quark
vertex. This class of diagrams all vanish by the collapse rule. Diagram (2.) represents a
non-planar set of Glauber exchanges which are in general non-vanishing and will generate
non-pole solutions. Lastly Diagram (3.) is a planar Glauber burst which is not interrupted.

4.3 Explaining the Iterative Structure

As mentioned in the introduction an interesting piece of data regarding the perturbative

series is that the finite part of the two loop anomalous dimensions can be extracted from the

O(ϵ) piece of the one loop calculations. By comparing this form to Eq.(4.1) the authors of

[143] were able to derive a relation between the two loop Regge trajectory and the constant

pieces of the one and two Glauber exchange graphs: S
(1)
2,2 , S

(0)
2,2 , S

(1)
1,1 , in the color octet

channel, where the superscript denotes the order of the correction beyond the Glauber

exchange. In particular, they derived the relation

α(1) = −2S
(0)
2 (4.2)

α(2) = −2
(
S
(1)
1 − S

(1)
1 S

(0)
2

)
, (4.3)

where the S
(n)
i are defined via

S8A
(1,1) = S

(0)
1 (1 + α̃S

(1)
1 + α̃2S

(2)
1 + .....)

S8A
(2,2) = iπS

(0)
1 (α̃S

(0)
2 + α̃2S

(1)
2 + .....)

S
(0)
1 =

8πiαs
t

(4.4)

and

α(t) =
∑
i

α(i)

(
α̃

4π

)i
, (4.5)

where α̃ is the rescaled coupling constant (see [143]). Not only is this useful to explain why

the two loop Regge trajectory shows up in a one loop calculation, but it also simplifies the
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calculation of the two loop trajectory itself, as it drastically reduces the number of diagrams

one needed to calculate, since we don’t need to consider two loop soft corrections to one

Glauber exchange (S
(2)
1,1), and only need to calculate three diagrams [143]. Moreover, these

three two loop diagrams all involve a Glauber loop which reduces the relativistic loop order

by one.

In this paper we will utilize the recently developed formalism [156] to generalize the

results in [143] to all orders and in any color channel. Moreover, the formalism will also

generate relations between anomalous dimensions of operators with differing number of

Glaubers.

4.4 Unitarity Methods

4.4.1 Application to Regge Kinematics

In the previous chapter, we introduced a method for analyzing rapidity anomalous of hard

scattering form factors. We would now like to apply this methodology to the present case of

interest, near forward scattering. The use of unitarity in this regime is certainly not new, and

goes back to, at least, [120]. However, here we will exploit unitary in a systematic fashion

within the confines of an EFT to generate relations for anomalous dimensions to all order

in pertrubation theory. If we try to apply the same arguments as we did above, regarding

correlations between the logs and the phase, to this case, it becomes clear that a straight

forward application will fail. To understand this we recall that the near forward scattering

process is semi-classical and as such the amplitude comes with a phase eiScl which is not

directly associated with the quantum rapidity logs. This can be most straightforwardly seen

in QED, where the photon does not Reggeize, but there is certainly a phase which arises

from the semi-classical solution. In QCD there is a quantum rapidity log that Reggeizes

the gluon, but its’ relationship to the ıπ that arises do to the Glauber loop, at face value,

is unclear. Consider quark-antiquark scattering, with a gluon mass regulator m, we have

1-loop =
iα2
s

t
S
(1)
nn̄

[
8iπ ln

(
−t
m2

)]
+
iα2
s

t
S
(2)
nn̄

[
−4 ln2

(
m2

−t

)
− 12 ln

(
m2

−t

)
− 14

]
+

iα2
s

t
S
(3)
nn̄

[
−4 ln

(
s

−t

)
ln

(
−t
m2

)
+

22

3
ln

(
µ2

−t

)
+

170

9
+

2π2

3

]
+

iα2
s

t
S
(4)
nn̄

[
−8

3
ln

(
µ2

−t

)
− 40

9

]
,

(4.6)
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where the various color and spinor prefactors are given by

S
(1)
nn̄ = −

[
ūnT

ATB
̸ n
2
un

] [
v̄n̄T

A
T
B ̸ n̄
2
vn̄

]
, S

(2)
nn̄ = CF

[
ūnT

A ̸ n̄
2
un

] [
v̄n̄T̄

A ̸ n
2
vn̄

]
,

S
(3)
nn̄ = CA

[
ūnT

A ̸ n̄
2
un

] [
v̄n̄T̄

A ̸ n
2
vn̄

]
, S

(4)
nn̄ = TFnf

[
ūnT

A ̸ n̄
2
un

] [
v̄n̄T̄

A ̸ n
2
vn̄

]
. (4.7)

We see that the iπ does not come with the same color structure as the rapidity log(s), which

is inherently non-Abelian and thus we must consider an object which directly ties the phase

to the rapidity logs.

4.4.2 Amplitudes of definite signature

We can get hint as to the proper direction by first recalling that the iπ in Eq. (4.6)

arises from the box Glauber diagram. Moreover, the cross-boxed diagram, which would

carry a non-Abelian color factor and could correlate with the rapidity log, vanishes in the

effective theory (see Section 5 of [159]). However, if we consider the crossed-amplitude

(s → u = −s + O(t/s)), the box will come with a non-Abelian color factor. In fact, if we

consider the linear combination Ms −Mu the Glauber contribution will generate exactly

the CA color factor that must appear with the rapidity log. This combination is what is

known as a “negative signature amplitude” and it (along with the positive signature case)

have been an object of study in the forward scattering amplitude for many decades (see e.g.

[66]).

Much can be gleaned about the definite signature amplitudes from dispersion relations.

In particular, it has been pointed out [48] that these objects have exactly the reality proper-

ties needed to fully control the phase from the logarithms. Generally, this is used to simplify

calculations by allowing one to drop/ignore iπ terms that might complicate the calculation.

Here we are able to exploit this connection by combining signature with the factorization of

the amplitude into multi-Glauber operators. One can decompose the 2-to-2 amplitude as

M2→2 = M(−) +M(+),

M(±) =
1

2
(M2→2(s, t)±M2→2(u, t)) , (4.8)

where M2→2(s, t) is the s-channel amplitude and M2→2(u, t) is the u-channel amplitude.

Therefore the (+) and (−) signature amplitudes are even or odd under (s ↔ u) crossing.

Both are functions of the crossing symmetric combination of logarithms[48],

L =
1

2

(
log

−s− iϵ

−t
+ log

−u− iϵ

−t

)
= log

|s|
|t|

− iπ

2
, (4.9)
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where we have used u = −s in the high-energy limit. It was further shown in [48] that the

coefficients of L are either purely real for the odd-signature amplitude or purely imaginary

for the even-signature amplitude. These reality properties then allow us to exactly relate

the logarithms to the phase.

4.4.3 Signature Symmetry and the Complex Boost

In order to make use of the connection between the rapidity logs and the iπ’s, we now utilize

the boost operator K̄z, defined in section (3.2.2). Then, by acting on L with eiπK̄z , we have

eiπK̄zL =
1

2

(
log

−se2πi − iϵ

−t
+ log

−u− iϵ

−t

)
= log

|s|
|t|

+
iπ

2
= L⋆. (4.10)

The boost only acts non-trivially on the log(−s) the log is evaluated right below the branch

cut, while the log(−u) is evaluated away from the branch cut and a rotation by 2πi has no

effect. The definite signature amplitudes then transform as

eiπK̄zM(±)(L) = M(±)(L⋆) = ∓M(±)(L)⋆. (4.11)

The last equality follows from the reality properties of the amplitudes and the Schwartz

reflection principle.

4.4.4 The Master Formulae

We now use the factorization to write the definite-signature amplitudes as

M(±) = i

∞∑
i,j=1

[
J
(s)
κ(i) ⊗ S

(s)
(i,j) ⊗ J̄

(s)
κ′(j) ± J

(u)
κ(i) ⊗ S

(u)
(i,j) ⊗ J̄

(u)
κ′(j)

]
, (4.12)

where the (s/u) superscripts denote whether the matrix element is computed in the s- or

u-channels. Each component, J, S etc, is decomposed in terms of color irreps, whose indices

we have suppressed. Since the amplitude may only depend on p+n and p−n̄ through the

rapidity logs in the collinear functions, we may write

K̄zM(±) = i
∞∑

i,j=1

[(
−1

2
ν
∂

∂ν
J
(s)
κ(i)

)
⊗ S

(s)
(i,j) ⊗ J̄

(s)
κ′(j) ±

(
−1

2
ν
∂

∂ν
J
(u)
κ(i)

)
⊗ S

(u)
(i,j) ⊗ J̄

(u)
κ′(j)

]

+ i
∞∑

i,j=1

[
J
(s)
κ(i) ⊗ S

(s)
(i,j) ⊗

(
−1

2
ν
∂

∂ν
J̄
(s)
κ′(j)

)
± J

(u)
κ(i) ⊗ S

(u)
(i,j) ⊗

(
−1

2
ν
∂

∂ν
J̄
(u)
κ′(j)

)]
.

(4.13)

63



Using the rapidity RRG equation we have

∓M(±)⋆ = eiπK̄zM(±)

= i
∞∑

i,j,k,l=1

[(
J
(s)
κ(i)e

−⊗ i
2
πγ(i,j)

)
⊗ S

(s)
(j,k) ⊗

(
e−

i
2
πγ(k,l)⊗J̄

(s)
κ′(l)

)
±
(
J
(u)
κ(i)e

−⊗ i
2
πγ(i,j)

)
⊗ S

(u)
(j,k) ⊗

(
e−

i
2
πγ(k,l)⊗ J̄

(u)
κ′(l)

)]
. (4.14)

Note that the action of K̄z generates a factor of 1/2, as compared to the action of K̄z

when acting on an amplitude [156]. This comes from the fact that we are looking at the

signatured amplitude and the action of the generator on the difference/sum of the two

channels naturally leads to twice the anomalous dimension.

To extract the Regge trajectory, we focus on the odd-signature amplitude. Using the

vanishing of 1 → j transitions, we can rewrite Eq.(4.11) as

M(−)
1 e−iπγ(1,1) = M(−)⋆ − eiπK̄zM(−)

≥2 , (4.15)

where we have used the fact that the one Glauber exchange is multiplicative (Regge pole).

We now use that the action of the boost is to transform L to L⋆, or shift log(s) →
log(s) + iπ. With this, we can write the master formula for the Regge trajectory as

M(−)
1 e−iπγ(1,1) = M(−)⋆ − M(−)

≥2

∣∣∣
s→e2πis

. (4.16)

Notice that in the second term the action of the boost generator eiπK̄z does not conjugate

M(−)
≥2 , since L is formed from one Glauber (the log) and two Glauber (the iπ) exchange

graphs.

As a last step, we apply the unitarity relation (M(−) − M(−)⋆) = i(MM⋆)(−) where

(MM⋆)(−) = 1/2(MsM⋆
s −MuM⋆

u), we arrive at the master formula

M(−)
1

(
e−iπγ(1,1) − 1

)
= −i(MM⋆)(−) +

[
M(−)

≥2 − M(−)
≥2

∣∣∣
s→e2πis

]
. (4.17)

A few comments are in order. First, we note that while this formula does involve more

terms than just unitarity cuts (first term on the RHS), there are two major simplifications

that it provides. The first is that the terms in the square brackets always come from graphs

with at least two Glauber insertions, and so must have at least one Glauber loop. This

provides many of the same technical simplifications as only working with cut graphs, as

Glauber loops are easier to perform than soft or collinear loops. The second simplification

is that only terms proportional to rapidity logarithms contribute to the terms in the square
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brackets, as all other contributions vanish in the subtraction. The coefficients of the rapidity

logarithms are generally easier to compute than the rapidity-finite terms. Moreover, one

can also combine the two integrands (with the appropriate changes in sign in the second) to

yield a rapidity finite integral that needs no regulator which can complicate the evaluation

at higher loops.

Lastly, we give the equivalent formula for the even-signature sector. Due to an extra

sign in Eq. (4.14), we find

(
eiπK̄z − 1

)
M(+) = −2Re[M(+)]. (4.18)

Unlike with the odd signature formula, the even signature relation cannot be simplified

further using unitarity. Note that M(+)
1 = 0 to all orders so to extract information from

this equation we will need to go to higher orders.

4.5 Calculating the Regge Trajectory through Two Loops

4.5.1 Leading order one Glauber anomalous dimension: γ
(1)
(1,1)

We now verify the master formula in Eq. (4.17). At one loop, it simplifies to

M(−)(0)
1 γ

(1)
(1,1) =

1

π

(
M†M(−)

)(1)
. (4.19)

The tree-level odd signature amplitude for quark-antiquark scattering is given by

M(−)(0)
1 =

1

2


p3p2

p1 p4

n

n̄

−

p̄2p̄3

p1 p4

n

n̄

 ≡

 n

n̄


(−)

,

=

[
ūnT

A /̄n

2
un

]
8παs
t

[
v̄n̄T̄

A /n

2
vn̄

]
. (4.20)

In the first line we have introduced the notation of taking the odd-signature piece of the

diagram, which can be computed by subtracting the crossed u-channel diagram from the

s-channel diagrams. Note that we do not need to include the contributions of the terms

in the square brackets of Eq. (4.17) at this order, as only the tree-level matrix elements

of Jκ(2), S(2,2), and J̄κ′(2) contribute, and these contain no rapidity logarithms[93]. If we
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compute the cut, we then find

(
M†M(−)

)(1)
=


n

n̄


(−)

=
−4πα2

s

t

[
ūn
(
TATB − TBTA

) /̄n
2
un

] [
v̄n̄T̄

AT̄B
/n

2
vn̄

]
Γ(1 + ε)Γ(−ε)2

Γ(−2ε)

(
µ̄2

−t

)ε
,

=
CAαs
4

Γ(1 + ε)Γ(−ε)2

Γ(−2ε)

(
µ̄2

−t

)ε [
ūnT

A /̄n

2
un

]
8παs
t

[
v̄n̄T̄

A /n

2
vn̄

]
,

= πγ
(1)
(1,1)M

(−),(0). (4.21)

Which yields the standard result for the leading order Regge trajectory

γ
(1)
(1,1) =

CAαs
4π

Γ(−ϵ)2Γ(ϵ+ 1)
(
µ̄2

−t

)ϵ
Γ(−2ϵ)

= −CAαs
2π

(
1

ϵ
+ log

(
µ2

−t

)
) +O(ϵ). (4.22)

Through one loop this relation is almost trivial since the amplitude is linear in log |s/t|
at this order. On the other hand, this calculation is significantly simpler than the direct

calculation of the anomalous dimension (see [159]).

4.5.2 Next to leading order anomalous dimension for one Glauber oper-

ator: γ
(2)
(1,1)

Now we move onto the two-loop Regge trajectory, i.e. γ
(2)
(1,1), which is still pure octet since

we are focussing on the one Glauber operator. At this order Eq. (4.17) becomes

M(−)(0)
1 γ

(2)
(1,1) +M(−)(1)

1 γ
(1)
(1,1)−

iπ

2!

(
γ
(1)
(1,1)

)2
M(−)(0)

1 =
1

π

(
M†M(−)

)(2)
(4.23)

+
i

π

[
M(−)(2)

≥2 − M(−)(2)
≥2

∣∣∣
s→e2πi

]
.

Since γ(1,1), M
(−)(1)
1 , and the two-loop cut are all real, the only imaginary parts of this

formula come from the iterative γ2(1,1) term and the difference term. In particular, the

difference term must be entirely imaginary, as at this order, only Jκ(2), S(2,2), and J̄κ′(2) can

generate a log(s), the coefficient of which is purely imaginary. Then by looking at the real
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Figure 4.2: Two-loop cut diagrams contributing to the two loop Regge trajectory. Diagrams
(a), (b), and (c) build up the Regge trajectory and the iterative soft contributions in the
single Glauber operator, while the collinear loops (f) and (g) only build up the collinear
iterative terms. Diagrams (d) and (e) vanish when summing over their mirror images and
taking the odd-signature piece.

and imaginary parts separately, we obtain the following set of formulas:

M(−)(0)
1 γ

(2)
(1,1) +M(−)(1)

1 γ
(1)
(1,1) =

1

π

(
M†M(−)

)(2)
, (4.24)(

γ
(1)
(1,1)

)2
M(−)(0)

1 = − 2

π2

[
M(−)(2)

≥2 − M(−)(2)
≥2

∣∣∣
s→e2πi

]
. (4.25)

The reality of the term in the brackets follows from the fact that the Glauber loop gives an

iπ as does the difference between the logs in the two amplitudes.

We first use Eq. (4.24) to obtain the two loop anomalous dimension starting with the

diagrams needed for the one-loop single Glauber term M(−)(1)
1 , of which there are two soft

contributions: 
n

n̄


(−)

= −iM(−)(0) 2TFnfαs
π

Γ(2− ϵ)2

Γ(4− 2ϵ)
Γ(ϵ)

(
µ̄2

−t

)ϵ
. (4.26)
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The soft eye graph is given by
n

n̄


(−)

=− iM(−)(0)CAαs
2π

(
µ̄2

−t

)ϵ{
Γ(2− ϵ)2

Γ(4− 2ϵ)
Γ(ϵ)− 2

Γ(1− ϵ)2

Γ(2− 2ϵ)
Γ(ϵ)

+
Γ(η/2)Γ(1/2− η/2)Γ(1 + ϵ+ η/2)Γ(−ϵ− η/2)

Γ(1 + η/2)Γ(1/2− ϵ− η/2)4−ϵ

(
ν2

−t

)η/2}
. (4.27)

Adding these together, we find
n

n̄

+

n

n̄


(−)

=iM(−)(0)
(αs
4π

)(µ2
−t

)ϵ [
− 2CA

Γ(1 + ϵ)Γ(−ϵ)2

Γ(−2ϵ)

(
1

η
+

1

2
Lν

)
− 2CA

ϵ2
+

11CA
3ϵ

−
4TFnf
3ϵ

+
67CA
9

− ζ(2)CA −
20TFnf

9
(4.28)

+ ϵ

(
− 28CA

3
ζ(3)− 11CA

6
ζ(2) +

404CA
27

+
2TFnf

3
ζ(2)−

112nfTF
27

)
+O(ϵ2)

]
,

where we have introduced Lν = log
(
ν2/− t

)
.

We have only three classes of cut diagrams to compute. There are two diagrams involving

the soft eye graph on either side of the cut. These are just the soft eye graph convoluted

with the Glauber box diagram, and they evaluate to


n

n̄

+

n

n̄


(−)

= −M(−)(0)C
2
Aα

2
s

4π

(
µ̄2

−t

)2ϵ{(
Γ(2− ϵ)2

Γ(4− 2ϵ)
Γ(ϵ)− 2

Γ(1− ϵ)2

Γ(2− 2ϵ)
Γ(ϵ)

)
B(1, 1 + ϵ) (4.29)

+
Γ(η/2)Γ(1/2− η/2)Γ(1 + ϵ+ η/2)Γ(−ϵ− η/2)

Γ(1 + η/2)Γ(1/2− ϵ− η/2)4−ϵ
B(1, 1 + ϵ+ η/2)

(
ν2

−t

)η/2}
.
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Similarly, there are 2 cut diagrams with soft fermion loops:


n

n̄

+

n

n̄


(−)

= −M(−)(0)CA TFnfα
2
s

π

Γ(2− ϵ)2

Γ(4− 2ϵ)
Γ(ϵ)B(1, 1 + ϵ)

(
µ̄2

−t

)2ϵ

.

