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1 Introduction

N = 1 supersymmetric Yang-Mills theory (SYM) in four dimensions has been a remarkably
useful testing ground for studying QCD-like theories due to its similarity to pure Yang-Mills
and its tractability owing to the supersymmetry nonrenormalization theorems. The Z2c2

0-form discrete chiral symmetry of SYM is spontaneously broken down to Z2 leading to c2
vacua, where c2 is the dual Coxeter number of the gauge group. The vacua may be labelled
by integers n = 0, 1, . . . , c2 − 1 and are physically distinguished by the phase of the gluino
condensate, ⟨λλ⟩n = e2πin/c2Λ3, with Λ the strong coupling scale. Thus, there are domain
walls between the Z2c2-breaking vacua. Importantly, the precise physics of the domain walls
depends only on the difference between the vacua at the two sides of the domain wall. As such,
we call a domain wall interpolating between vacua n and n+u a u-wall. Domain walls in SYM,
and in particular BPS (Bogomolnyi-Prasad-Sommerfeld, or lowest tension) domain walls, have
been studied from a variety of perspectives, see [1–6] for a highly incomplete list of references.

The low energy physics of SYM in the presence of a BPS domain wall is thought to be
described by a topological quantum field theory (TQFT) which lives on the domain wall
worldvolume, separating the two vacua in the bulk. In this framework, for each value of
u, the physics of u-walls is described by a TQFT which depends on both u and the gauge
group. In these TQFTs the states of the Hilbert spaces are associated with the domain
walls. Furthermore, the TQFTs must have the same symmetries as the u-walls, namely
center symmetry and charge conjugation, and the mapping between the set of u-walls and
the corresponding TQFT Hilbert space ought to preserve those symmetries and their ’t
Hooft anomalies.

In this paper, we study the domain walls in SYM and their worldvolume TQFTs using the
fact that when one of the spatial dimensions is compactified on a small circle, SYM abelianizes
and the non-perturbative physics is accessible to semiclassical studies [7–10]. In particular
confinement is understood to be due to the proliferation of magnetic bions comprised of
monopole-instantons [9, 10]. More recently, using semiclassical anaylses studies have shown
that heavy (probe) quarks of any non-zero N -ality can be deconfined on domain walls in SU(N)
SYM, showing that confining strings can end on domain walls [4, 5, 11]. The semiclassical
deconfinement mechanism provides an explicit realization of the mixed 0-form/1-form ’t Hooft
anomaly between the discrete chiral symmetry and center symmetry [5, 12].

Here we continue that work for all gauge groups. In particular, we find the number of
BPS domain walls and their fluxes for all u-walls with every gauge group G using semiclassics.
Our counting of domain walls matches results found using more formal tools [1, 2]. Further,
we study how the domain walls transform under the global symmetries of SYM. More
specifically, the domain walls form a representation of the global symmetry group which
is understood by computing its characters.

To verify that a given proposed u-wall TQFT [6, 13] is correct we proceed as follows. We
first semiclassically identify all the BPS u-walls of SYM compactified on R3 × S1 and note
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how they transform under the appropriate symmetries. These data comprise the semiclassical
Hilbert space of the domain wall worldvolume theory. We then compare our semiclassical
Hilbert space to the Hilbert space of the proposed TQFT, checking both the dimension and
the symmetry transformations. Concretely, in refs. [6, 13] it was proposed that the worlvolume
TQFT of u-walls in SYM with gauge group G is three dimensional N = 1 SYM, also with
gauge group G, with a supersymmetric Chern-Simons term at level c2/2−u. Here we explicitly
verify these proposals for SU(N) and Sp(N) gauge groups, using semiclassical means. We
also use our semiclassical results to propose a new worlvolume TQFT for the 6-walls of E6.

1.1 Summary of results

1. We find all BPS domain wall fluxes for all simple gauge groups. This extends the
work of [5] to all gauge groups and the results agree with previous BPS-wall counting
arguments [1, 2].

2. We semiclassically verify the proposed domain wall TQFTs for SU(N) and Sp(N) gauge
groups (put forth by [6, 13]), via a detailed comparison of the TQFT Hilbert space on
a torus to the semiclassical u-wall properties.

• Using our semiclassical analysis, we calculate the characters of the representations
of the global symmetries formed by the u-walls of SU(N) and Sp(N) SYM, as well
as all other gauge groups for completeness. The results are summarized in tables 2
and 3 for SU(N) and Sp(N) respectively.

• Starting from the canonical quantization on T2 described in, for example, ref. [14],
we construct the Hilbert spaces of the proposed (in [6, 13]) u-wall worldvolume
TQFTs for SU(N) and Sp(N) explicitly. For SU(N) this construction is quite
technical because the worldvolume TQFT is U(u) Chern-Simons theory, which
involves first constructing the Hilbert space of SU(u) × U(1) Chern-Simons theory,
then taking the Zu quotient.

• We compute the characters of the Hilbert spaces of the worldvolume TQFTs.
The results are given in equations (4.13), (4.14), (4.18), and (4.19) for SU(N),
and (4.20) and (4.22) for Sp(N), showing that they agree with those calculated
using semiclassical techniques in SYM, tables 2 and 3 mentioned above. Our
results agree with calculations of the twisted Witten index1 in ref. [6].
Demonstrating the agreement of the semiclassical and TQFT calculations outlined
above constitutes the main result of this paper.

• Note that we calculate the character of the combined action of charge conjugation
and center symmetry in SU(2N) SYM, and in the corresponding worldvolume
TQFT, which is necessary to fully describe representations of the global symmetry
and was previously missed [6].

3. We also propose, to the best of our knowledge, for the first time a domain wall TQFT for
the u = 6-walls of E6 SYM, arguing that it should be (E6)3 Chern-Simons theory. We

1For SU(N) and Sp(N) the twisted Witten index, twisted by an element g if the global symmetry group, is
the same as the character of g up to a sign.
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check this proposal in the same way as for SU(N) and Sp(N), finding agreement between
the characters of the global symmetry of the u = 6-walls of SYM, summarized in table 7,
and the Hilbert space of (E6)3, given in equations (4.23), (4.24), and (4.25). This
proposal, combined with the hypothesis that the u-wall TQFT of four dimensional SYM
with gauge group G is three dimensional SYM with gauge group G and a Chern-Simons
term at level c2/2 − u, could shed light on the low energy phase of (E6)3 SYM.

4. We find which representations of probe quarks are deconfined on the worldvolume of
the various domain walls. For almost all groups, all representations are deconfined
on all u-walls. The exceptions are SU(N), Spin(2N), and E8, where N -ality zero
representations are not deconfined in the worldvolume of 1- and c2 − 1-walls. We note
that our analysis is carried out in the abelianized regime, and in particular N -ality zero
quarks will in general be deconfined in the bulk in the full theory.

1.2 Future work

We note that the construction of the torus Hilbert space for the u-wall TQFT of SU(N)
SYM, section 4.2, is already technically quite involved; hence, the extension of the work of
this paper to SYM with gauge groups other than SU(N) and Sp(N) is left for future work. It
would also be interesting to use the results here about domain wall fluxes and deconfinement
to study the confining strings of SYM on R3 × S1, extending the work done in [11] from
SU(N) to all gauge groups. Further, it might be interesting to study the Abelian large-N
limit of SU(N) domain walls, where the semiclassical vacua become dense in field space.

1.3 Organization of this paper

In section 2 we review the basics of the dynamics of SYM on R3 × S1
L, discussing the

abelianization of the theory and the action of both the center and charge conjugation
symmetries on the low energy Cartan degrees of freedom. In section 3 we first review the
basics of domain walls in SYM, and discuss the problem of determining which domain walls
are BPS. We then find all of the BPS domain walls of SYM in the semiclassical regime, and
study their transformations under center symmetry and charge conjugation. This comprises
all semiclassical data that we use to verify the proposal of [6, 13].

In section 4, in order to facilitate the comparison to the proposed worldvolume TQFTs,
we first review the Hilbert spaces of both Abelian and non-Abelian Chern-Simons theory on
spatial T2, studying how the states transform under center symmetry and charge conjugation.
We then explicitly construct the states in the Hilbert space of the proposed u-wall TQFTs
for SU(N) and Sp(N), and one theory for E6. We show that these states furnish the same
representations of the global symmetries as the semiclassical u-walls described in section 3,
providing an explicit semiclassical check of the proposal [6, 13].

In section 5 we study the deconfinement of quarks on domain walls, characterizing
the deconfinement of quarks by N -ality for all groups. Supplementary proofs are given
in appendix D.

All of the necessary group theory, and the accompanying notation, used throughout
this paper is reviewed in appendix A. Appendix B reviews how center symmetry and
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charge conjugation act on physical degrees of freedom, and gives the specific data of these
symmetries needed for computations.

2 Review of SYM on R3 × S1
L

2.1 EFT and vacua

For small S1
L size L, such that c2ΛL ≪ 2π where c2 is the dual Coxeter number of the gauge

group2 and Λ is the strong coupling scale, SYM abelianizes, breaking G down to its maximal
torus, U(1)r, where r is the rank of the gauge group. In the abelianized regime, U(1)r is
generated by a choice of Cartan subalgebra, spanned by r mutually commuting generators
H1, H2, . . . , Hr, which we arrange into H = (H1, . . . , Hr) (see appendix A for more details).
Upon integrating out the massive Kaluza-Klein modes, the remaining bosonic degrees of
freedom are the holonomy scalar, φ = φ ·H ∼

∮
S1 A, and the dual photon, σ = σ ·H . The full

low energy description is given by a generalized Wess-Zumino model [15], where the Kähler
metric is the identity up to subleading corrections which are negligible in the semiclassical
limit, see [16] for 1-loop corrections. The dual photon is related to the R3 field strength via
the duality transformation F µν = g2

4πLεµνρ∂ρσ, where g is the SYM coupling at the scale of
order 1/L. After shifting the fields to be centered around the center-symmetric vev, the low
energy bosonic action is compactly written in terms of the complex scalar z = i(σ + τφ)
where τ = θ

2π + 4πi
g2 is the usual complexified coupling, as

S =
∫

d3x M

(
∂µz · ∂µz† − m2

4
∂W

∂z
· ∂W ∗

∂z†

)
, (2.1)

where W (z) is the superpotential given by

W (z) =
r∑

a=0
k∗

aeα∗
a·z, (2.2)

where α∗
a are the simple (1 ≤ a ≤ r) and affine (a = 0) co-roots, and k∗

a are the dual
Kac labels, defined by ∑r

a=0 k∗
aα∗

a = 0 with k∗
0 = 1. The scales are set by M ∼ g2

L and
m ∼ Me−8π2/(g2c2). There are c2 classical vacua given by zn = 2πin

c2
ρ, up to 2πi additions of

weights as explained below, where ρ is the Weyl vector, given by the sum of the fundamental
weights. For more background on Cartan subalgebras and the notation used throughout
this paper, see appendix A.

After fixing φ to be in the Cartan, we may still perform large gauge transformations
which wind around the S1, allowing us to shift φ by 2π times a co-root. Further, we may
perform constant gauge transformations which preserve the Cartan, ie the Weyl group W ,3
noting that σ also transforms under constant gauge transformations since σ ∼ F . Thus,
the moduli space for φ is

Mφ = Rr

W ⋉ Λ∗
r

,

2The dual Coxeter number can be understood in many ways, but perhaps the most familiar in the context
of physics is as the Dynkin index of the adjoint representation.

3See appendix A.1 for explicit construction of the gauge transformations which correspond to Weyl
group elements.
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where Λ∗
r is the co-root lattice, representing co-root translations. Note that we have the

semi-direct product W ⋉ Λ∗
r because the Weyl group and co-root shifts do not commute.4

The fundamental domain for φ, the region where no two points on the interior are identified
via W ⋉ Λ∗

r, is given by

T̂φ = {v ∈ Rr | α∗
a · v ≥ 0, a = 1, . . . , r, −α∗

0 · v < 2π} .

The moduli space of the dual photon is similar, except that σ is identified with 2π times
any weight,5 so the appropriate moduli space is

Mσ = Rr

W ⋉ Λw
,

where Λw is the weight-lattice. The fundamental domain for σ is given by

T̂σ = {v ∈ Rr | 0 ≤ α∗
a · v ≤ 2π, a = 1, . . . , r} .

2.2 Symmetries

Two important Weyl group elements. We will show below that the action of the relevant
global symmetries, center symmetry in the S1 direction and charge conjugation, on the
Cartan degrees of freedom will ultimately come from two special Weyl group elements. These
elements are described in more detail in appendix A.2, and their actions for each group are
summarized in table 9. The first, which is relevant for both center symmetry and charge
conjugation, we call wΠ because it is the unique Weyl group element which maps the set of
simple roots, Π = {αa | a = 1, . . . , r}, to itself with a sign flip. In other words, wΠ maps Π to
−Π setwise, meaning that there is a (not necessarily non-trivial) permutation ϖ ∈ Sr+1,6 such
that wΠ(αa) = −αϖ(a). Note that we chose ϖ to be a permutation of r + 1 elements and not
r so that we could capture the action of wΠ on the affine root. It is not too hard to show that
wΠ must flip the sign of the affine root, so that ϖ(0) = 0. Since the only Weyl group element
which preserves Π is the identity, we see that wΠ, and hence ϖ, must have order 2. Finally,
it will be important to note that ϖ preserves the dual Kac labels, in other words k∗

a = k∗
ϖ(a).

The second special Weyl group element is relevant only for center symmetry. We call
it wΠc because, similar to wΠ, it is the unique Weyl group element which maps Π \ {αc}
to − (Π \ {αc}). Here 1 ≤ c ≤ r is an index such that the Kac label kc is unity and αc is
a long root.7 Like wΠ, we capture the action of wΠc with a permutation γc ∈ Sr+1 such
that wΠc(αa) = −αγc(a). In addition to mapping Π \ {αc} to − (Π \ {αc}), wΠc maps αc

4This is fairly easy to see with an example: first shift by α∗ then do a simple Weyl reflection sβ to get
sβ(φ + α∗) = φ + α∗ − (β · (φ + α∗))β∗. Doing the transformation in the opposite order gives something else:
sβ(φ) + α∗ = φ + α∗ − (β · φ)β∗. Notice that the two differ by −(β · α∗)β∗, and hence in general are not the
same transformation. Note that for convenience factors of 2π have been omitted here.

5This identification comes from the introduction of σ as a Lagrange multiplier for the Bianchi identity
through the action Sσ = i

4π

∫
d3x σ · ∂µBµ, where Bµ = ϵµνρF νρ. Since the magnetic charge over the surface

integral at spatial infinity is quantized in the co-root lattice, − 1
2π

∫
S2

∞
d2SµBµ ∈ Λ∗

r , shifting σ by anything in
2πΛw does not change the path integral.

6We call the permutation, or symmetric, group of n elements Sn.
7Note that such a c is not always possible to find; each c corresponds to an element of the center of the

corresponding Lie group.
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and −α0 to each other. Thus, the permutation γc satisfies γc(0) = c and γc(c) = 0. In
the same way that wΠ has order 2, wΠc , and hence γc, also have order 2. Like ϖ, γc also
preserves dual Kac labels.

1-form center symmetry. The S1 part of the center symmetry, when it exists, acts on
Wilson loops that wind around S1 by a phase. In the dimensional reduction of S1

L, this
action appears to be a 0-form symmetry, and hence we will sometimes refer to it as the
“0-form” center symmetry. Acting on the A4 gauge field, we can take a center element to
act by an improper “gauge transformation” gc(x) = e2πix4/Lw∗

c ·H , shifting A4 by 2π x4
L w∗

c ,
where w∗

c is a fundamental co-weight and c is an index chosen such that gc(L) is the desired
element of the center (refer to appendix B.1 for more details). Recall that we shifted the
holonomy scalar to be centered around the center-symmetric vev φ0, so that φ + φ0 ∼

∮
S1 A.

