Accepted Manuscript ;
NUCLEAR

Holographic p-wave superconductor with high-order derivative correction PHYS'CS

Jun-Wang Lu, Ya-Bo Wu, Yong Zheng, Li-Gong Mi, Hao Liao

PII: S0550-3213(18)30201-3
DOI: https://doi.org/10.1016/j.nuclphysb.2018.07.015
Reference: NUPHB 14405

To appear in: Nuclear Physics B

Received date: 5 April 2018
Revised date: 28 June 2018
Accepted date: 18 July 2018

Please cite this article in press as: J.-W. Lu et al., Holographic p-wave superconductor with high-order derivative correction,
Nucl. Phys. B (2018), https://doi.org/10.1016/j.nuclphysb.2018.07.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.nuclphysb.2018.07.015

Holographic p-wave superconductor with high-order derivative correction

Jun-Wang Lu',” Ya-Bo Wu?, Yong Zheng', Li-Gong Mi', and Hao Liao!
LSchool of Physics and Electronics, Qiannan Normal
University for Nationalities, Duyun 558000, P. R. China
2Department of Physics, Liaoning Normal University, Dalian 116029, P. R. China

Abstract

In the probe limit, we numerically study the holographic p-wave superconductor phase transition in the
high-order derivative theory. Concretely, we study the influences of the high-order derivative correction
term aRF? on the Maxwell complex vector model(MCV) in the five-dimensional AdS black hole and soliton
backgrounds, respectively. In the black hole background, the improving correction parameter « increases
the critical temperature and thus enhances the conductor/superconductor phase transition. Meanwhile,
as the RF? correction becomes stronger, the ratio of the energy gap to the critical temperature decreases
from 9.858 to 5.995, which obviously deviates from the universal value. In the soliton background, we find
that the correction does not affect the critical chemical potential. However, as the correction parameter
« increases, the vector condensate grows faster, which might suggest that the improving a enhances the
insulator/superconductor in some sense. The location of the second pole of imaginary part of conductivity
increases with «, which implies that the energy of the quasiparticle excitation increases with the improving
correction. In addition, the effects of o on the superfluid density agree with the one on the critical value
as well as the condensate in both models. Furthermore, the critical exponent of condensate and superfluid

density near the critical point is always 1/2 and 1, respectively.
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I. INTRODUCTION

The gauge/gravity duality [1] maps a strong-coupled system to a weak gravity, which thus
provides us a feasible and efficient approach for studying the system involving the strong interaction.
Since its proposition, it has been widely used in many research area, such as quantum critical point,
QCD phase diagram, Non-Fermi liquid, hydrodynamics [2, 3|, topological insulator, momentum
relaxation [4, 5], quantum Hall effect, especially the high temperature superconductors [6-8].

Since the first holographic s-wave conductor /superconductor was numerically built in the four-
dimensional Schwarzschild anti-de Sitter(SAdS) black hole in the probe limit [6], the holographic
model was extended to p-wave and d-wave conductor/superconductors and their corresponding in-
sulator/superconductor models [9-13] as well as the analytical methods( Sturm-Liouville eigenvalue
approach and matching method) [14, 15]. Moreover, the original probe limit was also generalized to
the case including the backreaction from the matter field to the gravitational background [16, 17].

Even though, some obvious deficiencies come to light. For example, the real part of conductivity
always vanishes in the lower frequency and lower temperature region, which is forbidden from the
well known field theory because of the existence of Goldstone boson in the broken phase. After
analysis, this phenomena is ascribed to the large N limit in the gauge/gravity duality, where the
high-order derivative corrections are suppressed in the 1/N form [16]. Thus, it is necessary to
study the effect beyond the large N limit, which is usually realized by introducing some high-order
derivative correction terms, such as the pure gravity part(Gauss-Bonnet gravity, Topological gravity
and Lifshitz gravity) [18-25], pure gauge field(Born-Infeld nonlinear electrodynamics, exponential
electrodynamics and power-Maxwell field) [26-32] and the interaction form of two part(Weyl ten-
sor or Ricci tensor coupled with the gauge field strength) [33—-37]. The results showed that the
Weyl correction enhances the s-wave and SU(2) p-wave conductor/superconductor phase transi-
tion. However, it does not affect the s-wave insulator/superconductor phase transition. Most
interestingly, it inhibits the SU(2) p-wave insulator/superconductor phase transition [36, 37].

