
ar
X

iv
:2

40
9.

15
68

3v
2

 [
qu

an
t-

ph
]

 3
0

M
ay

 2
02

5

Quantum DeepONet: Neural operators accelerated
by quantum computing
Pengpeng Xiao1, Muqing Zheng2, Anran Jiao1, Xiu Yang2, and Lu Lu1,3

1Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
2Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA
3Wu Tsai Institute, Yale University, New Haven, CT 06510, USA

In the realm of computational science and engineering, constructing models
that reflect real-world phenomena requires solving partial differential equa-
tions (PDEs) with different conditions. Recent advancements in neural op-
erators, such as deep operator network (DeepONet), which learn mappings
between infinite-dimensional function spaces, promise efficient computation of
PDE solutions for a new condition in a single forward pass. However, classical
DeepONet entails quadratic complexity concerning input dimensions during
evaluation. Given the progress in quantum algorithms and hardware, here we
propose to utilize quantum computing to accelerate DeepONet evaluations,
yielding complexity that is linear in input dimensions. Our proposed quan-
tum DeepONet integrates unary encoding and orthogonal quantum layers. We
benchmark our quantum DeepONet using a variety of PDEs, including the an-
tiderivative operator, advection equation, and Burgers’ equation. We demon-
strate the method’s efficacy in both ideal and noisy conditions. Furthermore,
we show that our quantum DeepONet can also be informed by physics, min-
imizing its reliance on extensive data collection. Quantum DeepONet will be
particularly advantageous in applications in outer loop problems which require
exploring parameter space and solving the corresponding PDEs, such as uncer-
tainty quantification and optimal experimental design.

1 Introduction
Partial differential equations (PDEs) play a crucial role in modeling complex phenomena
that are fundamental to both natural and engineered systems. Traditional numerical meth-
ods, such as finite difference, finite element, and finite volume methods, typically involve
discretizing the solution space and solving finite-dimensional problems. These approaches,
however, are computationally intensive and require a complete re-solving of equations with
even minor adjustments to the system. Recently, neural networks have been employed
to learn the solutions of PDEs [1, 2, 3, 4, 5, 6]. In particular, physics-informed neural
networks (PINNs) embed the PDE residual into the loss term [1, 7, 8], demonstrating po-
tential in solving both forward and inverse problems [9, 10, 11, 12]. Despite their promise,
many of these methods remain mesh-dependent or require re-training when new functional
parameters are introduced.

Xiu Yang: xiy518@lehigh.edu
Lu Lu: lu.lu@yale.edu

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Quantum%20DeepONet:%20Neural%20operators%20accelerated%20by%20quantum%20computing&reason=title-click
https://quantum-journal.org/?s=Quantum%20DeepONet:%20Neural%20operators%20accelerated%20by%20quantum%20computing&reason=title-click
https://orcid.org/0009-0003-8237-7847
https://orcid.org/0000-0002-6659-9672
https://orcid.org/0009-0007-6084-110X
https://orcid.org/0000-0003-0882-2650
https://orcid.org/0000-0002-5476-5768
mailto: xiy518@lehigh.edu
mailto:lu.lu@yale.edu
https://arxiv.org/abs/2409.15683v2

To address these limitations, deep neural operators have gained popularity for learning
the mapping between infinite-dimensional spaces of functions through data [13, 14, 15, 16,
17, 18]. Once trained, neural operators are able to efficiently evaluate the PDE solutions
for a new PDE instance in a single forward pass. Additionally, the output of neural
operators can be discretized at different levels of resolutions or evaluated at any point.
The training of neural operators can also incorporate physics priors [19, 20], aligning the
concept of PINNs, which has been shown to enhance accuracy significantly. The main
categories of neural operators include integral kernel operators [15, 14, 21], transformer-
based neural operators [17, 16], and DeepONet [13]. Integral kernel operators, such as
Fourier neural operator (FNO) [14], leverage iterative learnable kernel integration, but are
usually restricted to grids. Transformer-based neural operator has larger model capacity
but relies on sufficient data to achieve optimal performance. DeepONet, grounded in
universal approximation theorem [22], on the other hand, can evaluate the solution of
PDEs at any point in a mesh-free manner. There has been a wide range of developments
of DeepONet [23, 24, 25, 26, 27], highlighting its adaptability in various complex systems.

While classical developments greatly expand the potential of neural networks, quantum
neural networks (QNNs) have also drawn much attention due to the potential of better
complexity and higher capacities compared to their classical counterparts [28, 29, 30].
Such advantages often directly come from the ability to efficiently encode and explore the
exponentially large space on quantum computers [31]. Specifically, there are quantum algo-
rithms that demonstrate the quadratic speedup in online perceptron [32] and reinforcement
learning [33], as well as the exponential speedup in linear-system solving [34, 35], least-
square fitting [36], Boltzmann machine [37], principal component analysis [38], and support
vector machine [39].

Neural operators present an ideal application scenario for quantum neural networks
designed to accelerate the evaluation process, especially in situations where they are eval-
uated repeatedly in “outer-loop problems”, such as forward uncertainty propagation and
optimal experimental design. There is a recent development of quantum Fourier neural
operator (QFNO) [40]. Utilizing a new form of the quantum Fourier transform, QFNO
is expected to be substantially faster than classical FNO in evaluation. Instead of the
linear number of evaluations required by classical FNO, QFNO only needs a logarithmic
number of evaluations of the initial condition function, offering a significant improvement
in efficiency. The success of QFNO motivates us to explore the possibility of accelerating
other neural operators, such as DeepONet.

However, as suggested by Refs. [41, 42, 43, 44, 45], the data embedding of classical
datasets on quantum computers and hardware noise can induce barren plateaus and local
minima that damage the trainability of quantum neural networks. This issue is especially
problematic for optimizers that rely on the Fisher information matrix, as they require
an exponentially large number of measurement shots to achieve accurate computation in
barren plateaus [43].

In this study, we design an architecture for quantum DeepONet and quantum physics-
informed DeepONet (QPI-DeepONet). To circumvent the trainability issue in QNN, we
incorporate classical training and quantum evaluation by employing the orthogonal neural
network structure outlined in Ref. [46]. Our work preserves the quadratic speed-up with
respect to the input dimension in the feed-forward pass from the quantum orthogonal
neural network, with a minimal cost for classical data preprocessing before training. The
results of our numerical experiments suggest the effectiveness of neural networks in solving
different PDEs in both ideal and noisy environments. Furthermore, we conducted a detailed
analysis of the impact of quantum noise on our quantum DeepONet, demonstrating how

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 2

noise can influence performance and providing insights for the effect of noise mitigation
strategies.

The paper is organized as follows. We first present the algorithm and architecture of
quantum DeepONet in Section 2. In Section 3, we illustrate the ideal quantum simulation
results of different applications of our quantum DeepONet. Then we investigate quantum
noise and show the performance of the quantum DeepONet under two different noise models
in Section 4. Finally, we conclude our work and discuss the limitations in Section 5. The
background concepts related to quantum computing are provided in Appendices A and B.

