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1 Introduction

N =1 supersymmetric Yang-Mills theory (SYM) in four dimensions has been a remarkably
useful testing ground for studying QCD-like theories due to its similarity to pure Yang-Mills
and its tractability owing to the supersymmetry nonrenormalization theorems. The Zo.,
0-form discrete chiral symmetry of SYM is spontaneously broken down to Zs leading to c2
vacua, where cg is the dual Coxeter number of the gauge group. The vacua may be labelled
by integers n = 0,1,...,co — 1 and are physically distinguished by the phase of the gluino
condensate, (A\), = e2min/c2 A3 with A the strong coupling scale. Thus, there are domain
walls between the Zy.,-breaking vacua. Importantly, the precise physics of the domain walls
depends only on the difference between the vacua at the two sides of the domain wall. As such,
we call a domain wall interpolating between vacua n and n+w a u-wall. Domain walls in SYM,
and in particular BPS (Bogomolnyi-Prasad-Sommerfeld, or lowest tension) domain walls, have
been studied from a variety of perspectives, see [1-6] for a highly incomplete list of references.

The low energy physics of SYM in the presence of a BPS domain wall is thought to be
described by a topological quantum field theory (TQFT) which lives on the domain wall
worldvolume, separating the two vacua in the bulk. In this framework, for each value of
u, the physics of u-walls is described by a TQFT which depends on both u and the gauge
group. In these TQFTs the states of the Hilbert spaces are associated with the domain
walls. Furthermore, the TQFTs must have the same symmetries as the u-walls, namely
center symmetry and charge conjugation, and the mapping between the set of u-walls and
the corresponding TQFT Hilbert space ought to preserve those symmetries and their 't
Hooft anomalies.

In this paper, we study the domain walls in SYM and their worldvolume TQFTs using the
fact that when one of the spatial dimensions is compactified on a small circle, SYM abelianizes
and the non-perturbative physics is accessible to semiclassical studies [7-10]. In particular
confinement is understood to be due to the proliferation of magnetic bions comprised of
monopole-instantons [9, 10]. More recently, using semiclassical anaylses studies have shown
that heavy (probe) quarks of any non-zero N-ality can be deconfined on domain walls in SU(N)
SYM, showing that confining strings can end on domain walls [4, 5, 11]. The semiclassical
deconfinement mechanism provides an explicit realization of the mixed 0-form/1-form 't Hooft
anomaly between the discrete chiral symmetry and center symmetry [5, 12].

Here we continue that work for all gauge groups. In particular, we find the number of
BPS domain walls and their fluxes for all u-walls with every gauge group G using semiclassics.
Our counting of domain walls matches results found using more formal tools [1, 2]. Further,
we study how the domain walls transform under the global symmetries of SYM. More
specifically, the domain walls form a representation of the global symmetry group which
is understood by computing its characters.

To verify that a given proposed u-wall TQFT [6, 13] is correct we proceed as follows. We
first semiclassically identify all the BPS u-walls of SYM compactified on R3 x S! and note



how they transform under the appropriate symmetries. These data comprise the semiclassical
Hilbert space of the domain wall worldvolume theory. We then compare our semiclassical
Hilbert space to the Hilbert space of the proposed TQFT, checking both the dimension and
the symmetry transformations. Concretely, in refs. [6, 13] it was proposed that the worlvolume
TQFT of u-walls in SYM with gauge group G is three dimensional N’ =1 SYM, also with
gauge group G, with a supersymmetric Chern-Simons term at level ¢o/2—u. Here we explicitly
verify these proposals for SU(NN) and Sp(NN) gauge groups, using semiclassical means. We
also use our semiclassical results to propose a new worlvolume TQFT for the 6-walls of Fjg.

1.1 Summary of results

1. We find all BPS domain wall fluxes for all simple gauge groups. This extends the
work of [5] to all gauge groups and the results agree with previous BPS-wall counting
arguments [1, 2].

2. We semiclassically verify the proposed domain wall TQFTs for SU(NV) and Sp(N) gauge
groups (put forth by [6, 13]), via a detailed comparison of the TQFT Hilbert space on
a torus to the semiclassical u-wall properties.

o Using our semiclassical analysis, we calculate the characters of the representations
of the global symmetries formed by the u-walls of SU(V) and Sp(N) SYM, as well
as all other gauge groups for completeness. The results are summarized in tables 2
and 3 for SU(V) and Sp(IN) respectively.

o Starting from the canonical quantization on T? described in, for example, ref. [14],
we construct the Hilbert spaces of the proposed (in [6, 13]) u-wall worldvolume
TQFTs for SU(N) and Sp(N) explicitly. For SU(N) this construction is quite
technical because the worldvolume TQFT is U(u) Chern-Simons theory, which
involves first constructing the Hilbert space of SU(u) x U(1) Chern-Simons theory,
then taking the Z, quotient.

¢ We compute the characters of the Hilbert spaces of the worldvolume TQFTs.
The results are given in equations (4.13), (4.14), (4.18), and (4.19) for SU(N),
and (4.20) and (4.22) for Sp(IV), showing that they agree with those calculated
using semiclassical techniques in SYM, tables 2 and 3 mentioned above. Our
results agree with calculations of the twisted Witten index! in ref. [6].
Demonstrating the agreement of the semiclassical and TQFT calculations outlined
above constitutes the main result of this paper.

¢ Note that we calculate the character of the combined action of charge conjugation
and center symmetry in SU(2N) SYM, and in the corresponding worldvolume
TQFT, which is necessary to fully describe representations of the global symmetry
and was previously missed [6].

3. We also propose, to the best of our knowledge, for the first time a domain wall TQFT for
the u = 6-walls of Eg SYM, arguing that it should be (Eg)3 Chern-Simons theory. We

'For SU(N) and Sp(N) the twisted Witten index, twisted by an element g if the global symmetry group, is
the same as the character of g up to a sign.



check this proposal in the same way as for SU(N) and Sp(N), finding agreement between
the characters of the global symmetry of the u = 6-walls of SYM, summarized in table 7,
and the Hilbert space of (Eg)s, given in equations (4.23), (4.24), and (4.25). This
proposal, combined with the hypothesis that the u-wall TQFT of four dimensional SYM
with gauge group G is three dimensional SYM with gauge group G and a Chern-Simons
term at level cy/2 — u, could shed light on the low energy phase of (Fg)s SYM.

4. We find which representations of probe quarks are deconfined on the worldvolume of
the various domain walls. For almost all groups, all representations are deconfined
on all u-walls. The exceptions are SU(N), Spin(2N), and Eg, where N-ality zero
representations are not deconfined in the worldvolume of 1- and ¢y — 1-walls. We note
that our analysis is carried out in the abelianized regime, and in particular N-ality zero
quarks will in general be deconfined in the bulk in the full theory.

1.2 Future work

We note that the construction of the torus Hilbert space for the u-wall TQFT of SU(N)
SYM, section 4.2, is already technically quite involved; hence, the extension of the work of
this paper to SYM with gauge groups other than SU(N) and Sp(N) is left for future work. It
would also be interesting to use the results here about domain wall fluxes and deconfinement
to study the confining strings of SYM on R3 x S!, extending the work done in [11] from
SU(N) to all gauge groups. Further, it might be interesting to study the Abelian large- N
limit of SU(NN) domain walls, where the semiclassical vacua become dense in field space.

1.3 Organization of this paper

In section 2 we review the basics of the dynamics of SYM on R? x S}, discussing the
abelianization of the theory and the action of both the center and charge conjugation
symmetries on the low energy Cartan degrees of freedom. In section 3 we first review the
basics of domain walls in SYM, and discuss the problem of determining which domain walls
are BPS. We then find all of the BPS domain walls of SYM in the semiclassical regime, and
study their transformations under center symmetry and charge conjugation. This comprises
all semiclassical data that we use to verify the proposal of [6, 13].

In section 4, in order to facilitate the comparison to the proposed worldvolume TQFTs,
we first review the Hilbert spaces of both Abelian and non-Abelian Chern-Simons theory on
spatial T2, studying how the states transform under center symmetry and charge conjugation.
We then explicitly construct the states in the Hilbert space of the proposed u-wall TQFTs
for SU(N) and Sp(V), and one theory for Eg. We show that these states furnish the same
representations of the global symmetries as the semiclassical u-walls described in section 3,
providing an explicit semiclassical check of the proposal [6, 13].

In section 5 we study the deconfinement of quarks on domain walls, characterizing
the deconfinement of quarks by N-ality for all groups. Supplementary proofs are given
in appendix D.

All of the necessary group theory, and the accompanying notation, used throughout
this paper is reviewed in appendix A. Appendix B reviews how center symmetry and



charge conjugation act on physical degrees of freedom, and gives the specific data of these
symmetries needed for computations.

2 Review of SYM on R? x S}

2.1 EFT and vacua

For small SIL size L, such that coAL < 27 where ¢o is the dual Coxeter number of the gauge
group? and A is the strong coupling scale, SYM abelianizes, breaking G' down to its maximal
torus, U(1)", where r is the rank of the gauge group. In the abelianized regime, U(1)" is
generated by a choice of Cartan subalgebra, spanned by r mutually commuting generators
H',H? ... H", which we arrange into H = (H"',..., H") (see appendix A for more details).
Upon integrating out the massive Kaluza-Klein modes, the remaining bosonic degrees of
freedom are the holonomy scalar, ¢ = ¢- H ~ ¢u A, and the dual photon, o = - H. The full
low energy description is given by a generalized Wess-Zumino model [15], where the K&hler
metric is the identity up to subleading corrections which are negligible in the semiclassical
limit, see [16] for 1-loop corrections. The dual photon is related to the R? field strength via
the duality transformation F* = %5“””@,0, where ¢ is the SYM coupling at the scale of
order 1/L. After shifting the fields to be centered around the center-symmetric vev, the low
energy bosonic action is compactly written in terms of the complex scalar z = i(o + T¢)

where 7 = % + % is the usual complexified coupling, as
2 *
_ [ gt TEOW oW
S—/d x M (@z otz 192 .7 | (2.1)
where W (z) is the superpotential given by
T
W(z) =) kie?, (2.2)

a=0

where o are the simple (1 < a < r) and affine (e = 0) co-roots, and k) are the dual
2
Kac labels, defined by Y ;_qkja = 0 with k§ = 1. The scales are set by M ~ % and

m ~ Me=87"/(9°¢2)  There are ¢y classical vacua given by z, = 2’;;"p, up to 2mi additions of

weights as explained below, where p is the Weyl vector, given by the sum of the fundamental

weights. For more background on Cartan subalgebras and the notation used throughout
this paper, see appendix A.

After fixing ¢ to be in the Cartan, we may still perform large gauge transformations
which wind around the S!, allowing us to shift ¢ by 27 times a co-root. Further, we may
perform constant gauge transformations which preserve the Cartan, ie the Weyl group W3
noting that o also transforms under constant gauge transformations since o ~ F. Thus,
the moduli space for ¢ is

R'f’

M‘p:WxA;t’

2The dual Coxeter number can be understood in many ways, but perhaps the most familiar in the context
of physics is as the Dynkin index of the adjoint representation.

3See appendix A.1 for explicit construction of the gauge transformations which correspond to Weyl
group elements.



where A7 is the co-root lattice, representing co-root translations. Note that we have the
semi-direct product W x A% because the Weyl group and co-root shifts do not commute.*
The fundamental domain for ¢, the region where no two points on the interior are identified
via W x AY, is given by

Tlo:{veRr\aZ-'sz, a=1,...,r, —ay-v < 2m}.

The moduli space of the dual photon is similar, except that o is identified with 27 times
any weight,? so the appropriate moduli space is

R?‘

M”:WMAU,’

where A,, is the weight-lattice. The fundamental domain for o is given by
Ty={veR |0<a v<2m a=1,...,r}.

2.2 Symmetries

Two important Weyl group elements. We will show below that the action of the relevant
global symmetries, center symmetry in the S' direction and charge conjugation, on the
Cartan degrees of freedom will ultimately come from two special Weyl group elements. These
elements are described in more detail in appendix A.2, and their actions for each group are
summarized in table 9. The first, which is relevant for both center symmetry and charge
conjugation, we call wrr because it is the unique Weyl group element which maps the set of
simple roots, Il = {a, | a = 1,..., 7}, to itself with a sign flip. In other words, wi maps II to
—1II setwise, meaning that there is a (not necessarily non-trivial) permutation @ € S, 41,% such
that wir(aa) = —Q5 (). Note that we chose @ to be a permutation of r + 1 elements and not
r so that we could capture the action of wyy on the affine root. It is not too hard to show that
wyr must flip the sign of the affine root, so that w(0) = 0. Since the only Weyl group element
which preserves II is the identity, we see that wr, and hence w, must have order 2. Finally,
it will be important to note that w preserves the dual Kac labels, in other words k) = k;( a)"

The second special Weyl group element is relevant only for center symmetry. We call
it wy, because, similar to wr, it is the unique Weyl group element which maps II \ {a.}
to —(IT'\ {a.}). Here 1 < ¢ < r is an index such that the Kac label k. is unity and a is
a long root.” Like wiy, we capture the action of wy, with a permutation . € S,;1 such
that wrr, (@) = —a, (o). In addition to mapping I\ {a.} to — (IT\ {e}), wi, maps a.

“This is fairly easy to see with an example: first shift by a* then do a simple Weyl reflection sg to get
sglp+a”)=p+a"— (B (p+a”))B". Doing the transformation in the opposite order gives something else:
sg(p)+a* =p+a* —(B-¢)B*. Notice that the two differ by —(8 - @*)B*, and hence in general are not the
same transformation. Note that for convenience factors of 27 have been omitted here.

5This identification comes from the introduction of ¢ as a Lagrange multiplier for the Bianchi identity
through the action S, = i f d*z o - 8,B", where B* = ¢"”?F,,. Since the magnetic charge over the surface
integral at spatial infinity is quantized in the co-root lattice, 7% fggo d?S,B* € A;, shifting o by anything in
2w A, does not change the path integral.

SWe call the permutation, or symmetric, group of n elements S,,.

"Note that such a c is not always possible to find; each ¢ corresponds to an element of the center of the
corresponding Lie group.



and —ayg to each other. Thus, the permutation 7, satisfies 7.(0) = ¢ and v.(c) = 0. In
the same way that wy has order 2, wy,, and hence ., also have order 2. Like w, v, also
preserves dual Kac labels.