Besides the Weyl correction, the authors of Ref. [38] proposed another kind of higher derivative
correction(the so called aRF? correction) to obtain the frequency-dependent conductivity in the
neutral black hole. Soon after, Ref. [39] calculated the transport properties at finite density by
considering the backreaction of U(1) gauge field and found that both bounds of hydromechanics are
violated by the a RF? correction. In addition, the s-wave conductor/superconductor phase transi-
tion with the RE? correction was constructed in Ref. [40]. It is observed that the larger correction

enhances the superconductor phase transition and results in a larger deviation from the expected



ratio of the energy gap to the critical temperature, especially, it also enlarges the condensate gap,
which is obvious different from the Weyl correction as well as the Gauss-Bonnet correction. Con-
sidering the interesting effects of the aRF? correction on the s-wave superconductor, it is helpful
to study how the aREF? correction affects the new p-wave superconductor phase transition con-
sisted of a Maxwell complex vector (MCV) field. Indeed, the MCV p-wave superconductor model
was primitively proposed to realize the magnetic field-induced conductor/superconductor phase
transition in Ref. [41]. Subsequently, the MCV model was extended to the electric field-induced
superconductor model [42, 43] and the corresponding insulator/superconductor model [44, 45] as
well as the case including the backreaction from the matter field [46-50]. Especially, it was shown
that the MCV model is a generalization of the SU(2) p-wave model with a mass. Meanwhile,
in order to investigate the effects of finite N case, the superconductor model was constructed in
Lifshitz gravity [51, 52] and Gauss-Bonnet gravity [53] as well as the model with Born-Infeld elec-
trodynamics [54] and Weyl correction[55]. What is the most interesting is that the Weyl correction
does not affect the MCV p-wave insulator/superconductor model, which is different from its effect
on the SU(2) p-wave model.

Motivated by the above mentioned, we will study systematically the p-wave superconductor
phase transition by coupling the MCV field in the AdS black hole and soliton background with
the RF? correction, respectively, and study the effects of high-order correction on the condensate,
critical value, grand potential, the energy gap as well as the superfluid density. For the black hole
background, the increasing correction enhances the phase transition. Moreover, the condensate gap
decreases and then increases with the increasing correction. Meanwhile, the ratio of the energy
gap frequency to the critical temperature decreases with the correction parameter from 9.858 to
5.995, which obviously deviates from the universal value 8. For the soliton background, the high-
order derivative correction does not affect the critical chemical potential, while the location of the
second pole of imaginary part of conductivity increases with the increasing correction parameter.
In addition, for both models, the correction effects on the grand potential, conductivity as well as
the superfluid density are consistent with the ones on the condensate.

The organization of this paper is as follows. In Sec. II, in the probe limit, we numerically
study the holographic p-wave conductor/superconductor phase transition in the five-dimensional
SAdS black hole background coupled to the MCV field with the RF? correction, and thus cal-
culate the conductivity and the superfluid density. Similar to the process in Sec. II, the insula-
tor/superconductor phase transition is studied in the AdS soliton background in Sec. ITI. The final

section is devoted to conclusions and discussions.



II. CONDUCTOR/SUPERCONDUCTOR PHASE TRANSITION

In this section, we study the vector condensate in the five-dimensional SAdS black hole, and
calculate the frequency dependent conductivity.
The five-dimensional SAdS black hole is of the form [9]

d—rQ +72(da? + dy? + d2?) (1)
f(r) ’

= (1-5).

where r represents the location of the horizon satisfying f(ry) = 0.