2 Methods
In this section, we first introduce a specific quantum circuit for network layers in Section 2.1,
referred to as “quantum layers”, which are designed for constructing quantum orthogonal
neural networks (Section 2.2). Building on these foundations, we propose a novel quan-
tum DeepONet structure by synthesizing multiple quantum layers in Section 2.3. The
training method and loss function are detailed in Section 2.4. Furthermore, in addition to
data-driven training, we also propose to use a physics-informed loss function, developing
quantum physics-informed DeepONet (QPI-DeepONet) in Section 2.5.

2.1 Quantum methods for network layers
A classical neural network layer, with the input x ∈ Rn and output x′ ∈ Rm, takes
the form x′ = σ(Wx + b). Here, W ∈ Rm×n represents the weight matrix, b ∈ Rm

is the bias, and σ is the activation function. As demonstrated by Ref. [46], the matrix
multiplication Wx can be accelerated by substituting the classical matrix multiplication
with quantum matrix multiplication. The neural network layer accelerated by this quantum
algorithm is referred as a quantum layer. We provide a detailed explanation of each step
of a “quantum layer”, beginning with an introduction to the basic gate, the reconfigurable
beam splitter (RBS) gate, used in our method (Section 2.1.1). Because adding bias and
applying non-linear transformation still require classical computation, the whole quantum
layer, as depicted in Fig. 1, involves three key steps to handle classical data on a quantum
computer: (1) loading the classical data onto the quantum circuit (Section 2.1.2), (2)
performing matrix multiplication on quantum computer (Section 2.1.3), and (3) converting
the resulting quantum data back into classical data (Section 2.1.4). In Section 2.1.5, we
illustrate a specific error mitigation method resulting from the unary encoding. Finally,
we summarize and provide the complexity of each step in Section 2.1.6.

2.1.1 Reconfigurable beam splitter gate

We first introduce reconfigurable beam splitter (RBS) gate [46] as a basic tool used in our
quantum layer:

URBS(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 ,
where its basis-gate decomposition is illustrated in Appendix A. It performs rotation oper-
ation on state |01⟩ 7→ cos θ |01⟩−sin θ |10⟩ and |10⟩ 7→ − sin θ |01⟩+cos θ |10⟩, while leaving
|00⟩ and |11⟩ unchanged. By carefully designing the circuit using RBS gates and setting θ

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 3

Figure 1: The circuits of a quantum layer. A quantum layer is composed of data loading, a pyramidal
circuit, and tomography. An ancillary qubit is included for tomography. The vertical lines represent the
two-qubit RBS gates, while the θi and αi correspond to the parameter of the gate. We provide the
example of a data loader for loading the classical vector x ∈ R4 with ∥x∥2 = 1. We demonstrate a
quantum pyramidal circuit using all of the seven examples. W ∈ R4×4, W ∈ R4×3, and W ∈ R3×4

share the same pyramidal circuit. The following circuit are other examples of m ̸= n cases: W ∈ R4×2,
W ∈ R4×1, W ∈ R2×4 and W ∈ R1×4.

to the required value, we can efficiently load data (Section 2.1.2) and perform specialized
matrix multiplication operations (Section 2.1.3).

2.1.2 Loading classical data input

For a classical vector x ∈ Rn, to perform operations on quantum computers, this classical
vector must be converted into a quantum state. This process is referred to as data loading.

To load vector x onto a quantum state, it is crucial to ensure that the norm ∥x∥2 = 1,
as required by the probabilistic nature of quantum mechanics. If ∥x∥2 ̸= 1, normalization is
required. We append an additional dimension to x at the first quantum layer in the neural
network, which keeps the norm of x at 1 and in the meantime stores the information of
the original norm of x. Specifically, each element of x is first rescaled to the range [−1, 1].
Then the value

√
1 −

∑
i x

2
i /n is assigned to the new dimension. This procedure can be

viewed as data preprocessing before training, transforming the original x into
x1
x2
. . .
xn√

1 −
∑

i x
2
i /n

 ,

where xi is the ith element of x. For subsequent quantum layers in the neural network, we
simply divide x by ∥x∥2 before loading the data.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 4

The circuit for loading data is shown in Fig. 1 bottom. If m = n, the quantum
circuit we adopt will have n qubits, initialized such that the first qubit is at state |1⟩
while the remaining qubits are |0⟩. Then we apply a series of RBS gates parameterized by
(α1, α2, . . . , αn−1), where

α1(x) = arccos (x1) ,

α2(x) = arccos
(
x2 sin−1(α1)

)
,

α3(x) = arccos
(
x3 sin−1(α2) sin−1(α1)

)
,

and so on. This sequence of operations converts the initial quantum state to

|x⟩ = cosα1 |10 . . . 0⟩ + sinα1 cosα2 |01 . . . 0⟩ + . . .+ sinα1 sinα2 . . . sinαn−1 |00 . . . 1⟩
= x1 |10 . . . 0⟩︸ ︷︷ ︸

|e1⟩

+x2 |01 . . . 0⟩︸ ︷︷ ︸
|e2⟩

+ . . .+ xn |00 . . . 1⟩︸ ︷︷ ︸
|en⟩

.

The configuration, where one qubit is in state |1⟩, while all others are in state |0⟩, is referred
to as a “unary state”. For simplicity, the jth unary state is denoted as |ej⟩. Therefore,
the information of x is encapsulated in |x⟩ represented as the superposition of these unary
states. Once data is loaded into the superposition of unary states, all of our subsequent
operations, which utilize the RBS gate and only include transformations between |ej⟩
states, are effectively confined to these unary states. This implies that the unary subspace
throughout the entire process, allows us to employ the tomography, which will be further
explained in Section 2.1.4.

On the other hand, when output and input dimensions are different (m ̸= n), the
number of qubits required in the circuit will be max(m,n). If the output dimension is
smaller than the input dimension, i.e., m < n, the data is loaded onto all n qubits.
Conversely, if m > n, the classical vector x is loaded onto the bottom n qubits in the
circuit, leaving upper m− n qubits at |0⟩.

2.1.3 Quantum pyramidal circuit

When classical data x is loaded onto the quantum circuit, matrix multiplication y =
Wx, where y ∈ Rm, can be performed in quantum space. Here we adopt the quantum
pyramidal circuit proposed in Ref. [46]. Such pyramidal circuit features orthogonal matrix
multiplication, meaning that the corresponding W is orthogonal.

We first introduce the quantum pyramidal circuit for m = n cases. The basic idea of
this method is to decompose the orthogonal matrix W into a series of rotation matrices,
which can be represented by RBS gates. These decomposed rotation matrices can be
parameterized with angles θ1, θ2 . . . , θd, where d = n(n − 1)/2. All of the parameterized
RBS gates are arranged in a pyramid configuration. We take the W ∈ R4×4 matrix in
Fig. 1 as an example. On the loaded vector x, the pyramidal portion of the circuit conducts
y = Wx, where W is(

Cθ1 Sθ1
−Sθ1 Cθ1

1
1

)(
1

Cθ2 Sθ2
−Sθ2 Cθ2

1

)(
Cθ3 Sθ3

−Sθ3 Cθ3
Cθ4 Sθ4

−Sθ4 Cθ4

)(
1

Cθ5 Sθ5
−Sθ5 Cθ5

1

)(
Cθ6 Sθ6

−Sθ6 Cθ6
1

1

)
.

