
AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

FIELD OF SCIENCE: ENGINEERING AND TECHNOLOGY

SCIENTIFIC DISCIPLINE: INFORMATION AND COMMUNICATION TECHNOLOGY

DOCTORAL THESIS

Design and evaluation of data quality control methods for a very high
bandwidth data acquisition and processing system in the future

CERN/ALICE O2 framework

Author: Piotr Jan Konopka

First supervisor: prof. dr hab. inż. Marek Gorgoń

Second supervisor: dr hab. Jacek Otwinowski

Completed in: AGH University of Science and Technology, Faculty of Electrical Engineering,

Automatics, Computer Science and Biomedical Engineering, Department of Automatic Control

and Robotics

Kraków, 2021

C
ER

N
-T

H
ES

IS
-2

02
1-

33
5

03
/0

6/
20

22

I would like to offer my sincere thanks to
Prof. Marek Gorgoń, Dr. Jacek Otwinowski and
Barthélémy von Haller for their support and guid-
ance during my doctoral studies, and for giving
me this great opportunity to work at CERN.

Abstract

Modern physics experiments acquire very large amounts of data which require diligent quality mon-

itoring and assessment. Data Quality Monitoring (DQM) systems help with identifying problems with

particle detectors, data transfer and initial processing, where timely and accurate feedback is crucial.

They are complemented with Quality Assurance (QA) systems, which allow to perform extensive as-

sessment of the data quality before preparing them for physical analyses.

This dissertation covers the new data Quality Control (QC) framework for the upgraded ALICE

experiment at the CERN LHC. Starting from the year 2022, the QC system will accompany the main

computing software during the acquisition of a 3.5 TB/s raw data stream, its compression on-the-fly

and final quality assessment. Thus, it combines the functionalities of DQM and QA within a complete

system.

The QC framework is a highly parallel system, which can split computations among thousands of

nodes. According to the reviewed literature, it is the first system of this kind to rely fully on message-

passing and the actor model. In the dissertation, its general design and components are presented, giving

the most detail to those which required novel solutions. A mathematical model of two available variants

for multinode QC setups is proposed. The framework benchmarks results are presented and discussed.

Streszczenie

Współczesne eksperymenty fizyczne generują bardzo duże ilości danych, które są poddawane grun-

townej kontroli jakości. Systemy monitoringu jakości danych (ang. Data Quality Monitoring, DQM) są

wykorzystywane do szybkiej identyfikacji problemów dotyczących detektorów cząstek oraz transferu i

przetwarzania danych podczas ich akwizycji. Z drugiej strony, systemy zapewniania jakości (ang. Qual-

ity Assurance, QA) pomagają w prowadzeniu całościowej kontroli zarejestrowanych danych zanim są

uwzględniane w badaniach.

W rozprawiej doktorskiej przedstawiono nowy framework kontroli jakości danych (ang. Quality

Control, QC) dla eksperymentu ALICE przy LHC w CERN. Oprogramowanie łączy w sobie cechy sys-

temów DQM i QA. Począwszy od roku 2022, system kontroli jakości będzie wykorzystywany w trakcie

akwizycji i przetwarzania strumienia danych o szerokości 3.5 TB/s oraz ostatecznej certyfikacji jakości.

Zaprezentowany framework umożliwia prowadzenie obliczeń równoległych na tysiącach węzłów

sieci komputerowej. Jest to pierwszy tego rodzaju system opisany w literaturze oparty w całości o

przekazywanie komunikatów (ang. message passing) i model aktorów. W rozprawie zaprezentowano

jego architekturę i komponenty, ze szczególnym uwzględnieniem tych, które wymagały oryginalnych

rozwiązań. Ponadto, zaproponowano model matematyczny dwóch dostępnych wariantów topologii ak-

torów oraz zamieszczono wyniki i dyskusję testów.

Contents

1. Introduction .. 13

1.1. Dissertation context and aim ... 14

1.2. Content description.. 15

2. CERN and the ALICE experiment upgrade ... 17

2.1. CERN and Large Hadron Collider .. 17

2.2. The ALICE experiment ... 18

2.3. Lifetime of physics data .. 18

2.4. ALICE detector upgrade.. 21

2.5. The new online-offline computing system .. 22

2.6. Data Quality Control and Assessment... 23

2.6.1. Definition ... 23

2.6.2. Architecture overview .. 23

2.6.3. Data rates estimations .. 24

3. Message-passing in the O2 system .. 27

3.1. Actor model ... 27

3.2. Message passing software stack in O2... 27

3.2.1. Messaging in Linux systems .. 27

3.2.2. ZeroMQ.. 28

3.2.3. FairMQ... 30

3.2.4. The O2 framework ... 31

4. Overview of data quality control systems .. 35

4.1. Examples of data quality control methods .. 35

4.2. ROOT - data analysis framework .. 38

4.3. The latest generation of data quality control systems ... 40

4.3.1. The ALICE experiment.. 40

4.3.2. The ATLAS experiment ... 41

4.3.3. The CMS experiment ... 42

10 CONTENTS

4.3.4. The LHCb experiment.. 43

4.3.5. The Tevatron experiments .. 44

4.3.6. Gravitational waves detectors .. 45

4.4. Unification efforts.. 45

4.5. Summary.. 45

5. Quality Control system .. 49

5.1. Architecture overview ... 49

5.2. Data Sampling ... 50

5.2.1. Data Sampling design .. 51

5.2.2. Investigating data sampling techniques.. 52

5.2.3. Summary .. 58

5.3. Quality Control tasks and automatic checks ... 58

5.3.1. Task Interface ... 59

5.3.2. Timing of Monitor Objects publication in QC Tasks... 60

5.3.3. Check Interface .. 60

5.3.4. Dealing with complex Task and Check mapping... 61

5.3.5. Quality aggregation.. 62

5.4. Mergers.. 63

5.4.1. Assumptions and naming convention .. 63

5.4.2. Mergers design ... 64

5.4.3. Merging entire objects.. 65

5.4.4. Merging deltas.. 66

5.4.5. Merging collections of objects ... 67

5.4.6. Comparison of merging entire objects and deltas .. 68

5.5. Quality Control repository... 69

5.6. Post-processing.. 70

5.6.1. Post-processing Interface ... 71

5.6.2. Trending Task... 72

5.6.3. Running Post-processing Tasks.. 72

5.7. Execution ... 73

5.8. Quality Control GUI.. 73

5.9. Maintenance of the QC software ... 76

5.10. Further development.. 76

6. Optimisation of message-passing topologies in the Quality Control ... 79

CONTENTS 11

6.1. Queueing theory .. 79

6.2. Model requirements... 81

6.3. Optimal Merger topology .. 83

6.3.1. Modelling one Merger process... 83

6.3.2. Modelling Merger topologies... 84

6.3.3. Example ... 84

6.4. QC Tasks localisation .. 85

6.4.1. Modelling a QC Task ... 85

6.4.2. Comparing the total cost of local and remote QC Tasks.. 86

6.4.3. Exploring the model’s parameter space ... 87

6.5. Summary.. 93

7. Benchmarking the Quality Control framework.. 95

7.1. Data Sampling ... 95

7.1.1. Benchmarking method ... 96

7.1.2. Benchmark results overview .. 97

7.2. Task Runners ... 98

7.3. Check Runners...102

7.4. Mergers..104

7.5. QC repository ..105

7.6. Summary..105

8. Applications of the Quality Control framework ...107

8.1. Current status of the QC modules development ..107

8.2. Data-agnostic quality control ..108

8.3. Machine Learning..108

9. Summary and Conclusions..111

9.1. Discussion..112

9.2. Future work..113

List of Figures...115

List of Tables...118

A. Glossary ..119

B. Benchmarks of mergeable data types ..121

B.1. Standard histogram types ..121

B.2. Sparse histograms..126

B.3. Columnar data storage ...128

12 CONTENTS

B.4. Relationship between total processing time and object size ...130

B.5. General remarks...130

1. Introduction

Modern physics experiments often produce very large amounts of data. Only in November 2018 the

data centre of the European Organization for Nuclear Research CERN (fr. Organisation Européenne

pour la Recherche Nucléaire) recorded an unprecedented 15.8 petabytes of information [1]. While there

is over a dozen experiments at CERN now, vast majority of the recorded data came from the detectors

which register products of numerous particle collisions (Fig. 1.1) at the Large Hardon Collider (LHC)[2],

the largest and most powerful particle accelerator in the world. Collecting such enormous data volumes

is justified by searching for very rare signals, e.g. productions of heavy bosons and quarks.

Particle detectors designed for cutting-edge physics research are quite complex devices. They are

actually composed of multiple sub-detectors which take advantage of different physical phenomena in

order to observe certain particle characteristics and then convert them into electric signals. Properties of

detectors change over time, in a short and long term - noise levels vary, electronic components break,

their sensitive elements degrade due to ionizing radiation, etc. Retrieving raw data makes only the first

step of the event reconstruction process, when electronics signals from detectors readout channels are

digitized. Then the following reconstruction steps, including signal clusterisation, tracking and parti-

cle identification, are performed. While data acquisition takes place synchronously to the activity at the

LHC, the further data processing and preparation might continue days after. Event reconstruction soft-

ware also tends to be very complex, reaching thousands of hundreds lines of code (see e.g. the ALICE

reconstruction software (AliRoot) repository [3]), which leaves plenty of room for potential problems

and bugs.

These facts definitely raise some doubts about correctness of whole experimental process. If particle

detectors may malfunction and so may their processing software, how experimental crews should know

that they acquire valid data and process it correctly instead of wasting costly equipment and time? More-

over, should we believe experimental physics results which are based on a chain of so many, potentially

faulty components and steps?

These issues are usually addressed by implementing data quality control systems. The existence of

Data Quality Monitoring (DQM) systems helps with quickly identifying and overcoming problems with

detectors, data transfer and processing during acquisition. They are usually designed to provide feedback

information in timely manner, so experiment shift crews and detector experts can spot and fix potential

problems to collect good quality data. During data preparation for analysis, Quality Assurance (QA) is

held. While it should not unnecessarily delay the full process, this stage may take longer time, so acquired

14 1.1. Dissertation context and aim

Fig. 1.1. A graphical representation of a heavy ion collision recorded by the ALICE

detector (the experiment’s press materials).

data are validated with best possible knowledge and physicists may rely on them when conducting their

research. These two classes of software may be more or less intertwined, which largely varies between

particular physics experiments. They have long lifetimes - the original quality control systems of the four

major LHC experiments were used since the beginning of the data taking in 2009, until the shutdown in

2018.

The ALICE experiment [4] is having a major upgrade before the LHC resumes its operation in early

2022. Most of the sub-detectors is being modernised or completely replaced in order to achieve a higher

spatial and time resolution, and much greater amount of acquired data [5]. The updated experimental

setup will be able to observe 50000 led ion collisions per second and produce 3.5 TB/s of raw data in

such conditions. To sustain the new data throughput requirements, a new computing system and asso-

ciated software are being prepared. Consequently, the process of data quality control was redesigned,

encompassing the two previously separated systems, DQM and QA, into one - Quality Control (QC).

1.1. Dissertation context and aim

This thesis was realised following the joint CERN and AGH UST doctoral programme. The aim of

the project was to investigate and propose solutions to the most challenging aspects of the new Quality

Control system developed for the ALICE experiment. First, the author got acquainted with the state of art

in the field of Data Quality Montoring and Assurance in High Energy Physics (HEP) experiments. Then,

he reviewed the initial state of the QC framework [6]. Finally, he proposed changes and implemented the

following components:

– Data Sampling – the component collecting data samples to feed the QC system in an efficient,

statistically sound and reliable way.

1.2. Content description 15

– Automatic checkers – the framework component which allows to analyse statistical data structures

generated by the QC system, such as histograms and decide whether they indicate a good or bad

quality of the data.

– Correlation and trending (post-processing) – the infrastructure to post-process data generated by

QC in dedicated asynchronous processes. Physicists often need to see transformed data over time

(trending) and to correlate different observables.

Apart from having successfully delivered the aforementioned framework components, the author also

took over the following tasks:

– Quality Control Tasks – the framework component which allows to run algorithms generating data

structures based on sampled data. The initial prototype was further developed and extended.

– Merging software – the infrastructure to merge results of algorithms running in parallel on mul-

tiple cores and/or processing nodes. This functionality was also needed by other parts of the new

computing system. The first prototype proposed in [7] was reworked and put under extensive per-

formance benchmarks.

– Infrastructure management – finding methods which help to choose the best arrangement of

message-passing processes for performing the tasks mentioned above in terms of computing, mem-

ory and bandwidth resources. Also, designing the QC framework components in a way which

allows for their reconfiguration during runtime.

The Quality Control framework was benchmarked in order to evaluate validity of the applied solutions.

Moreover, the author took part in many discussions regarding the general ALICE software framework

development [8] and contributed with multiple bug fixes and small extensions.

The entirety of the described work led the author to put forward the following thesis:

Parallelisation of data quality control systems allows them to sustain very large data throughputs in

data acquisition systems.

The Data Sampling software was presented in the form of a poster at the 19th International Workshop

on Advanced Computing and Analysis Techniques in Physics Research (ACAT), then extended and pub-

lished in [9]. A detailed study regarding the merging software was submitted to a peer-reviewed journal

and is in the review process, as of January 2021. The complete Quality Control system was presented at

the 24th International Conference on Computing in High Energy and Nuclear Physics and published in

peer-reviewed proceedings thereof [10].

1.2. Content description

The dissertation is split into 9 chapters and 2 appendices. The context of this work, which is outlined

in this chapter, is followed in detail in Chapter 2. It contains an introduction to the research conducted at

16 1.2. Content description

CERN from the computer science point of view. Then, the recent modernisation activities of the ALICE

experiment are described. Most important detector upgrades are mentioned and the new computing sys-

tem architecture is explained. Finally, the new data Quality Control system design is presented as it was

described in [6], before the author began his work. The QC software relies on several of frameworks,

libraries and other underlying technologies, which are described in Chapter 3. The state of the art in the

field of Data Quality Monitoring and Assurance systems was extensively covered in Chapter 4.

The next two chapters make the body of the dissertation. Chapter 5 contains a detailed description

of the QC framework in its latest version, including studies of its most crucial components. As the

implemented piece of software leaves a certain amount of flexibility in the way it is executed, it received

a mathematical model, described in Chapter 6. There, the effects of different variables on the performance

were evaluated and methods to find the optimal software configuration were proposed.

The performance of the QC framework was benchmarked to assess if the design and implementation

choices indeed allow to sustain the unprecedented data rates of the new ALICE data acquisition system.

The benchmarks results are presented and discussed in Chapter 7. Chapter 8 contains the latest statistics

about the QC framework usage and provides the reader with the most interesting applications of the

software so far. The dissertation is concluded in Chapter 9, where all major achievements of the work are

highlighted and the discussion about potential improvements is held.

The thesis is complemented with two appendices. App. A contains a list of abbreviations and uncom-

mon terms used in the dissertation. In App. B, benchmark results of the commonly used data types in the

QC system are presented and discussed.

2. CERN and the ALICE experiment upgrade

In this chapter an introduction to the environment of the described data Quality Control system is

presented. The details of the particle accelerator, the new ALICE detector and its new computing system

are provided and put into context. Moreover, the software architecture overview of the Quality Control

systems is also presented, followed by the computational requirements which come from the chosen

approach.

2.1. CERN and Large Hadron Collider

The European Organization for Nuclear Research CERN is located on the Franco-Swiss border in the

proximity of Geneva. During its more than 60 years history, this scientific institute greatly contributed to

the development of particle physics and information technologies. The research is funded by 23 member

states, including Poland, since 1991.

Without doubt, CERN is most famous for its Large Hadron Collider - a particle accelerator located in

a 27 km torus-shaped tunnel. The apparatus is able to accelerate protons (heavy-ions) up to the energy of

7 (5.5) TeV per nucleon pair [2]. Two particle beams moving in parallel in the opposite directions cross

each other in four collision points. The four major detectors and experiments: ALICE [4], ATLAS [11],

CMS [12] and LHCb [13] are located around them. Each is designed to study various physics phenomena.

For example, the ATLAS and CMS experiments empirically confirmed the existence of the Higgs boson

[14][15], which is responsible for generation of current quark masses creation in the Standard Model

[16].

The LHC schedule is organised in operational runs and long shutdowns, both lasting several years.

The first run took place in years 2009-2013, then it was followed by the first Long Shutdown (LS1). The

second run lasted from 2015 until the end of 2018. The LHC generates particle collisions during these

operational runs, letting experiments record physics data.

The LHC working cycle (Fig. 2.1) commences with the insertion of particle beams into the accel-

erator, then radiofrequency cavities increase their energy so they can reach a target value. After final

calibrations, the beams are squeezed near the interaction points and particle collisions start to appear.

They last until there is not enough particles in the beams to keep high collision rates or other technical

problems occur. Then the beams are dumped into two blocks of graphite and the LHC shift crew pre-

pares the machine for the next injection. Under favourable circumstances, the accelerator may generate

18 2.2. The ALICE experiment

Fig. 2.1. An example of the LHC performance plot. The blue and red lines indicate

the intensities of the two parallel beams. When the lines rise, particles are injected

to the accelerator ring. A slow decrease usually can be observed when the beams are

collided, so the amount of particles declines (data is acquired then). Sudden intensity

drops correspond to beam dumps. The black line indicates the expected beam energy,

driven by radiofrequency cavities. It is gradually increased after particles are injected,

then kept steady until the beams are dumped.

collisions continuously for between 10 and 20 hours. During the operational runs, it works 24 hours a

day, 7 days per week with the exception of end of year breaks.

2.2. The ALICE experiment

The ALICE experiment (A Large Ion Collider Experiment) gathers 174 institutes and universities

with the aim of studying quark-gluon plasma - an exotic state of matter, which is said to exist shortly

after the Big Bang. It was confirmed that one can form quark-gluon plasma in high-energy led (Pb) ion

collisions [17][18]. The detector (Fig. 2.2) provides information about the general features of a collision

and properties of observed particles such as charge, momentum, mass and energy. The ALICE detector

and the data acquisition system which used to operate in years 2009-2018 were able to observe up to 8000

heavy-ion collisions in a second and trigger recording of around 400 of those, which would correspond

to roughly 17 GB/s of data throughput, then compressed to almost 5 GB/s. By having large statistics of

such events it is possible to study quark-gluon plasma using large variety of physics observables [19].

2.3. Lifetime of physics data

Studying the physics phenomena occurring during and after particle collisions makes the last step of

a long process of acquiring and preparing data, which begins with running an experiment.

The operation schedule of the LHC experiments is closely aligned to the collider’s calendar. Dur-

ing operational runs, detectors and data acquisition systems have to follow and adapt to the LHC state

(Fig. 2.1). When the accelerator team announces that the beam injection is planned in a short time, the

detector is prepared accordingly by activating all its components and performing their final calibration.

Analogously, the data acquisition hardware and software is started and configured, so it can transition

2.3. Lifetime of physics data 19

Fig. 2.2. The ALICE detector scheme (the experiment’s press materials).

into running state as promptly as possible. When the LHC declares the presence of stable beams, the ex-

periment begins to record data and it continues so until the beams are dumped or an unexpected technical

problem appears.

In the case of the ALICE experiment, the detector is usually supervised by trained crews consisting

of 4-5 people which take 8-hour shifts, including nights, weekends and holidays. The shifters are mostly

employees of CERN or other institutes taking part in the experiment. A shift crew in ALICE consists of:

– an Experiment Control System (ECS) Shifter, who is in charge of supervising the data acquisition

system and attempts to solve basic problems with its operation,

– a Detector Control System (DCS) Shifter, a person responsible for the safety and correct behaviour

of the detector itself,

– a Data Quality Monitoring (DQM) Shifter, who makes sure that the recorded data are of good

quality and helps to quickly identify problems with the detector and the data acquisition system,

– a Shift Leader (SL), who has a global understanding of the detector system, including the re-

sponsibilities of the three aforementioned shifters, and takes any decisions and actions needed to

guarantee the best efficiency of the detector,

– a Run Coordinator (RC, optionally), a person who coordinates the experiment operations within

the collaboration and with the accelerator teams.

The shifters work in the ALICE Control Room (ARC), which is located on the experimental site. In

case they cannot solve a problem with a sub-detector or one of the computing systems, they may call

corresponding experts for help, who take 24-hour on-call shifts for specific sub-systems.

20 2.3. Lifetime of physics data

Fig. 2.3. An example illustrating tracking in one of the ALICE sub-detectors [21]. The

particle hits are connected into lines which approximate the real particle tracks.

The data acquisition system receives a raw detector data stream. Its format and contained information

varies significantly across sub-detectors, but it usually contains rudimentary data about time, location and

strength of electric signals been observed. In order to be efficiently analysed by physicists, these data are

be transformed into easily accessible information about tracks and properties of the particles observed

by the detector. This process is called reconstruction [20][21]. It may be performed synchronously to

data-taking or afterwards, if raw data is preserved.

The first step of reconstruction usually involves clusterisation. When a particle crosses a detector it

may leave a trace on multiple adjacent detection cells or, in case of calorimeters, cause a particle shower.

In both cases, such a group of signals corresponds to one particle hit (energy deposition), therefore they

are combined into clusters. With this information, one can compute a more precise position of a particle

hit and the energy which it deposited.

Having identified the particle hits, the software proceeds with finding the primary vertex (collision

point coordinates), recognizing the tracks and fitting them to the corresponding hits. Data from different

sub-detectors are matched. The ALICE detector may observe up to 8000 particles in one Pb-Pb colli-

sion, which makes the tracking particularly difficult and resource-demanding. Moreover, some particles

appear away from the primary vertex, as decay products of undetectable particles. In the last step, the

particles are identified based on the curvature of their tracks, energy deposition, time of flight and other

information. The collected data requires calibration, which is derived from additional calibration runs

and is complemented with data obtained during reconstruction.

Physicists may analyse large quantities of the reconstructed data by using the Worldwide LHC Com-

puting Grid (WLCG) [22]. The acquired data is usually complemented with simulated data with the same

condition and calibration parameters, which allows the researchers to estimate the detector efficiency and

the statistical significance of analysis results [23].

2.4. ALICE detector upgrade 21

2.4. ALICE detector upgrade

Since December 2018, the LHC is in the Long Shutdown 2 (LS2), designated for an exchange and

modernisation of its components and an improvement of the machine’s working parameters [24]. The

third LHC run (Run 3) is expected to start at the beginning of 2022.

The shutdown creates also a good opportunity for an extension and modernisation of the ALICE

experiment setup. Statistical analyses in high energy physics often rely on a very high amount of data

in order to provide statistically significant results. The ALICE physics programme includes searching

for very rare signals [5], which requires large statistics of collision data. Therefore, most of the sub-

detectors are being modernised or completely replaced to achieve higher spatial and time resolution, and

a much higher data readout rate. To mention the most important upgrades, the new Inner Tracking System

(ITS)[25], which is the detector closest to the collision point, will consist of 7 cylindrical detection layers,

each covered with silicon-based Monolithic Active Pixel Sensors (MAPS) - square-shaped pixels with

sides of 30 µm. In total, the sub-detector will have 12.5 billion pixels spanning on an active surface of

about 10 m2 and will be able to sustain the rate of 100 kHz of heavy ion collisions and 400 kHz of proton

collisions.

A new sub-detector, the Muon Forward Tracker (MFT), will be incorporated into the existing detector

setup [26]. It will make an extension to the existing muon detector set by giving it vertexing capabili-

ties, thus allowing for new measurements, which were not accessible with the previous apparatus. The

detector is built from the same MAPS sensors as the ITS.

The Time Projection Chamber (TPC) upgrade [27], a gas detector to track charged particles, will

make the most impactful change. Due to the physics phenomenon used to detect particles - registering

electrons from ionised gas drifting in the detector - there is a significant latency since the appearance

of a particle until its detection. It reaches 125 µs, which greatly inhibits data acquisition in triggered

mode - when each collision is quickly evaluated and decided if it is worth recording. As soon as the data

acquisition is triggered, succeeding collisions cannot be evaluated until the current one is completely

registere. In this case, it limits the trigger rate to less than 3.5 kHz. The new TPC will sustain interaction

rate of 50 kHz with heavy-ion beams. However, to actually register more events, the sub-detector will

produce a continuous, not triggered flow of data, and by that, increase the amount of generated data by

two orders of magnitude.

The MFT will occupy a part of the space previously used by the trigger detectors, thus they will

be replaced with the new, more compact Fast Interaction Trigger (FIT) detector [28]. It will be used as

the main forward trigger and to measure the collision time and centrality, and to monitor LHC beam

luminosity. Due to the high demands of the other sub-detector upgrades, the FIT will have to maintain its

latency below 425 ns, where more than a half will be induced by the signal propagation time in cables,

leaving just 200 ns of the available processing time.

The new ALICE detector is estimated to produce 3.5 TB/s of raw data, which requires a new data

acquisition and processing system, operating on a largely extended computing farm.

22 2.5. The new online-offline computing system

Asynchronous (few hours)

event reconstruction with
final calibration

Compressed Sub-Timeframes

Continuous and triggered streams of raw data

Data aggregation

Synchronous global
data processing

Data storage (70 PB)
1 year of compressed data

Write 170 GB/s, Read 270 GB/s

Compressed Timeframes

Reconstructed eventsCompressed Timeframes

Base Line correction, zero suppr.
Readout
Data aggregation

Local data processing

Detectors electronics

3.5 TB/s HI:50kHz pp/pA:200kHz

500 GB/s HI:50kHz pp/pA:200kHz

100 GB/s HI:50kHz pp/pA:200kHz

Tier 0, Tiers 1
and Analysis

facilities

20 GB/s

Trigger
system

First Level Processors (FLP)

Event Processing Nodes (EPN)

Fig. 2.4. The O2 system architecture [29].

2.5. The new online-offline computing system

In order to cope with such requirements, a new Online-Offline Computing system, called O2 [29],

is being developed. It is characterized by the continuous readout of all interactions, their compression

by means of partial online reconstruction and calibration, and sharing of common computing resources

during and after data taking.

As shown in Fig. 2.4, there are two major computing layers, the First Level Processors (FLPs) and

the Event Processing Nodes (EPNs). Both are highly heterogeneous, with specialized acquisition cards

embedding FPGAs on the FLPs and GPUs on the EPNs. A temporary data storage facility, consisting of

70 PB disk space, will receive around 100 GB/s of data, store them until further compressed and then

transfer to the main data centre at CERN.

The detector electronics located in the experimental cavern send raw data via optical fibers to the

first computing farm, which contains almost 200 FLPs. Common Readout Units (CRUs), FPGA cards,

receive data, optionally perform some pre-processing and transfer them into the computer memory of

the FLPs. Then, data is aggregated into Sub-TimeFrames (STFs), which contain all event information

gathered from a set of fiber links in a certain amount of time. Detector-dependent processing algorithms

reduce or compress most of the raw data, sometimes irreversibly. STFs matching the same time periods

reach one of the EPNs, where they are combined into TimeFrames (TFs) and further processed. With the

use of GPUs, the EPNs perform the most computationally heavy consuming operations, such as tracking.

The O2 system design assumes that the same computing resources are used during data-taking (online)

and while waiting until the LHC injects the particle beams again (offline), which gives the Online-Offline

component in its name. During acquisition the EPNs have limited time available for data processing,

therefore partially compressed TimeFrames are temporarily stored in the ALICE storage facility at the

2.6. Data Quality Control and Assessment 23

experimental site. Then, the additional processing is performed asynchronously on the EPNs or on the

WLCG. When the acquired data are fully reconstructed, they make their way to permanent storage and

analysis facilities.

The O2 system relies on a number of software components. The ALICE Experiment Control System

(AliECS)[30] is responsible for the automated management of the computing cluster resources and all

applications running within. Monitoring [31] collects and visualizes information about the software and

hardware performance in order to provide a complete overview of the system health and help identifying

failures of its components. InfoLogger [32] takes care of collecting and aggregating log messages coming

from the O2 processes. It is complemented with a highly functional GUI which allows to browse and filter

logs. The Configuration system stores and distributes nested key-value pairs to configurable processes.

The O2 framework [8] consolidates most of data processing in a form of message-passing topologies and

hides technical difficulties of implementing the data transport underneath.

2.6. Data Quality Control and Assessment

In such an immensely complex system problems might occur at each step of data acquisition. More-

over, during the synchronous reconstruction most of raw data will be irretrievably removed. Therefore,

potential problems with detector performance or data processing should be immediately identified by the

Quality Control system to collect good quality data. It should allow to quickly recognize issues with data

during acquisition and determine the final data quality for later physics analyses.

2.6.1. Definition

The Data Quality Control and Assessment (QC) replaces the former online Data Quality Monitoring

(DQM) and offline Quality Assurance (QA), used in the ALICE experiment during previous years. The

QC [6] should confirm that collected data has good quality and if not, identify potential problems with

the detector and processing in a timely manner, especially when running synchronously with the data

taking. It should also provide tools to track changes and correlate different properties of detectors in

order to allow for a high-level analysis of their performance.

The unification of the online and offline worlds, as well as the discarding of raw input data in favour

of reconstructed data, make the need for a reliable data quality control even more essential. The challenge

is made greater due to the more than 15 different detector teams involved and the very large amount of

data to look after (3.5 TB/s).

2.6.2. Architecture overview

The originally proposed design of the Quality Control [6] is split into a number of components shown

in Fig. 2.5. The most important requirements for each component are mentioned.

24 2.6. Data Quality Control and Assessment

The Data Sampling (blue arrows connected to purple boxes) is responsible for selecting and distribut-

ing data samples according to the needs of the proceeding components. Sampling should be possible at

each processing step, which is especially important in case of non-permanent data. It may not slow

down the main processing, unless explicitly specified. The software should provide a random, statisti-

cally sound representation of data and also allow to implement more advanced sampling techniques. The

QC tasks (purple boxes) execute detector-specific algorithms either locally on the FLPs and the EPNs or

remotely on dedicated Quality Control Servers. They publish their results in a form of data structures,

such as histograms or tables, generally referred as QC Objects or Monitor Objects. As most Tasks run in

parallel on many nodes, their incomplete results have to be merged. The Mergers perform this task. The

Checkers then take care of evaluating the quality of the objects by running user algorithms developed un-

der a common interface. Finally, the QC Objects and the Qualities are stored in the QC repository. Two

components - Correlation and Trending - can post-process data derived from QC Objects and Qualities

stored in the repository and inject the results back into the processing chain for additional checks. They

are triggered periodically, manually or on certain events (e.g. start of a data acquisition run or end of an

LHC fill). Once the QC Objects are stored, along with some Quality Objects, the shifters and experts can

use the QC GUI (QCG) to visualize them.