ds* = —f(r)dt* +

Following Ref. [41], we consider the matter action including a Maxwell field, « RF? term and a

complex vector field

1 1
Sn = Torcn / dm5\/—g( — 1P 4 QL By P FP7 — ARy R FY + RFME,)
1 .
—5(Dupy = Dupy) (D* ¥ — D¥p*) = m?pl p + iqypupl, F ‘“’>, (2)

where F,, =V, A, -V, A, is the strength of the U(1) gauge field A, and D, = V,—iqA,,, while m
and ¢ corresponds to the mass and the charge of the vector field p,,. The terms aLQ(RWpC,F Y FPT —
4Ry, R F) + RFMF,,) represents the RF? correction. Following Refs. [38-40], we briefly confine
the parameter « to the range —1/20 < o < 1/4, which will be further constrained by the frequency-
dependent conductivity in the conductor/superconductor model. Moreover, we do not consider the
magnetic field effects on the superconductor phase transition, so the last term with the constant ~ is
ignored, which characterizes the strength of interaction between p, and F),,. Meanwhile, compared
with the SAAS gravity, we regard the matter sector (2) as a probe where the equations of motion
related to the vector field and the gauge field decouple from the equations of gravitational sector
and the main physical results are believed to be still grasped.

Varying the action (2) with respect to the vector p, and the gauge field A, respectively, we

can obtain the equations of motion

DY (Dypy — Dppy) — m*pp+iqyp”Fyp = 0, (3)
v, (F’“’ — aL2(AR™PF,, — SRFOF,” + 8RY*F" + ARFM)
. v . y ot
—igy(p"p" = p p’”)) +ig(pl,p" = pup™') = 0. (4)

To construct the p-wave superconductor induced by the gauge field, we take the ansatzs for the

vector field p, and the gauge field A, as the following form

ppdz” = P, (r)dx, Aydx” = ¢(r)dt, (5)



with other components vanishing. Choosing ¥, (r) and ¢(r) as real functions and substituting the
above ansatzs (5) into Egs. (3) and (4), we can read off the equations for ¢, and ¢

1 f(r) 1 " (r (¢(T)2_ Qf(r)) r) =
o+ (G )+ PO B e — 0 @

af(r r (8af'(r) +r af(r )2
(B0 4 1) iy 4 B0 £ 800 ) 20t

r2 73 r2f(r)

where the prime denotes the derivative with respect to r. Obviously, for the special case @ = 0,

¢'(r) o(r) =0, (7)

Egs. (6) and (7) agree with Eq. (23) in Ref. [48]. Moreover, Eq. (7) is not identical with Eq. (36)
in Ref. [55], from which we can believe the present model will generalize some new characters of
superconductor. To solve the above equations, we should impose the boundary conditions. At the
horizon, the vector field 1), is required to be regular, while the gauge field A, should satisfy the
condition ¢(r4) = 0 to ensure the finite form of g"”A,A,. Near the infinite boundary, the general

expansions of the matter field and the gauge field are given by

Ve Yz
alr) = 5= +7“Ai +., (8)
or) = n—G+.... (9)

where Ay = 14 v/m? + 1 with the Breitenlohner-Freedman(BF) bound of the mass m? > m%,, =
—1. According to the gauge/gravity duality, the coefficients of the leading term 1, and the sub-
leading term v, are interpreted as the source and the vacuum-expectation value of the boundary
operator J,, while w and p are regarded as the chemical potential and the charge density in the
dual field theory, respectively. To guarantee the spontaneous breaking of U(1) gauge symmetry in
the system, we require that the source of the condensate vanishes, i.e., ¥, = 0.

There is an important symmetry in the above system with the form
(r,T) = M, T), e = X hoy = Ay p = Np (10)

with the positive constant A\. By using Eq. (10) we can fix the chemical potential u of the system
and thus work in the grand canonical ensemble.

Next, we solve the above nonlinear ordinary differential equations. In the present work, we
focus on the effects of the high-order derivative corrections( i.e., the parameter «) on the critical
temperature and the vector condensate, so we will fix the scaling dimension of the boundary
operator Ay = A = 2 throughout the present paper. As a special case, we plot the condensate
with @ = 0.15 as a function of the temperature on the left panel of Fig. 1, from which we find that

there is a critical temperature T, = 0.10021, below which the vector field begins to condense.
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FIG. 1: The condensate versus temperature for A = 2 and o = 0.15(left) and the condensate gap as a

function of the correction parameter « (right).
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FIG. 2: The critical temperature versus correction parameter o with A = 3/2 (black solid),A = 2(red
dashed), A = 5/2(blue dotted)(left) and the grand canonical potential versus temperature in the case of
a = 0.15 and A = 2(right), where the red dashed line and the black solid line correspond to the normal

state and the condensate state, respectively.