Cθj
and Sθj

are cos θj and sin θj for any j, respectively. Therefore, the resulting quantum
state is

|y⟩ = |Wx⟩ =
∑
i,j

Wjixi |ej⟩ .

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 5

If m ̸= n, the construction of the pyramidal circuit is the same as Ref. [46]. Examples of
this include W ∈ R4×1, W ∈ R1×4 and so on, as shown in Fig. 1. Note that for |m−n| = 1
cases, the pyramidal circuit is the same as m = n cases. However, due to the difference in
data loading and tomography process, the quantum layer is distinct.

2.1.4 Tomography for extracting classical output

After performing matrix multiplication in quantum space, it is necessary to convert the
quantum information back to classical form for further processing, such as adding bias and
applying non-linear transformation. This process is known as tomography. Tomography
could commonly be expensive in terms of quantum resources when extracting the complete
information from quantum states [47, 48, 49]. However, in our method, the usage of unary
state sparsely encodes information in Hilbert space and provides a feasible and efficient
tomography method. This tomography method, proposed by Ref. [46], is illustrated in
Fig. 1 middle.

We introduce an ancillary qubit and implement a Hadamard (H) and a CNOT gate
between the ancillary qubit and the first data loader qubit before loading data (see Ap-
pendix A for the definition of gates). After the pyramid gate, the circuit performs an
adjoint operation of the data loader of a uniform norm-1 vector

(
1√
r
, 1√

r
, . . . , 1√

r

)
, where

r = max(m,n) represents the number of qubits excluding the ancillary qubit. This is
followed by an X gate and a CNOT gate.

Finally, we load
(

1√
r
, 1√

r
, . . . , 1√

r

)
and a Hadamard gate. In this way, the final quantum

state in the circuit is

1
2
∑

j

(∑
i

Wjixi + 1√
r

)
|0, ej⟩ + 1

2
∑

j

(∑
i

Wjixi − 1√
r

)
|1, ej⟩ , (1)

where |ξ, ej⟩ indicates the ancillary qubit is in state |ξ⟩ for ξ ∈ {0, 1}, and the rest qubits
are in the state |ej⟩. Thus, for each yj =

∑
iWjixi, the tomography includes two steps:

1. Sign recovery: noticing that

Pr[0, ej] − Pr[1, ej] = 1/
√
r
∑

i

Wjixi = yj/
√
r,

we have

sign(yj) =
{

+1, if Pr[0, ej] ≥ Pr[1, ej]
−1, otherwise

.

2. Value recovery:

yj =

sign(yj) ·
(
2
√

Pr[0, ej] − 1√
r

)
, if sign(yj) > 0

sign(yj) ·
(
2
√

Pr[1, ej] + 1√
r

)
, otherwise

. (2)

In this scheme, the error of the estimating yj is independent of the dimension of the
problem r. As the tomography circuit has depth O(n), the tomography process maintains
a complexity of O(n/δ2) where δ is the tomography error and 1/δ2 is the number of
measurements. The scale of the tomography error is further explained in Section 4.1.

When the output dimension is smaller than the input dimension (m < n), the tomog-
raphy circuit is still the same, but only the information of bottom m qubits are finally
considered. In other words, the ej in Eqs. (1) to (2) refers to jth unary state for the
bottom m qubits. Consequently, the output

∑
iWjixi is restricted to size m.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 6

2.1.5 Error mitigation

If the quantum circuit includes quantum noise, error mitigation methods could be intro-
duced during tomography based on the system’s properties. We apply the same method
as in Ref. [46], where only unary measurement outcomes are kept and all the other non-
unary outcomes are discarded. For example, if the measurement results in 0010, it is a
valid result to keep; if the measurement yields 0110, then this result is ignored because it
is not a unary string. This post-selection technique is a benefit of unary encoding. The
improvement on the L2 error from this method, along with the percentages of kept and
discarded shots, will be demonstrated in Figs. 8B, C, and D in Section 4.3.2. In general, it
provides a significant decrease in L2 error across different levels of depolarizing error and
finite-sampling error.

2.1.6 Summary and remarks

In conclusion, the structure of a complete quantum layer is shown in Fig. 1. The number of
qubits needed is 1+max(m,n) for W ∈ Rm×n, in which the top 1 qubit is an ancillary qubit
for tomography purposes, while other qubits are used to store information and perform
operations. Sequentially, we implement data loading, pyramidal circuit, and tomography,
and thus complete the matrix multiplication in quantum space.

Complexity. Quantum layers can accelerate the feedforward pass, achieving a complex-
ity of O(n/δ2). Here, δ is the threshold for the tomography error. This complexity is
the result of the full O(n)-depth circuit in Fig. 1 with O(1/δ2) number of measurements
in the data extraction. We will explicitly discuss the statistical error scaling in the data
extraction in Section 4.1. The complexities of all the components of quantum layers are
shown in Table 1. The depth of a single-layer circuit in Fig. 1 has at most 3n+ O(1) RBS
gates. This is counted by first considering the bigger pyramidal group of RBS gates with
depth at most 2n + 1 by combining the component “Load x”, “Pyramid W”, and “Load†

1/
√
r”. Then, the right-most “Load 1/

√
r” has depth n− 1 and there are some extra O(1)

depths from the remaining gates related to the ancillary qubit. Providing the transpilation
of the RBS gate in Appendix A, the circuit in Fig. 1 maintains an O(n) depth in terms of
basis gates. Fig. 2 illustrates this linear relation with and without gate optimization from
Qiskit.

Table 1: Complexity of each step of a quantum layer. Here, n is the input dimension, and δ
represents the threshold for the tomography error.

Operation Doading input data Quantum pyramidal circuit Extracting output

Complexity O(n) O(n) O(n/δ2)

2.2 Quantum orthogonal neural network
By integrating multiple quantum layers, we can construct a quantum orthogonal neural
network (QOrthoNN). The input vector goes through a linear transformation in quantum
space and is then measured and convert to classical space (Fig. 3). Although not shown in
the diagram, we add bias and apply non-linear transform thereafter classically. We proceed
to the next layer and perform similar process. The sequence can be repeated several times
until we reach the last layer, which consists solely of a classical linear transform. The

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 7

Figure 2: Circuit depth growth for a circuit of the single all-to-all quantum layer in Fig. 1.
The basis gate set is {ECR,RZ, SX,X}. Two levels of gate optimization with Qiskit transpiler
are considered: level 0 means no optimization and level 2 includes qubit-layout optimization, inverse
cancellation, 1-qubit gate optimization, and commutative cancellation.

dimension and norm of the quantum neural network output of is determined by the output
layer, giving that former quantum layers always constrain the norm of processed vector to
be 1.