(4.30)

Here, B(a, b) is the coefficient of the one-loop bubble integral in 2− 2ϵ dimensions:

(4π)−ϵ
∫

[d2−ϵk⊥]

[⃗k2⊥]
a[(k⃗⊥ + q⃗⊥)2]b

=
B(a, b)

4π
(q⃗2⊥)

1−ϵ−a−b, (4.31)

with

B(a, b) =
Γ(1− a− ϵ)Γ(1− b− ϵ)Γ(−1 + a+ b+ ϵ)

Γ(a)Γ(b)Γ(2− a− b− 2ϵ)
. (4.32)

Lastly, we move onto the cut H-graph. The uncut H-graph was computed in [143], and

the cut graph is almost identical. We have


n

n̄


(−)

=−M(−)(0)C
2
Aα

2
s

16π

Γ(η/2)Γ(1/2− η/2)√
π2η

(
µ̄2

−t

)2ϵ(
ν2

−t

)η/2
(4.33)

×
[
B2(η/2)e

−2γEϵ − 2B(1, 1)B(1 + η/2, 1 + ϵ)
]
.

B2 is the coefficient of a two-loop bubble integral:

e2γEϵ
∫

[dd
′
k1⊥][d

d′k2⊥]

k⃗21⊥k⃗
2
2⊥(k⃗1⊥ − q⃗⊥)2(k⃗2⊥ − q⃗⊥)2[(k⃗1⊥ − k⃗2⊥)2]η/2

=
B2(η/2)

(4π)2−2ϵ
(q⃗2⊥)

−2−2e−η/2. (4.34)

To linear order in η, B2 is given by [113, 118]

B2

(η
2

)
= B(1, 1)2 e2γEϵ +

η

2

(
B(1, 1)2 e2γEϵ

(
ψ(0)(1 + 2ϵ)− ψ(0)(−ϵ)

)
+

Γ(−ϵ)2Γ(−1− ϵ)Γ(2ϵ)

Γ(−1− 3ϵ)
3F2 (1, 1,−2ϵ; 1− 2ϵ, 2 + ϵ; 1)

)
+O(η2), (4.35)

= B(1, 1)2 e2γEϵ +
η

2

(
− 1

ϵ3
+
ζ(2)

ϵ
− 76ζ(3)

3
+O(ϵ)

)
+O(η2).
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Adding up the cut graphs, we then have

Cut graphs =M(−)(0)
(π
2

)(αs
4π

)2(µ2
−t

)2ϵ [
−
(
1

η
+

1

2
log

ν2

−t

)(
2α(1)

)2
+

8C2
A

ϵ3
−

22C2
A

ϵ2

+
8CA TFnf

ϵ2
−

134C2
A

3ϵ
+

4C2
Aζ(2)

ϵ
+

40CA Tfnf
3ϵ

−
808C2

A

9
− 22C2

Aζ(2)

(4.36)

+
68C2

A

3
ζ(3) +

224CA TFnf
9

− 8CA TFnfζ(2)

]
.

where α1 = −γ(1,1) 4πα . The cut graphs are rapidity divergent only because we have not

included the collinear contributions. Nonetheless the Eq.(4.17) assures us that the LHS of

Eq.(4.24) will also be rapidity divergent. From the two loop formula in Eq. (4.24), we then

find that the two-loop RAD to be given by

γ
(2)
(1,1) =

(αs
4π

)2
CA

(
µ2

−t

)2ϵ [
− 11CA

3ϵ2
+

4nfTF
3ϵ2

− 67CA
9ϵ

+
2CA
ϵ
ζ(2) +

20TFnf
9ϵ

− 404CA
27

+
11CA
3

ζ(2) + 2CAζ(3) +
112TFnf

27
−

4TFnf
3

ζ(2)

]
. (4.37)

This agrees with the standard result [87, 85, 86, 37], after accounting for different choices

of normalization. As a further check, we can expand our results to O(ϵ2) and compare with

the results given in [89], where we again find agreement.

4.5.3 The Role of the Collinear Modes

Notice that when we calculated the cut diagrams we did not include collinear contributions

we will not show dont contribute to γ
(2)
(1,1). In [143, 93] it was argued that in the planar limit,

all collinear functions Jκ(i) must reduce to something proportional to M1. That is, there is

no convolution and the result must lead to a Regge pole. Intuitively this follows from the

collapse rule which tells us that Glaubers come in a burst and can only be connected to one

collinear line. As such, the contribution to the collinear function from planar graphs only

depends upon the physical transverse momentum exchanges q⊥ and serves to reproduce the

iterative term M(−)
1 γ

(1)
(1,1) in Eq.(4.24). We now show how this comes about by way of an
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example. Consider the planar double Glauber vertex correction graph:

 n

n̄


(−)

=M(−)(0)
1

CA
4

(8παs)

∫
d̄dk d̄dℓ

N (ℓ)

k⃗2⊥(k⃗⊥ + q⃗⊥)2(ℓ+ p)2(ℓ+ p+ q)2

× (2π)3δ+(ℓ
2) n̄· (p+ ℓ) δ+

(
(p+ k + ℓ)2

)
n· p′ δ+

(
(p′ + k)2

)
. (4.38)

Here ℓ is the collinear loop momentum, and k is the Glauber loop momentum. N (ℓ) is

the numerator, and it is independent of k regardless of whether the collinear projectiles

are gluons or quarks. Therefore the only k-dependence in the integrand is in the Glauber

propagators and the delta functions, and we can integrate over k to obtain

 n

n̄


(−)

= M(−)(0)
1

CA
4

(8παs)
B(1, 1)

2(4π)

(
µ̄2

−t

)ϵ ∫
d̄dℓ

N (ℓ) θ(−n̄· ℓ) (2π)δ+(ℓ2)
((ℓ+ p)2(ℓ+ p+ q)2

, (4.39)

=
[
πγ

(1)
(1,1)

] (
M(−)(0)

1

∫
d̄dℓ

N (ℓ) θ(−n̄· ℓ) (2π)δ+(ℓ2)
(ℓ+ p)2(ℓ+ p+ q)2

)
.

If we now turn to the one-loop collinear contribution to M(−)
(1) , we find

 n

n̄


(−)

= M(−)(0)
1 (−i)

∫
d̄dℓ

N (ℓ)

(ℓ+ p)2(ℓ+ p+ q)2ℓ2
. (4.40)

This is almost identical to the term in the round brackets in Eq. (4.39), and indeed they

are equal. We can see this by doing the contour integration over n· ℓ in Eq. (4.40) Thus we

have  n

n̄


(−)

=
[
(iπ)γ

(1)
(1,1)

]
×

 n

n̄


(−)

(4.41)

which matches exactly with what we expect for the one-loop iterative terms. An identical

set of manipulations work for the other collinear planar graph.

Let us consider the two-loop non-planar collinear cut graphs. These must give a van-

ishing contribution if we wish to maintain a Regge pole behavior.
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These have vanishing contributions to the odd-signature amplitude:


n

n̄

+

n

n̄


(−)

= 0. (4.42)

4.6 Bootstrapping the Anomalous Dimensions

4.6.1 Determining γ
(1)
(2,2) from γ

(1)
(1,1) in the octet channel

Consider the following form of the master formula at second order in the coupling(
γ
(1)
(1,1)

)2
M(−)(0)

1 =
2

π2

[(
eiπK̄z − 1

)
M(−)

≥2

](2)
,

=
2i

π
γ
(1)
(2,2) ⊗M(−)(0)

≥2 , (4.43)

where the second line is defined as

γ
(1)
(2,2) ⊗M(−)(0)

≥2 =
i

2
J
(0)(s)A1A2

κ(2) ⊗
(
γA1A2;B1B2

(2,2) ⊗ S
(0)(s)B1B2;D1D2

(2,2) + S
(0)(s)A1A2;C1C2

(2,2) ⊗ γC1C2;D1D2

(2,2)

)
⊗ J̄

(0)(s)D1D2

κ′(2) − (s↔ u). (4.44)

Here we repristinated the color indices as they will play in important role in our analysis.

Now we would like to ask what constraints does this equation put on γ(2,2)? At this order

both the soft function and the jet functions are trivially given by (6.17) and (6.19) respec-

tively. In Eq. (4.43) both side of the equation are projected down to the 8A irrep. due to

the minus signature.

Thus Eq. (4.43) is given by(
µ̄2

−t

)2ϵ
(CAαs)

2

(4π)2
B[1, 1]2M(−)(0)

1 = g4
2

π

CA
2
µ4ϵM(−)

0

(q2⊥)

16παs

∫
[dd

′
l⊥]

l2⊥(l⊥ − q⊥)2
[dd

′
k⊥]

k2⊥(k⊥ − q⊥)2
γ8(2,2)(k⊥, l⊥, q⊥),

(4.45)

We immediately notice a remarkable simplification. The LHS is proportional to B[1, 1]2,

which implies that the integral projects out the piece of γ8A(2,2) which is independent of k⊥ and

l⊥, since any non-trivial dependence on these variables would necessarily, by dimensional
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analysis, lead to terms proportional to B[1, 1 + ϵ]. So we are left with the relation(
µ̄2

q2⊥

)2ϵ
(αaCA)

2

(4π)2
B[1, 1]2M(−)

0 =
g4

π
CAµ

4ϵ (q2⊥)

16παs

∫
[dd

′
l⊥]

l2⊥(l⊥ − q⊥)2
[dd

′
k⊥]

k2⊥(k⊥ − q⊥)2
γ8(2,2)(q⊥)M

(−)
0

=
g4

π
CAµ

4ϵ (q2⊥)

16παs
((4π)−1+ϵ(q−2−2ϵ

⊥ B[1, 1])2γ8(2,2)(q⊥)M
(−)
0

(4.46)

Therefore

γ8P(2,2) = CAαsq
2
⊥ (4.47)

where the P reminds us that in principle there are other terms in γ8(2,2) whose integral yields

zero in Eq. (4.46). Note that the fact that the convolutive piece gets projected out implies

that there is a power law (Regge pole) solution at NLL in accordance with Eq.(4.1). We

can now see how the running up to NLL reproduces the form of (4.1). The RRG equation

for JA1A28A is given by

ν
d

dν
JA1A28A(k⊥) =

∫
[dd

′
k⊥]

k2⊥(k⊥ − q⊥)2
γ(2,2)(k⊥, q⊥)J

A1A28A(k⊥)

= γ(1,1) J
A1A28A , (4.48)

which had to be the case if Eq.(4.1) is to hold.

If we want to predict the full γ(2,2) we need some additional data, which can be gleaned

by recalling that that JA1A28A can be factorized into a time ordered product of two OqBn

operators defined in Eq.(2.85)

JA1A28A(k⊥) =

∫
dx±1 dx

±
2 ⟨p | T (O

qA1
n (k⊥, x

±
1 )O

qA2
n (k⊥ − q⊥, x

±
2 ) | p

′⟩8A , (4.49)

This operator will run due to the anomalous dimensions of the individual OqA1
n , as well

as an additional renormalization due to the semi-local nature of the operator. The key

distinction between the two types of renormalizations is that the former will not generate

any convolution while the ladder will. The anomalous dimensions of OqA1
n were calculated

in [159],

γOq
n
= γ(1,1) (4.50)

which is as we would expect for one Glauber exchange. We will generate such contribution

to the anomalous dimensions from each of the Glaubers, the first of which carries momentum

k⊥ and the other k⊥− q⊥. These contributions are shown in the first two diagrams of figure

(3).
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(a)

n

n̄

K

k⊥ k⊥ + q⊥

(b)

n

n̄

ωG(k⊥)

k⊥ k⊥ + q⊥

(c)

n

n̄

ωG(k⊥ + q⊥)

k⊥ k⊥ + q⊥

Figure 4.3: A diagramatic representation of γ(2,2). In (a), the red line stretching between
the two Glauber exchanges represents the convolutive term k of the anomalous dimension,
while the blue dots in (b) and (c) represent insertion of the Regge trajectory.

In addition there is another contribution to γ(2,2) stemming from diagrams that are of

the form of the last diagram in figure (3) which span both exchanges and lead to a non-trivial

convolution. Thus we make the following ansatz for the two Glauber jet RRG equation

ν
d

dν
JA1A28A(l⊥) =

∫
[d2−2ϵk]

[
δ2−2ϵ

(
k⊥ − l⊥)(γ(1,1)(k⊥) + γ(1,1)(k⊥ − q⊥)

)
+K(l⊥, k⊥)

]
JA1A28A(k⊥).

(4.51)

Now we can fix K(l⊥, k⊥) by imposing that Eq.(4.46) be obeyed and find

K(l⊥, k⊥) = αsCA

[
−

l2⊥
k2⊥(l⊥ − k⊥)2

− (q⊥ − l⊥)
2

k2⊥(k⊥ − q⊥ + l⊥)2
+

q2⊥
k2⊥(q⊥ − k⊥)2

]
. (4.52)

which agrees with the explicit calculation performed in [93]. We have thus shown that

we can fix the full two Glauber octet anomalous dimension directly from the one Glauber

operator. That this had to happen for the integrated anomalous dimension assuming the

result in Eq.(4.1), but that the full result could follow from the one Glauber operator is a

new result as far as we are aware.

4.6.2 Constraining Other Color Channels from Positive Signature Am-

plitudes

Let us now explore the information stored in the positive signature amplitude relation

Eq.(4.18) (
eiπK̄z − 1

)
M(+) = −2Re[M(+)]. (4.53)

We garner new information from this result since the minus signature is not sensitive to

channels other than the octet at the two Glauber level. The plus signature amplitude starts

at two Glauber exchange at order α2 however this contribution if purely imaginary. Thus
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the RHS of Eq.(4.18). starts at O(α3) i.e. two loops.

4i

π
Re[M](2)(+) = ((J

(0)
κ(2)⊗γ

(1)(1,8S)
(2,2) )⊗S(0)

(2,2)⊗J̄
(0)
κ′(2)+(J

(0)
κ(i)⊗S

(0)
(2,2)⊗(γ

(1)(1,8S)
(2,2) ⊗J̄ (0)

κ′(2)))+(s→ u),

(4.54)

Only the 8S and singlet representation in the decomposition 3⊗ 3̄ contribute for quark

states. Extracting the LHS from the full theory calculations [45, 97, 5], and using the

known results for γ8S(2,2) (a Regge pole) and singlet (Regge cut)[107] leads to agreement with

Eq.(4.54). By calculating the amplitude up to order ϵ2, we can use the same strategy as in

the case of the 8A to determine the singlet and 8S as well.

Notice that this method of calculation does not arise from a cut diagram and thus lacks

that calculational advantages of the negative signature case. But it does lead to significant

simplification relative to the canonical method of calculating the anomalous dimensions

from the 1/η pole in that there is no need for a rapidity regulator since one can simply use

the full theory result. Of course the full theory result involves many more diagrams than

the EFT which can isolate the sources of the rapidity divergence.

We may generate other sum rules at higher order as well. At three loops O(α4) the

RRGE involves mixing between different M(i,j), so to facilitate this we introduce the nota-

tion

γ(i,j) ⊗M(+)
(i,j) =

1

2
J
(s)
κ(i) ⊗

(
S(i,k) ⊗ γ(k,j) + γ(i,k) ⊗ S(k,j)

)
⊗ J̄

(s)
κ′(j) + (s↔ u).

Then the two loop even signature formula at NLO is given by

−2Re[M](3) =iπ

[
γ
(2)
(2,2) ⊗M(+)(0)

(2,2) + γ
(1)
(3,3) ⊗M(0)

(3,3) + γ
(1)
(2,3) ⊗M(+)(0)

(2,3)

+ γ
(1)
(2,2) ⊗M(+)(1)

(2,2) +
iπ

2!
γ
(1)
(2,2) ⊗ γ

(1)
(2,2) ⊗M(+)(0)

(2,2)

]
. (4.55)

We can generate two constraints by considering the real and imaginary parts since the

anomalous dimension are purely real and the Glauber loops are are purely imaginary,

γ
(2)
(2,2) ⊗M(+)(0)

(2,2) + γ
(1)
(2,2) ⊗M(+)(1)

(2,2) =
2i

π
Re[M](3) (4.56)

γ
(1)
(3,3) ⊗M(0)

(3,3) + γ
(1)
(2,3) ⊗M(+)(0)

(2,3) +
iπ

2!
γ
(1)
(2,2) ⊗ γ

(1)
(2,2) ⊗M(+)(0)

(2,2) = 0. (4.57)

Note that M(2,3) is purely real as it contains two Glauber loops. Here both formulas provide

non-trivial relations about the various anomalous dimensions. In particular, Eq. (4.57)

provides an interesting relation between the one-loop anomalous dimensions that appear at

this order, while Eq. (4.56) contains the information for the two loop γ(2,2). Notably, Eq.
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(4.57) constrains terms with different numbers of convolution integrals. However, unlike

the lower order relation, in this case there are many color channels (multiple singlets and

octets) which will mix.

4.7 Discussion

In this paper, we have uncovered further structure in the two to two scattering amplitude

in the Regge limit. This has been accomplished by working with the EFT for near forward

scattering in a double expansion in α and t/s which allows us always work with well defined

gauge invariant matrix elements. We have demonstrated that anomalous dimensions can

be extracted via cut diagrams thus effectively reducing the loop order. Our result (4.17)

generalizes the result in [143] in that it works at all orders and for all color channels. We have

also shown that the two Glauber rapidity anomalous dimensions can be bootstrapped from

the one Glauber case. These results follow from a combination of factorization, unitarity and

crossing symmetry. We have given generalized relations between amplitude and anomalous

dimension for both the positive and negative signature amplitudes, each of which generates

a separate set of constraints on the anomalous dimension. The positive signature constraint

allowed us to simply extract the 8A channel two Glauber anomalous dimensions and our

result agree with those in [107, 93].

It would be interesting to use this formalism to compute the three loop Regge trajectory.

Progress in this direction has been made within the context of Reggeon field theory [89].

It seems reasonable to believe that our results genearted in the context of an EFT of

QCD could also yield insights into the Reggeon approach. In the EFT approach using

our formalism should help significantly reduce the complexity of the calculation, reducing

most of the work to computing M(−)
1 through two loops. In fact, the full three loop QCD

amplitude is known, and so in principle one could avoid computing the cut by simply

extracting the imaginary part.

Another avenue worth pursuing is to explore the even signature formula. In principle,

one could use this for a very clean derivation of the leading order BFKL equation, and as

a useful probe of the mixing between different Glauber operators at next to leading order

and beyond. At three loops, one has matrix elements that are both imaginary, such as

S(2,2), and real, such as S(3,3), and so one may be able to find interesting relations between

anomalous dimensions that appear at different orders through iterative terms.
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Chapter 5

SCET Gravity and Graviton

Glauber Operators

We now turn our attention from QCD to gravity. In this chapter, we describe the extension

of SCET to gravity. First, we give an overview of the SCET gravity building blocks, after

which we give the construction and matching of the SCET gravity Glauber Lagrangian.

This chapter is based on the appendices of [155].