Moreover, near the critical point, the square root dependence of the vector condensate on the
temperature indicates that the critical exponent 1/2 is universal in the probe limit, and thus
suggests that the system undergoes a second-order phase transition as expected from the mean
field theory. What is more, as the temperature decreases gradually, the condensate tends to be a
stable constant, i.e., the condensate gap forms in the low temperature limit.

To study roundly the effects of the high-order derivative correction, we consider the behaviors
of vector condensate with different parameter o and obtain the similar behavior. In particular,
the condensate gap and the critical temperature as a function of the correction parameter « are
plotted on the right panel in Fig. 1 and the left panel in Fig. 2, respectively. It is obvious that
for all values of « considered in the work, the critical temperature increases with the increasing
«, which indicates that the increasing correction enhances the conductor/superconductor phase

transition. In this regard, the effect of o on the critical temperature is similar to the one of Weyl



term [55]. Moreover, when the correction parameter « increases, the condensate gap decreases to
a minimum at « = 0, and then increases in the case of o > 0.

To check the order of the phase transition at the critical point and the stability of the state with
vector field condensed below the critical temperature, we calculate the grand potential, which is
identified with the Hawking temperature timing the Euclidean on-shell action of the bulk solution.
In our case, because we work in the probe limit, we need only consider the contribution from the
matter field. Meanwhile, if we further consider the source free condition, there is no necessary to

add the counter term to the action. The Euclidian action is given by
1
Son = /dw5\/ _9( - §VN(A,,FW) + O‘LZ(ZVM(AVRWWFPU) - 4V;A(ApleFu p)
AV (AR E ) + 29 u(RAF™)) = Vu(plo™) )
1 . v ' - 174 V]L
+5 / dx®/=gA, (zqvvu(p"p F— p" ") —iq(pl, 0™ — pup” ))

V- [e8) 2,/,2
= ;((1+24a)up/m oy d?") (11)

f

where we have neglected the factor 1/16mG5 and taken into account the expansions of the matter
field at the boundary as well as the integration f dtdz? = % Introducing the new variable

z = r4/r, the density of the grand potential reads

_ 1 2,12
{2 Ton _ —(1+ 24oz)up+/ g (12)

Vs W ¢ 2(1—2%)

Considering the numerical integration with o = 0.15, we show the density of grand potential as a
function of the temperature for the normal state as well as the condensed state in right plot of Fig.
2. Tt is obvious that with the decreasing temperature, the curve corresponding to the hair state
spreads smoothly from the curve of the normal state, which means that at the critical point, the
system undergoes a second order phase transition. Moreover, when the temperature falls off the
critical value, the curve with vector hair is always below the one without vector hair, which indicates
that below the critical temperature, the superconductor state is indeed thermodynamically stable.
As we all know, the conductivity also provides the typical signal to distinguish the state is
either in the superconducting sate or not. What is more important, we can read off the energy
gap from the frequency dependent conductivity and thus explore the strength of the interaction in
the system, so it is helpful for us to study the conductivity. To obtain the conductivity, which is
related to the retarded Green function, o(w) = GF(w, k = 0)/iw, we can calculate the perturbation
of the gauge field based on the state with vector hair in the gravity spacetime from holography [6].

It should be noted that below the critical temperature, the condensate of the vector operator



J, breaks the U(1) gauge symmetry as well as the rotational symmetry, therefore, it is natural
that the conductivity along the condensate direction is different from that perpendicular to the
condensate direction. From the calculation for the conductivity along the condensate direction
in Ref. [10], one can imagine the perturbation of the gauge field along the z direction is rather
complicated. For simplicity, following Refs. [8, 41, 54|, we focus on our calculations perpendicular
to the superconducting direction with the ansatz A4, = A,(r)e”**. Substituting the ansatz into
Eq. (4), the linearized equation of the perturbation A, is of the form
/ 2 g1 2 2 2
(P S5 o+ (S5 5 ey + ) A0