ALICE Detectors

Fi
rs

t
Le

ve
l P

ro
ce

ss
o
rs

E
ve

nt
 P

ro
ce

ss
in

g
N

od
es

Quality Control Servers

Local
aggregation

Processing

Time-Frame
Building

Processing

Synchronous
Asynchronous

Processing

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Mergers

CheckersCheckersCheckers QC
Repo

Local QC tasksTrending

Local QC tasksCorrelation

Local QC tasksQC tasksData samples

O2 Dataflow

QC task

QC
infrastructure

QC object (e.g. histo+meta)

Physics data

QC object + quality

W
eb

 A
P

I

Machine
Learning

web clientsweb clients

Fig. 2.5. The QC architecture as presented in [6].

2.6.3. Data rates estimations

The new Quality Control system should be able to cope with an unprecedented data throughput. To

achieve this feat, beginning with the main processing data, each processing step should reduce the data

volume (see Fig. 2.6).

2.6. Data Quality Control and Assessment 25

The latest estimations show that the full O2 system will receive around 3.5 TB/s of raw data input.

During the online processing, the recorded information will be reduced down to 635 GB/s in the FLPs

and then even further to 100 GB/s in the EPNs. However, additional temporary data might appear in the

midst of processing. Message rates will vary significantly across the system as a direct consequence of

different data granularity (being as little as 2 MBs up to a dozen of GBs). Assuming 2 MB payloads, one

process might generate around 7500 messages per second.

According to surveys conducted with the sub-detector experts, the complete system should consist of

around 100 distinct QC tasks. Mostly, they will use between 1% and 10% of messages of a selected data

type, although in rare cases they will work correctly only with the full data stream. A QC Object will

have the size of 250 kB on average. All QC Tasks which run in parallel will produce incomplete results

that Mergers will have to combine into 10000 complete objects each minute. The QC Tasks are expected

to produce in total about 25000 complete objects updated each minute. These objects will be analysed

resulting in around 100000 lightweight Quality Objects, needing only a few kB each.

Fig. 2.6. The QC processing chain and its data rates [10].

26 2.6. Data Quality Control and Assessment

3. Message-passing in the O2 system

3.1. Actor model

The actor model was first proposed in 1973 as an architecture for artificial intelligence applications

[33]. This concept has been gaining popularity ever since. It allows to divide processing tasks into several

meaningful components with clearly separated responsibilities, thus also facilitating the use of parallel

computing resources. As the O2 system relies on this model to a large extent, its basic assumptions and

benefits are presented in this section.

Actor is the basic unit of computation. It has one or more addresses, which can be used e.g. to com-

municate with other actors (and also with itself) by receiving and sending messages. Incoming messages

have an indeterministic time of arrival and can be sequentially processed by an actor, in the order of

arrival. An actor may decide how to treat future messages, thus it has a state. It may also create other

actors.

Implementing a complex computation task within the actor model helps to divide it into clearly

separated processing units which can operate independently. This means that topologies of actors can

well use the multicore architecture of modern processors and even large computer farms. Since actors

can influence each other via messages only, they do not require a strict synchronisation, but they might

have to be started and stopped in an order which guarantees that all messages are processed.

3.2. Message passing software stack in O2

This section gives a broad perspective on the software stack used in the O2 system and should help to

understand how the Quality Control software is implemented and how it interacts with other components.

3.2.1. Messaging in Linux systems

The Linux operating systems family [34] strongly dominates the high performance computing mar-

ket. All of the most powerful 500 supercomputers use one of the Linux distributions [35]. CERN main-

tains a customised CentOS distribution which is suited for its computing environment [36]. The O2

system is expected to run on CERN CentOS 7 or 8.

28 3.2. Message passing software stack in O2

Unix-based systems offer several ways to interface separate computer programs [37], which might

serve as building blocks of higher-level message passing libraries and frameworks. Some of them allow

to connect processes within one computing node, while others are designated for computer networks.

Probably the easiest form of communication in Unix systems can be achieved by using ordinary files.

A process might create and/or write into a file, closing it after having finished. Other applications might

read the file while it is being written into or anytime after. Operations on files are however costly, as

they require an access to a filesystem using system calls. Memory-mapped files show an increased I/O

performance by avoiding system calls and allowing to treat file contents as a piece of memory.

Pipes are unidirectional data channels. Anonymous pipes can connect a standard output of one pro-

cess with a standard input of another, which is expressed by inserting the pipe character "|" between shell

commands executing respective processes. This approach allows to interface only applications running

within one shell command, which is, however, not a restriction of named pipes. These, also called FIFOs

(First In First Out), might be created at any time and appear as standard files. On modern Linux distribu-

tions a pipe buffer can contain 64kB of data by default. The communication is blocking, unless specified

otherwise. In contrast to standard files, data travelling through FIFOs are not stored in filesystem, but

only in kernel, effectively allowing to achieve higher throughput and lower latency.

Linux offers also the socket API - endpoint interfaces for sending and receiving messages within

one computer node or a network. Unix domain sockets allow for stream-oriented and datagram-oriented

inter-process communication. Internet sockets implement popular networking protocols: Transmission

Control Protocol (TCP), Stream Control Transmission Protocol (SCTP), User Datagram Protocol (UDP),

which can operate both locally and between separate computing nodes.

The previously described inter-process communication methods always involve kernel in passing

data. In order to communicate processes directly and possibly achieve higher performance, one can

create a shared memory region which is accessed and modified by a group of co-owners. While being

the fastest, this method also makes a developer responsible for synchronisation of read/write operations

on a shared memory region, as well as its proper clean-up after use. On Linux, it appears as a mounted

file system under the path /dev/shm, which uses virtual memory instead of a real storage device.

3.2.2. ZeroMQ

ZeroMQ is a free and open-source messaging library [38]. It supports the most popular operating

systems, including Windows Server, multiple Linux distributions and MacOS. The core engine is written

in C++, but it offers various bindings for other languages, with C, C#, Java, Python, Go, Node.js and

Ruby among others.

The main feature of the library is its high-level socket application programming interface (API). By

using different kinds of sockets, one can create applications which exchange messages and signals in the

following fundamental communication patterns [39]:

3.2. Message passing software stack in O2 29

Fig. 3.1. An example of a pub-sub pattern [39].

– Publish-subscribe (PUB/SUB) – connects a set of publishers to a set of subscribers. It is a data

distribution pattern.

– Pipeline (PUSH/PULL) – connects nodes in a fan-out/fan-in pattern that can have multiple steps

and loops. It is a parallel task distribution and collection pattern.

– Request-reply (REQ/REP) – connects a set of clients to a set of services. It is a remote procedure

call and task distribution pattern.

– Exclusive pair (PAIR) – exclusively connects two sockets in the same process, but different threads.

The first two have the most relevance to the O2 system and will be described in more detail in this

subsection.

The library does not impose any format to transferred data - they are treated as binary blocks of any

size, including 0. A developer can choose an optimized transport type accordingly to their use-case. These

include in-process, inter-process, TCP and multicast communication. Each socket has corresponding

message queues (or buffers), where incoming and outgoing data are kept before being received and sent,

respectively. Therefore, buffering messages protects them from being dropped when a receiver is not able

to respond immediately. So called high-water marks prevent queues from consuming too much memory

by limiting the number of messages inside. If a socket consumes data from multiple sources, the queues

have equal-priority due to the fair-queuing mechanism, which organizes receiving messages in the round-

robin order. In most cases ZeroMQ allows to create and destroy sockets in arbitrary order. Also, they can

manually or automatically reconnect without unnecessary disturbances in other nodes.

The PUB/SUB communication pattern allows to connect a set data publishers with another set of data

subscribers (Fig. 3.1). Published messages are duplicated among listening sockets, so each subscriber re-

ceives each message. The pattern is non-blocking - when queues between communication nodes become

full, a publisher trying to send more messages will drop them without waiting. Furthermore, if there are

no subscribers connected to a publisher, the latter will not store outgoing messages in a buffer.

30 3.2. Message passing software stack in O2

Fig. 3.2. An example of a pipeline (push-pull) pattern [39].

The O2 system also relies heavily on the pipeline pattern, often called PUSH/PULL due to its socket

types names (Fig. 3.2). It allows to distribute a workload among multiple workers. A set of pull sockets

receive messages produced by a ventilator in round-robin order, therefore, a particular message is seen by

only one worker. Processing results are gathered by a common sink with another pull socket. In contrast

to PUB/SUB, here the communication is blocking - having full output buffers forces the sender to wait

until the congestion resolves (with an optional timeout). This guarantees that no data is lost during the

transport, even if there is no node available to receive new messages.

The ZeroMQ authors list Microsoft, Samsung, AT&T, Spotify, Digital Ocean, Auth0 among compa-

nies which use their library. There is also an increasing trend to rely on ZeroMQ as the communication

fabric in software frameworks of data acquisition systems in high energy physics experiments, e.g. in

DAQling [40] and the library discussed in the next section.

3.2.3. FairMQ

FairMQ [41][42] is an open-source message queuing library developed in GSI Helmholtz Centre for

Heavy Ion Research, which maintains a strong connection with the ALICE experiment. By implementing

the actor model, the library authors aim to tackle the large data processing requirements of the recent

particle physics experiments. It is written in C++.

The basic building block of the framework is FairMQDevice (or just device), an independently run-

ning application which can receive and send messages to other devices, and process them with user-

defined algorithms. Multiple devices connected to each other can form a data processing topology, natu-

rally taking advantage of multi-core processors. The library supports communication patterns offered by

ZeroMQ - pipeline, publish-subscribe, request-reply and exclusive pair. Message passing is agnostic to

data format and gives the responsibility of defining a data model to the developer.

3.2. Message passing software stack in O2 31

Fig. 3.3. The state machine of FairMQDevice ([42], increased font size).

Two transport types are supported - the first is based fully on ZeroMQ, the second implements shared

memory communication with the help of boost::interprocess [43] for the memory management

and ZeroMQ for passing meta-data required to locate the message contents. Sharing a common mem-

ory region among processes is especially beneficial for data processing topologies, as it does not entail

making expensive copies of messages when it is not necessary. To avoid problems related to concurrent

access to the same memory region and shared ownership, the library allows for having only one owner of

a given message at a time. Therefore, the publish-subscribe communication pattern cannot be combined

with the shared memory transport, as one message could have multiple subscribers otherwise.

The software of data acquisition and processing systems in high energy physics often operate within

finite state machines [44]. This approach allows to define the expected behaviour of each system compo-

nent with regard to an environment (e.g. particle beam insertion, presence of stable beams, beam dump)

and control those components in a coherent manner, avoiding potential race hazards. FairMQDevice

implements the state machine shown in Fig. 3.3. The state sequence starts with an Idle device. Then it

may follow a series of transitions, which involve e.g. binding communication channels, into the Device

Ready state. Returning back to Idle is possible by Resetting device. By Initializing Task and Resetting

Task one can reinitialize a processing algorithm without reallocating acquired resources in the preceding

steps, which would make the whole process longer and potentially impose state changes to other devices.

While Ready, a device can finally enter the Running state. Then it may perform its task until the Stop

transition is initiated. Regardless of the main state machine, FairMQDevice has a second one, which

indicates its health with the OK and Error states.

3.2.4. The O2 framework

The FairMQ library provides the necessary foundations to build a large data processing system and it

was chosen as the messaging library of the O2 system. The O2 data model expects that each message has

two components - a stack of headers and a payload. The framework should never inspect the payload and

32 3.2. Message passing software stack in O2

may tamper only with the headers. The header stack might consist of one or more headers, all following

the same template. Some headers are created and managed by the framework, while other, optional might

correspond only to specific kind of data. The compulsory Data Header consists of (among others):

– Data Origin – a three-letter detector code or the name of a facility which produced data

– Data Description – a data type description

– Subspecification – an arbitrary index to differentiate parallel data streams of the same type

– Serialization method – the method which was used to store data in the payload

– First orbit of a TimeFrame – a unique TimeFrame identifier within a data taking run, which is

derived from the LHC clock signal.

The data model is language-agnostic. The headers are allocated in contiguous blocks of memory and

their fields have fixed size.

The O2 system is expected to execute at least hundreds of unique devices and most of them might

run in parallel. As a consequence, configuring and managing such a large number of processes would

require a lot of effort. Also, each device would have to make sure it follows the O2 data model, seri-

alise, deserialise and match messages. Therefore, the O2 system contains an additional framework which

accommodates these tasks - the Data Processing Layer (DPL) [8].

A DPL topology (or workflow) consists of Data Processors, which are pipeline stages built on top

of FairMQDevices. Data Processors take care of receiving incoming messages and synchronizing them

if more than one input data stream is expected. Aside from supporting standard message inputs, the

framework may also generate timers or retrieve objects from databases. A user-defined algorithm still

makes the core of a Data Processor. A developer can declare a number of callbacks corresponding to

state machine changes and a set of events, including readiness of a new collection of input messages

or the reception of an End Of Stream notification. Incoming data is accessed via a high-level interface

which takes care of safe message deserialisation, a process which is error-prone and involves a lot of

boilerplate code in the case of more complicated serialisation methods. Similarly, the framework handles

creation and sending of new messages. Another interface gives access to more advanced services, such

as the resources monitoring library, configuration key-value store, state transition callback registration,

logging facility and the FairMQDevice API.

The DPL takes care of arranging a topology of Data Processors given a workflow specification written

in C++. A developer declares a set of structures containing, among others, required data inputs (which

might contain wildcards), produced data outputs and a processing algorithm in form of the C++11’s

lamdba function or a function pointer. If more than one device needs a certain type of data, they are

arranged in a queue. The same message is processed in a pipeline in order to respect the FairMQ’s limi-

tation of the singular data ownership. Unique devices can be replicated by setting an additional parameter.

In such case the parallel workers receive data in round-robin order and process them independently.

3.2. Message passing software stack in O2 33

#include "Framework/runDataProcessing.h"

using namespace o2::framework;

AlgorithmSpec source() {

return AlgorithmSpec{

[](ProcessingContext &ctx) {

auto aData = ctx.outputs().make<int>(OutputRef{ "a1" }, 1);

auto bData = ctx.outputs().make<int>(OutputRef{ "a2" }, 1);

}};

}

AlgorithmSpec simplePipe(std::string const& what) {

return AlgorithmSpec{ [what](ProcessingContext& ctx) {

auto bData = ctx.outputs().make<int>(OutputRef{what}, 1);

}};

}

AlgorithmSpec sink() {

return AlgorithmSpec{ [](ProcessingContext&) {} };

}

WorkflowSpec defineDataProcessing(ConfigContext const& specs) {

return WorkflowSpec{

{ "A", Inputs{}, Outputs{{{"a1"}, "TST", "A1"}, {{"a2"}, "TST", "A2"}}, source()},

{ "B", Inputs{{"x", "TST", "A1"}}, Outputs{{{"b1"}, "TST", "B1"}}, simplePipe("b1")},

{ "C", Inputs{{"x", "TST", "A2"}}, Outputs{{{"c1"}, "TST", "C1"}}, simplePipe("c1")},

{ "D", Inputs{{"b", "TST", "B1"}, {"c", "TST", "C1"}}, Outputs{}, sink()}

};

}

Listing 3.1. A condensed example of a DPL specification of a diamond shaped

topology (slightly modified version from [8]).

The listing 3.1 shows a basic diamond-shaped topology specification that passes very simple mes-

sages. A source file with the runDataProcessing.h header included can be compiled into an exe-

cutable which contains the declared workflow. For development purposes, running the created binary is

enough to spawn the full process topology, as all devices are executed as its child processes. A dedicated

GUI (Fig. 3.4) facilitates debugging. It visualises a graph of devices and connections between them,

shows the flow of data and configuration of processes. It also allows to inspect the monitoring metrics

and log messages of each component.

Developers usually prepare self-contained parts of the full O2 process topology using simulated data.

In order to test the integration of separate workflows, one can execute them in one terminal command

by connecting their binaries within a Unix pipeline. During data taking all the DPL workflows will be

driven by the AliECS and a dedicated control software for the EPN farm.

After the acquired data is completely reconstructed, it is ready for physics analyses. The ALICE

Run 3 analysis framework [45] facilitates writing analysis tasks by standardising the data format, pro-

viding convenient access to data and imposing a pipeline structure of the processing. It also relies on the

Data Processing Layer, thus it allows to reuse the O2 code and combine it with the analysis software.

34 3.2. Message passing software stack in O2

Fig.3.4.T
he

debug
G

U
Iofthe

D
ata

Processing
L

ayer.

4. Overview of data quality control systems

In this chapter, the reader is introduced to some examples of usual methods of data quality monitoring

and assessment in high energy physics experiments. Then, a thorough review of the literature about such

quality control system designs and implementations, as well as the used tools, is carried out.

4.1. Examples of data quality control methods

There are plenty of approaches to the problem of data quality monitoring, which cannot be all well

covered in this dissertation due to the large scope of the topic. Particle detectors convert physics phe-

nomena associated with passing particles into electric signals. They are built in different technologies

and they are usually designed to detect only some kind of particles depending on their species and en-

ergy. Moreover, they are designed to measure only some specific characteristics of these particles such

as electric charge, energy, transverse momentum and time of flight. In this section a few examples are

presented to give a brief overview on how detector performance and produced data might be evaluated.

The Time-Of-Flight (TOF) [46] in the ALICE experiment is one of the key sub-detectors used to

identify particles produced in the central barrel. It can measure the time of flight of charged particles

coming from the interaction vertex to reach the TOF detector, with precision better than 100 ps. One

of the ways to verify if data produced by the TOF detector is correct involves checking the distribution

of raw hit times [47], as shown in Fig. 4.1. Particles produced in a collision are expected to reach the

detector in a certain time range between 150 ns and 225 ns. If there are measurements outside of this

spectrum or more than one maximum is observed, one should investigate this issue as it is suggests a

faulty behaviour of the detector or the data acquisition system.

The second biggest accelerator at CERN, the Super Proton Synchrotron (SPS), hosts an experiment

called NA61/SHINE [49]. Similarly to ALICE, the detector is designed to register high-multiplicity

particle collisions, but the interaction occurs between a particle beam and a fixed target, with the detector

system behind it. In order to precisely determine the interaction vertex location, as well as to track and

identify the produced particles, a group of Time Projection Chambers (TPCs) is installed behind the

target. Two of them, called Vertex-TPCs (VTPCs), are placed in the magnetic field.

TPCs [50] are detectors filled with a mix of noble gases. Electromagnetically interacting particles

ionize the gas and the freed electrons drift in an electric field to one side of the chamber. There, they are

amplified and turned into a measurable electric signal on the array of readout pads. The particle position

36 4.1. Examples of data quality control methods

Fig. 4.1. Examples of correct and incorrect distribution of hit times in the ALICE TOF

detector (the documentation of the ALICE Run 1&2 Data Quality Monitoring system

[48]).

on the readout pad plane is determined by the pad position, while the third coordinate is derived from

the electron drift time in the TPC gas volume, thus name the Time Projection Chamber. The measured

charges on neighbouring pads or timeslices are then combined into clusters, since they usually correspond

to the same particle. Finally, clusters which are distributed across straight or curved lines are combined

into particle tracks.

The quality of acquired data in the NA61/SHINE experiment is assessed daily based on a number of

plots. For example, for the VTPC sub-detectors the following observables are monitored:

– Occupancy plots (Fig. 4.2a). Each recorded cluster is allocated into corresponding position on the

histogram. The result is a heat map of hits, which shows how often particles are observed by the

detector in each location. Unexpectedly low or high values suggest problems with e.g. the readout

electronics.

– Distribution of the number of pads per cluster (Fig. 4.2b). As almost each charged particle

generates an electric signal on a few pads, the distribution of the number of pads per cluster should

follow a certain expected shape. Seeing a high amount of small clusters might indicate a high level

of noise in the detector electronics.

– Distribution of the number of timeslices per cluster (Fig. 4.2c). Similarly to the previous ex-

ample, a cluster might be registered across certain amount of timeslices (units of time). One may

inspect their distribution in order to recognise many problems, e.g. noisy electronics.

– Distribution of the maximum analogue-to-digital converter (ADC) values per cluster
(Fig. 4.2d). The maximum registered charge value for each cluster is stored in a histogram. A large

amount of ADC overflows (the right side of the plot) would indicate e.g. an incorrectly adjusted

signal amplification.

4.1. Examples of data quality control methods 37

(a) An occupancy plot of VTPC1 in the x and z axes.

(b) A distribution of the number of pads per cluster in

VTPC1.

(c) A distribution of the number of timeslices per cluster

in VTPC1.

(d) A distribution of the maximum ADC values per clus-

ter in VTPC1.

(e) A distribution of the total charge per cluster in

VTPC1.

Fig. 4.2. Examples of Quality Attestation plots of the VTPC1 in the SHINE experi-

ment (source - private communication with NA61/SHINE experts).

38 4.2. ROOT - data analysis framework

run number

29
66

90
29

66
91

29
66

93
29

66
94

29
67

49
29

67
50

29
67

52
29

67
81

29
67

84
29

67
85

29
67

86
29

67
87

29
67

90
29

67
93

29
67

94
29

67
99

29
68

35
29

68
36

29
68

38
29

68
39

29
68

48
29

68
49

29
68

50
29

68
51

29
68

52
29

68
90

29
68

94
29

68
99

29
69

00
29

69
03

29
69

30
29

69
31

29
69

32
29

69
34

29
69

35
29

69
38

29
69

41
29

69
66

29
70

29
29

70
31

29
70

35
29

70
85

29
71

17
29

71
18

29
71

19
29

71
23

29
71

24
29

71
28

29
71

29
29

71
32

29
71

33
29

71
93

29
71

94
29

71
95

29
71

96
29

72
18

29
72

19
29

72
21

29
72

22
29

72
78

29
73

10
29

73
11

29
73

12
29

73
15

29
73

17
29

73
32

29
73

33
29

73
35

29
73

36
29

73
63

29
73

66
29

73
67

29
73

72
29

73
79

29
73

80
29

74
05

29
74

06
29

74
13

29
74

14
29

74
15

29
74

41
29

74
42

29
74

46
29

74
50

29
74

51
29

74
52

29
74

79
29

74
81

29
74

83
29

75
12

29
75

37
29

75
40

29
75

41
29

75
42

29
75

44
29

75
58

29
75

88
29

75
90

29
75

95
29

76
24

F
ra

ct
io

n
of

 p
ur

eS
A

 tr
ac

ks
 w

ith
 c

lu
st

er
 in

 IT
S

 la
ye

rs

0

0.2

0.4

0.6

0.8

1

1.2

Layer1
Layer2
Layer3
Layer4
Layer5
Layer6

Fig. 4.3. An example of Quality Assurance trend in the ALICE ITS detector during

Run 2 (ALICE QA repository).

– Distribution of the total charge per cluster (Fig. 4.2e). The total charge of each cluster is calcu-

lated and stored in a histogram. As in the previously described plot, an abnormal distribution may

suggest problems with the signal amplification.

The former ITS detector in the ALICE experiment consisted of six layers build with three different

technologies [51]. It was used for finding the collision vertex, tracking and particle identification. During

the event reconstruction, the clusters detected by the ITS and TPC detectors are used together to find

particle tracks. However, tracks are also reconstructed using only the ITS clusters to monitor the detector

performance and for specific data analyses. They are referred to as pure stand-alone (SA) tracks. Fig. 4.3

illustrates the shares of different detector layers in these reconstructed pure SA tracks across one hundred

data acquisition runs. By finding outliers in such trends, the detector experts may identify runs with

potentially bad quality data.

The presented examples were selected specifically to provide a general idea about methods of data

quality monitoring and assessment, although without introducing too much details about the detectors

technology. In fact, many data quality control tasks might be much more complicated and require deeper

knowledge of this matter.

4.2. ROOT - data analysis framework

ROOT is a framework for statistical data analysis [52] developed at CERN. It is currently the most

popular framework for computing in high energy physics, as it will be shown in the summary of the last

4.2. ROOT - data analysis framework 39

generation of data quality control systems. This section lists the most important features of ROOT which

brought it popularity, as well as the recent developments and plans.

The functional core of the framework are its data types, which are optimised for handling large

data quantities. ROOT offers a wide range of histogram classes. Low-dimensional histograms are imple-

mented with concrete classes (i.e. TH1, TH2, TH3), while higher dimensions are covered by the template

classes THn and THnSparse. THn allocates all the necessary memory for each bin, while THnSparse

decreases the RAM consumption by allocating only non-zero bins. Columnar data can be stored in the

TTree type, which optimises random access and facilitates statistical analysis of its contents. Other data

types include e.g. graphs (sets of points), functions, matrices, four-vectors and a set of containers - lists,

arrays, maps. They can be serialised and deserialised, which is helpful for messaging and data storage.

The aforementioned classes can interact with a powerful mathematical toolbox. It allows to perform

curve fitting, optimisation, matrix algebra, four-vector computation, statistical and multivariate data anal-

ysis as well as pseudo-random number generation.

ROOT has a built-in reflection mechanism, which is based on dictionaries. They are data structures

generated during compilation which contain instructions indicating how to construct and handle any

class object. This allows to create data types by specifying a class name (with a string), inspect its

ancestry, find and execute its available methods (also with a string). It should be noted that, as of 2021,

C++ does not offer this feature in contrast to several more modern languages. Dictionaries also facilitate

permanent storage with class schema evolution. The information about the way to reconstruct an object

can be stored together with the object itself. While C++ is a compiled language by nature, the cling

interpreter comprised in ROOT allows to execute the code with a command prompt, using Just-In-Time

(JIT) compilation. A lot of physics processing and analysis software is written in form of macros - C++

scripts, which are then interpreted and executed by cling, or its predecessor CINT.

The ROOT package includes 2D and 3D visualisation tools for its data types and analysis results.

Developers might also use them to build applications with interactive graphical user interfaces. The

JSROOT package allows to visualise the ROOT data types on websites [53].

While being very popular and appraised, ROOT also receives a certain dose of criticism [54]. Be-

ginners complain on the steep learning curve, due to a complicated class inheritance structure (including

forbidden methods), difficult memory management leading to leaks and overall complexity of the pack-

age. Since the development commenced before the existence of the Standard Template Library (STL)

in C++, the framework uses and supports only its own containers. The name ROOT collides with the

administrator account name and the root directory in Unix-like systems, confusing web search engines

and obfuscating build configuration files.

The criticism is being addressed by the developers as they are rewriting ROOT for the upcoming

version 7. It should support standard containers and modern C++, break with some string parameters to

class methods and provide interfaces which are clearer and safer to use. Among others, a new high-level

interface for tabular data, RDataFrame was introduced. It supports lazy actions, which means that data

40 4.3. The latest generation of data quality control systems

processing is triggered when results are accessed. This allows to perform requested operations faster and

with use of multi-threading.

4.3. The latest generation of data quality control systems

Data quality control systems have a history almost as long as electronic data acquisition systems and

were often inseparable parts of those. In this chapter, examples of contemporary quality control systems

in physics experiments are presented.

4.3.1. The ALICE experiment

The ALICE experiment had several data quality tools during its commissioning and data-taking runs,

some of them existing in parallel, others replaced by their successors. Instead of preparing a complete and

highly functional data quality control system at the very beginning, the developers of the ALICE Run 1

software decided to start with a moderately simple monitoring tool, called MOOD (Monitor Of Online

Data) [48]. This way, the authors of the planned complete system could observe the usual use-cases and

find potential problems which would appear in larger-scale applications. MOOD was a single executable

C++ program interfaced with the main data acquisition (DAQ) software [55]. It could access a single

monitoring source at once, i.e. just one type of data, for example raw data coming from a specific sub-

detector. The piece of software heavily relied on the ROOT framework to provide a graphical interface,

data structures, such as histograms and graphs, and tools for their statistical analysis. The sub-detectors

had dedicated modules unified under a common interface class with a set of methods which should be

overridden. The tool helped to commission the ALICE detector before the start of the first data-taking

run in 2009.

The AMORE software (Automatic MOnitoRing Environment) [48] served as a main tool to control

the quality of the raw detector data during acquisition across Run 1 and 2. It provided a quick feedback

to shifters in the experiment control room and allowed them to quickly identify and solve problems with

the detector and data.

Its architecture relies on the publish-subscribe paradigm - a large group of processes, called agents,

perform computations and publish results into a common data pool, which is based on the MySQL

database management system [56]. The processing results are subscribed to by graphical user interfaces,

used by shifters in the experiment control room, and by the ALICE eLogbook, which provides access

to that data from any point in the web. The Distributed Information Management (DIM) system [57]

informs the subscribers about presence of new objects in the database.

The quality control algorithms very much depend on a kind of sub-detector being used and the format

of received data. The software loads the corresponding code as external libraries which implement a set

of methods of a common interface. The right classes are constructed using the reflection mechanism

in ROOT. This approach does not impose any dependencies of the framework on the detector code,

making it indifferent to potential compilation problems with the user modules. Also, just as in the original

4.3. The latest generation of data quality control systems 41

MOOD, the processing results are usually the ROOT data types - histograms of any dimension, graphs

and sometimes data arrays (TTrees).

The experience gained during the first years of operations was presented in [58]. More than 40

AMORE agents used to carry out data quality monitoring computations, updating around 10000 ob-

jects per minute, which corresponds to roughly 10 MB/s of recorded data. 95% of those was aimed for

detector experts use, while the remaining 5% was shown to shifters.

The authors also noticed that generating histogram plots for the inspection tools requires a significant

amount of processing power, which would slow down the AMORE agents. Thus, a new web-based

solution was implemented, replacing the previously used C++/ROOT application [59].

The initial data quality monitoring would take place during the acquisition, providing preliminary in-

formation about the correctness of the detector operation and the data recording process. However, in the

following days, a thorough data Quality Assurance (QA) would be performed. The detector calibration

parameters were updated and evaluated based on the particle tracks reconstruction performance. Each

offline data processing would also create QA histograms and other kinds of ROOT objects. Different

physics observables were aggregated into trending plots and correlated with each other in order to track

the detector performance across time, which was then discussed at weekly meetings. Final approval of

good quality data was done with the data-taking run granularity (i.e. up to 15 hours). QA coordinators

would create separate run lists per several physics analysis types, which required a good data quality of

different sets of sub-detectors. During Runs 1 and 2, the experiment recorded raw detector data, which

allows the Data Preparation Group to rerun the original reconstruction passes even years after, increasing

the quality of data for the physics analyses. The author holds there the position of the QA coordinator

since May 2020.

To complement the quality control systems described above, the EMCal sub-detector team prepared

an additional tool, Overwatch [60], which facilitates the analysis and visualisation of QA data generated

during online reconstruction performed on the High Level Trigger (HLT) computing system [21]. The

Overwatch allows to define data processing in the Python language, to observe trending plots in arbi-

trarily chosen time ranges and to implement automatic alarms based on those. Intially, the software was

developed and used only by the EMCal team, however, thanks to its extensible architecture, also other

detector teams created their modules.

While Data Quality Monitoring objects in the AMORE software did not require merging due to its

architecture, the HLT was a message-passing system with parallel computations performed. Thus, the

data generated on the HLT were merged before further analysis.