Accordingly, φ + φ0 transforms by a shift of 2πw∗
c which does not preserve the fundamental

domain for φ. We remedy this by supplementing the improper gauge transformation with a
Weyl transformation, T = wΠc ◦ wΠ, which will also act on σ. The Weyl transformation is
the unique Weyl group element which, combined with the improper gauge transformation,
preserves T̂φ. Further, since φ0 is the center symmetric vev it absorbs the shift by 2πw∗

c ,
and φ and σ simply transform by the Weyl transformation,

ZS1(G) : z → T (z) = wΠc ◦ wΠ(z). (2.3)

While the specifics depend on the gauge group, the action of T is to permute the simple
and affine roots,

ZS1(G) : α∗
a · z → α∗

ϖ◦γc(a) · z, (2.4)

where ϖ and γc are discussed above. See appendix B.3 and table 9 for details for each group.
Though it will not be necessary for this work, it is worth noting that the R3 part of the
1-form center symmetry acts on Wilson lines in R3 with a phase.

0-form charge conjugation symmetry. Under charge conjugation the Cartan part of
the gauge field flips sign, and hence both σ and φ flip sign as well. The naïve action of
charge conjugation does not preserve the superpotential, nor the fundamental domains for σ

and φ. We can supplement charge conjugation with the Weyl transformation wΠ, so that
our new charge conjugation symmetry acts as

Z(0)
2 : z → C(z) = −wΠ(z), (2.5)

where we note that A transforms in the same way. Thus, the action of C is to permute
the simple roots and keep the affine root constant, and hence permute the terms in the
superpotential (2.2) according to ϖ while keeping the fundamental domains for φ and σ

constant,
Z(0)

2 : α∗
a · z → α∗

ϖ(a) · z. (2.6)

See appendix B.2 for a more in-depth discussion including a note on Spin(4n) where C as
defined above is trivial, but a non-trivial notion of charge conjugation may still be defined.
See appendix B.3 and table 9 for the explicit action of C for each group.
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3 Domain walls in SYM

One can show that the lowest energy, or BPS, domain walls satisfy the so-called BPS
equations [17],

dzi

dx
= m

α

2 gij ∂W̄

∂z̄j
, (3.1)

where x is the coordinate along the domain wall, gij ∼ δij + . . . is the inverse Kähler metric,
and α is the complex phase of W (x = ∞)−W (x = −∞). We call a domain wall interpolating
from zn to zn+u a u-wall, and without loss of generality we consider only n = 0, in which
case α = ieiπu/c2 . The energy of a BPS u-wall is given by

EBPS(u) = 2mMc2 sin πu

c2
. (3.2)

Each domain wall is labelled by its (electric8) flux Φ = i
2π (z(∞) − z(−∞)). Working

within T̂σ, we assume that z(−∞) = z0 is given by 2πi
∑r

a=1 qawa for qa ∈ {0, 1} and that
z(∞) = zu = 2πiu

c2
ρ, so that each flux uniquely defines a domain wall. It will be most

convenient to represent domain walls by either their flux directly, or as a (r + 1)-tuple
(q0, q1, . . . , qr) where q0 is defined by ∑r

a=0 k∗
aqa = u. The latter representation will be

particularly useful when discussing various symmetries.

3.1 Which domain walls are BPS?

It has been argued [2, 3] that the domain walls for which Xa = eα∗
a·z does not wind more

than once around the origin in the complex plane, for every a = 0, 1, . . . , r, are the BPS
domain walls. The winding number of Xa is readily computed as

winding(Xa) = 1
2πi

∫
DW

dXa

Xa
= −α∗

a · Φ,

for any domain wall with flux Φ. With boundary conditions z(−∞) = 2πi
∑r

a=1 qawa and
z(∞) = 2πiu

c2
ρ, the winding of Xa is given by u

c2
− qa for all a. Thus, the argument says that

BPS domain walls must have qa = 0, 1 for each a, which introduces a non-trivial constraint on
q0 since ∑r

a=0 k∗
aqa = u. The problem of finding the BPS domain walls comes down to solving

r∑
a=0

k∗
aqa = u, qa ∈ {0, 1}. (3.3)

The solutions are given in section 3.3 for each gauge group. Using numerics, with the same
approach as in [5], we have verified that domain walls saturate the BPS bound if and only
if equation (3.3) is satisfied, checking all domain walls with G = Sp(N) for 3 ≤ N ≤ 7,
G = Spin(N) for 7 ≤ N ≤ 14,9 as well as all the exceptional groups, noting that SU(N)
was studied in [5].

Working towards a more dynamical explanation of equation (3.3), we have numerically
solved for domain wall configurations by minimizing energy while keeping the boundaries
fixed, as done in [5], for several groups and all values of u. Then, we were able to build
“composite” domain walls by adding together two BPS domain walls, which are the domain

8The term electric flux comes from the duality relation; in the abelianized regime the R2 electric field
components are dual to the spatial derivatives of the dual photon, Ei = F 0i = g2

4πL
εij∂jσ.

9Note that Spin(N) for N < 7 is isomorphic to one of the other gauge groups studied.
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Figure 1. Schematic of combining two domain walls, whose centers are separated by a distance ∆x.
All scales are arbitrary.

walls that both solve the equations of motion and have energy equal to the BPS energy,
possibly reversing the orientation of one of the walls. For example, let z(1)(x) and z(2)(x) be
BPS u1- and u2-walls both centered at x = 0. We can add the two walls together, separated
by a distance ∆x, to get a (u1 + u2)-wall

z(1)+(2)(x) = z(1)
(

x + ∆x

2

)
+ z(2)

(
x − ∆x

2

)
,

so that for ∆x much larger than the domain wall widths, z(1)+(2)(x < 0) = z(1)
(
x + ∆x

2

)
+

const and z(1)+(2)(x > 0) = z(2)
(
x + ∆x

2

)
+const, which is depicted schematically in figure 1.

In the limit of ∆x → ∞, z(1)+(2)(x) exactly solves the equations of motion, but will cost
more energy than a BPS (u1 + u2)-wall. In general, the flux of the resulting domain wall is
the sum of the fluxes of the two walls being merged, so a 1-wall and a 1-wall would combine
to form a 2-wall, a 2-wall and an anti 1-wall would combine to form a 1-wall, etc.

We then studied the energy of the resulting configuration as a function of the separation
of the two domain wall centers.10 Figure 2(a) shows an example where there is a clear
attraction between the two domain walls being merged, and in fact corresponds to a BPS
domain wall. In contrast, figure 2(b) clearly shows that the two domain walls repel, and
suggests that the lowest energy configuration will be of two well separated BPS 1-walls.
Indeed, when minimizing the energy of a configuration with the corresponding boundary
conditions, the minimum energy is in fact the same as the sum of the two BPS 1-wall energies,
as shown in the figure. Finally, figure 2(c) shows a case where the corresponding domain wall
is not BPS, but there is a region where the two domain walls are attracted. A general model
of domain wall interactions would help elucidate this phenomenon, and it seems would show
that whenever two BPS fluxes add to another BPS flux, the interaction at short distances
is attractive, and repulsive when they do not.

10The domain wall center was numerically calculated to be the position corresponding to the midpoint of
the superpotential. We note that the image of a BPS domain wall in the complex W -plane is a straight line,
which follows directly from the BPS equation (3.1).
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Figure 2. Energy of merging domain wall configurations, where each figure indicates the corresponding
gauge group and fluxes of the domain walls being merged. The two walls merged were both numerically
found to be BPS in each case. In 2(a) the overall configuration, a domain wall going from w1 to 2

c2
ρ

is BPS, while in figures 2(b) and 2(c) the resulting configurations are not BPS. Each figure shows the
BPS energy for the corresponding domain wall, as well as the sum of the BPS energies for the two
domain walls being merged. For the non-BPS domain walls, the energy corresponding to minimizing
the energy with the appropriate boundary conditions is also shown.

3.2 Action of symmetries on domain walls

“0-form” center symmetry. Domain walls, and hence their fluxes, transform under the S1

part of the center symmetry according to equation (2.3), which acts on the labels qa as

ZS1(G) : qa → qϖ◦γc(a). (3.4)

See appendix B.3 and table 9 for more details for each group.

0-form charge conjugation. Domain walls transform under charge conjugation according
to equation (2.5), and hence the labels qa transform as

Z(0)
2 : qa → qϖ(a). (3.5)

See appendix B.3 and table 9 for more details for each group.
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3.3 Counting and characterizing BPS domain walls

The domain walls form a representation of the global symmetry of SYM, which will be a
combination of charge conjugation and center symmetry. To specify the representation that
they form, we compute the characters of that representation. The character of a representation
R of a finite group G, χR, is a function from G to C defined as

χR(g) = Tr (R(g)) .

The characters of R, computed for each g ∈ G, fully determine the representation, and if
two representations have the same characters then they are equivalent up to isomorphism.
It is important to notice that χR is a class function, meaning that it takes the same value
across a conjugacy class,

χR(g) = χR(hgh−1), ∀g, h ∈ G.

Thus, to compute the characters of a representation of G, we simply have to compute the
character of a representative from each conjugacy class of G. We will label the conjugacy
class of g ∈ G by [g] =

{
hgh−1 | h ∈ G

}
.

To construct the representations that the domain walls of SYM form, we first determine
the number of domain walls, say n. We then associate to each domain wall a unit vector
e⃗i ∈ Rn. Since the global symmetries permute the domain walls, they will simply permute
the unit vectors so that the character of g ∈ G is the number of domain walls which are
fixed by g. We will denote the character of the representation formed by u-walls of SYM
with gauge group G by χG

u .
In the most basic cases, charge conjugation and center symmetry are trivial, so the only

character to compute is that of the identity. In other words, the best we can do is count how
many domain walls there are. For some gauge groups charge conjugation is trivial and the
global symmetry of SYM is simply Zm, so the characters are simply the number of domain
walls fixed by each power of the Zm generator. Finally, in cases, except for Spin(8), where
both charge conjugation and center symmetry are non-trivial the global symmetry will be a
dihedral group, D2N , which is the group of symmetries of an N -sided regular polygon, and is
generated by a ZN rotation, T , and a Z2 reflection, C, which obey a dihedral algebra

D2N =
〈
C, T | C2 = T N = (C ◦ T )2 = 1

〉
.

When N = 2k + 1 is odd, representatives of the conjugacy classes of D2N are 1, T m for
1 ≤ m ≤ k, and C. When N = 2k is even, representatives of the conjugacy classes of D2N

are 1, T m for 1 ≤ m ≤ k, C, and C ◦ T . Thus, for both N even and N odd, we have to
count the number of domain walls fixed by T m and C, and when N is even we must also
count the number of domain walls fixed by C ◦ T .

Let us first illustrate with an example: 2-walls in SU(4). Here the rank is three, the dual
Kac labels are all unity, the center symmetry acts as T : qa → qa+1 mod 4, and the charge
conjugation symmetry acts as C : qa → q4−a mod 4. The global symmetry is D8 = Z2 ⋉ Z4,
the symmetry group of the square, whose conjugacy classes are [1], [T ], [T 2], [C], and [C ◦ T ].
To count the number of BPS 2-walls, we need to solve

q0 + q1 + q2 + q3 = 2, qa ∈ {0, 1},
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[1] [T ] [T 2] [C] [C ◦ T ]
u = 2 6 0 2 2 2

Table 1. Character table for u = 2-walls of SU(N) SYM.

which has χR(1) =
(4

2
)

= 6 solutions: qa1 = qa2 = 1 and qa3 = qa4 = 0 where all ai are
different. Under the Z(1),S1

4 center symmetry (q0, q1, q2, q3) is rotated to the left to become
(q1, q2, q3, q0). A domain wall fixed by T must satisfy q0 = q1 = q2 = q3 which is clearly not
BPS by the above condition. T 2 maps (q0, q1, q2, q3) to (q2, q3, q0, q1), and thus fixes two BPS
domain walls: (1, 0, 1, 0) and (0, 1, 0, 1). Then, χR(T ) = 0 and χR(T 2) = 2. Under charge
conjugation only q1 and q3 are swapped, so there are two BPS domain walls fixed by C:
(1, 0, 1, 0) and (0, 1, 0, 1), giving us χR(C) = 2. Finally, C ◦ T acts as qa → q3−a mod 4, so there
are two BPS domain walls fixed by C ◦ T : (1, 0, 0, 1) and (0, 1, 1, 0), giving χR(C ◦ T ) = 2.
Thus, the full character table of the domain walls is as shown in table 1.

In the following, we compute the characters of the global symmetries formed by the
domain walls of SYM for all gauge groups. For the specific group theoretic data used for
each group, see appendix B.3.

3.3.1 SU(N)

For SU(N), the Z(1),S1

N center symmetry generator acts as T : qa → qa+1 mod N , while the
Z(0)

2 charge conjugation generator acts as C : qa → qN−a mod N , so that the global symmetry
group is the dihedral group with 2N elements, D2N . The conjugacy classes for D2N are
[1], [C], [T n] for n = 1, . . . ,

⌊
N
2

⌋
, and when N is even [C ◦ T ]. The dual Kac labels are all

unity, so equation (3.3) becomes

u =
N−1∑
a=0

qa. (3.6)

Computing the character of the identity amounts to counting solutions to equation (3.6) with
qa ∈ {0, 1}. The number of solutions is the number of ways to choose u of {q0, q1, . . . , qN−1}
to be one,

(N
u

)
.

Next let us compute the character of T n. Suppose that a domain wall is invariant under
T n, so that qa = qa+n mod N . We can then ask when does the sequence {qa, qa+n, qa+2n, . . . }
start repeating, or in other words when is kn ≡ 0 mod N for a strictly positive integer k? To
see the answer, it is first helpful to write n as n

gcd(N,n) gcd(N, n), where n
gcd(N,n) is co-prime11

with N . It is well known from number theory that ab ≡ 0 mod c is the same as a ≡ 0 mod c

whenever b and c are co-prime. Thus, we have that (k gcd(N, n)) n
gcd(N,n) ≡ 0 mod N is the

same as k gcd(N, n) ≡ 0 mod N . The smallest postive solution is then k gcd(N, n) = N .
In other words, the sequence {qa, qa+n mod N , qa+2n mod N , . . . } has N

gcd(N,n) unique elements.
Furthermore, there are gcd(N, n) such sequences. Starting from Bézout’s identity it is not
too difficult to show that each qa for a = 0, . . . , gcd(N, n) − 1 are all in different sequences.

11Two integers are called co-prime when they share no common prime factors, or equivalently when their
gcd is one.
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[1] [T n] for N
gcd(N,n) | u [T n] for N

gcd(N,n) ∤ u [C] [C ◦ T ]

N odd (N
u

) ( gcd(N,n)
u gcd(N,n)/N

)
0

(⌊N/2⌋
⌊u/2⌋

)
-

N even, u odd 2
( N/2−1

(u−1)/2
)

0

N even, u even
(N/2

u/2
) (N/2

u/2
)

Table 2. Character table for SU(N) u-walls. When N is odd, [C ◦ T ] is equal to [C], so the characters
are not listed.

Thus, whenever a domain wall is invariant under T n we can write equation (3.6) as

u = N

gcd(N, n)

gcd(N,n)−1∑
a=0

qa.

From basic combinatorics, there are
( gcd(N,n)

u/(N/ gcd(N,n))
)

solutions whenever N
gcd(N,n) divides u,

and no solutions otherwise.
To compute the character of C, we simply have to solve equation (3.6) subject to

qa = qN−a mod N

u =


q0 + 2

N/2−1∑
a=1

qa + qN/2 N even

q0 + 2
(N−1)/2∑

a=1
qa N odd

.

The counting of invariant domain walls depends on whether N is even or odd. For N even
and u odd, we need q0 + qN/2 = 1 which can be done two ways, giving us u− 1 = 2∑N/2−1

a=1 qa

which has
( N/2−1

(u−1)/2
)

different solutions, giving 2
( N/2−1

(u−1)/2
)

possible domain walls. For N and u

even, we know that q0 +qN/2 must be even implying that q0 = qN/2, giving us u = 2∑N/2−1
a=0 qa,

which has
(N/2

u/2
)

solutions. For N odd, q0 is exactly determined by u so that u − q0 is even.
In other words, q0 must be such that u − q0 = 2 ⌊u/2⌋. We then have ⌊u/2⌋ = ∑(N−1)/2

a=1 qa,
giving us

((N−1)/2
⌊u/2⌋

)
charge conjugation invariant domain walls.

When N is even, we also have to compute the character of C ◦ T , which acts as qa →
qN−a−1 mod N . Requiring that a domain wall is fixed by C ◦ T , equation (3.6) becomes

u = 2
N/2−1∑

a=0
qa,

so we see that u must be even, and when it is there are
(N/2

u/2
)

solutions.
Table 2 summarizes the results in a character table for SU(N) u-walls.