) 1

af(r aft'(r af'(r)? "(r af(r
(s fr()+16rJ;()+8T;(i)) +J;(<r))_853< +;>A;(r):0,(13)

which is similar to the corresponding equations in Refs. [6, 10]. At the horizon, the retarded Green

function G corresponds to the ingoing wave condition, therefore, Ay(r) can be expressed as
Ay(r) = (r = ry) 9T (L4 A (r = r) + Aga(r — 1) + Ays(r —ry )+ ). (14)

At the boundary r — oo, the general falloff of A, (r) reads

A®) A A2 [ogAr

Aylr) = A0+ T+ S

(15)

According to the gauge/gravity duality, the Green function G® can be calculated from the gauge
field perturbation, which has the form

242 1

R _ 2 S
G" = (1 + 24a) ( 1O +w <logAr 2) . (16)
Obviously, there is a logarithmic divergence term in the Green function as well as the conductivity,
which can be canceled by the holographic renormalization. The conductivity can be expressed as

GR 1 (242 o2

Note that the correction parameter a appears in the formula of conductivity, which is different
from the Weyl correction in Ref. [35] and the RF? correction in the s-wave model in Ref. [40].
The frequency dependent conductivity with o = 0.15 at the temperature T/T, ~ 0.1 is plotted
on the left hand of Fig. 3, from which we can obtain the following results. Firstly, at the zero
frequency, there exists a pole in the imaginary part of the conductivity, which corresponds to a
delta function of the real part from the Kramers-Kronig(KK) relation. Secondly, there exists a

minimum at nonzero frequency for the imaginary part of conductivity. If we define the ratio of
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FIG. 3: The AC conductivity versus the frequency in the case of & = 0.15 and A =2 (left) and the energy
gap as a function of o with A = 3/2 (black solid),A = 2(red dashed), A = 5/2(blue dotted)(right). The

curves in both two subplots are obtained near 7'/T, = 0.1.

the energy gap to the critical temperature(wy/T:) as the minimum of the imaginary part of the
conductivity(Im[o]) when m? > m%,[9], we can read off w,/T, &~ 6.34 larger than 3.5 predicted
from the BCS theory, which shows the strong interaction in the holographic superconductor model.
Thirdly, when the frequency tends to be infinity, both the real and imaginal parts of the conductivity
diverge, which might be the general property in the five-dimensional AdS black holes, except for
the Lifshitz gravity with the dynamical critical exponent z > 1[25]. Meanwhile, we plot the value
wq/Te versus the correction parameter o on the right panel of Fig. 3. It is observed that wy/T.
decreases with the increasing «, which suggests that the larger correction suppresses the strength
of the interaction of holographic system. Moreover, the energy gap is understood as the minimum
energy to break the cooper pairs, so the smaller wy /T, the easier for the phase transition, which
is consistent with the effects of a on the critical temperature. In addition, when the value of « is
small enough(a < —3/100), the behaviors of the critical temperature, the condensate as well as
the grand potential seem to be reliable, but the reasonable and acceptable conductivity can not be
obtained no matter how to adjust the computational accuracy, so it is believed that the holographic
superconductor model proposes a new lower limit for the RF? correction to some extent. As a
result, we mainly consider the case of —3/100 < « < 1/4 in the present paper.

In addition to the conductivity, we calculate the superfluid density below the critical temper-
ature, which is identified by the coefficient of the pole in Im[o] at w = 0. The result shows that
at the critical temperature, the superfluid density ng arises with the linear depending on the tem-
perature, which agrees with the mean field theory. Meanwhile, as the temperature decreases, the
superfluid density saturates a stable value, which matches well with the two-fluid theory about su-

perconductivity. By fitting the superfluid density near the critical point and the zero temperature
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FIG. 4: The coefficient k; fitting the superfluid density formula ns(T ~ Ti.) ~ ki\/1 —T/T, near T = T,
(left) and the stable value of superfluid density near T'/T, ~ 0.1 with the different RF? parameter « in the
case of A = 2.

limit, we can obtain the coefficient k; of the fitting formula ns &~ ki (1 —T/T.) as well as the stable
value of the superfluid ns(T =~ 0) for various correction parameter a.. The o dependent k; and
ns(0) for A = 2 are plotted on the left and right panel of Fig. 4, respectively. It is observed that
both k1 and n4(0) increase with «, which means that the superfluid grows faster when we increase

the correction parameter o and thus the larger correction enhances the phase transition.

