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Abstract. Hybrid photonic devices represent a promising solution to the effective on-chip integration of all
the components required for the generation, manipulation and detection of non-classical states of light

encoding quantum information. We present an AlGaAs source of highly entangled photon pairs envisioned
for the hybridization with silicon-on-insulator integrated platforms, in order to take benefit from the strong

second order nonlinearity and the compliance with electrical pumping of the III-V platform and the maturity
and CMOS compatibility of silicon photonic circuitry, enabling a wide variety of quantum information

applications.

1 Introduction

Following the emergence of quantum information (QI)
over the last three decades, the demand of physical
systems supporting or generating controllable quantum
states has drastically increased. Among all the currently
available physical platforms for the development of
quantum technologies, photons, thanks to their high speed
and immunity to decoherence, are particularly suited for
carrying QI and are employed not only in quantum
communication protocols but also in quantum simulation
and computing [1]. For this reason, the development of
sources of single or entangled photons has been a major
objective in the last decades. Currently, several material
platforms are investigated for the implementation of
integrated, robust, controllable, low-power consumption
and high fabrication yield devices able to efficiently
generate, manipulate, distribute and detect useful
quantum states [2].

Silicon, and more specifically silicon-on-insulator
(SOI), represents one of the leading platforms in
integrated photonics [3], thanks to its good mode
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Fig. 1. Scanning electron microscope picture of the
waveguide transverse section.
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confinement, moderate optical losses, large-scale high-
yield production capability, fabrication maturity
(compatible with CMOS processes) enabling the
realization of complex integrated optical circuits.
Although nonlinear effects are accessible through its
strong third order nonlinear susceptibility, it intrinsically
lacks of second order nonlinearity. Furthermore, its
indirect bandgap practically prevents it from achieving
laser action via electrical pumping. AlGaAs, on the other
hand, features both strong second order nonlinearity and
direct bandgap, suitable for electrically injected photon-
pair production [4], resulting perfectly complementary to
silicon for the implementation of complex photonic chips
combining the generation and manipulation of quantum
states of light.

2 AlGaAs waveguides

The working principle of the nonlinear integrated AlGaAs
photon-pair source is based on spontaneous parametric
down-conversion (SPDC), where a 775 nm laser beam is
coupled into the waveguide and generates photons in the
telecom band. Bragg mirrors provide both a photonic
bandgap confinement for the pump and total internal
confinement for the down-converted photons. A scanning
electron microscope image of the resulting device is
shown in Figure 1, where the asymmetric distribution of
the mirrors is designed for the hybridization. The pump
and SPDC modes are characterized by different
dispersion curves, allowing the phase-matching (PM)
condition to be satisfied for all three possible PM types
(Figure 2) and thus providing a high versatility in the
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generated via SPDC, with a measured internal pair
generation rate (PGR) larger than 2x10° s! and a
coincidence-to-accidental ratio (CAR) of ~800 (Figure
3.a) over a bandwidth of >90 nm. The non-classicality of
the emitted photons is characterized through an energy-
time entanglement measurement [7], using a fibered
Franson interferometer in the folded configuration with a
controllable phase delay. The broadband nature of the
produced biphoton states combined with the PM
versatility of the source offers a testbed to investigate the
delicate interplay of chromatic and polarization dispersion
in the energy-time entanglement visibility, paving the way
to possible metrological applications. Visibilities up to
99% are observed (Figure 3.b) for both type 0 and type 2
generation processes. Such a high visibility, together with
its intrinsic robustness to environment perturbations,
makes energy-time entanglement a promising resource for
QI applications, especially in quantum communication
[8].

The perspective is to integrate the described source onto
the SOI photonic circuits, in order to have access at the
same time to the broadband, highly entangled photon
pairs generated by the AlGaAs waveguide and to all the
linear optical components available on the silicon
platforms, allowing the realization of complex quantum
photonic circuits. The design and fabrication of a hybrid
AlGaAs/SOI device has already been accomplished, as
well as its optical characterization in the classical regime.
Preliminary results in the quantum regime open promising
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perspectives for the on-chip quantum state generation and
manipulation with hybrid circuits.
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