1-form center symmetry. The S! part of the center symmetry, when it exists, acts on
Wilson loops that wind around S' by a phase. In the dimensional reduction of S}, this
action appears to be a 0-form symmetry, and hence we will sometimes refer to it as the
“0-form” center symmetry. Acting on the A4 gauge field, we can take a center element to
act by an improper “gauge transformation” g.(x) = e?™@a/Lwi-H ghifting Ay by 21 Hwy,
where w? is a fundamental co-weight and ¢ is an index chosen such that g.(L) is the desired
element of the center (refer to appendix B.1 for more details). Recall that we shifted the
holonomy scalar to be centered around the center-symmetric vev ¢, so that ¢ + @y ~ ¢ A.
Accordingly, ¢ + ¢ transforms by a shift of 27w} which does not preserve the fundamental
domain for ¢p. We remedy this by supplementing the improper gauge transformation with a
Weyl transformation, 7 = wyy, o wyy, which will also act on o. The Weyl transformation is
the unique Weyl group element which, combined with the improper gauge transformation,
preserves flp. Further, since ¢ is the center symmetric vev it absorbs the shift by 27w},
and ¢ and o simply transform by the Weyl transformation,

Z5(G) 1 2 = T(2) = wir, o wn(2). (2.3)

While the specifics depend on the gauge group, the action of 7 is to permute the simple
and affine roots,

7@ oz o .z, (2.4)

woye(a)

where w and . are discussed above. See appendix B.3 and table 9 for details for each group.
Though it will not be necessary for this work, it is worth noting that the R3 part of the
1-form center symmetry acts on Wilson lines in R? with a phase.

0-form charge conjugation symmetry. Under charge conjugation the Cartan part of
the gauge field flips sign, and hence both o and ¢ flip sign as well. The naive action of
charge conjugation does not preserve the superpotential, nor the fundamental domains for o
and . We can supplement charge conjugation with the Weyl transformation wr, so that
our new charge conjugation symmetry acts as

Zéo) 1z — C(z) = —wp(2), (2.5)

where we note that A transforms in the same way. Thus, the action of C is to permute
the simple roots and keep the affine root constant, and hence permute the terms in the
superpotential (2.2) according to w while keeping the fundamental domains for ¢ and o
constant,

Zgo) R A R (2.6)

See appendix B.2 for a more in-depth discussion including a note on Spin(4n) where C as
defined above is trivial, but a non-trivial notion of charge conjugation may still be defined.
See appendix B.3 and table 9 for the explicit action of C for each group.



3 Domain walls in SYM

One can show that the lowest energy, or BPS, domain walls satisfy the so-called BPS
equations [17],

dz’ a . OW

e Lo A 3.1
dz ~ 29 9z (3.1)
where 2 is the coordinate along the domain wall, g ~ 6% 4- ... is the inverse Kihler metric,
and « is the complex phase of W (z = 00) — W (z = —00). We call a domain wall interpolating

from z, to z,1, a u-wall, and without loss of generality we consider only n = 0, in which
case a = €™/ The energy of a BPS u-wall is given by
Epps(u) = 2mMes sin o (3.2)
2
Each domain wall is labelled by its (electric®) flux ® = 5= (z(c0) — 2(—00)). Working
within 7,,, we assume that z(—o0) = 2 is given by 2mi >"_; qaw, for ¢, € {0,1} and that

2miu
Cc2
convenient to represent domain walls by either their flux directly, or as a (r + 1)-tuple

z(00) = 2z, = p, so that each flux uniquely defines a domain wall. It will be most

(go,q1,---,qr) where qo is defined by >.!_( kg, = u. The latter representation will be
particularly useful when discussing various symmetries.

3.1 Which domain walls are BPS?

It has been argued [2, 3] that the domain walls for which X, = e®* does not wind more
than once around the origin in the complex plane, for every a = 0,1,...,r, are the BPS
domain walls. The winding number of X, is readily computed as

1 dX
winding(X,) = o /DVV Xa =—a, - P,
a

for any domain wall with flux ®. With boundary conditions z(—o0) = 2w Y., _; ¢g,w, and

z(00) = 2:;“

BPS domain walls must have ¢, = 0, 1 for each a, which introduces a non-trivial constraint on

p, the winding of X, is given by % — ¢, for all a. Thus, the argument says that

qo since Y ;o kkqe = u. The problem of finding the BPS domain walls comes down to solving

Z krqa = u, qq € {0,1}. (3.3)
a=0

The solutions are given in section 3.3 for each gauge group. Using numerics, with the same
approach as in [5], we have verified that domain walls saturate the BPS bound if and only
if equation (3.3) is satisfied, checking all domain walls with G = Sp(N) for 3 < N < 7,
G = Spin(N) for 7 < N < 14,9 as well as all the exceptional groups, noting that SU(N)
was studied in [5].

Working towards a more dynamical explanation of equation (3.3), we have numerically
solved for domain wall configurations by minimizing energy while keeping the boundaries
fixed, as done in [5], for several groups and all values of u. Then, we were able to build
“composite” domain walls by adding together two BPS domain walls, which are the domain

8The term electric flux comes from the duality relation; in the abelianized regime the R? electric field
2 .
components are dual to the spatial derivatives of the dual photon, E; = Fo; = gr—Lsij o

9Note that Spin(N) for N < 7 is isomorphic to one of the other gauge groups studied.
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Figure 1. Schematic of combining two domain walls, whose centers are separated by a distance Awx.
All scales are arbitrary.

walls that both solve the equations of motion and have energy equal to the BPS energy,
possibly reversing the orientation of one of the walls. For example, let z()(z) and z(® () be
BPS w;- and wug-walls both centered at x = 0. We can add the two walls together, separated
by a distance Az, to get a (uj + ug)-wall

ZD+2) () = (1 (x n Ax) e (m _ Al’)
2 A

so that for Az much larger than the domain wall widths, 20+ (z < 0) = z(1) (w + %) +
const and z(W+(?2) (x>0)= 22 (l‘ + %) + const, which is depicted schematically in figure 1.
In the limit of Az — oo, z(MW+(2) (z) exactly solves the equations of motion, but will cost
more energy than a BPS (u; + ug)-wall. In general, the flux of the resulting domain wall is
the sum of the fluxes of the two walls being merged, so a 1-wall and a 1-wall would combine
to form a 2-wall, a 2-wall and an anti 1-wall would combine to form a 1-wall, etc.

We then studied the energy of the resulting configuration as a function of the separation

of the two domain wall centers.!?

Figure 2(a) shows an example where there is a clear
attraction between the two domain walls being merged, and in fact corresponds to a BPS
domain wall. In contrast, figure 2(b) clearly shows that the two domain walls repel, and
suggests that the lowest energy configuration will be of two well separated BPS 1-walls.
Indeed, when minimizing the energy of a configuration with the corresponding boundary
conditions, the minimum energy is in fact the same as the sum of the two BPS 1-wall energies,
as shown in the figure. Finally, figure 2(c) shows a case where the corresponding domain wall
is not BPS, but there is a region where the two domain walls are attracted. A general model
of domain wall interactions would help elucidate this phenomenon, and it seems would show
that whenever two BPS fluxes add to another BPS flux, the interaction at short distances
is attractive, and repulsive when they do not.

The domain wall center was numerically calculated to be the position corresponding to the midpoint of
the superpotential. We note that the image of a BPS domain wall in the complex W-plane is a straight line,
which follows directly from the BPS equation (3.1).
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Figure 2. Energy of merging domain wall configurations, where each figure indicates the corresponding
gauge group and fluxes of the domain walls being merged. The two walls merged were both numerically

found to be BPS in each case. In 2(a) the overall configuration, a domain wall going from w; to %p

is BPS, while in figures 2(b) and 2(c) the resulting configurations are not BPS. Each figure shows the
BPS energy for the corresponding domain wall, as well as the sum of the BPS energies for the two
domain walls being merged. For the non-BPS domain walls, the energy corresponding to minimizing
the energy with the appropriate boundary conditions is also shown.

3.2 Action of symmetries on domain walls

“0-form” center symmetry. Domain walls, and hence their fluxes, transform under the S!
part of the center symmetry according to equation (2.3), which acts on the labels ¢, as

ZSI (G) “qaq — QWo'yC(a)' (34)
See appendix B.3 and table 9 for more details for each group.

O-form charge conjugation. Domain walls transform under charge conjugation according
to equation (2.5), and hence the labels ¢, transform as

Zg)) “qa = Qw(a)- (35)

See appendix B.3 and table 9 for more details for each group.

,10,



3.3 Counting and characterizing BPS domain walls

The domain walls form a representation of the global symmetry of SYM, which will be a
combination of charge conjugation and center symmetry. To specify the representation that
they form, we compute the characters of that representation. The character of a representation
R of a finite group G, xrg, is a function from G to C defined as

xr(9) = Tr (R(g)) .

The characters of R, computed for each g € G, fully determine the representation, and if
two representations have the same characters then they are equivalent up to isomorphism.
It is important to notice that y g is a class function, meaning that it takes the same value
across a conjugacy class,

xr(9) = xr(hgh™"), Vg,h € G.

Thus, to compute the characters of a representation of G, we simply have to compute the
character of a representative from each conjugacy class of G. We will label the conjugacy
class of g € G by [g] = {hgh™' | h € G}.

To construct the representations that the domain walls of SYM form, we first determine
the number of domain walls, say n. We then associate to each domain wall a unit vector
€; € R™. Since the global symmetries permute the domain walls, they will simply permute
the unit vectors so that the character of g € G is the number of domain walls which are
fixed by g. We will denote the character of the representation formed by u-walls of SYM
with gauge group G by x&.

In the most basic cases, charge conjugation and center symmetry are trivial, so the only
character to compute is that of the identity. In other words, the best we can do is count how
many domain walls there are. For some gauge groups charge conjugation is trivial and the
global symmetry of SYM is simply Z,,, so the characters are simply the number of domain
walls fixed by each power of the Z,, generator. Finally, in cases, except for Spin(8), where
both charge conjugation and center symmetry are non-trivial the global symmetry will be a
dihedral group, Dy, which is the group of symmetries of an N-sided regular polygon, and is
generated by a Zy rotation, 7, and a Zs reflection, C, which obey a dihedral algebra

Doy = (C,T|C* =TV =(CoT)’ =1).

When N = 2k + 1 is odd, representatives of the conjugacy classes of Doy are 1, T™ for
1 <m <k, and C. When N = 2k is even, representatives of the conjugacy classes of Doy
are 1, 7™ for 1 <m < k, C, and C oT. Thus, for both N even and N odd, we have to
count the number of domain walls fixed by 7™ and C, and when N is even we must also
count the number of domain walls fixed by C o 7.

Let us first illustrate with an example: 2-walls in SU(4). Here the rank is three, the dual
Kac labels are all unity, the center symmetry acts as 7 : ¢4 — Ga11 mod 4, and the charge
conjugation symmetry acts as C : ¢4 — G4—a mod 4- Lhe global symmetry is Dg = Zo X Zyg,
the symmetry group of the square, whose conjugacy classes are [1], [T], [T?], [C], and [C o T].
To count the number of BPS 2-walls, we need to solve

o+a+e+aa=2,q, €{01},

— 11 —



[ [7] [T% [€ [CoT]
u=2[6 0 2 2 2

Table 1. Character table for u = 2-walls of SU(NN) SYM.

which has yp(1) = (3) = 6 solutions: ¢o, = o, = 1 and g¢ay = ga, = 0 where all a; are

different. Under the ZS)’SI center symmetry (qo, q1, g2, ¢q3) is rotated to the left to become
(1,92, 93,q0)- A domain wall fixed by 7 must satisfy g9 = ¢1 = g2 = g3 which is clearly not
BPS by the above condition. 72 maps (qo, q1, 42, q3) to (g2, ¢3,qo, 1), and thus fixes two BPS
domain walls: (1,0,1,0) and (0,1,0,1). Then, xg(7) = 0 and xg(7?) = 2. Under charge
conjugation only ¢; and g3 are swapped, so there are two BPS domain walls fixed by C:
(1,0,1,0) and (0,1,0,1), giving us xz(C) = 2. Finally, Co T acts as ¢, — ¢3—q mod 4, SO there
are two BPS domain walls fixed by Co T: (1,0,0,1) and (0,1,1,0), giving xg(CoT) = 2.
Thus, the full character table of the domain walls is as shown in table 1.

In the following, we compute the characters of the global symmetries formed by the
domain walls of SYM for all gauge groups. For the specific group theoretic data used for
each group, see appendix B.3.

3.3.1 SU(N)

For SU(N), the Zg\l,)’sl center symmetry generator acts as T : ¢q — Gat1 mod N, While the
Zéo) charge conjugation generator acts as C : ¢, — ¢N—q mod N, S0 that the global symmetry
group is the dihedral group with 2N elements, Doy. The conjugacy classes for Doy are
1], [C], [T"] forn =1,..., {%J, and when N is even [C o T|. The dual Kac labels are all
unity, so equation (3.3) becomes

N-1
u= Z Ga- (3.6)
a=0

Computing the character of the identity amounts to counting solutions to equation (3.6) with
da € {0,1}. The number of solutions is the number of ways to choose u of {qo,q1,...,qn-1}
to be one, (V)

Next let us compute the character of 7". Suppose that a domain wall is invariant under
T™, so that ¢4 = ¢atn mod N- We can then ask when does the sequence {qa, Gatn, Gat2n;--- }
start repeating, or in other words when is kn = 0 mod N for a strictly positive integer k? To
see the answer, it is first helpful to write n as m ged(N, n), where m is co-prime!!
with N. It is well known from number theory that ab = 0 mod c is the same as ¢ = 0 mod ¢
whenever b and ¢ are co-prime. Thus, we have that (kgced(N,n)) m = 0 mod N is the
same as kged(N,n) = 0 mod N. The smallest postive solution is then kged(N,n) = N.
In other words, the sequence {qa, ¢at+n mod N @a+2n mod N, - - - } has W unique elements.
Furthermore, there are gcd(N, n) such sequences. Starting from Bézout’s identity it is not

too difficult to show that each ¢, for a = 0,...,gcd(N,n) — 1 are all in different sequences.