III. INSULATOR/SUPERCONDUCTOR PHASE TRANSITION

In this section, we construct the insulator/superconductor phase transition and thus study how
the correction parameter « influences the vector condensate and the conductivity. First of all, the
standard five-dimensional AdS soliton reads

dr?

72(7)
fr) = 1 (1——§>

which is obtained from the double Wick rotation to the SAdS black hole(1), i.e., t — ix and

ds? = —r¥dt* + +r2(da® + dy® + f(r)dx?), (18)

z — it. To distinguish the soliton from the SAdS black hole in Sec. II, we denote 7y as the tip,
which satisfies the condition f(rg) = 0. To avoid a potential conical singularity at the tip, we
impose the periodicity T on the spatial direction x with x — x + 7/rg, i.e., I' = 7/rg. As for
the present soliton background, there is no event horizon, thus no temperature exists. Moreover,
because of the existence of the tip, there exists an IR cutoff for the dual field theory, which indicates
a confined phase and is thus similar to the mass gap in the insulator phase[12]. Therefore, it is
believed that the present soliton system can be used to model the insulator /superconductor phase

transition [12, 21, 53].

10



220 225 230 235 240 245 250 205 230 235 240 245 250
1 u

FIG. 5: The condensate(left) and the charge density(right) as a function of the chemical potential in the
case of A = 2.

Now, we construct a new p-wave insulator /superconductor phase transition with REF correction.
For the matter field, we take the action the same as the one of the conductor/superconductor phase
transition, i.e., the action(2). Naturally, the form of the gauge field and the matter field is taken
as Eq. (5). By varying the action(2) with respect to p, and A,, we can obtain the equations of

motion in the background (18) as

ars f/(T) 1 " (r ¢(T>2 —m*r? r) =
s+ (204 D) ut) # AL ) = o (19)
(8@];(7“) N 8a7£(r) . 1> ')+ (1 +8ikf (r) N 16047:); (r)
af (r)? 4+ rf'(r af(r (1) 2 (7
e CP ) Sasll) 2l _ o0

Obviously, Egs. (19) and (20) with @ = 0 are the same with Eq. (11) in Ref. [48] when one neglects
the backreaction. However, the above equations are different from the ones with Weyl correction
in Ref. [55].

To numerically solve these equations, we impose the boundary conditions at both the tip and
the infinite boundary. At the tip, the Neumann-like boundary condition is required to ensure
¥z (ro) and ¢(rp) to be regular, while near the infinity, the general falloffs of 1,(r) and ¢(r) are of
the forms (8) and (13), respectively. Moreover, the interpretations of the coefficients 1., ¥+, p
and p are the same as that in the black hole from the gauge/gravity dual dictionary. By means
of the symmetry of the system, r — Ar,v, — My, ¢ — Ao, I’ — A7IT, hereafter we will take
the periodicity I' = 7 by rescaling the vector field ¢, and the gauge field ¢. By calculations, we
show the condensate(the charge density) as a function of the chemical potential with a = 0.15 on
the left (right) panel of Fig. 5, from which we find that there exists a critical chemical potential
te = 2.26523, beyond which both the vector condensate and the charge density arise. By fitting

the condensate near the critical potential, we still find the squared condensate dependent on the

11
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FIG. 6: The coefficient ky of the fitting formula (J,)(1 & pe) ~ kov//pe — 1 near p ~ p, (left) and the
density of grand potential Q/V for both normal state(black solid) and condensate state(red dashed) with
a = 0.15(right).

chemical potential, which means that a second order phase transition occurs at the critical point.
Moreover, we also fit the charge density, it is found that the critical exponent of the charge density
is 1. To see intuitively the effect of a on holographic model, we calculate the case of different
correction parameter o. The results show that the critical chemical potential is independent of the
correction parameter «, which tells us that the correction might not affect the stability of the AdS
soliton system.