3.3.2 Sp(N)

For Sp(N), there is no charge conjugation symmetry, so we only have to consider the action
of the Z(1),S1

2 center symmetry, qa → qN−a. The dual Kac labels are all unity and the rank is
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[1] [T ]
N and u odd (

N + 1
u

) 0

Otherwise
(
⌊(N + 1)/2⌋

⌊u/2⌋

)

Table 3. Character table for Sp(N) u-walls.

N , so the counting of domain walls is the same as SU(N + 1), χ
Sp(N)
u (1) =

(N+1
u

)
. Requiring

that domain walls are invariant under the center, equation (3.3) becomes

u =


2

N/2−1∑
a=0

qa + qN/2 N even

2
(N−1)/2∑

a=0
qa N odd

.

For N even, qN/2 is determined so that u−qN/2 is even, satisfying u−qN/2 = 2 ⌊u/2⌋. We then
have 2 ⌊u/2⌋ = 2∑N/2−1

a=0 qa, which has
( N/2
⌊u/2⌋

)
solutions. For N odd, we see that there will

be no center-invariant domain walls if u is odd, and for u even there are
((N+1)/2

u/2
)

solutions.
Table 3 summarizes the results in a character table for Sp(N) u-walls.

3.3.3 Spin(2N)

For both N even and N odd, except N = 4 which is treated separately below, the global
symmetry is the dihedral group of order eight. The specific structure of the group with
respect to center and charge conjugation generators differs between the two cases however,
since for N even the center is Z2 ×Z2 while for N odd it is Z4. In both cases however, charge
conjugation acts the same and the counting of domain walls is the same, so we can compute
the characters of the identity and charge conjugation without having to specify N even or
odd. The BPS condition for Spin(2N) is given by

u = q0 + q1 + q− + q+ + 2
N−2∑
a=2

qa. (3.7)

Counting the number of solutions is easier when we split into cases of u even/odd. First
for u even, we could have q0 + q1 + q− + q+ = 0, 2, 4 which can be done one, six, and
one way respectively. For each of these, we’ll have u − (q0 + q1 + q− + q+) = 2∑N−2

a=2 qa

which has
( N−3

(u−(q0+q1+q−+q+))/2
)

solutions. Putting the two pieces together, we find that
the number of u-walls is(

N − 3
u/2

)
+ 6

(
N − 3

u/2 − 1

)
+
(

N − 3
u/2 − 2

)
=
(

N − 1
u/2

)
+ 4

(
N − 3

u/2 − 1

)
.

For u = 2, the third term on the left doesn’t contribute, but the right hand side is still
valid, similarly for u = 2(N − 2) = c2 − 2 the left hand side isn’t technically correct, but
the right hand side is valid.
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For u odd, we could have q0 + q1 + q− + q+ = 1, 3 both of which can be done four
ways. Then, we have u − (q0 + q1 + q− + q+) = 2∑N−2

a=2 qa which has
( N−3

(u−(q0+q1+q−+q+))/2
)

solutions. Thus, the total number of u-walls is

4
(

N − 3
(u − 1)/2

)
+ 4

(
N − 3

(u − 3)/2

)
= 4

(
N − 2

(u − 1)/2

)
.

For u = 1 the second term on the left hand side is not valid, but the right hand side still
holds, similarly when u = 2N − 3 = c2 − 1 the first term on the left hand side is not valid,
but again the right hand side holds. Thus, we find for general u,

χSpin(2N)
u (1) =



(
N − 1
u/2

)
+ 4

(
N − 3

u/2 − 1

)
u even

4
(

N − 2
(u − 1)/2

)
u odd

. (3.8)

Charge conjugation acts by swapping q+ and q−, so a domain wall invariant under charge
conjugation has q− = q+ which modifies equation (3.7) to be

u = q0 + q1 + 2
(

N−2∑
a=2

qa + q−

)
.

For u even we necessarily have q0+q1 even, which implies q0 = q1 giving us u = 2
(∑N−2

a=1 qa+q−
)

which has
(N−1

u/2
)

solutions. For u odd, q0 + q1 is odd so we have q0 = 1 − q1 giving us
u − 1 = 2

(∑N−2
a=2 qa + q−

)
, which has

( N−2
(u−1)/2

)
solutions. Combining these we get

χSpin(2N)
u (C) =



(
N − 1
u/2

)
u even(

N − 2
(u − 1)/2

)
u odd

. (3.9)

In general, the dihedral group of order 8 is generated by a Z2 “reflection”, s, and a Z4
“rotation”, r, such that (sr)2 = 1. The conjugacy classes are [1], [s], [r], [r2], and [sr]. For
both N even and N odd, we identify C with s. When N is odd the center is Z(1),S1

4 , so T
naturally is identified with r, and acts by cycling q0 → q− → q1 → q+ → q0 and qa → qN−a

for 2 ≤ a ≤ N − 2. When N is even the center is Z+
2 × Z−

2 , where each Z±
2 is generated by

T ± which acts by swapping q0 ↔ q±, q1 ↔ q∓, and qa ↔ qN−a for a = 2, . . . , N − 2. Clearly
neither of T ± can be identified with r since they have order two, but C ◦ T ± has order four
and can be identified with r. Further, C ◦ T + acts exactly the same way as T did when N

was odd. Thus the equivalence classes of the dihedral group are

[1]
[s] = [C]

[r] =
{

[T ] N odd
[C ◦ T +] N even
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[r2] =
{

[T 2] N odd
[T + ◦ T −] N even

[sr] =
{

[C ◦ T ] N odd
[T +] N even

, (3.10)

where r and s act the same way on domain walls for N even and odd. Now we just have
to compute the characters of r, r2, and sr. First, as described above, r acts by cycling
q0, q−, q1, q+ and swapping qa with qN−a for a = 2, . . . , N − 2, so that when a domain wall
is invariant under r equation (3.7) becomes

u =


4

(N−1)/2∑
a=1

qa N odd

4
N/2−1∑

a=1
qa + 2qN/2 N even

.

When N is odd, the number of invariant domain walls is
((N−1)/2

u/4
)

for u a multiple of four
and zero otherwise. When N is even, domain walls can only be invariant when u is even.
Further, qN/2 is determined by whether u/2 is even or odd, so that u/2 − qN/2 = 2 ⌊u/4⌋ is
even. From the remaining N/2 − 1 degrees of freedom we can construct

(N/2−1
⌊u/4⌋

)
invariant

domain walls. Thus we find

χSpin(2N)
u (r) =



(
(N − 1)/2

u/4

)
N odd, u ≡ 0 mod 4(

N/2 − 1
⌊u/4⌋

)
N, u even

0 otherwise

.

Next r2 acts on domain walls by swapping q0 ↔ q1 and q− ↔ q+, so invariant domain
walls satisfy

u = 2
N−2∑
a=1

qa + 2q−.

We see that u must be even, and that there are χ
Spin(2N)
u (r2) =

(N−1
u/2

)
invariant domain walls.

Finally, sr acts by swapping q0 ↔ q+, q1 ↔ q−, and qa ↔ qN−a for a = 2, . . . , N − 2.
Domain walls invariant under sr satisfy

u =


2 (q0 + q1) + 4

(N−1)/2∑
a=2

qa N odd

2
(
q0 + q1 + qN/2

)
+ 4

N/2−1∑
a=2

qa N even

.

Clearly u must be even in order to have invariant domain walls. For N and u/2 odd q0 +q1 = 1
which can be done two ways, and u/2 − 1 = 2∑(N−1)/2

a=2 qa which has
( (N−3)/2

(u/2−1)/2
)

solutions,
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[1] [s] [r] [r2] [sr]

N odd, u ≡ 0 mod 4

(N−1
u/2

)
+ 4

( N−3
u/2−1

) (N−1
u/2

)
((N−1)/2

u/4
)

(N−1
u/2

)
((N−1)/2

u/4
)

N odd, u ≡ 2 mod 4 0 2
((N−3)/2

⌊u/4⌋
)

N even, u ≡ 0 mod 4 (N/2−1
⌊u/4⌋

) (N/2−2
u/4

)
+ 3

( N/2−2
(u−4)/4

)
N even, u ≡ 2 mod 4 3

(N/2−2
⌊u/4⌋

)
+
( N/2−2
⌊(u−4)/4⌋

)
u odd 4

( N−2
(u−1)/2

) ( N−2
(u−1)/2

)
0 0 0

Table 4. Character table for Spin(2N) u-walls for N > 4, where the relations between r and s which
generate the global D8 symmetry and C and T which generate charge conjugation and the “0-form”
center symmetry are given by (3.10).

giving us 2
( (N−3)/2

(u/2−1)/2
)

invariant domain walls. For N odd and u/2 even we must have q0 = q1,
giving us

((N−1)/2
u/4

)
invariant domain walls. For N even and u/2 odd, q0 + q1 + qN/2 must be

odd, with either q0 +q1 +qN/2 = 1, which can be done three ways, or q0 +q1 +qN/2 = 3, which
can only be done one way. We then have u/2 − (q0 + q1 + qN/2) = 2∑N/2−1

a=2 qa, which has( N/2−2
(u/2−(q0+q1+qN/2))/2

)
solutions. For N and u/2 even, q0 + q1 + qN/2 must be even, with either

q0 + q1 + qN/2 = 0, which can be done one way, or q0 + q1 + qN/2 = 2, which can be done three
ways. We then have u/2 − (q0 + q1 + qN/2) = 2∑N/2−1

a=2 qa which has
( N/2−2

(u/2−(q0+q1+qN/2))/2
)

solutions. Then, the character of sr is given by

χSpin(2N)
u (sr) =



(
(N − 1)/2

u/4

)
N odd, u ≡ 0 mod 4

2
(

(N − 3)/2
(u − 2)/4

)
N odd, u ≡ 2 mod 4(

N/2 − 2
u/4

)
+ 3

(
N/2 − 2
(u − 4)/4

)
N even, u ≡ 0 mod 4

3
(

N/2 − 2
(u − 2)/4

)
+
(

N/2 − 2
(u − 6)/2

)
N even, u ≡ 2 mod 4

0 otherwise

Table 4 summarizes the results in a character table for Spin(2N) u-walls.
When N = 4 the charge conjugation symmetry becomes S3, the group of permutations of

{q1, q−, q+}. Along with the Z+
2 × Z−

2 center symmetry, the total symmetry group is S4, the
group of permutations of {q0, q1, q−, q+}. The conjugacy classes of S4 are [1], [(q0q1)(q−q+)],
[(q0q1q−)], [(q0q1)], and [(q0q1q−q+)].12 The character of the identity is unchanged from
the larger N cases. The rest of the characters may be worked out by hand, to produce
the character table 5.

12We use a standard notation for permutation group elements, where (x1x2 . . . xn) is the element which
maps x1 → x2, x2 → x3, and so on until xn → x1. These cycles may be multiplied together and are read as
acting right to left, so (ab)(ac) maps c → a → b and is equal to (cba).
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[1] [(q0q1)(q−q+)] [(q0q1q−)] [(q0q1)] [(q0q1q−q+)]
u = 1, 5 4 0 1 2 0
u = 2, 4 7 3 1 3 1
u = 3 8 0 2 4 0

Table 5. Character table for Spin(8) u-walls.

[1] [T ]

All u

(
N − 1
⌊u/2⌋

)
+ 2

(
N − 2

⌊(u − 1)/2⌋

) (
N − 1
⌊u/2⌋

)

Table 6. Character table for Spin(2N + 1) u-walls.

3.3.4 Spin(2N + 1)

The center symmetry is Z2 and there is no charge conjugation symmetry, so we only have to
compute characters of the identity and the Z2 generator. The BPS condition for Spin(2N+1) is

u = q0 + q1 + qN + 2
N−1∑
a=2

qa.

Counting the number of domain walls, when u is even we can either have q0 = q1 = qN = 0
and u = 2∑N−1

a=2 qa which has
(N−2

u/2
)

solutions, or have q0 + q1 + qN = 2, which can be done
three ways, and u = 2 + 2∑N−1

a=2 qa which has
( N−2

u/2−1
)

solutions. When u is odd we can either
have q0 + q1 + qN = 1, which can be done three ways, and u = 1 + 2∑N−1

a=2 qa, which has( N−2
(u−1)/2

)
solutions, or we could have q0 = q1 = qN = 1 and u = 3 + 2∑N−1

a=2 qa which has( N−2
(u−3)/2

)
solutions. Combining both u even and odd and simplifying we find

χSpin(2N+1)
u (1) =

(
N − 1
⌊u/2⌋

)
+ 2

(
N − 2

⌊(u − 1)/2⌋

)
.

The Z(1),S1

2 center symmetry generator of Spin(2N + 1) acts by exchanging q0 and q1,
thus domain walls invariant under Z(1),S1

2 have q0 = q1 giving us

u = 2
N−1∑
a=1

qa + qN .

Notice that qN is completely determined by u with qN = 2
(

u
2 −

⌊
u
2
⌋)

so that we have
2
⌊

u
2
⌋

= 2∑N−1
a=1 qa which has

(N−1
⌊u/2⌋

)
solutions,

χSpin(2N+1)
u (T ) =

(
N − 1
⌊u/2⌋

)
.

Table 6 summarizes the results in a character table for Spin(2N + 1) u-walls.
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3.3.5 E6

The center symmetry for E6 is Z(1)
3 and the charge conjugation symmetry is Z(0)

2 , which
together form a dihedral algebra making the global symmetry D6 with conjugacy classes
[1], [T ], and [C]. The BPS condition for E6 is

u = q0 + q1 + q5 + 2(q2 + q4 + q6) + 3q3.

We can directly compute the number of solutions by brute force, listing the results here

χE6
u (1) =



3 u = 1, 11
6 u = 2, 10
11 u = 3, 9
15 u = 4, 8
18 u = 5, 7
20 u = 6

.

The Z(1),S1

3 center symmetry generator of E6 acts by cyclically permuting (q0, q1, q5) and
(q2, q4, q6), thus a domain wall invariant under Z(1),S1

3 has q0 = q1 = q5 and q2 = q4 = q6
giving us

u = 3 (q1 + 2q2 + q3) ,

so u must be a multiple of three, meaning that only u = 3, 6, 9 can have domain walls
fixed by Z(1),S1

3 . In each case there are two walls fixed, for example in u = 3 we could have
(q1, q2, q3) = (1, 0, 0) or (q1, q2, q3) = (0, 0, 1),

χE6
u (T ) =

{
2 u ≡ 0 mod 3
0 otherwise

.

The Z(0)
2 charge conjugation symmetry in E6 acts by swapping q1 ↔ q5 and q2 ↔ q4, so

domain walls invariant under charge conjugation have q1 = q5 and q2 = q4 giving us

u = q0 + 2q1 + 4q2 + 3q3 + 2q6,

which we may solve by brute force to obtain

χE6
u (C) =



1 u = 1, 11
2 u = 2, 10
3 u = 3, 9
3 u = 4, 8
4 u = 5, 7
4 u = 6

.

Table 7 summarizes the results in a character table for E6 u-walls.
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[1] [T ] [C]
u = 1, 11 3 0 1
u = 2, 10 6 0 2
u = 3, 9 11 2 3
u = 4, 8 15 0 3
u = 5, 7 18 0 4
u = 6 20 2 4

Table 7. Character table for E6 u-walls.

3.3.6 E7

The center symmetry for E7 is Z(1)
2 and there is no charge conjugation symmetry, so the

global symmetry is Z2 and we just have to compute the characters of 1 and T . The BPS
condition for E7 u-walls is

u = q0 + q6 + 2(q1 + q5 + q7) + 3(q2 + q4) + 4q3.