"Two integers are called co-prime when they share no common prime factors, or equivalently when their
ged is one.
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[1]  [T7) for ool |u [T7] for gl tu ] CoT]
N odd (W
N even, u odd | (V) (, ggcccﬁgfvf;g)/]v) 0 2((11%;/12) 0
N even, u even (]X//zz) (J;f//zz)

Table 2. Character table for SU(N) u-walls. When N is odd, [C o T] is equal to [C], so the characters
are not listed.

Thus, whenever a domain wall is invariant under 7" we can write equation (3.6) as

N ged(N,n)—1

- ged(N,n) 2 e

a=0

u

From basic combinatorics, there are (,, n ]%;}dg(ig’(?\),m))) solutions whenever m divides wu,
and no solutions otherwise.

To compute the character of C, we simply have to solve equation (3.6) subject to

da = gN—a mod N

N/2—-1
@0+2 Y da+anp N even
a=1
u =
(N-1)/2
0+2 D da N odd
a=1
The counting of invariant domain walls depends on whether N is even or odd. For N even
and v odd, we need go + g2 = 1 which can be done two ways, giving us u —1 =2 Ziv:/?l Qa
which has ((ZZ 21)_/12) different solutions, giving 2((]51 21;/12) possible domain walls. For N and u
even, we know that go+¢y/2 must be even implying that go = g2, giving us u = 2 Zi\zgfl Qa,

which has (Jj //22) solutions. For N odd, qq is exactly determined by u so that u — ¢ is even.

In other words, gy must be such that u — qp = 2 |u/2]. We then have |u/2]| = Z((IJL_I)U a,
giving us ((]\[;/12)]/ %) charge conjugation invariant domain walls.
When N is even, we also have to compute the character of C o 7, which acts as ¢, —

dN—a—1mod N- Requiring that a domain wall is fixed by C o T, equation (3.6) becomes

N/2—1

u=2 Z qa,
a=0

N/2
u/2

Table 2 summarizes the results in a character table for SU(N) u-walls.

so we see that u must be even, and when it is there are ( ;) solutions.

3.3.2 Sp(N)

For Sp(N), there is no charge conjugation symmetry, so we only have to consider the action

1
of the Zél) S center symmetry, ¢, — gn—q. The dual Kac labels are all unity and the rank is
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| (] (7]

N and u odd N1
™ R
[u/2]

Table 3. Character table for Sp(N) u-walls.

Otherwise

N, so the counting of domain walls is the same as SUN + 1), xa? V(1) = (V). Requiring

that domain walls are invariant under the center, equation (3.3) becomes

N/2-1

2 Z da+qnj2 N even
_ a=0

(N-1)/2

2 Z a N odd

For N even, g/, is determined so that u—qy/, is even, satisfying u—qy 2 = 2 [u/2]. We then

have 2 |u/2| = 2 ZN/Q ! 4u, which has (L //2J) solutions. For N odd, we see that there will

be no center-invariant domain walls if u is odd, and for u even there are ((N:[/lg/ 2) solutions.

Table 3 summarizes the results in a character table for Sp(N) u-walls.

3.3.3 Spin(2N)

For both N even and N odd, except N = 4 which is treated separately below, the global
symmetry is the dihedral group of order eight. The specific structure of the group with
respect to center and charge conjugation generators differs between the two cases however,
since for IV even the center is Zo X Zgy while for N odd it is Z4. In both cases however, charge
conjugation acts the same and the counting of domain walls is the same, so we can compute
the characters of the identity and charge conjugation without having to specify N even or
odd. The BPS condition for Spin(2N) is given by

N-2
u=q@+qa+q-+q+2>  qa (3.7)

a=2
Counting the number of solutions is easier when we split into cases of u even/odd. First
for u even, we could have go + ¢1 + ¢— + ¢+ = 0,2,4 which can be done one, six, and
one way respectively. For each of these, we’ll have u — (o + ¢1 + g— + ¢4+) = 2 Ea > Ga
which has ( N—3 ) /2) solutions. Putting the two pieces together, we find that

(u—(qo+q1+g9—+q+
the number of u-walls is

N -3 46 N -3 n N-3\ (N-1 4 N -3
u/2 u/2 —1 u/2—-2)  \ u/2 u/2—-1)°
For uw = 2, the third term on the left doesn’t contribute, but the right hand side is still

valid, similarly for u = 2(IN — 2) = ¢o — 2 the left hand side isn’t technically correct, but
the right hand side is valid.
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For u odd, we could have ¢y + g1 + ¢— + g+ = 1,3 both of which can be done four
N-3

ways. Then, we have u — (g0 + q1 + ¢— + q+) = 232N=? g, which has ((u—(qo+q1+q_+q+))/2)

solutions. Thus, the total number of u-walls is

N -3 N -3 N —2
4<(u— 1)/2) +4<(u—3)/2> :4<(u— 1)/2)'

For v = 1 the second term on the left hand side is not valid, but the right hand side still
holds, similarly when u = 2N — 3 = ¢ — 1 the first term on the left hand side is not valid,
but again the right hand side holds. Thus, we find for general w,

(N_1> +4<N_3> U even
pmenmy = |\ U vt : (3.8)

N -2
4<(u— 1)/2> u odd

Charge conjugation acts by swapping ¢+ and q_, so a domain wall invariant under charge

conjugation has ¢ = ¢4 which modifies equation (3.7) to be
N-2
u=qo+aq +2 (Z qa+q_>.
a=2

For u even we necessarily have gg+q; even, which implies ¢y = ¢1 giving us u =2 (Zi\f:—f Qa —I—q_>
which has (]X /_21) solutions. For u odd, gy + ¢ is odd so we have ¢y = 1 — ¢ giving us

u—1=2 (252_22 Qo + q_), which has ((uji 1)2/2) solutions. Combining these we get

N -1
n
w2 u eve

N —2 '
((u—l)/2> u odd

In general, the dihedral group of order 8 is generated by a Zy “reflection”, s, and a Z4

ASPin(N) () — (3.9)

“rotation”, 7, such that (sr)2 = 1. The conjugacy classes are [1], [s], [r], [?], and [sr]. For
both N even and N odd, we identify C with s. When N is odd the center is Zil)’gl, so T
naturally is identified with 7, and acts by cycling ¢ — g— = ¢1 — ¢+ — qo and g, = gN—q
for 2 <a < N —2. When N is even the center is Z; X Zs , where each Zét is generated by
T+ which acts by swapping gy < ¢+, q1 < g+, and qq <> qN—q for a =2,..., N — 2. Clearly
neither of 7# can be identified with r since they have order two, but C o 7+ has order four
and can be identified with r. Further, C o 7' acts exactly the same way as 7 did when N
was odd. Thus the equivalence classes of the dihedral group are

[T N odd
= {[C oT*t] N even
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] {[TQ] N odd
[TtoT~] N even
Co N odd
[sr] = {{Tﬂﬂ N over (3.10)

where r and s act the same way on domain walls for N even and odd. Now we just have
to compute the characters of r, 72, and sr. First, as described above, 7 acts by cycling
4o, 49—, q1,q+ and swapping g, with gn_, for a =2,..., N — 2, so that when a domain wall
is invariant under r equation (3.7) becomes

(N-1)/2
4 Z Qa N odd
v= N/2-1
4 Z da +2qn/2 N even
a=1

When N is odd, the number of invariant domain walls is ((N;/lél)/ 2) for u a multiple of four

and zero otherwise. When N is even, domain walls can only be invariant when u is even.
Further, qy/9 is determined by whether u/2 is even or odd, so that u/2 — qn/e = 2 [u/4] is

even. From the remaining N/2 — 1 degrees of freedom we can construct ( L/ /ZJ ) invariant

domain walls. Thus we find
<(N B 1)/2> N odd, v = 0 mod 4
u/4

Xipln(QN)( ) = (N/2 -1
[u/4]

0 otherwise

) N, u even

Next 72 acts on domain walls by swapping qo <+ q1 and ¢_ < ¢, so invariant domain
walls satisfy

N-2
U =2 Z Qo+ 2q_—.
a=1

We see that u must be even, and that there are XSpm(2N)( 3 = (N /21) invariant domain walls.
Finally, sr acts by swapping qg <> ¢+, q1 <> q—, and qg <> qnv—q for a = 2,..., N — 2.

Domain walls invariant under sr satisfy

(N-1)/2
20+ q)+4 ). da N odd
a=2
v= N/2-1
2 (QO +q+ QN/Q) +4 Z Ga N even

a=2

Clearly u must be even in order to have invariant domain walls. For N and v/2 odd go+¢1 = 1

which can be done two ways, and u/2 — 1 = 2 Z(N L/2 qq which has ((572731))//22) solutions,
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(1] [s] [r] [r?] [s7]
N odd, v = 0mod 4 ((Nu—/l4)/2) ((Nu_/14)/2)
N odd, u = 2 mod 4 0 ((N ) /2)

N-1y o 4(N-3 N-1 N—1 [u/4]
B Capz) T4Gp0) (o) (ay2) N/2-2 Nj2—2
N even, u = 0 mod 4 (N/2—1) ( u/4 )+ ((u—4)/4)
Lu/4] —

N even, u = 2 mod 4 (1\[7/54JQ) + ([(111’124)/24J)
u odd ((uN1)2/2) ((UJXI;/Z) 0 0 0

Table 4. Character table for Spin(2N) u-walls for N > 4, where the relations between r and s which
generate the global Dg symmetry and C and 7 which generate charge conjugation and the “0-form”
center symmetry are given by (3.10).

giving us (((172 31))//22) invariant domain walls. For N odd and u/2 even we must have g = ¢1,

giving us ((Nu—/14)/ 2) invariant domain walls. For N even and u/2 odd, go + q1 + qn/2 must be
odd, with either go +¢1+¢x/2 = 1, which can be done three ways, or o+ q1 + qn/2 = 3, which

N/2 1

can only be done one way. We then have u/2 — (qo + q1 + qn/2) = 2>°,25  da, which has

((U/z_(q;\‘[f‘/jlﬁqN/z))/Q) solutions. For N and w/2 even, qp + ¢1 + qn/2 must be even, with either

g0+ q1+ qn/2 = 0, which can be done one way, or qo + g1 + qn/2 = 2, which can be done three
/2 1 . N/2—2

ways. We then have u/2 — (qo + q1 + qny2) = 23,25 ¢ Which has ((u/2—(qo+q1+qN/2))/2)

solutions. Then, the character of sr is given by

<(N;/i)/2> N odd, ©u = 0 mod 4
2 <((]Z_;))//42> N odd, u =2 mod 4

XEPIH(QN)( ) = <N/UQ/; 2) + 3(55/_24_)/24) N even, u = 0 mod 4

N/2 -2 N/2 -2 — 9 mo
3<(u—2)/4>+<(u—6)/2> N even, u =2 mod 4

0 otherwise

Table 4 summarizes the results in a character table for Spin(2/N) u-walls.

When N = 4 the charge conjugation symmetry becomes S3, the group of permutations of
{q1,9-,q+}. Along with the Z; X Zs center symmetry, the total symmetry group is Sy, the
group of permutations of {qo, q1,q—,¢+}. The conjugacy classes of Sy are [1], [(q0oq1)(q—q+)],
[(q0q19-)], [(q0q1)], and [(goq1g—q+)].*2 The character of the identity is unchanged from
the larger N cases. The rest of the characters may be worked out by hand, to produce
the character table 5.

2We use a standard notation for permutation group elements, where (z1x2...xz,) is the element which
maps r1 — T2, T2 — T3, and so on until x, — x1. These cycles may be multiplied together and are read as
acting right to left, so (ab)(ac) maps ¢ — a — b and is equal to (cba).
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1) [a0a)(g-a0)] [(o0ne)) [aom)] [(gog1g-g+)]
u=1>5 4 0 1 2 0
u=2,4 7 3 1 3 1
u=3 8 0 2 4 0

Table 5. Character table for Spin(8) u-walls.

| [1] (7]

<N—1>+2< N -2 ) (N—1>
[u/2] [(u—1)/2] |u/2]

Table 6. Character table for Spin(2N + 1) u-walls.

All u

3.3.4 Spin(2N + 1)

The center symmetry is Zo and there is no charge conjugation symmetry, so we only have to
compute characters of the identity and the Zo generator. The BPS condition for Spin(2N+1) is

N-—1
u:qo+Q1+qN+2ZQa~
a=2

Counting the number of domain walls, when w is even we can either have ¢qg = q1 = gy =0
and u = 2 Za 5 Qq Which has ( /2) solutions, or have qg + q1 + gy = 2, which can be done

three ways, and v =2+ 2 Za 5 Qq which has ( /2_ 1) solutions. When w is odd we can either

have qo 4+ g1 + qnv = 1, which can be done three ways, and uv = 1 + 2 EN_I Qqa, Which has

N solutions, or we could have gqg = ¢t = gy =1 and u = 3 + 2 qq which has
(u— ) /2 a= 2

((UJY 3)2/2) solutions. Combining both u even and odd and simplifying we find

Spin2N+1) gy _ (N — 1 N -2
) (Lu/%) ”(L(a— 1)/2J>'

1
The Zgl)’g center symmetry generator of Spin(2N + 1) acts by exchanging ¢o and qi,
1
thus domain walls invariant under Zgl)’s have gy = ¢; giving us
N-1
u=2 Z Qa + gN-

a=1

Notice that qN is completely determined by w with gy = 2 (% — |%]) so that we have
24| = 252! g, which has (L]X/_Qlj) solutions,

Spin(2N+1) _ N-—-1

Table 6 summarizes the results in a character table for Spin(2N + 1) u-walls.
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3.3.5 Eg
)

together form a dihedral algebra making the global symmetry Dg with conjugacy classes
[1], [T], and [C]. The BPS condition for Ejg is

The center symmetry for Ejg is Zél and the charge conjugation symmetry is Zg)), which

u=qo+q1+ g5 +2(q2 + qa+ g6) + 3g3.