5.1 The EFT and Gauge Symmetry

We are interested in constructing SCET for a massless real scalar minimally coupled to the

graviton. The full theory action for this is given by

S = SScalar + SEH, (5.1)

where the scalar action is given as

SScalar =
1

2

∫
ddx

√
−g1

2
gµν∂µϕ∂νϕ, (5.2)

and the graviton action is the usual Einstein Hilbert action,

SEH = 2Md
Pl

∫
d4x

√
−gR, (5.3)

with R being the Ricci scalar. The EFT we construct will be an expansion in the small

parameter λ2 = −t/s, just as in QCD. To control the loop expansion, we take αQ = −κ2t ∼
λ0, where κ2 = 16πG = 1/2M2

Pl. αQ ≪ 1 plays the same role as αs in QCD. We will save

a more thorough discussion of the power-counting for the next section, and proceed with
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these as given.

We will always be considering the active point of view of gauge transformations where we

consider the coordinate system fixed, and the map moves points, along with the geometric

structures, to other points on the manifold, leaving a physically equivalent state of the

system. While the coordinates are left invariant, fields transform are not, such that, e.g.

for a scalar ϕ(x), the diffeomorphism f acts

f : ϕ(x) → ϕ′(f(x)), (5.4)

or

ϕ′(x) = ϕ(f−1(x)). (5.5)

In this picture the fields are unchanged under a coordinate transformation. We use the

term “diff. covariant” for such transformations.

In this picture the invariance of the Einstein-Hilbert action follows by first acting with

the diffeomorphism such that the action transforms as∫
ddx
√

−g(x)R(x) →
∫
ddx
√
−g′(f(x))R′(f(x)) (5.6)

The invariance of the action then follows by changing coordinate from x to f(x). We repeat

this elementary definition because we will consider three types of gauge symmetries which,

when we have operators connecting various sectors, necessitates careful treatment.

In the EFT each sector, soft, collinear and anti-collinear has its own diffeomorphism

invariance, each of which is a subset of the full invariance group. Given a map in a fixed

coordinate system xµ → xµ + ϵµ(x) the scalings of the derivatives of ϵ is restricted by the

scalings of the associated components of the metric which can be either read off from the

form of the two point function in a covariant gauge 1, or by imposing consistency with the

Ward identity [149] such that for the collinear sectors we have the scaling

gµνn ∼ pµnpνn
λ

. (5.7)

Imposing that the gauge transformation does not destroy this scaling imposes constraints

on the momentum support of the gauge parameters ϵµ(x) such that

∂νϵµn + ∂µϵνn ∼ pµnpνn
λ

. (5.8)

1Power counting in the case of non-covariant gauge fixings complicated power counting. A classic example
of this arise in HQET where if one naively chooses the gauge v · A = 0, then one might conclude that the
heavy quark does not interact[133].
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The gauge transformation should furthermore not push the mode outside its range of mo-

mentum support so

∂µϵν ∼ pµnϵ
ν . (5.9)

so that we may further conclude that

ϵµn ∼ pµn
λ
. (5.10)

It’s important to keep in mind that these ∼ relations are only meant to equate scalings in

λ. For soft gauge transformations all of the components of the gauge field scale as λ so that

we have the constraint

∂µϵ
ν
s ∼ psµϵs ∼ λ. (5.11)

and ϵs ∼ λ0.

5.2 Gauge Invariant Building Blocks

5.2.1 The Collinear Sector

In this section we discuss the gauge invariant operator building blocks for scalar and graviton

collinear operators starting with a scalar field. This is accomplished (see [75]) by considering

a (codimension one null hypersurface) “platform” at minus null infinity (where diffs are no

longer gauge redundancies) and shooting out a geodesic in a direction µ = κ orthogonal to

the hypersurface which is coordinatized by x̃µ. We assumed that the point x and x̃ are in

the same convex neighborhood such that there is unique geodesic which connects the two

point. One then labels the points in the bulk as

xµ = x̃µ + x̂κs+Xµ(s). (5.12)

where Xµ(−∞) = 0. x̂κ is the unit vector orthogonal to the platform. The end-point of

the geodesic in the bulk is taken at s = 0. In flat space Xµ(0) = 0, i.e. we choose the point

to be at xκ = 0. This allows us to define a gauge invariant (geometric) quantity

χ(xµ −Xµ(0)). (5.13)

Taking the point of interest (the argument of the field) to be at s = 0, we see that Xµ
n (0)

is the change in the value of the coordinate in going to our genearalized coordinate system

and is found by integrating the geodesic equation which we do order by order in the metric

fluctuation. Thus we will building up gauge invariance order by order.
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At second order Xµ
n is given by

Xµ
n = − 1

−n̄· P2
Γ
(1)µ
++ − 1

−n̄· P2
Γ
(2)µ
++ − 1

−n̄· P2

(
2Γ

(1)µ
ν+

1

−in̄· P
Γ
(1)ν
++ +

(
Dn
νΓ

µ(1)
++

) 1

−n̄· P2
Γ
(1)ν
++

)
+O(h3n).

(5.14)

In the above, Γ(1) and Γ(2) are the one and two graviton terms in the Christoffel symbols.

Dn
µ is the operator 2

Dn
µ = −inµ

2
n̄· P − iP⊥

µ +
n̄µ
2
n· ∂, (5.15)

and Dn̄
µ is defined analogously.

We then define the translation operator V −1
n via

V −1
n = 1 +Xµ

nDn
µ +

1

2
Xµ
nX

ν
nDn

µDn
ν + ..., (5.16)

Then

χn =
[
V −1
n ϕn

]
,

(5.17)

is diff. invariant order by order in metric perturbations. To leading order in the metric,

χn = ϕn +
κ

2

[
1

−in̄· P

(
hn+µ −

Dn
µhn++

−2in̄· P

)]
Dnµϕn +O(κ2). (5.18)

The operators P only act within the brackets. Notice that we are solving the geodesic

equation in an expansion in G, thus the action will only be invariant under diffs where

For a tensor field we need to additionally include a tensor to counter-act the transfor-

mation. [115], which is defined with Wn as the gravitational Wilson line, which acts on

tensors T as

[
W−1
n T

]A1...An

B1...Bm
=Wn

A1

µ′1
...Wn

An
µ′n

Wn
ν′1
B1
...Wn

ν′m
Bm

(
V −1
n T

µ′1...µ
′
n

ν′1...ν
′
m

)
. (5.19)

where we have defined

Wn ν
A = Dn

ν (Xn)
A. (5.20)

Here we have introduced some new notation, namely indices with capital Roman letters

are active diffeomorphism singlets. Thus under the diff. xµ → xµ + ϵµ, Wn transforms

according to

W ν
n B →W ν

n B + ∂Bϵ
ν + ..... (5.21)

2The label operator which acts on the O(λ0) momentum obeys the following equivalence P = i∂.
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In this way a vector the vector W
ν

n BVµ(x̃) is invariant under diffs. The inverse is defied as

(Wn)
A
ν (W−1

n )νB = δAB. (5.22)

Let us now consider building blocks for the metric. QCD is pure connection theory

where the natural building block is

Bnµ =W−1
n DµWn. (5.23)

where D is in the adjoint representation. Since the Wilson line obeys n̄ · DWn = 0, only

Bnµ⊥ and n · B are non-zero. Furthermore, using the gluon equations of motion the latter

can be written in terms of the former and the matter current. For the gravitational case we

can do something similar. Define the invariant derivative W−1
n ∇µWn, acting on a vector

W−1
n ∇µWnfA = W−1

n ∇µ(VW
A
β fA) =W−1

n (∂µ(VW
A
nβfA)− Γαµβ(VW

A
nαfA))

= ∂CfB +W−1β
nB W−1µ

nC (∂µW
A
β )fA −W−1µ

nB W−1β
nC Γαµβ(x̃)W

A
nαfA(5.24)

We then defined the diff. invariant connection

BA
BC =W−1β

nB W−1µ
nC (∂µW

A
β )−W−1µ

nB W−1β
nC WA

nαΓ
α
µβ(x̃) (5.25)

Just as with the standard Levi-Civita connection, we may write the gauge-invariant con-

nection in terms of gauge-invariant metrics, via

BA
BC =

1

2
(g−1)AD (DBgDC +DCgDB −DDgBC) . (5.26)

The gauge-invariant metrics (and associated metric perturbations) are given as

gAB ≡ ηAB +
κ

2
hnAB =

[
W−1
n gn

]
AB

, (5.27)

where gnµν = ηµν +
κ
2hnµν is the collinear metric. It turns out that this metric satisfies the

lightcone-gauge condition [23], analagous to the QCD gluon building block.

At linearized order we have

h⊥⊥
nAB = δµ⊥A δν⊥B (hnµν −

P⊥
µ

n̄· P
hnν+ − P⊥

ν

n̄· P
hnµ+ +

P⊥
µ P⊥

ν

n̄· P2
hn++) +O(κ). (5.28)

which all comes from the Jacobian factors at this order, as the translational piece is quadratic

in the field. The transverse components of the metric have been picked out. In SCET
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[19], the other, non-vanishing3 (non-transverse) components can be eliminated using a field

redefinition. In the present case [23] hn++ = hn+µ = 0 due to the tethering of the field to

infinity, as may be checked by using eqs. (5.19) and (5.14). Notice that the one graviton

term in the graviton building block is proportional to the + ⊥ + ⊥ component of the

linearized Riemann tensor, which is manifestly gauge-invariant under small diffs.

In SCET, once the operator building blocks have been fixed, writing down the relevant

Glauber operators is relatively simple in that each building blocks scales with a non-zero

power of λ, but in gravity this is no longer the case. Every insertion of hn beyond the

first is accompaniied by a factor of κ, and since κ2t ∼ αQλ
0 in our power-counting, the

combination κ hn ∼ α
1/2
Q λ0. Thus one can insert an arbitrary number of graviton blocks

into an operator without changing the λ scaling or mass-dimension. In other words we

may consider any polynomial in hnAB as a building block. At first this may not seem like

a big concern since, as discussed in the introduction, we can calculate beyond two loops

in αQ before we run into model dependent counter-term contributions of the same size.

Nonetheless we might be interested say in calculating in N = 8, where it is perhaps true

that there are no counter-terms 4, in which case the calculation would remain predictive to

all orders in αQ.

We will in fact show that, constraints from diffeomorphism will fix the functional depen-

dence of operators on hn since in the full theory metric perturbations arise either as a full

metric tensor (i.e. η + h) or inverse metric tensor; therefore, the graviton building blocks

can only come in the combinations

gnAB ≡ ηAB +
κ

2
hnAB,

(g−1
n )AB ≡ ηAB − κ

2
hAB +O(κ2). (5.29)

Thus in the absence of counter-terms beyond the Einstein-Hilbert action, we will still main-

tain predictive power.

We also know that in the full theory we build invariant operators out of covariant

derivatives. Thus we expect the effective theory operators to be built from invariant forms

of the connection. With this in mind we introduce the function of the building block hnAB

Bn
A
B = δAµ δ

ν
B(

2

κ

n̄α

n̄· P

[
1

2
(g−1
n )µλ (Dαgnλν +Dνgnλα −Dλgnαν)

]
). (5.30)

This is the simply the + component of the Levi-Civita symbol built out of gauge-invariant

metric building blocks. Using the metric compatibility condition implies we can write this

3The analogous field in QCD will be in the light cone gauge as well.
4Presently N = 8 is known to be finite up to five loops [Bern˙2018].
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as

Bn
A
B =

2

κ

1

n̄· P
(g−1
n )AC n̄· PgnCB. (5.31)

The Bn’s have the same λ scaling and mass dimension as the hn’s, and differ only at

O(κ). They also inherit the useful properties of the hn building blocks. In particular,

Bn
+
A = 0 and Bn

A
+ = 0, which follows from the lightcone gauge condition hn+µ = 0. These

also have vanishing trace. We will see that this operator (function of hnAB) will naturally

arise in the matching.

5.2.2 The Soft Sector

In the soft sector, we will just see the appearance of soft Wilson lines Sn, which are defined

similarly to Eq. (5.19):

[
S−1
n T

]A1...An

B1...Bm
= Sn

A1

µ′1
...Sn

An
µ′n

Sn
ν′1
B1
...Sn

ν′m
Bm

(
Z−1
n T

µ′1...µ
′
n

ν′1...ν
′
m

)
, (5.32)

with

Z−1
n = 1 +Xµ

Sn(−iPSµ) +
1

2
Xµ
SnX

ν
Sn(−iPSµ)(−iPSν) + ...,

Sn
A
ν = (−iPSν)(x+XSn)

A, (5.33)

Xµ
Sn = − 1

−n· ∂2S
Γ
(1)µ
−− − 1

n· ∂2S
Γ
(2)µ
−− − 1

n· ∂2S

(
2Γ

(1)µ
ν−

1

n· ∂S
Γ
(1)ν
−− +

(
−iPSνΓµ(1)−−

) 1

n· ∂2S
Γ
(1)ν
−−

)
+O(h3s).

The soft label operator PS is written as

Pµ
S =

n̄µ

2
n· i∂S +

nµ

2
n̄· i∂S + Pµ

⊥, (5.34)

where all of the components are O(λ). Notice that when acting on collinear fields Pµ
S will

only act upon the transverse momentum.

5.2.3 Useful Wilson Line Identities

Here we list some useful properties of the gravitational Wilson lines that will be utilized

in the matching procedure. These are presented in Appendix C of [23], but we reproduce

them here for completeness. Firstly, the Wilson lines satisfy a “Product Rule”:

[Wnϕ1ϕ2] = [Wnϕ1][Wnϕ2], (5.35)

where the square brackets denote that the Wilson line operator only acts on the terms

enclosed in the square brackets. This result follows from the fact that the Wilson line is a
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translation operator and we may consuder the project of two tensors an just a single tensor.

Similarly, there is an integration by parts (distributional) identity,

[W−1
n T1]T2 = det(Wn)T1 [Wn(T2)], (5.36)

where det(Wn) is the determinant of the Jacobian matrix. These identities are obeyed by

the soft Wilson lines as well. This latter identity will be important for the construction

of the soft graviton operator and follows from peforming a change of coordinates. This

identity implies a factor of the determinant of the Jacobian always appears with inverse

Wilson lines; it is therefore useful to package the determinant together with the Jacobian

determinant.

5.3 Matching the Glauber Lagrangian

We begin by presenting the matching of the Glauber operator at tree level. The Glauber

operators are constructed by considering the scattering of projectiles in two distinct rapidity

sectors of {n, n̄, s}, and the projectiles may be taken to be either scalars or gravitons.

5.3.1 Collinear Glauber Operators

We start by considering n-n̄ scattering, collinear soft scattering will follow in a similar

fashion. We perform the matching using the same conventions as [159], where the external

lines are chosen to be ϕ(pn2 ) + ϕ(pn̄1 ) → ϕ(pn3 ) + ϕ(pn̄4 ), where the superscript denotes the

collinear sector of each momentum. All calculations are in the de Donder gauge, and we

write the polarization tensors for h = ±2 as products of spin-1 polarization vectors on shell

ϵµν± (pi) = ϵµ±(pi)ϵ
ν
±(pi), (5.37)

and we will suppress the ± label. To simplify notation further, we write ϵµ(pi) ≡ ϵµi . For

the on-shell states we are considering, we also have ϵ2i = 0 and pi· ϵi = 0.

For the chosen kinematics, momentum conservation gives p1 + p2 = p3 + p4. The

momentum transfer is given by q = p3 − p2 = p1 − p4. For n-n̄ scattering the Glauber

momentum scales as qµ ∼ (λ2, λ2, λ). This then implies that the large ∼ λ0 components of

the collinear momenta are conserved, giving p+2 = p+3 and p−1 = p−4 . We choose to work in

a frame where q+ = q− = 0, which allows us to write the momenta as

pµ1 =
n̄µ

2
p−1 +

nµ

2
p+1 +

1

2
qµ⊥, pµ2 =

n̄µ

2
p−2 +

nµ

2
p+2 − 1

2
qµ⊥, (5.38)

pµ3 =
n̄µ

2
p−3 +

nµ

2
p+2 +

1

2
qµ⊥, pµ4 =

n̄µ

2
p−1 +

nµ

2
p+4 − 1

2
qµ⊥.
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Figure 5.1: Tree level matching for n-n̄ Glauber operators. These are the full theory
diagrams with a t-channel pole. For scalar-scalar scattering this is sufficient to extract
the Glauber operator, but for scalar-graviton scattering, one must also include s- and u-
channel graphs, as well as the 4-point contact term. These additional contributions will be
automatically accounted for order by order in expansion parameters in the EFT given that
we build operators out of gauge invariant building blocks.

The on-shell condition p2i = 0 also lets us fix the small ∼ λ2 component of the momenta,

p+1 = p+4 = −q2⊥/p
−
1 and p−2 = p−3 = −q2⊥/p

+
2 . The Mandelstam variables s and t may then

be written in terms of these variables as

s = p−1 p
+
2 +O(λ2), t = q2⊥. (5.39)

Note that the expression for s has corrections which are subleading in the power-expansion,

whereas t is exact in the chosen frame of q = q⊥. We have s ∼ λ0 and t ∼ λ2, and for

physical kinematics s > 0 and t < 0.

We now match the Glauber operators onto the tree-level graphs shown in Fig. (5.1).
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We expand each diagram to leading power in λ, and we have

iM =− i
[κ
2
n̄· p22

] 2

q2⊥

[κ
2
n· p21

]
,

− i

[
κ

2

(
n̄· p22 ϵ2· ϵ3 − n̄· p2 p3· ϵ2 n̄· ϵ3 − n̄· p2 p2· ϵ3 n̄· ϵ2 + p2· p3 n̄· ϵ2 n̄· ϵ3

)2
n̄· p22

]
2

q2⊥

[κ
2
n· p21

]
,

− i
[κ
2
n̄· p22

] 2

q2⊥

[
κ

2

(
n· p21 ϵ1· ϵ4 − n· p1 p4· ϵ1 n· ϵ4 − n· p1 p1· ϵ4 n· ϵ1 + p1· p4 n· ϵ1 n· ϵ4

)2
n· p21

]
,

− i

[
κ

2

(
n̄· p22 ϵ2· ϵ3 − n̄· p2 p3· ϵ2 n̄· ϵ3 − n̄· p2 p2· ϵ3 n̄· ϵ2 + p2· p3 n̄· ϵ2 n̄· ϵ3

)2
n̄· p22

]
2

q2⊥

×

[
κ

2

(
n· p21 ϵ1· ϵ4 − n· p1 p4· ϵ1 n· ϵ4 − n· p1 p1· ϵ4 n· ϵ1 + p1· p4 n· ϵ1 n· ϵ4

)2
n· p21

]
.

(5.40)

The double copy relation [26] are manifested in the last four lines.