Computing the number of solutions by brute force we obtain

χE7
u (1) =



2 u = 1, 17
4 u = 2, 16
8 u = 3, 15
11 u = 4, 14
16 u = 5, 13
21 u = 6, 12
24 u = 7, 11
27 u = 8, 10
28 u = 9

. (3.11)

The Z(1),S1

2 center symmetry of E7 acts by swapping q0 ↔ q6, q1 ↔ q5, q2 ↔ q4, so a
domain wall fixed by Z(1),S1

2 has

u = 2q0 + 4q1 + 6q2 + 4q3 + 2q7 = 2(q0 + 2q1 + 3q2 + 2q3 + q7),

so u must be even. Solving by brute force we obtain

χE7
u (T ) =



2 u = 2, 16
3 u = 4, 14
5 u = 6, 12
5 u = 8, 10
0 u odd

. (3.12)

Table 8 summarizes the results in a character table for E7 u-walls.
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[1] [T ]
u = 1, 17 2 0
u = 2, 16 4 2
u = 3, 15 8 0
u = 4, 14 11 3
u = 5, 13 16 0
u = 6, 12 21 5
u = 7, 11 24 0
u = 8, 10 27 5
u = 9 28 0

Table 8. Character table for E7 u-walls.

3.3.7 E8

Both charge conjugation and center symmetry are trivial for E8, so we just have to compute
the character of the identity. The BPS condition for E8 u-walls is

u = q0 + 2(q1 + q7) + 3(q2 + q8) + 4(q3 + q6) + 5q4 + 6q5. (3.13)

Solving by brute force the number of domain walls is

χE8
u (1) =



1 u = 1, 29
2 u = 2, 28
4 u = 3, 27
5 u = 4, 26
8 u = 5, 25
11 u = 6, 24
14 u = 7, 23
17 u = 8, 22
22 u = 9, 21
25 u = 10, 20
28 u = 11, 19
32 u = 12, 18
33 u = 13, 17
35 u = 14, 16
36 u = 15

. (3.14)

3.3.8 F4

Both charge conjugation and center symmetry are trivial for F4, so we just have to compute
the character of the identity. The BPS condition for F4 u-walls is

u = q0 + q4 + 2(q1 + q3) + 3q2. (3.15)
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Solving by brute force the number of domain walls is

χF4
u (1) =



2 u = 1, 8
3 u = 2, 7
5 u = 3, 6
5 u = 4, 5

. (3.16)

3.3.9 G2

Both charge conjugation and center symmetry are trivial for G2, so we just have to compute
the character of the identity. The BPS condition for G2 u-walls is

u = q0 + 2q1 + q2 (3.17)

It is not too hard to see that for each u = 1, 2, 3 there are two solutions,

χG2
u (1) = 2. (3.18)

4 Domain wall worldvolume theories

For each u there should be a worldvolume TQFT describing the BPS u-walls. The worldvolume
TQFTs will be Chern-Simons theories defined on T2 × R. Note that we interpret T2 as
S1

L × S1
L′ where we take L′ → ∞ so that the TQFT spacetime corresponds to the domain

wall worldvolume of SYM on R3 × S1. The states of the TQFT Hilbert space correspond
to the u-walls of SYM, and are required to transform under center and charge conjugation
symmetries in the same way as the domain walls they are associated with.

In principle there is then a map between the u-walls of SYM and the Hilbert space of the
corresponding worldvolume TQFT. Unfortunately, while such a map may exist it is usually not
easy to find, and in general is not unique. To illustrate this point, consider 1-walls of SU(N)
which may be labelled by an integer a = 0, 1, . . . , N−1 corresponding to flux Φa = wa− 1

N ρ.13

The Z(1),S1

N center symmetry acts as T (Φa) = Φa−1 mod N , while the Z(0)
2 charge conjugation

symmetry acts as C(Φa) = ΦN−a mod N . The corresponding worldvolume TQFT is U(1)N ,
whose Hilbert space on T2×R is spanned by states |a′⟩ for a′ = 0, 1, . . . , N −1. Under the Z(1)

N

symmetry in the first direction14 the U(1)N states transform as T̂ |a′⟩ = |a′ − 1 mod N⟩, and
under charge conjugation they transform as Ĉ |a′⟩ = |N − a′ mod N⟩. It would then seem that
the most natural choice for a map between the set of domain walls, {Φa | a = 0, 1, . . . , N − 1},
to the set of U(1)N states, {|a′⟩ | a′ = 0, 1, . . . , N − 1}, would be the map taking Φa to |a⟩.
Indeed such a map does preserve the symmetries of the theories. However, when N is even
we could also map Φa to

∣∣∣N2 + a mod N
〉
:

f : Φa 7→
∣∣∣∣N2 + a mod N

〉
f(T (Φ)a) = f(Φa−1) =

∣∣∣∣N2 + a − 1 mod N

〉
= T̂

∣∣∣∣N2 + a mod N

〉
= T̂ f(Φa)

f(C(Φ)a) = f(ΦN−a mod N ) =
∣∣∣∣N2 + N − a mod N

〉
= Ĉ

∣∣∣∣N2 + a mod N

〉
= Ĉf(Φa).

13Remember that we are using the convention w0 = 0.
14The direction here is somewhat of an arbitrary choice.
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We see that when N is even there are two ways to map the 1-walls of SU(N) SYM to the
states of the worldvolume TQFT Hilbert space. In general there will not be a single unique
way to map the domain walls of SYM to the TQFT Hilbert space in a way that preserves
the symmetries. Instead, we must be content with simply computing and comparing the
characters of the global symmetries between the domain walls of SYM and the TQFT Hilbert
spaces. Here we will denote the character of a Gk Chern-Simons theory by χGk

.

4.1 A quick review of Chern-Simons theory

To begin, we will briefly review the construction of the Hilbert space of Chern-Simons theory
on T2 × R and the action of the various symmetry operators for both a U(1) gauge group
and a simple non-Abelian gauge group.

Abelian Chern-Simons. For U(1)k Chern-Simons theory the non-trivial operators are the
Wilson lines in the two directions of T2 which commute up to a Z|k| phase,

Ŵ1Ŵ2 = e2πi/kŴ2Ŵ1.

The Hilbert space is then the k-dimensional space spanned by states |a⟩ for 0 ≤ a ≤ |k| − 1
defined by

Ŵ1 |a⟩ = |a − 1 mod |k|⟩ (4.1)
Ŵ2 |a⟩ = e2πia/k |a⟩ . (4.2)

Notice that Ŵ1 and Ŵ2 each generate Z|k| symmetries, together forming a one-form Z|k|
symmetry. Charge conjugation acts as in appendix B.2, which in the Hilbert space is

Ĉ |a⟩ = |k − a⟩ .

Non-Abelian Chern-Simons. For Gk Chern-Simons theory, where G is a simple non-
Abelian group, quantization is understood through the machinery of geometric quantization.
Following Elitzur et al. [14], the wave-functionals are given by Weyl-Kac characters at level
k, which are in turn labelled by the so-called integrable representations at level k. The
integrable representations are labelled by their highest weights which in addition to being
dominant, as any highest weight must be, must satisfy k + α∗

0 · λ ≥ 0. In other words, the
Hilbert space of Gk Chern-Simons theory is spanned by

{|λ⟩ | λ ∈ Λw, α∗
a · λ ≥ −kδa,0, a = 0, . . . , r} .

Note that like domain walls, non-Abelian Chern-Simons states may be labelled by r + 1
integers (λ0, λ1, . . . , λr) with λa = α∗

a ·
(
λ − k

c2
ρ
)

+ k
c2

with ∑r
a=0 k∗

aλa = k, which must
satisfy λa ≥ 0.15 The dimension of the Hilbert space is a function of the rank and the dual
Kac labels of the gauge group. For SU(N + 1)k and Sp(N)k, the rank is N and the dual
Kac labels are all unity, so the dimension of the two Hilbert spaces, equal to the character

15Unlike domain walls, which must have qa ∈ {0, 1}, the labels λa of non-Abelian Chern-Simons states may
be any non-negative integer so long as they satisfy the condition

∑r

a=0 k∗
aλa = k.
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of the identity, is the number of solutions (λ0, λ1, . . . , λN ) to ∑N
a=0 λa = k, which is solved

using basic combinatorics to find

χSU(N+1)k
(1) = χSp(N)k

(1) =
(

k + N

k

)
(4.3)

The one-form center symmetry acts on the gauge fields by improper gauge transformations,
which descend to the Hilbert space as phases and shifts,

T̂1 |λ⟩ = |Tc,k(λ)⟩ (4.4)
T̂2 |λ⟩ = e−2πiw∗

c ·λ |λ⟩ , (4.5)

where Tc,k is the affine Weyl transformation defined in equation (B.3) for an appropriate choice
of c. Following a naïve treatment,16 charge conjugation acts on the gauge fields in the same
was as described in B.2. Acting on the Weyl-Kac characters, charge conjugation then acts as

Ĉ |λ⟩ = |C(λ)⟩ , (4.6)

with the notable exception of Spin(4n), though that will not be relevant for this paper. See
appendix B.2 for more details.

4.2 SU(N)

The proposed worldvolume TQFT for u-walls in SU(N) is U(u)N−u,N given by

U(u)N−u,N = SU(u)N−u × U(1)uN

Z(1)
u

, (4.7)

where Z(1)
u is the diagonal part of the Z(1)

u one-form center of SU(u)N−u, and the Z(1)
u subgroup

of the Z(1)
uN one-form symmetry of U(1)uN . To construct the Hilbert space, we first construct

the Hilbert space of SU(u)N−u×U(1)uN , which is simply the tensor product of the SU(u)N−u

and U(1)uN Hilbert spaces. We then gauge the diagonal Z(1)
u by keeping only those states

which are invariant under all possible insertions of Z(1)
u . We can accomplish this by starting

with an arbitrary state |λ⟩ ⊗ |a⟩ and acting with the projectors onto the Z(1)
u invariant

subspaces corresponding to the two directions along which we can insert Z(1)
u :

P̂i = 1
u

u−1∑
m=0

(
T̂i ⊗ Ŵ N

i

)m
,

where the action of T̂i is given in equations (4.4) and (4.5) with c = N − 1,17 and the action
of Ŵi is given in equations (4.1) and (4.2). Note that P̂1 and P̂2 commute, otherwise taking
the Z(1)

u quotient would be ill-defined. Acting first with P̂2 on our test state |λ⟩ ⊗ |a⟩ we
see that only a of the form u(ξ + w∗

u−1 · λ) for an integer ξ survives,

P̂2 |λ⟩ ⊗ |a⟩ = 1
u

u−1∑
m=0

e2πim(a−uw∗
u−1·λ)/u |λ⟩ ⊗ |a⟩ =

∑
ξ∈Z

δa,u(ξ+w∗
u−1·λ) |λ⟩ ⊗ |a⟩ .

16Charge conjugation may be complicated by spin structures. See the discussion in [6], but for our purposes
the naïve picture is sufficient.

17Note that from here on we will drop the c and k subscripts on T in equation (4.5).
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Acting with P̂1 imposes no further restrictions on λ or a, but simply averages over the Z(1)
u

orbit of |λ⟩ ⊗ |a⟩ in the first direction. Thus we define the U(u)N−u,N state |[λ, ξ]⟩ as the
Z(1)

u averaged version of |λ⟩ ⊗
∣∣u(ξ + w∗

u−1 · λ)
〉
,

|[λ, ξ]⟩≡ P̂1 |λ⟩⊗
∣∣u(ξ+w∗

u−1 ·λ)
〉

= 1
u

u−1∑
m=0

|T m(λ)⟩⊗
∣∣u(ξ+w∗

u−1 ·λ)−mN
〉

= 1
u

u−1∑
m=0

|T m(λ)⟩⊗
∣∣∣∣∣u
(

ξ−
m−1∑
a=0

λa−m+w∗
u−1 ·T m(λ)

)〉
,

where we used the fact that w∗
u−1 · T m(λ) = w∗

u−1 · λ +∑m−1
a=0 λa − mN−u

u . The notation
[λ, ξ] is a shorthand used to indicate the Z(1)

u orbit of the pair (λ, ξ) in the first direction,

[λ, ξ] =
{

(λ, ξ) , (T (λ), ξ − λ0 − 1) , . . . ,

(
T u−1(λ), ξ −

u−2∑
a=0

λa − (u − 1)
)}

. (4.8)

Thus, each U(u)N−u,N state is labelled by a Z(1)
u orbit and not by an individual representation.

The Z(1)
N 1-form symmetry is the remainder of the Z(1)

uN 1-form symmetry of U(1)uN after
gauging Z(1)

u , and thus acts on the Hilbert space by T̂i = 1 ⊗ Ŵ u
i

T̂1 |[λ, ξ]⟩ = |[λ, ξ − 1]⟩ (4.9)
T̂2 |[λ, ξ]⟩ = e2πiu(ξ+w∗

u−1·λ)/N |[λ, ξ]⟩ . (4.10)

Charge conjugation is unaffected by gauging Z(1)
u and acts by

Ĉ |[λ, ξ]⟩ = |[C(λ),−ξ − (N − u − λ0)]⟩ . (4.11)

It is not too hard to verify using the data in appendix B.3 that charge conjugation and the
1-form symmetry form a D2N dihedral algebra, which of course is required for the TQFT
to match the u-walls of SU(N).

Let us for a moment comment on the sizes of the Zu orbits of SU(u)N−u representations.
Suppose that λ has an orbit under T of size l,18 so that T l(λ) = λ, or in other words λa = λa+l.
Then, knowing that λ is an integrable representation of SU(u) at level N − u we have

N − u =
u−1∑
a=0

λa = u

l

l−1∑
a=0

λa. (4.12)

Thus, we see that u/l must divide N − u and hence must divide N as well. Since u/l divides
both u and N − u, it must be a divisor of their gcd, which allows us to write explicitly
the allowed values of l if necessary.

To determine the dimension of the Hilbert space we see that we must count each unique Zu

orbit [λ, ξ]. We start by considering an SU(N) integrable representation with highest weight
λ, and ask how many different orbits [λ, ξ] we can construct. Note that since U(1)uN states
are defined by integers moduN , ξ is equivalent to ξ + N , so there can be at most N orbits

18It is helpful to remember that l must divide u by Lagrange’s theorem.
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[λ, ξ]. Now suppose that λ has a Zu orbit under T of size l, so that T̂ l
1 |λ⟩ = |λ⟩ and hence

T̂ l
1 ⊗ 1 |[λ, ξ]⟩ = |[λ, ξ]⟩. We can use the fact that T̂1 ⊗ Ŵ N

1 acts trivially on the U(N)N−u,N

Hilbert space to express T̂ l
1⊗1 as

(
T̂ l

1 ⊗ 1
) (

T̂1 ⊗ Ŵ N
1

)−l
= 1⊗Ŵ−lN

1 , giving us the following

|[λ, ξ]⟩ = T̂ l
1 ⊗ 1 |[λ, ξ]⟩ = 1⊗ Ŵ−lN

1 |[λ, ξ]⟩ =
∣∣∣∣[λ, ξ + N

u/l

]〉
,

where we used the fact that 1⊗ Ŵ m
1 |[λ, ξ]⟩ =

∣∣[λ, ξ − m
u

]〉
. We see that when λ has a Zu

orbit of size l, each orbit [λ, ξ] is equal to
[
λ, ξ + N

u/l

]
, and hence there are N

u/l U(u)N−u,N

states for every orbit of size l of SU(N) integrable representations under T . If we let OSU(N)
N−u (l)

be the number of SU(N)N−u states with orbit size l, then the total number of U(u)N−u,N

states |[λ, ξ]⟩ is given by

χU(u)N−u,N
(1) =

∑
l

(
N

u/l

)(1
l
OSU(N)

N−u (l)
)

= N

u
χSU(u)N−u

(1) =
(

N

u

)
, (4.13)

where we used equation (4.3). This exactly matches the number of SU(N) u-walls given
in table 2.

1-form symmetry

We will compute the character of n applications of the 1-form symmetry generator in the
first direction. Consider a state |[λ, ξ]⟩, where λ has a Zu orbit of size l so that ξ ≡ ξ + N

u/l ,
and thus |[λ, ξ]⟩ has a T̂1 orbit size of N

u/l . Suppose that this state is invariant under T̂n
1 , so

that n is a multiple of N
u/l , say n = N

u/lm for some m ∈ Z. Rearranging we find that nu
N = lm,

so that λ must be invariant under T nu/N . Before pressing on, notice that N must divide
nu, which means that N

gcd(N,n) must divide n
gcd(N,n)u, implying that N

gcd(N,n) divides u since
N

gcd(N,n) and n
gcd(N,n) have no common factors. Recall that this is the same condition on n

that we derived for u-walls of SU(N) SYM, shown in table 2. Thus for each Zu orbit of size l,
[λ] = {T m(λ) | m = 0, 1, . . . , l − 1}, (where λ is invariant under T nu/N ) there are N

u/l states
|[λ, ξ]⟩ invariant under T̂n

1 . Since each weight in [λ] will be invariant under T nu/N , we can
count weights invariant under T nu/N instead of orbits if for each weight we add a factor of 1

l .
The two factors of l cancel out, and we find that the character of T̂n

1 is N
u χSU(u)

(
T̂

nu/N
1

)
.