We can directly compute the number of solutions by brute force, listing the results here

3 wu=1,11
6 uw=2,10
11 v=3,9
Eo (1) — ’
X' (1) 15 u=4,8
18 uw=5,7
20 u=6

1
The Zz(,)l)’S center symmetry generator of Fjg acts by cyclically permuting (qo, g1, g5) and
1
(g2, 44, g6), thus a domain wall invariant under Zgl)’S has g0 = q1 = g5 and ¢o = q4 = g¢

giving us
u=3(q1+2g2+gs3),

so u must bela multiple of three, meaning that only u = 3,6,9 can have domain walls
fixed by Zgl)’S . In each case there are two walls fixed, for example in u = 3 we could have

(qlan7q3) - (1707()) or (QLQ%%) - (0707 1)7

5 2 w=0mod3
X, (T) = :

0 otherwise

The ng charge conjugation symmetry in Fg acts by swapping ¢q1 <> g5 and g2 <> g4, SO
domain walls invariant under charge conjugation have ¢; = g5 and ¢ = ¢4 giving us

u = qo + 2q1 + 4q2 + 3q3 + 2gs,

which we may solve by brute force to obtain

1 vw=1,11
2 u=2,10
3 u=3,9
EGC _ ’
X" (C) 3 u—438
4 uw=25,7
4 u==6

Table 7 summarizes the results in a character table for Fg u-walls.

,19,



(1] [7] [C]
u=1,11]3 0 1
u=210]6 0 2
u=39 |11 2 3
u=4,8 |15 0 3
u=57 |18 0 4
u=6 20 2 4

Table 7. Character table for Fg u-walls.

3.3.6 E;
The center symmetry for E7 is Zgl) and there is no charge conjugation symmetry, so the
global symmetry is Zs and we just have to compute the characters of 1 and 7. The BPS

condition for Er; u-walls is

w=qo+ g6+ 2(q1 + g5 + q7) + 3(g2 + q4) + 4gs.

Computing the number of solutions by brute force we obtain

2 u=1,17
4 u=216
8 w=3,15
11 u=4,14
1) =316 uw=5,13. (3.11)
21 u=6,12
24 u="711
27 u=8,10
28 u=9

1
The Zgl)’s center symmetry of Fr acts by swapping qo <> ¢, q1 <> g5, g2 <> g4, SO a

. (1),st
domain wall fixed by Z, h

as
u = 2qo + 4q1 + 692 + 4¢3 + 297 = 2(q0 + 2q1 + 3q2 + 293 + q7),

so u must be even. Solving by brute force we obtain

2 u=216
3 u=4,14
XF(T)=45 u=6,12. (3.12)
5 u=38,10
0 wuodd

Table 8 summarizes the results in a character table for F7 u-walls.
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=
=

u=1,17
u=2,16
u=3,15
u=4,14
u=>5,13
u=6,12
u="17,11
u=_8,10
u=9

Table 8. Character table for E; u-walls.

3.3.7 Es

—_
(@]
O Ot O Ot O W o N O

Both charge conjugation and center symmetry are trivial for Fg, so we just have to compute

the character of the identity. The BPS condition for Eg u-walls is

u=qo+2(q1 + q7) +3(q2 + gs) + 4(g3 + g6) + 5q4 + 6g5.

Solving by brute force the number of domain walls is

o Ot =N =

14
X (1) = 17
22
25
28
32
33
35
36

3.3.8 Fy

u=1,29
u=2,28
u=3,27
u=4,26
u=>5,25
u=06,24
u="17,23
u=8,22
u=9,21
u = 10,20
u=11,19
u=12,18
u=13,17
u=14,16
u=15

(3.13)

(3.14)

Both charge conjugation and center symmetry are trivial for Fy, so we just have to compute

the character of the identity. The BPS condition for Fj u-walls is

u=qo+qs+2(q1 +q3) + 3q0.
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Solving by brute force the number of domain walls is

2 uv=18

iay={° TR (3.16)
5 u=36
5 u=4,5

3.3.9 G2

Both charge conjugation and center symmetry are trivial for G2, so we just have to compute
the character of the identity. The BPS condition for Go u-walls is

u=qo+2q + g2 (3.17)
It is not too hard to see that for each u = 1,2, 3 there are two solutions,

&2 (1) = 2. (3.18)

4 Domain wall worldvolume theories

For each u there should be a worldvolume TQFT describing the BPS u-walls. The worldvolume
TQFTs will be Chern-Simons theories defined on T? x R. Note that we interpret T? as
St x SlL, where we take L' — oo so that the TQFT spacetime corresponds to the domain
wall worldvolume of SYM on R3 x S!. The states of the TQFT Hilbert space correspond
to the u-walls of SYM, and are required to transform under center and charge conjugation
symmetries in the same way as the domain walls they are associated with.

In principle there is then a map between the u-walls of SYM and the Hilbert space of the
corresponding worldvolume TQFT. Unfortunately, while such a map may exist it is usually not
easy to find, and in general is not unique. To illustrate this point, consider 1-walls of SU(V)
which may be labelled by an integer a = 0, 1,..., N —1 corresponding to flux ®, = w,— %p.lg’
The Zg\l,)sl center symmetry acts as T (®,) = ®4_1 mod N, while the Z;D) charge conjugation
symmetry acts as C(®,) = ®N_q mod N- The corresponding worldvolume TQFT is U(1)y,
whose Hilbert space on T2 x R is spanned by states |a’) for a’ = 0,1,..., N —1. Under the Zg\l,)
symmetry in the first direction'® the U(1)y states transform as T'|a’) = |’ — 1 mod N), and
under charge conjugation they transform as C'|a/) = [N — o’ mod N). It would then seem that
the most natural choice for a map between the set of domain walls, {®, | a =0,1,..., N — 1},
to the set of U(1)y states, {|a’) | @’ =0,1,..., N — 1}, would be the map taking ®, to |a).
Indeed such a map does preserve the symmetries of the theories. However, when N is even
we could also map ®, to ‘% + a mod N>:

f:®,— ‘];[+amodN>
F(T(@)a) = f(®a-1) = ’];] +a—1mod N> = T‘];[ +a mod N> =Tf(®,)

FC(®)2) = F(®r-amoan) = |5+ N = amod N ) =C| T+ amod N ) = Cf(8,).

13Remember that we are using the convention wg = 0.
14The direction here is somewhat of an arbitrary choice.
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We see that when N is even there are two ways to map the 1-walls of SU(N) SYM to the
states of the worldvolume TQFT Hilbert space. In general there will not be a single unique
way to map the domain walls of SYM to the TQFT Hilbert space in a way that preserves
the symmetries. Instead, we must be content with simply computing and comparing the
characters of the global symmetries between the domain walls of SYM and the TQFT Hilbert
spaces. Here we will denote the character of a G, Chern-Simons theory by xq, -

4.1 A quick review of Chern-Simons theory

To begin, we will briefly review the construction of the Hilbert space of Chern-Simons theory
on T? x R and the action of the various symmetry operators for both a U(1) gauge group
and a simple non-Abelian gauge group.

Abelian Chern-Simons. For U(1); Chern-Simons theory the non-trivial operators are the
Wilson lines in the two directions of T? which commute up to a Z)i| phase,

W1W2 = 627ri/kW2W1.

The Hilbert space is then the k-dimensional space spanned by states |a) for 0 < a < |k| — 1
defined by

Wila) =|a — 1 mod |k|) (4.1)
Wy |a) = e2™/F |a) . (4.2)

Notice that W; and Ws each generate Zy symmetries, together forming a one-form Zj
symmetry. Charge conjugation acts as in appendix B.2, which in the Hilbert space is

Cla) =|k—a).

Non-Abelian Chern-Simons. For G Chern-Simons theory, where G is a simple non-
Abelian group, quantization is understood through the machinery of geometric quantization.
Following Elitzur et al. [14], the wave-functionals are given by Weyl-Kac characters at level
k, which are in turn labelled by the so-called integrable representations at level k. The
integrable representations are labelled by their highest weights which in addition to being
dominant, as any highest weight must be, must satisfy £ + aj - A > 0. In other words, the
Hilbert space of G Chern-Simons theory is spanned by

{IA) A€ Ay, a) - A> —kdao, a=0,...,7}.

Note that like domain walls, non-Abelian Chern-Simons states may be labelled by r + 1
integers (Ao, A1,...,Ar) with Ay, = o - ()\ - %p) + % with >0 _okiA, = k, which must
satisfy A\, > 0. The dimension of the Hilbert space is a function of the rank and the dual
Kac labels of the gauge group. For SU(N + 1); and Sp(N)g, the rank is N and the dual
Kac labels are all unity, so the dimension of the two Hilbert spaces, equal to the character

15Unlike domain walls, which must have g, € {0,1}, the labels A\, of non-Abelian Chern-Simons states may
be any non-negative integer so long as they satisfy the condition ZZ:O kida = k.
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of the identity, is the number of solutions (Mg, A1,...,Anx) to Eévzo Ao = k, which is solved
using basic combinatorics to find

k:+N> (43)

XSU(N+1)k(]1) = XSp(N)k(]l) - ( k

The one-form center symmetry acts on the gauge fields by improper gauge transformations,
which descend to the Hilbert space as phases and shifts,

TN = [Tex(N) (1.4)
Ty|A) = 2w ),

where 7 1, is the affine Weyl transformation defined in equation (B.3) for an appropriate choice

t16

of ¢. Following a naive treatment,'® charge conjugation acts on the gauge fields in the same

was as described in B.2. Acting on the Weyl-Kac characters, charge conjugation then acts as
CA) =[C(N), (4.6)

with the notable exception of Spin(4n), though that will not be relevant for this paper. See
appendix B.2 for more details.

4.2 SU(N)
The proposed worldvolume TQFT for u-walls in SU(N) is U(u)n—y N given by

SU(U)N_u X U(l)uN
z{)

U(u)y—un = : (4.7)

where Zq(}) is the diagonal part of the Zq(}) one-form center of SU(u)y_,, and the Zq(}) subgroup
of the ZSK, one-form symmetry of U(1),n. To construct the Hilbert space, we first construct
the Hilbert space of SU(u)n—_y X U(1)yn, which is simply the tensor product of the SU(u)n—s
and U(1),n Hilbert spaces. We then gauge the diagonal Zgl) by keeping only those states
which are invariant under all possible insertions of Zq(}). We can accomplish this by starting

with an arbitrary state |A) ® |a) and acting with the projectors onto the z

(1),

subspaces corresponding to the two directions along which we can insert Z
A 1 %= ~ ~ m

where the action of T} is given in equations (4.4) and (4.5) with ¢ = N

invariant

— 1,17 and the action

of W; is given in equations (4.1) and (4.2). Note that P, and P, commute, otherwise taking
the Z{" quotient would be ill-defined. Acting first with P, on our test state IA) @ |a) we
see that only a of the form u({ + w;,_; - A) for an integer £ survives,

1 _
P2|A ®‘ 72 2mim(a— uwy, _ 1)\)/u‘)\ ®’a Zéau§+w )‘)\>®’a>

ez

ﬁ

6Charge conjugation may be complicated by spin structures. See the discussion in [6], but for our purposes
the naive picture is sufficient.
'"Note that from here on we will drop the ¢ and k subscripts on 7 in equation (4.5).
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Acting with Py imposes no further restrictions on A or a, but simply averages over the Zz(})
orbit of |A) ® |a) in the first direction. Thus we define the U(u)n_q, n state |[X,&]) as the
zdM averaged version of |A) @ |u(& +wi_ - X)),

u—1"

u—1
) = BN S fuE+wi M) =+ 3 [T ) @fu(E-+wh_y- ) -mN)
m=0

u—1
=2y [Trone
m=0

m—1
u (é— > Aa—m+w:;_1-’rm<x>> >
a=0

where we used the fact that w?_, - T™(X) = w_; - A+ X' A\, — m&=%. The notation
[A, ] is a shorthand used to indicate the Zf,(}) orbit of the pair (X, §) in the first direction,

u—2
[Aaé] = {(Aag)a (T()‘)ag - )\0 - 1)7- cey (Tu_l()‘)vé. - Z )\a - (u - 1)) } : (48)
a=0

Thus, each U(u)n—_y N state is labelled by a Z&l) orbit and not by an individual representation.

The Zg\l,) 1-form symmetry is the remainder of the Zq(}]zf 1-form symmetry of U(1),n after

gauging Zz(}), and thus acts on the Hilbert space by =1 Wi"

A

T2 |[X,€]) = e VN X g]) (4.10)

Charge conjugation is unaffected by gauging Zq(}) and acts by

ClAED) = IC(N), =€ = (N —u = Xo)]) - (4.11)

It is not too hard to verify using the data in appendix B.3 that charge conjugation and the
1-form symmetry form a Dspn dihedral algebra, which of course is required for the TQFT
to match the u-walls of SU(N).

Let us for a moment comment on the sizes of the Z, orbits of SU(u)y_,, representations.
Suppose that A has an orbit under 7 of size 1,'® so that T*(X) = X, or in other words Ay = Aqy;.
Then, knowing that A is an integrable representation of SU(u) at level N — u we have

u—1 -1
N—U—X:O/\a—q;z%)\a. (4.12)

Thus, we see that u/l must divide N — u and hence must divide N as well. Since u/l divides
both w and N — w, it must be a divisor of their gcd, which allows us to write explicitly
the allowed values of [ if necessary.

To determine the dimension of the Hilbert space we see that we must count each unique Z,,
orbit [A, &]. We start by considering an SU(N) integrable representation with highest weight
A, and ask how many different orbits [, {] we can construct. Note that since U(1),n states
are defined by integers modulN, £ is equivalent to £ + N, so there can be at most N orbits

181t is helpful to remember that ! must divide u by Lagrange’s theorem.
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[A, €]. Now suppose that X has a Z, orbit under 7 of size I, so that T} |[A) = |A) and hence
T T[N €]) = |[A,€]). We can use the fact that Ty ® WY acts trivially on the U(N)y_, x

. . . PR .
Hilbert space to express 7/ @1 as (Tf ® ]l) (Tl @ W ) = 1@W; ™, giving us the following

A =Tl ot ng =t W™ g = |[A¢+ j\w

where we used the fact that 1 ® W™ [[X,€]) = |[A, & — 2]). We see that when A has a Z,
orbit of size [, each orbit [\, &] is equal to [)\,5 + uﬁ/l}, and hence there are uﬁ/l U(u) N—u,N

states for every orbit of size [ of SU(V) integrable representations under 7. If we let O]SVU_(iV ) (1)

be the number of SU(NNV)y_,, states with orbit size [, then the total number of U(u)n_q N
states |[A,&]) is given by

S (VY (Lgsimng) Z N _<N>
U)N —u,N 1) = o —u ! - U)N—u 1) = ) 4.13
o ® =3 (47) (FO80) = v m = () @19

where we used equation (4.3). This exactly matches the number of SU(N) u-walls given
in table 2.

