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Abstract

In the probe limit, we numerically study the holographic p-wave superconductor phase transition in the

high-order derivative theory. Concretely, we study the influences of the high-order derivative correction

term αRF 2 on the Maxwell complex vector model(MCV) in the five-dimensional AdS black hole and soliton

backgrounds, respectively. In the black hole background, the improving correction parameter α increases

the critical temperature and thus enhances the conductor/superconductor phase transition. Meanwhile,

as the RF 2 correction becomes stronger, the ratio of the energy gap to the critical temperature decreases

from 9.858 to 5.995, which obviously deviates from the universal value. In the soliton background, we find

that the correction does not affect the critical chemical potential. However, as the correction parameter

α increases, the vector condensate grows faster, which might suggest that the improving α enhances the

insulator/superconductor in some sense. The location of the second pole of imaginary part of conductivity

increases with α, which implies that the energy of the quasiparticle excitation increases with the improving

correction. In addition, the effects of α on the superfluid density agree with the one on the critical value

as well as the condensate in both models. Furthermore, the critical exponent of condensate and superfluid

density near the critical point is always 1/2 and 1, respectively.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z

Keywords: Gauge/gravity duality; Holographic superconductor;

∗E-mail address:lujunwang.2008@163.com

1



I. INTRODUCTION

The gauge/gravity duality [1] maps a strong-coupled system to a weak gravity, which thus

provides us a feasible and efficient approach for studying the system involving the strong interaction.

Since its proposition, it has been widely used in many research area, such as quantum critical point,

QCD phase diagram, Non-Fermi liquid, hydrodynamics [2, 3], topological insulator, momentum

relaxation [4, 5], quantum Hall effect, especially the high temperature superconductors [6–8].

Since the first holographic s-wave conductor/superconductor was numerically built in the four-

dimensional Schwarzschild anti-de Sitter(SAdS) black hole in the probe limit [6], the holographic

model was extended to p-wave and d-wave conductor/superconductors and their corresponding in-

sulator/superconductor models [9–13] as well as the analytical methods( Sturm-Liouville eigenvalue

approach and matching method) [14, 15]. Moreover, the original probe limit was also generalized to

the case including the backreaction from the matter field to the gravitational background [16, 17].

Even though, some obvious deficiencies come to light. For example, the real part of conductivity

always vanishes in the lower frequency and lower temperature region, which is forbidden from the

well known field theory because of the existence of Goldstone boson in the broken phase. After

analysis, this phenomena is ascribed to the large N limit in the gauge/gravity duality, where the

high-order derivative corrections are suppressed in the 1/N form [16]. Thus, it is necessary to

study the effect beyond the large N limit, which is usually realized by introducing some high-order

derivative correction terms, such as the pure gravity part(Gauss-Bonnet gravity, Topological gravity

and Lifshitz gravity) [18–25], pure gauge field(Born-Infeld nonlinear electrodynamics, exponential

electrodynamics and power-Maxwell field) [26–32] and the interaction form of two part(Weyl ten-

sor or Ricci tensor coupled with the gauge field strength) [33–37]. The results showed that the

Weyl correction enhances the s-wave and SU(2) p-wave conductor/superconductor phase transi-

tion. However, it does not affect the s-wave insulator/superconductor phase transition. Most

interestingly, it inhibits the SU(2) p-wave insulator/superconductor phase transition [36, 37].

Besides the Weyl correction, the authors of Ref. [38] proposed another kind of higher derivative

correction(the so called αRF 2 correction) to obtain the frequency-dependent conductivity in the

neutral black hole. Soon after, Ref. [39] calculated the transport properties at finite density by

considering the backreaction of U(1) gauge field and found that both bounds of hydromechanics are

violated by the αRF 2 correction. In addition, the s-wave conductor/superconductor phase transi-

tion with the RF 2 correction was constructed in Ref. [40]. It is observed that the larger correction

enhances the superconductor phase transition and results in a larger deviation from the expected
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ratio of the energy gap to the critical temperature, especially, it also enlarges the condensate gap,

which is obvious different from the Weyl correction as well as the Gauss-Bonnet correction. Con-

sidering the interesting effects of the αRF 2 correction on the s-wave superconductor, it is helpful

to study how the αRF 2 correction affects the new p-wave superconductor phase transition con-

sisted of a Maxwell complex vector (MCV) field. Indeed, the MCV p-wave superconductor model

was primitively proposed to realize the magnetic field-induced conductor/superconductor phase

transition in Ref. [41]. Subsequently, the MCV model was extended to the electric field-induced

superconductor model [42, 43] and the corresponding insulator/superconductor model [44, 45] as

well as the case including the backreaction from the matter field [46–50]. Especially, it was shown

that the MCV model is a generalization of the SU(2) p-wave model with a mass. Meanwhile,

in order to investigate the effects of finite N case, the superconductor model was constructed in

Lifshitz gravity [51, 52] and Gauss-Bonnet gravity [53] as well as the model with Born-Infeld elec-

trodynamics [54] and Weyl correction[55]. What is the most interesting is that the Weyl correction

does not affect the MCV p-wave insulator/superconductor model, which is different from its effect

on the SU(2) p-wave model.