From our analysis of center symmetry characters in SU(N) SYM, we know that when λ is
invariant under T nu/N equation (4.12) becomes

N − u = u

gcd
(
u, nu

N

) gcd(u, nu
N )−1∑

a=0
λa = N

gcd (N, n)

u
N

gcd(N,n)−1∑
a=0

λa.

The character is N
u times the number of solutions, which gives us

χU(u)N−u,N

(
T̂n

1

)
=


(

gcd(N, n)
u
N gcd(N, n)

)
N

gcd(N, n) | u

0 otherwise
, (4.14)

exactly matching that of SU(N) u-walls from table 2.
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Charge conjugation

We will compute the character of Ĉ in several steps. First, we will show that if |[λ, ξ]⟩ is
Ĉ invariant, then there is some (λ′, ξ′) ∈ [λ, ξ] such that C(λ′) = λ′. Notice that C and
T obey a D2u dihedral algebra

C ◦ T ◦ C = T −1, (4.15)

which can be worked out explicitly using the action of C and T given in appendix B.3. If
|[λ, ξ]⟩ is Ĉ-invariant, then we must have

(C(λ),−ξ−(N−u−λ0)) ∈ [λ, ξ] ⇐⇒ Ĉ |λ⟩⊗
∣∣u(ξ + w∗

u−1 · λ)
〉

= T̂ m |λ⟩⊗
∣∣u(ξ + w∗

u−1 · λ)
〉

where 0 ≤ m < u is an integer. If m is even, we can apply T m/2 to λ to get the desired λ′

C
(
T m/2(λ)

)
= T −m/2 ◦ C(λ) = T m/2(λ).

Letting l be the size of the T orbit of λ, if both m and l are odd, we can instead apply
T (m+l)/2 and get a similar result. In appendix C we prove that the last case, when l is
even and m is odd, is not possible. In short, we may assume without loss of generality that
λ = λ′, ie we may assume that λ is C invariant. Then, the full action of charge conjugation
on the U(u)N−u,N state is

Ĉ |[λ, ξ]⟩ = |[λ,−ξ − (N − u − λ0)]⟩ ,

so that our state |[λ, ξ]⟩ is charge conjugation invariant when ξ satisfies the following

ξ ≡ −ξ − (N − u − λ0) mod N

u/l
, 0 ≤ ξ <

N

u/l
. (4.16)

Generically, solutions will be of the form 2ξ = N
u/lk− (N −u−λ0) for some integer k such that

0 ≤ ξ < N
u/l . When N

u/l is even, it is clear that N − u − λ0 must also be even to get solutions.
In particular, there are two solutions which are related to each other by addition/subtraction
of 1

2
N
u/l . When N

u/l is odd there is only one solution.
To count the number of independent charge conjugation invariant U(u)N−u,N states we

will first count the number of charge conjugation invariant pairs (λ, ξ) for a given l, then count
the number of orbits [λ, ξ]. Finding the number of charge conjugation invariant SU(u)N−u

weights is done by solving equation (4.12) subject to C(λ) = λ,

N − u

u/l
=


λ0 + 2

l/2−1∑
a=1

λa + λl/2 l even

λ0 + 2
(l−1)/2∑

a=1
λa l odd

. (4.17)

Notice that the above equation applies to weights with orbit sizes of l and divisors of l. Namely,
if we set l to it’s maximum value, u, of which all orbits sizes are divisors, we obtain an equation
for all C invariant weights. We split our analysis into cases when N and u are even/odd.
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N and u odd. In this case, N
u/l is always odd, so for each C invariant weight there is one

solution to (4.16). Furthermore, since u is odd, l too must be odd, and thus we do not have
to worry about over-counting. The number of charge-conjugation invariant pairs (λ, ξ) is
equal to the number of charge-conjugation invariant orbits, and hence the corresponding
number of U(u)N−u,N states. Thus, we just have to find the number of independent solutions
to C(λ) = λ, which amounts to solving equation (4.17) with l = u,

N − u = λ0 + 2
(u−1)/2∑

a=1
λa.

The number of solutions is the number of ways to choose u+1
2 non-negative integers

(λ0, . . . , λ(u−1)/2) which sum to N−u
2 , (

N−1
2

u−1
2

)
.

N odd and u even. Like the last case, N
u/l is always odd, so for each C invariant weight

there is one solution to (4.16). Since u/l must divide N , l must be even in order to cancel
out the “evenness” from u. The number of charge-conjugation invariant pairs (λ, ξ) is then
twice the number of charge-conjugation invariant orbits, and hence the corresponding number
of U(u)N−u,N states. Thus, we first have to find the number of independent solutions to
C(λ) = λ, which corresponds to solving equation (4.17) with l = u,

N − u = λ0 + 2
u/2−1∑
a=1

λa + λu/2,

then we must divide by two to account for over-counting. With N − u odd, we see that
λ0 + λu/2 must also be odd, so we can redefine λ0 + λu/2 to be 2λ0 + 2λu/2 + 1, multiplying
our final answer by two to account for the two possible parities of λ0 and λu/2 (either
even/odd or odd/even). The number of weights is then two times the number of ways to
choose u

2 + 1 non-negative integers which sum to N−u−1
2 , and the number of independent

charge-conjugation invariant states is half of that,(
N−1

2
u
2

)
.

N even and u odd. Now N
u/l is always even, since u/l must always be odd. Since N − u is

odd, we count only the weights with λ0 odd, which have two solutions each to equation (4.16).
Referring to equation (4.17) we see that indeed all the C invariant weights will have λ0
odd. Thus, the number of charge conjugation invariant orbits [λ, ξ] is twice the number
of C invariant weights,

N − u = λ0 + 2
(u−1)/2∑

a=1
λa.

Knowing that λ0 is odd we redefine λ0 → 2λ0 + 1 and see that the number of solutions
is the number of ways to choose u+1

2 non-negative integers which sum to N−u−1
2 . Thus,

the number of orbits is

2
(

N−2
2

u−1
2

)
.
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N and u even. When N and u are even, things can become a bit more complicated. First
we set u = 2αũ and N − u = k = 2β k̃, for positive integers α and β, and odd integers ũ and
k̃. Then, we know that u/l must be a divisor of gcd(u, k), so we set u/l = n = 2γñ where
0 ≤ γ ≤ min(α, β) and ñ divides gcd(ũ, k̃). We split our analysis into four cases:

1. 0 ≤ γ < min(α, β): N
u/l ,

N−u
u/l , and l are all even, so λ0 must be even and there are two

charge conjugation invariant pairs, (λ, ξ) and (T l/2(λ), ξ′), per C invariant weight.19

Then, each C invariant weight with λ0 even contributes 1
2 × 2 to the character. The

two factors of two cancel out and the contribution to the character is the number of C
invariant weights with λ0 even.

2. γ = α = β: N
u/l is even, so λ0 must be even, while l and N−u

u/l are odd. From
equation (4.17), we see that λ0 cannot be even, and hence there are no charge conjugation
invariant states.

3. γ = α < β: N−u
u/l is even while N

u/l and l are both odd, so the number of invariant orbits
is equal to the number of C invariant weights. From equation (4.17) we see that λ0
must be even, so the counting matches that of the first case.

4. γ = β < α: N−u
u/l and N

u/l are both odd, while l is even so the number of invariant orbits
is half the number of C invariant weights. From equation (4.17), λ0 and λl/2 must have
opposite parity mod2. Further, it is clear that the number of solutions is the same
for the two cases, ie the number of C invariant weights with λ0 even is the same as
that with λ0 odd. Thus we may assume that λ0 is even and multiply our counting by
two, cancelling out the factor of 1

2 from the evenness of l. In the end, we again find
the number of charge conjugation invariant orbits equal to the number of C invariant
weights with λ0 even.

We see that we simply need to count all the solutions to equation (4.17) with λ0 even, which
is accomplished by simply setting l = u,

N − u = λ0 + 2
u/2−1∑
a=1

λa + λu/2

∣∣∣∣∣∣
λ0 even

.

The number of solutions is the number of ways to choose u
2 + 1 positive integers which

sum to N−u
2 , (

N
2
u
2

)
.

We thus get our final result for the number of independent charge conjugation invariant
U(u)N−u,N states,

χU(u)N−u,N
(Ĉ) =


2
(

N−2
2

u−1
2

)
N even, u odd

(⌊
N
2

⌋
⌊

u
2
⌋ ) otherwise

, (4.18)

19Note that equation (4.17) says that if λ0 is even then λl/2 is also even, so that T l/2(λ) also has two
solutions to equation (4.16).
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which exactly matches the number of charge conjugation invariant u-walls of SU(N) from
table 2.

Combined charge conjugation and 1-form symmetry

Finally, we want to compute the character for the combined action of charge conjugation
and 1-form symmetry when N is even. Here it will be most convenient to use the action of
the 1-form symmetry generator in the second direction,20 T̂2, so that the combined action
of charge conjugation and the 1-form symmetry is

ĈT̂2 |[λ, ξ]⟩ = e2πiu(ξ+w∗
u−1·λ)/N Ĉ |[λ, ξ]⟩ .

It is then clear that the only states that will contribute to the character are those which
are invariant under charge conjugation, which, conveniently, we have already found. First
consider u odd, where we will see that the character vanishes. From our computation of
the character of charge conjugation, we know that when N is even and u is odd, N

u/l is
always even and thus there are two charge conjugation invariant states for every C invariant
weight with λ0 odd, which are related by adding/subtracting 1

2
N
u/l from ξ. Given such a

weight, letting the two charge conjugation invariant orbits be [λ, ξ] and
[
λ, ξ + 1

2
N
u/l

]
, the

contribution to the character is

e2πiu(ξ+w∗
u−1·λ)/N

(
1 + eiπl

)
.

Since u is odd, l must be odd and hence the contribution to the character is always zero,
leading to a vanishing character.

When u is even, we have to apply the same analysis that we did for charge conjugation, but
can recycle many of our results. Again we set u = 2αũ, N − u = k = 2β k̃, and u/l = n = 2γñ,
where the numbers with˜are odd, and n must divide gcd(u, k). We have

1. 0 ≤ γ < min(α, β): for every C-invariant weight with λ0 even there are two ξ which
give charge conjugation invariant states, but both λ and T l/2(λ) produce the same
states,21 so we must divide their contributions to the character by two. Then, each
such weight contributes the following to the character

1
2e2πiu(ξ+w∗

u−1·λ)/N
(
1 + eiπl

)
= e2πiu(ξ+w∗

u−1·λ)/N ,

where we used the fact that l is even, and took ξ to be the lesser of the two solutions
to equation (4.16), though it really doesn’t matter which of the two solutions is taken.

2. γ = α = β: no charge conjugation invariant states.

3. γ = α < β: each C-invariant weight has λ0 even and produces one charge conjugation
invariant state, so the contribution to the character is the same as the first case.

20One can do a change-of-basis to a basis where T̂1 is diagonal and acts exactly as T̂2 does on the basis we
use here, so it is clear that the character of the two operators should be the same. Further, there really is no
reason why the two T2 directions should be different, so based on these symmetry principles alone we expect
that the characters will be equal.

21It can be verified that λ and T l/2 both produce charge conjugation invariant states, which have the same
phase under T̂2.
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4. γ = β < α: l is even so for each charge conjugation invariant state there are two
C-invariant weights, related by T l/2. The action of T l/2 swaps λ0 and λl/2, whose
sum must be odd. Thus for each charge conjugation invariant state there is just one
C-invariant weight with λ0 even. The contribution to the character is then the same as
the first case.

In summary, the character is computed by summing e2πiu(ξ+w∗
u−1·λ)/N over each C-invariant

weight with λ0 even, where ξ is any solution to equation (4.16). Further, we will show that
the phase is always trivial and thus the character is equal to character of charge conjugation.
First, using the data in B.3, and the fact that λ is C-invariant, along with the fact that
λ is a weight of SU(u)N−u we find

uw∗
u−1 · λ = u

2 (N − u − λ0) .

From equation (4.16), we let 2ξ = k N
u/l − (N − u − λ0), where k is an integer with the

requirement that k N
u/l must be even. Then, we find that the phase is

u

N

(
ξ + w∗

u−1 · λ
)

= 1
2kl,

which we claim is always an integer. When l is even, it is obvious that we get an integer. When
l is odd, we must be in case 3 where N

u/l is also odd. From the requirement that k N
u/l is even,

we see that k is even, and again we find that 1
2kl is an integer. Thus we see that the character

is in fact the same as the character of charge conjugation when u is even. In summary we find

χU(u)N−u,N
(ĈT̂) =


0 u odd(

N/2
u/2

)
u even,

(4.19)

exactly matching that of SU(N) u-walls given in table 2.

4.3 Sp(N)

The proposed worldvolume theory for Sp(N) u-walls is Sp(u)N+1−u. As noted earlier in
equation (4.3), Sp(N)k has a Hilbert space of dimension

(N+k
k

)
, so we see that Sp(u)N+1−u

has dimension

χSp(u)N+1−u
(1) =

(
N + 1

N + 1 − u

)
=
(

N + 1
u

)
, (4.20)

which is exactly equal to the number of Sp(N) u-walls from table 3.

1-form center symmetry

The Z(1)
2 center symmetry in Sp(u)N+1−u acts on states |λ⟩ = |(λ0, λ1, . . . , λu)⟩ as

T̂1

∣∣∣∣∣λ =
u∑

a=1
λawa

〉
=
∣∣∣∣∣

u∑
a=1

λu−awa

〉

T̂2

∣∣∣∣∣λ =
u∑

a=1
λawa

〉
= (−1)

∑⌊(u−1)/2⌋
a=0 λ2a+1 |λ⟩ .
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The character of T̂1 is the number of representations (λ0, λ1, . . . , λu) with λa = λu−a and∑u
a=0 λa = N + 1 − u, giving us

N + 1 − u =


2

u/2−1∑
a=0

λa + λu/2 u even

2
(u−1)/2∑

a=0
λa u odd

. (4.21)

u even. From (4.21), N + 1−λu/2 must be even, in other words λu/2 must have the opposite
parity mod2 of N . We can redefine λu/2 to be 2λu/2 + δ with δ = 2

(
N+1

2 −
⌊

N+1
2

⌋)
,22 so

that equation (4.21) becomes
⌊

N + 1
2

⌋
− u

2 =
u/2∑
a=0

λa.

The number of solutions is simply the number of ways to choose u/2 + 1 non-negative integers
which sum to

⌊
N+1

2

⌋
− u

2 , (
⌊(N + 1)/2⌋

u/2

)
.

u odd. From (4.21), when N is odd there are no T̂1 invariant states. For N even, the number
of states is the number of ways to choose (u+1)/2 non-negative integers which sum to N

2 − u−1
2 ,(

N/2
(u − 1)/2

)
.

Combining the above results, we find that the number of T̂1 invariant states is

χSp(u)N+1−u
(T̂1) =


0 N, u odd(
⌊(N + 1)/2⌋

⌊u/2⌋

)
otherwise

, (4.22)

exactly matching that of Sp(N) u-walls from table 3.