One may then write down the Lagrangian for Glauber operators to match the amplitudes

Lnsn̄G =
∑
n,n̄

∑
i,j

Oi
n

1

P2
⊥
OS

1

P2
⊥
Oj
n̄. (5.41)

Here i and j run over the particle species of the projectiles, which in this case is just scalars

and gravitons. To match onto the full-theory diagrams in Eq. (5.40), where there are no

soft-graviton emissions. We find the collinear operators to be

Oϕ
n =

κ

2
χ†
n

[ n̄
2
·
(
P + P†

)]2
χn(1 + F [hn,Bn]),

Oh
n =

κ

2

[(
(n̄· P(Bn, hn)

A
B

)2
+A

(
(n̄· P(Bn, hn)

A
A

)2]
+O[h3n]... (5.42)

with Oi
n̄ given by swapping n ↔ n̄. With this choice of normalizations the soft operators

reduces to OS = 2P2
⊥. A is an unknown constant that can be fixed by going to higher orders

in the metric. This trace term vanishes on shell at leading order in h so was not detected in

the on shell matching result (5.40). Notice that for the operators we have written (Bn, hn),

this is because we have only matched at quadratic order in the field and at this order this is

no distinction between hn and Bn. In the next section we will show that constraints from

the full theory will fix the field to be Bn, that A = −1, F = 0 and that there are no powers

of the h beyond quadratic.

The Glauber Lagrangian exactly reproduces the full-theory diagrams to leading power

in the λ-expansion. Since χn ∼ (Bn, hn) ∼ λ, n̄· P ∼ λ0, the collinear operators scale as
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Oi
n ∼ κλ2 while for the soft operator OS = 2P2

⊥ ∼ λ2 for zero soft graviton emissions, and

thus Lnsn̄G ∼ κ2λ2. Given that the measure scales as 1/λ2 we see that SG ∼ s2/M2
pl ∼

αQ

λ2
.

The matching and construction of the full soft operator is more involved, and will be

discussed in the next section.

It is interesting to see how the Ward indentities are satsified in the EFT given that

when we matched we did not bother with the contact interactions that in the full theory

are required to ensure they are satisified. The terms which would arise from contact terms

in the full theory, arise in the EFT Ward identity from the last term in 5.28 which end up

killing the factor of 1/q2⊥ in the ampltiude.

5.3.2 Soft-Collinear Glauber Operators

We can perform analogous matching calculations for n-s and n̄ − s scattering. We focus

here on n-s scattering, as the results for n̄s scattering are given simply by replacing n↔ n̄.

We take the n-s scattering to be given by ϕ(pn2 ) + ϕ(ps1) → ϕ(pn3 ) + ϕ(ps4). The momentum

transfer q is defined identically as q = p3−p2 = p1−p4, but q now has scaling q ∼ (λ, λ2, λ).

Expanding the full-theory diagrams in these kinematics, the result is identical to eq.(5.1).

For the Glauber operators, we may write the Glauber Lagrangian as

Lns =
∑
n

∑
i,j

Oi
n

1

P2
⊥
Oj
Sn. (5.43)

The collinear operators in Lns are identical to those in Lnsn̄. The soft operators meanwhile

are identical to the collinear case with the replacement of collinear fields with soft fields

χSn,BSn and hSn.

The soft fields χSn,BSn and hSn scale as ∼ λ, while the soft momenta scale as i∂S ∼ λ.

The soft operators OSn then scale as ∼ κλ4. Since Oin ∼ κλ2, we find the n-s Glauber

Lagrangian scales as ∼ κ2λ4. The scaling of the measure d4x ∼ λ−3 for the soft Glauber

operator since the soft momenta are all order λ. Therefore, the Glauber actions will scale

as

Snsn̄G =

∫
d4xLnsn̄G ∼ αQλ

−2, (5.44)

SnsG =

∫
d4xLnsG ∼ αQλ

−1. (5.45)

Given that the actions for the kinetic terms in the soft and collinear Lagrangians are nor-

malized to scale as ∼ λ0, we can clearly see that the Glauber operators are enhanced, as

discussed in the main body of the text. We also see that the action for n-s Glaubers is down

by λ compared to the n-n̄ action. However, time-ordered products of n-s and n̄-s Glaubers
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Figure 5.2: Tree level matching for n-s Glauber operators. These are the full theory di-
agrams with a t-channel pole. We can obtain the matching for n̄-s scattering by taking
n↔ n̄.

have the same enhancement as n-n̄ Glaubers.

5.3.3 Collinear Operators to All Orders

We recall that the n-collinear sector is equivalent to full GR in the absence of soft or n̄-

collinear particles. Thus we may match by building operators in the full theory that are

diff. scalars, i.e. not invariants, and then lift them to their diff. invariant form in the EFT.

We also restrict the form of the operators by using two symmetries. The first is the shift

symmetry on the scalar field inheretid from the full theory and the other is RPI-III [134]

which is the symmetry of the EFT under the rescaling n̄ → αn̄ and n → 1/αn. From the

tree-matching, we can see that each collinear operator transforms as On → α2Oi
n, and so

each collinear operator must have two lightcone vectors n̄ contracted with it. Finally the

operators must start off bilinear in the fields. With all this, we may write down the most

general form of the collinear operator 5

Oi
n =

[(
W−1
n

)ρσ
AB

f iρσ(gn,∇n,Dµϕn)
]
n̄An̄B, (5.46)

where f iρσ has mass-dimension 3 and transforms covariantly under diffeomorphisms. Note

that only the combination of Dµϕn can appear, as a scalar minimally coupled to gravity

has an additional shift symmetry ϕn → ϕn + c for constant c. For scalars, there is only one

possibility for f which we can write down:

fϕρσ =
κ

2
Dρϕ

†
nDσϕn. (5.47)

5n̄ν is a diff. scalar so we write it as n̄A.
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Using Wilson line identity (5.35), we find the operator is given by

Oϕ
n =

κ

2
| n̄· Pχn |2, (5.48)

which is equivalent to to the scalar operator given in Eq. (5.42), with F = 0. For the

gravitons, there are two operators which we can write down:

fh1,ρσ =
2

κ
gnρσ(∇n)2, fh2,ρσ =

2

κ
∇n
ρ∇n

σ. (5.49)

The factor of 2/κ is needed by dimensional analysis and since we need the term quadratic

in the metric perturbation to be linear κ. We note that since fρσ is symmetric, only the

symmetric piece of ∇n
ρ∇n

σ will contribute. fh1 vanishes when plugged into Eq. (5.46), as we

have

n̄An̄B
[(
W−1
n

)ρσ
AB

gnρσ
]
= n̄An̄B(ηAB + hnAB) = 0, (5.50)

where we have used the lightcone-gauge condition for hn, hn++ = 0 and assumed metric

compatibility. Thus the only non-vanishing operator we can construct is fg2 . It takes some

work to see that this is equivalent to the graviton operator in Eq. (5.41). Writing out the

covariant derivatives in terms of the connection, we may write the graviton operator as

2

κ

[(
W−1
n

)ρσ
AB

∇n
ρ∇n

σ

]
n̄An̄B =

2

κ

(
n̄· P +

κ

2
n̄· PBn

A
A

)(
n̄· P +

κ

2
n̄· PBn

A
A

)
,

= n̄· P2Bn
A
A +

κ

2

(
(n̄· PBn

A
A

)2
, (5.51)

where in the first line we have used Bn
µ
+ = 0 and in the second line we have used the fact

that n̄· P = 0 when not acting on collinear operators. From here we must now invoke the

equations of motion for collinear gravitons. By acting with a Wilson line and restricting to

the ++ component, the equations of motion become

n̄· P2Bn
A
A +

κ

2

(
(n̄· PBn

A
B

)2
= −κ(n̄· Pχn)2. (5.52)

Using this, we may remove the term in Eq. (5.51) linear in Bn, and we obtain

2

κ

[(
W−1
n

)ρσ
AB

∇n
ρ∇n

σ

]
n̄An̄B = −κ

2

[(
(n̄· PBn

A
B

)2 − ((n̄· PBn
A
A

)2]− 2Oϕ
n. (5.53)

Despite the fact that the equations of motion introduce scalar fields, we see that this is the

same scalar operator that we have already introduced. Therefore, the graviton and collinear
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operators are uniquely determined to be, up to overall numerical factors,

Oϕ
n =

κ

2
(n̄ · Pχn)2, Og

n =
κ

2

[(
(n̄ · PBA

nB)
)2 − ((n̄ · PBA

nA)
)2]

, (5.54)

supports the conclusion reached after Eq. (5.41). A similar procedure gives the n̄-collinear

as well as the Sn and Sn̄ operators as well.

Lastly, in principle we could attempt to circumvent the power-counting and mass-

dimension constraints by adding additional factors of (κ∇)m. However, such operators

can only appear when matching to higher-derivative terms in the full graviton action, such

as R3, etc. This follows from the fact that Einstein-Hilbert action is normalized such that

powers of κ only arise multiplying the graviton.

5.4 The Graviton Soft Operator to All Orders

In this section, we shall describe the construction and matching of the gravitational mid-

rapidity Glauber soft operator. Using the observations made in the previous section, we

shall show that the operator basis has a finite number of terms, and that the matching can

be performed at the level of a single soft graviton emission.

5.4.1 Soft Gauge Symmetry in Soft-Collinear Gravity

As mentioned in section 5.6 there is a fly in the ointment when it comes to soft gauge

invariance. For hard scattering operators collinear fields can not transform under soft

transformations, as they would throw the lines off shell. However, care must be taken

when applying this argument to collinear bilinears. To understand why utilize the power

of the label formalism whereby the large momenta are explicitly removed from the field by

rephasing. For instance, for a collinear field we would write

ϕn(x) =
∑
n·p

ein·pn̄·xϕn·p(0, n · x, x⊥) (5.55)

such that ϕn·p(x) carry no large momenta. In this was a collinear composite operator ϕ†nϕn

carries no large label. As such it produces quanta with momentum scaling as (λ, λ2, λ) with

invariant mass of order λ2. A soft gauge transformation will not change this scaling. As

such, we should think of the collinear forward bilinear as carrying gauge charge. The same

is true in QCD, and in fact this line of reasoning is consistent with the placement of Wilson

lines in the soft operators in section 6.3 of [159].

The notion of soft gauge-invariance in gravity is much more subtle in gravity that in

QCD. In QCD, one is able to construct soft operators which are completely gauge invariant
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at the level of the Lagrangian. In gravity meanwhile, this approach appears to work in the

linearized theory, but it tends to break down once nonlinearities are included6. The solution,

which can be found by performing explicit matching calculations, is that operators need to

be soft diffeomorphism scalars, rather than diffeomorphism invariants. In particular, under

an infinitesimal soft gauge transformation gsµν → gsµν + ∂µξν + ∂νξµ, the operator needs to

transform as a total derivative,

O → O +∇sµ (ξ
µO) . (5.56)

Then the action S =
∫
ddxO will be gauge invariant up to boundary terms. This is the

approach taken in [23] for constructing interactions between collinear fields and ultra-soft

gravitons in an SCETI context.

For constructing the Glauber operators, we can implement this as follows. By acting on

collinear operators with inverse soft Wilson lines, we end up with objects that transform

covariantly under soft diffeomorphisms. More explicitly, we may take the gauge-invariant

combination of operators appearing in the Glauber Lagrangian,

1

P2
⊥
On̄, (5.57)

and we may convert this into a soft diffeomorphism scalar by acting with an inverse Wilson

line:
1

P2
⊥
On̄ →

[
Sn̄

1

P2
⊥
On̄

]
. (5.58)

The action of the soft Wilson line is to translate the collinear operator from a point x to

the point YSn̄(x), where YSn̄(x) is related to XSn̄ by

XSn̄ (YSn̄(x)) = YSn̄ (XSn̄(x)) = x. (5.59)

The operator evaluated at YSn̄ then transforms as a scalar under soft diffeomorphisms.

Schematically, we may then decompose the soft operator as

OS =
∑
i

fi(PS)STnCi
√
−gSOiSn̄gi(PS). (5.60)

In the above, the operators Oi are soft diffeomorphism scalars built out of covariant deriva-

tives and soft fields, the Ci are some numerical coefficients, and the functions fi and gi

are scalar functions of the soft label operators. We have also included an explicit factor of

the determinant of the metric, which is required by gauge-invariance. The Wilson line STn

6See [91] for a recent example of this.
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denotes the transpose, in the sense that Sn acts on fields to the left, while Sn̄ acts on fields

to the right. In the next section, we will discuss constraints on the functions fi, gi, and the

operators Oi.

5.4.2 The Basis of Soft Graviton Operators

We now describe the construction of the soft operator basis. These operators must have

mass dimension 2 and scale as ∼ λ2, and must be consistent with soft diffeomorphism

symmetry. To make operators which are consistent with gauge invariance in the sense

discussed in the previous section, every term must contain one n inverse Wilson line Sn and

one n̄ inverse Wilson line, as well as a factor of the soft metric determinant,
√
−gs. We

then build our operators out of soft label operators PS
µ and soft covariant derivatives ∇Sµ.

The soft label operators do not transform under soft diffeomorphisms, and so they can only

appear outside the Wilson line pair; similarly, the soft covariant derivatives can only appear

between the two Wilson lines.

Constraints from reparameterization invariance are crucial here. Since the light-cone

vectors n and n̄ are soft diffeomorphism invariant, they must appear entirely outside the

Wilson line pair. As can be seen from their definitions in Eq. (5.41), the collinear operators

each have RPI weight 2 in their respective direction. Thus to make the Glauber operator

RPI-III invariant, we are forced to write the Glauber operator as

Onsn̄ = On
1

P2
⊥

nµnν

(n· n̄)2
Oµν, ρσ
S

n̄ρn̄σ

(n· n̄)2
1

P2
⊥
On̄, (5.61)

where we have written

OS =
nµnν

(n· n̄)2
Oµν, ρσ
S

n̄ρn̄σ

(n· n̄)2
. (5.62)

We have left the factors of n and n̄ to make the RPI invariance as explicit as possible.

The form of the soft operator in Eq. (5.61) then completely fixes all dependence on the

light-cone vectors, once the Wilson lines are taken into account, as the soft sector otherwise

has no explicit preferred direction dependence, unlike the collinear operators.

Next, we have constraints from the hermiticity of the full Glauber operator. As described

in Section 6.3 of [159], equality of LG and (LG)† requires the soft operator to satisfy

(OS)
† = OS |n↔n̄ . (5.63)

This is a slight variation on the statement that there is a symmetry between the n and n̄

sectors, given that swapping n and n̄ is equivalent to taking an adjoint. In the context of

the full Glauber operator, this reduces to the usual symmetry under exchanging n and n̄.

An additional constraint is that the total label momentum flowing through each term in
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the Glauber Lagrangian is conserved. Therefore we have equality between PS and P†
S , and

we may interchange them freely.

We find it useful then to introduce the notation

(Sn)
µ1...µn
ν1...νn ≡ det

[(
S−1
n

)µ
ν

]
ZnSn

µ1
ν1 ...Sn

µ2
ν2 , (5.64)

(STn )
µ1...µn
ν1...νn ≡ Sn

µ1
ν1 ...Sn

µ2
ν2Z

T
n det

[(
S−1
n

)µ
ν

]
. (5.65)

In the above, Zn acts on all fields to the right, including the Jacobian factors, and

similarly ZTn acts on all fields to the left. (Sn)
µ1...µn
ν1...νn is then an inverse Wilson line in the

sense of Eq. (5.36), as it satisfies

[
S−1
n T

]µ1...µn ϕ1 = T ν1...νn
[
(Sn)

µ1...µn
ν1...νn ϕ

]
. (5.66)

Lastly, there are two useful identities which will be used to simplify the operator basis.

The first follows from the properties of the gauge invariant metric building blocks hSn , which

is defined analogously to the collinear metric building blocks in Eq. (5.27). Using hSn
−µ = 0,

we have

nν1nν2(STn )
µ1µ2,α1...αn

ν1ν2,β1...βn
gµ1µ2 = nµnν(ηµν + hSn

µν ) (S
T
n )

α1...αn
β1...βn

= 0. (5.67)

Similarly, replacing a light cone vector n with a derivative also leads to a vanishing operator,

Pν1
S n

ν2(STn )
µ1µ2,α1...αn

ν1ν2,β1...βn
gµ1µ2 = Pµ

Sn
ν(ηµν + hSn

µν ) (S
T
n )

α1...αn
β1...βn

= 0, (5.68)

where in the final equality we have used n· PS = 0 when acting to the left of the Wilson

lines, as soft n · k momenta cannot flow into Oi
n.

With these constraints, we can now write down a list of all possible operators that satisfy

them. There are eight such operators:

O1 = P2
S(S

T
n )

µν
−−gµρgνσ(Sn̄)

ρσ
++ + (STn )

µν
−−gµρgνσ(Sn̄)

ρσ
++P2

S ,

O2 = (STn )
µν
−−gµρgνσg

αβ∇Sα∇Sβ(Sn̄)
ρσ
++,

O3 = (STn )
µν
−−R

S
µρνσ(Sn̄)

ρσ
++,

O4 = Pα
S (S

T
n )

µ ν β
−−αgβρgνσgµλ(Sn̄)

ρ σ λ
++γP

γ
S , (5.69)

O5 = Pα
S (S

T
n )

µ ν β
−−αgµρgβλgνσ(Sn̄)

ρ σ λ
++γP

γ
S ,

O6 = Pα
SP

β
S (S

T
n )

µ ν γλ
−−αβgγλgµρgνσ(Sn̄)

ρσ
++ + (STn )

µν
−−gµρgνσgγλ(Sn̄)

ρ σ γλ
++αβP

α
SP

β
S ,

O7 = Pα
S (S

T
n )

µ ν β
−−αgµρgνσi∇Sβ(Sn̄)

ρσ
++ + (STn )

µν
−−gµρgνσi∇Sβ(Sn̄)

ρ σ β
++αPα

S ,

O8 = Pα
S (S

T
n )

µ ν β
−−αgβρgνσi∇Sµ(Sn̄)

ρσ
++ + (STn )

µν
−−gµβgνσi∇Sρ(Sn̄)

ρ σ β
++αPα

S .

In the above, we are implicitly assuming the Lorentz indices are contracted with lightcone
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vectors as in Eq. (5.62). Not making this assumption can lead to several more allowed

operators, as identities such as Eqs. (5.67) would no longer apply. This could be an

important consideration when trying to construct the operator basis to subleading level,

but for the current purposes it is enough to consider those in Eq. (5.69).

5.4.3 Matching

We now perform the matching of the Wilson coefficients for the soft operator. It will be

sufficient to match at 0, 1, or 2 soft graviton emissions. Moreover, we may perform this

matching taking the external collinear projectiles to be scalars. We can in principle replace

one or both of the scalars by collinear gravitons, but we will obtain the same result for the

soft operator. This is due to the universal nature of the coupling of Glauber gravitons to

either soft or collinear particles, as well as the universal eikonal coupling of soft particles.

At zero soft graviton emissions, the Glauber operator must reproduce the tree scalar-

scalar amplitude given in Eq. (5.40). The soft operator in this case must reduce to OS =

2P2
⊥. From their definitions in Eq. (5.33), the soft Wilson lines simply become the identity,

the covariant derivative becomes PS , and P2
S = P2

⊥ since no soft k± flows through the

operator. This then places the constraint of

2 = 2C1 − C2 + C5 + 2C6 + 2C7. (5.70)

At one soft graviton emission, we have 7 full theory diagrams which contribute. We cal-

culate on-shell, with arbitrary graviton polarization tensors, and soft graviton momentum k.