4.3.2. The ATLAS experiment

ATLAS (A Toroidal LHC ApparatuS) is a multi-purpose detector, used to study the Higgs boson and

to search for extra spatial dimensions and particles which could form dark matter. 1.7 billions of proton

collisions are observed during each second and around 1000 among those, which fulfil specified criteria,

42 4.3. The latest generation of data quality control systems

are registered [61]. To control the quality of data, the team of scientists developed the Data Quality

Monitoring Framework [62].

Similarly to the ALICE experiment, the basic quality monitoring takes place during data acquisi-

tion [63], while the additional, power-consuming computations are performed asynchronously to the

data-taking [64]. However, both stages of the processing rely on the same software. The data quality

monitoring is built on the same distributed computing technology as the main ATLAS processing frame-

work [65] - the Common Object Request Broker Architecture (CORBA). The parallel computations are

performed by objects, which can access data within other, remote objects and invoke their methods.

The quality control in ATLAS begins with sampling of recorded collision data and storing their

selected properties in histograms. In case that multiple servers create them in parallel, they are merged

before any further analysis is performed [66]. Sometimes the results are aggregated in many stages in

order to better distribute the load among processes [67]. Groups of histograms are put under automatic

evaluation, which results in information about the quality of recorded data.

Quality monitoring takes place in multiple stages of data recording and processing. For example, the

assessment of muon detection quality is performed based on the original data stream coming from the

detector, reconstructed muon tracks and the final, high-level information about registered collisions [68].

The monitoring of calorimeter’s state involves assessing partially reconstructed events together with a

list of fulfilled trigger conditions during their acquisition [69]. This software is also used to check the

detector performance with cosmic radiation during breaks in the LHC operation.

The graphical user interface [70], which can present the results of data quality monitoring, is based on

the Qt ROOT library. The experiment shift crew can inspect the health of a given system component with

the generated histograms organised in a from of a tree. One also has a possibility to create a graphical

representation of the detector structure, which facilitates locating a potential failure.

4.3.3. The CMS experiment

CMS (Compact Muon Solenoid) is another multi-purpose detector at the LHC [12]. Its physics re-

search programme largely overlaps with the one of ATLAS. However, CMS uses different technical

solutions for the data acquisition and analysis.

The general idea of the data quality monitoring resembles the previously described systems [71][72].

During the data acquisition, only a fraction of collision events is analysed, but on each reconstruction

level. Only the quality control of the track detection system generates roughly 350 000 histograms which

are automatically checked. The evaluation results are aggregated into more consolidated form and both

are stored as ROOT files. The experts and shift crew can inspect the system status in a graphical user

interface, where histograms and check results are presented [73]. Then, the quality control is performed

again, but with the complete set of recorded events and additional histograms created by the data acqui-

sition system itself. The software algorithms also allow to observe changes of sub-detector parameters

across multiple data-taking runs.

4.3. The latest generation of data quality control systems 43

The DQM software of CMS relies on its main processing framework [74]. Data is organised in form

of Events, while the processing code is divided into modules. Modules are arranged into Schedules, which

determine the order in which the modules should process an Event. The Schedule Executor application

executes the modules one after another, providing them with Events.

Certification of recorded data is the crucial step of its preparation [75]. During 6-hour shifts the crew

monitors the correctness of the detector’s behaviour based on aggregated information provided by the

quality control system. Afterwards, the experts representing the separate experimental sub-systems mark

the quality of the components they are responsible of. The final decision about approval of each data

chunk (physics run) is taken by a group of data quality monitoring experts.

At the time of early development, the designers considered moving a large portion of real-time pro-

cessing into external computing farms [76]. Transferring 10% of recorded data and results of their quality

control would make load of 1 TB daily. Despite the promising test results in a collaboration with a facility

in Bari (Italy), this solution was not used.

The software was further developed as the experiment ran [77]. The developers put emphasis on

automatisation of the data certification by increased number of tests; starting and stopping the quality

control system by integrating it with the data acquisition software; improving the processing performance

and disk space monitoring on the hosting servers. The authors also updated the quality control system

following processing parallelization support in the framework. In 2017 the team reported a successful

application of the machine learning methods to automatically classify the generated objects [78]. The

system flags the good and bad data where possible and leaves ambiguous cases for an evaluation by

experts.

4.3.4. The LHCb experiment

The LHCb detector and experiment (Large Hadron Collider beauty) was founded to study differences

between matter and anti-matter by observation of the beauty hadrons in particular.

The data quality control is carried out similarly as in previously described experiments [79]. Part of

the main data stream is processed and stored into histograms, which are merged when needed and saved

on the disk [80]. Merging can be performed in many stages - first to collect all data on the same node,

then on sub-farm and farm levels, then finally aggregating results of the complete processing system.

Their graphical user interface uses the ROOT framework to present plots to the shift crew. In the first

version, the software did not carry out automatic tests - a decision about correctness of data was made

by the shifters.

Later, the developers team modernised the user interface and introduced an automated histogram

evaluation [81], based solely on Machine Learning (the AdaBoost BDT algorithm). Training data was

obtained from the historical base of histograms and their manually assigned good and bad marks. Since

the automatic classification had been implemented, the shift crew was asked to inspect only the his-

tograms considered as outliers.

44 4.3. The latest generation of data quality control systems

The software is based on the GAUDI framework [82], which is also used for the High Level Trigger

system in LHCb. The code is organised into Algorithms, which can contain other Algorithms. The data

they receive and produce are transferred through transient data stores - centralised buffers organised in a

tree-like directory structure. The event data is shipped to monitoring tasks with the Transient Event Store,

but the generated histograms are then published with DIM. This is the same technology that was applied

in the AMORE software of ALICE, but in this case, also histograms contents are transferred instead

of the information about their presence in the database. The histograms for the data quality monitoring

are produced not only by dedicated tasks, but also by other algorithms, which have primarily a different

purpose, such as calibration, triggering or analysis. Nevertheless, all results are presented to users in a

unified and consistent way in the Histogram Presenter application.

In the data monitoring of the High Level Trigger system, the developers also report an existence

of Histogram Adders, which merge partial results coming from tasks running in parallel on multiple

processing nodes. They expect two kinds of messages: full messages with metadata and increments -

objects which contain only the most recent changes [83]. In the latest developments, a part of the DQM

system was reimplemented with Apache Kafka. The authors recommend this approach for the ease of

use and maintenance, and automatic optimisation of message queues.

4.3.5. The Tevatron experiments

Tevatron was the second highest-energy particle accelerator in history, located in the proximity of

Chicago in USA, active from 1983 until 2011. The two Tevatron experiments - the Collider Detector at

Fermilab (CDF) [84] and DØ [85] - are probably most famous for the discovery of the top quark in 1995

[86].

The CDF’s data quality monitoring was initially strongly intertwined with its data acquisition system

[87]. For the Run II in years 2001-2011 the developers prepared a Consumer Framework [88], which

allows to perform additional processing on acquired data. A fraction of collisions accepted by the last

level of trigger serves as an input to 10 parallel analysis tasks, which monitor the data quality and pro-

duce diagnostic histograms and trending graphs. The framework takes care of data transport, displaying

the processing results, logging errors and provides interfaces for initialisation and event processing. The

monitoring plots are presented to the shift crew in a graphical user interface, which retrieve the his-

tograms in a client-server scheme, GUIs being the clients. The software is written in C++ and uses

the ROOT framework for data analysis and inter-process socket communication. It can run both syn-

chronously to data-taking and asynchronously - on reconstructed, simulated or test data. In the first case

it receives events from a dedicated server, in the latter it reads them from files or generates random data.

The framework is complemented by the State Monitor - a watchdog process which monitors the state of

monitoring tasks, shows their configuration and keeps track of the amount of processed events.

Like most of expensive particle accelerators, Tevatron operated 24-hours a day. This required that

a shift crew had to control and operate the experiments daily and nightly. In order to distribute the

4.4. Unification efforts 45

workload more evenly, the developers have provided an access to the data quality monitoring tools via

WWW [89].

The report on the initial DAQ system of the DØ experiment does not indicate an existence of a strictly

data-related quality monitoring [85]. However, the software included an alarm system that keeps track of

measurable detector parameters which might have an influence on the data quality - temperature, power,

voltage, current, humidity etc. If a monitored variable crosses the allowed limits, the system raises an

alarm.

During the Run II there was a data quality monitoring software [90], however, there is no publica-

tion concerning the framework itself. In the presentation about the DØ calorimeter’s [91], the presenter

indicated that the quality is monitored both during data taking and after, with trigger decisions informa-

tion and reconstructed events. As in other examples, the ROOT package is used for histogramming and

visualisation of the obtained results.

4.3.6. Gravitational waves detectors

The literature describes also data quality control methods used by the LIGO [92] and GEO600 [93]

interferometers, which serve as tools to measure gravitational waves. The computation scheme resem-

bles the previously mentioned systems. Acquired data is put under a preliminary real-time analysis on

a computing farm. Thanks to a modular architecture and possibility to share their results, the algorithms

can be organised into pipelines, improving the overall efficiency of the system. Data analysis results are

stored in a database and then explored by data mining tools.

4.4. Unification efforts

Despite the apparent similarity of data quality control systems, their unification is not a simple task

due to the use of different data models, computing architectures, tools and analysis algorithms. A soft-

ware framework which could find its application in almost any physics experiment should allow to con-

figure and adapt the aforementioned elements. The authors of [94] took up this challenge. They are

developing DQM4HEP - a piece of software which should fulfil the usual requirements of high energy

physics experiments regarding data quality control. In order to adapt this framework in a data acquisition

system, one has to take care of supplying input data, defining data model and message serialisation meth-

ods, implementing quality control tasks as well as specifying the look and contents in a graphical user

interface. As in the other cases, the framework relies on ROOT. The system was successfully adopted in

two detector prototype setups - the AHCAL+beam telescope [95] and SDHCAL+SiWECAL [96].

4.5. Summary

The literature review shows that only bigger physics experiments describe their data quality control

systems and there is very limited information available about smaller setups. The general idea of each

46 4.5. Summary

system described in the literature is in fact similar - some portion of acquired data is processed, some

statistics are derived and stored mostly into histograms. These results might be evaluated either auto-

matically or manually by shifters. However, the terms used to describe these concepts are very different,

which makes exchanging knowledge more difficult within the data quality control community. Tab. 4.1

contains an overview of particular concept names among the four large LHC experiments. One might

notice slight differences even in the most fundamental concepts, such as division between quality control

during and after data acquisition. The term ’Monitoring’ sometimes relates both to data quality and basic

software/hardware health - chip temperatures, resources usage etc. Also, only ALICE and ATLAS seem

to have a generalised term for any object with statistics within the framework, while the others assume

that all such objects are histograms. What ALICE calls Mergers, is actually described distinctly in each

system. CMS performs merging directly in the process which runs Quality Tests. Similarly, these pro-

cesses received very distinct terms among the experiments. Only the new ALICE and the existing ATLAS

frameworks seem to allow to combine the results of automatic evaluation into more general information.

All four systems had a common name of good runs lists, however, ALICE is going to withdraw, as its

data quality will be described with finer granularity.

Tab. 4.1. The data quality control Rosetta stone, showing names corresponding to

the same concept in data quality systems across different experiments. The ’-’ sign

indicates that no such concept name was found (it still might exist, but undocumented

in the literature). Names in italics are only indirect equivalents to the terms in the QC.

ALICE (Run 1&2) ALICE (Run 3) ATLAS CMS LHCb

- QC DQ DQ DQ

DQM online QC DQM online DQM DQM

QA offline QC DQA offline DQM offline DQ

event sampling Data Sampling Event sampling service reducing data rate -

AMORE Agent Task Runner DQM Producer - -

Publisher QC Task - DQM Producer Monitoring Task

Monitor Object Monitor Object
histogram

MonObject
histogram histogram

Merger Merger Gatherer DQM Consumer Histogram Adder

-
Checker

Check Runner
DQAgent DQM Consumer

Histogram Analysis

RoboShifter

QAChecker Check DQAlgorithm
Quality Test

QTest
Analysis task

Quality Flag Quality DQResult QTest result -

- High Level Quality DQRegion - -

QA Trending Post-processing Post-processing Historic DQM
History Mode

in Histogram Presenter

AMORE GUI

DQM Web Client
QC GUI (QCG) DQM Display DQM GUI Histogram Presenter

Run Condition Flag Timestamp DQFlag - -

Good runs list Data tags Good runs list Good runs list Good runs list

4.5. Summary 47

Unfortunately, the literature does not contain much information about the ways in which data are

sampled before their quality is analysed. The sparse information may suggest that data are selected

randomly or in regular intervals, but the frameworks do not allow for customised sampling procedures.

Similarly, the topic of merging distributed objects is not well covered in the literature.

The existing data quality control systems do not rely vastly on the message-passing approach nor the

actor model. One of the few identified examples includes the Monitoring Tasks in LHCb, which send

objects to Histogram Adders inside messages. The two applications could be treated as actors, however,

it was not explicitly stated. The CDF experiment data quality monitoring system was based on the client-

server model and a combination of file and socket communication, which could suggest the presence of

some form of messaging. However, the internal communication socket bandwidth was reported to reach

around 10 Mb/s. Therefore, it is concluded that no existing data quality control frameworks rely on the

message-passing and the actor model to large extent.

The new ALICE QC framework should unify the two previously separate pieces of software - DQM

and QA. The Mergers were previously present only in the HLT software where they combined QA

histograms generated by parallel workers. However, the AMORE agents could not be replicated, limiting

the amount of data they could process. This limitation is lifted in the new QC framework.

48 4.5. Summary

5. Quality Control system

The Quality Control framework is described in detail in this chapter. First, the general architecture

is introduced. It is followed with a detailed description of each system component together with the

reasoning for the selected solutions.

5.1. Architecture overview

The Quality Control framework consists of a number of components illustrated in Fig. 5.1. The

conference paper [10] includes the summary below, with the exception of the Aggregators module, which

was implemented after the publication.

The Data Sampling (blue doted arrows) is responsible for the selection and distribution of data sam-

ples based on configurable policies. These include, among others, pseudo-random sampling of parallelly

distributed data, selecting messages of certain size and any custom filtering. Its main component, the

Dispatcher, runs on each node where data are sampled and can be reconfigured during data taking.

The QC Tasks are the detector-specific algorithms executed either with the main data processing chain

(on the FLPs or the EPNs) or remotely on dedicated Quality Control Servers. Their regularly published

outputs are called QC Objects (Monitor Objects) and typically consist of ROOT histograms [52]. In case

the tasks are running on many servers in parallel, their incomplete results should be merged into objects

containing complete data, which is taken care of by the Mergers.

The Checkers carry out automatic evaluation of the data quality by running defined algorithms over

QC Objects. They follow a common interface, which is inherited by a generic set of reusable checks and

custom user algorithms. The Aggregators let users combine fine granularity Qualities into more general

results, describing e.g. the global behaviour of a sub-detector. Finally, the QC Objects and the Quality

Objects are stored in the QC repository.

Several members of the upgrade project are investigating the usage of the machine learning methods

as a way to perform more sophisticated checks in multidimensional parameter space. They may interact

directly with the repository or use Checkers.

Previously described by Correlation and Trending blocks (Fig. 2.5), the Post-processing module runs

any task running asynchronously to the main data flow, on data derived from QC Objects and Quality

Objects. It can be triggered manually, in regular time intervals or upon a number of declared events (e.g.

50 5.2. Data Sampling

start of an LHC fill or end of a data acquisition run). Its results are stored directly in the database or

inserted back in the QC processing chain.

The experiment shift crew and experts may use the QC GUI (QCG) to visualize stored QC Objects

and Quality Objects. A generic user interface allows to navigate the objects and display them using

JSROOT [53].

Quality Control Servers

ALICE Detectors

Fi
rs

t L
ev

el
 P

ro
ce

ss
or

s
Ev

en
t P

ro
ce

ss
in

g
N

od
es

Local
Aggregation

Processing

Time-Frame
Building

Processing

Synchronous
Asynchronous

Processing

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Local QC tasksLocal QC tasks

Mergers

CheckersCheckers

QC
Repo

Post-processingPost-processing

QC tasksData samples

O2 Dataflow

User-defined
algorithms

QC
infrastructure

Physics data Object + Quality

W
eb

 A
PI

Machine
Learning

w
eb

 c
lie

nt
s

w
eb

 c
lie

nt
s

AggregatorsAggregators

QC Object Quality

Fig. 5.1. The QC architecture as reported in this work. As opposed to the original

design in Fig. 2.5, one may notice the addition of the Aggregators and the unification

of the Correlation and Trending components into Post-processing.

The vast majority of the Quality Control framework - Data Sampling, QC Tasks, Checkers, Merg-

ers and Post-processing - relies on the Data Processing Layer. The QC repository is interfaced with the

Hypertext Transfer Protocol (HTTP), it communicates with other parts of the system by receiving re-

quests messages to save or retrieve objects, processing them and sending replies. Therefore, the Quality

Control framework follows the message-passing approach and the aforementioned components can be

considered as actors within the actor model, since they carry distinct responsibilities and interact with

each other only by sending and receiving messages.

5.2. Data Sampling

A robust and functional way to access acquired data is the first step to build a quality monitoring

system. However, transferring the full data stream to QC Tasks, as well as analysing it, would require

unreasonably large amounts of computational and bandwidth resources. Thus the majority of QC Tasks

should perform the quality monitoring with a fraction of the events which might be selected randomly or

5.2. Data Sampling 51

QC servers
Main processing machine
Main processing machine
Main processing machine

Processing

Processing

Processing

Dispatcher

Dispatcher

…

…

Local
QC task

Local
QC task

QC server

…

QC task

QC task

QC task

Fig. 5.2. A message-passing processing workflow with Dispatchers and QC [9].

by matching certain criteria. Thus, the 100% of data is shipped only to the algorithms which indisputably

need it.

The data processing chain consists of many stages and it generates different permanent and temporary

data which should undergo some evaluation. Optionally, the software should allow to block the main data

stream, so all messages can reach a Task even at the cost of slowing down the main processing.

In the QC, the Data Sampling software is responsible for selecting and providing the data messages to

QC Tasks and other clients. Its design and the considerations about random sampling were also discussed

in [9].

5.2.1. Data Sampling design

Dispatcher is the key component and actor responsible for sampling and forwarding data. It is placed

within message-passing topologies between data producers and clients which require sampled data (e.g.

the Quality Control infrastructure), as shown in Fig. 5.2. The design allows for one or several Dispatchers

working in parallel, subscribing to messages coming from the main processing topologies and receiving

them in a round-robin schedule. Messages which fulfil declared sampling requirements are passed to

local and remote clients.

Data Sampling Policies define the features of desired data, i.e. their provenance and description

(Fig. 5.3). Data are matched to Policies according to their message headers. The grounds for accepting

or rejecting data are defined as a group of Data Sampling Conditions. For a message to be forwarded

to subscribers, all Conditions should return a positive decision. Their inner logic might perform for

example: random sampling; choosing messages matching a defined payload size range; filtering a cer-

tain amount of consecutive messages in a sequence; sampling by keeping data throughput lower than a

specified value; or any other custom sampling, implemented by inheriting an interface class and loaded

dynamically by Dispatcher.

Enabling and disabling Data Sampling Policies and changing the list of Data Sampling Conditions is

possible at run-time. Moreover, when forwarding a message payload, Dispatcher attaches an additional

52 5.2. Data Sampling

Dispatcher

Policy A

Pass random 1%

Custom
decision logic

Data from
tracking detector?

Policy B

Data from
calorimeter?

Policy C

Size >10kB?

Data from
trigger detector?

QC task A QC task B1 QC task CQC task B2

Fig. 5.3. An example of Dispatcher’s configuration [9].

header to the header stack. It contains information which might prove extremely useful when developing

tasks requiring advanced sampling, e.g. time of the last sampling decision, total amounts of messages

seen and passed which matched the criteria.

5.2.2. Investigating data sampling techniques

In this section, data sampling methods in the current context are discussed. The reasoning for the

proposed pseudo-random sampling is given and potential risks are mentioned. Advantages and risks of

other sampling methods are also considered.

5.2.2.1. Bias risks in sampling

In many cases analysing only a portion of the full data stream is completely sufficient, provided that

the selected samples do not carry any unwanted biases. Firstly, this situation may occur if size limits of

message queues depend on their total memory consumption and they can drop messages when they hit the

maximum capacity (e.g. in the ZeroMQ’s publish-subscribe pattern). When a process has momentary or

permanent problems with sustaining the input data throughput, its message queue will grow till its limits.

With certain amount of free memory in such queue, only messages small enough might find their place in

the queue and others may be dropped. In such case, one might see a bias towards smaller messages, which

will make the sampled data unrepresentative. In ZeroMQ, thus also in the O2, this situation is avoided,

as message queue capacity is defined by a maximum number of messages. However, every computer has

a limited amount of memory and reaching its capacity might result in similar behaviours.

Other risk is related to using certain sampling policies. For example, if a process samples an amount

of data which should be constrained within a defined average throughput limit, then smaller messages

might fit easier in the current capacity. Of course, such situation will not occur if all expected messages

have identical size. Otherwise, one cannot avoid this problem, so it should be taken into account.

5.2. Data Sampling 53

In case that a randomly selected representation of data is needed, to implement it, one may resolve

to sources which claim to offer true random numbers, for example by using external entropy [97]. Oth-

erwise, one can base their sampling algorithm on Pseudo-Random Number Generators (PRNGs), which

use mathematical methods to produce numbers which seem to be random. In both cases, the chosen

method should be put under evaluation to check if its statistical soundness is satisfying in given context.

5.2.2.2. Considered pseudo-random sampling methods

Data corresponding to the same time range of particle collisions will be distributed among multiple

FLPs, as they are connected to different parts of the detector. However, for the convenience of matching

them in the EPNs, they will carry a common 64-bit identifier, later referred to as TimesliceID. Still, such

a data distribution brings additional challenge when sampling data from multiple nodes. For example, a

QC Task might need pseudo-randomly selected messages with the same TimesliceID which appear on

all nodes connected to a specific sub-detector.

This requirement can be fulfilled in two ways. The first assumes that one entity could take deci-

sions about sampling data and propagate them to the concerned servers. However, sending and storing

a list for every possible TimesliceID before data-taking would require great amounts of memory. On the

other hand, requesting and receiving decisions in real-time would introduce a high latency, given the

expected message rates of tens of thousands messages per second on each server. Also, a failure of the

central decision-making node would propagate to all downstream components and its load would rise

proportionally to the number of requests, making this solution more difficult to scale.

The second approach assumes that each Dispatcher takes the same sampling decision independently.

It requires a PRNG, which, given a seed and an input number, can deterministically generate a pseudo-

random value, independently from the computer architecture. In this context, a data acquisition run num-

ber may be used as the seed, while the message TimesliceID could be the input number.

Since the vast majority of PRNGs can generate either random sequences of bits or equally distributed

numbers in the range of [0, 1], one has to perform an additional operation to obtain positive sampling

decisions with the expected probability, as in Eq. (5.1). A pseudo-random number rand is compared

with a threshold value, which is defined as a product of the fraction parameter and the highest possible

random number randmax. To prevent any messages being dispatched when fraction = 0 is set, the

greater or equal comparison operator is used.

Decision =

1 rand < fraction · randmax

0 rand ≥ fraction · randmax

(5.1)

Several ways of obtaining pseudo-random number which fulfil the aforementioned requirements

were evaluated in [9]. The most straight-forward assumes using a PRNG which gives access both to

its seed and inner state. The latter can be set correspondingly to a TimesliceID, so one can determin-

istically retrieve a pseudo-random value for each sample. Among this group of PRNGs, the Permuted

54 5.2. Data Sampling

Congruentail Generator (PCG) [98] was tested, as it had an open-source and ready-to-use implementa-

tion in C++. It allows to iterate its state backward and forward. Among the available variants of the PCG,

pcg32_fast was used. It is optimised for speed and generates 32-bit pseudo-random integers.

Obtaining a deterministic pseudo-random number is also possible by initialising a PRNG with a

product of some constant seed number and TimesliceID each time. Then, the first output value is used.

However, this method might not perform well if setting the seed requires a long processing time. It also

may have a negative impact on the randomness quality. The set of TRandom PRNGs available in the

ROOT framework was used to evaluate this method.

The last proposed approach relies on hash functions to produce values which are uniformly dis-

tributed over certain range. In this case, one may use a product of a seed value and a TimesliceID as

the hash function key. The splitmix64 generator [99] implemented in [100] was used this way. Other

types of hash function may take two values and combine them into a hashed result. The hash_combine

function from the boost library [101] was evaluated, using a seed value and a TimesliceID as the two ar-

guments.

5.2.2.3. Benchmarking statistical soundness of data sampling methods

The presented sampling methods were benchmarked in order to evaluate their statistical sound-

ness and performance. The pseudo-random numbers, which were compared with the threshold value in

Eq. (5.1), were tested with the dieharder suite [102]. This benchmark set contains randomness tests

which expect binary sequences as their input and return p-values describing how much likely was the

sequence random. If a PRNG generates truly random numbers, the p-values should fall randomly in the

range [0, 1]. Thus, each kind of test is run 100 times (by default) and the p-value distribution is checked

to be uniform using the Kolmogorov-Smirnov test (KS test). The testing procedure is documented in

[103].

The dieharder tests expect that received bit is truly random. Because of this, the PRNGs in the

ROOT framework could not be well evaluated, as they produce floating-point numbers between 0 and 1.

Even after scaling them to the maximum integer values, their bit representation might contain some

patterns due to the floating-point notation method [104]. Thus, additional benchmarks (Fig. 5.4) were

proposed in [9]. They were specifically designed to test the bit sequences of uneven proportion of 0s and

1s, so the sampling decision methods could be benchmarked directly. They were implemented with use

of the statistics toolbox in the ROOT framework.

The test (A) involves summing up all 1’s in a sequence of N decisions, computing a χ2 value

(Eq. (5.2)) and a p-value. Similarly to the dieharder suite design, the test is ran 100 times and the

uniformity of the p-value distribution is checked using the KS test. Effectively, this benchmark evaluates

if a sampling method provides the expected amount of positive decisions with certain randomness.

χ2 = 2
(N · fraction− trues)2

N · fraction
(5.2)

5.2. Data Sampling 55

…0100101000010…
Sum all 1s

Compare with the prediction

50004341

(a) The χ2 test (A).

…0100101000010…

Accumulate
distances

Compare with
the prediction

(b) The Runs test (B).

…0100101000010…

FFT

Compute standard deviations

(c) The FFT test (C).

Fig. 5.4. The three randomness benchmarks proposed in [9].

In contrast to the previous benchmark, the test (B) inspects the order of bit sequences. The dis-

tances between each two consecutive 1’s in a sequence of N decisions are computed and accumulated

in a histogram. The distribution derived from truly random values should follow the negative binomial

distribution Eq. (5.3), which in this case can be expressed as Eq. (5.4). The similarity of the distribution

is measured with the χ2 test, then a p-value is calculated. The test is run 100 times and the results are

checked to be distributed uniformly with the KS test.

f(k; r, p) ≡ Pr(X = k) =

(
k + r − 1

k

)
pk(1− p)r (5.3)

f(k; 1, 1− f) = (1− f)kf (5.4)

The test (C) computes the Fast Fourier Transform (FFT) of the distances between consecutive 1’s.

The standard deviations of frequency powers (excluding the constant component) are calculated for 100

test runs and summed up. For a good PRNG, the test should return a similar value as for truly random

sequences.

Table 5.1 contains the benchmark results. The /dev/urandom source available in Linux was used

as a reference for a high quality random number generator. The performance benchmarks were performed

on a server with Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz. The dieharder tests received

raw pseudo-random numbers generated with each method instead of the sampling decisions. Due to the

previously mentioned differences in PRNGs, their results were not treated as definitive, but rather as

suggestions. The (A) and (B) tests generated p-values. The values in the range of [0.005, 0.995] were

interpreted as good results. The (C) test should return a value close to the one obtained for the reference

generator.

The results indicate that setting the seed before generating each pseudo-random value severely im-

pairs the computational performance. Even though the more sophisticated TRandom generators pass

the randomness benchmarks, they could not be applied in this context due to the slow response. How-

ever, one should note that these PRNGs were used in an unusual manner, therefore the test result do not

indicate bad quality of TRandom overall.

56 5.2. Data Sampling

Tab. 5.1. The test results of random sampling methods for N = 107 and

fraction = 0.01 [9]. (*) The PCG performance result was obtained with incremental

TimesliceIDs, but with realistically distributed values it needs 5-20 ns more time for

each decision.

PRNG

Test
dieharder ns/call A (KS test

p-value)

B (KS test

p-value)

C (σ)
(lower is better)

Hash function 1 PASSED 2.66 0.0101 0.2809 1552

Hash function 2 a dozen FAILED 2.07 0.5806 0.3667 1551

PCG PASSED 2.95* 0.2106 0.8127 1552

TRandom all FAILED 7.97 0.0000 0.0000 6067

TRandom1 all FAILED 300.2 0.0000 0.0000 2665

TRandom2 a half FAILED 30.60 0.1545 0.0000 1554

TRandom3 PASSED 1378 0.0243 0.6994 1552

TRandomMT64 PASSED 2360 0.0541 0.9671 1552

TRandomRanlux48 almost all FAILED 118.1 0.0000 0.0000 2418

TRandomMixMax17 too slow 22224 0.0101 0.5806 1551

TRandomMixMax too slow 4487360 too slow too slow too slow

/dev/urandom PASSED 923.0 0.0366 0.2105 1552

The hash functions and the PCG showed great performance in terms of required CPU time. Also, they

provided good results in the randomness benchmarks with the exception of the second hash function,

which failed a couple of dieharder tests. Based on these data, the PCG was adopted in the Data

Sampling software, as other studies also indicated its high quality [105][106]. The first hash function

was kept as a backup option in case that additional performance improvements are needed.

5.2.2.4. Equalizing the load with random sampling

Being able to control the pseudo-randomness of sampling gives us interesting possibilities, but also

certain risks if used incorrectly. On one hand, it allows us to sample messages corresponding to the same

events within one Data Sampling Policy, as its PRNGs receive the same seed. This can be extended by

having multiple sampling policies for different tasks with a common seeding value, when it is expected.

However, when possible, such sampling coherence should be avoided. If all policies decided to copy

data at the same time, they could create significant spikes in resources usage, which would result in

an unnecessary increase of elements in message queues. Having the sampling decisions distributed as

evenly as possible should help with avoiding such problems.

Therefore, the sampling seeds in different policies should vary, unless specifically requested. More-

over, to obtain unrepeatable sampling sequences across data acquisition runs, the constant seed values can

be modified with a run number, e.g. by addition, multiplication or xor operation of the two parameters.

5.2. Data Sampling 57

5.2.2.5. Advantages of advanced filtering

The features provided by the design allow for an advanced data selection, which should help to

avoid transporting unnecessary messages, therefore minimizing the amount of required CPU, memory

and bandwidth resources. Especially, one can consider moving away from the traditional approach of

evaluating frequency of certain events in a histogram to a more lightweight method, which involves

filtering and counting only the unwanted ones.