4.4 E6

Consider (E6)3 Chern-Simons theory, which has a Z(1)
3 1-form center symmetry and a Z(0)

2
charge conjugation symmetry, which form a D6 dihedral global symmetry whose conjugacy
classes are represented by 1, T̂i, and Ĉ. The states satisfy λ0+λ1+λ5+2(λ2+λ4+λ6)+3λ3 = 3.
One sees that there are 10 solutions with λ0 + λ1 + λ5 = 3, 9 solutions with λ0 + λ1 + λ5 = 1
and λ2 + λ4 + λ6 = 1, and one solution with λ3 = 1. In total we find the character of
the identity to be 20,

χ(E6)3 (1) = 20, (4.23)

exactly matching the number of u = 6 walls of E6 from table 7.
22In other words, δ is the remainder of N + 1 when dividing by two.
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1-form center symmetry

The Z(1)
3 1-form center symmetry acts in the first direction as λ0 → λ5 → λ1 → λ0 and

λ2 → λ6 → λ4 → λ2, so the states invariant under T̂1 have λ0 = λ1 = λ5 and λ2 = λ4 = λ6.
We are then left with 3 = 3λ0 + 6λ2 + 3λ3, meaning that either λ0 = 1 or λ3 = 1, and hence
the only T̂1 invariant states are |w1 + w5⟩ and |w3⟩, giving us the character of T̂1

χ(E6)3

(
T̂1
)

= 2, (4.24)

consistent with the observation that there are two 6-walls invariant under Z(1),S1

3 in SYM
from table 7.

0-form charge conjugation symmetry

The Z(0)
2 charge conjugation symmetry acts as λ1 ↔ λ5 and λ2 ↔ λ4, so the only charge

conjugation invariant states have λ1 = λ5 and λ2 = λ4, giving us 3 = λ0+2λ1+4λ2+3λ3+2λ6.
We see that there are then four charge conjugation invariant states, |0⟩, |w1 + w5⟩, |w3⟩,
and |w6⟩,

χ(E6)3

(
Ĉ
)

= 4, (4.25)

exactly matching the number of charge conjugation invariant 6-walls in SYM from table 7.

5 Deconfinement on domain walls

We now turn to studying deconfinement of static (heavy) quarks in the presence of a u-wall.
The insertion of a static quark with charge µ at position r⃗0 = (x0, y0) ∈ R2 corresponds to
inserting a static Wilson line, which modifies the classical equations of motion for σ by adding
a term which forces σ to “jump” by 2πµ as it crosses x = x0 in the upper half-plane23 [5]

∇2σ ⊃ 2πµ∂xδ(x − x0)
∫ ∞

y0
dy′ δ(y − y′) =

{
2πµ∂xδ(x − x0) y ≥ y0

0 y < y0
.

Then, taking a contour C which winds positively around r⃗0, we find that inserting the static
charge amounts to imposing

∮
c dσ = 2πµ. Such a configuration can be achieved by suspending

the quark between u-walls whose fluxes differ by 2πµ, as in figure 3. If the two u-walls are
both BPS, and hence have the same tension, the quark will be free to move along the domain
walls: moving to one side lengthens one of the domain walls by the exact same amount
that the other is shortened. We may then consider adding a quark with weight −µ as in
figure 4(a). We see that the second quark is also free to move, and hence the two quarks can
move independently and are deconfined, so long as they do not cross each other.

Mathematically, a weight µ may be supported by two u-walls with fluxes Φ1 and Φ2
if µ = Φ1 − Φ2. In appendix D we prove that

µ deconfined on domain walls ⇐⇒ µa = α∗
a · µ ∈ {−1, 0, +1} ∀ a = 0, 1, . . . , r. (5.1)

23This is just one way to insert the jump in σ which is useful for illustrating the salient points, but other
choices can be made. See [5] for more details.
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Figure 3. A quark supported by two domain walls with fluxes Φi =
∑r

a=1 qi
awa − u

c2
ρ, so that

Φ2 − Φ1 = µ. The two upper vacua (yellow and orange) are u = 0 vacua, while the lower vacuum
(purple) is the uth vacuum. The insertion of the static quark is equivalent to demanding

∮
C dσ = 2πµ

for any C which encloses the charge.

Further, we show that the u-walls which deconfine a given µ are given by

u(µ) =

 ∑
α∗

a·µ=+1
k∗

a +
∑

α∗
a·µ=0

k∗
aqa | qa ∈ {0, 1}

 , (5.2)

where ∑α∗
a·µ=x means to sum over the co-roots α∗

a such that α∗
a · µ = x. Moreover, if two

quarks can be deconfined on domain walls, then they can also be confined by “wrapping”
the domain walls around to form a double string as in figure 4(b). When the probe quarks
have N -ality 0, which always is the case when the gauge group has a trivial center, the
double string picture only holds for sufficiently small quark separations; there is a point
where it is energetically favourable to pair-produce W -bosons (of mass ∼ 1

L) screening the
quarks and breaking the double string.

In [5] it was argued that to determine if a representation will be deconfined it is enough
to find a weight of that representation which is deconfined. Here we will briefly summarize
the argument for completeness. Consider a Wilson loop in a representation Rλ, which in
the Abelian limit studied here is given by

⟨WRλ
[C]⟩ =

∑
µ∈Rλ

〈
eiµ·

∮
C A
〉

.

We are interested in the behaviour of ⟨WRλ
[C]⟩ as C becomes large. In the limit of large C,

perimeter law terms e−P (C) due to deconfined weights dominate over area law terms e−A(C).
Thus, if Rλ has any weights which are deconfined on u-walls, then ⟨WRλ

[C]⟩ will exhibit
perimeter law in the background of a u-wall, and quarks will be deconfined.
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Figure 4. (a): potential energy density of two heavy probe quarks of charge ±w2 for G2 showing
deconfinement of quarks on domain walls for G2. (b): the same quarks are now confined by “wrapping”
the two domain walls in (a) around to form confining strings.

We can classify representations then by whether or not they deconfine in the background
of u-walls, determining which (if any) u do the job. To do so, we will organize representations
by their N -ality, defined as the charge under the center of the representation,24 where for
Spin(4n) representations will have two N -alities, corresponding to the two copies of Z2 in the
center. Then, for each N -ality, k, we will find a weight of all representations of that N -ality,
which we will call a universal weight of N -ality k. Finally, using equation (5.2) we will find
the u-walls which deconfine the universal weights for each N -ality. For all non-zero N -alities,
we will find universal weights which are deconfined on all u-walls for all u. For N -ality zero,
in some groups we will find universal weights which are again deconfined on u-walls for all u,
and in other groups we will find universal weights which are deconfined on u-walls for all
u except u = 1 and u = c2 − 1. In the latter case, we will show that there are no N -ality 0
weights deconfined on u = 1, c2 − 1 walls. We want to stress that our treatment here is valid
in the abelianized regime. Notably, the statement that N -ality 0 quarks are not deconfined
on u = 1, c2 − 1 walls is not equivalent to the statement that N -ality 0 quarks are confined
outside the abelianized regime. As discussed above, at energies of order 1

L W -bosons can be
pair-produced and screen N -ality 0 quarks, leading to deconfinement as expected.

5.1 SU(N)

The N -ality of the irreducible representation of SU(N) with highest weight λ = ∑r
a=1 λawa is

N -ality(λ) = Nw∗
N−1 · λ ≡

r∑
a=1

aλa mod N.

Then −α0 = w1 + wN−1 is a universal weight of N -ality 0, while wq is a universal weight of
N -ality q for q = 1, . . . , N − 1 [18]. We see that wq is of the form of equation (5.1), and may
be deconfined by all u-walls, as noted in [5]. While −α0 is not of the form of equation (5.1),

24For a Zn center, with generator g = e2πi/n, a representation R has N -ality k if R(g) = e2πik/n. See
appendix B.1 for more details.
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performing a Weyl reflection with respect to αN−1 gives us w1 + wN−2 − wN−1 which is
deconfined on all u-walls except for u = 1, N − 1. Moreover, there are no weights of any
N -ality 0 representations deconfined on u = 1 or u = N − 1 domain walls. We illustrate this
last point for u = 1, but the process for u = N − 1 is more or less the same. First, notice that
u = 1 domain walls are of the form Φ = wa − 1

N ρ, where a = 0 corresponds to w0 = 0. Then,
a weight deconfined on 1-walls is of the form µ = wa − wb, where a ̸= b and 0 ≤ a, b < N .
The N -ality of µ is then a − b mod N , which works even when a or b is zero. The only way
to get N -ality 0, is to have a− b = kN for some integer k, and the only k which is compatible
with 0 ≤ a, b < N is k = 0. In other words, the only way to get N -ality 0 is if µ is zero, and
hence there are no non-trivial weights of N -ality 0 deconfined on 1-walls. When N = 2, 3,
there are no N -ality 0 weights deconfined on any domain walls.

5.2 Sp(N)

The N -ality of λ is

N -ality(λ) = 2w∗
N · λ mod 2 ≡

⌊(N−1)/2⌋∑
a=0

λ2a+1 mod 2.

Then w2 is a universal weight of N -ality 0, while w1 is a universal weight of N -ality 1.
Further, both of these weights are of the form of equation (5.1), and from equation (5.2)
are deconfined on u-walls for all u.

5.3 Spin(4n + 2)

For Spin(4n + 2), in this section only we will take the Z4 center to be generated by e2πiw∗
−·H

for n even and e2πiw∗
+·H for n odd, so that the N -ality of λ is

N -ality(λ) =
{

4w∗
− · λ mod 4 n even

4w∗
+ · λ mod 4 n odd

≡ 2
n−1∑
a=0

λ2b+1 + λ− + 3λ+ mod 4.

Note that the choice of center generator is in some sense arbitrary, and here we just choose
a convenient generator for calculating N -ality. Then w2 is a universal weight of N -ality 0,
w1 of N -ality 2, w− of N -ality 1, and w+ of N -ality 3. All of w1, w−, and w+ are of the
form of equation (5.1), and from equation (5.2) are deconfined on u-walls for all u. While w2
is not deconfined, w3 − w1 is in its Weyl group orbit and is deconfined on u-walls for all u

except u = 1 and u = 4n − 1. Indeed there are no deconfined weights of N -ality 0 deconfined
on 1- or 4n − 1-walls, where the proof is much the same as that done for SU(N).

5.4 Spin(4n)

Like Spin(4n + 2), we will take the generators of each Z±
2 copy of the Z+

2 × Z−
2 center

symmetry to be generated by e2πiw∗
∓·H for n even and e2πiw∗

±·H for n odd, so that the N -ality
of λ with respect to Z±

2 is

N -ality±(λ) =
{

2w∗
∓ · λ mod 2 n even

2w∗
± · λ mod 2 n odd

≡
n−2∑
a=0

λ2a+1 + λ± mod 2.

– 36 –



J
H
E
P
0
8
(
2
0
2
4
)
0
5
8

Then, labelling the N -ality of a representation by a tuple of N -alities with respect to Z±
2 ,

we find that w2 is a universal weight of N -ality (0, 0), w1 of N -ality (1, 1), w+ of N -ality
(1, 0), and w− of N -ality (0, 1). All of w1, w−, and w+ are of the form of equation (5.1), and
from equation (5.2) are deconfined on u-walls for all u. Meanwhile, w2 has in its Weyl group
orbit w1 + w− − w+ which is deconfined on u-walls for all u except u = 1 and u = 4n − 3,
and indeed there are no N -ality (0, 0) weights deconfined on 1- and 4n − 3-walls, where the
proof is much the same as that done for SU(N).

5.5 Spin(2N + 1)

The N -ality of λ is

N -ality(λ) = 2w∗
1 · λ mod 2 ≡ λN mod 2.

Then w1 is a universal weight of N -ality 0, and wN of N -ality 1. Further, both w1 and wN

are of the form of equation (5.1), and from equation (5.2) are deconfined on u-walls for all u.

5.6 E6

The N -ality of λ is

N -ality(λ) = w∗
1 · λ mod 3 ≡ λ1 + λ4 + 2(λ2 + λ5) mod 3.

Then w6 is a universal weight of N -ality 0, w1 of N -ality 1, and w5 of N -ality 2. Further,
both w1 and w5 are of the form of equation (5.1), and from equation (5.2) are deconfined
on all u-walls. While w6 is not of the form of equation (5.1), w1 + w4 − w2 is in its Weyl
group orbit and is a deconfined weight, being deconfined on u-walls for all u.

5.7 E7

The N -ality of λ is

N -ality(λ) = 2w∗
6 · λ mod 2 ≡ λ4 + λ6 + λ7 mod 2.

Then w1 is a universal weight of N -ality 0, and w6 of N -ality 1. We see that w6 is of the
form of equation (5.1), and from equation (5.2) is deconfined on u-walls for all u. While
w1 is not of the form of equation (5.1), w6 + w7 − w5 is in its Weyl group orbit and is
deconfined on u-walls for all u.

5.8 E8

Since E8 has trivial center, all representations have N -ality 0, and w1 is a universal weight of
N -ality 0. While w1 is not of the form of equation (5.1), there are weights in its Weyl group
orbit which are, namely w7 − w1 and w6 − w3. These weights are deconfined on u-walls for
all u except u = 1 and u = 29. Further, there are no weights which are deconfined on 1-walls,
which is seen from the fact that there is only one u = 1 (or u = 29) domain wall.
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5.9 F4

Since F4 has trivial center, all representations have N -ality 0, and w4 is a universal weight
of N -ality 0. We observe that w4 is of the form of equation (5.1), and from equation (5.2)
is deconfined on u-walls for all u except u = 2 and u = 7. For u = 2 and u = 7, we find
w1 − w4 in the Weyl group orbit of w4 which is deconfined on 2- and 7-walls.

5.10 G2

Since G2 has trivial center, all representations have N -ality 0, and w2 is a universal weight
of N -ality 0. We observe that w2 is of the form of equation (5.1), and from equation (5.2)
is deconfined on u-walls for all u except u = 2. For u = 2, we find w1 − w2 in the Weyl
group orbit of w2 which is deconfined on 2-walls.
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A Group theory background

For a Lie algebra g of a Lie group G, a Cartan subalgebra h ⊆ g is a maximally commuting
subalgebra of dimension r, where r is the rank of G. In the defining representation we
can select r real-symmetric generators as a basis of h, {Ha | a = 1, 2, . . . , r} satisfying
Tr
(
HaHb

)
= δab. The rest of g is spanned by root vectors Eα defined as the eigenvectors

of the Cartan generators in the adjoint representation,

adH(Eα) = [H, Eα] = αEα,

where the eigenvalues, α ∈ Rr are the roots which form a root system which we denote ∆. We
select a basis of r roots for ∆, called the simple roots which we denote Π = {αa | a = 1, . . . , r},
so that each root in ∆ is written as a linear combination of simple roots with integer coefficients
that are either all non-negative (the positive roots, ∆+), or all non-positive (the negative
roots, ∆−). Note that the positive and negative roots are in one-to-one correspondence,
ie α ∈ ∆ ⇐⇒ −α ∈ ∆ or equivalently ∆− = −∆+. In the defining representation we
take the Eα to be real, so that ET

α = E−α. We normalize so that [Eα, E−α] = α∗ · H,
and otherwise take [Eα, Eβ] = Cα,βEα+β, where Cα,β is a group dependent factor which
is only non-zero when α + β is a root.

The roots generate a root lattice, Λr = {
∑r

a=1 caαa | ca ∈ Z}. Dual to the root lattice
is the co-root lattice Λ∗

r, spanned by the simple co-roots α∗
a = 2

|αa|2
αa. Fundamental

weights wa are defined by requiring wa · α∗
b = δa,b, and span the weight lattice Λw. Finally,

fundamental co-weights are defined by w∗
a = 2

|αa|2
wa so that w∗

a · αb = δa,b, and span the
co-weight lattice Λ∗

w.
In addition to the simple roots, there is one more important root that we will worry

about: the affine, or lowest, root α0 which is the root which is lower than all other roots, ie
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α0 ⪯ β for all β ∈ ∆, where ⪯ is the partial ordering on Rr defined by the simple roots.25

Note that here we will take the affine root, and hence all the long roots, to have length 2,
so that they are identified with their co-roots.

It is often useful to represent a root system by its Dynkin diagram, which assigns a
node to each simple root. Two nodes, say a and b, are connected if α∗

a · αb is non-zero.
Further, the nodes are connected by one line if α∗

a · αb = −1, two lines if α∗
a · αb = −2, and

three lines if α∗
a · αb = −3, where in the latter two cases an arrow is also drawn pointing

towards the smaller (with respect to the Euclidean length) root. Note that, along with
α∗

a · αa, it is a well established fact that these are the only possible inner products between
simple co-roots and simple roots. We can extend the Dynkin diagram to include the affine
node using the same rules. Appendix B.3 gives the Dynkin diagrams and our labelling
conventions for all simple Lie groups.