Motivated by the above mentioned, we will study systematically the p-wave superconductor

phase transition by coupling the MCV field in the AdS black hole and soliton background with

the RF 2 correction, respectively, and study the effects of high-order correction on the condensate,

critical value, grand potential, the energy gap as well as the superfluid density. For the black hole

background, the increasing correction enhances the phase transition. Moreover, the condensate gap

decreases and then increases with the increasing correction. Meanwhile, the ratio of the energy

gap frequency to the critical temperature decreases with the correction parameter from 9.858 to

5.995, which obviously deviates from the universal value 8. For the soliton background, the high-

order derivative correction does not affect the critical chemical potential, while the location of the

second pole of imaginary part of conductivity increases with the increasing correction parameter.

In addition, for both models, the correction effects on the grand potential, conductivity as well as

the superfluid density are consistent with the ones on the condensate.

The organization of this paper is as follows. In Sec. II, in the probe limit, we numerically

study the holographic p-wave conductor/superconductor phase transition in the five-dimensional

SAdS black hole background coupled to the MCV field with the RF 2 correction, and thus cal-

culate the conductivity and the superfluid density. Similar to the process in Sec. II, the insula-

tor/superconductor phase transition is studied in the AdS soliton background in Sec. III. The final

section is devoted to conclusions and discussions.
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II. CONDUCTOR/SUPERCONDUCTOR PHASE TRANSITION

In this section, we study the vector condensate in the five-dimensional SAdS black hole, and

calculate the frequency dependent conductivity.

The five-dimensional SAdS black hole is of the form [9]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2 + dz2), (1)

f(r) = r2
(
1− r4+

r4

)
,

where r+ represents the location of the horizon satisfying f(r+) = 0.

Following Ref. [41], we consider the matter action including a Maxwell field, αRF 2 term and a

complex vector field

Sm =
1

16πG5

∫
dx5

√−g
(
− 1

4
FμνF

μν + αL2(RμνρσF
μνF ρσ − 4RμνR

μρF ν
ρ +RFμνFμν)

−1

2
(Dμρν −Dνρμ)

†(Dμρν −Dνρμ)−m2ρ†μρ
μ + iqγρμρ

†
νF

μν
)
, (2)

where Fμν = ∇μAν−∇νAμ is the strength of the U(1) gauge field Aμ, andDμ = ∇μ−iqAμ, whilem

and q corresponds to the mass and the charge of the vector field ρμ. The terms αL2(RμνρσF
μνF ρσ−

4RμνR
μρF ν

ρ +RFμνFμν) represents the RF 2 correction. Following Refs. [38–40], we briefly confine

the parameter α to the range −1/20 ≤ α ≤ 1/4, which will be further constrained by the frequency-

dependent conductivity in the conductor/superconductor model. Moreover, we do not consider the

magnetic field effects on the superconductor phase transition, so the last term with the constant γ is

ignored, which characterizes the strength of interaction between ρμ and Fμν . Meanwhile, compared

with the SAdS gravity, we regard the matter sector (2) as a probe where the equations of motion

related to the vector field and the gauge field decouple from the equations of gravitational sector

and the main physical results are believed to be still grasped.

Varying the action (2) with respect to the vector ρμ and the gauge field Aμ, respectively, we

can obtain the equations of motion

Dν(Dνρμ −Dμρν)−m2ρμ + iqγρνFνμ = 0, (3)

∇μ

(
Fμν − αL2(4RμνρσFρσ − 8RμαF ν

α + 8RναFμ
α + 4RFμν)

−iqγ(ρμρν† − ρνρμ†)
)
+ iq(ρ†μρ

μν − ρμρ
μν†) = 0. (4)

To construct the p-wave superconductor induced by the gauge field, we take the ansatzs for the

vector field ρμ and the gauge field Aμ as the following form

ρνdx
ν = ψx(r)dx, Aνdx

ν = φ(r)dt, (5)
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with other components vanishing. Choosing ψx(r) and φ(r) as real functions and substituting the

above ansatzs (5) into Eqs. (3) and (4), we can read off the equations for ψx and φ

ψ′′
x(r) +

(
f ′(r)
f(r)

+
1

r

)
ψ′
x(r) +

(
φ(r)2 −m2f(r)

)
f(r)2

ψx(r) = 0, (6)(
24αf(r)

r2
+ 1

)
φ′′(r) +

3 (r (8αf ′(r) + r) + 8αf(r))

r3
φ′(r)− 2ψx(r)

2

r2f(r)
φ(r) = 0, (7)

where the prime denotes the derivative with respect to r. Obviously, for the special case α = 0,

Eqs. (6) and (7) agree with Eq. (23) in Ref. [48]. Moreover, Eq. (7) is not identical with Eq. (36)

in Ref. [55], from which we can believe the present model will generalize some new characters of

superconductor. To solve the above equations, we should impose the boundary conditions. At the

horizon, the vector field ψx is required to be regular, while the gauge field Aμ should satisfy the

condition φ(r+) = 0 to ensure the finite form of gμνAμAν . Near the infinite boundary, the general

expansions of the matter field and the gauge field are given by

ψx(r) =
ψx−
rΔ−

+
ψx+

rΔ+
+ . . . , (8)

φ(r) = μ− ρ

r2
+ . . . , (9)

where Δ± = 1±√
m2 + 1 with the Breitenlohner-Freedman(BF) bound of the mass m2 ≥ m2

BF =

−1. According to the gauge/gravity duality, the coefficients of the leading term ψx− and the sub-

leading term ψx+ are interpreted as the source and the vacuum-expectation value of the boundary

operator Ĵx, while μ and ρ are regarded as the chemical potential and the charge density in the

dual field theory, respectively. To guarantee the spontaneous breaking of U(1) gauge symmetry in

the system, we require that the source of the condensate vanishes, i.e., ψx− = 0.