The following example is considered. A data quality control tasks monitors a certain parameter de-

rived from sampled data and allocates it on a one-dimensional histogram. If a certain percentage of these

values is contained within a safe margin, the quality of data is considered as good, otherwise it is marked

as bad. Computing the exact value of the parameter requires a significant amount of processing time,

but one can quickly identify majority of good data without marking any false positives, i.e. mistakenly

perceiving bad data as correct. The task cannot be located on the same server as the main data processing.

One might approach such a problem in a number of ways:

– The task subscribes to 100% of data (Fig. 5.5a). This requires a lot of computational power and

data transfer, but it gives the most accurate results.

– The task subscribes to a random fraction of data (Fig. 5.5b). The task requires less compu-

tational power and transfer, because it uses less data. However, it needs more time to produce

statistically significant results (if it is acceptable to omit any bad data in the first place).

– The task subscribes only to filtered, potentially bad data (Fig. 5.5c). The task receives only

filtered data and the total amount messages which matched the sampling policy. Therefore, it uses

less resources, accordingly to the amount of potentially bad data, and it still produces the most

accurate results. However, sudden spikes in data throughput might saturate message queues. This

might be mitigated by adding a second sampling condition, which keeps the throughput usage be-

low a specified value, but it would break the guarantee of getting all messages containing incorrect

data.

– The task subscribes to randomly sampled and filtered, potentially bad data (Fig. 5.5d). In

this case, filtering is applied only after messages first pass random sampling. Therefore, the task

requires even less computational resources, but it needs more time to produce statistically signif-

icant results. On the other hand, the risk of saturating message queues is much lower, as it would

require a long sequence of positive random sampling decisions and detections of bad quality data

by the filter.

The presented example shows that using custom filters might be beneficial to overall system perfor-

mance, assuming that filtering requires much less computational resources than the actual processing of

data and a quality control task does not need to process all messages or its random representation.

58 5.3. Quality Control tasks and automatic checks

Monitored parameter

N
um

be
r

of
 e

nt
ri

es
100% data

(a)

Monitored parameter

N
um

be
r

of
 e

nt
ri

es

Random
sampling

(b)

Monitored parameter

N
um

be
r

of
 e

nt
ri

es

Filtering

(c)

Monitored parameter
N

um
be

r
of

 e
nt

ri
es

Random
sampling

+
filtering

(d)

Fig. 5.5. An illustrative comparison of amounts of monitored data with different sam-

pling methods. Blue bins represent the correct data, red bins correspond to bad quality

data.

5.2.3. Summary

Choosing the message-passing approach for Data Sampling provided multiple benefits in terms of

functionality and scalability. It allowed to easily sample data produced by any other actor which also

relies on the Data Processing Layer. As Dispatcher is a separate process with its own state machine,

it can be reconfigured before and during data acquisition without affecting the rest of the processing

topology, unless it becomes too slow and the upstream message queues are filled up. Dispatchers may

operate independently on multiple workflows and servers. Not only QC Tasks, but also any other Data

Processor may subscribe to sampled data, which allows to use this component outside of the QC system.

This possibility was already used during commissioning tests of the MFT sub-detector.

5.3. Quality Control tasks and automatic checks

QC Tasks and QC Checks are the main processing entities in the synchronous quality control. Tasks

should receive declared data stream, process it accordingly and generate some kind of condensed sta-

tistical information, which is encapsulated by Monitor Objects. They can subscribe to Data Sampling

Policies or to certain data type directly in case they require all messages. Checks are supposed to eval-

uate data produced by Tasks and other actors in the processing chain and return quality labels in form

of Quality Objects. The Task Runner and Check Runner processes execute the respective algorithms,

5.3. Quality Control tasks and automatic checks 59

provide them with data and publish their results. They are implemented on the top of the Data Processing

Layer, so they can be treated as any other Data Processors in the O2 system.

Tasks and Checks follow the template method pattern [107]. User algorithms should inherit the in-

terface classes, which are handled in a uniform fashion by the framework. Each detector team creates its

own library which contains the algorithms, but it does not impose a dependency on the QC core library.

The framework loads Tasks and Checks using the ROOT reflection mechanism.

5.3.1. Task Interface

Tasks’ lifetime consists of Activities and Cycles. One Activity spans the total time when a Task is

running, since the Start transition until the Stop transition. While it may correspond directly to one data-

taking run, it is not strictly required. For example, a shifter might execute a short-lived Task several times

during a run.

An Activity can consist of one or more Cycles. The framework publishes Monitor Objects at the end

of each Cycle. The Cycle duration is configurable with default values 10 s and 60 s for the development

and production systems, respectively. By manipulating the Cycle duration, one can easily scale the re-

sources usage of a large portion of the QC infrastructure. Setting a longer duration decreases the amount

of merged objects, performed checks and the repository I/O operations, however, at the cost of sparser

monitoring updates to a shift crew.

A developer might register data structures as Monitor Objects with a dedicated manager class. The

most recent version supports only ROOT data types, but this limitation will be lifted in future releases.

The interface also allows to set metadata to Monitor Objects in form of keys and corresponding values.

The Task Interface consists of several abstract methods which user classes should implement. These

include:

– startOfActivity, endOfActivity – the two methods should include nonrecurring op-

erations, done when Activities are started and finished.

– startOfCycle, endOfCycle – similar to the methods above, but referring to the Cycle

lifetime.

– initialize – here, the statistical data structures should be constructed and registered as Mon-

itor Objects. Any other procedures, which are held once and may take a longer time, should also

be performed in this method. This way, Activities and Cycles can start as fast as possible.

– reset – the published Monitor Objects should be cleaned up. This step is especially important

for correct merging, as described in Sec. 5.4.

– monitorData – it is invoked each time when there is a new data set available. The user algorithm

should fill its data structures by processing the incoming messages, which are directly accessible

by the interface provided by the Data Processing Layer.

60 5.3. Quality Control tasks and automatic checks

The Task lifetime might end either when it reaches a specified maximum number of Cycles, or by

a manual intervention or due to reception of an End Of Stream message, which is a special payload

propagated by the DPL notifying that no more data will come to given Data Processor. In each case,

the QC framework will safely execute the end of Cycle and Activity methods, and publish the latest,

complete versions of Monitor Objects.

A QC Task might run on the same machine as the main processing chain (locally) or on a QC server

farm (remotely). In the first case, if the same Task is duplicated on parallel machines, their Monitor

Objects need to be merged (see Sec. 5.4). Remote Tasks might receive sampled data from one or more

FLPs or EPNs. These alternatives were introduced to better utilise computing resources accordingly to

sampled data throughput and Monitor Objects sizes. The procedure on how to choose one option over

the other was described in Sec. 6.4.

5.3.2. Timing of Monitor Objects publication in QC Tasks

QC Tasks exist on the border of two time domains. Input data is in general based in TimeFrame

domain and the processing is invoked upon reception of a complete data set. On the other hand, Task

output messages are published at the end of each Cycle, therefore, in specified and constant time intervals.

The design of the O2 system expects that each processing device is data-driven and in absence of

incoming messages, no new messages should be produced. Task Runners deliberately bend this rule by

using timer inputs. This way, Cycle durations are strictly preserved and Monitor Objects are published

even when no input data arrives. It gives an additional debugging information. By publishing results, it

proves that a QC Task is alive, but receives no data. Also, it maintains the expected Activity duration if

it is set to have a limited number of Cycles.

Thousands of parallel QC Tasks which start their activities at the same time might actually cause

problems related to load distribution. If all Monitor Objects are published at the same time throughout

the full O2 system, they might suddenly and drastically increase the CPU usage, the burden on network

cards and the RAM usage. Therefore, a load distribution mechanism is needed. Ideally the AliECS should

start the respective processes in an equally diffused intervals. If this is not possible, the first Cycle of each

Task will be randomly shorter.

5.3.3. Check Interface

Checks perform automatic evaluation of data produced by QC Tasks. The checking result is a Qual-

ity, which is stored in Quality Object together with additional information, such as metadata added by

the framework or user. The set of Qualities to choose include Good, Medium, Bad and Null (one can-

not determine the Quality). By accessing metadata, user algorithms can provide additional comments

indicating the reason of returning certain Quality.

The initial Check prototype supported a quite restrictive relationship between Monitor Objects and

Quality Objects. Each Monitor Object would have a list of Checks which should be performed on that

5.3. Quality Control tasks and automatic checks 61

specific object. One could not run a Check which would collectively evaluate multiple Monitor Objects

produced by the same or different Tasks. Moreover, the Check assignment used to be configured inside

the C++ source code, thus it could not be changed without recompiling a detector library.

The author proposed an extension the framework which should allow for an N to M relationship

between Monitor Objects and Quality Objects. Also, Checks should be declared inside configuration

structures, not in the compiled code. An AGH UST master student, Rafał Pachołek, implemented the

proposed changes as a part of his project for master’s thesis [108].

The Check Interface requires developers to override the following methods:

– check – receives a map with one or more Monitor Objects which were ordered by this Check. It

should return a Quality.

– beautify – allows to perform additional changes in Monitor Objects based on the recent Check

results. For example, in the case of ROOT data types, one can add a text box on a chart, configure

axes ranges and set a background or plot colour.

Other components of the O2 system might also generate objects which could be put under quality

control. To support such cases, Checks can also accept external data sources which are available within

other DPL workflows.

The possibility to check more than one Monitor Object at one time raises a question on synchroni-

sation of multiple data sources. If just one object among the expected set is actually updated, should it

trigger a Check? The framework lets users decide with the following update policies:

– OnAny – run a Check if any Monitor Object was updated.

– OnAnyNonZero – run a Check if any Monitor Object was updated, but all of them arrived at least

once.

– OnAll – run a Check if all Monitor Objects were updated.

– OnEachSeparately – run a Check on each updated object separately. This policy allows to

receive a separate Quality per each expected Monitor Object.

5.3.4. Dealing with complex Task and Check mapping

The N to M relationship between Monitor Objects and Quality Objects makes the framework more

flexible, however, it introduces another level on complexity in handling objects’ beautification and stor-

age. In order to avoid unnecessary messaging, Check Runners are responsible for storing both beautified

Monitor Objects and produced Quality Objects. Here, one has to distinguish several cases (Fig. 5.6a) to

avoid storing duplicates, while allowing many Checks to perform beautification on the same object and

to distribute the processing load among multiple processes.

Checks are performed within the same process if they require the same set of Task inputs (Fig. 5.6b).

They may beautify input objects only if they come from one Task. Then, the Quality Objects are sent

62 5.3. Quality Control tasks and automatic checks

to the QC repository by the same process. If a set of objects generated by a Task is not required by any

Check, or it is, but always in conjunction with an output of other Task, then they are stored by a dedicated

writer process. This scheme guarantees that only one version of an object is stored in the repository and

it can be beautified by Checks which operate on an output from one Task. This algorithm was proposed

and implemented by Rafał Pachołek in [108].

Task A

Task B

Task C

Check X

Check Y

Check Z

Task D

(a)

Check Runner 2

Check Runner 1Task A

Task B

Task C

Check X

Check Y

Check Z

Task D Writer

(b)

Fig. 5.6. An example of Tasks and Checks mapping (a) and how it is arranged by the

framework (b).

5.3.5. Quality aggregation

The whole system is expected to generate around 100000 new Quality Objects every minute. While

this level of detail is necessary to clearly pinpoint the issues with acquired data, such an amount of

information might overwhelm both shifters and experts at first. Hence, a possibility to create Quality

Object aggregates was requested by many detector module developers, even though it was not present in

the original design [6].

Aggregators allow to group Check results into categories which correspond to specific features of

sub-detectors and even to obtain a global sub-detector data quality (Fig. 5.7). User-defined Aggregators

and a set of common algorithms inherit a simple interface with the aggregate method to implement.

Check Y

Check Z

Aggregator A
Check X

Aggregator B

Fig. 5.7. An example of Checks and Aggregators arrangement. Aggregator A com-

bines the Quality Objects produced by Checks X and Y. Since Aggregators also pro-

duce Quality Objects, they may serve as data inputs for other Aggregators and can be

mixed with Check results, as it is done in Aggregator B.

5.4. Mergers 63

The execution of Aggregators can be subjected to the same update policies as Checks, with the exception

of the OnEachSeparately policy which would not provide any meaningful results.

In its initial implementation, done by Barthélémy von Haller, the aggregation is performed by one

actor, Aggregator Runner, which subscribes to all Quality Objects which are required by declared Aggre-

gators. As the task performed by this process does not require a lot of computing resources, it is expected

to sustain the data stream of all Qualities produced by Checks. If needed, one may group Aggregators

within one process per sub-detector to increase the maximum load capacity.

5.4. Mergers

The QC framework allows to execute QC Tasks locally, i.e. on the same servers where the main

processing is performed. The existence of this possibility is dictated by potentially excessive costs of

transferring and combining large amounts of data to machines dedicated for Quality Control. The results

of parallel data processing have to be merged before further analysis.

The software responsible for merging data from multiple parallel sources is the topic of this section.

The author developed the solution used in the QC framework and performed an extensive review of

different approaches to this problem. The work also benefits from the experiences of merging data in the

ALICE High Level Trigger software [109] and initial studies done for the O2 by a master student, Patryk

Lesiak [7]. The author submitted a paper covering this topic to a peer-reviewed journal, it is in the review

process. App. B contains a thorough performance study of mergeable data types available in the ROOT

framework and a comparison of standard histograms in ROOT and boost.

5.4.1. Assumptions and naming convention

As indicated in Sec. 4.5, the literature review showed that this topic does not have a commonly

used naming convention. Even the software itself is referred by different names: Mergers, Gatherers

and Adders. It is highly possible that other terms exist, which could have limited the amount of related

publications found. In this dissertation the following taxonomy is used:

– Data point – a set of one or more measurements performed during one observation, e.g. a table

row or singular entry in a histogram bin

– Data type, data structure – a storage format for data points

– Object – an instance of a data structure

– Incomplete object – an object which contains a subset of all data points currently present in the

system

– Complete object – an object which contains all data points currently present in the system

– Merging or merger – an operation which combines two or more input objects into one

64 5.4. Mergers

Producer

Producer

Producer

Producer

Producer

Producer

Producer

Producer

Merger

Merger

Merger

Merger

Merger

Producer

Producer

Producer

Producer

Producer

Producer

Producer

Producer

Producer

Merger

Merger

Merger

Merger

Merger
Merger Receiver

...
...

...

...

L layers

Fig. 5.8. A multi-layer topology of Mergers.

– Delta – an input object which contains only the data points which a Merger has not yet received

– Entire object – an input object which contains all data points gathered by a data source so far

– Data source, Data producer – an actor which publishes objects. They are incomplete, unless it is

the only data source in the system

– Merger – an actor which merges incomplete objects

– Data receiver – an actor which receives objects from Mergers

For the convenience of discussing differences between merging entire objects and deltas, fixed-size

objects and growing objects are defined. The first do not change their size after merging, e.g. histograms

with constant binning. The latter are larger than the largest input object after merging. For example,

tables fall into this category.

It is assumed that the merger result do not depend on the merging order and it is an instance of the

same data structure as input objects. Also, having the same input objects, one should obtain the same

result regardless of the merging algorithm used.

Data structures may contain other types within. Collections of histograms, tables and other custom

objects are expected in the QC system. In such case, they are merged by matching corresponding objects

names. If a previously unseen object is found, it is copied into the target collection.

5.4.2. Mergers design

The implementation of Mergers follows the general design principles of the O2 software - they are

message-passing actors respecting the O2 data model. They may be used in other context, unrelated to

the QC system.

5.4. Mergers 65

The input load can be distributed among several actors with a multi-layer topology of Mergers

(Fig. 5.8). The first layer of Mergers receives input objects from data producers, merges them and passes

to the next layer. The last layer always consists of only one Merger, which publishes the complete object.

If we require that each Merger should handle a similar amount of input channels, then the number of

processes per layer Mi can be calculated with Eq. 5.5.

Mi = dM
L−i
L

0 e (5.5)

where L - the number of layers, i - the layer index, 0 being the producer layer, while Mergers start from

layer 1. Thanks to the ceiling function, an integral number of Mergers is obtained.

Alternatively, one may define a global reduction factor R as the maximum number of inputs handled

by one Merger. Then one may find the amount of processes per layer with Eq. 5.6.

Mi = d
Mi−1

R
e (5.6)

Consequently, the reduction factor per each layer is:

Ri =
Mi

Mi−1
(5.7)

The total number of layers is:

L = dlogRM0e (5.8)

The author designed and implemented two kinds of Mergers, one of them dedicated for merging

entire objects, the other one supports deltas. They are characterised with different advantages, complexity

and corner cases, which will be discussed in the following sections.

5.4.3. Merging entire objects

The general behaviour of the entire objects Merger is illustrated in Fig. 5.9 and Fig. 5.10. The cache

stores the most recent version of an incomplete object from each data source. Merging is performed in

regular intervals. Each time, a new complete object is created and published.

The presence of cache is necessary to avoid merging the same data points twice. Input objects should

not be merged as soon as they are received, since their order of arrival is not guaranteed. Thus, certain

data source could send an object more than once before another data source sends it. By storing them

in cache, the merged object always is created from the most recent objects. Moreover, if a data source

accidentally stops working, a Merger can still use the last version of its incomplete object.

When merging entire objects, one gains some advantages over the other alternative. First of all,

a Merger may start later than the data sources and its temporary failure does not cause any loss of data.

Since data sources send entire objects, no data points are lost unless the sources start to malfunction. As

soon as a Merger receives objects from all input channels, it may produce the correct complete object.

However, the presence of a cache puts relatively large CPU, memory and bandwidth requirements

compared to the other alternative. In case of growing objects (e.g. tables), all data points are transferred

and merged repeatedly instead of once. Also, the presence of a cache requires memory for one incomplete

object from each data source.

66 5.4. Mergers

Merger (entire objects)

Cache

Merging
algorithm Publication

Controlling logic

Fig. 5.9. The inner logic components of the entire objects Merger.

Fig. 5.10. Merging entire objects. Each received object (on the left) replaces the previ-

ous one from the same data source. The complete object (on the right) is created from

scratch by merging the most recent incomplete objects.

5.4.4. Merging deltas

The logic behind the delta Merger is depicted on Fig. 5.11 and Fig. 5.12. First, there is an optional

cache to store new deltas. They are merged with the stored object, which gathers all data points received

so far. It is published in regular time intervals. In multi-layer Merger topologies, all the Mergers excluding

the final layer reset their stored objects after publishing them in order to avoid data points duplication.

In this case, the cache is optional as there are no prerequisites to delay merging input objects. How-

ever, it may potentially provide performance benefits by allowing to merge many objects at the same time

(discussed in Sec. 5.4.5). The provenance of objects is insignificant, since no data points are sent more

than once. Therefore, the objects can be stored in one queue. Due to the considerations and benchmark

results in Sec. 5.4.5, the cache was not included in the final version.

In terms of the fail-safety, if a delta Merger abruptly stops functioning and needs a restart, then all

contained data points so far are lost. To prevent this, one could extend it to store backup versions of

complete objects. On the other hand, if such situation occurs in a data source, the system will lose only

the data points which were never published by the producer.

Since only object differences are passed to the Merger, the hardware requirements for merging grow-

ing objects become lower. Transferring deltas puts smaller load on the bandwidth. Merging only new

5.4. Mergers 67

Merger (deltas)
Cache

(optional)

Merging
algorithm

Stored
merged
object

Publication

Controlling logic

Fig. 5.11. The inner components of the delta Merger.

Fig. 5.12. Merging deltas. Each received object update (on the left) is integrated with

the most recent complete version (on the right).

data points might require less CPU time, depending on the data structure used. Removing cache also

lowers the amount of memory needed.

5.4.5. Merging collections of objects

Merging certain data structures in larger collections might provide performance benefits. For exam-

ple, the mergeable ROOT data structures support merging collections of objects. Because of this, the

potential performance improvements were evaluated.

The five most popular ROOT types among the planned and existing QC Tasks were benchmarked:

standard histogram types with one, two and three dimensions (TH1I, TH2I, TH3I); multi-dimensional

sparse histogram (THnSparseI), which allocates memory only for non-zero bins; and columnar data

storage (TTree). Fig. 5.13 illustrates the CPU time needed to merge an object as a function of the

total amount of objects in a collection. The size of all the input objects was aligned to 250 kB, with the

exception for THnSparseI, whose in-memory size is dependent on the distribution of the contained

data points. Its size could not be reliably determined, as it would be related to the pseudo-random values

used to fill it

68 5.4. Mergers

1 4 16 64 256 1024
1E+02

1E+03

1E+04

1E+05

Performance of merging ROOT types collections

TH1I TH2I

TH3I THnSparseI

TTree

Collection size [objects]

M
e

rg
in

g
 ti

m
e

 [μs]
s]

Fig. 5.13. Merging time per object as a function of the number of objects in a collec-

tion.

No performance differences were observed for the standard histogram types and the columnar stor-

age. On the other hand, a collection of 1024 sparse histograms is merged around 24% faster than 1024

individual objects, which is a relatively small, but noticeable improvement.

According to the benchmarks results, the delta Merger would not benefit much from merging objects

collection. Therefore, the input objects are merged as soon as they are received in the current version of

Mergers. Only sparse histograms show performance benefits in the CPU time, which does not compen-

sate the amount of memory needed for caching objects and the increased complexity which comes with

having a cache.

5.4.6. Comparison of merging entire objects and deltas

The two Mergers, one for entire objects and another for deltas, were implemented. Any of the two

may be chosen for specific parallel QC Tasks. This sections contains a comparison between these alter-

natives and the default solution is chosen based on the considerations.

Fig. 5.14 shows the ratio of CPU time needed to merge an entire object and a delta if the latter

contains 100 times less data points. Fixed-size objects, such as TH1I, TH2I and TH3I, require the same

computing resources regardless of the option chosen. Large performance gain was observed for sparse

histograms - merging 100 times less data points corresponds to 62 times shorter merger operation on

average. The precise improvement might be very dependent on the distribution of data stored within

THnSparse. TTrees are merged 75 times faster with deltas containing 100 times less entries.

Summarising other differences, delta Mergers do not require caching objects, which translates to

smaller memory needs. Also, the temporary failure of data sources causes less data losses with this alter-

native. Additionally, they might require less bandwidth, memory and CPU time when merging growing

5.5. Quality Control repository 69

TH1I TH2I TH3I THnSparse TTree
0.001

0.010

0.100

1.000

10.000

Ratio of CPU time needed to merge full objects and differences

Data type

R
a

tio

Fig. 5.14. Ratio of CPU time needed to merge entire objects and deltas. The former

contained 5000 entries, while the latter only 50.

objects. On the other hand, entire object Mergers can restart during data acquisition, as each time they re-

ceive all data points gathered so far by data sources. In case that only the final complete object is needed,

they may merge objects only once, at the end of data-taking.

Given the benchmark results and the functionalities comparison, Mergers will operate in the delta

mode by default, unless it is required by any specific needs of certain QC Tasks.

5.5. Quality Control repository

The work described in this section was done primarily by Barthélémy von Haller. The author con-

tributed by taking part in discussions about the objects storage design and reviewing the implementation

code.

Monitor Objects and Quality Objects are stored in the QC repository, where they can be accessed

by graphical user interfaces, experts and further processing tasks. Initially, the QC repository was imple-

mented on the top of MySQL [6] - an open source SQL database management system [56], which was

also used in the ALICE Data Quality Monitoring software during Run 1 and 2.

However, the original solution was replaced with the Condition and Calibration DataBase (CCDB)

– a technology built especially for the ALICE’s needs regarding storage of quickly changing detector

parameters and calibration values. The change was justified by a decrease of the system complexity,

effectively requiring the users to learn how to use one kind of database in the O2 system instead of two.

The CCDB offers a convenient Representational state transfer (REST) interface [110] to store, browse,

retrieve and delete entries across time. It fulfils the Quality Control needs for data organisation, where

objects under the same name are published recurrently and have a limited validity in time, as they refer

only to a specific time period of the detector operation. The interface also allows to add metadata to

stored objects and then apply filters to choose entries with specific metadata values. Also, the CCDB was

proven to sustain the projected load of the QC system (see Sec. 7.5). It should be noted that two instances

70 5.6. Post-processing

of the CCDB will be present in the O2 system. One will serve its primary purpose - storing the detector

condition and calibration values. A separate instance will be used as the QC repository.

The framework stores QC objects under structured paths in the form

qc/<detector name>/<object type>/<component name>/<object name>. A 3-letter detector name,

e.g. ITS, TPC or MCH, organise objects into detector-specific groups. The object type can be either mo

(Monitor Object) or qo (Quality Object), thus the two kinds of data are put in separate directories. The

component name might be e.g. a QC Task or Check name and they aggregate all their QC objects under

a common path. The component and object names might consist of additional ’/’ separators, which

allows the detector teams to organise their quality control results into custom sub-categories.

Monitor Objects encapsulate objects specified by users. In the current version of the framework, it

is possible to use any ROOT object which inherits from TObject - the main ROOT’s interface which

consolidates most of its data types and standardises their behaviour in I/O operations, error handling,

reflection and printing. In order to allow users to inspect their Monitor Objects in the database without

the dependency on the QC framework, they are stored unwrapped from the encapsulating interface class

object. However, this is not the case for Quality Objects, which consist only of custom fields - Qualities

and metadata, not present in the ROOT framework.

The QC framework stores objects as ROOT’s TFiles. This approach ensures data persistence,

since such file contains information about file contents and data types, including their versions. Thus,

even obsolete classes can be properly read back.

Most of the QC objects is updated each 60 seconds during data-taking, so the experiment shift crew

can inspect data quality in a timely manner. However, after a data acquisition run is over, one does not

need all the corresponding objects - one version per hour should usually suffice. Reducing the number of

permanently stored objects should decrease the disk storage requirements and response times to object

retrieval and filtering. The removal of unnecessary objects is performed by a periodically executed Python

script. It is able to clean up a declared directory path according to specific policy - e.g. keeping only one

object per hour, one per run, only the most recent version or removing all objects. Since operations on

databases involve a risk of corrupting or removing data, the script can perform a dry run. Then, it shows

the list of operations it would carry out without actually applying them.

5.6. Post-processing

QC Tasks operate on data coming from the main processing chain, synchronously or asynchronously

to data-taking runs. This, however, does not cover the needs of higher-level quality analysis to inspect

trends in data and to perform correlation studies between different observables.

The post-processing framework, a part of the Quality Control software, is responsible for post-

processing of Monitor Objects and Quality Objects, including information from other data sources. It

should store the derived objects in the QC repository, thus also allowing to inspect them using the same

5.6. Post-processing 71

graphical interfaces and other tools. The processing should be triggered on event basis, such as at the end

of each data acquisition run, or once per day. The exact list of triggers is discussed in 5.6.1.

While developers can experiment and run the software on their own anytime, this framework is

mainly dedicated for processing which should be triggered in an organised manner. To play with data

created by the Quality Control, users are encouraged to use e.g. ROOT macros or the Jupyter Notebook

[111] instance hosted at CERN [112], which provides an access to ROOT.

5.6.1. Post-processing Interface

Post-processing in the QC framework, as it is for Tasks and Checks, also relies on the template

method pattern [107], minimising the effort which users would have to put to start developing their

modules. The Post-processing Interface unifies all the Post-processing Tasks under a common, basic

interface with four methods to implement - configure, initialize, update and finalize.

The first pushes configuration parameters to an algorithm. The remaining three are invoked according

to configured triggering events. Initialisation and finalisation are executed only once, in contrast to the

update method, which is invoked any time after having been initialised and when corresponding triggers

apply. So far, the following triggers are defined:

– Start Of Run, End Of Run – triggers when a data acquisition run is started or finished, respectively.

– Start Of Fill, End Of Fill – triggers when particle beams are being inserted into the LHC and after

they are dumped, respectively.

– Periodic – triggers regularly with a specified interval time.

– New Object – triggers when a specified object in the QC repository is updated.

– Once, Always, Never – trigger once, each time or never. They are useful for testing the imple-

mented software.

– User Or Control – triggers when a user performs some kind of manual intervention. This includes

receiving a program interrupt request (e.g. by pressing CTRL+C in terminal) or a Stop state change

request sent by the AliECS.

In contrast to QC Tasks and QC Checks, which rely solely on the framework to pass data around,

Post-processing Tasks should retrieve objects from databases. They may also store data voluntarily.

However, using a dedicated interface is recommended, because it allows to pass the objects to Checks.

Summarising, this part of the QC framework leaves a lot of freedom to users. It allows to design and

implement unusual algorithms, which cannot achieved with other QC components. On the other hand,

numerous usage requests cover moderately simple and common applications which can be unified under

one algorithm, described in the next section.

72 5.6. Post-processing

TH1 MO TH1 Reductor

TTree

TH1’s mean : time

Data sources Data reductors Value storage Plots

TH2 Reductor

Quality Reductor

TH2 MO

Quality

TH1’s mean : TH2’s sum

Histogram of Qualities

Quality
Control

Repository

Database

Quality
Control

Repository

Database

Fig. 5.15. The Trending Task design.

5.6.2. Trending Task

Based on gathered requirements for post-processing in Quality Control, the usual desired sequence

of operations consists of regularly retrieving one or more QC objects, deriving some kind of statistics

and plotting them over time (trending) or against each other (correlation). The Trending Task is a special-

isation of the Post-processing Interface class. It is supposed to perform commonly requested activities

related to the post-processing without requiring users to write any code.

Fig. 5.15 depicts the Trending Task structure. The task may request any data from the QC repository.

It can be a Monitor Object, Quality Object or any other class object which inherits TObject. Reductor

classes are responsible for computing or retrieving high-level information out of specific data types, e.g.

the average and standard deviation of a histogram. The framework provides a common set of Reductors

for the standard ROOT histograms, sparse histograms and Quality Objects. The last one allows users to

trend data quality in time and correlate them with other observables. The task writes sets of observables as

rows into the ROOT’s tabular data storage facility - TTrees. Aside from I/O operations, this class offers

a powerful visualisation tool, which allows to create plots and histograms from underlying columnar

data. Effectively, it allows to correlate values and draw trends. The Trending Task reads a list of plot

configuration values and passes them to the TTree::Draw interface. The created figures and the tree

itself are stored in the QC repository during each update and finalisation of the task.

5.6.3. Running Post-processing Tasks

As previously stated, Post-processing Tasks can operate on data retrieved from databases. This al-

lows to run them as standalone processes, without the Data Processing Layer. There are two dedicated

executors which can run Post-processing Tasks, one is dedicated for development purposes, while the

second allows the AliECS to drive its state machine by remote procedure calls. Still, the tasks can run

within the Data Processing Layer as data sources and it is the only way which lets the objects reach

Check Runners, so they might be automatically evaluated.