Using momentum conservation to write k = q′ − q, the amplitude contains several momen-

tum structures which generate matching conditions. Several of the momentum structures

generate degenerate matching conditions, and in the end the one graviton matching yields

5 constraints:

2 = C1 − C5 + 2C6 − C7,

0 = C1 − C2 + C7,

0 = 4C1 − 4C2 + C4 + 2C5 − 4C6 − 4C7 + C8, (5.71)

8 = 4C1 + C4 − 2C5 + 4C6 + C8,

4 = C4 − C3.

Combining this with the constraint from zero graviton emissions, we are able to fix 6 of the

eight coefficients:

C1 = 2, C4 = 4 + C3, C5 = 0, C6 = 1− C2/2, C7 = 0, C8 = −2C2 − C3. (5.72)
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Figure 5.3: The matching for one soft graviton emission. In (a), we show the 7 full-theory
diagrams which can contribute. In (b), we have the lone SCET diagram, which reproduces
the gravitational Lipatov vertex.

At two soft graviton emissions, there are 40 full-theory Feynman diagrams which con-

tribute. We calculate all such diagrams directly, using Feyncalc [138, 166, 165, 164] to

streamline the computation. We performed the calculation using harmonic gauge, and we

used the Feynman rules for the three and four graviton vertices [69]. The calculation may

be streamlined using other choices of gauge-fixing or choice of interpolating fields [52], but

given that the soft operator is gauge-invariant by construction, we would expect the result

to be identical (up to field redefinitions). As a non-trivial cross-check of the calculation, we

verified that the result for the full amplitude satisfies the graviton Ward identity in both

external graviton polarization tensors.

In the EFT, we have 3 contributions to the amplitude; one from the two-graviton con-

tribution in the soft operator, and two involving T-products of EFT operators, including

the one-graviton emission in a T-product with a Lagrangian insertion. Because we used

the graviton equations of motion to simplify the basis of soft operators, the first two rows

of full-theory diagrams do not exactly match the contribution from the single soft graviton

emission from the EFT. However, we do cancel the non-local graviton propagator generated

by the T-product. Similarly, the full soft propagator in the remaining diagrams on the
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second row and those on the third match the soft propagator in the EFT T-product of the

n-s and n̄S Glauber operators. The difference between the full amplitude and the EFT

T-product contributions is then local, containing only Glauber ⊥ propagators and eikonal

1/n· k and 1/n̄· k terms.

It is then enough to match to the eikonal propagators. From the 1/n· (k1 + k2)
2 terms

we are able to fix C2 = 2, and the remaining eikonal contributions of the form 1/n· k21 sets

the remaining coefficient C3 = −4. Thus we have the full set of coefficients for the operator

basis in Eq. (5.69):

C1 = 2, C2 = 2, C3 = −4, C4 = 0, C5 = 0, C6 = 0, C7 = 0, C8 = 0. (5.73)

This gives the full soft operator of

OS =2P2
S(S

T
n )

µν
−−gµρgνσ(Sn̄)

ρσ
++ + (STn )

µν
−−gµρgνσ(Sn̄)

ρσ
++P2

S + 2(STn )
µν
−−gµρgνσ□S(Sn̄)

ρσ
++

− 4(STn )
µν
−−R

S
µρνσ(Sn̄)

ρσ
++. (5.74)

There are a few interesting points worth mentioning about this soft operator. Firstly, the

only operators with non-zero Wilson coefficients all have Wilson lines with only two Lorentz

indices; all operators O4−8 have at least one Wilson line with three or more indices in each

term. One way to potentially understand this is that only Wilson lines which have the same

transformation under diffeomorphisms as the metric are allowed in the soft operator (i.e.

traceless symmetric rank-2 tensors). This is motivated by the QCD soft operator, only soft

Wilson lines in the adjoint representation appear. The soft graviton operator also shows

striking parallels to the QCD soft operator, which can be written as

OBC
S,QCD = 4παsn

µn̄ν
{
P2
SηµνSTn Sn̄ + STn Sn̄ηµνP2

S + STn gµν(iDS)
2Sn̄ − 2STn igG̃S µνSn̄

}BC
,

(5.75)

where in the above Sn and Sn̄ are soft gluon Wilson lines, DS is the soft gluon covariant

derivative, and G̃ is the gluon field strength tensor in the adjoint representation. Comparing

the soft graviton operator with the soft gluon operator, we can see that term-by-term we

can obtain the soft graviton operator by replacing gluon Wilson lines with graviton Wilson

lines, gluon field strength with the Riemann tensor, and adjoint color indices with Lorentz

indices, contracted with an external n and n̄ vectors. Some similarity might have been

expected simply from double copy considerations, but it is somewhat surprising that this

manifests at the level of the operators. It could be interesting to explore this correspondence

further in the future.
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5.4.4 Matching the Scalar Soft Function

We now match the soft scalar terms in the soft operator. Here, in constructing the operator

basis, we are aided by an additional symmetry of mass scalars, that is a symmetry of shifting

by an additive constant,

ϕ→ ϕ+ c. (5.76)

The EFT of course must also respect this symmetry. This then requires that all scalars

must come with a derivative in the combinations ∇µϕ. This then fixes the derivatives in the

soft operator, leaving only the distinct ways indices can be contracted between the Wilson

lines and the derivatives. Thus, there are only two scalar operators one can write down:

n

n̄

n

n̄

s
µ, ν

q

q′
= i
[κ
2
n̄· p22

] [κ
2
n· p21

]( κ√
2q2⊥q

′2
⊥

)(
2
n̄µn̄ν

n̄· q2
q′2⊥q· (q′ − q) + 2

nµnν

n· q2
q2⊥q

′· (q − q′)

− 2q′2⊥
n· q′n̄µn̄ν − n̄µqν − n̄νqµ

n̄· q
− 2q2⊥

n̄· q nµnν − nµq′ν − nνq′µ

n· q′

+ 2(qµq′ν + qνq′µ)− (qµ + q′µ)(n· q′n̄ν + n̄· q nν)− (qν + q′ν)(n· q′n̄µ + n̄· q nµ)

+ (n· q′n̄µ + n̄· q nµ)(n· q′n̄ν + n̄· q nν)− (q2⊥ + q′2⊥)(n
µn̄ν + nν n̄µ)− 2q· q′ηµν

)
.

We can then match the coefficients of these operators by considering the scalar-scalar for-

ward scattering with the emission of two additional soft scalars. In the EFT there are three

contributions, one which is a time-ordered product involving the gravitational Lipatov ver-

tex, two from a time-ordered product of an n-s and an n̄s scalar-scalar Glauber operator,

and one from the soft scalar operator. Meanwhile in the full theory there are 9 diagrams. We

are able to straightforwardly perform the calculations, and we find the Wilson coefficients

to be

Cϕ1 = 0, Cϕ2 = −2. (5.77)

This completes the matching of the soft function for the specified matter fields. In

general, we can expect additional soft operator contributions for matter fields of different

spins and different couplings to gravity. Note that this does include a soft fermion emission

operator. In gravity, each additional matter field comes with a factor of κ, which reduce the

mass dimension of the field by one; therefore two fermion fields come with a mass dimension

of 1, and can satisfy the mass dimension constraint. This with QCD, where a soft fermion

bilinear has mass dimension 3 and is thus ruled out. Finally note that, as pointed out

in the context of NRQCD [158], an advantage of building operators with gauge invariant
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interpolating fields is that we we do not need to consider operators with ghosts on external

legs.
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Figure 5.4: Diagrams for matching two soft graviton emissions. In (a) we show the 40
full-theory diagrams. In (b) we have the SCET diagrams. The first two are time-ordered
products of known EFT operators, while the third is an insertion of the two-graviton term
in the soft operator.
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operator.
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Chapter 6

Forward Scattering in Gravity

6.1 Introduction

Quantum gravity as an effective field theory, at least formally, is well understood[76] as

long as all invariants are sufficiently small compared to the fundamental scale Mpl. In this

regime the non-renormalizability of gravity is tamed save for the fact that as we aspire

to higher accuracy we introduce more unknown UV parameters that must be fixed from

experiment, or matched from some UV completion. The renormalization group flow into

the IR is not terribly interesting since all logs are power suppressed and there is no limit in

which a resummation can be done systematically.

However, we know this can not be the only kinematic regime for which we can maintain

calculational control as, after all, we certainly can predict astronomical orbits with high

accuracy. This super-Planckian scattering, corresponding to the limit s ≫ t, i.e. the so-

called “Regge” regime, must be within our calculational reach even though the graviton

coupling scales as s/M2
pl and t/M

2
pl when the emission occurs off of energetic/soft partons.

Note that even if we work in the regime s ≫ M2
pl ≫ t, we are immediately faced with a

severe power counting challenge given the growth of coupling in the super-Planckian limit.

In fact, matters are made worse by the existence of large (“Regge”) logs of the ratio s/t,

and, more importantly, this regime of forward scattering is enhanced due to the t-channel

graviton exchange by a factor of 1/t.

The super-Planckian limit is a double edged sword. On the one hand, the growth of

the cross section in s, at fixed t, leads to, at least naively, a violation of unitarity, but

also pushes the process into the semi-classical (eikonal) regime (for an extensive review

of progress using the eikonal approximation see [72]) over which we would expect to have

calculational control. In the case of massless particle scattering, the classical picture of the

initial state consists of two Aichelburg-Sexl shock wave metrics, and for impact parameter
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b ∼ 1/t large compared to the effective Schwarzchild radius RS = 2G
√
s, is tractable by

classical GR[81]. As the impact parameter diminishes we reach the regime of black hole

production and a thermal final state, as per Hawkings’ result. Thus it seems that, at

least for t < RS , super Planckian scattering is dominated by IR physics. We might glibly

conclude that we may maintain calculational control by simply working at large impact

parameter such that only-non local interactions will contribute, since contact interactions

will be suppressed for localized incoming wave packets. However, this is premature as it

is possible for local operators to mix with non-local operators via soft exchanges of gauge

bosons. In fact this occurs in NRQCD [50, 128, 39], the theory of non-relativistic bound

states. But as we shall discuss gravity does not allow for this mixing to happen for the class

of observables which are of relevant to this work.

The goal of this chapter is to build a Lagrangian formalism which allows one to calculate

systematically in a double expansion in αQ ≡ t/M2
pl and αC ≡ st/M4

pl. These ratios control

quantum and classical corrections respectively. In addition we will be working to leading

order in λ =
√
t/s. Our motivating factors for generating this formalism are: Formally, we

would like define, in a gauge invariant operator formalism, the notion of a Regge trajectory

and a BFKL equation for gravity, and to search for commonalities between QCD and gravity

that go beyond what is known in the double copy relations [35, 34]. Practically, to show

that this a Lagrangian effective field theory formalism can greatly simplify calcuations of

the Regge trajectory, as well as higher order corrections in the PM expansion.

Significant effort has been put into the calculation of higher order PM corrections to the

classical scattering angle for the purposes of increasing the accuracy of parameter extractions

for binary inspirals. While the PM expansion is not a systematic expansion in either the

relativistic or non-relativistic regimes, it does resum a subset of relativistic corrections

and is believed to increase the accuracy of models which interpolate between the PN and

relativistic parts of the inspiral such as the effective one body model [44]. There are various

ways of approaching these corrections, including using the classical world line approach

[98] in the PM expansion [74], the QFT world line approach [140, 77], and the S-matrix

approach [148, 36, 33]. All of these calculations utilize the physical limit, s ∼ m, and since

we will be considering light-like scattering, our results will only agree with a subset of the

contributions1. The massive and massless eikonal theories are not continuosly connected,

and thus the mass effects must arise from distinct theory, only to be touched upon below,

from the massless case.

As concrete calculations in this chapter we will show a simple way to extract the, mass

independent, classical log at 3PM, as well as the leading order Regge trajectory for which

1The soft loops, are insensitive to the existence of a mass.
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the two calculations in the literature [15, 137] seems to disagree2. It is our hope that

by illuminating the all orders structure of the series we may be able to perform suitable

resummations.

The technical details of our calculations will be couched in terms of EFT language.

However, in an effort to make the physics accessible to a more general audience, we have

relegated most of the EFT details to appendices. The EFT is the scaffolding that allows

for all orders proofs of factorization of the leading order in t/s contribution to forward

scattering. That is, the amplitude can be written as a convolution of soft and collinear

functions

⟨O⟩ = ⟨On⟩⟨Os⟩⟨On̄⟩, (6.1)

Readers interested in generating fixed order results can do so using the full theory and using

the method of regions [167, 21, 168] to find the appropriate integrands dictated by the EFT.

However, the resummations are based upon operator rapidity anomalous dimensions which

are defined within the EFT.

There are several existing approaches in the literature to studying the super-Planckian

limit. Early work tended to focus on obtaining the leading classical Eikonal phase through a

variety of approaches [1, 170, 145]. Amati, Ciafaloni, and Veneziano (ACV) expanded string

amplitudes in the semi-classical limit[11, 7, 9, 10], which allowed them to extract the two

loop contribution to the classical phase. More recent approaches involve Wilson lines [137,

129] and double copy considerations [162, 163, 6, 161, 146, 153, 151, 152]. Lipatov [126]

introduced “effective actions” for high energy scattering which involved ”Reggeon fields”,

which is quite distinct from our approach; several other effective actions approaches closely

related to Reggeon fields have also appeared in the literature [114, 8, 12, 123]. Recently the

authors of [93], have given a nice explanation of the differences between Reggeon fields, in

the context of QCD, and the theory formulated in [159], upon which our theory is based.

6.2 Lessons from YM Theory

To gain insight into gravity in the Regge limit it behooves us to consider the case of YM

theory which is, in some ways, simpler than gravity, since the coupling is dimensionless

so power counting is almost trivial, but in other ways more complicated due to the color

structures that arise as we increase the orders of our calculations. However, as we shall see,

the structure of the gravitational theory is considerably simpler than QCD once we know

how to tame the seemingly non-perturbative coupling behavior, as will be discussed in the

2The Regge trajectory is IR divergent and thus the local pieces are regulator dependent. However, the
results in [15, 137] also disagree in their log(t) dependence of the trajectory which should be independent of
the regulator.
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next section.

YM theory has the nice property that hard processes are power suppressed 3, as a

consequence of the fact that it is classically conformal. Let us first consider the case of a

generic hard scattering process away from the forward limit, where we integrate out the

hard modes and match onto a theory of light-like scatterers. The systematics of this theory

are based on a double expansion in αs and Λ/Q, where Q ∼ s ∼ t is the hard scattering scale

and Λ is the appropriate IR scale for the observable of interest. The amplitude will contain

large (double) logs of the ratio Q/Λ2 whose resummation can be achieved by working in the

EFT called SCET, (Soft-Collinear Effective theory) [17, 16, 18]. Some of these logs are due

to loops or large virtuality (“hard loops”) which can be resummed using renormalization

group techniques, while other logs, of the ratio s/t are actually due to the large ratio of

rapidities which can be resummed using rapidity renormalization group (RRG) methods[57,

54].

Once we consider the Regge limit the power counting changes drastically, as the higher

dimensional near forward scattering operator which arises from the exchange of a so-called

“Glauber gluon”, becomes order one. This is not to say that there are no near forward

interactions in a hard scattering event (all invariants being large), however, it can be proven

[61]4, that for sufficiently inclusive observables these interactions cancel up to corrections

which are suppressed by the hard scattering scale. Thus in the Regge regime (no hard

scattering) the forward scattering interaction dominates and amplitude. The interactions

are characterized by the exchange of a Glauber gluon with light-cone momentum scalings

pµ ∼
√
s(λ2, λ2, λ), which are off-shell (p+p− ≪ p2⊥) and can be integrated out, leading

to an interaction which is non-local in the transverse direction. Theses gluons are called

“Glauber modes” as the analagous mode in QED is relevant for quantum optics. The

canonical definition of SCET does not include these modes, which lead to a generalized

version of SCET, GSCET, [159]. The resummation of these Glauber exchanges leads to

the eikonal phase characteristic of the semi-classical nature of the near forward scattering

process.

Let us consider the form of the one loop amplitude

M ∼ αs
t
(1 + iπC1αsΓ[ϵ]

(
t

µ2

)
+ C2αs log

(
s

−t

)
+ ... (6.2)

Here we have ignored color which leads to complex structure at higher orders. It is important

to note that there are no hard loop correction to any order for forward scattering kinematics,

as such contributions are all power suppressed by factors of t/s [159]. The imaginary term

3For on-shell operators. i.e. those which only contain physical polarizations.
4All factorization proofs for hard scattering observables in SCET, to date, assume that Glaubers do not

contribute.
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in Eq.(6.2) is the avatar of the classical phase and the large log
(
s
−t

)
, which needs to

be resummed to regain calculational control in the asymptotic limit, leads to the “Regge

trajectory”5. There is storied history of the resummation of these logs that goes under the

name of “Reggeization”. Gribov’s original approach [99] to the problem has led to a number

of perspectives including the classic work of Balitsky, Fadin, Kuraev and Lipatov [88],

Lipatov’s effective action [124], and more modern approaches in terms of Wilson lines[13,

46, 47, 171, 90]. For an historical review see [66]. In some instances, e.g. in the anti-

symmetric octet color channel, the resummations of these logs leads to so-called Regge

form of the amplitude where the amplitude can be written as 6

M ∼ C(αs)
(s
t

)α(t)
. (6.3)

α(t) is the, infrared divergent, Regge trajectory. This form of the amplitude holds up to

next-to leading log in general [78] and to all orders in the planar limit [120]. Amplitudes of

this form have “Regge pole” behavior since they arise when there is a pole in complex angular

momentum plane. This is as opposed to the case where cuts arise and the amplitude takes

on a more complicated form. Recent progress has shown that there are relations between

α(t) and the series in αs that defines C [65, 144]. In addition, it has been shown that, by

considering ampltiudes with definate crossing symmetry, that unitarity implies that there

are relations between the Regge trajectory and the eikonal phase [157], as well as between

various anomalous dimensions.

6.3 The Gravitational Case

Now let us return to the gravitational case. We would expect the amplitude in the grav-

itational case to take a form identical to (6.3). However, as discussed in the introduction

the hard scattering S-channel operators are enhanced by powers of s/M2
pl. For instance, for

scalar scattering the tree level s-channel graviton exchange will generate a local operator

with a Wilson coefficient that scales as s/M2
pl.

5The Regge trajectory is defined at the running of the octet operator.
6In momentum space the eikonal phase is not manifest, but instead the series C includes both classical

(eikonal) and quantum contributions.
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Any observable sensitive to this operator will not be under calculational control. In fact, we

could insert higher dimensional operators with unknown Wilson coefficients at the vertices,

and they too would be super-leading. Notice that simply specifying the kinematics as being

Regge does not eliminate the contributions from such operators. However, if we consider a

set of observables (O) as being those for which the incoming wave packets have a compact

region of support and are separated in the transverse direction by an amount greater than

Schwarzchild radius, then operators which interpolate for a fixed number of partial waves

wont contribute. It is interesting to note that this is NOT the end of story, as soft emissions

can mix local and non-local operators. In fact, this is exactly what happens in the case of

non-relativistic bound states [169, 131], such a quarkonium where the annihilation diagram

generates a local color octet T a ⊗ T aδ(x) potential that gets corrected by a soft exchance

as in this diagram 7

that generates a counter term for a non-local potential V (x) ∼ 1
r3

which would contribute

to the set of observables O. Physically we can imagine two widely separated partons one of

which emits a soft quanta which shifts its momenta, leading to a head on annihilation after

which the quantum is reabsorbed and the final state is again well separated. In NRQCD this

poses no challenge to the power counting since the annihilation graph is down by αs ∼ v8.