1-form symmetry

We will compute the character of n applications of the 1-form symmetry generator in the
first direction. Consider a state [[A,&]), where X has a Z,, orbit of size [ so that £ =& + uﬁ/l,

and thus |[X, €]) has a T; orbit size of uﬂ/l Suppose that this state is invariant under T7, so

that n is a multiple of uﬂ/l, say n = ui/lm for some m € Z. Rearranging we find that 5 = Im,

so that A must be invariant under 7%/~ . Before pressing on, notice that N must divide

nu, which means that must divide

N
ged(N,n)
o défv’n) and o d(]lV,n) have no common factors. Recall that this is the same condition on n
that we derived for u-walls of SU(N) SYM, shown in table 2. Thus for each Z,, orbit of size [,

A ={7T™(A) | m=0,1,...,1 — 1}, (where X is invariant under 7"%/N) there are % states

[, €]) invariant under T?. Since each weight in [A] will be invariant under 7%/~ we can

mua implying that W divides u since

count weights invariant under 7%~ instead of orbits if for each weight we add a factor of %
The two factors of [ cancel out, and we find that the character of 'T'? is % XSU(u) (Tf u/ N).
From our analysis of center symmetry characters in SU(N) SYM, we know that when X is
invariant under 7™ equation (4.12) becomes

gcd(u,"—]\}‘)fl

u
2 ged(N,n)—1
u N N

N-u= o= o M
)R 2 A 2
The character is % times the number of solutions, which gives us
( ged(N, n) ) N P
XU (W) n— v (ﬁl) = \weed(N,n))  ged(N,n) " (4.14)
0 otherwise

exactly matching that of SU(N) u-walls from table 2.
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Charge conjugation

We will compute the character of C' in several steps. First, we will show that if I[N, &]) is
C invariant, then there is some (X,&') € [X,£] such that C(X') = X. Notice that C and
T obey a Dy, dihedral algebra

CoToC=T71 (4.15)

which can be worked out explicitly using the action of C and 7 given in appendix B.3. If

[, €]) is C-invariant, then we must have

(CN), ~6=(N—u=Xo)) € [\ €] <= CIN@[ul§ + w1 X)) =T" N @u€ +w)_ - X))

where 0 < m < u is an integer. If m is even, we can apply 7™/2 to A to get the desired X
C(TmPN) =T o) = T2\,

Letting [ be the size of the T orbit of A, if both m and [ are odd, we can instead apply
Tm+D/2 and get a similar result. In appendix C we prove that the last case, when [ is
even and m is odd, is not possible. In short, we may assume without loss of generality that
A = ), ie we may assume that X is C invariant. Then, the full action of charge conjugation
on the U(u)y_, N state is

ClNED = A~ = (N —u=o)])

so that our state |[A, ¢]) is charge conjugation invariant when ¢ satisfies the following

B N N
5:—5—(N—u—)\g)modu—/l, 0<6<

Generically, solutions will be of the form 2§ = uﬁ/lk — (N —u—Ag) for some integer k such that

(4.16)

0<¢< ul/l When % is even, it is clear that N —u — Ag must also be even to get solutions.
In particular, there are two solutions which are related to each other by addition/subtraction
of %ul/l When uﬁ/l is odd there is only one solution.

To count the number of independent charge conjugation invariant U(u)n_,, n states we
will first count the number of charge conjugation invariant pairs (A, §) for a given [, then count
the number of orbits [A, ¢]. Finding the number of charge conjugation invariant SU(u)n—y

weights is done by solving equation (4.12) subject to C(A) = A,

1/2—1
X+2 > A+ leven
N-ou_ a=1 (4.17)
ufl (1-1)/2 ‘ '
A+2 Y A I odd
a=1

Notice that the above equation applies to weights with orbit sizes of [ and divisors of . Namely,
if we set [ to it’s maximum value, u, of which all orbits sizes are divisors, we obtain an equation
for all C invariant weights. We split our analysis into cases when N and u are even/odd.
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N and u odd. In this case, ui/l is always odd, so for each C invariant weight there is one
solution to (4.16). Furthermore, since u is odd, ! too must be odd, and thus we do not have
to worry about over-counting. The number of charge-conjugation invariant pairs (X, §) is
equal to the number of charge-conjugation invariant orbits, and hence the corresponding
number of U(u)y—_,, n states. Thus, we just have to find the number of independent solutions
to C(A) = A, which amounts to solving equation (4.17) with | = u,

(u—1)/2
N-u=X+2 Y Ao
a=1
The number of solutions is the number of ways to choose “TH non-negative integers

(A0s -+ -5 Au—1)72) Which sum to NQ_“,

N odd and u even. Like the last case, uﬂ/l is always odd, so for each C invariant weight
there is one solution to (4.16). Since u/l must divide N, [ must be even in order to cancel
out the “evenness” from u. The number of charge-conjugation invariant pairs (A, &) is then
twice the number of charge-conjugation invariant orbits, and hence the corresponding number
of U(u)n_y n states. Thus, we first have to find the number of independent solutions to
C(A) = A, which corresponds to solving equation (4.17) with | = w,
u/2—1
N—-u=X+2 > A+,

a=1
then we must divide by two to account for over-counting. With N — u odd, we see that
Ao + Ay 2 must also be odd, so we can redefine A\g + A, /2 to be 2Ag + 2A,, /5 + 1, multiplying
our final answer by two to account for the two possible parities of Ao and A, , (either
even/odd or odd/even). The number of weights is then two times the number of ways to

choose 5 + 1 non-negative integers which sum to N _;_1, and the number of independent

charge-conjugation invariant states is half of that,

5)

N even and u odd. Now ui/l is always even, since v/l must always be odd. Since N — u is
odd, we count only the weights with A\¢g odd, which have two solutions each to equation (4.16).
Referring to equation (4.17) we see that indeed all the C invariant weights will have Ag
odd. Thus, the number of charge conjugation invariant orbits [A,&] is twice the number
of C invariant weights,
(u—1)/2
N—-u=X+2 > .

a=1
Knowing that Ag is odd we redefine Ay — 2)\g + 1 and see that the number of solutions
utl1
2

non-negative integers which sum to Y=%=1. Thus,

is the number of ways to choose 5

the number of orbits is
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N and v even. When N and u are even, things can become a bit more complicated. First
we set u = 2°G and N — u = k = 2Pk, for positive integers o and 3, and odd integers @ and
k. Then, we know that u/l must be a divisor of ged(u, k), so we set u/l = n = 277 where
0 <~ < min(a, 3) and 7 divides ged(@, k). We split our analysis into four cases:

1. 0 <~ < min(a, §): ui/l, ]\f;—?l“, and [ are all even, so A\g must be even and there are two
charge conjugation invariant pairs, (X, €) and (7%2(X),£’), per C invariant weight.'?
Then, each C invariant weight with g even contributes % X 2 to the character. The
two factors of two cancel out and the contribution to the character is the number of C
invariant weights with Ao even.

2.v = a = 6 ui/l is even, so A\g must be even, while [ and ]\{Jl“ are odd. From

equation (4.17), we see that Ao cannot be even, and hence there are no charge conjugation

invariant states.
3.y=a<f: ]\;71”
is equal to the number of C invariant weights. From equation (4.17) we see that Ag

is even while ul/l and [ are both odd, so the number of invariant orbits

must be even, so the counting matches that of the first case.
4. y=0< ]\{Jl“
is half the number of C invariant weights. From equation (4.17), Ao and );/; must have

and ui/l are both odd, while [ is even so the number of invariant orbits

opposite parity mod2. Further, it is clear that the number of solutions is the same
for the two cases, ie the number of C invariant weights with Ay even is the same as
that with A\g odd. Thus we may assume that \g is even and multiply our counting by
two, cancelling out the factor of % from the evenness of [. In the end, we again find
the number of charge conjugation invariant orbits equal to the number of C invariant
weights with g even.

We see that we simply need to count all the solutions to equation (4.17) with A\g even, which
is accomplished by simply setting | = wu,
u/2—1
N—-—u=X+2 Z )\a+)\u/2
a=1 Ao even

The number of solutions is the number of ways to choose 5§ + 1 positive integers which
N—u
2

sum to

We thus get our final result for the number of independent charge conjugation invariant
U(u)N—u N states,

N-2
2( 2 ) N even, u odd

u—1

(I p—

"“Note that equation (4.17) says that if Ao is even then )/, is also even, so that TY2(A) also has two
solutions to equation (4.16).

XU(U)N_%N (é) = (418)

— 29 —



which exactly matches the number of charge conjugation invariant u-walls of SU(N) from
table 2.

Combined charge conjugation and 1-form symmetry

Finally, we want to compute the character for the combined action of charge conjugation
and 1-form symmetry when N is even. Here it will be most convenient to use the action of
the 1-form symmetry generator in the second direction,?” T,, so that the combined action
of charge conjugation and the 1-form symmetry is

CT2 A, €]) = ST NN [N, €) .

It is then clear that the only states that will contribute to the character are those which
are invariant under charge conjugation, which, conveniently, we have already found. First
consider u odd, where we will see that the character vanishes. From our computation of
the character of charge conjugation, we know that when N is even and w is odd, ui/l is
always even and thus there are two charge conjugation invariant states for every C invariant
weight with A\ odd, which are related by adding/subtracting %uﬂ/l from £. Given such a

weight, letting the two charge conjugation invariant orbits be [A, £] and [A,f + %ui/l], the

contribution to the character is
p2miu(Erw_-A)/N (1 T eiwl) ‘

Since u is odd, | must be odd and hence the contribution to the character is always zero,
leading to a vanishing character.

When u is even, we have to apply the same analysis that we did for charge conjugation, but
can recycle many of our results. Again we set u = 2%4, N —u = k = 26k, and u/l =n =270,
where the numbers with ~are odd, and n must divide ged(u, k). We have

1. 0 < v < min(a, §): for every C-invariant weight with Ao even there are two £ which
give charge conjugation invariant states, but both X and T7%2(\) produce the same
states,?! so we must divide their contributions to the character by two. Then, each
such weight contributes the following to the character

I

é€2ﬂiu(£+w;71-)\)/1\f (1 + emz) — p2miu(E+wy_-X)/N

where we used the fact that [ is even, and took £ to be the lesser of the two solutions
to equation (4.16), though it really doesn’t matter which of the two solutions is taken.

2. v = «a = : no charge conjugation invariant states.

3. v = a < fB: each C-invariant weight has A\g even and produces one charge conjugation
invariant state, so the contribution to the character is the same as the first case.

200ne can do a change-of-basis to a basis where T, is diagonal and acts exactly as T, does on the basis we
use here, so it is clear that the character of the two operators should be the same. Further, there really is no
reason why the two T2 directions should be different, so based on these symmetry principles alone we expect
that the characters will be equal.

211t can be verified that A and 72 both produce charge conjugation invariant states, which have the same
phase under 'T'g.
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4. v = B < a: [ is even so for each charge conjugation invariant state there are two
C-invariant weights, related by 7%/2. The action of T2 swaps Ao and ), /2, whose
sum must be odd. Thus for each charge conjugation invariant state there is just one
C-invariant weight with Ag even. The contribution to the character is then the same as
the first case.

2miu(E4wl_-X)/N

In summary, the character is computed by summing e over each C-invariant

weight with Ao even, where ¢ is any solution to equation (4.16). Further, we will show that
the phase is always trivial and thus the character is equal to character of charge conjugation.
First, using the data in B.3, and the fact that A is C-invariant, along with the fact that
A is a weight of SU(u)n—, we find

uwz_l-)\:%(]\f—u—)\o).

From equation (4.16), we let 2§ = k:ui/l — (N —u — Xg), where k is an integer with the

requirement that kuﬁ/l must be even. Then, we find that the phase is

U N 1
N (f Tw, - )‘) = ikl’

which we claim is always an integer. When [ is even, it is obvious that we get an integer. When

[ is odd, we must be in case 3 where uﬁ/l is also odd. From the requirement that kuﬁ/l is even,

we see that k is even, and again we find that %kl is an integer. Thus we see that the character
is in fact the same as the character of charge conjugation when u is even. In summary we find

0 u odd

XU(u)n—n (CT) = (N/2> (4.19)
u even,
u/2

exactly matching that of SU(NN) u-walls given in table 2.

4.3 Sp(N)
The proposed worldvolume theory for Sp(N) u-walls is Sp(u)n41—y. As noted earlier in
equation (4.3), Sp(N)j has a Hilbert space of dimension (N,jk), so we see that Sp(u)Nt1—v
has dimension
N +1 N +1
XSp(u)NHfu(]l) = <N+ 1 —’LL) = < u )7 (420)

which is exactly equal to the number of Sp(N) u-walls from table 3.

1-form center symmetry

The Zél) center symmetry in Sp(u)n41— acts on states |A) = [(Aog, A1, ..., Ay)) as

A=> )\awa> =D )\u_awa>
a=1

a=1
v L(u—1)/2]
A = Z )\a’u]a> = (—1)2(1:0 bz A2a+1 |A> .

a=1

T

Ty
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The character of Tl is the number of representations (Mg, A1,...,Ay) with Ay, = \,—, and
t—0da = N + 1 — u, giving us

u/2—1
2 Z Ao+ Ayj2 U even
o a=0
N+1—u= (u_1)/2 (4.21)
2 > A u odd
a=0

u even. From (4.21), N +1— ),/ must be even, in other words A, /, must have the opposite

parity mod2 of N. We can redefine A,/ to be 2X, /5 + 9 with § = 2 (% — {%J),QQ SO
that equation (4.21) becomes

SR RIS

a=0

The number of solutions is simply the number of ways to choose u/2 + 1 non-negative integers
N+1J u
2

which sum to { 75

<L(N+1)/2J>
u/2 )

w odd. From (4.21), when N is odd there are no 7} invariant states. For N even, the number

of states is the number of ways to choose (u+1)/2 non-negative integers which sum to % - “Tfl,
N/2
(u—1)/2)"
Combining the above results, we find that the number of T invariant states is
0 N, u odd
(4.22)

Xsp(u)yar_ (T1) = (L(N +1)/2)
[u/2]

exactly matching that of Sp(N) u-walls from table 3.