The Post-processing Tasks executors are mainly responsible for regularly checking validity of trig-

gers. Doing this too often might put a lot of strain on other system components, for example on the

5.7. Execution 73

QC repository, by continuously inquiring if an object under specific path was updated. To mitigate the

potential problems, the task executors run triggers periodically, in a configurable time interval. As the

Post-processing results do not have to appear as soon as possible, having the tasks sleep for a few min-

utes should be acceptable in most cases. The workload could be further reduced by implementing a

centralised trigger manager, which would decrease amount of operations done in parallel, and by letting

the AliECS system handle triggers related to data acquisition runs and beam fills.

5.7. Execution

Any QC process topology can be started with one executable, without any need for its recompilation

after changes the user code. The binary reads the provided configuration file and generates the corre-

sponding infrastructure within the Data Processing Layer, which can immediately run it on development

setups or it may be exported to the AliECS for running in production. A lot of attention was given to

provide meaningful error messages when a QC topology cannot be correctly created due to missing or

incorrect configuration parameters.

Thanks to the possibility of merging DPL workflows, one can easily attach a QC workflow to any

other by extending the execution command with a Unix pipe and the QC binary name with necessary

arguments (Lst. 5.1).

o2-some-processing | o2-qc --config json://path/to/configuration/file.json

Listing 5.1. An example of command which runs a main data flow workflow with the

Quality Control software attached.

In the early development phase the users usually run the software on one server and test it with

simulated or pre-recorded detector test data. Later, during the detector commissioning or data taking,

the real detector can provide data to several machines in parallel. In such case, some elements of the

QC infrastructure can run on the servers receiving and processing acquired data, while other parts can

be executed on a dedicated QC server in order to merge and check the results. Then, the QC executable

can generate only the appropriate part on each machine and allow them to function properly on such

a multi-node setup.

Since both the QC and the analysis framework take advantage of the Data Processing Layer, they may

interact with each other just as any actors in a workflow. One can configure QC Tasks to read Analysis

Objects Data (AOD) files directly or to subscribe to tables and histograms generated by analysis tasks.

The workflows may run locally or on distributed computing clusters.

5.8. Quality Control GUI

Shift crews and experts can access the results of Quality Control processing – Monitor Objects and

Quality Objects – by directly interacting with the database or via the Quality Control GUI (QCG). It

74 5.8. Quality Control GUI

Fig. 5.16. The Quality Control GUI in the browser mode. The panel on the left allows

to choose an object in the tree-like structure, which is then visualised on the right

side. The selection panel in the right-bottom of the picture allows to choose any older

version of the object. The selected object contains a trend obtained with the Trending

Task.

is based on the O2 WebUI framework [113], relying on Web technologies to build graphical interfaces

which do not require anything else than a web browser to run and can be accessed from anywhere in the

Internet. Both the framework and the QCG were developed by George Raduta, Vladimir Kosmala and

Adam Węgrzynek.

The GUI allows to inspect objects stored in the QC repository in two major ways. The first (Fig. 5.16)

illustrates available entries in a tree-like structure which represents their arrangement in the repository

(see the path description in Sec. 5.5). User can filter out only currently running Tasks, Checks and their

corresponding objects. By default, the most recent version of an object is shown, but one can select also

past objects with a selection panel. The other mode allows the users to arrange several plots into layouts

(Fig. 5.17), which are saved by the server application and can be shared among other users.

The QC propagates the information about available services to the QCG via Consul - a software tech-

nology for service discovery, distributed key-value storage, segmentation and configuration [114]. The

ROOT objects are visualised with JSROOT [53], which implements ROOT graphics for web browsers.

Quality Objects are illustrated as maps of keys and values, as shown in Fig. 5.18.

5.8. Quality Control GUI 75

Fig. 5.17. The Quality Control GUI in the layout mode. On the left, one can choose

between the available layouts or request to create a new one. On the right, a layout

example is shown, it is composed of six histograms with noise measurements of the

Muon Chambers (courtesy of Andrea Ferrero).

Fig. 5.18. The Quality Control GUI visualising a Quality Object as a key-value map.

In the browsed tree one can notice the fine grained structure of objects, achieved by

using the ’/’ separators within the object names.

76 5.9. Maintenance of the QC software

5.9. Maintenance of the QC software

As most of the ALICE O2 software, the Quality Control is publicly and freely available [115] un-

der the GNU General Public License v3 [116]. It uses Git [117] as a distributed version control system.

The software builds are done with CMake, which facilitates the build process within singular software

projects, and with AliBuild, which takes care of building and installing any direct and indirect dependen-

cies (as of January 2021, there is 49 of them in the minimal version!). The build infrastructure is handled

by the Work Package 3 team of the O2 project.

The project is divided into the framework code and detector module libraries, in a way that the first

do not depend on the latter. Most of the framework is covered with unit and functional tests in order to

guarantee its expected behaviour after any changes in the project or upstream dependencies. Unit tests in

detector modules are not mandatory, but encouraged.

All contributions to the project have to follow a common set of the ALICE O2 coding guidelines,

which include formatting rules and good code practices. New contributions are managed and discussed

in form of pull requests, which contain proposed code changes by a certain contributor. The Continuous

Integration system builds latest versions of the Quality Control with the proposed changes, runs the tests

and code formatting checks. A pull request should receive an approval from a repository maintainer and

pass the test builds in order to find its way into the main code branch. First-time contributors should

receive a positive review before their code is built to avoid security-related issues due to an untrusted

code being executed on the servers at CERN. The software is always built on CERN CentOS 7 (the target

system) and MacOS. Having two distinct platforms supported helps to find and identify bugs which are

caused by using code which is not guaranteed by the standard to function in a defined and cohesive

manner (undefined behaviour). The code is complemented with an online documentation. Users can

introduce themselves to the framework with a step-by-step tutorial.

The framework development, detector teams requirements and their progress are reported and dis-

cussed in bi-weekly meetings. Information about new releases and their contents are communicated via

mailing lists and plenary meetings of the O2 projects.

5.10. Further development

The presented state of the Quality Control software was released as the version v1.9.0. The frame-

work contains all the features described in the O2 project Technical Design Report [29] and the Doctoral

Student Programme description. However, the software will be further developed according to upcoming

requests.

5.10. Further development 77

One of the planned features should provide a possibility to raise alarms upon pre-declared events,

which could be results of aggregated Quality Objects. Alarms should be propagated to various informa-

tion channels, such as mailing system, GUIs, text messages or popular chat services. With this mech-

anism, detector experts and experiment shift crew would quickly receive information that they should

react to a potential problem during data acquisition.

In the current version, the Quality Control supports only ROOT types as Monitor Objects. While it

is possible to have any class inherit TObject and, by that, allow the framework to support such a data

type, it also unnecessarily increases the number of classes and code. This limitation should be removed

by generating ROOT dictionaries of any class which required support, which is not intrusive to data

structures.

The software is currently configured with JavaScript Object Notation (JSON) files, which are then

translated into property trees available in the boost library. This approach, however, cannot scale well

in the production system. Configuration key and values will be stored and propagated to processes by

Consul [114]. Also, a graphical interface should allow to modify selected values in the centralized con-

figuration store accordingly to user privileges.

Data recorded during the years 2009-2018 was assigned quality flags on a run number basis. These

marks, stored in the Run Condition Table, were the criteria for deciding if a given run is appropriate for

certain type of physics analysis (different analysis types require different sets of sub-detectors working

well). However, since Run 3, due to constantly changing detector conditions and calibration, the final

quality will be evaluated with a finer granularity. Each event will have an associated timestamp. Since

the events will be gathered in TimeFrames, the final assessment of the data quality will be performed

with such or larger time intervals. In the end, data tags will be derived, which will allow to select only

the good quality data during the physics analysis.

78 5.10. Further development

6. Optimisation of message-passing topologies in the Quality

Control

The Quality Control framework leaves a certain amount of freedom for the arrangement of its actors.

This allows to choose configurations which use less computational resources. QC Tasks can run either

on machines with the main processing workflows - locally (Fig. 6.1), or on dedicated servers - remotely

(Fig. 6.2). The choice between the two options is dictated by the following requirements. On one hand,

the Quality Control should have no negative influence on the main processing, i.e. it should not disrupt it

or slow it down. Thus, QC Tasks running on dedicated servers are less likely to cause troubles with data

acquisition and processing. However, the computations should also use the minimal possible amount of

resources. In case that a QC Task requires 100% of data to produce valid results, it might not be feasible

or efficient to transfer such a data stream to another machine. Then, locally running Tasks might use

significantly less resources.

In the case when incomplete results are produced by local QC Tasks running in parallel, one should

also consider finding an optimal Merger topology. If merging does not consume a considerable portion

of a CPU core, then having one Merger process should be completely sufficient. However, when one-

layer topology can barely sustain the input data stream, one might consider using multi-layer merging

topologies.

In this chapter, methods to find optimal message passing topologies are proposed and complemented

with an exploration of the model parameter space, which allows the reader to learn how different factors

influence the performance and costs of QC setups.

6.1. Queueing theory

Queueing theory [118] is the mathematical study of queues, which was initially applied in telecom-

munication to estimate the amount of resources needed to provide communication paths between waiting

clients within acceptable level of delays. In the most basic form, a single queueing node provides services

to arriving clients. If the clients cannot be served immediately, they wait for the service in a FIFO queue.

The actors in the O2 framework can be modelled with the same mathematical methods, since their main

activity is processing messages which arrive in message queues.

80 6.1. Queueing theory

Processing node

Local
QC Task

Dispatcher

Processing

QC server

ChecksMerger

Processing node

Local
QC Task

Dispatcher

Processing

Processing node

Local
QC Task

Dispatcher

Processing

Fig. 6.1. A setup with local QC Tasks.

Processing node

DispatcherProcessing

QC server

Checks
Remote
QC Task

Processing node

DispatcherProcessing

Processing node

DispatcherProcessing

Fig. 6.2. A setup with a remote QC Task.

6.2. Model requirements 81

In the next sections two kinds of queue models are used. Their names follow the Kendall’s notation,

which arranges three specifiers in form of a/b/c. In this convention, a describes the client arrival process,

b defines the service time distribution and c corresponds to the number of servers (workers). As defined

in [118], the M/G/1 queueing model assumes that customers arrive according to a Poisson process (M);

the distribution of service times is arbitrary (G); there is one server (1); and all blocked customers wait

until served.

The average length ξ of a M/G/1 queue can be described with Eq. 6.2, assuming the utilisation factor

ρ as in Eq. 6.1.

ρ =
λ

µ
(6.1)

ξ =
ρ2

2(1− ρ)

(
1 +

σ2

τ2

)
(6.2)

where: λ - client arrival rate, µ - maximum service rate, τ - average service time and σ2 - variance of

service times. In the context of processing messages, the τ and σ components may correspond to the

mean and variance of message sizes, assuming that the processing time is proportional to message size.

Moreover, the utilisation factor ρ can be interpreted as the average CPU usage, if the process uses one

worker thread.

If the service times are deterministic (D), then the queue is described as M/D/1. Consequently, the

variance σ2 in Eq. (6.2) is equal to zero and the formula for the average queue length ξ is reduced to

Eq. (6.3).

ξ =
ρ2

2(1− ρ)
(6.3)

In this case, the queue length ξ depends only on the utilisation factor, thus one can use the set of calculated

values in Tab. 6.1 to estimate it.

Tab. 6.1. Average length ξ of the M/D/1 queue for selected utilisation factor ρ values.

ρ 0.500 0.732 0.854 0.916 0.955 0.981 0.990

ξ 0.25 1.00 2.50 5.00 10.13 25.33 49.00

6.2. Model requirements

In order to clearly indicate applicability of the shown methods and avoid unnecessary complexity in

the models, the following conditions are assumed:

– There are P main processing nodes, each produces a data stream subject to quality control with

throughput D, average message size τd and its variance σ2d.

– Modelled processes can handle one message at a time, i.e. they have one worker thread.

82 6.2. Model requirements

– Time needed to process a message is proportional to its size. For QC Tasks it is described as

Qp - CPU usage per data throughput. For the commonly used ROOT types, this can be assumed

for objects larger than 200 kB, as shown in Sec. B.4. Thus, CPU usage grows proportionally to the

amount of received data, up to 100%.

– Hardware costs scale linearly. Of course, this statement does not apply in reality, but approximate

costs can be found based on the price of already bought computing infrastructure. Therefore, we

define: cp - cost of a CPU core, cm - cost of RAM per memory unit, cb - cost of network bandwidth

per throughput unit.

– Messages and contained objects generated by QC Tasks have a fixed total size osize, i.e. they do not

grow or shrink due to insertion of new data or merging. This is not true e.g. for tables and sparse

histograms, so the worst case may be assumed - the highest expected size of an object, achieved

after many hours of data acquisition.

– Aside from their message queues, local and remote QC Tasks need the same amount of memory,

defined as Qm.

– Merger needs memory only for objects stored in its message queue and cache.

– CPU cost of publishing messages is minimal and can be omitted.

– Transferred data has the same volume as processed data. In other words, serialisation and deseri-

alisation do not have influence on objects size.

Probably all of the aforementioned requirements can be lifted up by extending the models below. The

shown formulas are structured in a manner which allows for independent modification of any component.

All parameters of the model are summarised in Tab. 6.2.

Tab. 6.2. The complete set of parameters used in the model.

Symbol Description

cp Cost of a CPU core

cb Cost of a unit of bandwidth

cm Cost of a unit of memory

P Number of main processing nodes running in parallel

D Throughput of data produced by one node

τd Average data message size

σd Standard deviation of data message size

osize Size of all objects produced by one QC Task

T QC Task’s cycle duration

Qp Number of CPU cores per input data throughput needed by a QC Task

Qm Memory needed by one QC Task

µ(R) Object processing rate of one Merger with respect to the reduction factor R

6.3. Optimal Merger topology 83

6.3. Optimal Merger topology

The decision about finding the right amount of data sources per one Merger might involve multiple

factors, two of them are highlighted in this introduction. First of all, one should take into account that due

to the indeterminism of distributed message passing systems, random data throughput fluctuations might

occur. Therefore, a Merger which is able to sustain certain maximum data flow should not be put under

such strain. In case of a temporary increase of input data throughput, the Merger might have troubles

resolving the congestion and, as a result, occupy more memory with its input message queues. Thus, a

safe margin should be applied either arbitrarily or with statistical estimations, for example by minimizing

the total computational resources usage of a Merger topology.

Also, overheads of some libraries and frameworks might relate to the number of supported actor

inputs. If the performance decreases with a higher amount of handled data sources, a smaller reduction

factor might be needed. If the performance is stable across the input number range, one can omit this

aspect, otherwise it be taken into account when modelling this piece of software.

6.3.1. Modelling one Merger process

The queueing theory was used to model Mergers and its message queues. If we assume that arrivals

of input objects are determined by a Poisson process, the merging time is constant and the Merger can

process one message at the same time, then it can be represented by the M/D/1 queue. In this case, the

worker utilisation factor can take the following two forms:

ρi =
λ

µ(Ri)
=

Ri

Tµ(Ri)
(6.4)

where: λ - total object arrival rate, i - layer index, Ri - reduction factor in i-th layer (number of input

channels per Merger), µ(R) - objects merging rate with respect to reduction factor, T - publication

interval of a single data source. If the Merger performance does not depend on the number of input

channels, then the µ(R) component becomes constant. If ρi becomes greater than 1, which corresponds

to Merger not being able to sustain input data throughput, then the input message queue grows infinitely

and the following formulas cannot be applied.

The average number of messages in a queue, which is related to the average memory usage, can be

calculated with Eq. (6.5).

ξi =
ρ2i

2(1− ρi)
(6.5)

The approximate amount of objects contained by one Merger and its queue can be estimated with

Eq. (6.6) for the entire objects Merger and with Eq. (6.7) the delta Merger.

Ii = ξi + ρi +Ri (6.6)

Ii = ξi + ρi + 1 (6.7)

84 6.3. Optimal Merger topology

The ρi component corresponds to the average processing time of an object after it finishes waiting in the

queue. When merging deltas, one complete object is stored in memory, while the entire object Mergers

require Ri objects cached. One can estimate amount of used memory by multiplying Ii with the fixed

object size.

6.3.2. Modelling Merger topologies

Having the model of one Merger and its queues, one can proceed with understanding how the reduc-

tion factor may influence the total performance of a Merger topology. The following approximate cost

functions with respect to R are proposed, assuming that only fixed-size objects are merged:

CMp(R) = cp

L∑
i=1

Miρi (6.8)

CMm(R) = cm · osize
L∑
i=1

MiIi (6.9)

where M0 = P , CMp - cost of the processing power, CMm - cost of memory.

To find the optimal cost of a Merger setup CM with respect to the reduction factor R, the minimum

of Eq. (6.10) should be found.

CM (R) = CMp(R) + CMm(R) (6.10)

The proposed model can be employed in analogous processing topologies, where a process regularly

receives messages on a number of input channels and produces some data as its output. Merging might

be very well replaced with other kind of computation.

6.3.3. Example

The following example scenario is discussed. The process topology consists of 2500 data sources,

each producing a 500 MB delta object every minute. The Merger performance can be approximated in

the range [2, 2500] with the linear function µ(Ri) = −0.002Ri+24. The cost of one CPU core is 118 $,

while memory costs 6.25 $/GB.

Fig. 6.3 illustrates the CPU, memory and total cost estimations with respect to the reduction factor.

The discontinuities and the flat regions in the cost functions are the consequence of the number of lay-

ers and Mergers being integer values. A range of reduction factor values may correspond to the same

topology arrangements.

With small R values, the memory usage becomes high, since the number of processes in the Merger

topology is very large. It falls with larger reduction factors untilR is greater than 1250. Then the message

queues of Mergers become longer. The CPU cost grows for R > 14, because the Merger performance

decreases proportionally to the number of input channels. The total cost minimum is located in the range

[500, 624], which corresponds to a topology with 2 layers, consisting of 5 and 1 Mergers.

6.4. QC Tasks localisation 85

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800

900

Cost minimum
Total cost
Memory cost
CPU cost

Reduction factor (R)

T
o

ta
l m

e
rg

in
g

 c
o

st
 [$

]

Fig. 6.3. An example of the cost functions Eq. (6.8), Eq. (6.9) and Eq. (6.10). The total

cost minimum lies within the range [500, 624].

6.4. QC Tasks localisation

Having the optimal process arrangement of Mergers and their total cost, one can compare the two

ways of running QC Tasks - locally and remotely.

6.4.1. Modelling a QC Task

QC Task is modelled similarly to Merger. It contains a message queue, whose size (thus occupied

memory) depends on the performance of a particular QC Task. In case of Mergers, one could estimate

how much memory does the process requires by counting the amount of internally stored incomplete and

complete objects. However, QC Tasks might also need RAM not only for storing messages or objects

they publish, but also for their processing needs (e.g. information about detector geometry).

As assumed at the beginning of the chapter, process utilisation is proportional to the amount of

received data. The average CPU utilisation of a QC Task can be defined with Eq. (6.11) if it runs locally

and with Eq. (6.12) in the alternative case.

ρq = D ·Qp (6.11)

ρq = P ·D ·Qp (6.12)

where ρq should make less than 1, so the process can sustain the input data throughput. While for Mergers

we assumed that processing time is constant for any incoming object, here we extend this assumption, as

input data may differ in size. Then, the messages sizes are defined by the normal distribution with mean τd
and variance σ2d. Hence, the M/G/1 model may represent this problem - messages arrive according to a

Poisson process, processing time distribution is arbitrary (general) and there is one worker. The queue

86 6.4. QC Tasks localisation

length can be described as follows:

ξq =
ρq

2

2(1− ρq)

(
1 +

σd
2

τd2

)
(6.13)

One should note, that an M/G/1 queue becomes an M/D/1 queue if the processing time is invariant, so

the this QC Task model can be easily simplified.

The total memory used for message buffers and processed data can be estimated in the following

way:

QmI = τd · (ξq + ρq) (6.14)

With the presented equations, one can find the total cost of a QC Task with Eq. (6.15). The process-

ing cost rises proportionally to the CPU utilisation, thus to the amount of data. The memory cost has

two components, one corresponding to input buffers and processed data, the second accountable for all

permanently allocated resources. One might consider omitting the QmI component if the CPU usage is

small, so message queue does not occupy much memory.

CQ = cp · ρq + cm · (QmI +Qm) (6.15)

6.4.2. Comparing the total cost of local and remote QC Tasks.

The total cost of a given setup is defined in Eq. (6.16). It consists of the infrastructure cost which runs

locally (CL), the cost of data transfer between the two clusters (CT) and the cost of remote infrastructure

(CR). In both alternatives, one can omit costs of sampling data and running Checks, as it stays the same

in both cases.

C = CL + CT + CR (6.16)

If QC Tasks run locally, the three components take the following forms. Only the local QC Tasks are

executed on the main processing machines (Eq. (6.17)). The bandwidth costs results from all Monitor

Objects sent by parallel QC Tasks (Eq. (6.18)). QC servers carry the cost of merging incomplete Monitor

Objects (Eq. (6.19)), computed as in Eq. (6.10).

CL = P · CQ (6.17)

CT = cb · P ·
osize
T

(6.18)

CR = CM (6.19)

When QC Tasks are executed on remote QC machines, the same three components can be found

in the following way. Locally, nothing is executed aside from Data Sampling, which cost is omitted

6.4. QC Tasks localisation 87

(Eq. (6.20)). Transfer cost includes all sampled data from the main computing nodes (Eq. (6.21)). Finally,

one instance of the QC Task runs on the remote servers (Eq. (6.22))

CL = 0 (6.20)

CT = cb · P ·D (6.21)

CR = CQ (6.22)

By calculating the total setup cost, the three kinds of computational resources are combined into

one, more abstract resource. If the cp, cm, cb factors use a currency as the unit and are derived from

the hardware price, then this resource becomes money. However, one could choose any other approach

to determine the availability of the processing power, memory and bandwidth. Still, when choosing

if a QC Task should run locally or remotely, other, unmeasurable factors might appear. For example,

a process which is prone to memory leaks could be executed on remote servers to avoid impeding the

data acquisition, even if then the calculated setup cost is higher.

6.4.3. Exploring the model’s parameter space

In this section, the model’s parameter space is explored. Several scenarios are investigated, each

having certain parameters changed within the expected range in the QC system. Tab. 6.3. contains the

complete constant and variable parameter list. The changes in the CPU and RAM costs were not investi-

gated, as their price differences might have influence on the parameters related to the performance (such

as τd, Qp, µ(R)). For example, buying a more expensive processor might decrease the amount of CPU

time needed by a QC Task. Therefore, since the model does not cover these correlations, investigating

the influence of these parameters in isolation could lead to wrong conclusions.

The cost of bandwidth may differ e.g. depending on the technology used to connect computing sites

and the distances between them. The ALICE QC nodes are placed in the same counting room as the

FLPs. They both communicate with the EPN site via an InfiniBand network. Fig. 6.4 shows how the

setup costs change with respect to the price of a bandwidth unit. In both cases, the transport cost rises

proportionally to the amount of data transferred to the remote QC servers. Obviously, the influence is

much less visible when less data is transferred, such as when the first step of data reduction is performed

locally.

The number of main processing nodes has a proportional relationship with the CL and CT compo-

nents of the local QC Tasks cost (Fig. 6.5), since it translates to running more instances of QC Tasks and

publishing more Monitor Objects. The CR component has less clear correlation with P , but it is not well

visible in the presented example. The cost of remote QC Tasks also grows with the number of parallel

nodes. At certain value, the workers cannot sustain the amount of input data, which is expressed with the

cost rising to infinity. Then, running QC Tasks locally becomes the only feasible alternative. Increasing

88 6.4. QC Tasks localisation

Tab. 6.3. The complete set of parameters used for the model examples presented in

Sec. 6.4.3. The ’x’ symbol denotes the variable parameters of a given scenario.

Parameter Scenario

Symbol Unit A B C D E F G H I

cp $/CPU 118 118 118 118 118 118 118 118 118

cb $/MB/s x 0.09072 0.09072 0.09072 0.09072 0.09072 0.09072 0.09072 0.09072

cm $/MB 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625 0.00625

P 1 50 x 50 50 17 25 25 20 80

D MB/s 15 2 x 10 23 15 5 5 1

τd MB 2 2 2 x 1 1 1 1 1

σd MB 0.5 0.5 0.5 1 0.1 0.1 0.1 0.1 0.1

osize MB 10 100 100 100 x 200 200 200 100

T s 60 60 60 60 60 x 60 60 60

Qp CPU/MB/s 0.001 0.002 0.001 0.00199 0.0025 0.0015 x 0.005 0.005

Qm MB 250 500 500 500 300 500 500 x 500

µ(R) 1 10 10 10 10 512/x 10 10 10 x

the amount of data needed from each processing node significantly raises the transfer costs for remote

QC Tasks, as shown in Fig. 6.6. When running them locally, the larger input data throughput increases

their CPU and RAM usage. The granularity of data messages has influence on the input message queue

sizes of QC Tasks. In this context, they will grow if the process utilisation is close to 100% and if the

messages size rises, as in Eq. (6.13) and Eq. (6.14). This effect can be observed in Fig. 6.7 for the remote

setup cost, as the QC Task is highly occupied due to large input data throughput. Since the computations

can be split among several local QC Tasks, their input queues do not contain as many waiting messages,

so the local setup cost does not vary significantly. Also, if the proportion of the average message size

to its standard deviation is larger, the additional burden of variable message sizes on the queue length

becomes less significant. However, this effect is not visible in Fig. 6.7.

If the Mergers performance per input data throughput is kept steady while modifying the size of

Monitor Objects produced by each instance of a QC Task, one may notice a large negative effect on local

QC Task setups cost (Fig. 6.8). The cost increase is related to the higher bandwidth usage and heavier

load on the Mergers. However, the cost can be decreased by choosing a longer QC Task cycle duration,

thus publishing the Monitor Objects less frequently (Fig. 6.9). Still, the cost of keeping the QC Tasks

running remains constant. The QC Task CPU usage per input data throughput has similar effect on the

setup cost in both alternatives, as illustrated in Fig. 6.10. In both cases, the same total amount of data is

processed by either a group of local QC Tasks or one remote actor. However, running only one, remote

copy of the QC Task greatly limits the amount of data which the system can sustain. If it is exceeded, a

local setup becomes the only alternative available. On the other hand, one could also consider executing

several QC Tasks remotely and merging their results afterwards in order to alleviate this limitation.

Fig. 6.11 illustrates how the total setup cost rises with the idle QC Task RAM usage increase. Naturally,

6.4. QC Tasks localisation 89

0.008 0.016 0.032 0.064 0.128 0.256
0

50

100

150

200

250

300

Cost of local and remote QC setups (A)

Local QC tasks – total

Remote QC tasks – total

Bandwidth cost [$/MB/s]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.4. The cost of local and remote QC setups as a function of the bandwidth cost

(scenario A).

2 4 8 16 32 64 128 256 512 1024
1

10

100

1000

10000

Cost of local and remote QC setups (B)

Local QC tasks – total

Remote QC tasks – total

Number of parallel nodes

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.5. The cost of local and remote QC setups as a function of the number of parallel

nodes (scenario B).

the total RAM cost is also proportional to the amount of QC Task instances, thus the relationship is more

visible for local, parallel setups.

90 6.4. QC Tasks localisation

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6
1

10

100

1000

10000

Cost of local and remote QC setups (C)

Local QC tasks – total

Remote QC tasks – total

Parallel data stream throughput [MB/s]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.6. The cost of local and remote QC setups as a function of the parallel input

data throughput (scenario C).

1 2 4 8 16 32 64
100

150

200

250

300

350
Cost of local and remote QC setups (D)

Local QC tasks – total

Remote QC tasks – total

Average data message size [MB]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.7. The cost of local and remote QC setups as a function of the average data

message size (scenario D).

6.4. QC Tasks localisation 91

4 8 16 32 64 128 256 512 1024
100

120

140

160

180

200

220

240

260

280
Cost of local and remote QC setups (E)

Local QC tasks – total

Remote QC tasks – total

Total size of Monitor Objects [MB]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.8. The cost of local and remote QC setups as a function of the total size of

Monitor Objects produced by one QC Task (scenario E). The Merger performance

was adjusted accordingly to the relationship µ(R) · osize = 512MB/s.

92 6.4. QC Tasks localisation

10 20 40 80 160 320 640
0

50

100

150

200

250
Cost of local and remote QC setups (F)

Local QC tasks – total

Remote QC tasks – total

Cycle duration [s]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.9. The cost of local and remote QC setups as a function of the cycle duration

(scenario F).

0.0005 0.0010 0.0020 0.0040 0.0080 0.0160 0.0320
0

50

100

150

200

250

300

350

400

450

500
Cost of local and remote QC setups (G)

Local QC tasks – total

Remote QC tasks – total

QC Task CPU usage [CPU/MB/s]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.10. The cost of local and remote QC setups as a function of the QC Task CPU

usage per input data throughput (scenario G).

50 100 200 400 800 1600 3200 6400
0

100

200

300

400

500

600

700

800

900

1000
Cost of local and remote QC setups (H)

Local QC tasks – total

Remote QC tasks – total

Idle QC Task RAM usage [MB]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.11. The cost of local and remote QC setups as a function of the idle QC Task

RAM usage (scenario H).

6.5. Summary 93

Finally, Fig. 6.12 depicts the modelled cost as a function of the Merger performance. It becomes

significantly higher when merging more complex Monitor Objects. Otherwise, multiple instances of

local QC Tasks dominate in the total cost.

1 2 4 8 16 32 64
0

100

200

300

400

500

600

700
Cost of local and remote QC setups (I)

Local QC tasks – total

Remote QC tasks – total

Merger performance [objects/s]

S
e

tu
p

 c
o

st
 [$

]

Fig. 6.12. The cost of local and remote QC setups as a function of the Merger perfor-

mance (scenario I).

6.5. Summary

Supervising over 100 distinct QC Tasks requires a considerable amount of effort. Improving their per-

formance and decreasing their impact on the computing system allows to carry out more comprehensive

data quality control with the limited resources. By defining the mathematical models of the selected com-

ponents of the QC system, it is possible to find better performing process topologies in a semi-automatic

way. Besides, the exploration of their parameter space gave the author and other QC coordinators better

understanding of the roles that different factors have in the system performance and cost. It also demon-

strated how the parallel message-passing QC topologies can scale in large computing systems such as

the O2.

94 6.5. Summary

7. Benchmarking the Quality Control framework

This chapter contains benchmark results of each component of the Quality Control system. The clear

responsibility division between the actors allows to test them in isolation by running mock-ups of the

components they interact with. However, measuring performance of message-passing software is not al-

ways straightforward due to the stochastic nature of the communication between the actors and limited

computational resources. There are many traps and intricacies which might lead to false or imprecise

results. Descriptions of benchmarking methods explain potential problems which were alleviated, thus

they might help designers and developers of similar systems to find the best way to test their software.

Finally, the measurements can serve as a reference for other message-passing systems. All of the pre-

sented results were achieved on servers with Dual Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz and

128 GB RAM. Tab. 7.1 contains a list of the performed measurements.

Tab. 7.1. The list of performed benchmarks described in Chapter 7.