We may worry that something similar can happen in the gravitational case and indeed it

would, however only if the the matter propagator assumes the dispersion relation E = p2

2m ,

that is the soft exchange would cause the source line to recoil and thus the matter lines

are not eikonal, and must behave quantum mechanically which, in turn, implies mv ∼ 1/r

or L ∼ 1, which is outside the set O. This argument applied to massive partons, whereas

here we are interested in the massless case. However, the same conclusion can be reached

in the massless case as the diagrams with the exchange of a soft graviton will be insensitive

to q⊥ ∼
√
t for observables within O. Had this not been the case it would have meant that

the matching from the UV completion of gravity to Einstein-Hilbert gravity would have to

exponentially suppress all of the dangerous operators.

Finally, one may worry that the exclusion of the s-channel operators will pose a challenge

to the Ward identity once we put gravitons on external states. In the EFT the Ward identity

must be satisfied order by order in each of the expansion parameters. As we shall see, by

7In the EFT NRQCD [50, 128, 39], this gluon is called “Ultra-Soft” because all of its momentum com-
ponents scale as mv2, where v is the relative velocity in the bound state.

8In the bound state the power counting is such that α ∼ v.
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building operators using explicitly gauge invariant building blocks we are assured that that

the Ward identities will be satisfied and the contribution from local interactions (s-channel

processes) will automatically be included 9.

6.4 Glauber Gravitational SCET

6.4.1 Power Counting

There are multiple kinematic scenarios of interest depending upon whether or not the scat-

terers are massive or not. In this chapter we will consider massless case. As mentioned in

the introduction the EFT will be valid when the following hierarchy is satisfied

s≫Mpl ≫ t. (6.4)

As in the case of QCD we will be working to leading order in the parameter λ =
√
t/s.

However, we will be working to all order in the parameters

αQ ≡ t

M2
pl

< 1 αC ≡ st

M4
pl

< 1, (6.5)

which control the quantum and classical loop corrections. αC ≡ st
M4

pl
< 1 implies that

classical non-linearities are sub-leading such that we are not in the regime where black

hole formation occurs10. However, we can study the approach to black hole formation as a

function of αC .

As opposed to QCD, the gravitational Glauber interaction is power enhanced, i.e. 1/λ.

Such a state of affairs is usually a death knell for any EFT since power counting forces us

to rescale the action such that the superleading interaction scales as unity, which would

make the kinetic pieces sub-leading, and the theory would have no propagating degrees of

freedom. However, since the Regge limit is a semi-classical in nature the amplitude has

sufficient structure that calculational control can be maintained. To see this note that the

semi-classical nature of the process ensures that the amplitude can be written in impact

parameter space [72] in the form

M(b, s) ∼

(
(1 + [

∑
i=0

αiQCi(bs)])e
iδ

(0)
Cl

∑
j=0(α

j
CDj(bs)) − 1

)
, (6.6)

9This may seem strange from the point of view that local interactions are suppressed. However, unphysical
polarizations on external lines can lead to leading order local contributions which will automatically be
accounted for in the EFT operators.

10Here t is the typical momentum in one graviton (Glauber) exchange, which is called tindividual in [9,
10], and should not be confused with the physical t which results from a coherent field of Glaubers which
constitutes the shock wave.
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where δ
(0)
Cl is the Fourier transform of the leading order Glauber result

δ
(0)
Cl = Gsπϵ(µ̄2b2)ϵΓ(−ϵ). (6.7)

The function D(bs) is a series of logs.

Given this form of the amplitude we may treat the kinetic term as being as the same

order as the Glauber interaction. Furthermore this form of the amplitude allows us to

cleanly separate the classical from the quantum 11 . This need not have been the case

given that we have three dimensionful parameters (s, t,M2
pl), the dimensionless couplings

λ, αQ and αC are not independent (
α2
Q

λ2
= αC). This would not be a problem save for the

fact that the theory contains (Glauber) operators which scale as inverse powers of λ which

complicates the power counting. At the diagrammatic level we may distinguish classical

and quantum corrections when considering soft gravitons as any soft loop that does not

involve an eikonal line will be quantum mechanical. In the massless case, as we consider

here, we run into the complications

Notice that a direct calculation of terms which scale as powers of αC would not suffice to

extract the classical piece since, as we can see from the form of the amplitude, the expansion

of the exponent will yield powers of αC (from the leading term) that will hit quantum terms

in the prefactor and generate classical scaling contributions ( stα
2
Q = αC). Figure one shows

the general structure of the series. We see that the classical contribution skips orders in

the PM expansion since we need an extra Glauber exchange to get a factor of s/M2
pl to

accompany a quantum suppression of t/M2
pl. The RRG sums all the logs along the green

lines, as each step to the right generates another log, whereas vertical motion does not.

The bottom green line generates the leading order Regge trajectory. These logs can arise

from either soft or collinear emissions. As we will discuss below in the EFT all diagrams get

contributions from soft and collinear partons. In the soft sector it is easy to determine which

diagrams are classical and which are quantum, as any loop which does not involve an eikonal

line is necessarily quantum. The RRG running of the soft function sums diagrams which

involve adding rungs between Glauber lines will include both quantum as well a classical

piece. It also sums soft eye graphs which are purely quantum mechanical. In the collinear

sector the massless parton can split 12 and the existence of a collinear propagator in every

loop is no longer sufficient to ensure classicality. Nevertheless, if one is only interested in

logs one can calculate solely in the soft sector since the logs are all fixed by the anomalous

dimensions which can be calculated by choosing to work either in the soft sector or the

11In the massive case there is an alternative path one can take by working in an EFT of potentials. Then the
super classical terms that show up in iterations are canceled when matching onto the EFT [Neill:2013ws].

12When working in the limit where s ∼ m2, collinear emissions are no longer relevant and the source
always behaves classically, and can be treated as in NRGR [98].
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Figure 6.1: The structure of the perturbative series. The blue circles correspond to classical
contributions in the Post-Minkowskian expansion. The pink circles are super classical (box
diagrams) while the greens lines indicate quantum corrections from soft and collinear loops.
The classical contributions occur at odd orders in the PM expansion. Each soft/collinear
loop generates a log while Glauber loops generate iπ.

collinear sectors 13, as will be discussed below. As one goes to higher orders in the quantum

expansion one must include power corrected Glauber operators which can be lifted up by

subsequent Glauber exchange. In this chapter we will not be working to sufficiently high

order for this to be an issue.

If one wishes to power count by diagrams instead of operators, it is simple to read off the

scaling of a given diagram. Each matter vertex gives as factor of s, while each matter line

gives a factor of 1/
√
s. All vertices give a power of 1/Mpl and given that the amplitude for

scalars is scaleless the remaining units are made by powers of t with a minimum exponent

of −1. Note that each operator scales homogeneously with λ but not in αQ, or αC , thus

even though those couplings are ratios of scales we should think of them in the same as

we would αS in YM theory. Also all amplitudes are analytic in s since there are no hard

momenta flowing through the loops. This seems to fly in the face of the Regge logs, but

in the EFT the s dependence only shows up as a boundary value for the solution to the

RRGE. Counting using operator insertion is simpler, since each Glauber exchange generates

a factor of s
M2

pl
while each soft vertex generates a factor of

√
αQ. There is additional overall

13In the EFT the full amplitude has no rapidity divergences which cancel between the collinear and soft
sectors.
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factor of s
t in the matrix element. Thus the soft eye graph, e.g., in figure (6.28) which in

this case arises due to the time ordered product of two collinear soft Glauber operators is of

order

(
s
t

s
M2

pl

)
where the quantity in the brackets is the scaling of the leading order Glauber

exchange.

6.4.2 The Action

As mentioned in the introduction, the scaffolding of our calculations will be Glauber SCET,

and here will will quickly review this topic in preparation for the introduction of the crucial

factorization theorem (6.12) upon which our analysis hinges. For the case of hard scattering

a version of SCET for gravity was developed in [24, 149]. Here we will be considering the

complementary case which describes the Regge region. Some of atomistic gauge invariant

objects upon which we build our theory can be ported over from the EFT for gravity for

the case of hard scattering in [24, 149]. The EFT for near forward scattering in gravity is

structurally very similar to the case of YM theory [159]. The starting point for building the

EFT is to determine the modes necessary to reproduce the IR physics of the full theory.

The relevant modes are fixed by determining, given the relevant kinematics, the kinematic

regions for which IR singularities arise. There is no distinction between the modal analysis

in gravity and in YM theory, though the power counting of the modes fields components are

different (see below). For high energy scattering the relevant modes 14 correspond to soft (s),

collinear (n) and anti-colinear (n̄) where the light cone momentum scale as pµs ∼ (λ, λ, λ),

pµn ∼ (1, λ2, λ) and pµn̄ ∼ (λ2, 1, λ), respectively. Here λ ∼
√
t/
√
s is the power counting

parameter. Any prediction will be made in the context of a triple expansion in λ, αC and

αQ, though we will only work to leading order in λ. Both soft and collinear scalar modes

exist in the theory and both fields scale as
√
λ. The scalar soft mode loops will not generate

rapidity logs and wont play a role at the order we will be working. In the de Donder gauge

the polarization of the collinear graviton field will scale as (in the (+,−,⊥)) basis

hnµν ∼
pnµp

n
ν

λ
(6.8)

and the soft graviton scales as λ.

The total Lagrangian is written as

L = Ln + Ln̄ + Ls + LG . (6.9)

where Ln + Ln̄ + Ls correspond to the Lagrangian for soft and collinear modes while LG
14This corresponds to what is known as SCETII. There is also an SCETI where where the Ultra soft

modes replaces the soft mode and has p ∼ λ2. The choice of observables determines which of the two
theories should be applied.
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accounts for the factorization violating interactions, i.e they connect modes in different

sectors, that take place due to Glauber exchange. The theory has three distinct gauge

symmetries (diffeomorphism invariances), collinear, anti-collinear and soft, and one can

build the action from gauge invariant operator building blocks. It is because the leading

order action can be factored in this way that is it relatively simple to write down factorization

theorems when the Glauber mode is included, as it is the only mode which has the ability

to connect various sectors. Here we are only interested in bosonic scattering so the collinear

partons will be labelled ϕ and h for the scalar and graviton respectively. Glauber exchanges

will generate the following set of non-local (in the transverse plane) gauge invariant operators

Oϕϕnsn̄ = Oϕ
n

1

P2
⊥
Os

1

P2
⊥
Oϕ
n̄ Ohϕnsn̄ = Oϕ

n

1

P2
⊥
Os

1

P2
⊥
Oh
n̄ ,

Oϕhnsn̄ = Oϕ
n

1

P2
⊥
Os

1

P2
⊥
Oh
n̄ , Ohhnsn̄ = Oh

n

1

P2
⊥
Os

1

P2
⊥
Oh
n̄ . (6.10)

On the left-hand side the subscripts indicate that these operators involve three sectors

{n, s, n̄}, while the first and second superscript determine whether we take a (scalar) quark

or graviton operator in the n-collinear or n̄-collinear sectors.

6.4.3 The Need for Power Suppressed Operators

If we are interested in higher order corrections we will need to include operators suppressed

by powers of λ. This is due to the superleading λ-scaling of the leading power Glauber

Lagrangian, which scales as Oij
nsn̄ ∼ s

M2
pl

∼ 1
λ2
αQ. As we can see in Fig. 6.1, we may

add leading power Glaubers to obtain power enhancements. A power suppressed operator

Ok which scales as Ok ∼ λ2k, k > 0 may then be inserted into a diagram with k + 1

Glaubers to have the same λ scaling as the tree amplitude, and more Glauber insertions

then served to further raise the enhancement. Sub-leading operators represent quantum

corrections and thus if we are interested in classical pieces one would think that they can be

ignored at the outset. In general this is true, as the interference like terms between super

classical and quantum will not contribute to the classical phase in Eq. (6.6). However,

there are exceptions, as there are power corrections to the Glauber operators that lead

to classical corrections that must be included in the classical phase. The need for power-

suppressed operators is not unique to the SCET approach to forward scattering in gravity

presented here. In the Heavy Particle Effective Theory (HEFT) formalism for example,

power suppressed, or quantum, operators are known to be necessary for higher order classical

results [63, 40, 41, 103].
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6.4.4 Factorization of the Amplitude from Glauber SCET for YM

Using this action we can write down a factorized form for the amplitude that looks effectively

two dimensional. To include effects of the Glaubers within the EFT following [159, 144, 93]

we start with the time evolution operator

U(a, b;T ) = lim
T→∞(1−i0)

∫ [
Dϕ
]
exp

[
i

∫ T

−T
d4x

(
L(0)
nn̄s(x) + LII(0)

G (x)
)]
, (6.11)

one then expands in the number of Glauber potential insertions attaching to the n and n̄

projectiles, given by i and j respectively, so that

exp

[
i

∫ T

−T
d4x

(
LII(0)
G (x)

)]
= 1 +

∞∑
i=1

∞∑
j=1

U(i,j). (6.12)

For any number of Glauber potential insertions, one can then factorize the soft and collinear

operators to give a factorized expression for the amplitude for scattering of projectile κ with

κ′ is

Mκκ′ = i
∑
MN

∫ ∫
⊥(N,M)

JκN ({l⊥i}, ϵ, η)S(N,M)({l⊥i}; {l′⊥i}, ϵ, η)J̄κ′M ({l′⊥i}, ϵ, η)

(6.13)

where, following the notation in [93], we defined

∫ ∫
⊥(N,M)

=
(−i)N+M

N !M !

∫ N∏
i=1

M∏
j=1

[dd
′
li⊥]

l2i⊥

[dd
′
l′j⊥]

l′2j⊥
δ̄d

′
(
∑

li⊥ − q⊥)δ̄
d′(
∑

l′j⊥ − q⊥), (6.14)

κ and κ′ label the external states, i.e. scalars or gravitons. Note that in Eq.(6.13) all of the

Glauber light cone momentum integrals have been performed, as have all of the soft and

collinear loops, that is why J, S depend upon the regulators ϵ and η. All of the Glauber

loops correspond to box integrals 15 which are rapidity finite and give a result independent of

the perp momenta, since the Glauber light-cone momenta are dropped in the soft function.

After performing the Glauber energy integral by contours we then use the result for the

rapidity regulated kz integration∫
[dkz]

−2kz +A+ iϵ
| 2kz
ν

|−η= −1

4
. (6.15)

15Cross box integrals vanish with this regulator.
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More generally it was shown in [159] that the n-Glauber box diagram generates a factor of
in

n! which is necessary to form the semi-classical phase. This explains why the amplitude is

defined with the factorial prefactors in Eq.(6.14).

The jet function are defined as time ordered products, e.g. at the one and two Glauber

gluon level

J(k⊥) =

∫
dx±1 ⟨p | T ((O

ϕ
n +Ohn)(k⊥, x

±
1 ) | p

′⟩

J(k⊥, k
′
⊥) =

∫
dx±1 dx

±
2 ⟨p | T ((O

ϕ
n +Ohn)(k⊥, x

±
2 )(O

ϕ
n +Ohn)(k⊥, x

±
1 ) | p

′⟩, (6.16)

The jets are written in this way because the combination (Oϕn + Ohn), see equation (5.42)

for the definition, is an eigen-vector of ν d
dν . At tree level the individual jet functions for n

Glauber exchange

J
(0)
ϕn = (n · p)n+1

(κ
2

)n
J
(0)
hn = (bµνϵ

µϵν)2 (n · p)n+1 (
κ

2
)n (6.17)

where

bµν = n̄ · p1gµν⊥ − n̄µpν1⊥ − n̄νpν4⊥ +
p1⊥ · p4⊥n̄µn̄ν

n̄ · p2
. (6.18)

For p1/p4 the incoming and out going momenta respectively. The tree level soft function

for (i, j) is given by

S
(0)
(i,j)(li⊥; l

′
i⊥) = 2δiji

jj!

j∏
a=1

l′2i⊥

j−1∏
n=1

δ̄d
′
(ln⊥ − l′n⊥) (6.19)

Note that S
(0)
(1,1) = 2il2⊥ and J

(0)
1 = (n · p)2 κ2 , such that the leading order, one Glauber, tree

level exchange gives

M0 = −s2κ
2

2t
. (6.20)

We will need the form of the tree level results for the purposes of renormalization.
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6.4.5 Summing the Logs using the Rapidity Renormalization Group (RRG)

While the amplitude is free of rapidity divergences, the individual components are not, and

they obey the RRG equations

ν
∂

∂ν
Jκ(i) =

∞∑
j=1

Jκ(j) ⊗ γJ(j,i),

ν
∂

∂ν
S(i,j) = −

∞∑
k=1

γS(i,k) ⊗ S(k,j) −
∞∑
k=1

S(i,k) ⊗ γS(k,j), (6.21)

ν
∂

∂ν
J̄κ′(i) =

∞∑
j=1

γJ̄(i,j) ⊗ J̄κ′(j).

γ(i,j) are the rapidity anomalous dimensions, which will be defined below.

In Yang-Mills theory Each Ji and S(i,j) is decomposed into irreducible representations

of the SU(N) gauge symmetry and operators with different numbers of Glaubers, but

in the same irrep, can mix (for a discussion of the general structure see [93]). This is one

complication that will obviously not arise in the case of gravity which will present a different

set of challenges. Another significant simplification that arises in the gravitational case is

that SM,N ∝ δMN due to RPI invariance which is the invariance of the physics under small

deformations of the choice of light cone directions for the partons [134]. Which is to say

that, in the EFT we must choose a large light cone momentum around which to expand

and there is arbitrariness in that choice. Technically this correponds to invariance under a

shifts of the light cone directions n and n̄ that leave the inner products n ·n = n̄ · n̄ = 0 and

n · n̄ = 2 invariant. In the case at hand we will utilize the fact that RPI implies that every

amplitude scales as nan̄b with a = b16. Any amplitude can only depend upon the product

of the two large incoming (conserved) light cone momenta n · pn̄ · p. Each insertion of a

Glauber graviton generates a factor of (n · p−1, n̄ · p−1) from the associated collinear and

anti-collinear propagator to which they connect i.e. if the collinear/Glauber momenta are

p/k then
1

(p− k)2
≈ 1

n · p(n̄ · k − k2⊥
n·p)

. (6.22)

Thus the number of insertions of Glaubers on the top and the bottom must be the same.

This is a significant simplification from QCD where diagrams such as the “tennis court”

diagram arise at three loops which vanish in gravity. This result holds independent of the

type of collinear parton being considered. In QCD we lose this constraint because the

numerators cancel out these additional powers of the light cone momenta. Operationally,

16This is called RPIII in the language of [134].
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the vanishing of diagrams with a different number of Glauber connections on the top and

bottom of the diagram arises due to the vanishing of the tensor integrals. It might seem

curious that we can find a diagram which is not RPI invariant given that the action is RPI

invariant. But one must recall that J and J̄ are composed of time ordered products of

non-RPI invariant operators. Thus if we wrote the amplitude in the form J ⊗ S ⊗ J̄ , we

will only get a non-vanishing (RPI invariant) result if J and J̄ have the same number of

Glaubers attached to them.