A.1 The Weyl group and gauge transformations

It is often stated but rarely shown in the physics literature that Weyl group elements are
constant gauge transformations, here we will break down how that works. To begin, recall
that the Weyl reflection with respect to α ∈ ∆, which we denote sα, acts on v ∈ Rr as

sα(v) = v − (v · α∗) α.

The Weyl group, which we denote W , is then the group generated by all such Weyl reflections.
In fact, one can show that the Weyl group is generated by Weyl reflections only with respect
to the simple roots [19]. Thus each w ∈ W can be written as a product of some number of
simple Weyl reflections, say w = ∏n

i=1 sαai
for indices ai. It is clear that there is no upper

bound on n since we can always multiply w by 1 = s2
αb

for some b to effectively extend n by
two. There is however a lower bound on n, which we call the length of w, where we define the
length of the identity to be zero. Practically, one may compute the length of a given Weyl
group element by counting how many positive roots it maps to negative roots [19].

All we really need to do now is to show how to obtain a simple Weyl reflection as a gauge
transformation. We will see that there are in fact multiple ways to obtain a Weyl reflection
which act differently on non-Cartan degrees of freedom. To begin, we recall that for every
positive root α ∈ ∆+ we may define two self-adjoint generators T α

1 and T α
2 ,

T α
1 = 1

2 (Eα + E−α) , T α
2 = 1

2i
(Eα − E−α) , (A.1)

where {T α
i | i = 1, 2, α ∈ ∆+} spans all of g\h. Note that T α

1 , T α
2 , and 1

2α∗ ·H form an su(2)
algebra, taking for example τα

1 = T α
1 , τα

2 = T α
2 , and τα

3 = α∗ · H we get
[
τα

i , τα
j

]
= iεijkτα

k .

Further, it is not too hard to show that
(
adτα

i

)2n
(H) = 1

2α∗ (α · H) for n > 0, and(
adτα

i

)2n+1
(H) = −iαεijτα

j for n ≥ 0 with i = 1, 2 taking εij to be the two-dimensional
Levi-Cevita symbol with ε12 = +1. Then, using the BCH formula we can evaluate the

25The partial ordering ⪯ on Rr is defined so that λ ⪯ µ (or µ ⪰ λ) if and only if µ − λ when written as a
linear combination of simple roots has only non-negative coefficients. Equivalently, we say that λ ⪯ µ if and
only if w∗

a · (µ − λ) ≥ 0 for all a = 1, . . . , r.
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action of the 1-parameter family of constant gauge transformations gi(ξ) = eiπξτα
i on a

Cartan configuration a · H,

eiπξτα
i a · He−iπξτα

i = a · H + a · ατα
3 (cos(πξ) − 1) + a · αεijτα

j sin(πξ).

Taking ξ = 1 (or ξ = −1), we see that gi = gi(1) gives us the simple Weyl reflection acting on a,

eiπτα
i a · He−iπτα

i = (a − (a · α∗)α) · H = sα(a) · H, i = 1, 2.

We notice that there are at least two ways to do a simple Weyl reflection on the Cartan degrees
of freedom, meaning that the map from the Weyl group to the gauge group is many-to-one.
In fact, we could conjugate gi by any U(1)r element, say eiv·H , to get a new constant gauge
transformation which acts in the same way on the Cartan elements. In this way, for each
simple Weyl reflection there is a whole family of corresponding gauge transformations given by

gα(v) = eiv·Hg1e−iv·H = eiπ cos(v·α)τα
1 −iπ sin(v·α)τα

2 ,

where g1 = gα(0) and g2 = gα
(

π
4 α∗). Note that we have essentially demonstrated the

well-known result that the Weyl group is isomorphic to the quotient group N (U(1)r) /U(1)r,
where N (U(1)r) =

{
g ∈ G | gU(1)rg−1 = U(1)r

}
is the normalizer of U(1)r [20].

A.2 Two important Weyl group elements

There are two Weyl group elements that are especially important for our work, wΠ and
wΠc , so named because they are the Weyl group elements which map setwise Π → −Π and
Π \ {αc} → − (Π \ {αc}), where 1 ≤ c ≤ r is an index such that αc is a long root with
k∗

c = 1. The specific actions of wΠ and wΠc depend on the group in question, but in general
they both permute the simple and affine roots, they both (almost) permute the fundamental
weights, and the permutations preserve dual Kac labels and of course root lengths,

wΠ(αa) = −αϖ(a)

wΠ(wa) = −wϖ(a)

wΠ(ρ) = −ρ

ka = k∗
ϖ(a)

ϖ ∈ Sr+1, ϖ(0) = 0, ϖ2 = 1

(A.2)



wΠc(αa) = −αγc(a)

wΠc(wa) = k∗
awc − wγc(a)

wΠc(ρ) = c2wc − ρ

ka = k∗
γc(a)

γc ∈ Sr+1, γc(0) = c, γ2
c = 1

, (A.3)

where we use the convention that w0 = 0.
Practically we can determine wΠ and wΠc by using the fact that they are the longest

Weyl group elements generated by all simple Weyl reflections, and all simple Weyl reflections
except the one with respect to αc respectively. Then, given a set of simple Weyl reflections
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Group ϖ γc

SU(N) ϖ(a) = N − a γc(a) = c − a mod N , c = 1, . . . , N − 1
Sp(N) 1 γN (a) = N − a

Spin(4n) 1
γ2n−1 = (0, 2n − 1)(1, 2n)∏n−1

a=2(a, 2n − a)
γ2n = (0, 2n)(1, 2n − 1)∏n−1

a=2(a, 2n − a)

Spin(4n + 2) (2n, 2n + 1)
γ2n = (0, 2n)(1, 2n + 1)∏n

a=2(a, 2n + 1 − a)
γ2n+1 = (0, 2n + 1)(1, 2n)∏n

a=2(a, 2n + 1 − a)
Spin(2N + 1) 1 γ1 = (0, 1)

E6 (1, 5)(2, 4)
γ1 = (0, 1)(2, 6)
γ5 = (0, 5)(4, 6)

E7 1 γ6 = (0, 6)(1, 5)(2, 4)
E8 1 -
F4 1 -
G2 1 -

Table 9. Permutations corresponding to the special Weyl group elements wΠ and wΠc
(where the

cth (dual) Kac label is one), so that wΠ(αa) = −αϖ(a) and wΠc(αa) = −αγc(a). Note that we
use a standard notation for permutations, where (a, b, c)(d) = (a, b, c) is the permutation where
a → b → c → a and d → d. See section B.3 for labelling conventions for the roots.

we want to use, all of the simple Weyl reflections for wΠ and all of them except the one with
respect to αc for wΠc , we can construct our element of interest by starting with a single Weyl
reflection and iteratively adding more, making sure that each reflection we add increases
the length of the element, until we can no longer make the element any longer. The specific
permutations ϖ and γc are listed for each group in table 9.

B Center and charge conjugation symmetries

In this appendix we review the group-theoretic origins of the center and charge conjugation
symmetries used in the text acting on Cartan degrees of freedom which are identified under
W ⋉mΛ∗

r , for some integer m. In addition, we will show how center symmetry acts in arbitrary
irreducible representations of a group. This will prove useful for both SYM and non-abelian
Chern-Simons theory, both of which have Cartan fields with a moduli space of the form above.

B.1 Center symmetry

We will consider three different realizations of the center of a simply connected Lie group
G: as matrices in irreducible representations, as a subgroup of the extended affine Weyl
group, and as a subgroup of the Weyl group itself.

The center in an irreducible representation. Let Rλ be an irreducible representation of
G with highest weight λ, letting u(ν) be a weight vector associated to the weight ν. Recall
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that the elements of Z(G) are of the form e2πiµ∗·H for µ∗ ∈ Λ∗
w, and act on weights of Rλ as

Rλ

(
e2πiµ∗·H

)
u(ν) = e2πiµ∗·Rλ(H)u(ν) = e2πiµ∗·νu(ν) = e2πiµ∗·λu(ν),

where in the last step we used the fact that weights of Rλ can differ from λ by at most
roots, which would not contribute to the phase. It should also be clear here that µ∗ and
µ∗ + α∗ for any α∗ ∈ Λ∗

r produce the same center element, which leads to the well-known
result that Z(G) ∼= Λ∗

w/Λ∗
r when G is simply connected.

When Z(G) is cyclic, say Z(G) = Zn, there will be a co-weight w∗
c ,26 such that e2πiw∗

c ·H

generates Zn. We can then characterize Rλ by its N -ality, defined as the “charge” of Rλ

under the center: if Rλ has N -ality k, then Rλ

(
e2πiw∗

c ·H
)

= e2πik/n. Starting with the action
of the center on u(ν) given above, it is not too hard to show that the N -ality of Rλ, which
we write as a function of λ, is given by

N -ality(λ) = nw∗
c · λ mod n. (B.1)

Note that all weights of Rλ will have the same N -ality, calculated with respect to equa-
tion (B.1), as λ.

The center as a subgroup of the (extended affine) Weyl group. We consider a
generalized extended affine Weyl group W ⋉ mΛ∗

w, for some positive integer m acting on a
Cartan field η ∈ Rr/(W ⋉ mΛ∗

r), defined within the fundamental domain

T̂ = {v ∈ Rr | α∗
a · v ≥ 0, a = 1, . . . , r, −α∗

0 · v < m} . (B.2)

Since Λ∗
r ⊆ Λ∗

w, we have W ⋉ mΛ∗
r as a subgroup of W ⋉ mΛ∗

w. One can show that the
subgroup of W ⋉ mΛ∗

w which preserves T̂ is isomorphic to the center of G [21],

Z(G) ∼= {1} ∪ {(wΠc ◦ wΠ, mw∗
c) | −w∗

c · α0 = 1} ≡ Z(G),

which defines an action on η, which we denote Tc,m,

Z(G) : η → Tc,m(η) = wΠc ◦ wΠ(η) + mw∗
c . (B.3)

Thus, associated to each non-trivial g ∈ Z(G) is an integer 1 ≤ c ≤ r with −w∗
c · α0 = 1, or

equivalently with kc = 1. In almost all cases, except Spin(4n) which is easily accommodated,
Z(G) will be a cyclic group, say Zq, and thus it is enough to find an element of order q in Z(G)
to act as a generator of Zq, remembering that the group operation in W ⋉ mΛ∗

w is given by

(w1, µ1) · (w2, µ2) = (w1 ◦ w2, µ1 + w1(µ2)) .

Alternatively, we can use the fact that Z(G) is isomorphic to it’s image in the defining
representation RλD

(Z(G)), where λD is the highest weight of the defining representation, to
construct an isomorphism mapping (wΠc ◦ wΠ, mw∗

c) to e2πiw∗
c ·λD . This isomorphism easily

enables us to find the order of (wΠc ◦wΠ, mw∗
c) simply by computing the inner product w∗

c ·λD.
26The specific value of c depends on the group, see B.3 for the details for each group.
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Now, let η = ∑r
a=1 ηawa and define η0 such that m = ∑r

a=0 k∗
aηa. Following from

equations (A.2) and (A.3), the action of Z(G) on η is

Tc,m(η) =
r∑

a=1
ηa

(
wγc◦ϖ(a) − k∗

awc

)
+ mwc =

r∑
a=1

ηawγc◦ϖ(a) +
(

m −
r∑

a=1
k∗

aηa

)
wc

=
r∑

a=1
ηawγc◦ϖ(a) + η0wc.

Notice that not all of wγc◦ϖ(a) are necessarily non-trivial, in particular there could be an
a for which γc ◦ ϖ(a) = 0. Letting πc = γc ◦ ϖ, using the fact that w0 = 0 we find∑r

a=0 ηawπc(a) = ∑r
a=0 ηπ−1

c (a)wa = ∑r
a=1 ηπ−1

c (a)wa, or in other words ∑r
a=1 ηawπc(a) =∑r

a=1 ηπ−1
c (a)wa − η0wπc(0). Using πc(0) = c we find

Tc,m(η) =
r∑

a=1
ηπ−1

c (a)wa.

In other words, the action of Tc,m on the labels ηa is

Tc,m : ηa → ηϖ◦γc(a),

where we substituted π−1
c in terms of ϖ and γc. Notice that m does not appear explicitly

in the action on the labels, but implicitly through the constraint ∑r
a=0 k∗

aηa = m. Thus,
we can drop the subscript m on Tc,m so long as we remember that the constraint must
be enforced. In practice, we will often drop the c subscript as well after fixing a c such
that Tc,m generates Z(G).

We can then consider fluctuations about center symmetric points, letting η = η0 + δ,
where η0 is invariant under the action of the center defined above.27 We see that the resulting
action of the center on δ is just the Weyl group element wΠc ◦ wΠ,

wΠc ◦ wΠ(η0 + δ) + mw∗
c = [wΠc ◦ wΠ(η0) + mw∗

c ] + wΠc ◦ wΠ(δ) = η0 + wΠc ◦ wΠ(δ).

Thus, the center of G is also isomorphic to just the Weyl group part of Z(G),

Z(G) ∼= {1} ∪ {wΠc ◦ wΠ | −w∗
c · α0 = 1} .

Note that the above action of the center could be obtained from Z(G) by simply setting m = 0.

An example: SU(N). The center of SU(N) is ZN , and each Kac label is one, so every c

from 1 to N − 1 appears in Z(SU(N)). By either brute force, or using the fact that wΠc must
permute the nodes of the extended Dynkin diagram in a way which preserves the diagram
and swaps the 0th and cth nodes, we find that wΠc acts as

wΠc(αa) = −αc−a mod N .

Similarly, we find that wΠ acts as

wΠ(αa) = −αN−a mod N .

27Note that we can always find such an invariant point, one of which is the vacuum of the scalar holonomy
in SYM. See [22] for explicit expressions for the center invariant points for all the relevant groups.
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Thus, the combined action wΠc ◦ wΠ is given by

wΠc ◦ wΠ(αa) = αa+c mod N

Thus, we see that for any N we can either take wΠN−1 ◦ wΠ or wΠ1 ◦ wΠ to generate ZN .
The defining representation of SU(N), often called the fundamental representation, has

highest weight w1. To determine the ZN generator we just need to find the center element
e2πiw∗

c ·H which has order N in the fundamental representation. In other words we need to
find c such that Nw∗

c · w1 ≡ 1 mod N . For SU(N) the inner product between co-weights
and weights is given by

w∗
a · wb = min(a, b)(N − max(a, b))

N
,

so we see that taking c = 1 or c = N gives Nw∗
c · w1 ≡ 1 mod N , and thus we can say that

e2πiw∗
c ·H for both c = 1, N − 1 generate the ZN center of SU(N).

B.2 Charge conjugation

Typically, charge conjugation is taken to act on gauge fields by complex conjugation and
reversing the sign: A → −A∗. For a basis of self-adjoint gauge group generators, T a = (T a)†,
we have A = AaT a, where Aa are real 1-forms. Then, we can take charge conjugation
to act completely on the generators as T a → −(T a)T . We write A in terms of Cartan
generators and root vectors,

A = A · H +
∑
α∈∆

AαEα,

where in the defining representation the Cartan generators are taken to be real and symmetric,
and the root vectors are taken to be real so that (Eα)T = E−α, requiring (Aα)∗ = A−α.
Acting with charge conjugation we see that H → −H and Eα → −E−α, or equivalently
A → −A and Aα → −A−α. The field strength then transforms in the same way. We
can then consider a Cartan field like we did for the center, η ∈ Rr/(W ⋉ mΛ∗

r), defined
within T̂ (B.2). We can think of this Cartan field as coming from the gauge field, like the
holonomy or dual photon in SYM, so we take it to transform under charge conjugation in the
same way, η → −η. We see however that such a transformation does not preserve T̂ , but
if supplemented by the Weyl transformation wΠ, which in the gauge field picture is just a
constant gauge transformation, the action of charge conjugation does preserve T̂ ,

C : η → −wΠ(η).

We note that this definition of charge conjugation also corresponds to the notion of charge con-
jugation in representation theory. If we have an irrep Rλ, with highest weight λ, then the con-
jugate representation, obtained by complex conjugation from Rλ, has highest weight −wΠ(λ).