Component Measured values Variable

Data Sampling message processing rate number of data producers

Data Sampling message processing rate, input data throughput message payload size

Task Runners message processing rate, input data throughput number of data producers

Task Runners message processing rate, input data throughput message payload size

Task Runners object publication rate, output data throughput object size

Task Runners object publication rate, output data throughput number of objects

Check Runners Check execution rate number of objects

Check Runners Check execution rate number of Checks

Check Runners Check execution rate object size

Mergers object processing rate number of data producers

QC repository input data throughput object size

7.1. Data Sampling

The Data Sampling is the QC component which will have to cope with the highest amounts of data.

Since it interacts with the main data processing flow, it may not slow down its performance nor cause

any data loss. Therefore, it was essential to obtain a good understanding of the Dispatcher’s performance

in various working conditions. The Data Sampling benchmarks results were also published in [9].

96 7.1. Data Sampling

Producer

Producer

Producer

Producer

Producer

Producer

Dispatcher Receiver

...

Fig. 7.1. The performance benchmark’s process topology.

7.1.1. Benchmarking method

Fig. 7.1 depicts the topology of processes used to benchmark the Data Sampling. A group of data

producers send messages at the highest possible rate. Their number is configurable and is treated as

one of the test variables. The Dispatcher receives messages, evaluates them and passes forward if the

selection criteria are met. All messages published by the Dispatcher are sent to the receiver, which serves

only as an endpoint of the process topology.

The aim of the benchmark was to measure how fast Dispatcher can process incoming messages

in different conditions. However, with big enough values of message rates and payload sizes, the cost

of allocating the memory becomes the bottleneck, not the Dispatcher performance. Luckily, Linux has

a memory overcommitment mechanism - when a process requests a certain amount of memory, it is

actually allocated by the system when it is first accessed, either by a read or write operation. Thus,

if data producers do not set the content of generated message payloads and the Dispatcher does not

inspect them, then the costly allocation is avoided. Of course, when the Dispatcher copies messages, the

memory is allocated both for input and output messages. While this effect does not cause any problems

when measuring the performance with small payload sizes, the memory usage grows rapidly when bigger

payloads are used, eventually hitting the available RAM limit. In such case the operating system starts to

include memory swap files, which decreases the observed message rates or it kills the Dispatcher process

with the Out-Of-Memory killer mechanism. When the shared memory is used, the Dispatcher might get

stuck in a memory deadlock. If it tried to copy a message without enough space in the shared segment, it

would wait until enough memory is freed, but that would only happen if more messages were processed

by the same Dispatcher.

Because of these reasons, a dedicated benchmarking procedure was developed. First, the data pro-

ducers send a number of messages which corresponds to a certain upper limit of acceptable memory

usage (e.g. 80% of the shared memory segment). If the memory usage has not significantly increased

after a brief time (e.g. to more than 20%), the data producers are allowed to produce messages as fast

as they can, since there is little risk of saturating the memory. Otherwise, the data producers generate

7.1. Data Sampling 97

M
em

or
y

us
ag

e

100%

80%

20%

Time

Fig. 7.2. An illustration of memory usage during the Data Sampling benchmark with

the mechanism to avoid memory saturation.

a limited amount of messages which is enough to reach the upper acceptable memory usage limit and

then they wait until it drops enough to start sending messages again (see Fig. 7.2). It should be noted that

this mechanism applies well only when memory usage is not too inertial with respect to the number of

produced messages, which is the case for shared memory, but not for the normally allocated memory. In

the latter case, the inertia was decreased by writing data into messages payload contents.

Each configuration was ran 5 times for 5 minutes to observe variations of the results, which could

occur due to e.g. changing affiliation between processes and CPU cores. Moreover, as the performance of

Dispatcher is largely influenced by the desired fraction of messages passed forward, the benchmark was

executed for two extreme values (100% and 0%) to develop a better understanding of the performance

range.

7.1.2. Benchmark results overview

The benchmark results in Fig. 7.3 indicate how the number of input channels served influences the

performance of a single Dispatcher. On both figures one can see that if the Dispatcher does not dispatch

data, it can sustain up to 4 data producers sending messages at the maximum rate possible. For very

small payload sizes, 4 producers are needed to reach the highest message dispatching rate of around

59000 per second. When Dispatcher should reject all data, it can receive around 100000 messages per

second, regardless of the data size. As expected, copying 2 MB messages requires more time and the

performance becomes limited by how fast the system can copy memory. The message processing rate

slightly decreases for more than 8 producers, thus one could consider assigning one Dispatcher per

8 sources at most to improve the performance.

As DPL workflows running on the same machine use a common shared memory segment, they should

pass only pointers to the data. Therefore, receiving and rejecting messages should not be determined by

their size. The benchmark results illustrated in Fig. 7.4 confirm these expectations with the result of

around 114000 messages per second when none are passed further. On the other hand, if data are always

98 7.2. Task Runners

1 2 4 8 16 32
100

1000

10000

100000

Processed messages per second
[payload size - 256 B]

Messages/s (100% dispatched)

Messages/s (0% dispatched)

Number of producers

(a) The benchmarks results for the 256 B payload size

[9].

1 2 4 8 16 32
100

1000

10000

100000

Processed messages per second
[payload size - 2 MB]

Messages/s (100% dispatched)

Messages/s (0% dispatched)

Number of producers

(b) The benchmarks results for the 2 MB payload size [9].

Fig. 7.3. Dispatcher’s performance with respect to the number of data producers.

copied, then the message rate decreases for larger payload sizes. Still, the total data throughput rises,

since it is more efficient to copy data organised in larger chunks. The data throughput over 2 GB/s is

seen for the payload range of [256 kB, 1 GB], with the peak of around 3480 MB/s for 256 kB messages.

When copying all data, the highest message rate is around 58000 messages per second, obtained for the

smallest possible payloads.

1 256 1k 4k 16k 64k 256k 1M 4M 16M 64M 256M 1G
1

10

100

1000

10000

100000

1000000

0.01

0.1

1

10

100

1000

10000
Processed messages per second [8 producers]

Messages/s (100% passed)

Messages/s (0% passed)

Data throughput [MB/s]

Payload size [B]

M
e

ss
a

g
e

s/
s

D
a

ta
 th

ro
u

g
h

p
u

t [
M

B
/s

]

Fig. 7.4. Dispatcher’s performance depending on the message payload size [9].

7.2. Task Runners

Thanks to the shared memory communication, the framework can avoid performing expensive copies

of data when it is possible. Thus, the input data throughput which one QC Task can process is determined

7.2. Task Runners 99

by two factors. The first one is the QC Task performance, which is dependent on the particular algorithm

needed to assess the quality of data. The performance of message-passing or, in other words, the number

of messages per second that can be provided to a QC Task by the QC framework makes the second factor.

In this section, the framework performance benchmarks results are presented and discussed.

The benchmark uses a similar process topology as the previously described Data Sampling bench-

mark (Fig. 7.1). The test subject, Task Runner, receives data from one or more data producers. They

generate empty messages with a rate which, in this case, does not exceed a specified throughput limit.

Monitor Objects generated by the QC Task are sent to a Check Runner and discarded afterwards. The

QC Task performs the minimal amount of processing possible. It involves generating non-empty stan-

dard ROOT histograms and accessing the message payloads. Check Runner executes one Check, which

indicates always good quality given the set of received objects. 5 measurements were taken in each

configuration, then an average and a standard deviation were calculated. Each test run lasted 5 minutes.

1 2 4 8 16
0

10000

20000

30000

40000

50000

60000

0

5

10

15

20

25

Message processing rate

Input data throughput

Number of data producers

M
es

sa
ge

 p
ro

ce
ss

in
g

ra
te

 [m
sg

/s
]

In
pu

t d
at

a
th

ro
ug

hp
ut

 [M
B

/s
]

Fig. 7.5. The total message processing rate of a QC Task with respect to the number

of data producers used. The message payload size was set to 256 B.

1 2 4 8 16
0

500

1000

1500

2000

2500

3000

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Message processing rate

Input data throughput

Number of data producers

M
es

sa
ge

 p
ro

ce
ss

in
g

ra
te

 [m
sg

/s
]

In
pu

t d
at

a
th

ro
ug

hp
ut

 [G
B

/s
]

Fig. 7.6. The total message processing rate of a QC Task with respect to the number

of data producers used. The message payload size was set to 2 MB.

100 7.2. Task Runners

Fig. 7.5 illustrates how the number of data producers influences the message processing rate of

QC Tasks, assuming 256 B message payload size. In such case, QC Tasks sustain around 55000 mes-

sages per second when receiving data from one producer, which is the most popular case expected. It

corresponds to around 18 µs needed by the QC framework and the simplest possible QC Task to han-

dle one message. The message rate drops if more data sources are used. When 2 MB payload size is

used (Fig. 7.6), the described setup can sustain the input data throughput of 5 GB/s for any number of

producers in the measured range.

1 256 1k 4k 16k 64k 256k 1M 4M 16M 64M 256M
10

100

1000

10000

100000

0.001

0.010

0.100

1.000

10.000

Message processing rate

Input data throughput

Message payload size [B]

M
es

sa
ge

 p
ro

ce
ss

in
g

ra
te

 [m
sg

/s
]

In
pu

t d
at

a
th

ro
ug

hp
ut

 [G
B

/s
]

Fig. 7.7. The message processing rate of a QC Task with respect to the message pay-

load size. The messages were generated by 4 data producers in parallel.

The relationship between the processing rate and the granularity of messages is presented in Fig. 7.7.

Similarly to the Data Sampling, the data processing rate is limited by the message passing speed if small

payloads are used. The maximum input data throughput was set to 5 GB/s and it can be met with payload

sizes in the range of [256 kB, 4 MB] in the described setup. It slightly decreases to around 4.3 GB/s for

256 MB payload sizes. In general, the benchmark results indicate that the framework overhead is very

small compared to the expected input message rates of QC Tasks (a few hundred at most).

The other activity common to all QC Tasks is publication of Monitor Objects, which is also handled

by the framework. In another benchmark (Fig. 7.8), the QC Task’s cycle duration was set to 1 second

and the object publication rate was measured with different Monitor Objects sizes. The framework was

able to sustain the output data throughput up to around 400 MB/s, which was achieved with the QC Task

publishing collections of 100 objects, each requiring 4 MB. Reaching higher values was limited by the

ROOT message serialisation mechanism, which would crash when processing too big object collections.

Fig. 7.9 illustrates the influence of the number of objects on the publication rate. The framework consis-

tently allowed to publish between 1 and 1024 objects of size 250 kB every second. The highest achieved

output data throughput in this configuration was around 260 MB/s. Again, obtaining greater values was

not possible due to mentioned ROOT serialisation problems.

7.2. Task Runners 101

400 4k 40k 400k 4M 40M 400M
10

100

1000

0

0

0.01

0.1

1

10

100

1000

Objects publication rate

Output data throughput

All Monitor Objects size [B]

O
bj

ec
t p

ub
lic

at
io

n
ra

te
 [o

bj
/s

]

O
ut

pu
t d

at
a

th
ro

ug
hp

ut
 [M

B
/s

]

Fig. 7.8. The object publication rate of a QC Task with respect to the total size of all

Monitor Objects. The QC Task was configured to generate 100 standard ROOT his-

tograms with 4 B bin counters (TH1I) every second. The number of bins was modified

to reach different total Monitor Object sizes.

1 4 16 64 256 1024
0.1

1.0

10.0

100.0

1000.0

10000.0

0.1

1.0

10.0

100.0

1000.0

Objects publication rate

Output data throughput

Number of objects

O
bj

ec
t p

ub
lic

at
io

n
ra

te
 [o

bj
/s

]

O
ut

pu
t d

at
a

th
ro

ug
hp

ut
 [M

B
/s

]

Fig. 7.9. The object publication rate of a QC Task with respect to the number of created

objects. The QC Task was configured to generate standard ROOT histograms (TH1I)

of size 250 kB every second.

One should note that the presented results were achieved with standard ROOT histograms. Thus, the

performance might vary when using other data structures, although it is not expected to differ signifi-

cantly. Finally, since an average QC Task may produce around 200 objects of size 250 kB per minute

according to the survey, it is concluded that the cost publishing objects is relatively small.

102 7.3. Check Runners

7.3. Check Runners

The Check Runners should support various associations between Monitor Objects and Quality Ob-

jects. One Check may expect multiple Monitor Objects and likewise, one Monitor Object can be re-

quested by many Checks. In this section, the performance of Check Runners is evaluated, including

extreme ratios of Checks and Monitor Objects. In all benchmarks, a Check Runner executed a number of

Checks on objects sent by one QC Task in one second intervals. Checks always returned the same quality

flag regardless of the data. Similarly to the Task Runner benchmarks, there were 5 measurements taken

in each configuration and each test ran for 5 minutes. The figures contain averaged results with standard

deviations as error bars.

1 4 16 64 256 1k 4k
0

0.2

0.4

0.6

0.8

1

1.2

Check execution rate

Number of histograms

C
he

ck
s

ex
ec

ut
io

n
ra

te
 [c

he
ck

/s
]

Fig. 7.10. The Check execution rate with respect to the number of objects requested by

one Check. Standard ROOT histograms (TH1I) of size 250 kB were published every

second by a QC Task.

In the first scenario, the Check Runner contained one Check, which expected a configurable number

of objects. Fig. 7.10 contains the benchmark results obtained for objects of size 250 kB. The Check

execution rate is steady across the range of [0, 1024] and falls for the larger number of objects. The

highest input data throughput of around 815 MB/s was achieved for 4096 objects needed by one Check.

In another scenario, a constant number of objects needed by one Check was assumed, while the

number of Checks on the same set of objects was modified. Fig. 7.11 illustrates the benchmark results

for 100 objects per Check. In the measured range of 1 to 256 Checks, the Check Runner could sustain

the anticipated Check execution rate.

In the last benchmark, the size of each input object was modified, keeping the constant association

of 100 Checks requiring the same set of 100 objects. The framework was able to sustain the expected

Check execution rate in the full measured range [400 B, 400 MB] of the total size of Monitor Objects.

7.3. Check Runners 103

1 4 16 64 256
0.1

1

10

100

1000

Check execution rate

Number of Checks

C
he

ck
s

ex
ec

ut
io

n
ra

te
 [c

he
ck

/s
]

Fig. 7.11. The Check execution rate with respect to the number of Checks in one

Check Runner. Each Check evaluated 100 objects (250 kB each) published by a

QC Task every second.

400 4k 40k 400k 4M 40M 400M
0

20

40

60

80

100

120

Check execution rate

All Monitor Objects size [B]

C
he

ck
s

ex
ec

ut
io

n
ra

te
 [c

he
ck

/s
]

Fig. 7.12. The Check execution rate with respect to the total size of Monitor Objects

needed by one Check. Check Runner was provided with 100 objects every second.

There were 100 Checks declared, each requested the same 100 objects.

According to the performed surveys, the QC system will generate around 1700 Quality Objects

every second. The presented benchmark results indicate that Check Runners can sustain high input data

throughputs and are able to execute large numbers of Checks per second. With the minimal framework

overhead and by running many instances of Check Runners in parallel, the system will be able to cope

with the expected data rates.

104 7.4. Mergers

7.4. Mergers

The performance of Mergers was measured in a laboratory setup with three servers connected with

the Dell Force10 S4810 switch via 10Gbps Ethernet ports. Two nodes hosted up to 250 data sources

each. Achieving higher numbers of processes on one server was limited by the DPL framework. Each

produced one-dimensional histograms (TH1I) of size 250 kB with a configurable time interval. The third

node was used to receive generated data and run one Merger process. Its performance was measured by

increasing the incomplete object production rate in steps of 100 and evaluating if the Merger is able to

sustain the input data throughput (i.e. it reports the same object rates as data sources and its memory does

not rise drastically). The highest stable object rate was treated as the correct result. Thus, the performance

measurement error of 100 objects per second is assumed. Additionally, to detect potential bottlenecks in

the data sources and the communication, the object production rate and the network bandwidth were

monitored.

When benchmarking the Merger implemented for entire objects, the publication rate of the complete

object was set equal to the object generation rate of each data source. This way, the merging was per-

formed when all input objects got updated. The delta Merger processed each object upon receiving it and

published the complete result every 10 seconds.

Fig. 7.13 illustrates the benchmark results with respect to the amount of data sources. Both modes

of merging are characterised by similar performance, which varies between 2600 and 2900 objects per

second within the measured range and slightly decreases for larger numbers of producers. In the worst

case, one CPU core was enough to sustain a data stream of 650 MB/s.

8 16 32 62 126 250 500
0

500

1000

1500

2000

2500

3000

3500

Entire objects

Deltas

Amount of producers

M
a

x.
 m

e
rg

e
d

 o
b

je
ct

s/
s

Fig. 7.13. Performance of merging 250 kB 1D histograms (TH1I) in the three-node

benchmark.

7.5. QC repository 105

7.5. QC repository

The feasibility of using the CCDB as the QC repository back-end was evaluated in 2018 by

Barthélémy von Haller. According to the surveys performed with the sub-detector teams, the QC sys-

tem will generate around 25000 Monitor Objects per minute. The objects will have an average size of

250 kB. This translates to a data stream of around 100 MB/s, or 400 objects per second.

The setup consisted of 6 servers connected via a 10 Gb/s switch. One server was used to host a CCDB

instance. It had 56 Hyper-Threading CPU cores, 256 GB of RAM and a 1.8 TB solid-state drive (SSD).

The other 5 nodes hosted 20 QC Tasks in total, each sending 20 objects per second. The object size was

modified across time. According to the benchmark results (Fig. 7.14), one instance of the CCDB could

sustain a stream of 400 objects of size 1 MB per second, which is 4 times more than the expected rate.

Given the benchmark results, the QC Objects storage facility should withstand the anticipated data

rates. In case that higher performance is required, many small objects can be concatenated into singular

messages, thus reducing the amount of requests received by the CCDB. Another possibility includes

deploying several CCDB instances which would be assigned to specific ALICE sub-detectors. Thus, the

total object stream could be split among several nodes without a significant impact on the user experience.

7.6. Summary

According to the survey performed in 2017, the QC system should allow to execute more than 100

distinct QC Tasks, most of them running in parallel on multiple computing nodes. In total, they would

generate 25000 complete objects every minute, requiring 250 kB of memory on average. Around 10000

of them would have to be merged beforehand. Moreover, the objects would undergo extensive automatic

evaluation, resulting in around 100000 quality flags produced each minute.

The QC framework was extensively benchmarked to confirm that it will be able to sustain the un-

precedented data throughputs and amounts of generated objects. By testing each kind of actor separately,

it was possible to measure how different factors influence the QC framework performance. Thanks to the

Data Processing Layer, the FairMQ library and the underlying software, which implement the message-

passing within the actor model, the high input data throughput can be split among multiple Task Runners

and Check Runners executed in parallel. This allows the system to scale well across hundreds or thou-

sands of computing nodes and thus, the software will fulfil the requirements for the ALICE data quality

control during the next data-taking periods.

106 7.6. Summary

Fig. 7.14. The input data throughput of a CCDB instance with different object sizes

being sent. The results indicate that the CCDB could sustain a stream of 400 objects

per second, 1 MB each, which corresponds to an input data throughput of 3200 Mb/s.

When 2.5 MB objects were sent, the database reported lower input data rate than ex-

pected (around 4250 Mb/s instead of 8000 Mb/s), thus it could not sustain the through-

put. The benchmark results were provided by Barthélémy von Haller.

8. Applications of the Quality Control framework

This chapter contains a summary of the recent developments of the QC modules. Typical usage

examples and the most up-to-date statistics are presented. Additionally, other studies which use the QC

framework are outlined.

In 2021, the ALICE detector is being reassembled and commissioned together with the new comput-

ing system. The O2 will be tested with simulated or random data and by measuring the detector noise,

particles coming from space and eventually collisions obtained from low-intensity test beams in the LHC.

Firstly, the sub-detectors will be commissioned in isolation, but at later stage, they will run at the same

time. This is also the time when a lot of effort will be put to the development of QC modules, so they can

be used during the commissioning and from the first days of data taking.

8.1. Current status of the QC modules development

As of January 2021, the Quality Control software repository [115] contains 11 detector-specific mod-

ules, which are developed by the detector expert teams. In total, the modules include 24 QC Tasks and 25

Checks. The Trending Task was adopted twice so far. There are also custom 4 Post-processing Tasks, 3 of

them being extended versions of the Trending Task. The detector module developers also implemented

4 Reductors to adopt them in their Post-Processing Tasks. At this stage, a lot of QC Tasks do not use

the Data Sampling software, since the detector experts require all data to commission their apparatus.

However, there is an increasing trend to randomly select acquired data when it is applicable and other,

more advanced usages are also expected in the final system. The Data Sampling was also incorporated

outside of the QC system in the commissioning setup of the MCH detector. It was used to randomly

downscale the amount of data sent to the MCH decoding workflow.

The QC includes also a set of special modules. The Common module contains a set of Reductors and

Checks which can be applied in any setup. Beginner users can base their code on the Skeleton module. It

contains minimal examples of different QC components, which lets the users to copy and paste the code

to their own modules and develop it further. Additionally, more advanced usage examples are available in

the Example module. Finally, the DAQ modules contains a dedicated Task and Checks used to evaluate

the aspects of raw data which are independent of the sub-detector.

While the detector commissioning is usually performed with setups consisting of one server, at least

3 detector teams have already managed to configure and run multi-node setups. For example, the ITS

108 8.2. Data-agnostic quality control

commissioning setup involved eight servers receiving data from different parts of the detector and each

running 2 QC Tasks locally. The ninth node hosted the Mergers, Checkers and two Post-Processing Tasks.

The detector teams are encouraged to list all their planned QC Tasks in an online sheet. As of January

2021, the table includes 108 QC tasks. 50 of these are proposed to be run on the FLPs, another 50 on

the EPNs, while the rest should be executed on the QC servers. It is very likely that more QC Tasks will

be executed on the remote servers, especially those which will not require much input data. In total, the

QC Tasks will generate around 52230 objects with various update rates. On average, 29165 objects will

be published each minute.

8.2. Data-agnostic quality control

Data quality algorithms are usually written for concrete detectors, as they use different physics phe-

nomena to detect particles and they have distinct structures. Also, data received from one detector take

several forms during the event reconstruction. If possible, each step should undergo some kind of quality

monitoring. However, during early development or commissioning of a detector one could benefit from

a general quality control task which would calculate some features of binary data blobs. For example,

it could compute randomness indicators of received message payloads, find patterns inside data, calcu-

late the distribution of byte values and find correlations between two consecutive payloads. Moreover,

the data contained in headers, such as payload size and timestamps, could be aggregated in suitable

data structures. This information could allow to perform basic Checks, which would assess some basic

features of the data, e.g. non-emptiness and variability across time.

Such a QC module should provide data quality control information complementary to the tailor-made

algorithms and facilitate debugging problems both by deduction and induction [119]. Additionally, it

may measure some properties of the data acquisition and processing software, thus helping to investigate

potential issues in the system during data-taking. The project proposed by the author is currently under

development by Mateusz Knapik and Kacper Janda.

8.3. Machine Learning

During the recent years, Machine Learning (ML) is becoming increasingly popular in the HEP com-

munity [120]. Experimental applications of ML cover many aspects of data acquisition and analysis.

Among others, ML is applied in: collision simulations to reduce the computational requirements, trig-

gering data acquisition and performing real-time data analysis, event reconstruction, searches for new

physics, monitoring of detectors, detecting hardware anomalies and scheduling pre-emptive mainte-

nance. The last three domains are especially important in the context of data quality control. Thus, in

parallel to the development of conventional methods to evaluate the quality of data, the application of

8.3. Machine Learning 109

ML is also strongly considered. In 3rd-4th December 2018, the "Machine Learning and Quality Con-

trol in ALICE" workshop was held at CERN. The presentations and discussion covered the planned

applications for the QC in Run 3, available data sets and existing usages of ML in other experiments.

One of the efforts includes the application of semi-supervised anomaly detection to automatically

assess the quality of data [121]. The researcher focused on finding abnormalities in the set of 200 param-

eters related to working conditions of the TPC detector and features of the reconstructed particle tracks.

An autoencoder network with 5 hidden layers was trained with data from 5 acquisition periods in 2018,

divided in 15 minutes chunks. The model could recreate almost the same data quality classification as

with the conventional, manual methods. A follow-up study was described in [122]. The set of 200 in-

put parameters was reduced to 97, which were corresponding to physical attributes of the TPC detector.

An autoencoder with 2 hidden layers was applied. For lead-lead collisions, the proposed method found

1.9% outliers in the data, while 2.7% were identified with standard approaches. The author suggests that

the excess of outliers found with the conventional methods could have been tagged falsely, which could

mean that the machine learning methods may actually improve the separation of anomalies.

The machine learning methods are also evaluated with the statistics collected by the data-agnostic

module, described in the previous section. The developers aim to automatically discover unusual or

unexpected patterns in the message headers and payloads.

Exercising the machine learning methods on the Run 1 and 2 data shows that the ALICE experiment

may benefit from replacing manual checks with classification performed by trained models. However, the

upgraded detector will produce different data and the derived input parameters might not be compatible

with previously gathered sets. It means that it is unlikely that ML will be used to classify data quality

since the first days of operations during Run 3. However, the models will be trained on the newly acquired

data as soon as possible.

110 8.3. Machine Learning

9. Summary and Conclusions

High energy physics experiments, such these at the LHC, have always pushed the latest technology

to its limits in order to conduct high-quality research. Increasing the amounts of registered data lets the

physicists perform previously impossible discoveries and more precise measurements. Now, the ALICE

collaboration is preparing its detector to generate a raw data stream of 3.5 TB/s, which will be handled

by the new computing system with new software. As it will perform the event reconstruction on the fly

and discard the raw data, a reliable and advanced data quality control will play a crucial role in quickly

identifying potential problems during data-taking and providing necessary feedback for final quality

assurance. Preparing a software framework which will fulfil these requirements was the topic of this

dissertation.

The main achievements of this dissertation are:

– a comprehensive review of the existing data quality control frameworks in the High Energy Physics

community,

– an implementation of the first data quality control framework that is fully based on the message

passing approach and the actor model,

– development of new data sampling methods which were not available in similar systems,

– a mathematical model of the most resource-heavy components of the framework.

The new data Quality Control framework is a highly parallel system, which can split computations

among hundreds or thousands of nodes. The author took the leading role in its design and development of

its most crucial parts: actors which run user-defined QC Tasks, Checks and Post-processing Tasks, as well

as the two backbones of the framework, namely Data Sampling and Mergers. The choice of Data Pro-

cessing Layer, the FairMQ library and other underlying technologies allowed the author to implement

the QC framework as a message-passing system which applies the actor model and the zero-copy ap-

proach. Consequently, different responsibilities could be divided into independently running processes.

They can share data without unnecessary copies if they are located in the same server, which signif-

icantly reduces the cost of communication between them. If suitable, the actors can be replicated to

sustain higher input data throughputs and their partial results can be merged afterwards. Thanks to the

possibility of using multi-layer Merger topologies, the maximum number of supported parallel workers

112 9.1. Discussion

is not limited to the performance of one process, since they can be arranged in a hierarchical structure.

Moreover, the Mergers support both entire and delta objects, which brings greater flexibility to the detec-

tor modules developers when choosing the most appropriate data structures to store their quality control

results. The author also proposed and implemented a mechanism to juxtapose pseudo-randomly selected

data corresponding to the same events, yet split among many parallel computing nodes. The amount of

data transferred to quality control algorithms may not only be reduced by pseudo-random sampling, but

also by performing custom message selection, which was not possible in similar systems. Combining

several sampling methods together gives interesting, previously unavailable possibilities for advanced

data quality control during the acquisition. Due to the fine-grained distribution of responsibilities among

the processing actors, a temporary failure of one component does not immediately stop the full system

from acquiring and processing data. The processes can be separately started, stopped and reconfigured

during the run-time, so the experiment shift crew can e.g. enable certain demanding QC Tasks only on

request. The Data Processing Layer greatly facilitates extending the existing process topologies with new

components. According to the reviewed literature, there are no other data quality control frameworks in

HEP which rely fully on the message-passing approach and the actor model.

Managing more than 100 QC Tasks requires a lot of effort and understanding of how different factors

affect their performance. To facilitate that, a mathematical model of QC Tasks and Mergers was proposed

in the dissertation. It provides methods to comprehend the influence of various aspects on the usage of

hardware resources and it allows to find the optimal configuration with the smallest resources usage. The

benchmark results of the QC framework can serve as a reference to the developers of similar systems.

The discussed process topologies and their models are not specific only to data quality control, but may

also find their applications in other domains.

The dissertation also contains a thorough summary of large data quality control systems in physics

experiments. The general concept behind each of the described pieces of software is similar - all of

them analyse some portion of acquired data and optionally perform automatic checks. However, they

use different naming conventions which makes the knowledge exchange within the data quality control

community more difficult. With the aim of improving it, these distinct terms were assembled in one table,

which can serve as a dictionary between the collaborations.

The QC framework is being adopted by the detector teams. As of January 2021, around 25% of

the planned QC Tasks are already implemented and their number is steadily growing. The software

was already used to test and commission several ALICE sub-detectors. This included larger setups with

QC Tasks running on multiple servers in parallel, Mergers combining their results, Checks evaluating

them and Post-processing Tasks trending selected observables.

9.1. Discussion

Implementing the Quality Control as a message-passing system brought up some great advantages -

easy parallelisation, clear division of responsibilities and extensibility. However, the presence of 100,000s

9.2. Future work 113

independently running processes in the O2 [30] puts a great burden on tools which are supposed to control

and configure them, as well as gather resource usage statistics and log messages. They need to scale

proportionally to the data processing software and also allow the experiment control crew to use them

without being overwhelmed with the system complexity. Also, designing, implementing and managing

over 100 unique QC Tasks and the associated Checks requires a significant amount of manpower. Any

of these components may stop functioning or cause memory leaks due to errors in their code. While

this is unavoidable to some extent due to the complexity of the detector itself, the problem remains.

The increasing interest in the machine learning methods may partially mitigate this problem, e.g. by

replacing some QC Tasks and Checks with common, data-agnostic modules. Finally, the notion to unify

the ALICE software running synchronously and asynchronously to data-taking allowed for greater code

reuse. However, it also increased the total build time of its components due to large number of direct

and indirect software dependencies. The Quality Control has almost 50 dependencies in total, while the

AMORE (the ALICE Run 1&2 DQM software) had only 6.

The QC relies heavily on the ROOT framework, a powerful tool for statistical data analysis. Its data

structures, such as histograms and columnar data storage types, can be used to perform most of the data

quality control tasks. However, the QC framework requires that any Monitor Object inherits the ROOT’s

common interface. Moreover, the Quality Control GUI may visualise only objects supported by JSROOT.

In effect, using data types available in other libraries is made difficult and sometimes impossible. How-

ever, the future work plans include removing this constraint, so one may use data types outside of the

ROOT’s ecosystem.