Now that we know that S is diagonal this simplifies the RRG equations considerably.

In addition it allows us to write down the following simple constraint

J(i) ⊗ γJ(i) + γJ̄(i) ⊗ J̄(i) − γS(i) ⊗ S(i) − S(i) ⊗ γS(i) = 0, (6.23)

which follows from the fact that the full result must be independent of the ν. Note that

since S is diagonal we have simplified its index structure.

With this simplification we have

Ji({l⊥i}, ϵ, η, ν) =

∫
⊥(i)

Ji(k⊥i, ϵ, ν)Z
J
i ({k⊥i}; {l⊥i}, ϵ, η, ν)

Si({l⊥i}; {l′⊥i}, η, ν, ϵ) =

∫
⊥(i)

∫
⊥(i)

ZSi [{l⊥i}; {k⊥i}, ϵ, η, ν]Si[{k⊥i}; {k′⊥i}, ν]ZSi [{k′⊥i}; {l′⊥i})ϵ, η, ν].

(6.24)

where the left hand sides are bare quantities which have poles in η. Note that there is

ϵ dependence in the renormalized quantities because these objects are not IR safe. The

integrations are defined by∫
⊥(A)

≡ (−i)A

A!

∫ ∏
a=1,A

[dd
′
ka⊥]

(ka⊥)
2
δ̄d

′
(
∑
a=1,A

ka⊥ − q⊥). (6.25)

The anomalous dimensions are defined by imposing

ν
d

dν
Ji({l⊥i}, ϵ, η, ν) = 0, (6.26)

and are then given by

γ
(i)
J = −(ν

d

dν
ZJi )(Z

J
i )

−1, (6.27)

where the bold faced lettering denotes the convolutional nature of the equation. Due to our

choice of normalization in the convolution eq.(6.14), the Z factor has units of plus two.
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6.5 The Rapidity Renormalization Group and the Regge Tra-

jectory

Let us calculate the leading order running of the S(1,1), which will yield the Regge trajectory.

This correction is down by a factor of αQ relative to the Glauber contribution. There is

only one diagram to calculate in the EFT, the so-called “eye-graph”, which if opened up

into the full theory would correspond to the soft graph topologies corresponding to vacuum

bubble, box and cross box graphs. The flower graph also contributes at this order but does

not contain any rapidity divergences. The same can be said for the scalar vacuum bubble.

To calculate the anomalous dimensions we are only interested in the rapidity divergent term

which is given by

n

n̄

= −iκ
4s2w2

8πη
(3− 2ϵ)q2⊥

∫
[dd

′
k⊥]

k2⊥(k⊥ − q⊥)2

= i
κ4s2w2

32π2η
(3− 2ϵ)B[1, 1]

(
−t
µ̄2

)−ϵ
. (6.28)

Since there is only one Glauber exchanged the renormalization is multiplicative, as

opposed to convolutive. We then can write

SB(1,1) = Z̃S(1,1)S
R
1,1, (6.29)

Here we have introduced Z̃ as the multiplicative renormaliation factor. The anomalous

dimension in this case will also be written as γ̃(1,1), since the RRG is multiplicative.

Recalling that that at leading order S(1,1) = 2it, and that two factors of κs/2 get

absorbed into the J ’s we find

Z̃S(1,1) =
κ2t w2

16π2η
(3− 2ϵ)B[1, 1]

(
−t
µ̄2

)−ϵ
. (6.30)

which leads to the RRG equation

ν
dSR(1,1)

dν
= −γ̃S(1,1)(t)SR, (6.31)
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with γ̃S(1,1) being given by

γ̃S(1,1) = − κ2t

16π2
(3− 2ϵ)B[1, 1]

(
−t
µ̄2

)−ϵ
. (6.32)

We way then identify ωG(t) = −1
2 γ̃

S
(1,1)(t) as the graviton Regge trajectory 17

ωG(t) =
κ2t

32π2
(3− 2ϵ)B[1, 1]

(
−t
µ̄2

)−ϵ
=

κ2t

16π2

(
−3

ϵ
+ 3 log

−t
µ2

+ 2 +O(ϵ)

)
. (6.33)

We can compare is this leading order Regge trajectory found in the literature. Our

results agree with those given in [15], for the physical non-local piece. The only other result

that we are aware of for the Regge trajectory was given in [137]. The log(t) coefficient seems

to disagree with ours result, but the result in [137] has dependence on both t as well as an

impact parameter z (the transverse separation between the Wilson lines), so it’s not clear

how to compare.

6.5.1 The Systematics of the Regge Trajectory

The Regge trajectory is defined as the IR divergent anomalous dimensions of S(1,1) which

is not physical. Nonetheless, it is of considerable theoretical interest. In this chapter we

have calculated the leading order trajectory which sums terms of the form t
M2

pl
log
(
s
−t

)
. For

this to be a sysematic resummation we would need t
M2

pl
log
(
s
−t

)
∼ 1, at least for Einstein

Gravity, since the existence of counter-terms starting at order ( t
M2

pl
)6 will dominate higher

order terms in the re-summation if the criteria above is not met. The same conclusion

applies to the running of higher dimension soft operators (or collinear for that matter), and

their subsequent BFKL type of equations. There is evidence that N = 8 supergravity is

finite, having the same UV behavior as N = 4 SYM theory [27]. If this were indeed the case

then resummation program for N = 8 [162, 163] would indeed be systematic. However, even

that conclusion would be model dependent, as the lack of divergences, while compelling,

does not necessarily imply that the counter-terms, the existence of which are still being

debated [111], don’t contribute to the amplitude. If the theory were truly UV complete

then these contributions would vanish and resummation would be systematic.

6.6 The Gravitational BFKL Equation

In this section we derive the gravitational BFKL equation, which was first given for the total

cross section in [127]. As shown in [93], the BFKL equation is derived in the EFT through

17Note that there is an additional factor of 1/2 because the trajectory is defined as M ∼ (s/− t)ω.
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Figure 6.2: Diagrams needed for the renormalization of S(2,2). The first two diagrams are
soft eye insertions into a Glauber rung, while the third diagrams is H graph.

the renormalization of S(2,2). We perform this renormalization, and then we generalize

this result and renormalize S(N,N) for arbitrary N . It is worth emphasizing that there is

nothing special about N = 2 other than the fact that this is the first soft operator which

obeys convolutional running. There are also BFKL like equations for higher N . The caveats

about the systematics in the previous discussion of the Regge trajectory apply here as well.

6.6.1 Renormalizing S(2,2)

There are only two loop topologies which renormalize S(2,2) corresponding the H graphs and

eye graphs as shown in figure (6.2). Graphs such as those involving scalar contributions to

the Glauber polarization have no rapidity divergences. The H-graph, shown on the right

hand side of figure (6.2) with no additional Glauber rungs, is calculated using the Feynman

rule for the Lipatov vertex in Fig. (5.3b), and is given by

iMH =
iκ6s3

8

∫ [ddkn][d
dkn̄]w

′4
∣∣∣k−n −k+n̄

ν′

∣∣∣−2η′

N (kn, kn̄)

((kn − kn̄)2 + iϵ)
(
p+1 + k+n̄ + (kn̄⊥+q⊥/2)2

p−1
+ iϵ

)(
p−2 − k−n + (kn⊥+q⊥/2)2

p+2
+ iϵ

)
DG

,

(6.34)

where we have defined

DG = d1 d2 d3 d4,

N (kn, kn̄) =

(
q2⊥((kn − kn̄)

2 + q2⊥)− (d1 + d4)(d2 + d3)−
1

k+n kn̄
(d1d4 + d2d3)(d1 + d2 + d3 + d4 − 2q2⊥)

− 1

(k+n kn̄)2

[
(d1 − d3)(d2 − d4)(d1d4 + d2d3) + d5(d1d4 − d2d3)(d1 − d2 − d3 + d4)

− d25(d1d4 + d2d3)
])
w2

∣∣∣∣k+n + k−n̄
ν

∣∣∣∣−η , (6.35)

d1 = kn⊥2 , d2 = (kn⊥ + q⊥)
2, d3 = k2n̄⊥, d4 = (kn̄⊥ + q⊥)

2, d5 = (kn⊥ − kn̄⊥)
2.
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To compute the H-graph we must be sure to handle the η regulators properly, as discussed in

[93], by integrating over the O(λ2) Glauber k−n and k+n̄ components of momenta, expanding

in η′ and taking w′ → 1. In principle we must make a choice of ±iϵ in the eikonal factors

of (k+n ± iϵ) and (k−n̄ ± iϵ), but as discussed in [159, 93], any additional contributions are

removed by zero-bin subtractions [132](which vanish), and so the result for the integral is

independent of the choice. Changing variables to k+n − k−n̄ = k0 and k+n + k−n̄ = k3, we can

perform the k0 integral by contours and integrate over k3 to obtain the divergent piece of

the graph

iMH = −κ
6s3w2

26π η

∫
[dd

′
k⊥][d

d′ l⊥]

d1 d2 d3 d4

(
q4⊥ − 2

(d1d4 + d2d3)q
2
⊥

d5
+
d21d

2
4 + d22d

2
3

d25

)
, (6.36)

where for notational clarity we have relabelled kn⊥ and kn̄⊥ by k⊥ and l⊥ respectively. Note

that there is no corresponding ghost graph. The reason is that collinear soft operator is

composed of gauge invariant building blocks. Something similar happens in NRQCD [158]

as well as Glauber SCET [159]. This is not to say that ghosts dont show up at higher

orders. Indeed, if we were to include a vacuum polarization in the soft or collinear sectors

themselves, we would require ghost loops to keep the theory unitary.

The other relevant topolgy is the double box with an soft eye subgraph. These topologies

will never contribute to any classical observable as they corresponds to cross terms between

the classical exponent and the quantum corrections in (6.6). These diagrams are simply the

one loop soft eye diagram convoluted with the Glauber box diagram in ⊥-momenta. This

is because the soft loop is insensitive to the Glauber k± ∼ λ2, while soft l± ∼ λ. Given the

soft eye has been computed already in Eq. (6.28), we may write down the divergent result

for the sum of the two soft eye boxes as

iMSEB = −κ
6s3w2

32πη

∫
[dd

′
k⊥][d

d′ℓ⊥] (k⊥ + q⊥)
2(3− 2ϵ)

k2⊥ ℓ
2
⊥ (k⊥ + ℓ⊥ + q⊥)2

(6.37)

In the above, we have already performed the small Glauber k± ∼ λ2 integrals.

The factorized O(αQ) matrix elements is then written as

iMH + iMSEB = J
(0)
(2) ⊗ S

(1)
(2,2) ⊗ J̄

(0)
(2) . (6.38)

Expanding out the convolutions, the amplitude becomes

J
(0)
(2) ⊗S

(1)
(2,2)⊗ J̄

(0)
(2) =

1

4

∫
[dd

′
k⊥][d

d′ℓ⊥]

k2⊥(k⊥ + q⊥)2ℓ
2
⊥(ℓ⊥ + q⊥)2

J
(0)
(2) (k⊥)S

(1)
(2,2)(k⊥, ℓ⊥)J̄

(0)
(2) (ℓ⊥). (6.39)

Since J
(0)
(2) and J

(0)
(2) are independent of the transverse momentum (from their definition in
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Eq.( 6.17), we can extract S
(1)
(2,2) from the amplitudes in Eqs. (6.36) and (6.37). The bare

18 one loop soft function then given by

S
(1)
(2,2)(k⊥, ℓ⊥) =

−8w2

η

[
κ2

8π
KGR(k⊥, ℓ⊥) + δ̄d−2(k⊥ − ℓ⊥)ℓ

2
⊥(ℓ⊥ + q⊥)

2(ωG(k⊥) + ωG(k⊥ + q⊥))

]
,

(6.40)

where ωG is the Regge trajectory given in Eq. (6.33), and KGR is the convolutional kernel

KGR(k⊥, ℓ⊥) =

(
q4⊥ − 2q2⊥

(k2⊥(ℓ⊥ − q⊥)
2 + (k⊥ − q⊥)

2ℓ2⊥)

(k⊥ − ℓ⊥)2
+

(k4⊥(ℓ⊥ − q⊥)
4 + (k⊥ − q⊥)

4ℓ4⊥
(k⊥ − ℓ⊥)4

)
.

(6.41)

The leading RRGE is then given by

ν
∂

∂ν
S(2,2)(k⊥, ℓ⊥) =

1

2

∫
[dd

′
p⊥]

p2⊥(p⊥ − q⊥)2

(
γ
(1)
(2,2)(k⊥, p⊥)S(2,2)(p⊥, ℓ⊥) + S(2,2)(k⊥, p⊥)γ(2,2)(p⊥, ℓ⊥)

)
.

(6.42)

Using the result of Eq. (6.19) for S
(1)
(2,2), we can then extract the anomalous dimension γ(2,2):

γ(2,2)(k⊥, p⊥) =
κ2

4π
KGR(k⊥, p⊥) + 2δ̄d−2(k⊥ − p⊥)p

2
⊥(p⊥ − q⊥)

2(ωG(p⊥) + ωG(p⊥ − q⊥)).

(6.43)

This rapidity RGE reproduces the gravitational analogue of the BFKL equation, given by

Lipatov [127], in his Eq. (80). It is interesting to compare this anomalous dimension to the

one computed in QCD. There, one has[93]

γA1A2;B1B2

(2,2),YM =4αsf
A1B1CfA2B2CKYM(k⊥, ℓ⊥) (6.44)

+ 2δA1B1δA2B2 δ̄d−2(k⊥ − ℓ⊥)ℓ
2
⊥(ℓ⊥ − q⊥)

2(αR(ℓ⊥) + αR(ℓ⊥ − q⊥)),

where αR is the gluon Regge trajectory, and the QCD kernel is given by

KYM(k⊥, ℓ⊥) = q2⊥ +
ℓ2⊥(q⊥ − k⊥)

2 + k2⊥(ℓ⊥ − q⊥)
2

(ℓ⊥ − k⊥)2
(6.45)

The QCD and gravity anomalous dimensions have obvious structural similarities, in that

they are both the sums of a kernel representing a gluon/graviton exchange and a Reggeiza-

tion term on each Glauber exchange. Quite remarkably, there is also a relation between the

convolutional kernels. Specifically, one has

KGR(k⊥, ℓ⊥) = (KYM(k⊥, ℓ⊥))
2 + scaleless, (6.46)

18We will drop the B superscript from here on. Bare objects depedence upon ϵ and η will be made explicit.
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Figure 6.3: Prototypical diagrams needed to renormalize S(N+1,N+1). The diagram on the
left is the N + 1-rung Glauber box with a soft eye insertion, and the diagram on the right
is the multi-rung H diagram. The soft graviton exchange can be between any two Glauber
rungs, and the soft eye can similarly be inserted into any individual rung. The H graph
contribution fo S(2,2) has no additional Glauber rungs.

where the “+ scaleless” means terms which lead to scaleless integrals in the convolutions

and thus vanish. It has long been appreciated that there exists a double copy relation

between the QCD and gravitational Lipatov vertices [127, 125, 161], so it is perhaps not too

surprising that this extends to the emission piece of the anomalous dimension. The authors

are unaware of any previous mentions of this squaring relation in the literature, although

it could have been noticed as early as [127].

6.6.2 The BFKL Equation for all Soft Functions

We now extract the one loop anomalous dimensions of S(N+1,N+1) for arbitrary N . There

is a very limited class of diagrams which can contribute: N -Glauber boxes with a soft eye

insertion on one rung, or N -Glauber boxes with a graviton exchanged between two rungs,

i.e. the H diagram with additional Glauber rungs. We may write the contribution of the

amplitude then as∑
j>k

iMjk
H +

∑
j

iMj
SEB = J

(0)
(N+1) ⊗ S

(1)
(N+1,N+1) ⊗ J̄

(0)
(N+1), (6.47)

where Mjk
H denotes a graviton exchange between Glauber rungs j and k, and Mj

SEB de-

notes an insertion of the soft eye on rung j. Adding additional Glauber rungs does not

complicate the calculation of the diagrams, since, as discussed above, the soft loops are

insensitive to the Glauber k±. Each additional Glauber loop, beyond the first, adds a fac-

tor of (−i)i2κ2 s2 [d
d′ki⊥]/ki⊥2 , as well an additional factor that arises, from performing the
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Glauber lightcone integrals, of (−1/2)N/(N + 1)!. The result for Mj
SEB is then

iMj
SEB =

(−i)N+1κ4+2Ns2+Nw2

22N+3π η(N + 1)!

∫ (N+1∏
m=1

[dd
′
km⊥]

k2m⊥

)
δ̄d

′

(
N+1∑
m=1

km⊥ − q⊥

)
(6.48)

×
∫
dd

′
ℓ⊥ k

4
j⊥(3− 2ϵ)

ℓ2⊥ (kj⊥ − ℓ⊥)2
.

The multi-rung H graph may similarly be computed as

iMjk
H =

(−i)N+1κ4+2Ns2+Nw2

23+2Nπη (N + 1)!

∫ (N+1∏
m=1

[dd
′
km⊥]

k2m⊥

)
δ̄d

′

(
N+1∑
m=1

km⊥ − q⊥

)
(6.49)

×
∫

[dd
′
ℓ⊥]

ℓ2⊥(ℓ⊥ − kj⊥ − kk⊥)2
K(kj⊥, kk⊥; ℓ⊥, ℓ⊥ − kj⊥ − kk⊥),

where K is given by

K(k1, k2; ℓ1, ℓ2) =

(
(k1 + k2)

4 − 2(k1 + k2)
2 (k

2
1ℓ

2
2 + k22ℓ

2
1)

(k1 − ℓ1)2
+

(k41ℓ
4
2 + k42ℓ

4
1)

(k1 − ℓ1)4

)
. (6.50)

The amplitude in terms of the convolutions is given by

J
(0)
(N+1) ⊗ S

(1)
(N+1,N+1) ⊗ J̄

(0)
(N+1) = (−1)N+1 κ2N+2sN+2

22+2N (N + 1)!2

∫ (N+1∏
m=1

[dd
′
km⊥]

k2m⊥

)(
N+1∏
n=1

[dd
′
ℓn⊥]

ℓ2n⊥

)
(6.51)

× S
(1)
(N+1,N+1)({km⊥}; {ℓn⊥})δ̄d

′

(∑
m

km⊥ − q⊥

)
δ̄d

′

(∑
n

ln⊥ − q⊥

)
.

Comparing the sum of Eqs. (6.48) and (6.49), we can obtain S
(1)
(N+1,N+1):

S
(1)
(N+1,N+1) =

4iN+1(N + 1)!w2

η

[∑
i<j

κ2

8π
K(ki⊥, kj⊥; ℓi⊥, ℓj⊥)

∏
p ̸=i,j

ℓ2p⊥δ̄
d′(ℓp⊥ − kp⊥

+
∑
j

ℓ2j⊥ωG(ℓj)
∏
p ̸=j

ℓ2p⊥δ̄
d′(ℓp⊥ − kp⊥)

]
. (6.52)
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The leading RRGE is then given by

ν
∂

∂ν
S(N+1,N+1)({ki⊥}, {ℓ⊥i

}) = −
∫
⊥(N+1)

(
γ
(1)
(N+1,N+1)({ki⊥}; {ℓ

′
j⊥})S(N+1,N+1)({ℓ′i⊥}; {ℓj⊥})

(6.53)

+ S(N+1,N+1)({ki⊥}; {ℓ′j⊥})γ(N+1,N+1)({ℓ′i⊥}; {ℓj⊥})
)
..