2.3 Quantum DeepONet
DeepONet is a neural network architecture that aims to learn operators mapping between
two infinite-dimensional function spaces. The most popular application of DeepONet is
solving PDEs. Our goal is often to predict functions satisfying the PDEs under varying
conditions, which could be the initial conditions, boundary conditions or coefficient fields
of the PDEs. We define the input function v ∈ V over the domain D ⊂ Rd as

v : D ∋ x 7→ v(x) ∈ R,

and similarly, we define the output function u ∈ U over D′ ⊂ Rd′ , which is described as

u : D′ ∋ ξ 7→ u(ξ) ∈ R.

Suppose V and U are Banach spaces, and consider a parametric PDE taking the form

N (v, u) = 0,

where N is a differential operator. The mapping between the input function space V and
output function space U is defined the operator:

G : V ∋ v 7→ u ∈ U .

DeepONet, therefore, is used to approximate G.
A DeepONet includes a branch net and trunk net, each with an equivalent number of

output neuron, denoted by p. The branch and trunk nets can adopt arbitrary architec-
tures, like fully connected neural network (FNN), convolutional neural network (CNN),
recurrent neural network (RNN), and residual neural network (ResNet). A diagrammatic
representation of DeepONet is illustrated in the center of Fig. 3. The branch network
receives the input function evaluated at a discrete set of points {z1, z2, . . . , zq}, repre-
sented by [v(z1), v(z2), . . . , v(zq)]. The trunk net is fed with the location ξ at which

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 8

Figure 3: Architecture of quantum DeepONet. DeepONet consists of two subnetworks: the branch
net and the trunk net. In quantum DeepONet, we replace these with QOrthoNN, which is composed
of several quantum layers arranged sequentially. The addition of biases and nonlinear operations are
performed on classical computers.

the output function is evaluated, which can include both time and space coordinates.
The outputs of the branch and trunk networks are denoted by [b1(v), b2(v), . . . , bp(v)] and
[t1(ξ), t2(ξ), . . . , tp(ξ)]. Thus, the final output of DeepONet is the sum of the dot product
of the branch and trunk network outputs and a bias b0 ∈ R, expressed as

G′
θ(v)(ξ) =

p∑
k=1

bk(v)tk(ξ) + b0,

where G′ denotes the learned approximation of operator G, and θ is the trainable parameter
of the network.

In this work, we propose a modification to the DeepONet framework by replacing the
conventional branch and trunk networks with QOrthoNN (Fig. 3). We refer to the resulting
model as quantum DeepONet.

2.4 Training quantum DeepONet
Up to this point, we have introduced QOrthoNN and the quantum DeepONet, but we
have not yet discussed the training process of these quantum networks. Adapting the
backpropagation scheme from Ref. [46] for the pyramidal circuit, we train the network on
classical computers, utilizing a classical orthogonal neural network (OrthoNN) that shares
the same mathematical expression as QOthoNN. OrthoNN benefits from the properties of
orthogonality, such as improved accuracy and better convergence during training [50, 51],

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 9

while maintaining the same asymptotic running time as a standard neural network. After
training, we substitute the angular parameters of the RBS gates in the quantum circuits
with trained paramters during the evaluation phase. It is during this evaluation phase on
quantum computers that we anticipate significant acceleration benefits.

The comparison between the QOrthoNN, OrthoNN and the standard neural network is
presented in Table 2. While OrthoNN and standard neural network both have a quadratic
dependency on the input dimension n for the forward pass, the QOrthoNN only requires
a linear dependency, achieving a quadratic improvement in terms of the input dimension.
This reduction in computational complexity is especially advantageous in scenarios where
the input dimension is large and frequent evaluations are needed, such as in the quantum
DeepONet.

Table 2: Comparison of complexity for three networks. n and δ represent the input dimension and
threshold for the tomography error, respectively.

Algorithm Feedforward pass Weight matrix update

Quantum orthogonal neural network (QOrthoNN) [46] O(n/δ2) –

Classical orthogonal neural network (OrthoNN) [46] O(n2) O(n2)

Standard neural network O(n2) O(n2)

For data-driven training of quantum DeepONet, we sample N distinct input functions
{v(i)}N

i=1 from V, and Q locations {ξ(i)
j }Q

j=1 in the domain of G(v(i)) for each input function

v(i) as the inputs of training dataset. The corresponding solution G(v(i))(ξ(i)
j) is taken as

the label of training dataset. The loss of DeepONet can therefore be expressed as

Loperator(θ) = 1
NQ

N∑
i=1

Q∑
j=1

∣∣∣G′
θ(v(i))(ξ(i)

j) − G(v(i))(ξ(i)
j)
∣∣∣2 . (3)

To summarize, the workflow of our quantum method is divided into three distinct
phases:

• Training quantum DeepONet on classical computer;

• Transferring of parameters to quantum layer;

• Execution on quantum computer or simulator for evaluation.

Hence, the primary speedup offered by our method originates from the evaluation phase,
while the training phase maintains a complexity comparable to that of standard neural
networks.

2.5 Quantum physics-informed DeepONet
We further introduce physics-informed loss term during training,

Lphysics(θ) = 1
NQ

N∑
i=1

Q∑
j=1

∣∣∣N (
v(i),G′

θ(v(i))(ξ(i)
j)
)∣∣∣2 . (4)

The total loss function is therefore

L(θ) = Lphysics(θ) + Loperator(θ),

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 10

where Loperator has the same definition as Eq. (3), but only includes the initial conditions
and boundary conditions. By introducing the physics information into our network, we can
reduce the demand of data and even train the network in the absence of solution input-
output pairs. We name such architecture as quantum physics-informed DeepONet (QPI-
DeepONet). In evaluation stage, QPI-DeepONet follows the same procedure as ordinary
quantum DeepONet.

In some cases, we can embed boundary conditions into the network architecture, known
as hard constrain [52]. For example, to enforce Dirichlet BCs Gθ(v)(ξ) = g(ξ) for ξ ∈ ΓD,
we can construct the quantum DeepONet output as

G′′
θ(v)(ξ) = g(ξ) + ℓ(ξ)G′

θ(v)(ξ),

where G′
θ(v)(ξ) is the output of vanilla quantum DeepONet, and ℓ(ξ) satisfy{

ℓ(ξ) = 0, ξ ∈ ΓD,
ℓ(ξ) > 0, otherwise.

For periodic boundary condition, e.g., G(v)(ξ) is periodic with respect to ξ of the period
P in 1D, we can directly substitute trunk input ξ with Fourier basis

{1, cos(ωξ), sin(ωξ), cos(2ωξ), sin(2ωξ), . . .}

with ω = 2π/P .
The branch inputs of DeepONet are often high-dimensional. To include the information

of input functions, especially for less smooth v, more sensors are needed [13]. In some of
the examples (Section 3.5), we apply principal component analysis (PCA) [53] to reduce
input dimension.