> otherwise

4.4 FEg
)

charge conjugation symmetry, which form a Dg dihedral global symmetry whose conjugacy
classes are represented by 1, Ti, and C. The states satisfy Ao+A1+A5+2(Aa+A1+X6)+3A3 = 3.
One sees that there are 10 solutions with A\g + A1 + A5 = 3, 9 solutions with \g + A1 + A5 =1
and Ay + Mg + g = 1, and one solution with A3 = 1. In total we find the character of
the identity to be 20,

(0)

Consider (Fg)s Chern-Simons theory, which has a Zél 1-form center symmetry and a Z,

exactly matching the number of u = 6 walls of Fg from table 7.

22In other words, 6 is the remainder of N 4+ 1 when dividing by two.
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1-form center symmetry

The Z:())l) 1-form center symmetry acts in the first direction as \g = A5 — A1 — Ap and
A2 — Ag — Mg — Ao, so the states invariant under Tl have A\g = A1 = A5 and Ay = Ay = 6.
We are then left with 3 = 3\ + 62 + 33, meaning that either Ay = 1 or A3 = 1, and hence
the only 7} invariant states are |w; + ws) and |ws), giving us the character of T}

X(Es)g (TI) = 27 (424)
consistent with the observation that there are two 6-walls invariant under Zgl)’gl in SYM
from table 7.

O-form charge conjugation symmetry

The Z;O) charge conjugation symmetry acts as A\; <> A5 and Ag <> )4, so the only charge
conjugation invariant states have Ay = A5 and Ao = A4, giving us 3 = A\g+2A1 +4A2+3A3+2X6.
We see that there are then four charge conjugation invariant states, |0), |wi + ws), |ws),
and |wg),

Xz (C) =4, (4.25)

exactly matching the number of charge conjugation invariant 6-walls in SYM from table 7.

5 Deconfinement on domain walls

We now turn to studying deconfinement of static (heavy) quarks in the presence of a u-wall.
The insertion of a static quark with charge p at position 7% = (¢, %) € R? corresponds to
inserting a static Wilson line, which modifies the classical equations of motion for o by adding
a term which forces o to “jump” by 27 as it crosses & = g in the upper half-plane®? [5]

Vio D 2rpds(z — o) | dy' Sy —9) =

{QWHax5($ —Z0) Y=Y
Yo

0 y<yo

Then, taking a contour C which winds positively around 7, we find that inserting the static
charge amounts to imposing §, do- = 27 pe. Such a configuration can be achieved by suspending
the quark between u-walls whose fluxes differ by 27, as in figure 3. If the two u-walls are
both BPS, and hence have the same tension, the quark will be free to move along the domain
walls: moving to one side lengthens one of the domain walls by the exact same amount
that the other is shortened. We may then consider adding a quark with weight —p as in
figure 4(a). We see that the second quark is also free to move, and hence the two quarks can
move independently and are deconfined, so long as they do not cross each other.

Mathematically, a weight u may be supported by two u-walls with fluxes ®; and ®o
if u = ®; — Py. In appendix D we prove that

p deconfined on domain walls <= p, =aj -p € {-1,0,+1} Va=0,1,...,r.  (5.1)

23This is just one way to insert the jump in o which is useful for illustrating the salient points, but other
choices can be made. See [5] for more details.
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Figure 3. A quark supported by two domain walls with fluxes ®; = Y| _| giw, — c—“zp7 so that
®, — ®; = p. The two upper vacua (yellow and orange) are u = 0 vacua, while the lower vacuum
(purple) is the u** vacuum. The insertion of the static quark is equivalent to demanding fc do =2mp
for any C which encloses the charge.

Further, we show that the u-walls which deconfine a given p are given by

u(p) =4 Y ki4+ Y kigalg.€{0,1}}, (5.2)

ag-p=+1 ag-p=0

where .. ,—, means to sum over the co-roots ay such that ag - p = z. Moreover, if two
quarks can be deconfined on domain walls, then they can also be confined by “wrapping”
the domain walls around to form a double string as in figure 4(b). When the probe quarks
have N-ality 0, which always is the case when the gauge group has a trivial center, the
double string picture only holds for sufficiently small quark separations; there is a point
where it is energetically favourable to pair-produce W-bosons (of mass ~ 1) screening the
quarks and breaking the double string.

In [5] it was argued that to determine if a representation will be deconfined it is enough
to find a weight of that representation which is deconfined. Here we will briefly summarize
the argument for completeness. Consider a Wilson loop in a representation Ry, which in
the Abelian limit studied here is given by

W)= Y <€m- fCA> |

HER

We are interested in the behaviour of (Wg, [C]) as C becomes large. In the limit of large C,

—P) due to deconfined weights dominate over area law terms e~4(C),

perimeter law terms e
Thus, if Ry has any weights which are deconfined on u-walls, then (Wg, [C]) will exhibit

perimeter law in the background of a u-wall, and quarks will be deconfined.
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Figure 4. (a): potential energy density of two heavy probe quarks of charge +ws for G2 showing
deconfinement of quarks on domain walls for G. (b): the same quarks are now confined by “wrapping”
the two domain walls in (a) around to form confining strings.

We can classify representations then by whether or not they deconfine in the background
of u-walls, determining which (if any) u do the job. To do so, we will organize representations
by their N-ality, defined as the charge under the center of the representation,?* where for
Spin(4n) representations will have two N-alities, corresponding to the two copies of Zy in the
center. Then, for each N-ality, k, we will find a weight of all representations of that N-ality,
which we will call a universal weight of N-ality k. Finally, using equation (5.2) we will find
the u-walls which deconfine the universal weights for each N-ality. For all non-zero N-alities,
we will find universal weights which are deconfined on all u-walls for all u. For N-ality zero,
in some groups we will find universal weights which are again deconfined on u-walls for all u,
and in other groups we will find universal weights which are deconfined on u-walls for all
u except uw =1 and u = co — 1. In the latter case, we will show that there are no N-ality 0
weights deconfined on u = 1,co — 1 walls. We want to stress that our treatment here is valid
in the abelianized regime. Notably, the statement that N-ality 0 quarks are not deconfined
on u = 1,co — 1 walls is not equivalent to the statement that N-ality 0 quarks are confined
outside the abelianized regime. As discussed above, at energies of order % W-bosons can be
pair-produced and screen N-ality 0 quarks, leading to deconfinement as expected.

5.1 SU(N)

The N-ality of the irreducible representation of SU(/V) with highest weight A = >"7 _; Aqw, is

.
N-ality(A) = Nwy_; - A=Y _ aX, mod N.
a=1
Then —og = wi +wpy—1 is a universal weight of N-ality 0, while w, is a universal weight of

N-ality g for g =1,..., N —1 [18]. We see that w is of the form of equation (5.1), and may
be deconfined by all u-walls, as noted in [5]. While —ay is not of the form of equation (5.1),

2mwi/n 2mwik/n

2For a Z, center, with generator g = e , a representation R has N-ality k if R(g) = ¢ . See

appendix B.1 for more details.
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performing a Weyl reflection with respect to ay_1 gives us wy + wy_2 — wy_1 which is
deconfined on all u-walls except for u = 1, N — 1. Moreover, there are no weights of any
N-ality 0 representations deconfined on v =1 or u = N — 1 domain walls. We illustrate this
last point for u = 1, but the process for u = N — 1 is more or less the same. First, notice that
u = 1 domain walls are of the form ® = w, — % p, where a = 0 corresponds to wg = 0. Then,
a weight deconfined on 1-walls is of the form pu = w, — wy, where a % b and 0 < a,b < N.
The N-ality of w is then a — b mod N, which works even when a or b is zero. The only way
to get N-ality 0, is to have a —b = kN for some integer k, and the only k£ which is compatible
with 0 < a,b < N is k = 0. In other words, the only way to get N-ality 0 is if p is zero, and
hence there are no non-trivial weights of N-ality 0 deconfined on 1-walls. When N = 2, 3,
there are no N-ality 0 weights deconfined on any domain walls.

5.2 Sp(N)
The N-ality of X is

L(N-1)/2]
N-ality(A) = 2wy - Amod 2 = Z A2q+1 mod 2.
a=0

Then ws is a universal weight of N-ality 0, while w; is a universal weight of N-ality 1.
Further, both of these weights are of the form of equation (5.1), and from equation (5.2)
are deconfined on u-walls for all w.

5.3 Spin(4n + 2)

For Spin(4n + 2), in this section only we will take the Z, center to be generated by eriw” H

for n even and e*™+H for n odd, so that the N-ality of X is

n—1

4w* -Amod4 n even
=2 Z )\2b+1 + A+ 3)\4_ mod 4.
a=0

N-ality(X) = { i
4w’ -Amod 4 n odd

Note that the choice of center generator is in some sense arbitrary, and here we just choose
a convenient generator for calculating N-ality. Then w» is a universal weight of N-ality 0,
w; of N-ality 2, w_ of N-ality 1, and w, of N-ality 3. All of wy, w_, and w, are of the
form of equation (5.1), and from equation (5.2) are deconfined on u-walls for all u. While ws
is not deconfined, w3 — w; is in its Weyl group orbit and is deconfined on u-walls for all u
except u =1 and u = 4n — 1. Indeed there are no deconfined weights of N-ality 0 deconfined
on 1- or 4n — 1-walls, where the proof is much the same as that done for SU(N).

5.4 Spin(4n)

Like Spin(4n + 2), we will take the generators of each Z;E copy of the Zj x Z; center
symmetry to be generated by 2™+ H for n even and ™™+ H for n odd, so that the N-ality
of A with respect to Z3 is

n—2

= Aog+1 + A+ mod 2.
2w} -Amod 2 n odd az:;) part A

) 2w? -Amod 2 n even
N-ality ; (A) =
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Then, labelling the N-ality of a representation by a tuple of N-alities with respect to Zét,
we find that ws is a universal weight of N-ality (0,0), w; of N-ality (1,1), w4 of N-ality
(1,0), and w_ of N-ality (0,1). All of w1, w_, and w are of the form of equation (5.1), and
from equation (5.2) are deconfined on u-walls for all u. Meanwhile, ws has in its Weyl group
orbit w; + w_ — w4 which is deconfined on u-walls for all u except ©« =1 and v = 4n — 3,
and indeed there are no N-ality (0,0) weights deconfined on 1- and 4n — 3-walls, where the
proof is much the same as that done for SU(N).

5.5 Spin(2N + 1)

The N-ality of A is
N-ality(A) = 2w] - Amod 2 = Ay mod 2.

Then w; is a universal weight of N-ality 0, and wpy of N-ality 1. Further, both w; and wy
are of the form of equation (5.1), and from equation (5.2) are deconfined on u-walls for all .
5.6 FEg

The N-ality of X is

N-ality(A) = w] - Amod 3 = A\j + Ay + 2(A\2 + A5) mod 3.

Then wg is a universal weight of N-ality 0, wy of N-ality 1, and ws of N-ality 2. Further,
both w; and ws are of the form of equation (5.1), and from equation (5.2) are deconfined
on all u-walls. While wg is not of the form of equation (5.1), w; + w4 — wq is in its Weyl
group orbit and is a deconfined weight, being deconfined on u-walls for all w.

5.7 Ex
The N-ality of A is

N-ality(A) = 2wg - A mod 2 = Ay + A\ + A7 mod 2.

Then w; is a universal weight of N-ality 0, and wg of N-ality 1. We see that wg is of the
form of equation (5.1), and from equation (5.2) is deconfined on u-walls for all u. While
w; is not of the form of equation (5.1), wg + w7 — ws is in its Weyl group orbit and is
deconfined on u-walls for all wu.

5.8 FEg

Since Ejg has trivial center, all representations have N-ality 0, and w; is a universal weight of
N-ality 0. While w; is not of the form of equation (5.1), there are weights in its Weyl group
orbit which are, namely w7 — w; and wg — ws. These weights are deconfined on u-walls for
all u except © = 1 and u = 29. Further, there are no weights which are deconfined on 1-walls,
which is seen from the fact that there is only one v =1 (or u = 29) domain wall.
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5.9 Fy

Since Fy has trivial center, all representations have N-ality 0, and w, is a universal weight
of N-ality 0. We observe that wy is of the form of equation (5.1), and from equation (5.2)
is deconfined on u-walls for all u except u = 2 and v = 7. For v = 2 and u = 7, we find
w1 — wy in the Weyl group orbit of w, which is deconfined on 2- and 7-walls.

5.10 G2

Since G has trivial center, all representations have N-ality 0, and ws is a universal weight
of N-ality 0. We observe that ws is of the form of equation (5.1), and from equation (5.2)
is deconfined on u-walls for all u except u = 2. For v = 2, we find w; — wo in the Weyl
group orbit of ws which is deconfined on 2-walls.
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A Group theory background

For a Lie algebra g of a Lie group G, a Cartan subalgebra h C g is a maximally commuting
subalgebra of dimension r, where r is the rank of G. In the defining representation we
can select r real-symmetric generators as a basis of h, {H* | a = 1,2,...,r} satisfying
Tr(H °H b) = 0. The rest of g is spanned by root vectors E, defined as the eigenvectors
of the Cartan generators in the adjoint representation,

adg(Ea) = [H, Eo) = aFEq,

where the eigenvalues, o € R" are the roots which form a root system which we denote A. We
select a basis of 7 roots for A, called the simple roots which we denote Il = {ag | a =1,...,7r},
so that each root in A is written as a linear combination of simple roots with integer coefficients
that are either all non-negative (the positive roots, A™), or all non-positive (the negative
roots, A~7). Note that the positive and negative roots are in one-to-one correspondence,
iea € A — —a € A or equivalently A~ = —A™. In the defining representation we
take the E, to be real, so that EL = E_,. We normalize so that [Ey, F_4] = o* - H,
and otherwise take [Eq, Eg| = Cq gEq+p, Where Cq g is a group dependent factor which
is only non-zero when a + 3 is a root.

The roots generate a root lattice, A, = {>°/_; caatq | ¢4 € Z}. Dual to the root lattice
is the co-root lattice A}, spanned by the simple co-roots o) = ﬁaa. Fundamental
weights w, are defined by requiring w, - aj = 45, and span the weight lattice A,,. Finally,
fundamental co-weights are defined by w} = ﬁwa so that w}, - o = d,, and span the
co-weight lattice A.