9.2. Future work

During the year 2021 and early 2022, the ALICE detector and its new data acquisition and processing

system will be deployed and commissioned. The remaining QC Tasks and Checks will be implemented

by the detector teams, and then tested with the detector setup. According to the latest LHC schedule

[123], the proton-proton collisions will start in early 2022. The first heavy-ion run is planned in December

2022. Then, the ALICE O2 system will have to withstand the long-awaited data rates.

In the meanwhile, the QC framework will be further improved, extended and exercised in bigger

data acquisition setups. Also, following the ALICE software unification efforts, the QC will be further

integrated with the data simulation software and the data analysis framework. One of the extensions

will include an alarm system, which will inform the concerned experts about recording bad quality data

via selected communication channels, such as the Mattermost platform, the e-mail system or the GSM

network.

The author will put major research efforts into development of automatic procedures to let the physi-

cists analyse only the parts of data acquisition runs which consist of good quality data. This has never

been done in similar systems – data quality flags used to be assigned on run basis or even larger periods.

The process of tagging good quality data will require additional post-processing steps to combine quality

114 9.2. Future work

flags issued both automatically and manually, and then derive a global quality for a given data set. Also,

the author will investigate how to organise collecting data quality feedback from detector experts in a

systematic and efficient manner.

In parallel, the author will continue researching the possible arrangements of actors in the QC frame-

work to allow for more flexibility and to further reduce the usage of available computing resources. One

of such topologies could consist of parallel QC tasks and Mergers both running on servers dedicated for

QC.

Finally, following the investigations about the machine learning methods usage, selected observables

will be gathered by another group of researchers as soon as data acquisition starts. They will be used to

train ML models, which are expected to enhance the traditional methods of controlling the data quality.

List of Figures

1.1 A graphical representation of a heavy ion collision recorded by the ALICE detector. . . . 14

2.1 An example of the LHC performance plot. 18

2.2 The ALICE detector scheme. 19

2.3 An example illustrating tracking in one of the ALICE sub-detectors [21]. 20

2.4 The O2 system architecture [29]. 22

2.5 The QC architecture as presented in [6]. 24

2.6 The QC processing chain and its data rates [10]. 25

3.1 An example of a pub-sub pattern [39]. 29

3.2 An example of a pipeline (push-pull) pattern [39]. 30

3.3 The state machine of FairMQDevice [42] . 31

3.4 The debug GUI of the Data Processing Layer. 34

4.1 Examples of correct and incorrect distribution of hit times in the ALICE TOF detector

[48]. 36

4.2 Examples of Quality Attestation plots of the VTPC1 in the SHINE experiment. 37

4.3 An example of Quality Assurance trend in the ALICE ITS detector during Run 2. 38

5.1 The QC architecture as reported in this work. 50

5.2 A message-passing processing workflow with Dispatchers and QC [9]. 51

5.3 An example of Dispatcher’s configuration [9]. 52

5.4 The three randomness benchmarks proposed in [9]. 55

5.5 An illustrative comparison of amounts of monitored data with different sampling methods. 58

5.6 An example of Tasks and Checks mapping and how it is arranged by the framework. . . 62

5.7 An example of Checks and Aggregators arrangement. 62

5.8 A multi-layer topology of Mergers. 64

5.9 The inner logic components of the entire objects Merger. 66

5.10 An illustration of merging entire objects. 66

116 LIST OF FIGURES

5.11 The inner components of the delta Merger. 67

5.12 An illustration of merging deltas. 67

5.13 Merging time per object as a function of the number of objects in a collection. 68

5.14 Ratio of CPU time needed to merge entire objects and deltas. 69

5.15 The Trending Task design. 72

5.16 The Quality Control GUI in the browser mode. 74

5.17 The Quality Control GUI in the layout mode. 75

5.18 The Quality Control GUI visualising a Quality Object as a key-value map. 75

6.1 A setup with local QC Tasks. 80

6.2 A setup with a remote QC Task. 80

6.3 An example of the cost functions Eq. (6.8), Eq. (6.9) and Eq. (6.10). 85

6.4 The cost of local and remote QC setups as a function of the bandwidth cost (scenario A). 89

6.5 The cost of local and remote QC setups as a function of the number of parallel nodes

(scenario B). 89

6.6 The cost of local and remote QC setups as a function of the parallel input data throughput

(scenario C). 90

6.7 The cost of local and remote QC setups as a function of the average data message size

(scenario D). 90

6.8 The cost of local and remote QC setups as a function of the total size of Monitor Objects

produced by one QC Task (scenario E). 91

6.9 The cost of local and remote QC setups as a function of the cycle duration (scenario F). . 92

6.10 The cost of local and remote QC setups as a function of the QC Task CPU usage per

input data throughput (scenario G). 92

6.11 The cost of local and remote QC setups as a function of the idle QC Task RAM usage

(scenario H). 92

6.12 The cost of local and remote QC setups as a function of the Merger performance (sce-

nario I). 93

7.1 The performance benchmark’s process topology. 96

7.2 An illustration of memory usage during the Data Sampling benchmark with the mecha-

nism to avoid memory saturation. 97

7.3 Dispatcher’s performance with respect to the number of data producers. 98

7.4 Dispatcher’s performance depending on the message payload size [9]. 98

7.5 The total message processing rate of a QC Task with respect to the number of data pro-

ducers used (A). 99

LIST OF FIGURES 117

7.6 The total message processing rate of a QC Task with respect to the number of data pro-

ducers used (B). 99

7.7 The message processing rate of a QC Task with respect to the message payload size. . . . 100

7.8 The object publication rate of a QC Task with respect to the total size of all Monitor

Objects. 101

7.9 The object publication rate of a QC Task with respect to the number of created objects. . 101

7.10 The Check execution rate with respect to the number of objects requested by one Check. 102

7.11 The Check execution rate with respect to the number of Checks in one Check Runner. . . 103

7.12 The Check execution rate with respect to the total size of Monitor Objects needed by one

Check. 103

7.13 Performance of merging 250 kB 1D histograms (TH1I) in the three-node benchmark. . . 104

7.14 The input data throughput of a CCDB instance with different object sizes being sent. . . 106

B.1 Performance of 1, 2 and 3 dimensional standard ROOT histograms with respect to their

size. 122

B.2 Performance of 1 and 2 dimensional boost histograms with std::array and

std::vector storage, as a function of their size. 124

B.3 Comparison of the 1 and 2 dimensional ROOT and boost histograms of size 256kB,

based on 32 bit integer bin counters. 125

B.4 Comparison of the standard boost and ROOT histograms’ size before and after seriali-

sation. 125

B.5 Performance of THnSparseI with respect to different parameters. 127

B.6 Performance of TTree (ROOT’s columnar data storage) with respect its number of

branches (columns), branch size (column width) and number of entries (rows). 129

B.7 TTree size before and after serialisation. 130

B.8 The influence of object size on total processing time for the five evaluated ROOT types. . 131

List of Tables

4.1 A comparison of terms related to data quality control in the four LHC experiments. . . . 46

5.1 The test results of random sampling methods for N = 107 and fraction = 0.01 [9]. . . 56

6.1 Average length ξ of the M/D/1 queue for selected utilisation factor ρ values. 81

6.2 The complete set of parameters used in the model. 82

6.3 The complete set of parameters used for the model examples presented in Sec. 6.4.3. . . 88

7.1 The list of performed benchmarks described in Chapter 7. 95

A. Glossary

The dissertation contains a large number of abbreviations and terms which might not be familiar to

every reader. Below, the list of such abbreviations and terms in the alphabetical order is presented:

– ALICE - A Large Ion Collider Experiment, one of the experiments at LHC

– AliECS - ALICE Experiment Control System

– API - Application Programming Interface

– CCDB - Condition and Calibration DataBase, the database which will store information about

changing conditions of the detector and derived calibration values in the O2

– CERN - fr. Conseil Européen pour la Recherche Nucléaire, now Organisation Européenne pour

la Recherche Nucléaire, The European Organization for Nuclear Research

– CPU - Central Processing Unit

– CRU - Common Read-Out, the FPGA card used to receive raw data from detectors and transfer

them into the memory of FLPs

– DAQ - Data AcQuisition System

– DCS - Detector Control System

– DPL - Data Processing Layer, the software framework of the O2 system

– DPL workflow, DPL topology - a group of independently running actors which can process and

exchange messages, implemented using the Data Processing Layer

– DQM - Data Quality Monitoring

– EPN - Event Processing Node - a server in the second computing farm of the O2 system, respon-

sible for aggregating data from all sub-detectors and their reconstruction

– FIFO - First In First Out queue

– FLP - First Level Processor, a server in the first computing farm of the O2 system, responsible for

data aggregation from a certain geometric part of the detector and detector-dependent processing

120

– FPGA - Field Programmable Gate Array

– GPU - Graphical Processing Unit

– GUI - Graphical User Interface

– HEP - High Energy Physics

– LHC - the Large Hadron Collider, the biggest particle accelerator located at CERN

– ML - Machine Learning

– MO - Monitor Object, any object in the ALICE QC system which contains some kind of statistics

used for data quality control

– O2 - The Online-Offline computing system, the new processing system of the ALICE experiment

for Run 3

– QC - Quality Control, the data quality control software for the ALICE experiment in Run 3

– QC object - an alternative name for Monitor Object

– QCG - Quality Control GUI, the web interface for inspection of objects stored in the QCDB

– QO - Quality Object - an object which stores results of data quality checks

– ROOT - an object-oriented framework for processing and analysis of large data volumes, developed

at CERN

– SCTP - Stream Control Transmission Protocol

– TCP - Transmission Control Protocol

– UDP - User Datagram Protocol

– WLCG - Worldwide LHC Computing Grid

B. Benchmarks of mergeable data types

The user algorithms in the Quality Control system prevalently use the ROOT data types. Due to this

fact, performance of these data structures has a big influence on the total needs for computing resources.

Thus, it is crucial that the maintainers of the software and infrastructure have good understanding of their

general performance and how it changes with respect to related parameters. In this appendix, a thorough

analysis of popular data types in the QC is held. Also, recently released boost histograms are compared

with standard histogram types in the ROOT framework.

All the presented performance measurements have been obtained on servers with a dual Intel(R)

Xeon(R) CPU E5-2640 v3 @ 2.60 GHz and 128 GB of RAM. The software was compiled with GCC

v7.3.0 and the optimisation settings set to -O2. Each data point was measured 10 times. The first result

was always discarded, as the processing time was usually longer than in later trials, probably due to

ROOT dynamically loading or initializing certain components. An average and standard deviation were

obtained from the remaining 9 results.

5 parameters were measured or estimated, if measurements were not possible: object size in RAM,

object size after serialisation, deserialisation time, merging time, serialisation time. Size of sparse his-

tograms in memory was particularly difficult to estimate, as there is no method in their interface, which

provides the size of a singular bin. Instead it was estimated accordingly to the information in the docu-

mentation.

B.1. Standard histogram types

Standard ROOT histograms (TH1, TH2, TH3, THn) always allocate memory for each possible bin.

Therefore, the object size should scale proportionally to the amount of bins and the bin counter size.

Merging mostly involves accessing the bins and adding the number to each other, which also is dependent

on amount of bins.

Fig. B.1 shows the benchmark results of handling singular 1, 2 and 3 dimensional histograms. Each

object was filled with 50000 entries. Serialisation and deserialisation was performed with the TMessage

facility. The presented measurements are aligned with the predictions about proportionality of the per-

formance. However, one can also notice an existence of some processing time which is independent of

the number of bins, best visible for the small object size. After reaching certain threshold, around 4 kB,

this overhead becomes less apparent.

122 B.1. Standard histogram types

8 64 512 4k 32k 256k 2M 16M
1E-06

1E-05

1E-04

1E-03

1E-02

1E-01
TH1I

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(a) The performance of TH1I with respect to its size.

8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TH1I

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(b) Proportions of the three processing stages of TH1I

with respect to its size.

8 64 512 4k 32k 256k 2M 16M
1E-06

1E-05

1E-04

1E-03

1E-02

1E-01
TH2I

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(c) The performance of TH2I with respect to its size.

8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TH2I

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(d) Proportions of the three processing stages of TH2I

with respect to its size.

8 64 512 4k 32k 256k 2M 16M
1E-06

1E-05

1E-04

1E-03

1E-02

1E-01
TH3I

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(e) The performance of TH3I with respect to its size.

8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TH3I

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(f) Proportions of the three processing stages of TH3I

with respect to its size.

Fig. B.1. Performance of 1, 2 and 3 dimensional standard ROOT histograms with

respect to their size.

B.1. Standard histogram types 123

Similarly, serialisation and deserialisation time is especially visible in the smaller objects, then it

grows with the increase of the number of bins. Thus, if when having a choice between multiple, small

histograms and less, but bigger ones, in order to cover the contain the same information, one should

prefer the latter option, as it adds less total overhead.

Performance of 1, 2 and 3 dimensional histograms is very coherent across the object size spectrum.

It shows that dimensionality does not play a significant role here, while the number of bins does.

Assuming an average QC object size of 256 kB, which needs around 400 µs to be processed, one-

threaded process cannot cope with more than 2500 objects per second if they are sent one by one (no

benefits from common (de)serialisation). Also, as the processing time scales proportionally to the object

size (excluding small values), on can easily estimate total amount of computing resources to merge all

standard histograms in the system by calculating the total object size and reading the processing time

from extrapolated benchmark results.

In 2019, the boost library [43] was extended with a histogram package. The authors claim that it

was designed with high performance in mind and it is one of the fastest libraries on the market. As the QC

system heavily relies on histogram types, an evaluation was held in order to find potential performance

improvements.

The boost::histogram library allows to select the underlying storage for bin counters. By de-

fault, it is the unlimited storage - it optimizes memory usage by using the shortest bin counters necessary

to contain the histogram values without overflowing. As soon as one of the counters is due to reach the

maximum possible value, the whole storage container is reallocated with a data type supporting larger

value range. Also custom containers are supported, with many STL types working out of the box. One

can use std::array to allocate a histogram on stack, which is supposed to improve processing perfor-

mance in some cases, but limits histogram size to smaller values, which can be contained inside a stack.

std::vector is also supported - then data is allocated on the heap.

Fig. B.2 compares serialisation, deserialisation and merging performance of singular instances of

1 and 2 dimensional boost histograms as in the version v.1.72. Standard arrays and vectors were used

as the underlying storage. Each object was filled with 50000 entries. (De)serialisation was performed

with binary_iarchive and binary_oarchive - they are faster than text_archives, but do

not compress data, as opposed to the former. After each test, data were accessed to avoid any excessive

optimisation by the compiler. Measurements of the array-based histograms includes smaller size range,

as greater object sizes would cause stack overflows.

The histograms based on arrays and vectors show a very similar performance, which undermines the

expectations to see an advantage of using stack-based storage. The performance difference was visible

with code optimisation turned off, however, it would disappear when the benchmark was compiled with

the -O2 flag. Similarly to the ROOT histograms, processing time grows proportionally to the object size

after certain threshold, which is better visible in case of heap-based types, as the benchmarks can cover

larger objects. In the case of small objects, merging time is miniscule compared to the serialisation and

deserialisation costs.

124 B.1. Standard histogram types

8 64 512 4k 32k 256k
1E-08

1E-07

1E-06

1E-05

1E-04

1E-03
boost::histogram 1D with array storage

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(a) The performance of 1D array-based boost his-

togram with respect to its size.

8 64 512 4k 32k 256k
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
boost::histogram 1D with array storage

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(b) Proportions of three processing stages of 1D array-

based boost histogram with respect to its size.

8 64 512 4k 32k 256k 2M 16M
1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01
boost::histogram 1D with vector storage

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(c) The performance of 1D vector-based boost his-

togram with respect to its size.

8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
boost::histogram 1D with vector storage

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(d) Proportions of three processing stages of 1D vector-

based boost histogram with respect to its size.

8 64 512 4k 32k 256k
1E-08

1E-07

1E-06

1E-05

1E-04

1E-03
boost::histogram 2D with array storage

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(e) The performance of 2D array-based boost his-

togram with respect to its size.

8 64 512 4k 32k 256k
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
boost::histogram 2D with array storage

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(f) Proportions of three processing stages of 2D array-

based boost histogram with respect to its size.

8 64 512 4k 32k 256k 2M 16M
1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01
boost::histogram 2D with vector storage

Merging

Total

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(g) The performance of 2D vector-based boost his-

togram with respect to its size.

8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
boost::histogram 2D with vector storage

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(h) Proportions of three processing stages of 2D vector-

based boost histogram with respect to its size.

Fig. B.2. Performance of 1 and 2 dimensional boost histograms with std::array

and std::vector storage, as a function of their size.

B.1. Standard histogram types 125

TH1I TH2I bh 1D arr. bh 1D arr. bh 2D vec.bh 2D vec.
0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04
Comparison of standard histogram types (256kB objects)

Merging

Total

Data type

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(a) Performance of the benchmarked types.

TH1I TH2I bh 1D arr. bh 1D arr. bh 2D vec.bh 2D vec.
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Comparison of standard histogram types (256kB objects)

Serialisation
Merging
Deserialisation

Object size [B]

P
ro

ce
ss

in
g

 ti
m

e

(b) Proportions of three processing stages of the bench-

marked types.

Fig. B.3. Comparison of the 1 and 2 dimensional ROOT and boost histograms of

size 256kB, based on 32 bit integer bin counters.

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

Influence of serialisation to the size of TTree

Measurements

Object size in RAM

S
e

ri
a

lis
e

d
 o

b
je

ct
 s

iz
e

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

Influence of serialisation to the size of standard histograms

ROOT histograms
Boost histograms
Identity function

Object size in RAM [B]

S
e

ri
a

lis
e

d
 o

b
je

ct
 s

iz
e

 [B
]

Fig. B.4. Comparison of the standard boost and ROOT histograms’ size before and

after serialisation.

Fig. B.3 contains a performance comparison between the ROOT and boost histograms. Boost

histograms have a significant performance advantage in merging compared to ROOT histogramming

types - they are almost an order of magnitude faster (almost 300 µs opposed to around 35 µs). While,

serialisation and deserialisation take similar time for all types, total processing time is still much lower

in case of boost histograms. Fig. B.4 shows how serialisation influences ROOT and boost histogram

sizes, covering the same configuration points as the aforementioned results concerning performance.

While for higher numbers of bins the proportion between packed and unpacked objects is close to 1,

there is an overhead present in small serialised histograms, especially visible for the ROOT types.

The measurements show a clear supremacy of boost over ROOT histograms. However, there are

disadvantages of boost types which concern the ease of use. While the library provides a clear fac-

tory interface to create new histograms, the classes themselves are highly templated. It is safe to say,

126 B.2. Sparse histograms

that the real type declarations are actually long and complicated, as indicated in the List. B.1. The au-

thors assume a heavy usage of type deduction methods in the modern C++, which might require some

workarounds when deserialising a message - the object type has to be known upfront then. ROOT, while

it is also known for its steep learning curve, it allows for type recognition of serialised objects, thus adds

a possibility to perform cross-checks on the received object’s types.

#include <boost/histogram.hpp>

namespace bh = boost::histogram;

...

const double min = 0.0;

const double max = 1000000.0;

const size_t bins = 62500;

const std::string axisName = "x";

auto histogram1 = bh::make_histogram(bh::axis::regular<>(bins, min, max, axisName));

auto histogram2 = bh::make_histogram(bh::axis::regular<>(bins, min, max, axisName));

// filling the histograms

histogram1(42);

histogram2(4400);

// merging two histograms into another one

auto histogram3 = histogram1 + histogram2;

// the underlying histogram type is:

// boost::histogram::histogram<std::tuple<boost::histogram::axis::regular<double, boost::use_default, boost::use_default,

boost::use_default> >, boost::histogram::unlimited_storage<> >

Listing B.1. An exemplary usage of boost histograms.

The described version of the QC system supports only ROOT types. However, the plan of future

work includes allowing any types in the framework, so also boost histograms may find their use with

their promising performance.

B.2. Sparse histograms

The THnSparse type in the ROOT framework is designed to allow for multi-dimensional his-

tograms, while consuming less memory than standard histograms. It may indeed come with great benefits

if the histogram entries are distributed sparsely (thus the name), so most of the bin counters are equal to

zero. THnSparse decreases the RAM consumption by allocating only bin counters which are actually

used, as opposed to THn, which books the memory for all bins during its initialisation.

Sparse histograms have more than one factor which might influence the efficiency of merging, with

four suspected the most - amount of dimensions, number of bins per dimension, number of entries and

their distribution. Fig. B.5 shows how different parameters influence the performance of the discussed

data type. The histograms were filled with random entries, which were highly unlike to fall into the same

bin twice if the total number of bins was much larger than the number of entries. Therefore, one can

make an assumption that these two parameters are almost equal with exception to the last two plots (Fig.

B.5g and B.5h).

Fig. B.5a and B.5b show that the number of bins has little influence on the performance, including

the serialisation times. As THnSparse stores only non-zero bins, having to use longer numbers as bin

B.2. Sparse histograms 127

8 64 512 4096 32768
1E-05

1E-04

1E-03
THnSparseI

Merging

Total

Bins

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(a) Performance of THnSparseI with respect to the

number of bins per dimension, assuming 8 dimensions

and 512 entries.

8 64 512 4096 32768
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
THnSparseI

Serialisation
Merging
Deserialisation

Bins

P
ro

ce
ss

in
g

 ti
m

e

(b) Proportions of three processing stages of

THnSparseI with respect to the number of bins

per dimension, assuming 8 dimensions and 512 entries.

2 4 8 16 32 64
1E-05

1E-04

1E-03
THnSparseI

Merging

Total

Dimensions

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(c) Performance of THnSparseI with respect to the

number of dimensions, assuming 512 bins per dimension

and 512 entries.

2 4 8 16 32 64
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
THnSparseI

Serialisation
Merging
Deserialisation

Dimensions
P

ro
ce

ss
in

g
 ti

m
e

(d) Proportions of three processing stages of

THnSparseI with respect to the number of bins

per dimension, assuming 512 bins per dimension and

512 entries.

1 8 64 512 4k 32k 256k 2M
1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00
THnSparseI

Merging

Total

Entries

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(e) Performance of THnSparseI with respect to the

number of entries, assuming 512 bins per each of the 8

dimensions.

1 8 64 512 4k 32k 256k 2M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
THnSparseI

Serialisation
Merging
Deserialisation

Entries

P
ro

ce
ss

in
g

 ti
m

e

(f) Proportions of three processing stages of

THnSparseI with respect to the number of en-

tries, assuming 512 bins per each of the 8 dimensions.

1 8 64 512 4k 32k 256k 2M 16M
1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00
THnSparseI

Merging

Total

Entries

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(g) Performance of THnSparseI with respect to the

number of entries, assuming 32 bins per each of the 4

dimensions. With higher number of entries, they start to

occupy the same bins.

1 8 64 512 4k 32k 256k 2M 16M
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
THnSparseI

Serialisation
Merging
Deserialisation

Entries

P
ro

ce
ss

in
g

 ti
m

e

(h) Proportions of three processing stages of

THnSparseI with respect to the number of en-

tries, assuming 32 bins per each of the 4 dimensions.

Fig. B.5. Performance of THnSparseI with respect to different parameters.

128 B.3. Columnar data storage

coordinates does not imply much larger processing time. The number of dimensions has slightly higher

influence on the performance in the usually used range, as shown in Fig. B.5c. However, the change from

2 to 64 dimensions does not cover the full order of magnitude. The proportions of different stages of

processing are constant (Fig. B.5d). The number of uniquely allocated bins has the biggest impact on the

merging time, making it grow proportionally (Fig. B.5e). Converting objects has a significant overhead

when the amount of entries is small. For higher amounts, it grows, but becomes less apparent compared

to the merging time.

Fig. B.5g illustrates an example where the number of entries becomes larger than the number of

bins, so new entries are added into existing counters. The flattening seen for the higher amount of entries

confirms that it is the number of uniquely allocated bins which has direct influence on the performance.

Thus, the total size of sparse histograms and their processing efficiency highly depends on the specific

patterns in collected data.

The interface of THnSparse does not provide a reliable way of estimating its size in memory, thus

no measurements of the influence of serialisation are presented.

B.3. Columnar data storage

The ROOT framework includes a columnar data storage facility, called TTree. It facilitates its vi-

sualisation and statistical analysis, and optimizes random access. One tree can contain many branches

(columns), which may use distinct storage types - booleans, characters, integers, floating-point numbers,

as well as structures and arrays of those. Horizontally, TTree stores entries (rows), which contain values

for each declared branch.

The performance of TTrees was evaluated with respect to three parameters - number of branches,

size of branches and number of entries. Each branch was an array of 8 B integers with adjustable size.

The content of each entry was generated randomly.

The processing time scales proportionally to the number of branches within the range [1, 256], as

shown in Fig. B.6a. The serialisation and deserialisation time does not follow a clear pattern in this

domain, however it is not negligible (Fig. B.6b). Processing time grows exponentially when the branch

size is increased, with the serialisation time becoming particularly long (Fig. B.6c and B.6d). The number

of stored entries has a proportional relationship with the processing time above a certain threshold (Fig.

B.6e). The proportions of the three processing stages change with respect to the amount of entries and

the overhead is particularly significant when TTree does not contain much data (Fig. B.6f).

Fig. B.7 shows how serialisation impacts TTree size. The serialised object size was

computed by iterating on stored branches and accumulating values returned by the method

TBranch::GetTotalSize(). It has to be noted that obtained values were sometimes smaller than

expected, therefore this approach is either invalid or the described class performs some kind of compres-

sion of data in memory. The plot indicates that TTree grows after serialisation, sometimes doubling in

size. However, the serialized object take similar amount of space as it was estimated by multiplying the

B.3. Columnar data storage 129

1 4 16 64 256
1E-03

1E-02

1E-01

1E+00

1E+01
TTree

Merging

Total

Number of branches

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(a) Performance of TTree with respect to the number of

branches.

1 4 16 64 256
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TTree

Serialisation
Merging
Deserialisation

Number of branches

P
ro

ce
ss

in
g

 ti
m

e

(b) Proportions of three processing stages of TTree with

respect to the number of branches.

8 32 128 512 2048
1E-02

1E-01

1E+00
TTree

Merging

Total

Branch size [B]

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(c) Performance of TTree with respect to the branch

size.

8 32 128 512 2048
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TTree

Serialisation
Merging
Deserialisation

Branch size [B]

P
ro

ce
ss

in
g

 ti
m

e

(d) Proportions of three processing stages of TTree with

respect to the branch size.

1 8 64 512 4k 32k 256k
1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01
TTree

Merging

Total

Entries

P
ro

ce
ss

in
g

 ti
m

e
 [s

]

(e) Performance of TTree with respect to the number of

entries.

1 8 64 512 4k 32k 256k
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
TTree

Serialisation
Merging
Deserialisation

Entries

P
ro

ce
ss

in
g

 ti
m

e

(f) Proportions of three processing stages of TTree with

respect to the number of entries

Fig. B.6. Performance of TTree (ROOT’s columnar data storage) with respect its

number of branches (columns), branch size (column width) and number of entries

(rows).

130 B.4. Relationship between total processing time and object size

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

Influence of serialisation to the size of TTree

Measurements

Identity function

Object size in RAM [B]

S
e

ri
a

lis
e

d
 o

b
je

ct
 s

iz
e

 [B
]

Fig. B.7. TTree size before and after serialisation.

number of entries, branches and branch size with each other. For this reason, one should approach these

results with caution.

B.4. Relationship between total processing time and object size

Estimations which concern merging objects can be simplified if processing time grows proportionally

to object size. However, before assuming it, one confirm validity of this statement or at least find a range

which is applicable. Fig. B.8 shows how the object size of the 5 evaluated ROOT types influences their

total processing time. The size of THnSparseI was estimated according to the available documenta-

tion. The measurements indicate that processing time generally grows proportionally to object size for

objects larger than around 200 kB. While standard histograms and TTrees do not deviate significantly

down to 10 kB, the sparse histograms have a noticeable minimal size, even if they did not allocate many

bins.

Clearly, the decision about the accepted accuracy of such estimations depends on particular use-

case. In the QC, where the standard histogram types are used mostly, we assume that processing time is

proportional to object size when modelling Mergers.

B.5. General remarks

The benchmarks results greatly contributed in the estimations of required computing resources for

merging incomplete results coming from parallel QC Tasks. They allowed to pinpoint the most influential

factors contributing to performance of different data types and served as a base for extrapolation in order

to obtain estimated load in any configuration.

The results indicate that dividing data structures into smaller components containing the same infor-

mation adds a noticeable performance and storage overhead, therefore it should be avoided.

B.5. General remarks 131

1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09
1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

Processing time of ROOT types with respect to their size

TH1I
TH2I
TH3I
THnSparseI
TTree

Object size [B]

T
o

ta
l p

ro
ce

ss
in

g
 ti

m
e

 [s
]

Fig. B.8. The influence of object size on total processing time for the five evaluated

ROOT types.

Histogram types available in the boost library show great potential in reducing the processing time

of QC data based on ROOT types, thus necessary steps will be performed to enable their presence in

the QC system. On the other hand, ROOT is well established in the HEP experiments software, as it

offers a variety of ready-to-use tools for statistical analysis and visualisation of its data types. Almost

any experienced physicist in the related field is used to this framework, which justifies the presence of

this toolbox in the QC system.

132 B.5. General remarks

Bibliography

[1] E. Ozcesmeci and CERN. LHC: pushing computing to the limits. 2019. URL: https://home.cern/

news/news/computing/ lhc-pushing-computing-limits (visited on 2021-01-08).

[2] L. R. Evans and P. Bryant. “LHC Machine”. In: JINST 3 (2008). This report is an abridged

version of the LHC Design Report (CERN-2004-003), S08001. 164 p.

[3] The ALICE Collaboration. The ALICE software repository. 2020. URL: https://github.com/alisw.

[4] The ALICE Collaboration. “The ALICE experiment at the CERN LHC”. In: JINST 3 (2008),

S08002. DOI: 10.1088/1748-0221/3/08/S08002.

[5] The ALICE Collaboration. “Upgrade of the ALICE Experiment: Letter Of Intent”. In: Journal

of Physics G: Nuclear and Particle Physics 41.8 (2014), p. 087001.

[6] B. von Haller et al. “Design of the data quality control system for the ALICE O2”. In: Journal of

Physics: Conference Series 898.3 (2017), p. 032001.

[7] P. Lesiak. “Development of the data quality assurance and visualization system for the Time

Projection Chamber in ALICE experiment at the LHC”. master. AGH University of Science and

Technology in Cracow, 2016.

[8] G. Eulisse et al. “Evolution of the ALICE Software Framework for Run 3”. In: 23rd International

Conference on Computing in High Energy and Nuclear Physics (CHEP 2018). Vol. 214. Jan.

2019, p. 05010. DOI: 10.1051/epjconf/201921405010.

[9] P. Konopka and B. von Haller. “Data Sampling methods in the ALICE O2 distributed processing

system”. In: Computer Physics Communications 258 (2021), p. 107581. DOI: 10.1016/ j .cpc.