To study further the effect of high-order derivative correction on the vector condensate, we plot
the coefficient ko of the fitting formula (J,)(u ~ pe) ~ kay/pt/pe — 1 as a function of correction
parameter o on the left plot of Fig. 6. Obviously, the coefficient increases with the correction
parameter, which implies that the larger the correction is, the faster the condensate grows. In this
sense, the larger correction enhances the growth of the condensate. Moreover, to check the order
of the phase transition near the critical point, we define a “temperature” of the soliton system and
then calculate the grand potential by the on-shell action of matter field, which is displayed on the
right plot of Fig. 6. Tt is easily observed that near the critical chemical potential, the red dashed
curve corresponding to the vector condensate state appears smoothly from the black solid curve
corresponding to the normal state. Meanwhile, the value of grand potential for the condensate state
is always lower than the one for the normal state when the chemical potential increases beyond the
critical value. This implies that at the critical point, the system indeed undergoes a second-order
phase transition and at the larger chemical potential, the condensate state is thermodynamically
favored.

Then, we calculate the conductivity in the five-dimensional AdS soliton with the vector hair.

Here, we still take the gauge perturbation perpendicular to the direction of the condensate, i.e.,

12



AA = Ay(r)e”™! with other components vanishing, from which one can read off the linearized
equation of the perturbation as

Saf (r) + v 8af0)) gy (8af”(r) tr 16af(r) | Saf'(r)"

r r Y r r rf(r) f(r)

_8af(7“) e 4o f"(r)  Saw?f!(r) B 24 (r)? w2 =
) Ay )+( o= T ey +T2f(r))Ay( ) =0. (21)

To numerically solve the differential equation, we impose the boundary conditions. Near the tip r =

70, the expansion of A, (r) still includes the logarithmic term. In order to ensure the perturbation to
be finite, we require the Neumann-like boundary condition to eliminate the logarithmic divergence,
which is similar to the boundary condition of the gauge field ¢, thus the concrete form of A,(r)

reads
Ay(r) =1+ Ap(r —ry) + Aya(r — ) + Aga(r —ry )3 4 -+, (22)

while at the boundary r — oo, the expansion of A,(r) can be expressed as

A@ A2 159 Ar
(0) 9
* r2 * 2 72

Ay(r)=A

Therefore, the conductivity is given by

1 [24®) 2
o(w) = o <—A(0) -5 (24)

where the logarithmic divergence term in the general falloff of A, (r) is removed by the holographic
renormalization.

On the left hand of Fig. 7, we shows the imaginary part of conductivity as a function of
the frequency in the case of a = 0.15 with pu/p. ~ 2. Obviously, beyond the critical chemical
potential, there exists a pole (corresponding to a delta function in the real part of o(w)) at the
zero frequency, which is expected from the standpoint of the superconductor. Moreover, as we all
know, the location of the second pole corresponds to the energy of the quasiparticle excitation.
To see intuitively how the high-order derivative correction affects the holographic model, we plot
the energy of quasiparticle excitation k3 as a function of the parameter « with p/pu. = 2 on the
right hand of Fig. 7, from which we find that when the parameter « increases, the location of the
second pole of I'm[oy], which means that the energy of the quasiparticle excitation increases with
the improving high-order derivative correction.

In addition to the conductivity, by extracting the coefficient of the pole in I'mo,] at w = 0, we

obtain the superfluid density, which is plotted on the left panel of Fig. 8. The result shows that
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FIG. 8: The superfluid density versus the chemical potential with a = 0.15(left) and the coefficient k4 of

the formula ng ~ k4(1 — pu/pe) by fitting the superfluid density near the critical chemical potential(right).

as we increase the chemical potential above the critical value, the superfluid density appears as
the linear behavior dependent on the chemical potential, which is consistent with the mean field
theory. Furthermore, we also plot the coefficient k4 of the fitting formula ng ~ kq(1 — p/pc) about
the superfluid density with respect to the parameter o on the right panel of Fig. 8. It is observed
that when the high-order derivative correction become larger, the superfluid density grows faster,

which agrees with the effect of the correction on the vector condensate.