3 Ideal quantum simulation results
To demonstrate the efficacy of our method, we first use QOrthoNN to approximate certain
functions (Section 3.1). Subsequently, we move to the application of quantum DeepONet
on learning ODE and PDE problems, including the antiderivative operator (Section 3.2),
advection equation (Section 3.3), and Burgers’ equation (Section 3.4). Finally, we test
QPI-DeepONet using the antiderivative operator and Poisson’s equation (Section 3.5).

We implement the classical training by using the library DeepXDE [8]. After classical
training on OrthoNN, we extract the weights and biases and construct a quantum version
incorporating quantum layers, applying Qiskit [54] for quantum simulation. It is important
to note that, in this section, we adopt an idealized scenario during quantum simulation.
This approach excludes any quantum and statistical noise, aiming to assess the theoretical
accuracy and performance of the quantum model. Table 3 presents the neural network
hyperparameters, such as the learning rate and the number of iterations used in Adam
optimization [55], along with the errors of different examples. The code of all examples is
published on GitHub (https://github.com/lu-group/quantum-deeponet).

3.1 Function approximation
In this section, we adopt two functions to test the accuracy of QOrthoNN. We first consider
a function

Function 1: f(x) = 1
1 + 25x2 , x ∈ [−1, 1],

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 11

https://github.com/lu-group/quantum-deeponet

Table 3: The default parameters and test L2 relative error for different examples of quantum
DeepONet. For quantum DeepONet, the first number in the “Depth” column is the depth of the
branch net, and the second number is the depth of the trunk net. The same for the “Activation”
column. The “Error” column presents results for both classical training and ideal simulation, as they
are identical for all examples. Here, “classical” denotes the use of classical DeepONet to benchmark
against the quantum DeepONet. In classical DeepONet, we have utilized a smaller network depth to
ensure that the number of trainable parameters remains comparable to those in the quantum version.

Example Depth Width Activation Learning rate Iteration Error

§3.1 Function 1 3 3 Tanh 0.0001 5 × 104 0.15%
§3.1 Function 2 4 10 ReLU 0.0005 4 × 104 1.49%
§3.2 Antiderivative (l = 1.0) [2,2] 10 ReLU, ReLU 0.001 3 × 104 0.49%
§3.2 Antiderivative (l = 0.5) [2,2] 20 ReLU, ReLU 0.001 3 × 104 0.84%
§3.3 Advection [7,7] 21 SiLU, SiLU 0.0005 4 × 104 2.25%
§3.3 Advection (classical) [4,4] 21 SiLU, SiLU 0.0005 4 × 104 1.91%
§3.4 Burgers’ [6,6] 20 SiLU, SiLU 0.0005 3 × 104 1.38%
§3.4 Burgers’ (classical) [3,3] 20 SiLU, SiLU 0.0005 3 × 104 1.05%

and approximate it using OrthoNN. We choose 80 points for training and 100 points for
testing, where x is uniformly sampled in [−1, 1]. Specifically, for this example, we use the
tanh activation function to circumvent the “dying ReLU” problem [56], which is particularly
relevant here given the small width of the network.

For this function 1, we can achieve a small L2 relative error of 0.149% for the testing
set after training classically. Following classical training, we construct QOrthoNN using
the pyramidal quantum circuit, based on the classically training parameter. The ideal
quantum simulation yields an error identical to classical training: 0.149%. Essentially,
OrthoNN and QOrthoNN are the same neural network, differing only in their prediction
methods—one is executed on a classical computer, while the other is run on a quantum
simulator. The results for true function, OrthoNN, and QOrthoNN are plotted in Fig. 4A,
where the three lines align closely with each other.

Figure 4: Quantum simulation result of function predictions. The black, red, and blue lines
represent the reference solution, classical prediction of OrthoNN, and ideal quantum simulation result
of QOrthoNN, respectively. (A) Results for f(x) = 1/(1+25x2). (B) Results for f(x) =

∑4
k=1 sin(kx).

Then, we consider a more complex case for function approximation:

Function 2: f(x) =
4∑

k=1
sin(kx), x ∈ [−π, π].

We use 200 training points, and 100 testing points. Three quantum layers and an output
layer with a width of 10 are adopted in the training. The testing error reaches a low

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 12

relative error of 1.49%. The ideal quantum simulation result is also 1.49%, highlighting
the proficiency of OrthoNN and QOrthoNN (Fig. 4B).

3.2 Antiderivative operator
Next, we examine quantum DeepONet by starting with an antiderivate operator:

du(x)
dx

= v(x), x ∈ [0, 1], (5)

with initial condition u(0) = 0. Here, our goal is to learn the operator

G : v → u.

To generate the input function v(x), we use Gaussian Random Field (GRF):

v ∼ GP(0, kl(x1, x2)),

where kl(xi, xj) = exp
(
−d(xi,xj)2

2l2

)
denotes the radial basis function (RBF) kernel. In this

context, d(·, ·) is the Euclidean distance between two points, and l represents the length
scale of the kernel, which modulates the smoothness of the generated function. Specifically,
an increase of the value of l leads to a smoother generated function. Therefore, we can
adjust l depending on our desired level of function’s complexity.

In this example, we explore two scenarios with different length scales: l = 1.0 and
l = 0.5, corresponding to different size of the network during training. We achieved small
errors of 0.49% and 0.84%, respectively in these two scenarios for both the training of
quantum DeepONet and ideal simulation (Table 3).

3.3 Advection Equation
Consider the 1D advection equation:

∂u

∂t
+ ∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0, 1],

with initial condition u(x, 0) = u0(x) and periodic boundary condition. Our objective is
to learn the operator that maps u0(x) to the solution u(x, t):

G : u0(x) 7→ u(x, t).

The initial condition u0(x) is sampled from GRF with Exp-Sine-Squared kernel, formulated
as

k(xi, xj) = exp
(

−2 sin2 (πd(xi, xj)/p)
l2

)
.

Here, p is the periodicity of the kernel and is set to 1. We choose l = 1.5 and derive the
ground truth using the analytical solution u(x, t) = u0(x − t). For branch inputs u0(x),
20 sensors are uniformly placed (see one example in Fig. 5A left). Regarding the trunk
inputs, we employ a grid of 50 × 50 points, covering the range of x and t. We implement
the ResNet [57] architecture in both branch and trunk nets, which has a formulation of
x′ = σ(Wx+b)+x for each layer. This approach effectively mitigate the issue of gradient
vanishing during training. The final test error of classical prediction reaches 2.25%. Ideal
simulation of quantum DeepONet yields the same error: 2.25%. The quantum DeepONet,
with 3081 trainable parameters, matches the accuracy of the classical DeepONet, which
achieves an error of 1.91% using 3171 trainable parameters (Table 3). Fig. 5A provides
an example of illustrating the ground truth, predictions of quantum DeepONet, and the
absolute error between them.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 13

Figure 5: Examples of quantum DeepONet prediction for two PDEs. (A) Advection equation.
(B) Burgers’ equation.