There is an important symmetry in the above system with the form

(r, T ) → λ(r, T ), ψx+ → λΔ+1ψx+, μ → λμ, ρ → λ3ρ (10)

with the positive constant λ. By using Eq. (10) we can fix the chemical potential μ of the system

and thus work in the grand canonical ensemble.

Next, we solve the above nonlinear ordinary differential equations. In the present work, we

focus on the effects of the high-order derivative corrections( i.e., the parameter α) on the critical

temperature and the vector condensate, so we will fix the scaling dimension of the boundary

operator Δ+ = Δ = 2 throughout the present paper. As a special case, we plot the condensate

with α = 0.15 as a function of the temperature on the left panel of Fig. 1, from which we find that

there is a critical temperature Tc = 0.10021μ, below which the vector field begins to condense.
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FIG. 1: The condensate versus temperature for Δ = 2 and α = 0.15(left) and the condensate gap as a

function of the correction parameter α (right).
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FIG. 2: The critical temperature versus correction parameter α with Δ = 3/2 (black solid),Δ = 2(red

dashed), Δ = 5/2(blue dotted)(left) and the grand canonical potential versus temperature in the case of

α = 0.15 and Δ = 2(right), where the red dashed line and the black solid line correspond to the normal

state and the condensate state, respectively.

Moreover, near the critical point, the square root dependence of the vector condensate on the

temperature indicates that the critical exponent 1/2 is universal in the probe limit, and thus

suggests that the system undergoes a second-order phase transition as expected from the mean

field theory. What is more, as the temperature decreases gradually, the condensate tends to be a

stable constant, i.e., the condensate gap forms in the low temperature limit.

To study roundly the effects of the high-order derivative correction, we consider the behaviors

of vector condensate with different parameter α and obtain the similar behavior. In particular,

the condensate gap and the critical temperature as a function of the correction parameter α are

plotted on the right panel in Fig. 1 and the left panel in Fig. 2, respectively. It is obvious that

for all values of α considered in the work, the critical temperature increases with the increasing

α, which indicates that the increasing correction enhances the conductor/superconductor phase

transition. In this regard, the effect of α on the critical temperature is similar to the one of Weyl
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term [55]. Moreover, when the correction parameter α increases, the condensate gap decreases to

a minimum at α = 0, and then increases in the case of α > 0.

To check the order of the phase transition at the critical point and the stability of the state with

vector field condensed below the critical temperature, we calculate the grand potential, which is

identified with the Hawking temperature timing the Euclidean on-shell action of the bulk solution.

In our case, because we work in the probe limit, we need only consider the contribution from the

matter field. Meanwhile, if we further consider the source free condition, there is no necessary to

add the counter term to the action. The Euclidian action is given by

Son =

∫
dx5

√−g
(
− 1

2
∇μ(AνF

μν) + αL2(2∇μ(AνR
μνρσFρσ)− 4∇μ(AρR

μνF ρ
ν )

+4∇μ(AρR
ρνF μ

ν ) + 2∇μ(RAνF
μν))−∇μ(ρ

†
νρ

μν)
)

+
1

2

∫
dx5

√−gAν

(
iqγ∇μ(ρ

μρν† − ρνρμ†)− iq(ρ†μρ
μν − ρμρ

μν†)
)

=
V3

T

(
(1 + 24α)μρ−

∫ ∞

r0

rφ2ψ2

f
dr

)
(11)

where we have neglected the factor 1/16πG5 and taken into account the expansions of the matter

field at the boundary as well as the integration
∫
dtdx3 = V3

T . Introducing the new variable

z = r+/r, the density of the grand potential reads

Ω

V3
=

−TSon

V3
= −(1 + 24α)μρ+

∫ 1

ε

φ2ψ2

z(1− z4)
dz. (12)

Considering the numerical integration with α = 0.15, we show the density of grand potential as a

function of the temperature for the normal state as well as the condensed state in right plot of Fig.

2. It is obvious that with the decreasing temperature, the curve corresponding to the hair state

spreads smoothly from the curve of the normal state, which means that at the critical point, the

system undergoes a second order phase transition. Moreover, when the temperature falls off the

critical value, the curve with vector hair is always below the one without vector hair, which indicates

that below the critical temperature, the superconductor state is indeed thermodynamically stable.

As we all know, the conductivity also provides the typical signal to distinguish the state is

either in the superconducting sate or not. What is more important, we can read off the energy

gap from the frequency dependent conductivity and thus explore the strength of the interaction in

the system, so it is helpful for us to study the conductivity. To obtain the conductivity, which is

related to the retarded Green function, σ(ω) = GR(ω, k = 0)/iω, we can calculate the perturbation

of the gauge field based on the state with vector hair in the gravity spacetime from holography [6].