In addition to the simple roots, there is one more important root that we will worry

about: the affine, or lowest, root ayy which is the root which is lower than all other roots, ie
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ag = B for all B € A, where < is the partial ordering on R” defined by the simple roots.?’
Note that here we will take the affine root, and hence all the long roots, to have length 2,
so that they are identified with their co-roots.

It is often useful to represent a root system by its Dynkin diagram, which assigns a
node to each simple root. Two nodes, say a and b, are connected if o - o is non-zero.
Further, the nodes are connected by one line if o - o, = —1, two lines if o - o, = —2, and
three lines if o - oy = —3, where in the latter two cases an arrow is also drawn pointing
towards the smaller (with respect to the Euclidean length) root. Note that, along with
al - o, it is a well established fact that these are the only possible inner products between
simple co-roots and simple roots. We can extend the Dynkin diagram to include the affine
node using the same rules. Appendix B.3 gives the Dynkin diagrams and our labelling
conventions for all simple Lie groups.

A.1 The Weyl group and gauge transformations

It is often stated but rarely shown in the physics literature that Weyl group elements are
constant gauge transformations, here we will break down how that works. To begin, recall
that the Weyl reflection with respect to o € A, which we denote s, acts on v € R" as

sa(v)=v—(v-a”)a.

The Weyl group, which we denote W, is then the group generated by all such Weyl reflections.
In fact, one can show that the Weyl group is generated by Weyl reflections only with respect
to the simple roots [19]. Thus each w € W can be written as a product of some number of
simple Weyl reflections, say w = [[;_; sq,, for indices a;. It is clear that there is no upper
bound on n since we can always multiply w by 1 = sib for some b to effectively extend n by
two. There is however a lower bound on n, which we call the length of w, where we define the
length of the identity to be zero. Practically, one may compute the length of a given Weyl
group element by counting how many positive roots it maps to negative roots [19].

All we really need to do now is to show how to obtain a simple Weyl reflection as a gauge
transformation. We will see that there are in fact multiple ways to obtain a Weyl reflection
which act differently on non-Cartan degrees of freedom. To begin, we recall that for every
positive root @@ € AT we may define two self-adjoint generators T and T¥,

1 1
Tla = 9 (Ea + Efa) ) T2a = ?@ (Ea - E*a) ) (Al)

where {T® | i = 1,2, o € AT} spans all of g\ h. Note that 7*, T, and 1a*- H form an su(2)

algebra, taking for example 7{* =TT, 75* = T5*, and 75' = o™ - H we get {Tf‘, TJO‘} = 1€k Th -

2
Further, it is not too hard to show that (adTg) n(H) = la*(a-H) for n > 0, and

2
(adqu
Levi-Cevita symbol with €19 = +1. Then, using the BCH formula we can evaluate the

2n+1
) " (H) = —iae;y7s* for n > 0 with 4 = 1,2 taking €;; to be the two-dimensional

2The partial ordering < on R" is defined so that A < p (or p = A) if and only if g — A when written as a
linear combination of simple roots has only non-negative coefficients. Equivalently, we say that A < p if and
only ifwj, - (u—A)>0foralla=1,...,r.
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action of the 1-parameter family of constant gauge transformations g;(£) = ™7 on a
Cartan configuration a - H,

™ a - He ™ =a-H +a-ar$ (cos(né) —1)+a- oy Tit sin(7E).

Taking £ =1 (or & = —1), we see that g; = ¢;(1) gives us the simple Weyl reflection acting on a,
€ a - He ™ = (a— (a-a)a) - H =sq(a) - H, i=1,2.

We notice that there are at least two ways to do a simple Weyl reflection on the Cartan degrees

of freedom, meaning that the map from the Weyl group to the gauge group is many-to-one.

In fact, we could conjugate g; by any U(1)" element, say ¢””H to get a new constant gauge

transformation which acts in the same way on the Cartan elements. In this way, for each

simple Weyl reflection there is a whole family of corresponding gauge transformations given by

ga('U) _ eiu-Hglefiv-H _ eirrcos(v-oc)ﬂ'l"‘fzﬁrsin(v-oc)‘ré"7
where g1 = ¢o(0) and g2 = ga (%a*). Note that we have essentially demonstrated the
well-known result that the Weyl group is isomorphic to the quotient group N (U(1)") /U(1)",
where N (U(1)") = {g € G | gU(1)"g~! = U(1)"} is the normalizer of U(1)" [20].

A.2 Two important Weyl group elements

There are two Weyl group elements that are especially important for our work, wp and
wig,,, so named because they are the Weyl group elements which map setwise II — —II and
M\ {a.} - —(II\ {a.}), where 1 < ¢ < r is an index such that a. is a long root with
k% = 1. The specific actions of wyy and wyy, depend on the group in question, but in general
they both permute the simple and affine roots, they both (almost) permute the fundamental
weights, and the permutations preserve dual Kac labels and of course root lengths,

wi (@) = —Qg(q)

Wi (Wa) = —We(q)

wii(p) = —p (A.2)
ko = Kooy

@ € Spy1, w(0) =0, =1

wir (@) =~y (a)

wi, (we) = kywe — Wy, (a)

wir, (p) = cowe — p , (A.3)
ko = K3, (a)

Ye € Srq1, 7e(0) = ¢, %2 =1

where we use the convention that wg = 0.

Practically we can determine wyy and wyy, by using the fact that they are the longest
Weyl group elements generated by all simple Weyl reflections, and all simple Weyl reflections
except the one with respect to a respectively. Then, given a set of simple Weyl reflections
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Group w Ye

SU(N) w(a)=N—-a ~.(a)=c—amod N,c=1,...,.N—1
Sp(N) 1 In(a) =N —a

Yon—1 = (0,2n — 1)(1,2n) [1"=5(a,2n — a)
Yon = (0,2n)(1,20 — 1) T[4 (a,2n — a)

Yon = (0,2n)(1,2n + 1) [[1—s(a,2n + 1 — a)
Yont+1 = (0,2n + 1)(1,2n) [[H_s(a,2n+ 1 — a)

Spin(4n) 1

Spin(4n+2) (2n,2n+1)

Spin(2N +1) 1 7 =(0,1)
7 = (0,1)(2,6)
" BRED e
Eq 1 76 = (0,6)(1,5)(2,4)
Ey 1 -
Fy 1 -
Ga 1 -

Table 9. Permutations corresponding to the special Weyl group elements wy and wy, (where the
¢ (dual) Kac label is one), so that wi(o,) = —0m(q) and wr, (aq) = —ty (). Note that we
use a standard notation for permutations, where (a,b,c)(d) = (a,b,c) is the permutation where
a—b— c— aand d— d. See section B.3 for labelling conventions for the roots.

we want to use, all of the simple Weyl reflections for wy and all of them except the one with
respect to o for wyy,, we can construct our element of interest by starting with a single Weyl
reflection and iteratively adding more, making sure that each reflection we add increases
the length of the element, until we can no longer make the element any longer. The specific
permutations w and 7. are listed for each group in table 9.

B Center and charge conjugation symmetries

In this appendix we review the group-theoretic origins of the center and charge conjugation
symmetries used in the text acting on Cartan degrees of freedom which are identified under
W xmAy, for some integer m. In addition, we will show how center symmetry acts in arbitrary
irreducible representations of a group. This will prove useful for both SYM and non-abelian
Chern-Simons theory, both of which have Cartan fields with a moduli space of the form above.

B.1 Center symmetry

We will consider three different realizations of the center of a simply connected Lie group
GG: as matrices in irreducible representations, as a subgroup of the extended affine Weyl
group, and as a subgroup of the Weyl group itself.

The center in an irreducible representation. Let Ry be an irreducible representation of
G with highest weight A, letting u(v) be a weight vector associated to the weight v. Recall
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that the elements of Z(G) are of the form e?™*"H for u* € A*  and act on weights of Ry as
R)\ (627riu*-H) ’LL(I/) — 627riu*.R,\(H)u(U) — e27riu*-uu(y) — 6271-1'“*.)\“(’/)’

where in the last step we used the fact that weights of Ry can differ from A by at most
roots, which would not contribute to the phase. It should also be clear here that p* and
p* + o for any a® € A produce the same center element, which leads to the well-known
result that Z(G) = A} /A when G is simply connected.

When Z(G) is cyclic, say Z(G) = Zy, there will be a co-weight w?,%6 such that e?7iweH
generates Z,. We can then characterize Ry by its N-ality, defined as the “charge” of Ry
under the center: if Ry has N-ality k, then Ry (e%iwz'H) = e2mk/n  Starting with the action
of the center on u(v) given above, it is not too hard to show that the N-ality of Ry, which
we write as a function of A, is given by

N-ality(A) = nw}, - A mod n. (B.1)

Note that all weights of Ry will have the same N-ality, calculated with respect to equa-
tion (B.1), as A.

The center as a subgroup of the (extended affine) Weyl group. We consider a
generalized extended affine Weyl group W x mA},, for some positive integer m acting on a
Cartan field 7 € R" /(W x mA}), defined within the fundamental domain

T={veR |a - v>0,a=1,...,r, —a-v <m}. (B.2)

Since A} C A, we have W x mA} as a subgroup of W x mA},. One can show that the

w)

subgroup of W x mA}, which preserves T is isomorphic to the center of G [21],
Z(G) = {1} U{(wr, o wm, mwy) | —wg - ap = 1} = Z(G),
which defines an action on 7, which we denote 7¢m,
Z(G) :m = Tem(n) = wn, o wi(n) + mwy. (B.3)

Thus, associated to each non-trivial g € Z(G) is an integer 1 < ¢ < r with —w} - a9 =1, or
equivalently with k. = 1. In almost all cases, except Spin(4n) which is easily accommodated,
Z(G) will be a cyclic group, say Zg, and thus it is enough to find an element of order ¢ in Z(G)
to act as a generator of Z;, remembering that the group operation in W x mAj, is given by

(Wi, pq) - (W2, pg) = (W1 0o wa, py + wi(ps))-

Alternatively, we can use the fact that Z(G) is isomorphic to it’s image in the defining
representation Ry, (Z(G)), where Ap is the highest weight of the defining representation, to
construct an isomorphism mapping (wry, o wiy, mw?) to e*™%e A This isomorphism easily
enables us to find the order of (wry, owyy, maw}) simply by computing the inner product w?-Ap.

26The specific value of ¢ depends on the group, see B.3 for the details for each group.
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Now, let § = >, now, and define g such that m = > _,kin,. Following from
equations (A.2) and (A.3), the action of Z(G) on n is

’Tc,m(n) = Z Na (w'ycow(a) - k::wc) + mw, = Z NaWnr 0w(a) + <m - Z k:na> W,
a=1 a=1 a=1

= Z NaWr o0m(a) T MOWe-
a=1

Notice that not all of W, oz() are necessarily non-trivial, in particular there could be an
a for which 7. o @w(a) = 0. Letting 7. = 7. o w, using the fact that wg = 0 we find

> a0 MaWr,(a) = D=0 Nt () Wa = Iy M=t () Was OF in other words >} NaWnr.(a) =
b1 Ne=1(q)Wa — MWr (0)- Using 7e(0) = ¢ we find

Tem(m) = Z Nyt (a)Wa-
a=1
In other words, the action of 7. ,, on the labels 7, is

7Z,m *Na = Nwoye(a)>

where we substituted 7, ! in terms of @ and 7.. Notice that m does not appear explicitly
in the action on the labels, but implicitly through the constraint Y ;_,kin, = m. Thus,
we can drop the subscript m on 7., so long as we remember that the constraint must
be enforced. In practice, we will often drop the c subscript as well after fixing a ¢ such
that 7., generates Z(G).

We can then consider fluctuations about center symmetric points, letting n = ng + 4,
where 7, is invariant under the action of the center defined above.?” We see that the resulting
action of the center on 9§ is just the Weyl group element wyy, o wig,

wir, o wri(ng + 6) + mw; = [wi, o wir(ng) + mw;] + wi, o wir(d) = ng + wir, o wir(9).
Thus, the center of G is also isomorphic to just the Weyl group part of Z(G),
Z(G) = {1} U{wg, owy | —w} - apg=1}.
Note that the above action of the center could be obtained from Z(G) by simply setting m = 0.

An example: SU(N). The center of SU(N) is Zy, and each Kac label is one, so every ¢
from 1 to N — 1 appears in Z(SU(V)). By either brute force, or using the fact that wy, must
permute the nodes of the extended Dynkin diagram in a way which preserves the diagram
and swaps the 0" and ¢ nodes, we find that wy, acts as

WHC(aa) = —O&¢c—gmod N-

Similarly, we find that wy acts as

WH(aa) = —O&N—gmod N-

2"Note that we can always find such an invariant point, one of which is the vacuum of the scalar holonomy
in SYM. See [22] for explicit expressions for the center invariant points for all the relevant groups.
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Thus, the combined action wyy, o wyy is given by

WII,. © WH(aa) = Og4cmod N

Thus, we see that for any N we can either take wy,_, 0wy or wyy, o wyg to generate Zy.

The defining representation of SU(N), often called the fundamental representation, has
highest weight w;. To determine the Zy generator we just need to find the center element
e?mweH which has order N in the fundamental representation. In other words we need to
find ¢ such that Nw} - w; = 1 mod N. For SU(N) the inner product between co-weights
and weights is given by

. min(a,b)(N — max(a, b))
a ° wb - N b

w

so we see that taking ¢ =1 or ¢ = N gives Nw} - w; = 1 mod N, and thus we can say that
e?mweH for hoth ¢ = 1, N — 1 generate the Zy center of SU(N).

B.2 Charge conjugation

Typically, charge conjugation is taken to act on gauge fields by complex conjugation and
reversing the sign: A — —A*. For a basis of self-adjoint gauge group generators, 7% = (7)1,
we have A = AT, where A® are real 1-forms. Then, we can take charge conjugation
to act completely on the generators as 7% — —(7%)7. We write A in terms of Cartan
generators and root vectors,

A=A -H+ > A%E,,
acA

where in the defining representation the Cartan generators are taken to be real and symmetric,
and the root vectors are taken to be real so that (Eq)? = E_,, requiring (A%)* = A<,
Acting with charge conjugation we see that H — —H and E, — —FE_,, or equivalently
A — —A and A* —» —A~%. The field strength then transforms in the same way. We
can then consider a Cartan field like we did for the center, n € R"/(W x mA}), defined
within 7' (B.2). We can think of this Cartan field as coming from the gauge field, like the
holonomy or dual photon in SYM, so we take it to transform under charge conjugation in the
same way, n — —n. We see however that such a transformation does not preserve T, but
if supplemented by the Weyl transformation wyy, which in the gauge field picture is just a
constant gauge transformation, the action of charge conjugation does preserve T,

C:n— —wr(n).