3.4 Burgers’ Equation
Based on the linear advection equation example, we further examine the non-linear 1D
Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 , x ∈ [0, 1], t ∈ [0, 1],

with initial condition u0(x) and periodic boundary condition, where ν = 0.05 is the vis-
cosity. We aim to learn the mapping from u0(x) to the solution u(x, t). Additionally,
recognizing the periodic nature of the output function u(x, t), instead of directly input
ξ for trunk net, we expand it to [ξ, cos(2πξ), sin(2πξ), cos(4πξ), sin(4πξ)]. Other neural
network settings are the same as Section 3.3, except for the depth and width. With
comparable number of trainable parameters (2429 for quantum DeepONet and 2260 for
classical DeepONet), the classical DeepONet achieves an error of 1.05%, whereas the quan-
tum DeepONet sustains comparable performance, exhibiting a classical test relative error
of 1.38%, and an ideal quantum simulation test error of 1.38%. An example of the ground
truth and prediction of quantum DeepONet is shown in Fig. 5B.

3.5 Quantum physics-informed DeepONet
In this section, we further show that our quantum DeepONet can also be trained using
physics-informed loss term (Eq. (4)), without labeled data. We choose the antiderivative
equation in Eq. (5) for comparison with a data-driven case in Section 3.2. Additionally,
1D Poisson’s equation

∂2u

∂x2 = v(x),

with zero Dirichlet boundary condition is also considered for demonstration. The branch
inputs in both cases are the v(x) in equations, which are generated by GRF with RBF
kernel. To facilitate training and keep PDE residual within a reasonable range, in Poisson’s
equation, we multiply the generated GRF with a factor of 10 and take the enlarged function
as an input sample. The boundary condition is hard constrained using corresponding neural
network architecture as mentioned in Section 2.5. Zero coordinate shift algorithm [58] is
utilized to reduce GPU memory consumption and training time. During the training, the

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 14

number of input samples is 10000 with batch size = 2000. Adam optimization is used
with 2 × 105 iteration. The PDE residual is evaluated at 100 uniformly distributed points
in [0, 1]. During the training, we employed PCA with the original dimension 100. The
training results are shown in Table. 4. Ideal quantum simulation results also agree well
with classical training results for all of these examples, shown “L2 relative error” column.

We also conducted experiments without any dimension reduction techniques. For an-
tiderivative with initial condition l = 1, using branch and trunk net with a depth of 3
and width of 10, the test L2 relative error is 4.05%. For comparison, using the same
hyperparameters with PCA, which projects the original 100 dimensions down to 10, re-
sulted in an error of 0.76%. We believe this difference is due to the critical dependency
of QPI-DeepONet on the sampling of input sensors. As derivatives are taken with respect
to the inputs, QPI-DeepONet is more sensitive to the input data. PCA enables us to
incorporate more information within a limited input dimension. The limitations of current
quantum devices compel us to use narrower neural networks, leading to sparse sampling
of the branch input.

Table 4: Hyperparameters and training results of QPI-DeepONet for two PDEs with various
input function complexity. The activation function used for all examples is Tanh. The “L2 relative
error” column presents results for both classical training and ideal simulation, as they are identical for
all examples.

Example Number of PCs Depth Width L2 relative error
Antiderivative (l = 1) 10 [3,3] 20 0.76%
Antiderivative (l = 0.5) 10 [4,4] 20 1.21%
Antiderivative (l = 0.2) 19 [5,5] 20 1.91%
Poisson’s (l = 1) 10 [3,3] 20 0.95%
Poisson’s (l = 0.5) 10 [5,5] 20 1.55%
Poisson’s (l = 0.2) 19 [7,7] 20 2.31%

4 Effects of noise
Quantum noise is a major obstacle to the practicality of a quantum algorithm in the
noisy intermediate-scale quantum (NISQ) era. It emerges from various sources, including
the imperfect implementation of quantum operators, undesired environmental or qubit
interactions, and erroneous state preparation or measurement. During the execution of a
quantum circuit, the accumulated errors produced by the noise can destroy any information
we intend to obtain. Meanwhile, even in a fault-tolerant scenario, the inaccuracy resulting
from the finite number of measurements still affects the error level and complexity of the
neural network, making it unavoidable to discuss the feasibility of our work on near-term
quantum computers. Thus, in Sections 4.1 and 4.2, we first provide a theoretical analysis
of the effects of finite-sampling noise on the single RBS gate and tomography outputs and
a well-known noise channel, depolarizing noise, respectively. Then, we demonstrate our
noisy simulation results of quantum DeepONet under both types of noise, as well as a more
comprehensive noise model emulating a real IBM quantum computer in Section 4.3.

4.1 Finite-sampling noise in tomography
In the tomography step (Section 2.1.4), the probabilities Pr[0, ej] and Pr[1, ej], for j ∈
{1, ..., r}, are estimated from the frequencies of measurement outcomes, where n is the

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 15

input vector dimension, m is the output vector dimension, and r = max(m,n). This
introduces an additional error in the estimation of output vector y, caused by the finite
number of measurements (shots). Let q(0,j) be the probability of measuring |0, ej⟩ in
tomography layer, and q̂(0,j) be the estimated value from Nshot shots. To estimate the size
of the finite-sampling error, we first calculate the standard deviation of q̂(0,j).

Let Z(0,j)
k be a Bernoulli random variable

Z
(0,j)
k =

{
1 , if measures |0, ej⟩ in kth shot with probability q(0,j)

0 , otherwise

and S(0,j) =
∑Nshot

k=1 Z
(0,j)
k ∼ Bin

(
Nshot, q

(0,j)
)
. Thus, we have

q̂(0,j) = S(0,j)

Nshot
.

It follows that E
[
q̂(0,j)

]
= q(0,j) and, asymptotically, the delta method yields

(√
q̂(0,j) −

√
q(0,j)

)
d−→ N

(
0, 1 − q(0,j)

4Nshot

)
,

where · d−→ · indicates converge in distribution. With Eq. (2), for yj ≥ 0, the standard
deviation of the estimated yj is

Std [yj] = Std
[
sign(yj)

(
2
√

Pr[0, ej] − 1√
r

)]

= 2 · Std
[√

q̂(0,j)
]

≈

√
1 − q(0,j)
√
Nshot

∝ 1√
Nshot

, (6)

where q(0,j) ∈ [0, 1]. Similarly, defining q̂(1,j) as the probability of measuring |1, ej⟩ in
tomography layer and letting q̂(1,j) be its estimate from Nshot shots, we also have Std [yj] ∝
1/N−0.5

shot for yj < 0. In conclusion, the finite-sampling error on the estimation of output
vector y ∈ Rr is proportional to N−0.5

shot when Nshot is large enough.

4.2 Depolarizing noise on a RBS gate
The depolarizing noise is a widely adapted noise channel in analyzing the effects of quantum
noise on variational quantum circuits [41, 59, 42, 60]. We look closer at how this type of
noise affects a quantum layer composed of RBS gates and how the gate’s parameter values
influence the level of error induced. Note that the statevector representation becomes
insufficient to depict the quantum system under the influence of quantum noise. So, we
use the density matrix to represent quantum states. A brief introduction to the definition
and computation of the density matrix is provided in Appendix B.