It should be noted that below the critical temperature, the condensate of the vector operator

7



Ĵx breaks the U(1) gauge symmetry as well as the rotational symmetry, therefore, it is natural

that the conductivity along the condensate direction is different from that perpendicular to the

condensate direction. From the calculation for the conductivity along the condensate direction

in Ref. [10], one can imagine the perturbation of the gauge field along the x direction is rather

complicated. For simplicity, following Refs. [8, 41, 54], we focus on our calculations perpendicular

to the superconducting direction with the ansatz ΔAμ = Ay(r)e
−iωt. Substituting the ansatz into

Eq. (4), the linearized equation of the perturbation Ay is of the form(
8αf ′(r)

r
+

8αf(r)

r2
+ 1

)
A′′

y(r) +

(
8αω2f ′(r)
rf(r)2

+
8αω2

r2f(r)
− 2ψ(r)2

r2f(r)
+

ω2

f(r)2

)
Ay(r)(

8αf ′′(r)
r

+
16αf ′(r)

r2
+

8αf ′(r)2

rf(r)
+

f ′(r)
f(r)

− 8αf(r)

r3
+

1

r

)
A′

y(r) = 0, (13)

which is similar to the corresponding equations in Refs. [6, 10]. At the horizon, the retarded Green

function GR corresponds to the ingoing wave condition, therefore, Ay(r) can be expressed as

Ay(r) = (r − r+)
−iω/4πT

(
1 +Ay1(r − r+) +Ay2(r − r+)

2 +Ay3(r − r+)
3 + · · · ) . (14)

At the boundary r → ∞, the general falloff of Ay(r) reads

Ay(r) = A(0) +
A(2)

r2
+

A(0)ω2

2

logΛr

r2
+ · · · . (15)

According to the gauge/gravity duality, the Green function GR can be calculated from the gauge

field perturbation, which has the form

GR = (1 + 24α)

(
2A(2)

A(0)
+ ω2

(
logΛr − 1

2

))
. (16)

Obviously, there is a logarithmic divergence term in the Green function as well as the conductivity,

which can be canceled by the holographic renormalization. The conductivity can be expressed as

σ(ω) =
GR

iω
= (1 + 24α)

1

iω

(
2A(2)

A(0)
− ω2

2

)
. (17)

Note that the correction parameter α appears in the formula of conductivity, which is different

from the Weyl correction in Ref. [35] and the RF 2 correction in the s-wave model in Ref. [40].

The frequency dependent conductivity with α = 0.15 at the temperature T/Tc ≈ 0.1 is plotted

on the left hand of Fig. 3, from which we can obtain the following results. Firstly, at the zero

frequency, there exists a pole in the imaginary part of the conductivity, which corresponds to a

delta function of the real part from the Kramers-Kronig(KK) relation. Secondly, there exists a

minimum at nonzero frequency for the imaginary part of conductivity. If we define the ratio of
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FIG. 3: The AC conductivity versus the frequency in the case of α = 0.15 and Δ = 2 (left) and the energy

gap as a function of α with Δ = 3/2 (black solid),Δ = 2(red dashed), Δ = 5/2(blue dotted)(right). The

curves in both two subplots are obtained near T/Tc ≈ 0.1.

the energy gap to the critical temperature(ωg/Tc) as the minimum of the imaginary part of the

conductivity(Im[σ]) when m2 > m2
BF [9], we can read off ωg/Tc ≈ 6.34 larger than 3.5 predicted

from the BCS theory, which shows the strong interaction in the holographic superconductor model.

Thirdly, when the frequency tends to be infinity, both the real and imaginal parts of the conductivity

diverge, which might be the general property in the five-dimensional AdS black holes, except for

the Lifshitz gravity with the dynamical critical exponent z > 1[25]. Meanwhile, we plot the value

ωg/Tc versus the correction parameter α on the right panel of Fig. 3. It is observed that ωg/Tc

decreases with the increasing α, which suggests that the larger correction suppresses the strength

of the interaction of holographic system. Moreover, the energy gap is understood as the minimum

energy to break the cooper pairs, so the smaller ωg/Tc, the easier for the phase transition, which

is consistent with the effects of α on the critical temperature. In addition, when the value of α is

small enough(α < −3/100), the behaviors of the critical temperature, the condensate as well as

the grand potential seem to be reliable, but the reasonable and acceptable conductivity can not be

obtained no matter how to adjust the computational accuracy, so it is believed that the holographic

superconductor model proposes a new lower limit for the RF 2 correction to some extent. As a

result, we mainly consider the case of −3/100 ≤ α ≤ 1/4 in the present paper.

In addition to the conductivity, we calculate the superfluid density below the critical temper-

ature, which is identified by the coefficient of the pole in Im[σ] at ω = 0. The result shows that

at the critical temperature, the superfluid density ns arises with the linear depending on the tem-

perature, which agrees with the mean field theory. Meanwhile, as the temperature decreases, the

superfluid density saturates a stable value, which matches well with the two-fluid theory about su-

perconductivity. By fitting the superfluid density near the critical point and the zero temperature
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case of Δ = 2.

limit, we can obtain the coefficient k1 of the fitting formula ns ≈ k1(1−T/Tc) as well as the stable

value of the superfluid ns(T ≈ 0) for various correction parameter α. The α dependent k1 and

ns(0) for Δ = 2 are plotted on the left and right panel of Fig. 4, respectively. It is observed that

both k1 and ns(0) increase with α, which means that the superfluid grows faster when we increase

the correction parameter α and thus the larger correction enhances the phase transition.

III. INSULATOR/SUPERCONDUCTOR PHASE TRANSITION

In this section, we construct the insulator/superconductor phase transition and thus study how

the correction parameter α influences the vector condensate and the conductivity. First of all, the

standard five-dimensional AdS soliton reads

ds2 = −r2dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2 + f(r)dχ2), (18)

f(r) = r2
(
1− r40

r4

)
,

which is obtained from the double Wick rotation to the SAdS black hole(1), i.e., t → iχ and

z → it. To distinguish the soliton from the SAdS black hole in Sec. II, we denote r0 as the tip,

which satisfies the condition f(r0) = 0. To avoid a potential conical singularity at the tip, we

impose the periodicity Γ on the spatial direction χ with χ → χ + π/r0, i.e., Γ = π/r0. As for

the present soliton background, there is no event horizon, thus no temperature exists. Moreover,

because of the existence of the tip, there exists an IR cutoff for the dual field theory, which indicates

a confined phase and is thus similar to the mass gap in the insulator phase[12]. Therefore, it is

believed that the present soliton system can be used to model the insulator/superconductor phase

transition [12, 21, 53].
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FIG. 5: The condensate(left) and the charge density(right) as a function of the chemical potential in the

case of Δ = 2.