We note that this definition of charge conjugation also corresponds to the notion of charge con-
jugation in representation theory. If we have an irrep Ry, with highest weight A, then the con-
jugate representation, obtained by complex conjugation from Ry, has highest weight —wig(\).

B.2.1 The special case of Spin(4n)

For Spin(4n) we find that —wyy is trivial, yet we can still define a non-trivial “charge
conjugation” symmetry as the group of symmetries of the Dynkin diagram which preserves
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the affine node.?® For n > 2, the charge conjugation symmetry is Zéo) and acts on the Cartan
degrees of freedom by swapping a.y <+ a_, and on the non-Cartan by swapping E,, and Eq_.
In the SO(4n) representation, this is done by a diagonal matrix with determinant -1. For
n = 2, the charge conjugation symmetry is Ss, the group of permutations on {a,a_, a4 }.
B.3 All groups

SU(N)

The extended Dynkin diagram for SU(N) with our labelling conventions is

1 1 1 1
L L )
[e31 [e2] ay_2 ON-]

where all the dual Kac labels are one as indicated above the nodes. The inner product
between weights and co-weights is

min(a, b) (N — max(a, b))
N .

w, - w, =

From table 9, and discussed above, we can take the Zy center to be generated by either
¢ =N —1or ¢=1, but here we will take ¢ = N — 1, where yy_1(a) = N — 1 —a. The
N-ality of the irreducible representation Ry with A = Zi\;l Aqwg is

N-1
N-ality(A) = Nwy_; - Amod N = )~ a), mod N.

a=1

Consider now an arbitrary pu = Zflv:_ll faWq, with SN = m. The action of T =

a=0
TN—1,m on p is

N-2
T () =wiy_, own(p) + mwy_ = Z Hat1Wqa + HOWN -1,

a=1

or in other words,

T:,ua — Ma+1 mod N-

From table 9, we see that C acts on u as

N-1 -1
C(“’) = Z HaWN—q = Z HUN—aWa,
a=1 a=1
or equivalently,

C:la = IN—qmod N-

28Tis is also true for the other groups with charge conjugation, except in those cases —wryr is non-trivial
and indeed does generate the charge conjugation symmetry.
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Sp(V)
The extended Dynkin diagram for Sp(N) with our labelling conventions is

1 1 1 1 1 1

o——e ° ° o——e,

(e70] aq a2 anN-2 QN-1 QN

where all the dual Kac labels are one as indicated above the nodes. The inner product
between weights and co-weights is

min(a,b) a <N
o Wh= b

= a=N
2

w

The Zso center is generated with ¢ = N. The N-ality of the irreducible representation Ry
with A = SN \w, is

L(N-1)/2]
N-ality(A) = 2wy - Amod 2 = Z Aog+1 mod 2.

a=0
Referring to table 9, the action of T = Ty, on p = SN | paw, is

N
T(p) = wny own(p) + mwy = Z HaWN—a,

a=1
or
T: Ha — UN—a-

From table 9, the action of C is trivial.

Spin(2N)

The extended Dynkin diagram for Spin(2/N') with our labelling conventions and corresponding
dual Kac lables is

«
2 2 2 2
L L
Q3 Qg aN-3

The inner product between weights and co-weights is

min(a, b) a,b< N —2
% a<N-2<b
w’ - wp = )
ol TP g b<N-2<a
N |b—al
— — b>N -1
4 2 a7 iy
For convenience, we take w_ = wy_; and w4 = wy.



N odd. The Z4 center symmetry is generated by both ¢ = £. The N-ality of the irreducible
representation Ry with A = Zflvzl Aqw, generated by ¢ = =+ is
(N=3)/2
N-ality.—: (A) =4wi -Amod4=2 > Agar1 + NAx + (N — 2)A; mod 4.
a=0
From table 9, the action of 72 = T4, on p = Zévzl LhaWq 18
N—2
T+ () = wir, own(p) + mwl = prws + pzwy + pow+ + Z HaWN—aq,

a=2

or

Mo = Bt — M1 = M

T - .

Ha —> UN—a 2<a<N-2

From table 9, we see that C acts on p as
N—2
C(u) = Y paWa + p-wy + prw-_,

a=1
or equivalently,
C:py < pi_.

N even. The Z;t factor of the Z3 x Z; center symmetry is generated by ¢ = 4. The N-ality
with respect to Z;t of the irreducible representation Ry with A = Zflvzl AWy 18

(N—4)/2

N N -2
N-ality, (A) = 2w’ - Amod 2 = Z A2a+1 + EAi + 5 A+ mod 2.
a=0
From table 9, the action of 73 = T4, on p = Z(lezl fhaWq 18
N-2
Te(p) = wir, own(p) + mwk = pws + pzwi + pow= + Y flaWN-—a,
a=2
or
Mo <> p+
Te Q< pg

Pa & UN—g 2<a<N-2
As discussed above, C is trivial, but a charge conjugation operation may still be defined.
See section B.2.1 for specific details.
Spin(2N + 1)

The extended Dynkin diagram for Spin(2/N + 1) with our labelling conventions and corre-
sponding dual Kac labels is

2 2 2 2 1
@ @ o——® .
oy oy ay-_2 OQN-1 ON
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The inner product between weights and co-weights is

{min(a,b) b< N
w, Wy =1 q .
= b=N
2

The Zs center symmetry is generated by ¢ = 1. The N-ality of the irreducible representation
Ry with A = YN \w, is

N-ality(A) = 2w] - A mod 2 = Ay mod 2.

Referring to table 9, the action of 7 = Ty, on p = Zfl\f:l LhaWq 1S

N
T(N) = WiI; © WH(H) + m'wT = powi + Z HaWaq,

a=2
or

Tt po 4> .
From table 9, the action of C is trivial.
Eg

The extended Dynkin diagram for FEg with our labelling conventions and corresponding
dual Kac labels is

1 2 3 2 1
{ @ L L J
o Qo [} ay Qs

The inner product between weights and co-weights, written as a matrix, is

4/3 5/3 2 4/3 2/3 1
5/310/3 4 8/3 4/3 2
2 4 6 4 2 3
4/3 8/3 410/3 5/3 2
2/3 4/3 2 5/3 4/3 1
1 2 3 2 12

[wg - wy] =

a,b

The Zs center symmetry is generated by ¢ =1 or ¢ = 5, but here we take ¢ = 1. The N-ality
of the irreducible representation Ry with A = 22:1 AgWq 18

N-ality(A) = 3w] - Amod 3 = A1 + A\q + 2(A2 + A5) mod 3.
Referring to table 9, the action of 7 = T;,, on p = S0 pew, is
T () = wi, ownr(p) +mwi = powi + pews + H3w3 + flawWs + 1wWs + pawe

or
7-_{#0_>M5—>M1—>,u0
M2 = fe = fg —> U2
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From table 9, the action of C is

C(p) = mws + powy + psws + paws + pswi + feWe,

or

1> Us
C:{M ,u.
2 < 4

Ey

The extended Dynkin diagram for FE; with our labelling conventions and corresponding
dual Kac labels is

The inner product between weights and co-weights, written as a matrix, is

46 8 6 424
6121612 8 4 8
|8 162418 12612
[wy - wy) = 5 | 61218 1510 5 9
481210 8 4 6
246 5 433
48129 637

a,b
The Zs center symmetry is generated by ¢ = 6. The N-ality of the irreducible representation
Ry with A = Y7 1 \w, is
N-ality(A) = 2w - A mod 2 = Ay + \g + A7 mod 2.

Referring to table 9, the action of 7 = T, on p = 22:1 LaWq 1S

6
T(“’) = Wil © WH(“) + m’wg = Z He—aWq + prW7

a=1
or
T i pa € M-, 0<a<6.

From table 9, the action of C is trivial.
Esg

The extended Dynkin diagram for Eg with our labelling conventions and corresponding
dual Kac labels is
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The inner product between weights and co-weights, written as a matrix, is

23 45 6 4 2 3
36 81012 8 4 6
4 812151812 6 9
510152024 16 8 12
6 12 18 24 30 20 10 15
4 812162014 7 10
246 8107 4 5
36 9121510 5 8

)y - wy) =

a,b
There is no center symmetry, and from table 9 C is trivial.
Fy

The extended Dynkin diagram for Fy with our labelling conventions and corresponding
dual Kac labels is

1 2 3 2 1
(7)) (%1 (7] asg QY

The inner product between weights and co-weights, written as a matrix, is

2321
3642
4863

2432 b

-] =

There is no center symmetry, and from table 9 C is trivial.

G2

The extended Dynkin diagram for G» with our labelling conventions and corresponding
dual Kac labels is

The inner product between weights and co-weights, written as a matrix, is

[w;-wb]=<§ ;) .
a,b

)

There is no center symmetry, and from table 9 C is trivial.

C Charge conjugation proof for U(u) Chern-Simons theories

Recall from equation (4.11) how charge conjugation acts on U(u)n_q, N states, and that if a
state |[A,&]) is charge conjugation invariant then C(A) must be in the Z, orbit of A under
T. In other words, there is an integer 0 < m < [ such that C(A) = T™(X), where [ is the
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size of the T orbit of A. Here we will prove the statement made in the text that if |[X, £])
is invariant under charge conjugation, then m cannot be odd when [ is even. Taking [, and
hence u, to be even, assume towards contradiction that m is odd. We then apply T (m=1)/2
to A to get a weight which is invariant under C up to one application of T,

c (T(m—l)/Q()\)) =7~ m=D265c(A) = T2,

We may then assume without loss of generality that m = 1, so that C(X) = T(A), or in other
words A\g = Aj_q4+1. We then use equation (4.12) to get N —u = 2% 22/221 Aa, 5O that N —
must be an even multiple of 7. The action of charge conjugation on our state is then

ClNE) =[TA), €= (N —u—Xo)]).

If our state is C invariant, then referring to equation (4.8) we see that £ must satisfy
E—X—1=—-&— (N —u— X)) mod %, or equivalently 2(§ — \g) =1 — (N — u) mod ui/l
Since N — u is an even multiple of 7, and both u and [ are even, we know that uﬂ/l must be

even, and hence there are no integers £ which make |[A,¢]) charge conjugation invariant.

D Proofs of claims about deconfinement on domain walls

D.1 Proofs of equations (5.1) and (5.2)

We want to prove that p can be written as the difference of two BPS u-wall fluxes if and
only if pg = o - p is one of {—1,0,+1} for each a = 0,1,...,r.

For the forward direction suppose that p is deconfined so that u = ®; — ®5 for two
BPS u-walls ®; and ®2. Let the domain walls be such that ®; = >7_; qéwi — %p, with
4o = o - ®; + £ € {0,1} for a = 0,1,...,r by the BPS condition (3.3). The condition
p = ®; — &, tells us that p, = - pu = gl — g2 must be in the set {—1,0,+1}.

For the other direction suppose that p, € {—1,0,4+1}. To show that p is deconfined we
just have to show that there are two BPS u-walls, ®; and ®,, such that u = ®; — ®5. To

that end, let ®; = >"_, ¢lw; — % p as before, and define ¢’ in the following way,
1 p=1
Ga=10 pa=—1
Qo fta =0
0 pe=1
GG=q1 pa=-1,
Qo fta =0

which automatically guarantees that ¢i — ¢ = u,. Note that at this point, ¢, € {0,1}
but is not otherwise constrained. Now we just have to show that we may choose u and ¢,
such that both the ®; are BPS. To proceed, let ( € S,41 be a permutation on the labels
{0,1,...,7} so that p¢e, is
+1 a=0,1,...,m—1
He(a) = -1 a:m,...,l
0 a=1+1,...,r
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Because Y., _gkial =0, we know that 0 = S0 _ k¥ut = Sk Za m K&(q)r SO We
automatically get S0 _ kiql = 3" _ kiq?. We then simply take u =" _o kg and we've
proved equation (5.1). To get the full set of allowed values of u, we snnply consider all

possible values of g¢(,~y), giving us equation (5.2).

D.2 Finding weights of all N-alities

To find weights of all N-alities we use the fact that every irreducible representation, Ry, is
labelled by its highest weight, A which must be dominant.?’ Further, we use the well known
result that a dominant weight p is a weight of Ry if and only if A = g and A — p is in the
root lattice, or in other words if w} - (A — p) is a non-negative integer for each a = 1,...,r.
We may apply this result to an arbitrary weight v by first applying a Weyl group element
which makes v dominant, w,, and then checking if w,(v) is a weight of Ry, remembering
that the set of weights of a representation is invariant under the Weyl group.

Note that the fact that weights of an irrep have the same N-ality as the highest weight,
as noted in appendix B.1, allows us to check if a dominant weight p is a weight of Ry by
verifying that N-ality of R, is the same as that of Ry, along with checking that A = p.

An example: Sp(IN). Recall from appendix B.3 that the N-ality of Ry is

L(N-1)/2]
N-ality(Ry) = 2wl -Amod 2= Y Agjy1 mod 2.
j=0

We claim that wo is a weight of all N-ality 0 representations and w; is a weight of all
N-ality 1 representations. We will just prove the first claim, as the proof of the second
is essentially identical.

We start with an N-ality 0 representation Ry. To see that ws is a weight of Ry we
have to show that ws has N-ality 0, which is clear from the inner product above, and that
A = ws. Using the inner product above, we calculate w} - (A — w2),

N
-1 a=1
b=1
N
w (A —wsy) = Zmin(a,b))\b—2 2<a< N .
b=1
L[(N-1)/2] [v/2]
> (J-i— ))\2]+1+ > -1 a=N
b=1 j=1

For a = 1, we see that the only way to get a negative result is if A vanishes, which by
assumption does not happen. For 2 < a < N and a = N, we would need A = w; in order
to get a negative result, which does not have N-ality 0 so can be ruled out, thus showing
that ws must be a weight of Rj.

29A weight is dominant when it has only non-negative coefficients when written as a sum of fundamental
weights. Equivalently, X is dominant if and only if e, -A>O0foralla=1,...,r
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