The specific type of noise in our interest is depolarizing noise. The n-qubit depolarizing
channel has the expression [61]

E(ρ) = (1 − λ)ρ+ λ
I(2r)

2r
, (7)

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 16

where ρ is an arbitrary r-qubit density matrix, λ is a noise parameter, and I(2r) is a
2r-by-2r identity matrix. Specifically, in a 2-qubit case, Eq. (7) is equivalent to

E(ρ) = (1 − λ)ρ+ λ
I(4)

4

= (1 − λ)ρ+ λ

16
∑

i,j∈[4]
(Li ⊗ Lj)ρ(Li ⊗ Lj), (8)

where L = {X,Y, Z, I} is the set of Pauli matrices and the 2-by-2 identity matrix I. In
other words, the effect of 2-qubit depolarizing noise means there is 1 − 15λ/16 chance that
the state ρ remains unaffected, and an equal chance that any of the 15 possible 2-qubit
Pauli noise occurs on the state ρ. To further illustrate the impact of a noisy RBS gate, we
consider a noise model where a noiseless RBS gate is first applied to the state ρ, followed
by a depolarizing channel, resulting in the final state ρ′. In particular, we have

ρ′ = E
(
URBSρU

†
RBS

)
= (1 − λ)

(
URBSρU

†
RBS

)
+ λ

16
∑

i,j∈[4]
(Li ⊗ Lj)

(
URBSρU

†
RBS

)
(Li ⊗ Lj). (9)

However, the difference between ρ and ρ′ is not in our interest since only the 2nd, and the
3rd elements of the diagonals of ρ and ρ′ contain the relevant information.

To put the discussion in the pyramidal circuit setting, let the normalized input vector
be x = (x1 x2)T ∈ R2, x2

1 + x2
2 = 1, and the vector after the linear transformation is

y = Wx. Let y′ denote the noisy version of y due to the depolarizing noise in a RBS gate,
and ·◦2 represent the Hadamard (element-wise) square. Because we only encode the entry
values of x and y on the coefficients of |01⟩ and |10⟩, the vector y◦2 is the vector consists
of the 2nd and 3rd elements of the diagonal of URBSρU

†
RBS and

(
y◦2)′ is the vector of the

2nd and 3rd elements of the diagonal of ρ′. Define function diag : Rr×r → Rr that extracts
the diagonal of a matrix into a vector. In this case, the density matrix ρ is

ρ =


0
x1
x2
0

 (0 x1 x2 0) =


0 0 0 0
0 x2

1 x1x2 0
0 x1x2 x2

2 0
0 0 0 0

 , (10)

and

y◦2 =
(
y2

1
y2

2

)
=

diag
(
URBSρU

†
RBS

)
2

diag
(
URBSρU

†
RBS

)
3

 =
(

(x1 cos θ + x2 sin θ)2

(−x1 sin θ + x2 cos θ)2

)
.

Combining Eqs. (9) and (10), the noisy output is

(
y◦2
)′

=
(

(y′
1)2

(y′
2)2

)
=
(

diag (ρ′)2
diag (ρ′)3

)

= 1
4

(
λ (−x1 sin θ + x2 cos θ)2 − 3λ (x1 cos θ + x2 sin θ)2 + 4 (x1 cos θ + x2 sin θ)2

4 (−x1 sin θ + x2 cos θ)2 − 3λ (−x1 sin θ + x2 cos θ)2 + λ (x1 cos θ + x2 sin θ)2

)
.

Determining the sign of each entry of y and y′ requires an additional tomography step as
shown in Fig. 1 middle, which may also introduce noise. For simplicity, we only compute

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 17

the L2 relative error of |y|,

∥|y| − |y′|∥2

∥|y|∥2
= ∥|y| − |y′|∥2 =

√
(|y1| − |y′

1|)2 + (|y2| − |y′
2|)2

=
1
2

√√√√√√
(√

λ (x1 sin θ − x2 cos θ)2 − 3λ (x1 cos θ + x2 sin θ)2 + 4 (x1 cos θ + x2 sin θ)2 − 2 |x1 cos θ + x2 sin θ|
)2

+
(√

−3λ (x1 sin θ − x2 cos θ)2 + λ (x1 cos θ + x2 sin θ)2 + 4 (x1 sin θ − x2 cos θ)2 − 2 |x1 sin θ − x2 cos θ|
)2

(11)

since |y| is a normalized vector. Eq. (11) shows that the L2 relative error of |y| is a periodic
function with respect to θ in a period of π/2 and the value of λ controls the amplitude of
the function. The reverse triangle inequality guarantees that the L2 relative error of y is
always lower-bounded by that of |y|

∥|y| − |y′|∥2

∥|y|∥2
=
√

(|y1| − |y′
1|)2 + (|y2| − |y′

2|)2 ≤
√

(y1 − y′
1)2 + (y2 − y′

2)2 = ∥y − y′∥2 = ∥y − y′∥2

∥y∥2
.

We numerically illustrate Eq. (11) in Fig. 6 with x1 = x2 = 1/
√

2 for λ = 0.1 and
λ = 0.05. To show that our computation is consistent with the noise model in Qiskit
Aer, we also provide the estimations from the samples in the Qiskit Aer simulator with
simulated depolarizing noise models. Each data point in the simulated case in Fig. 6 is
the average of 100,000 samples from the simulator. Since y and y′ are non-negative in the
experiments in Fig. 6, the plot equivalently shows the L2 relative error of y.

0 π/2 π 3π/2 2π

θ

0.00

0.05

0.10

0.15

0.20

L
2
 re

la
tiv

e
er

ro
r

Theortical, λ= 0.1

Simulated, λ= 0.1

Theortical, λ= 0.05

Simulated, λ= 0.05

Figure 6: Errors of the output vector, y, due to the 2-qubit depolarizing noise on a single
RBS gate as a function of the angle of the RBS gate, θ. The initial state in the circuit is[
0, 1/

√
2, 1/

√
2, 0

]T . Each simulated data point is averaged from 100,000 samples in the Qiskit Aer
simulator with a simulated depolarizing noise model.

4.3 Noisy simulation results
In our subsequent investigation, we adopt two types of noise models to assess the accuracy
of quantum layers under noisy conditions. The first approach, the simplified noise model,
incorporates only 1-qubit and 2-qubit depolarizing noise channels on all basis gates. The
goal of using this model is to examine the noise resilience of pyramidal circuits and the
effects of the error mitigation technique on this well-researched noise channel, depolarizing
noise channel. In the experiments, we select several different values for 1-qubit noise

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 18

parameter λ, defined in Eq. (7), and set the 2-qubit noise parameter λ′ := 0.8λ. This
is to guarantee both noise channels have the same error rate. Recall Eq. (7), 1-qubit
depolarizing noise channel has the expression

Edep(ρ) = (1 − λ)ρ+ λ
I

2 =
(

1 − 3
4λ
)
ρ+ λ

4 (XρX + Y ρY + ZρZ) .