Now, we construct a new p-wave insulator/superconductor phase transition withRF 2 correction.

For the matter field, we take the action the same as the one of the conductor/superconductor phase

transition, i.e., the action(2). Naturally, the form of the gauge field and the matter field is taken

as Eq. (5). By varying the action(2) with respect to ρμ and Aμ, we can obtain the equations of

motion in the background (18) as

ψ′′
x(r) +

(
f ′(r)
f(r)

+
1

r

)
ψ′
x(r) +

φ(r)2 −m2r2

r2f(r)
ψx(r) = 0, (19)(

8αf ′(r)
r

+
8αf(r)

r2
+ 1

)
φ′′(r) +

(1 + 8αf ′′(r)
r

+
16αf ′(r)

r2

+
8αf ′(r)2 + rf ′(r)

rf(r)
− 8αf(r)

r3

)
φ′(r)− 2ψx(r)

2φ(r)

r2f(r)
= 0. (20)

Obviously, Eqs. (19) and (20) with α = 0 are the same with Eq. (11) in Ref. [48] when one neglects

the backreaction. However, the above equations are different from the ones with Weyl correction

in Ref. [55].

To numerically solve these equations, we impose the boundary conditions at both the tip and

the infinite boundary. At the tip, the Neumann-like boundary condition is required to ensure

ψx(r0) and φ(r0) to be regular, while near the infinity, the general falloffs of ψx(r) and φ(r) are of

the forms (8) and (13), respectively. Moreover, the interpretations of the coefficients ψx−, ψx+, μ

and ρ are the same as that in the black hole from the gauge/gravity dual dictionary. By means

of the symmetry of the system, r → λr, ψx → λψx, φ → λφ,Γ → λ−1Γ, hereafter we will take

the periodicity Γ = π by rescaling the vector field ψx and the gauge field φ. By calculations, we

show the condensate(the charge density) as a function of the chemical potential with α = 0.15 on

the left (right) panel of Fig. 5, from which we find that there exists a critical chemical potential

μc = 2.26523, beyond which both the vector condensate and the charge density arise. By fitting

the condensate near the critical potential, we still find the squared condensate dependent on the
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FIG. 6: The coefficient k2 of the fitting formula 〈Ĵx〉(μ ≈ μc) ∼ k2
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μ/μc − 1 near μ ≈ μc (left) and the

density of grand potential Ω/V for both normal state(black solid) and condensate state(red dashed) with

α = 0.15(right).

chemical potential, which means that a second order phase transition occurs at the critical point.

Moreover, we also fit the charge density, it is found that the critical exponent of the charge density

is 1. To see intuitively the effect of α on holographic model, we calculate the case of different

correction parameter α. The results show that the critical chemical potential is independent of the

correction parameter α, which tells us that the correction might not affect the stability of the AdS

soliton system.

To study further the effect of high-order derivative correction on the vector condensate, we plot

the coefficient k2 of the fitting formula 〈Ĵx〉(μ ≈ μc) ∼ k2
√

μ/μc − 1 as a function of correction

parameter α on the left plot of Fig. 6. Obviously, the coefficient increases with the correction

parameter, which implies that the larger the correction is, the faster the condensate grows. In this

sense, the larger correction enhances the growth of the condensate. Moreover, to check the order

of the phase transition near the critical point, we define a “temperature” of the soliton system and

then calculate the grand potential by the on-shell action of matter field, which is displayed on the

right plot of Fig. 6. It is easily observed that near the critical chemical potential, the red dashed

curve corresponding to the vector condensate state appears smoothly from the black solid curve

corresponding to the normal state. Meanwhile, the value of grand potential for the condensate state

is always lower than the one for the normal state when the chemical potential increases beyond the

critical value. This implies that at the critical point, the system indeed undergoes a second-order

phase transition and at the larger chemical potential, the condensate state is thermodynamically

favored.

Then, we calculate the conductivity in the five-dimensional AdS soliton with the vector hair.

Here, we still take the gauge perturbation perpendicular to the direction of the condensate, i.e.,

12



ΔA = Ay(r)e
−iωt, with other components vanishing, from which one can read off the linearized

equation of the perturbation as(
8αf ′(r) + r

r
+

8αf(r)

r2

)
A′′

y(r) +
(8αf ′′(r) + r

r
+

16αf ′(r)
r2

+
8αf ′(r)2

rf(r)
+

f ′(r)
f(r)

−8αf(r)

r3

)
A′

y(r) +

(
4αω2f ′′(r)
r2f(r)

+
8αω2f ′(r)
r3f(r)

− 2ψ(r)2

r2f(r)
+

ω2

r2f(r)

)
Ay(r) = 0. (21)

To numerically solve the differential equation, we impose the boundary conditions. Near the tip r =

r0, the expansion of Ay(r) still includes the logarithmic term. In order to ensure the perturbation to

be finite, we require the Neumann-like boundary condition to eliminate the logarithmic divergence,

which is similar to the boundary condition of the gauge field φ, thus the concrete form of Ay(r)

reads

Ay(r) = 1 +Ay1(r − r+) +Ay2(r − r+)
2 +Ay3(r − r+)

3 + · · · , (22)

while at the boundary r → ∞, the expansion of Ay(r) can be expressed as

Ay(r) = A(0) +
A(2)

r2
+

A(0)ω2

2

logΛr

r2
+ · · · . (23)

Therefore, the conductivity is given by

σ(ω) =
1

iω

(
2A(2)

A(0)
− ω2

2

)
, (24)

where the logarithmic divergence term in the general falloff of Ay(r) is removed by the holographic

renormalization.