Recalling the definition of S
(0)
(N+1,N+1)

S
(0)A1...Ai;B1...Bj

(i,j) (li⊥; l
′
i⊥) = 2δiji

jj!

j∏
a=1

l′2i⊥

j−1∏
n=1

δ̄d
′
(ln⊥ − l′n⊥) (6.54)

we find the anomalous dimension is given by

γ(N+1,N+1) = −iN+1(N + 1)!

[∑
i<j

κ2

8π
K(ki⊥, kj⊥; ℓi⊥, ℓj⊥)

∏
m ̸=i,j

ℓ2m⊥δ̄
d−2(ℓm⊥ − km⊥)

(6.55)

+
∑
j

ωG(ℓj)
∏
m ̸=j

ℓ2m⊥δ̄
d−2(ℓm⊥ − km⊥)

]
.

A few comments are in order. Firstly, we note that although it appears that the anomalous

dimension might be imaginary for even N , this is somewhat illusory, as the factor of iN+1

drops out in the convolution. This is also the case with the overall factor of (N + 1)!.

Secondly, we note that this does return γ(2,2) in Eq. (6.43) when setting N = 1. To see

this, we apply ⊥ momentum conservation to set k2 = q − k1 and ℓ2 = q − ℓ1. This also

reproduces γ(1,1) after setting N = 0. We simply drop the terms involving K since there is

no convolution at the one Glauber level, and we have

γ(1,1) = iq2⊥ωG(q⊥). (6.56)

The reason for the discrepancy of a factor of iq2⊥ between this anomalous dimension and the

Regge trajectory computed in Section 6.5 is that this factor comes from the convolution for

S(1,1), and in Section 6.5 this factor has been absorbed into the anomalous dimension, as the

convolution is trivial. For N ≥ 2, this cannot be consistently done, and so the factor from

the convolution has been pulled out. Lastly, we mention that the anomalous dimension is

symmetric under ki⊥ ↔ ℓi⊥. This is not obvious given the definition of the kernel K in Eq.

(6.50). Under the support of the ⊥ delta-functions in the convolutions, one can see that

γ(N,N) is indeed symmetric.
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6.7 Extracting the Classical Logs

6.7.1 The 3PM Classical Log

As per our power counting discussion the first classical logs that can appear are at 3PM

(two loop) order since we are looking for contributions that scale as αC = G2st relative

to the leading order Glauber exchange which starts at O(G). The relevant logs can be

extracted from the classical piece of the anomalous dimensions of the soft function. At each

PM order there will be one classical log. We could equally as well calculate them from the

collinear piece. By working in the EFT we can considerably reduce the amount of effort

it takes to extract the log since we only need to calculate the 1/η pole, moreover to get

the log (at any PM order) we never need to calculate more than a one loop diagrams. The

price to be paid is the need to iteratively solve the RRG equations to the necessary order.

At (2n+ 1) order we need to iterate the n− 1 times, so that there is no need to solve the

RRG at all at 3PM.

The eikonal form of the amplitude is given explicitly by

(1 + i∆Q) e
iδCl − 1 = iM̃(s, b), (6.57)

where M̃(s, b) is the Fourier transform of the amplitude,

M̃(s, b) =

∫
d̄d−2q⊥

M(s, q2⊥)

2s
eiq⊥·b. (6.58)

As prevsiously mentioned there exist terms in the series expansion of M̃(s, b) that scale

classically which arise from mixing between quantum and super-classical terms. However,

these terms are easily discarded at the beginning of the calculation as they are guaranteed

not to contribute to the classical phase. To see this explicitly we may consider a graph

with quantum loops with any number of Glauber enhancements that contributes to the

amplitude at the classical level. Its Fourier transfrom will be equal to the product of the

Fourier transform of the purely quantum piece and of (possibly iterated) Glauber box with

a symmetry factor. This term will cancel with the aforemention mixed terms in eq(6.58).

For example, consider a purely quantum contribution which is down by a factor of ( t
M2

pl
)n

I(k). To bring it up to classical scaling we need n Glaubers. Peforming the light cone

integrals generates a factor of 1/(n + 1)! and the Fourier transform then just leads to the

products 1
(n+1)!I(b)δ0(b)

n. We compare this to the cotribution which arises from expanding

out the exponential to order δ0(b)
n. The difference in the combinatorial factors 1/(n+1) is

compensated for by the fact that in the diagram we may insert I(k) in any of n+ 1 places.

The general rule that we need not worry about enhanced quantum corrections is violated
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by any quantum insertion which gives non-trivial dependence on the Glauber light cone

momentum, as this spoils the factorization in impact parameter space. As an example of

this are the power suppressed operators, mentioned in section 6.4.3.

Thus to get the 3PM log we need only calculate the H graph rapidity divergent contri-

bution which is given at one loop by

iM(log)
H = − log

(
ν2

−t

)
2G3s3

(
µ̄2

−t

)2ϵ(
−6− 4ϵ

3
B(1, 1)B(1, 1 + ϵ) +B(1, 1)2

)
, (6.59)

which leaves for the 3PM classical log in impact parameter space

δ
(2,log)
Cl = i log

(
ν2

−t

)
G3s2

b2

(
µ̄2b2

)3ϵ
π1−ϵ24ϵ

Γ(1− 3ϵ)Γ(−ϵ)3

3Γ(2ϵ)

(
3Γ(−ϵ)Γ(1 + ϵ)2

Γ(−2ϵ)2
− 2

(3− 2ϵ)Γ(1 + 2ϵ)

Γ(−3ϵ)

)
,

= i log(s)
4G3s2

b2

(
−1

ϵ
+ 2

) (
µ̄2b2

)3ϵ
π1−ϵ24ϵ

+O(ϵ). (6.60)

This reproduces the result [73, 71]. As a cross-check, this also reproduces the O(ϵ3) of the

eikonal phase given in [102, 38, 70] for N = 8 supergravity. However, our result at order

ϵ4 seems to disagree with the “possible guess” made for this term. Note the Log(s) comes

from the fact that to eliminate all of the large logs from the collinear sector, and push them

into the soft sector we choose ν2 = s.

The phase is imaginary indicating that it is a consequence of real radiation. At next

order (5PM) the leading log will be real since it will arise from S(3,3) which has an additional

Glauber, each of which generates a factor of i. This process will continue as N is increased.

6.7.2 Extracting Classical Logs to any PM Order

This procedure may be generalized to extract classical logarithms at any PM order by solving

the rapidity RGEs for higher Glauber soft functions. To see this consider the (2N + 1)PM

term. This contribution to the amplitude will scale as

M(2N+1)PM ∼ Gs2

t
αNC ∼ Gs2

t
(Gs)NαNQ . (6.61)

Since each Glauber loop generates an enhancement of∼ s/M2
pl, a classical term will generally

involve N Glauber loops and N soft loops. To obtain the (2N + 1)PM term, we then need

to calculate the N -loop correction to S(N+1,N+1), as this is the only operator in the EFT

that has the appropriate number of s/Mpl enhancements. That is, only need to consider

one of the soft operators at each order in the PM expansion. As a concrete example, we

have already computed the one loop correction to S(2,2), which gave the 3PM correction to

the amplitude. To calculate the log at 5PM, it seems that we need the two loop correction
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to S(3,3). However we can get that log indirectly via the RRG. By computing the one

soft loop correction to S(N+1,N+1), we can extract the lowest-order anomalous dimension

and write down the leading RRGE. The solution of this equation generates a series of logs

in powers of αQ log(s), and so by picking out the Nth order term in the series, we have

selected the classical log generated by the RRG. Moreover, this tells us that the (2N+1)PM

contribution will generically contain logN (s). At 3PM, we see this with the single log(s),

and at 5PM we can expect the logarithmic term to be a log2(s). These logs predicted by

the one loop RRG’s will also be the leading logs at each PM order. Rapidity anomalous

dimensions are independent of ν and therefore of log(s), so the RRG can only generate a

single power of log(s) at each order. An m-loop diagram can then at best generate an αmQ
correction to the anomalous dimension; any αmQ logm(s) terms must then be predicted by

the one loop RRG. We may then predict the classical αNQ logN (s) contribution to S(N+1,N+1)

just through solving the one loop RRGE. To get sub-leading logs at a given order we need

to calculate the two loop anomalous dimension but the order of necessary iterations is one

less. To avoid having to subtract out quantum interference terms we simply only include the

classical contribution to the anomalous dimensions as we did in the case of 3PM . However,

at higher orders we would expect to have to include sub-leading Glauber operators (as

discussed in section 6.4.3) to reproduce the subleading logs.

We should mention that if we are interested in the classical problem of scattering objects

with typical size r, then this scale introduces a new set of logarithms of the ratio r/b. In

our theory, the scale r fits into the hierarchy as follows

s≫M2
pl ≫ 1/r2 ≫ t. (6.62)

This scale shows up as a matching scales in the problem, the relevant log will be an RG

and not an RRG log. The associated counter-term will correspond to a higher dimensional

operator of the form ϕ⋆ϕ(E,B)n, where (E,B) are the electric and magnetic pieces of the

Weyl curvature [53, 31, 101, 4, 108, 109].

6.8 Conclusions and Future Directions

We have presented an effective field theory which is valid for massless particles in the (super-

Planckian) Regge regime. To avoid sensitivity to the UV completion of GR we restrict

ourselves to observables which get no contributions from, uncontrolled, local interactions.

By utilizing a factorization theorem we have shown how to systematically resum large

rapidity logs for the scattering of massless particles. We have calculated the one loop

graviton Regge trajectory, the BFKL equation as well as the classical rapidity log at 3PM

that is a consequence of radiation losses. The factorization theorem makes manifest the
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all orders form of the series. At 2N + 1 order in the PM expansion one generates a series

of Logs starting at logN−1 down to logN . The logs have complex/real coefficients for N

even/odd. This is a consequence of the fact that each Glauber loop gives an additional

factor of i. The leading classical Log at each order can be calculated by utilizing the one

loop anomalous dimensions shown in Eq.(6.55) and by iterating the RRGE N − 1 times.

The next to leading logs will follow from the two loop anomalous dimensions and so on.

While in this chapter we have only considered massless particles, the leading logs we

have calculated will also apply to the case of massive particles, as the log follows from the

soft function which is insensitive to the partonic masses. As discussed in the in Chapter 5,

the couplings of soft gravitons to collinear particles is universal, and therefore the soft sector

is independent of the particle species being scattered. Furthermore, any logs computed via

the RRGE will then be universal as well. This can be seen explicitly via the equality of the

3PM eikonal phase in the high-energy limit computed in various gravitational theories with

both massive and massless scalars and various degrees of supersymmetry [9, 73, 71] (see also

[150]). In a future publication we will extend the formalism to the case of massive partons

with s ≫ m ≫ Mpl. We expect that other simplifications will arise once one accounts

for unitarity constraints. In QCD is has been shown that unitarity imposes very strong

constraints on the structure of the anomalous dimensions [156]. In particular, by consid-

ering amplitudes of definite signature it was shown that anomalous dimensions (including

Regge trajectories) are related to cut amplitudes. Moreover, the full anomalous dimensions

(including both the Regge pole and cut pieces) of the two Glauber operator anti-symmetric

octet operator, can be determined from the anomalous dimension of the single Glauber

exchange operator[157]. We expect similar simplifications to arise in gravity.

127



Appendix A

Conventions and Notation

Here, we list the conventions and notation used through this thesis.

We use the mostly minus metric ηµν = Diag(1,−1,−1,−1) for all contexts, including

the gravitational scattering considered here, and define the usual MS factor

µ̄2ϵ = µ2ϵ(4π)−ϵeϵγE , (A.1)

where we use d = 4− 2ϵ and

[ddk] =
ddk

(2π)d
. (A.2)

For transverse momentum integration, we will use the notation d′ = 2− 2ϵ.

For the light cone coordinates we define two null vectors n/n̄µ = (1, 0, 0,±1) and de-

compose four vectors as follows

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ ≡ (n · p, n̄ · p, pµ⊥), (A.3)

such that

p− = n · p, p+ = n̄ · p. (A.4)

We use the super/subscript ⊥ to denote indices which are transverse to the lightcone vectors.

In particular, the transverse part of the metric is

ηµν⊥ = ηµν − 1

2
nµn̄ν − 1

2
nν n̄µ = Diag(0, 0,−1,−1). (A.5)

We often use the notation (p· k)⊥ = pµη
µν
⊥ kν to denote products between the transverse

components of momenta. We may also Euclideanize the components to write p⊥· k⊥ =

−p⃗⊥· k⃗⊥.
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The phase space on shell delta function will be written as

δ+(p
2 −m2) = (2π)δ(p2 −m2)θ̄(n̄· p+ n· p). (A.6)

We also use the notation

δ̄d(k) ≡ (2π)dδd(k). (A.7)

We focus on 2-to-2 scattering in the limit of s >> |t|, s > 0, t < 0, which in the s-channel

we take to be (p1, p2 → p3, p4),

p3p2

p1 p4

n

n̄

q .

We work in a frame such that q = q⊥ and

p1 = (n· p1, n̄· p1, q⃗⊥/2), p2 = (n· p2, n̄· p2,−q⃗⊥/2), (A.8)

with p3 = p2+q and p4 = p1−q. We then have Mandelstams t = q2⊥ and s = n· p1n̄· p2+O(t).

We will also need the u-channel process, which we can take to be (p1, p̄3) → p̄2, p4), which

diagrammatically is

p̄2p̄3

p1 p4

n

n̄

q .

We perform all calculations involving gluons in Feynman gauge, so that the propagator

is given by
µ νp

=
−igµν
p2 + iϵ

(A.9)

Similarly, we use de Donder gauge for all graviton calculations, where the graviton propa-

gator is given in d-dimensions as

µ, ν ρ, σp
=

i

p2 + iϵ

1

2

(
ηµρηνσ + ηµσηνρ − 2

d− 2
ηµνηρσ

)
. (A.10)

Note that we use the same curly line for both gluons and gravitons, though it should be

clear from context which is being represented.

For the coupling constants we use αs = g2s/(4π) for the gauge theory case, where gs
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is the Yang-Mills coupling constant, and κ2 = 16πG = 1/2M2
Pl, with G being Newton’s

constant and MPl being the Planck mass.
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Appendix B

Feynman Rules

Here we list all of the SCET Feynman rules used in calculations performed in this thesis. For

all calculations involving gluons, we use Feynman gauge, and for all calculations involving

gravitons, we use de Donder gauge. We just list the non-standard Feynman rules within

the EFT; any Feynman rule not listed here are equivalent to their full-theory counterparts,

e.g. the soft quark propagator is given by the full QCD quark propagator.

B.1 Collinear Quark and Gluon Feynman Rules

• Collinear quark propagator

n
p

=
/n

2

in̄· p
n̄· p n· p+ p2⊥ + iϵ

(B.1)

• Collinear gluon propagator

n
µ νp

=
−iηµν

n̄· p n· p+ p2⊥ + iϵ
(B.2)

• Collinear quark-collinear gluon vertex

p1
n

p2
n

A, µ
n

= igTA
/̄n

2

[
nµ +

γ⊥µ /p1⊥
n̄· p1

+
/p2⊥γ

⊥
µ

n̄· p2
−

/p2⊥/p1⊥
n̄· p1 n̄· p2

n̄µ

]
(B.3)
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B.2 QCD Glauber Operators

• Collinear-collinear quark-antiquark Glauber

n

n̄

n

n̄

q =
8πiαs
q2⊥

[
/̄n

2
TA
]
⊗
[
/n

2
T̄A
]

(B.4)

• Collinear-collinear gluon-antiquark Glauber

n

n̄

n

n̄

p2 p2 + q

B, µ C, ν

q =
8παsf

ABC

q2⊥

[
n̄· p2 ηµν⊥ − n̄µpν3⊥ − n̄νpµ2⊥ +

p2⊥· p3⊥n̄µn̄ν

n̄· p2

] [
/n

2
T̄A
]

(B.5)

• Soft-collinear quark-quark Glauber

s

n̄

s

n̄

q =
8πiαs
q2⊥

[
/̄n

2
TA
]
⊗
[
/n

2
T̄A
]

(B.6)

• Soft-collinear gluon-quark Glauber

n

s
µ,B

n

s
ν, C

p1 p4
=
8παsf

ABC

(p1 − p4)2⊥

[
/̄n

2
TA
] [
n· k ηµν⊥ − nµℓµ⊥ − nνkν⊥ +

ℓ⊥· k⊥ nµnν

n· k

]

(B.7)
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• Collinear-collinear quark-quark Glauber with soft emission

n

n̄

n

n̄

s
µ,C

q

q′
=i

8παs
q⃗ 2
⊥ q⃗

′ 2
⊥
igfABC

(
qµ⊥ + q′⊥µ− n· q′ n̄

µ

2
− n̄· qn

µ

2
−
nµq⃗ 2

⊥
n· q′

−
n̄µq⃗ ′ 2⊥
n̄· q

)

×
[
/̄n

2
TA
]
⊗
[
/n

2
TA
]

(B.8)

B.3 Gravity Glauber Operators

• Collinear-collinear scalar-scalar Glauber

n

n̄

n

n̄

q = −i
[κ
2
n̄· p22

] 2

q2⊥

[κ
2
n· p21

]
(B.9)

• Soft-collinear graviton-scalar Glauber

n

s
µ, ν

n

s
ρ, σ

p1 p4
= −i

[κ
2
n̄· p22

] 2

q2⊥

κ

2

[
n· p1
2

ηµ(αηβ)ν − 1

2
p
(α
1 η

β)(νnµ) +
pα1 p

β
1n

µnν

n· p1

]

×
[
n· p1
2

ηρ(αηβ)σ − 1

2
p
(α
4 η

β)(σnρ) +
pα4 p

β
4n

ρnσ

n· p1

]
, (B.10)

with T (ab) = T ab + T ba.

• Collinear-collinear scalar-scalar Glauber with soft emission
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n

n̄

n

n̄

s
µ,ν

q

q′
= i
[κ
2
n̄· p22

] [κ
2
n· p21

]( κ√
2q2⊥q

′2
⊥

)(
2
n̄µn̄ν

n̄· q2
q′2⊥q· (q′ − q)

+ 2
nµnν

n· q2
q2⊥q

′· (q − q′)− 2q′2⊥
n· q′n̄µn̄ν − n̄µqν − n̄νqµ

n̄· q

− 2q2⊥
n̄· q nµnν − nµq′ν − nνq′µ

n· q′
+ 2(qµq′ν + qνq′µ)

− (qµ + q′µ)(n· q′n̄ν + n̄· q nν)− (qν + q′ν)(n· q′n̄µ + n̄· q nµ)

+ (n· q′n̄µ + n̄· q nµ)(n· q′n̄ν + n̄· q nν)

− (q2⊥ + q′2⊥)(n
µn̄ν + nν n̄µ)− 2q· q′ηµν

)
(B.11)
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