2020.107581.

[10] P. Konopka and B. von Haller. “The ALICE O2 data quality control system”. In: EPJ Web Conf.

245 (2020), p. 01027. DOI: 10.1051/epjconf/202024501027.

[11] The ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Collider”. In:

Journal of Instrumentation 3.08 (2008), S08003.

[12] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: Journal of Instrumentation 3

(Jan. 2008), S08004.

https://home.cern/news/news/computing/lhc-pushing-computing-limits
https://home.cern/news/news/computing/lhc-pushing-computing-limits
https://github.com/alisw
https://doi.org/10.1088/1748-0221/3/08/S08002
https://doi.org/10.1051/epjconf/201921405010
https://doi.org/10.1016/j.cpc.2020.107581
https://doi.org/10.1016/j.cpc.2020.107581
https://doi.org/10.1051/epjconf/202024501027

134 BIBLIOGRAPHY

[13] The LHCb Collaboration. “The LHCb Detector at the LHC”. In: Journal of Instrumentation 3.08

(2008), S08005.

[14] G. Aad et al. “Observation of a new particle in the search for the Standard Model Higgs boson

with the ATLAS detector at the LHC”. In: Physics Letters B 716 (Sept. 2012), 1–29.

[15] S. Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with the CMS experiment

at the LHC”. In: Physics Letters B 716 (Sept. 2012), pp. 30–61.

[16] W. N. Cottingham and D. A. Greenwood. An Introduction to the Standard Model of Particle

Physics. 2nd ed. Cambridge University Press, 2007. DOI: 10.1017/CBO9780511791406.

[17] J. Rafelski. “Melting Hadrons, Boiling Quarks”. In: The European Physical Journal A 51 (Aug.

2015). DOI: 10.1140/epja/ i2015-15114-0.

[18] U. Heinz and M. Jacob. “Evidence for a New State of Matter: An Assessment of the Results

from the CERN Lead Beam Programme”. In: arXiv e-prints, nucl-th/0002042 (Feb. 2000), nucl–

th/0002042. arXiv: nucl-th/0002042 [nucl-th].

[19] The ALICE Collaboration et al. “ALICE: Physics Performance Report, Volume II”. In: Journal

of Physics G: Nuclear and Particle Physics 32.10 (2006), pp. 1295–2040. DOI: 10.1088/ 0954-

3899/32/10/001.

[20] The ALICE Data Preparation Group. “ALICE data flow”. Internal presentation. 2019.

[21] The ALICE Collaboration. “Real-time data processing in the ALICE High Level Trigger at the

LHC”. In: Computer Physics Communications 242 (2019), pp. 25 –48. ISSN: 0010-4655. DOI:

https://doi.org/10.1016/ j.cpc.2019.04.011.

[22] J. Shiers. “The Worldwide LHC Computing Grid (worldwide LCG)”. In: Computer Physics

Communications 177.1 (2007). Proceedings of the Conference on Computational Physics 2006,

pp. 219 –223. ISSN: 0010-4655. DOI: https://doi.org/10.1016/ j.cpc.2007.02.021.

[23] K. Binder and D. W. Heermann. Monte Carlo simulation in statistical physics: an introduction;

2nd ed. Springer Series in Solid-State Sciences. Berlin: Springer, 1992. DOI: 10.1007/ 978-3-

662-30273-6.

[24] M. Bernardini and K. Foraz. “Long Shutdown 2 @ LHC”. In: CERN Yellow Reports 2.00 (2016),

p. 290.

[25] B. Abelev et al. “Technical Design Report for the Upgrade of the ALICE Inner Tracking System”.

In: Journal of Physics G: Nuclear and Particle Physics 41.8 (2014), p. 087002. DOI: 10.1088/

0954-3899/41/8/087002.

[26] The ALICE Collaboration. Technical Design Report for the Muon Forward Tracker. Tech. rep.

CERN-LHCC-2015-001. ALICE-TDR-018. 2015.

[27] The ALICE Collaboration. Upgrade of the ALICE Time Projection Chamber. Tech. rep. CERN-

LHCC-2013-020. ALICE-TDR-016. 2013.

https://doi.org/10.1017/CBO9780511791406
https://doi.org/10.1140/epja/i2015-15114-0
http://arxiv.org/abs/nucl-th/0002042
https://doi.org/10.1088/0954-3899/32/10/001
https://doi.org/10.1088/0954-3899/32/10/001
https://doi.org/https://doi.org/10.1016/j.cpc.2019.04.011
https://doi.org/https://doi.org/10.1016/j.cpc.2007.02.021
https://doi.org/10.1007/978-3-662-30273-6
https://doi.org/10.1007/978-3-662-30273-6
https://doi.org/10.1088/0954-3899/41/8/087002
https://doi.org/10.1088/0954-3899/41/8/087002

BIBLIOGRAPHY 135

[28] W. H. Trzaska. “New Fast Interaction Trigger for ALICE”. In: Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-

ment 845 (2017). Proceedings of the Vienna Conference on Instrumentation 2016, pp. 463 –466.

ISSN: 0168-9002. DOI: https://doi.org/10.1016/ j.nima.2016.06.029.

[29] The ALICE Collaboration. Technical Design Report for the Upgrade of the Online–Offline Com-

puting System. Tech. rep. CERN, 2015.

[30] T. Mrnjavac et al. “AliECS: a New Experiment Control System for the ALICE Experiment”. In:

EPJ Web Conf. 245 (2020), p. 01033. DOI: 10.1051/epjconf/202024501033.

[31] A. Wegrzynek and G. Vino. “The evolution of the ALICE O2 monitoring system”. In: EPJ Web

Conf. 245 (2020), p. 01042. DOI: 10.1051/epjconf/202024501042.

[32] S. Chapeland et al. “The ALICE DAQ infoLogger”. In: Journal of Physics: Conference Series

513 (June 2014), p. 012005. DOI: 10.1088/1742-6596/513/1/012005.

[33] C. Hewitt, P. Bishop, and R. Steiger. “A Universal Modular ACTOR Formalism for Artificial

Intelligence”. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence.

IJCAI’73. Stanford, USA: Morgan Kaufmann Publishers Inc., 1973, 235–245.

[34] L. Torvalds, ed. The Linux kernel repository. URL: https://github.com/ torvalds/ linux.

[35] The TOP500 project. The list of 500 most powerful commercially available computer systems.

URL: https://www.top500.org.

[36] The CERN CentOS official website. URL: https:// linux.web.cern.ch/centos/ .

[37] W. Stevens. UNIX network programming. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

ISBN: 0130810819.

[38] The ZeroMQ library main website. URL: https:// zeromq.org/ .

[39] The ZeroMQ library online documentation. URL: http:// zguide.zeromq.org/ .

[40] M. Boretto et al. “DAQling: an open-source data acquisition framework”. In: EPJ Web Conf. 245

(2020), p. 01026. DOI: 10.1051/epjconf/202024501026.

[41] M. Al-Turany et al. “Extending the FairRoot framework to allow for simulation and reconstruc-

tion of free streaming data”. In: Journal of Physics: Conference Series 513.2 (2014), p. 022001.

DOI: 10.1088/1742-6596/513/2/022001.

[42] The FairRoot Group at GSI. The FairMQ library online repository. URL: https:// github.com/

FairRootGroup/FairMQ.

[43] The boost library main webpage. URL: https://www.boost.org/ .

[44] J. Harvey. “Data Acquisition in High Energy Physics”. In: Techniques and Concepts of High-

Energy Physics V. Ed. by T. Ferbel. Boston, MA: Springer US, 1990, pp. 347–406. ISBN: 978-1-

4615-8001-0. DOI: 10.1007/978-1-4615-8001-0_8.

https://doi.org/https://doi.org/10.1016/j.nima.2016.06.029
https://doi.org/10.1051/epjconf/202024501033
https://doi.org/10.1051/epjconf/202024501042
https://doi.org/10.1088/1742-6596/513/1/012005
https://github.com/torvalds/linux
https://www.top500.org
https://linux.web.cern.ch/centos/
https://zeromq.org/
http://zguide.zeromq.org/
https://doi.org/10.1051/epjconf/202024501026
https://doi.org/10.1088/1742-6596/513/2/022001
https://github.com/FairRootGroup/FairMQ
https://github.com/FairRootGroup/FairMQ
https://www.boost.org/
https://doi.org/10.1007/978-1-4615-8001-0_8

136 BIBLIOGRAPHY

[45] G. Eulisse et al. “Data Analysis using ALICE Run 3 Framework”. In: EPJ Web Conf. 245 (2020),

p. 06032. DOI: 10.1051/epjconf/202024506032.

[46] P. Cortese. ALICE Time-Of-Flight system (TOF): addendum to the Technical Design Report.

Technical Design Report ALICE. Geneva: CERN, 2002.

[47] A. Akindinov et al. “Data quality monitor as the final quality assurance procedure for the ALICE-

TOF detector”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelera-

tors, Spectrometers, Detectors and Associated Equipment 602.3 (2009). Proceedings of the 9th

International Workshop on Resistive Plate Chambers and Related Detectors, pp. 821 –824. ISSN:

0168-9002. DOI: https://doi.org/10.1016/ j.nima.2008.12.138.

[48] F. Roukoutakis, S. Chapeland, and O. Cobanoglu. “The ALICE-LHC Online data quality mon-

itoring framework: Present and future”. In: Nuclear Science, IEEE Transactions on 55 (Mar.

2008), pp. 379 –385.

[49] N. Abgrall et al. “NA61/SHINE facility at the CERN SPS: beams and detector system”. In:

JINST 9 (2014), P06005. DOI: 10 . 1088 / 1748 - 0221 / 9 / 06 / P06005. arXiv: 1401 . 4699

[physics.ins-det].

[50] W. R. Leo. “Ionization Detectors”. In: Techniques for Nuclear and Particle Physics Experiments:

A How-to Approach. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 127–156. ISBN:

978-3-642-57920-2. DOI: 10.1007/978-3-642-57920-2_6.

[51] ALICE Inner Tracking System (ITS): Technical Design Report. Technical design report. ALICE.

Geneva: CERN, 1999.

[52] R. Brun and F. Rademakers. “ROOT - An Object Oriented Data Analysis Framework”. In: Pro-

ceedings AIHENP’96 Workshop (Sept. 1996), pp. 81–86.

[53] B. Bellenot and S. Linev. “JavaScript ROOT”. In: Journal of Physics: Conference Series 664.6

(2015), p. 062033. DOI: 10.1088/1742-6596/664/6/062033.

[54] A. Buckley. The problem with ROOT (a.k.a. The ROOT of all Evil). Aug. 2016. URL: http :

// insectnation.org/articles/problems-with-root.html.

[55] F. Carena et al. “The ALICE data acquisition system”. In: Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

741 (2014), pp. 130 –162. ISSN: 0168-9002. DOI: https://doi.org/10.1016/ j.nima.2013.12.015.

[56] MySQL 8.0 Reference Manual. What is MySQL? Oracle corporation. 2020. URL: https:/ / dev.

mysql.com/doc/refman/8.0/en/what-is-mysql.html.

[57] C. Gaspar, M. Dönszelmann, and Ph. Charpentier. “DIM, a portable, light weight package for

information publishing, data transfer and inter-process communication”. In: Computer Physics

Communications 140.1 (2001). CHEP2000, pp. 102 –109. ISSN: 0010-4655. DOI: https:// doi.

org/10.1016/S0010-4655(01)00260-0.

https://doi.org/10.1051/epjconf/202024506032
https://doi.org/https://doi.org/10.1016/j.nima.2008.12.138
https://doi.org/10.1088/1748-0221/9/06/P06005
http://arxiv.org/abs/1401.4699
http://arxiv.org/abs/1401.4699
https://doi.org/10.1007/978-3-642-57920-2_6
https://doi.org/10.1088/1742-6596/664/6/062033
http://insectnation.org/articles/problems-with-root.html
http://insectnation.org/articles/problems-with-root.html
https://doi.org/https://doi.org/10.1016/j.nima.2013.12.015
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://doi.org/https://doi.org/10.1016/S0010-4655(01)00260-0
https://doi.org/https://doi.org/10.1016/S0010-4655(01)00260-0

BIBLIOGRAPHY 137

[58] B. von Haller et al. “The ALICE Data Quality Monitoring: qualitative and quantitative review of

three years of operations”. In: Journal of Physics: Conference Series 513.1 (2014), p. 012038.

[59] B. von Haller et al. “The new ALICE DQM client: a web access to ROOT-based objects”. In:

Journal of Physics: Conference Series 664.6 (2015), p. 062064.

[60] R. Ehlers and J. Mulligan. “ALICE Overwatch: Online monitoring and data quality assurance

using HLT data”. In: EPJ Web Conf. 214.arXiv:1812.00791 (2018). 8 pages, 4 figures, Proceed-

ings of the 23rd International Conference on Computing in High Energy and Nuclear Physics

(CHEP 2018), 9-13 July 2018, 01038. 8 p. DOI: 10.1051/epjconf/201921401038.

[61] The ATLAS experiment. Trigger and Data Acquisition System | ATLAS experiment at CERN.

2021. URL: https://atlas.cern/discover/detector/ trigger-daq.

[62] A. Corso-Radu et al. “Data quality monitoring framework for the ATLAS experiment at the

LHC”. In: Nuclear Science, IEEE Transactions on 55 (Mar. 2008), pp. 417–420.

[63] C. Cuenca Almenar et al. “ATLAS Online Data Quality Monitoring”. In: Nuclear Physics B -

Proceedings Supplements 215.1 (2011). Proceedings of the 12th Topical Seminar on Innovative

Particle and Radiation Detectors (IPRD10), pp. 304 –306. ISSN: 0920-5632. DOI: https:// doi.

org/10.1016/ j.nuclphysbps.2011.04.038.

[64] J. Adelman et al. “ATLAS offline data quality monitoring”. In: Journal of Physics: Conference

Series 219.4 (2010), p. 042018.

[65] S. Kolos et al. “Experience with CORBA communication middleware in the ATLAS DAQ.”

In: ATL-DAQ-2005-001. ATL-COM-DAQ-2004-019 (2005), 6 p. DOI: 10.5170/ CERN-2005-

002.105.

[66] P. Conde Muino. “Portable gathering system for monitoring and online calibration at ATLAS”.

In: 14th International Conference on Computing in High-Energy and Nuclear Physics. 2005,

pp. 111–114.

[67] P. Renkel and the ATLAS Collaboration. “The Gatherer – a mechanism for integration of moni-

toring data in ATLAS”. In: Journal of Physics: Conference Series 219.2 (2010), p. 022043. DOI:

10.1088/1742-6596/219/2/022043.

[68] N. C. Benekos. “ATLAS Muon data quality with 2010 LHC”. In: 2011 2nd International Con-

ference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applica-

tions. 2011, pp. 1–6. DOI: 10.1109/ANIMMA.2011.6172857.

[69] The ATLAS Collaboration. “Monitoring and data quality assessment of the ATLAS liquid argon

calorimeter”. In: Journal of Instrumentation 9.07 (2014), P07024.

[70] Y. Ilchenko et al. “Data Quality Monitoring Display for ATLAS experiment at the LHC”. In:

Journal of Physics: Conference Series 219.2 (2010), p. 022035.

https://doi.org/10.1051/epjconf/201921401038
https://atlas.cern/discover/detector/trigger-daq
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2011.04.038
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2011.04.038
https://doi.org/10.5170/CERN-2005-002.105
https://doi.org/10.5170/CERN-2005-002.105
https://doi.org/10.1088/1742-6596/219/2/022043
https://doi.org/10.1109/ANIMMA.2011.6172857

138 BIBLIOGRAPHY

[71] V. Adler. “Data Quality Monitoring of the CMS Tracker”. In: 2009 IEEE Nuclear Science Sympo-

sium Conference Record (NSS/MIC). 2009, pp. 609–612. DOI: 10.1109/NSSMIC.2009.5401987.

[72] S. Dutta. “The Data Quality Monitoring of the CMS Experiment: the Tracker Case”. In: Nuclear

Physics B - Proceedings Supplements 197.1 (2009). 11th Topical Seminar on Innovative Particle

and Radiation Detectors (IPRD08), pp. 271 –274. ISSN: 0920-5632. DOI: https:// doi.org/ 10.

1016/ j.nuclphysbps.2009.10.083.

[73] F. M. Palmonari and S. Dutta. “The CMS tracker Data Quality Monitoring expert GUI”. In:

2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). 2009, pp. 602–604. DOI:

10.1109/NSSMIC.2009.5401981.

[74] The CMS Collaboration. CMS Physics: Technical Design Report Volume 1: Detector Perfor-

mance and Software. Technical design report. CMS. Geneva: CERN, 2006.

[75] A. Batinkov et al. “The CMS Data Quality Monitoring Software: Experience and future improve-

ments”. In: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013

NSS/MIC). 2013, pp. 1–5. DOI: 10.1109/NSSMIC.2013.6829716.

[76] M. Santa Mennea, G. Zito, and N. De Filippis. “Test of distributed data quality monitoring of

CMS tracker”. In: IEEE Nuclear Science Symposium conference record. Nuclear Science Sym-

posium. Vol. 2. Nov. 2005, pp. 852 –855. ISBN: 0-7803-9221-3.

[77] L. Borrello. “The Data Quality Monitoring Software for the CMS experiment at the LHC”. In:

2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2014,

pp. 1–3. DOI: 10.1109/NSSMIC.2014.7431053.

[78] M. Borisyak et al. “Towards automation of data quality system for CERN CMS experiment”. In:

Journal of Physics: Conference Series 898 (2017), p. 092041. ISSN: 1742-6596. DOI: 10.1088/

1742-6596/898/9/092041.

[79] O. Callot et al. “Online data quality monitoring tools of LHCb”. In: IEEE Nuclear Science Sym-

posium conference record. Nuclear Science Symposium (Oct. 2008).

[80] E. van Herwijnen et al. Control and monitoring of on-line trigger algorithms using a SCADA sys-

tem. Tech. rep. LHCb-PROC-2006-006. CERN-LHCb-PROC-2006-006. Proceedings published

on CD: Computing in High Energy and Nuclear Physics (CHEP-2006), Volume I and II, Editor

Sananda Banerjee, MacMillan Advanced Research Series. Geneva: CERN, 2006.

[81] M Adinolfi et al. “LHCb data quality monitoring”. In: Journal of Physics: Conference Series

898.9 (2017), p. 092027.

[82] G. Barrand et al. “GAUDI — A software architecture and framework for building HEP data pro-

cessing applications”. In: Computer Physics Communications 140.1 (2001). CHEP2000, pp. 45

–55. ISSN: 0010-4655. DOI: https://doi.org/10.1016/S0010-4655(01)00254-5.

[83] S. Petrucci, R. Matev, and R. Aaij. “Scalable monitoring data processing for the LHCb software

trigger”. In: EPJ Web Conf. 245 (2020), p. 01039. DOI: 10.1051/epjconf/202024501039.

https://doi.org/10.1109/NSSMIC.2009.5401987
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2009.10.083
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2009.10.083
https://doi.org/10.1109/NSSMIC.2009.5401981
https://doi.org/10.1109/NSSMIC.2013.6829716
https://doi.org/10.1109/NSSMIC.2014.7431053
https://doi.org/10.1088/1742-6596/898/9/092041
https://doi.org/10.1088/1742-6596/898/9/092041
https://doi.org/https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1051/epjconf/202024501039

BIBLIOGRAPHY 139

[84] F. Abe et al. “The CDF Detector: An Overview”. In: Nucl. Instrum. Meth. A 271 (1988), pp. 387–

403. DOI: 10.1016/0168-9002(88)90298-7.

[85] S. Abachi et al. “The D0 detector D0 Collaboration”. In: Nuclear Instruments and Methods in

Physics Research A 338.2-3 (July 1993).

[86] “Is it the Top Quark? Yes!!!” In: FermiNews 18.4 (May 1995).

[87] A. Brenner et al. “The Fermilab Collider Detector Facility Data Acquisition System”. In: Nuclear

Science, IEEE Transactions on 29 (Mar. 1982), pp. 105 –110. DOI: 10.1109/TNS.1982.4335805.

[88] W. Wagner et al. “Online Monitoring in the CDF II experiment”. In: Proceedings of International

Europhysics Conference on High Energy Physics — PoS(hep2001). Sissa Medialab, 2001. DOI:

10.22323/1.007.0273.

[89] F. Scuri. “Online Monitoring for the CDF Run II Experiment and the remote operation facilities”.

In: PoS ACAT (2007), p. 027.

[90] The DØ Collaboration. DØ’s Data Quality Co-ordination. 2007. URL: https://www-d0.fnal.gov/

computing/data_quality/ .

[91] V. Shary. “Data quality monitoring for the D0 calorimeter”. In: International Conference on

Calorimetry in High Energy Physics - CALOR2004 11 (Mar. 2004), pp. 205–209.

[92] L. K. Nuttall et al. “Improving the Data Quality of Advanced LIGO Based on Early Engineering

Run Results”. In: Classical and Quantum Gravity 32 (Aug. 2015).

[93] R. Balasubramanian et al. “GEO 600 online detector characterization system”. In: Classical and

Quantum Gravity 22.23 (2005), p. 4973.

[94] A. Irles et al. DQM4HEP - A Generic Online Monitor for Particle Physics Experiments. Tech.

rep. AIDA-2020-CONF-2017-008. IEEE NSS/MIC 2017 Conference Record. Geneva: CERN,

2017.

[95] The CALICE Collaboration. “Construction and commissioning of the CALICE analog hadron

calorimeter prototype”. In: Journal of Instrumentation 5.05 (2010), P05004–P05004. DOI: 10.

1088/1748-0221/5/05/p05004.

[96] The CALICE Collaboration. “First results of the CALICE SDHCAL technological prototype”.

In: Journal of Instrumentation 11.04 (2016), P04001–P04001. DOI: 10.1088/1748-0221/11/04/

p04001.

[97] J. Gärtner. “Analysis of Entropy Usage in Random Number Generators.” Master dissertation.

Stockholm: KTH, School of Computer Science and Communication (CSC)., 2017.

[98] M. E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for

Random Number Generation. Tech. rep. HMC-CS-2014-0905. Claremont, CA: Harvey Mudd

College, Sept. 2014.

https://doi.org/10.1016/0168-9002(88)90298-7
https://doi.org/10.1109/TNS.1982.4335805
https://doi.org/10.22323/1.007.0273
https://www-d0.fnal.gov/computing/data_quality/
https://www-d0.fnal.gov/computing/data_quality/
https://doi.org/10.1088/1748-0221/5/05/p05004
https://doi.org/10.1088/1748-0221/5/05/p05004
https://doi.org/10.1088/1748-0221/11/04/p04001
https://doi.org/10.1088/1748-0221/11/04/p04001

140 BIBLIOGRAPHY

[99] S. Vigna. A fixed-increment version of Java 8’s Splittable Random generator. 2015. URL: http:

//xorshift.di.unimi.it/ splitmix64.c.

[100] L. Mueller and T. Mueller. What integer hash function are good that accepts an integer hash

key? Stack Overflow. URL: https:// stackoverflow.com/ questions/ 664014/ what- integer-hash-

function-are-good-that-accepts-an-integer-hash-key/12996028\#12996028.

[101] D. James. Combining hash values. URL: https:// www.boost.org/ doc/ libs/ 1_70_0/ doc/ html/

hash/combine.html.

[102] R. G. Brown, D. Eddelbuettel, and D. Bauer. Dieharder: A Random Number Test Suite. 2019.

URL: http://webhome.phy.duke.edu/~rgb/General/dieharder.php.

[103] R. G. Brown. dieharder(1) - Linux man page. 2020. URL: https:// linux.die.net/man/1/dieharder.

[104] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Revision of IEEE 754-

2008) (2019), pp. 1–84. DOI: 10.1109/ IEEESTD.2019.8766229.

[105] J. Lockhart, K. Rawashdeh, and C. Purdy. “Verification of Random Number Generators for Em-

bedded Machine Learning”. In: July 2018, pp. 411–416. DOI: 10.1109/NAECON.2018.8556780.

[106] D. Lemire. Testing non-cryptographic random number generators: my results. 2017. URL: https:

// lemire.me/ blog/ 2017/ 08/ 22/ testing-non-cryptographic- random-number-generators-my-

results/ .

[107] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. .Template

Method. Addison-Wesley Professional. Chap. Template Method, pp. 325–330. ISBN: 0-201-

63361-2.

[108] R. Pachołek. „Implementacja systemu kontroli jakości do wzbudzania alarmów w ALICE O2”.

Master’s thesis. AGH University of Science i Technology in Cracow, 2019.

[109] M. Krzewicki. Real-time ROOT object merging in the HLT. CERN ALICE internal QA tools

meeting. URL: https : / / indico . cern . ch / event / 674811 / contributions / 2761002 / attachments /

1544407/2423716/2017-10-20-HLT-ROOT-Mergers.pdf .

[110] R. T. Fielding. “Architectural Styles and the Design of Network-based Software Architectures.”

Doctoral dissertation. Irvine: University of California, 2000.

[111] Project Jupyter. 2020. URL: https:// jupyter.org/ .

[112] D. Piparo et al. “SWAN: a Service for Interactive Analysis in the Cloud”. In: Future Gener.

Comput. Syst. 78.CERN-OPEN-2016-005 (2016), 1071–1078. 17 p. DOI: 10.1016/ j.future.2016.

11.035.

[113] The ALICE O2 Web UIs repository. The ALICE Collaboration. 2020. URL: https:// github.com/

AliceO2Group/WebUi.

[114] The main Consul website. HashiCorp. 2020. URL: https://www.consul.io/ .

http://xorshift.di.unimi.it/splitmix64.c
http://xorshift.di.unimi.it/splitmix64.c
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028\#12996028
https://stackoverflow.com/questions/664014/what-integer-hash-function-are-good-that-accepts-an-integer-hash-key/12996028\#12996028
https://www.boost.org/doc/libs/1_70_0/doc/html/hash/combine.html
https://www.boost.org/doc/libs/1_70_0/doc/html/hash/combine.html
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://linux.die.net/man/1/dieharder
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/NAECON.2018.8556780
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/
https://lemire.me/blog/2017/08/22/testing-non-cryptographic-random-number-generators-my-results/
https://indico.cern.ch/event/674811/contributions/2761002/attachments/1544407/2423716/2017-10-20-HLT-ROOT-Mergers.pdf
https://indico.cern.ch/event/674811/contributions/2761002/attachments/1544407/2423716/2017-10-20-HLT-ROOT-Mergers.pdf
https://jupyter.org/
https://doi.org/10.1016/j.future.2016.11.035
https://doi.org/10.1016/j.future.2016.11.035
https://github.com/AliceO2Group/WebUi
https://github.com/AliceO2Group/WebUi
https://www.consul.io/

BIBLIOGRAPHY 141

[115] The ALICE Collaboration. The repository of the data quality control (QC) software for the AL-

ICE O2 system. 2020. URL: https://github.com/AliceO2Group/QualityControl.

[116] GNU General Public License. Version Version 3. Free Software Foundation, Inc. URL: https:

//www.gnu.org/ licenses/gpl-3.0.html.

[117] The main website of git. 2020. URL: https://git-scm.com/about.

[118] R. B. Cooper. Introduction to Queueing Theory. 2nd. North Holland, 1981, p. 189. ISBN: 0-444-

00379-7.

[119] G. J. Myers et al. The Art of Software Testing. Business Data Processing: A Wiley Series. Wiley,

2004. ISBN: 9780471469124.

[120] K. Albertsson et al. “Machine Learning in High Energy Physics Community White Paper”. In:

J. Phys. : Conf. Ser. 1085.arXiv:1807.02876. 2 (2018). Editors: Sergei Gleyzer, Paul Seyfert and

Steven Schramm, 022008. 27 p. DOI: 10.1088/1742-6596/1085/2/022008.

[121] K. R. Deja. “Using Machine Learning techniques for Data Quality Monitoring in CMS and AL-

ICE experiments”. In: PoS LHCP2019 (2019), 236. 11 p. DOI: 10.22323/1.350.0236.

[122] P. W. Nowak. “Anomalies detection with autoencoders”. In: Machine Learning and the Physical

Sciences Workshop at the 33rd Conference on Neural Information Processing Systems (NeurIPS)

(2019).

[123] CERN. Longer term LHC schedule. URL: https:// lhc- commissioning.web.cern.ch/ schedule/

LHC-long-term.htm.

https://github.com/AliceO2Group/QualityControl
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://git-scm.com/about
https://doi.org/10.1088/1742-6596/1085/2/022008
https://doi.org/10.22323/1.350.0236
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

	Introduction
	Dissertation context and aim
	Content description

	CERN and the ALICE experiment upgrade
	CERN and Large Hadron Collider
	The ALICE experiment
	Lifetime of physics data
	ALICE detector upgrade
	The new online-offline computing system
	Data Quality Control and Assessment
	Definition
	Architecture overview
	Data rates estimations

	Message-passing in the O2 system
	Actor model
	Message passing software stack in O2
	Messaging in Linux systems
	ZeroMQ
	FairMQ
	The O2 framework

	Overview of data quality control systems
	Examples of data quality control methods
	ROOT - data analysis framework
	The latest generation of data quality control systems
	The ALICE experiment
	The ATLAS experiment
	The CMS experiment
	The LHCb experiment
	The Tevatron experiments
	Gravitational waves detectors

	Unification efforts
	Summary

	Quality Control system
	Architecture overview
	Data Sampling
	Data Sampling design
	Investigating data sampling techniques
	Summary

	Quality Control tasks and automatic checks
	Task Interface
	Timing of Monitor Objects publication in QC Tasks
	Check Interface
	Dealing with complex Task and Check mapping
	Quality aggregation

	Mergers
	Assumptions and naming convention
	Mergers design
	Merging entire objects
	Merging deltas
	Merging collections of objects
	Comparison of merging entire objects and deltas

	Quality Control repository
	Post-processing
	Post-processing Interface
	Trending Task
	Running Post-processing Tasks

	Execution
	Quality Control GUI
	Maintenance of the QC software
	Further development

	Optimisation of message-passing topologies in the Quality Control
	Queueing theory
	Model requirements
	Optimal Merger topology
	Modelling one Merger process
	Modelling Merger topologies
	Example

	QC Tasks localisation
	Modelling a QC Task
	Comparing the total cost of local and remote QC Tasks.
	Exploring the model's parameter space

	Summary

	Benchmarking the Quality Control framework
	Data Sampling
	Benchmarking method
	Benchmark results overview

	Task Runners
	Check Runners
	Mergers
	QC repository
	Summary

	Applications of the Quality Control framework
	Current status of the QC modules development
	Data-agnostic quality control
	Machine Learning

	Summary and Conclusions
	Discussion
	Future work

	List of Figures
	List of Tables
	Glossary
	Benchmarks of mergeable data types
	Standard histogram types
	Sparse histograms
	Columnar data storage
	Relationship between total processing time and object size
	General remarks