On the left hand of Fig. 7, we shows the imaginary part of conductivity as a function of

the frequency in the case of α = 0.15 with μ/μc ≈ 2. Obviously, beyond the critical chemical

potential, there exists a pole (corresponding to a delta function in the real part of σ(ω)) at the

zero frequency, which is expected from the standpoint of the superconductor. Moreover, as we all

know, the location of the second pole corresponds to the energy of the quasiparticle excitation.

To see intuitively how the high-order derivative correction affects the holographic model, we plot

the energy of quasiparticle excitation k3 as a function of the parameter α with μ/μc ≈ 2 on the

right hand of Fig. 7, from which we find that when the parameter α increases, the location of the

second pole of Im[σy], which means that the energy of the quasiparticle excitation increases with

the improving high-order derivative correction.

In addition to the conductivity, by extracting the coefficient of the pole in Im[σy] at ω = 0, we

obtain the superfluid density, which is plotted on the left panel of Fig. 8. The result shows that
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as we increase the chemical potential above the critical value, the superfluid density appears as

the linear behavior dependent on the chemical potential, which is consistent with the mean field

theory. Furthermore, we also plot the coefficient k4 of the fitting formula ns ∼ k4(1− μ/μc) about

the superfluid density with respect to the parameter α on the right panel of Fig. 8. It is observed

that when the high-order derivative correction become larger, the superfluid density grows faster,

which agrees with the effect of the correction on the vector condensate.

IV. CONCLUSIONS AND DISCUSSIONS

So far, we have numerically constructed the p-wave superconductors with the high-order deriva-

tive correction in the probe limit. Concretely, we mainly studied the effects of the high-order

terms αRF 2 on the conductor/superconductor and insulator/superconductor phase transition, re-

spectively, and further observed the transport phenomenon for the superconductor. The main
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conclusions can be summarized as follows.

In terms of the conductor/superconductor phase transition in the five-dimensional AdS black

hole, the critical temperature increases with the parameter α, which indicates that the stronger

correction αRF 2 enhances the phase transition. However, the improving dimension of the vector

operator Δ makes the phase transition more difficult. This is reasonable, because the larger

Δ corresponds to the larger “mass” in the dual field theory. When the temperature decreases

gradually from the critical value, the vector condensate tends to be a stable value(the so called

condensate gap). Moreover, the condensate gap decreases with the increasing parameter α until

α ≈ 0, whereafter, it increases with the increasing α. This non-monotonic behavior of condensate

gap with respect to α is not only different from the one for the s-wave case with RF 2 correction [40],

but also unlike the MCV p-wave model with Weyl correction [55]. The reason for the difference

between the RF 2 term and Weyl term for the superconductor model is still unclear, which need

deep analysis. In addition, in the case with the vector “hair”, we observed a delta function of the

real part of conductivity at zero frequency. Besides, we found the ratio of the energy gap to the

critical temperature ωg/Tc decreases from 9.858 to 5.995 with the range α ∈ [−3/100, 1/4], which

obviously deviates from the universal value 8. Even though, ωg/Tc is always larger than the BCS

value 3.5 for all the value of α, which implies that the holographic model indeed involves the strong

interaction.

As for the insulator/superconductor model, the critical chemical potential does not depend on

the high-order derivative correction. Moreover, the critical chemical potential with Δ = 5/2 is

larger than the one with Δ = 3/2 when the αRF 2 correction is fixed. Meanwhile, we studied

the frequency dependent conductivity. It is observed that the location of the second pole of the

imaginary part moves toward right with the increasing α, which indicates that the energy of the

quasiparticle excitation increases with α. In addition, we read off the superfluid density, which

increases with the increasing chemical potential. However, it does not tend to a stable value, which

is unlike the one in the conductor/superconductor model.

For both superconductor models, near the critical point, the critical exponent of the charge

density is 1, which agrees with the mean field theory. What is more, the critical exponent of

the vector condensate near the critical value is 1/2. This means that the system undergoes a

second-order phase transition, which is verified by the behavior of the grand potential.

In a word, the increasing high-order derivative correction α enhances the conduc-

tor/superconductor phase transition but not affect the critical chemical potential of the insula-

tor/superconductor phase transition. Near the critical point, both systems undergo a second-order
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phase transition. The stable value of the vector condensate increases with the larger α in the AdS

black hole. The ratio of the energy gap to the critical value much larger than the BCS value in-

dicates the holographic models indeed simulate the strong interaction. Therefore, our results shed

light on understanding the strong interacting system from the perspective of the gravity/gauge

duality to some extent.