IV. CONCLUSIONS AND DISCUSSIONS

So far, we have numerically constructed the p-wave superconductors with the high-order deriva-
tive correction in the probe limit. Concretely, we mainly studied the effects of the high-order
terms aRF? on the conductor /superconductor and insulator /superconductor phase transition, re-

spectively, and further observed the transport phenomenon for the superconductor. The main
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conclusions can be summarized as follows.

In terms of the conductor/superconductor phase transition in the five-dimensional AdS black
hole, the critical temperature increases with the parameter «, which indicates that the stronger
correction aRF? enhances the phase transition. However, the improving dimension of the vector
operator A makes the phase transition more difficult. This is reasonable, because the larger
A corresponds to the larger “mass” in the dual field theory. When the temperature decreases
gradually from the critical value, the vector condensate tends to be a stable value(the so called
condensate gap). Moreover, the condensate gap decreases with the increasing parameter o until
a = 0, whereafter, it increases with the increasing «.. This non-monotonic behavior of condensate
gap with respect to « is not only different from the one for the s-wave case with RF? correction [40],
but also unlike the MCV p-wave model with Weyl correction [55]. The reason for the difference
between the RF? term and Weyl term for the superconductor model is still unclear, which need
deep analysis. In addition, in the case with the vector “hair”, we observed a delta function of the
real part of conductivity at zero frequency. Besides, we found the ratio of the energy gap to the
critical temperature w, /7T, decreases from 9.858 to 5.995 with the range o € [—3/100,1/4], which
obviously deviates from the universal value 8. Even though, w,/T, is always larger than the BCS
value 3.5 for all the value of «, which implies that the holographic model indeed involves the strong
interaction.

As for the insulator/superconductor model, the critical chemical potential does not depend on
the high-order derivative correction. Moreover, the critical chemical potential with A = 5/2 is
larger than the one with A = 3/2 when the a RF? correction is fixed. Meanwhile, we studied
the frequency dependent conductivity. It is observed that the location of the second pole of the
imaginary part moves toward right with the increasing «, which indicates that the energy of the
quasiparticle excitation increases with «. In addition, we read off the superfluid density, which
increases with the increasing chemical potential. However, it does not tend to a stable value, which
is unlike the one in the conductor/superconductor model.

For both superconductor models, near the critical point, the critical exponent of the charge
density is 1, which agrees with the mean field theory. What is more, the critical exponent of
the vector condensate near the critical value is 1/2. This means that the system undergoes a
second-order phase transition, which is verified by the behavior of the grand potential.

In a word, the increasing high-order derivative correction « enhances the conduc-
tor /superconductor phase transition but not affect the critical chemical potential of the insula-

tor/superconductor phase transition. Near the critical point, both systems undergo a second-order
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phase transition. The stable value of the vector condensate increases with the larger « in the AdS
black hole. The ratio of the energy gap to the critical value much larger than the BCS value in-
dicates the holographic models indeed simulate the strong interaction. Therefore, our results shed
light on understanding the strong interacting system from the perspective of the gravity/gauge
duality to some extent.

However, it should be noted that we have only numerically constructed the superconductor
model in the probe limit where the rich phase structure was likely covered up [46-48, 54]. Mean-
while, we have not calculated the critical value via the analytical method such as the Sturm-
Liouville method [14] as well as the Matching method. To systematically study the effects of «
on the MCV model, it is meaningful to calculate superconductor model by the Sturm-Liouville
method as well as by including the backreaction from the MCV field. Moreover, as a “toy” model,
we simply adopted the range of correction parameter as —1/20 < o < 1/4. In order to systemati-
cally study the holographic model in the five-dimensional case with a RF? correction, we will try to
constrain the range of the parameter o by demanding that the dual CFT respects micro-causality
or examining if there are any unstable modes of the gauge field in the bulk for various « [38, 56, 57].
Furthermore, by introducing a Weyl correction into the Einstein-Maxwell-Axion theory in four-
dimensional spacetime, Ref. [58] realized the metal-insulator phase transition at zero temperature.
Due to the similar effects between the Weyl term and the RF? term on the superconductor, it is
interesting to study how the RE? term induces the metal-insulator phase transition, which is our

future work.
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