B.2.1 The special case of Spin(4n)

For Spin(4n) we find that −wΠ is trivial, yet we can still define a non-trivial “charge
conjugation” symmetry as the group of symmetries of the Dynkin diagram which preserves
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the affine node.28 For n > 2, the charge conjugation symmetry is Z(0)
2 and acts on the Cartan

degrees of freedom by swapping α+ ↔ α−, and on the non-Cartan by swapping Eα+ and Eα− .
In the SO(4n) representation, this is done by a diagonal matrix with determinant -1. For
n = 2, the charge conjugation symmetry is S3, the group of permutations on {α1, α−, α+}.

B.3 All groups

SU(N)

The extended Dynkin diagram for SU(N) with our labelling conventions is

α0

α1 α2 αN−2 αN−1

1
1 1 1 1

,

where all the dual Kac labels are one as indicated above the nodes. The inner product
between weights and co-weights is

w∗
a · wb = min(a, b) (N − max(a, b))

N
.

From table 9, and discussed above, we can take the ZN center to be generated by either
c = N − 1 or c = 1, but here we will take c = N − 1, where γN−1(a) = N − 1 − a. The
N -ality of the irreducible representation Rλ with λ = ∑N−1

a=1 λawa is

N -ality(λ) = Nw∗
N−1 · λ mod N ≡

N−1∑
a=1

aλa mod N.

Consider now an arbitrary µ = ∑N−1
a=1 µawa, with ∑N−1

a=0 µa = m. The action of T =
TN−1,m on µ is

T (µ) = wΠN−1 ◦ wΠ(µ) + mw∗
N−1 =

N−2∑
a=1

µa+1wa + µ0wN−1,

or in other words,

T : µa → µa+1 mod N .

From table 9, we see that C acts on µ as

C(µ) =
N−1∑
a=1

µawN−a =
N−1∑
a=1

µN−awa,

or equivalently,

C : µa → µN−a mod N .

28This is also true for the other groups with charge conjugation, except in those cases −wΠ is non-trivial
and indeed does generate the charge conjugation symmetry.

– 45 –



J
H
E
P
0
8
(
2
0
2
4
)
0
5
8

Sp(N)

The extended Dynkin diagram for Sp(N) with our labelling conventions is

α0 α1 α2 αN−2 αN−1 αN

1 1 1 1 1 1
,

where all the dual Kac labels are one as indicated above the nodes. The inner product
between weights and co-weights is

w∗
a · wb =


min(a, b) a < N

b

2 a = N
.

The Z2 center is generated with c = N . The N -ality of the irreducible representation Rλ

with λ = ∑N
a=1 λawa is

N -ality(λ) = 2w∗
N · λ mod 2 ≡

⌊(N−1)/2⌋∑
a=0

λ2a+1 mod 2.

Referring to table 9, the action of T = TN,m on µ = ∑N
a=1 µawa is

T (µ) = wΠN
◦ wΠ(µ) + mw∗

N =
N∑

a=1
µawN−a,

or
T : µa → µN−a.

From table 9, the action of C is trivial.

Spin(2N)

The extended Dynkin diagram for Spin(2N) with our labelling conventions and corresponding
dual Kac lables is

α0

α1

α2 α3 αN−3

αN−2

α−

α+

1

1

2 2 2 2

1

1

.

The inner product between weights and co-weights is

w∗
a · wb =



min(a, b) a, b ≤ N − 2
a

2 a ≤ N − 2 < b

b

2 b ≤ N − 2 < a

N

4 − |b − a|
2 a, b ≥ N − 1

.

For convenience, we take w− = wN−1 and w+ = wN .
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N odd. The Z4 center symmetry is generated by both c = ±. The N -ality of the irreducible
representation Rλ with λ = ∑N

a=1 λawa generated by c = ± is

N -alityc=±(λ) = 4w∗
± · λ mod 4 ≡ 2

(N−3)/2∑
a=0

λ2a+1 + Nλ± + (N − 2)λ∓ mod 4.

From table 9, the action of T± = T±,m on µ = ∑N
a=1 µawa is

T±(µ) = wΠ± ◦ wΠ(µ) + mw∗
± = µ1w± + µ∓w1 + µ0w± +

N−2∑
a=2

µawN−a,

or

T± :
{

µ0 → µ± → µ1 → µ∓

µa → µN−a 2 ≤ a ≤ N − 2
.

From table 9, we see that C acts on µ as

C(µ) =
N−2∑
a=1

µawa + µ−w+ + µ+w−,

or equivalently,

C : µ+ ↔ µ−.

N even. The Z±
2 factor of the Z+

2 ×Z−
2 center symmetry is generated by c = ±. The N -ality

with respect to Z±
2 of the irreducible representation Rλ with λ = ∑N

a=1 λawa is

N -ality±(λ) = 2w∗
± · λ mod 2 ≡

(N−4)/2∑
a=0

λ2a+1 + N

2 λ± + N − 2
2 λ∓ mod 2.

From table 9, the action of T± = T±,m on µ = ∑N
a=1 µawa is

T±(µ) = wΠ± ◦ wΠ(µ) + mw∗
± = µ1w∓ + µ∓w1 + µ0w± +

N−2∑
a=2

µawN−a,

or

T± :


µ0 ↔ µ±

µ1 ↔ µ∓

µa ↔ µN−a 2 ≤ a ≤ N − 2
.

As discussed above, C is trivial, but a charge conjugation operation may still be defined.
See section B.2.1 for specific details.

Spin(2N + 1)

The extended Dynkin diagram for Spin(2N + 1) with our labelling conventions and corre-
sponding dual Kac labels is

α0

α1

α2 α3 αN−2 αN−1 αN

1

1

2 2 2 2 1
.
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The inner product between weights and co-weights is

w∗
a · wb =

min(a, b) b < N
a

2 b = N
.

The Z2 center symmetry is generated by c = 1. The N -ality of the irreducible representation
Rλ with λ = ∑N

a=1 λawa is

N -ality(λ) = 2w∗
1 · λ mod 2 ≡ λN mod 2.

Referring to table 9, the action of T = T1,m on µ = ∑N
a=1 µawa is

T (µ) = wΠ1 ◦ wΠ(µ) + mw∗
1 = µ0w1 +

N∑
a=2

µawa,

or
T : µ0 ↔ µ1.

From table 9, the action of C is trivial.

E6

The extended Dynkin diagram for E6 with our labelling conventions and corresponding
dual Kac labels is

α1 α2 α3 α4 α5

α6

α0

1

1 2 3 2 1

2

.

The inner product between weights and co-weights, written as a matrix, is

[w∗
a · wb] =



4/3 5/3 2 4/3 2/3 1
5/3 10/3 4 8/3 4/3 2
2 4 6 4 2 3

4/3 8/3 4 10/3 5/3 2
2/3 4/3 2 5/3 4/3 1
1 2 3 2 1 2


a,b

.

The Z3 center symmetry is generated by c = 1 or c = 5, but here we take c = 1. The N -ality
of the irreducible representation Rλ with λ = ∑6

a=1 λawa is

N -ality(λ) = 3w∗
1 · λ mod 3 ≡ λ1 + λ4 + 2(λ2 + λ5) mod 3.

Referring to table 9, the action of T = T1,m on µ = ∑6
a=1 µawa is

T (µ) = wΠ1 ◦ wΠ(µ) + mw∗
1 = µ0w1 + µ6w2 + µ3w3 + µ2w4 + µ1w5 + µ4w6

or

T :
{

µ0 → µ5 → µ1 → µ0

µ2 → µ6 → µ4 → µ2
.

– 48 –



J
H
E
P
0
8
(
2
0
2
4
)
0
5
8

From table 9, the action of C is

C(µ) = µ1w5 + µ2w4 + µ3w3 + µ4w2 + µ5w1 + µ6w6,

or

C :
{

µ1 ↔ µ5

µ2 ↔ µ4
.

E7

The extended Dynkin diagram for E7 with our labelling conventions and corresponding
dual Kac labels is

α1 α2 α3 α4 α5 α6

α7

α0

1 2 3 4 3 2 1

2

.

The inner product between weights and co-weights, written as a matrix, is

[w∗
a · wb] = 1

2



4 6 8 6 4 2 4
6 12 16 12 8 4 8
8 16 24 18 12 6 12
6 12 18 15 10 5 9
4 8 12 10 8 4 6
2 4 6 5 4 3 3
4 8 12 9 6 3 7


a,b

.

The Z2 center symmetry is generated by c = 6. The N -ality of the irreducible representation
Rλ with λ = ∑7

a=1 λawa is

N -ality(λ) = 2w∗
6 · λ mod 2 ≡ λ4 + λ6 + λ7 mod 2.

Referring to table 9, the action of T = T6,m on µ = ∑7
a=1 µawa is

T (µ) = wΠ6 ◦ wΠ(µ) + mw∗
6 =

6∑
a=1

µ6−awa + µ7w7

or
T : µa ↔ µ6−a, 0 ≤ a ≤ 6.

From table 9, the action of C is trivial.

E8

The extended Dynkin diagram for E8 with our labelling conventions and corresponding
dual Kac labels is

α1α2α3α4α5α6α7

α8

α0

12345642

3

.
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The inner product between weights and co-weights, written as a matrix, is

[w∗
a · wb] =



2 3 4 5 6 4 2 3
3 6 8 10 12 8 4 6
4 8 12 15 18 12 6 9
5 10 15 20 24 16 8 12
6 12 18 24 30 20 10 15
4 8 12 16 20 14 7 10
2 4 6 8 10 7 4 5
3 6 9 12 15 10 5 8


a,b

.

There is no center symmetry, and from table 9 C is trivial.

F4

The extended Dynkin diagram for F4 with our labelling conventions and corresponding
dual Kac labels is

α1 α2 α3 α4α0

1 2 3 2 1
.

The inner product between weights and co-weights, written as a matrix, is

[w∗
a · wb] =


2 3 2 1
3 6 4 2
4 8 6 3
2 4 3 2


a,b

.

There is no center symmetry, and from table 9 C is trivial.

G2

The extended Dynkin diagram for G2 with our labelling conventions and corresponding
dual Kac labels is

α1 α2α0

1 2 1
.

The inner product between weights and co-weights, written as a matrix, is

[w∗
a · wb] =

(
2 1
3 2

)
a,b

.

There is no center symmetry, and from table 9 C is trivial.

C Charge conjugation proof for U(u) Chern-Simons theories

Recall from equation (4.11) how charge conjugation acts on U(u)N−u,N states, and that if a
state |[λ, ξ]⟩ is charge conjugation invariant then C(λ) must be in the Zu orbit of λ under
T . In other words, there is an integer 0 ≤ m < l such that C(λ) = T m(λ), where l is the
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size of the T orbit of λ. Here we will prove the statement made in the text that if |[λ, ξ]⟩
is invariant under charge conjugation, then m cannot be odd when l is even. Taking l, and
hence u, to be even, assume towards contradiction that m is odd. We then apply T (m−1)/2

to λ to get a weight which is invariant under C up to one application of T ,

C
(
T (m−1)/2(λ)

)
= T −(m−1)/2 ◦ C(λ) = T m/2+1(λ).

We may then assume without loss of generality that m = 1, so that C(λ) = T (λ), or in other
words λa = λl−a+1. We then use equation (4.12) to get N − u = 2u

l

∑l/2
a=1 λa, so that N − u

must be an even multiple of u
l . The action of charge conjugation on our state is then

Ĉ |[λ, ξ]⟩ = |[T (λ),−ξ − (N − u − λ0)]⟩ .

If our state is Ĉ invariant, then referring to equation (4.8) we see that ξ must satisfy
ξ − λ0 − 1 ≡ −ξ − (N − u − λ0) mod N

u/l , or equivalently 2(ξ − λ0) ≡ 1 − (N − u) mod N
u/l .

Since N − u is an even multiple of u
l , and both u and l are even, we know that N

u/l must be
even, and hence there are no integers ξ which make |[λ, ξ]⟩ charge conjugation invariant.

D Proofs of claims about deconfinement on domain walls

D.1 Proofs of equations (5.1) and (5.2)

We want to prove that µ can be written as the difference of two BPS u-wall fluxes if and
only if µa = α∗

a · µ is one of {−1, 0, +1} for each a = 0, 1, . . . , r.
For the forward direction suppose that µ is deconfined so that µ = Φ1 − Φ2 for two

BPS u-walls Φ1 and Φ2. Let the domain walls be such that Φi = ∑r
a=1 qi

awi − u
c2

ρ, with
qi

a = α∗
a · Φi + u

c2
∈ {0, 1} for a = 0, 1, . . . , r by the BPS condition (3.3). The condition

µ = Φ1 − Φ2 tells us that µa ≡ α∗
a · µ = q1

a − q2
a must be in the set {−1, 0, +1}.

For the other direction suppose that µa ∈ {−1, 0, +1}. To show that µ is deconfined we
just have to show that there are two BPS u-walls, Φ1 and Φ2, such that µ = Φ1 − Φ2. To
that end, let Φi = ∑r

a=1 qi
awi − u

c2
ρ as before, and define qi

a in the following way,

q1
a =


1 µa = 1
0 µa = −1
qa µa = 0

q2
a =


0 µa = 1
1 µa = −1
qa µa = 0

,

which automatically guarantees that q1
a − q2

a = µa. Note that at this point, qa ∈ {0, 1}
but is not otherwise constrained. Now we just have to show that we may choose u and qa

such that both the Φi are BPS. To proceed, let ζ ∈ Sr+1 be a permutation on the labels
{0, 1, . . . , r} so that µζ(a) is

µζ(a) =


+1 a = 0, 1, . . . , m − 1
−1 a = m, . . . , l

0 a = l + 1, . . . , r

.
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Because ∑r
a=0 k∗

aα∗
a = 0, we know that 0 = ∑r

a=0 k∗
aµ∗

a = ∑m−1
a=0 k∗

ζ(a) −
∑l

a=m k∗
ζ(a), so we

automatically get ∑r
a=0 k∗

aq1
a = ∑r

a=0 k∗
aq2

a. We then simply take u = ∑r
a=0 k∗

aqi
a and we’ve

proved equation (5.1). To get the full set of allowed values of u, we simply consider all
possible values of qζ(a>l), giving us equation (5.2).

D.2 Finding weights of all N-alities

To find weights of all N -alities we use the fact that every irreducible representation, Rλ, is
labelled by its highest weight, λ which must be dominant.29 Further, we use the well known
result that a dominant weight µ is a weight of Rλ if and only if λ ⪰ µ and λ − µ is in the
root lattice, or in other words if w∗

a · (λ − µ) is a non-negative integer for each a = 1, . . . , r.
We may apply this result to an arbitrary weight ν by first applying a Weyl group element
which makes ν dominant, wν , and then checking if wν(ν) is a weight of Rλ, remembering
that the set of weights of a representation is invariant under the Weyl group.

Note that the fact that weights of an irrep have the same N -ality as the highest weight,
as noted in appendix B.1, allows us to check if a dominant weight µ is a weight of Rλ by
verifying that N -ality of Rµ is the same as that of Rλ, along with checking that λ ⪰ µ.

An example: Sp(N). Recall from appendix B.3 that the N -ality of Rλ is

N -ality(Rλ) = 2w∗
N · λ mod 2 =

⌊(N−1)/2⌋∑
j=0

λ2j+1 mod 2.

We claim that w2 is a weight of all N -ality 0 representations and w1 is a weight of all
N -ality 1 representations. We will just prove the first claim, as the proof of the second
is essentially identical.

We start with an N -ality 0 representation Rλ. To see that w2 is a weight of Rλ we
have to show that w2 has N -ality 0, which is clear from the inner product above, and that
λ ⪰ w2. Using the inner product above, we calculate w∗

a · (λ − w2),

w∗
a · (λ − w2) =



N∑
b=1

λb − 1 a = 1

N∑
b=1

min(a, b)λb − 2 2 ≤ a < N

⌊(N−1)/2⌋∑
b=1

(
j + 1

2

)
λ2j+1 +

⌊N/2⌋∑
j=1

jλ2j − 1 a = N

.

For a = 1, we see that the only way to get a negative result is if λ vanishes, which by
assumption does not happen. For 2 ≤ a < N and a = N , we would need λ = w1 in order
to get a negative result, which does not have N -ality 0 so can be ruled out, thus showing
that w2 must be a weight of Rλ.

29A weight is dominant when it has only non-negative coefficients when written as a sum of fundamental
weights. Equivalently, λ is dominant if and only if α∗

a · λ ≥ 0 for all a = 1, . . . , r.
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