However, it should be noted that we have only numerically constructed the superconductor

model in the probe limit where the rich phase structure was likely covered up [46–48, 54]. Mean-

while, we have not calculated the critical value via the analytical method such as the Sturm-

Liouville method [14] as well as the Matching method. To systematically study the effects of α

on the MCV model, it is meaningful to calculate superconductor model by the Sturm-Liouville

method as well as by including the backreaction from the MCV field. Moreover, as a “toy” model,

we simply adopted the range of correction parameter as −1/20 ≤ α ≤ 1/4. In order to systemati-

cally study the holographic model in the five-dimensional case with αRF 2 correction, we will try to

constrain the range of the parameter α by demanding that the dual CFT respects micro-causality

or examining if there are any unstable modes of the gauge field in the bulk for various α [38, 56, 57].

Furthermore, by introducing a Weyl correction into the Einstein-Maxwell-Axion theory in four-

dimensional spacetime, Ref. [58] realized the metal-insulator phase transition at zero temperature.

Due to the similar effects between the Weyl term and the RF 2 term on the superconductor, it is

interesting to study how the RF 2 term induces the metal-insulator phase transition, which is our

future work.

Acknowledgments

We would like to thank Prof. Q. Y. Pan and Z. Y. Nie for their helpful discussion and com-

ments. This work is supported in part by NSFC (Nos.11475143, 11647167, 11747615 and 11575075),

Foundation of Guizhou Educational Committee(Nos. Qianjiaohe KY Zi [2016]311 Zi) and the

Foundation of Scientific Innovative Research Team of Education Department of Guizhou Province

(201329).

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [hep-th/9711200].

[2] Z. Y. Fan, Phys. Rev. D 97, no. 6, 066013 (2018) [arXiv:1801.07870 [hep-th]].

[3] Y. Bu, R. G. Cai, Q. Yang and Y. L. Zhang, arXiv:1803.08389 [hep-th].

16



[4] Y. Ling, Int. J. Mod. Phys. A 30, no. 28-29, 1545013 (2015).

[5] Y. Ling, C. Niu, J. Wu, Z. Xian and H. b. Zhang, Phys. Rev. Lett. 113, 091602 (2014) [arXiv:1404.0777

[hep-th]].

[6] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008) [arXiv:0803.3295

[hep-th]].

[7] R. G. Cai, L. Li, Y. Q. Wang and J. Zaanen, Phys. Rev. Lett. 119, no. 18, 181601 (2017)

[arXiv:1706.01470 [hep-th]].

[8] R. G. Cai, L. Li, L. F. Li and R. Q. Yang, Sci. China Phys. Mech. Astron. 58, no. 6, 060401 (2015)

[arXiv:1502.00437 [hep-th]].

[9] G. T. Horowitz and M. M. Roberts,Phys. Rev. D 78, 126008 (2008) [arXiv:0810.1077 [hep-th]].

[10] S. S. Gubser and S. S. Pufu, JHEP 0811, 033 (2008) [arXiv:0805.2960 [hep-th]].

[11] Z. Y. Nie, Q. Pan, H. B. Zeng and H. Zeng, Eur. Phys. J. C 77, no. 2, 69 (2017) [arXiv:1611.07278

[hep-th]].

[12] T. Nishioka, S. Ryu and T. Takayanagi, JHEP 1003, 131 (2010) [arXiv:0911.0962 [hep-th]].

[13] G. Liu and Y. Peng, Mod. Phys. Lett. A 30 (2015) 34, 1550183.

[14] G. Siopsis and J. Therrien,JHEP 1005, 013 (2010) [arXiv:1003.4275 [hep-th]].

[15] H. F. Li, R. G. Cai and H. Q. Zhang, JHEP 1104, 028 (2011) [arXiv:1103.2833 [hep-th]].

[16] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, JHEP 0812, 015 (2008) [arXiv:0810.1563 [hep-th]].

[17] G. T. Horowitz and M. M. Roberts, JHEP 0911, 015 (2009) [arXiv:0908.3677 [hep-th]].

[18] Z. H. Li, Y. C. Fu and Z. Y. Nie, Phys. Lett. B 776, 115 (2018) [arXiv:1706.07893 [hep-th]].

[19] S. Mukhopadhyay and C. Paul, Int. J. Mod. Phys. A 33, no. 01, 1850002 (2018).

[20] A. Sheykhi, A. Ghazanfari and A. Dehyadegari, Eur. Phys. J. C 78, no. 2, 159 (2018) [arXiv:1712.04331

[hep-th]].

[21] Q. Pan, J. Jing and B. Wang, JHEP 1111, 088 (2011) [arXiv:1105.6153 [gr-qc]].

[22] X. M. Kuang, W. J. Li and Y. Ling, JHEP 1012, 069 (2010) [arXiv:1008.4066 [hep-th]].

[23] C. J. Luo, X. M. Kuang and F. W. Shu, Phys. Lett. B 759, 184 (2016) [arXiv:1605.03260 [hep-th]].

[24] J. W. Lu, Y. B. Wu, J. Xiao, C. J. Lu and M. L. Liu, Int. J. Mod. Phys. A 31, no. 19, 1650110 (2016).

[25] J. W. Lu, Y. B. Wu, P. Qian, Y. Y. Zhao and X. Zhang, Nucl. Phys. B 887, 112 (2014) [arXiv:1311.2699

[hep-th]].

[26] Y. Liu, Y. Gong and B. Wang, JHEP 1602, 116 (2016) [arXiv:1505.03603 [hep-ph]].

[27] W. Yao and J. Jing, Phys. Lett. B 759, 533 (2016) [arXiv:1603.04516 [gr-qc]].

[28] C. Y. Zhang, Y. B. Wu, Y. N. Zhang, H. Y. Wang and M. M. Wu, Nucl. Phys. B 914, 446 (2017)

[arXiv:1609.09318 [hep-th]].

[29] S. Pal and S. Gangopadhyay, Annals Phys. 388, 472 (2018) [arXiv:1708.06240 [hep-th]].

[30] D. Ghorai and S. Gangopadhyay, Eur. Phys. J. C 76, no. 3, 146 (2016) [arXiv:1511.02444 [hep-th]].

[31] X. Y. Guo, L. C. Zhang and R. Zhao, Mod. Phys. Lett. A 29, no. 19, 1450083 (2014).

[32] S. l. Cui and Z. Xue, Phys. Rev. D 88, no. 10, 107501 (2013) [arXiv:1306.2013 [hep-th]].

17



[33] Y. Ling and X. Zheng, Nucl. Phys. B 917, 1 (2017) [arXiv:1609.09717 [hep-th]].

[34] S. A. Hosseini Mansoori, B. Mirza, A. Mokhtari, F. L. Dezaki and Z. Sherkatghanad, JHEP 1607, 111

(2016) [arXiv:1602.07245 [hep-th]].

[35] J. P. Wu, Y. Cao, X. M. Kuang and W. J. Li, Phys. Lett. B 697, 153 (2011) [arXiv:1010.1929 [hep-th]].

[36] Z. Zhao, Q. Pan and J. Jing, Phys. Lett. B 719, 440 (2013) [arXiv:1212.3062 [hep-th]].

[37] D. Momeni, N. Majd and R. Myrzakulov, EPL 97, no. 6, 61001 (2012) [arXiv:1204.1246 [hep-th]].

[38] R. C. Myers, S. Sachdev and A. Singh, Phys. Rev. D 83, 066017 (2011) [arXiv:1010.0443 [hep-th]].

[39] R. G. Cai and D. W. Pang, Phys. Rev. D 84, 066004 (2011) [arXiv:1104.4453 [hep-th]].

[40] Z. Zhao, Q. Pan, S. Chen and J. Jing, Chin. Phys. Lett. 30, no. 12, 121101 (2013) [arXiv:1301.3728

[gr-qc]].

[41] R. G. Cai, S. He, L. Li and L. F. Li, JHEP 1312, 036 (2013) [arXiv:1309.2098 [hep-th]].

[42] D. Wen, H. Yu, Q. Pan, K. Lin and W. L. Qian, Nucl. Phys. B 930, 255 (2018) [arXiv:1803.06942

[hep-th]].

[43] Y. B. Wu, J. W. Lu, W. X. Zhang, C. Y. Zhang, J. B. Lu and F. Yu, Phys. Rev. D 90, no. 12, 126006

(2014) [arXiv:1410.5243 [hep-th]].

[44] R. G. Cai, L. Li, L. F. Li and Y. Wu, JHEP 1401, 045 (2014) [arXiv:1311.7578 [hep-th]].

[45] M. Rogatko and K. I. Wysokinski, JHEP 1603, 215 (2016) [arXiv:1508.02869 [hep-th]].

[46] R. G. Cai, L. Li and L. F. Li, JHEP 1401, 032 (2014) [arXiv:1309.4877 [hep-th]].

[47] L. F. Li, R. G. Cai, L. Li and C. Shen, Nucl. Phys. B 894, 15 (2015) [arXiv:1310.6239 [hep-th]].

[48] R. G. Cai, L. Li, L. F. Li and R. Q. Yang, JHEP 1404, 016 (2014) [arXiv:1401.3974 [gr-qc]].

[49] E. Kiritsis and L. Li, JHEP 1601, 147 (2016) [arXiv:1510.00020 [cond-mat.str-el]].

[50] R. G. Cai and R. Q. Yang, Phys. Rev. D 91, no. 2, 026001 (2015) [arXiv:1410.5080 [hep-th]].

[51] Y. B. Wu, J. W. Lu, M. L. Liu, J. B. Lu, C. Y. Zhang and Z. Q. Yang, Phys. Rev. D 89, no. 10, 106006

(2014) [arXiv:1403.5649 [hep-th]].

[52] Y. B. Wu, J. W. Lu, C. Y. Zhang, N. Zhang, X. Zhang, Z. Q. Yang and S. Y. Wu, Phys. Lett. B 741,

138 (2014) [arXiv:1412.3689 [hep-th]].

[53] Y. B. Wu, J. W. Lu, Y. Y. Jin, J. B. Lu, X. Zhang, S. Y. Wu and C. Wang, Int. J. Mod. Phys. A 29,

1450094 (2014) [arXiv:1405.2499 [hep-th]].

[54] P. Chaturvedi and G. Sengupta, JHEP 1504, 001 (2015) [arXiv:1501.06998 [hep-th]].

[55] L. Zhang, Q. Pan and J. Jing, Phys. Lett. B 743, 104 (2015) [arXiv:1502.05635 [hep-th]].

[56] A. Buchel and R. C. Myers, JHEP 0908, 016 (2009) [arXiv:0906.2922 [hep-th]].

[57] M. Brigante, H. Liu, R. C. Myers, S. Shenker and S. Yaida, Phys. Rev. D 77, 126006 (2008)

[arXiv:0712.0805 [hep-th]].

[58] Y. Ling, P. Liu, J. P. Wu and Z. Zhou, Phys. Lett. B 766, 41 (2017) [arXiv:1606.07866 [hep-th]].

18