So the error-free probability is 1 − 0.75λ. Similarly, the error-free probability for a 2-qubit
depolarizing noise channel is 1 − 0.9375λ′, as shown in Eq. (8). By setting λ′ = 0.8λ, the
two probabilities become equal. In our experiments, we choose the values of λ from 0 to
2×10−3 since the gate error rates on real IBMQ quantum computers are of a similar scale,
as indicated in Table 5.

Table 5: 1-qubit basis gate error rates, 0.75λ, among all qubits on selected IBMQ quantum
computers (data collected on May 21, 2024 [62]).

ibm_osaka ibm_brisbane ibm_sherbrooke ibm_torino
Average 1.37 × 10−3 6.29 × 10−4 2.07 × 10−4 1.53 × 10−3

Median 2.68 × 10−4 2.38 × 10−4 5.08 × 10−4 3.52 × 10−4

While the first approach aims for a direct and intuitive evaluation of the accuracy
of pyramidal circuit under a noisy environment, depolarizing noise is insufficient to fully
reflect the noise in real quantum computers and the 2-qubit gates usually have less fidelity
than 1-qubit gates [63, 64, 65]. To fill this gap, we also carry out experiments with the
second approach: the backend-noise model from Qiskit Aer [54, 66]. The backend-noise
model is in composite of

• measurement noise: emulated by classical 1-qubit bit-flip error in the measurement;

• gate noise: emulated by the combination of 1-qubit depolarizing error and thermal
relaxation error, while the 2-qubit error operator is the tensor product of 1-qubit
error operators.

The parameters of the backend-noise model come from the regular benchmarking tests
performed by the device vendor. By comparing these models, we can identify the feasibility
of our quantum neural network and provide benchmarks for the improvement of near-term
quantum computers.

4.3.1 Function approximation

To demonstrate the impact of quantum noise, we first choose the example of function
approximation f(x) = 1/(1 + 25x2) in Section 3.1 function 1. All of the following results
are calculated in a Qiskit simulator.

We investigate the impact of finite-sampling error by varying the number of shots,
Nshot, i.e., how many times we do the measurement to reconstruct the quantum state.
The error with respect to true function value decreases when we increase the number of
shots (Fig. 7A). In this example, when the number of shots reaches 108, the shots-based
simulation result is close to the ideal simulation result. We further analyzed the error
between shots-based and ideal simulation (Fig. 7B), which is exactly the finite-sampling
error mentioned in Section 4.1. The error in Fig. 7B is proportional to N−0.5

shot , which fits
perfectly with the theoretical results in Eq. (6).

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 19

We further include depolarizing error, as introduced in Section 4.2, to estimate the
effect of quantum gate noise. The error mitigation scheme is applied here. When λ is
within [0, 2 × 10−4], the error increases almost linearly with λ (Fig. 7C left). When we
expand the range to [0, 2 × 10−3], the error increases non-linearly and reaches a plateau at
approximately λ = 10−3. As λ reaches 2 × 10−3, the simulated error reaches around 20%
(Fig. 7C right).

Figure 7: Effect of quantum noise on function approximation example of f(x) = 1/(1 + 25x2).
(A and B) Finite-sampling noise at different number of shots. (A) L2 error between shots-based results
and true function with different shots, compared with ideal simulation. (B) L2 error between shots-
based and ideal simulation. (C) Depolarizing noise model for different depolarizing parameters. In both
cases, the number of shots is set to be 107.

In order to simulate the performance of our quantum neural network on real quan-
tum computer, we further adapt the backend-noise model in Qiskit. Here, we choose
ibm_brisbane backend, loading the corresponding noise parameters for the simulation.
The error turns out to be 14.4%, suggesting some more sophisticated error mitigation
methods will needed in future work. Since the scale of error is already too large in the
simplest QOrthoNN experiment, the backend-noise model will not be tested in further
experiments.

4.3.2 Antiderivative operator

The impact of quantum noise on quantum DeepONet is also investigated using the an-
tiderivate operator example (Section 3.2) when l = 1.0. In Fig. 8A, we plot the simulated
finite-sampling error the scale of which is proportional to N−0.5

shot , as expected in Eq. (6).
When depolarizing quantum noise is considered, the error mitigation method is discussed
in Section 2.1.4 can be applied. Although error mitigation helps eliminate undesired results
caused by quantum noise, it also reduces the number of shots that are ultimately usable.
It is obvious that

useful shots ≈ C × total shots,

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 20

with C = 1.0 when λ = 0. The parameter C decreases as λ increases (Fig. 8B) because
higher levels of noise produce more unreasonable results.

The post-selection on the measurement outcomes significantly reduces the error in
noise cases with both finite-sampling and depolarizing noise, comparing Fig. 8C with D. In
Fig. 8D, where error mitigation is not applied and both unary and non-unary results are
accepted, the error shows little reduction as number of shots increases. This is because the
finite-sampling error is relatively insignificant under the influence of depolarizing error in
this example, as can be seen by comparing the scales of errors in Figs. 8A and D. Therefore,
increasing shots, which only reduce the finite-sampling error, is not effective without error
mitigation. However, with error mitigation, the overall error is significantly lower, making
the reduction of finite-sampling error more obvious in the plot (Fig. 8C).

We also investigated how the network size can affect the error of the noisy model
(Figs. 8E and F). For each neural network size, we performed classical training 5 times. The
networks were trained until the test error was reduced to 3%. For each trained network,
we quantum-simulated 3 times. The parameters of simulations included 107 shots and
λ = 10−4 for depolarizing noise. It is important to note that even though the test error
remained the same across classical training runs, the noisy simulation results varied. We
believe this variation arises because the network converges to different parameter values
in each training run, leading to different levels of error due to depolarizing noise. This
observation aligns with our discussion in Section 4.2, which shows the parameters of RBS
gates also influence the magnitude of errors. By comparing the two plots, we conclude
that the error increases almost exponentially with increasing network depth. In contrast,
when only the network width is increased, the error shows minimal growth within our
experiment range. Therefore, quantum DeepONet shows resilience to noise with respect
to network width. In practice, to minimize quantum noise, it is advisable to opt for wider
rather than deeper neural networks.

5 Conclusions
We proposed quantum DeepONet, which can be both data-driven and physics-informed.
Experimental results were conducted to confirm that quantum DeepONet performs ef-
ficiently in solving different PDEs. We further considered the impact of different noise
models in simulation and benchmarked the noise level and corresponding accuracy.

There are a few limitations in our current implementation. Based on the unary encod-
ing, the quantum DeepONet currently could not handle large network width due to the
limitation on the number of qubits and connectivities in the existing quantum devices, and
the in-effectiveness of simulation on classical computers. Also, the circuit in the quantum
layer still has the O(n) depth, which is beyond the O(logn) bound on producing entangle-
ment on NISQ devices [67]. On the other hand, although such demand on the number of
qubits can be greatly reduced by removing the unary encoding, the increased cost of data
loading and data tomography resulting from this change will require further analysis. It
may require a design to apply non-linear transformation without collapsing the quantum
state, such as the method in [68]. In terms of experiment settings in the noise simula-
tion, both tested noise models do not include coherent noise and non-local noise such as
cross-talk. A more complicated and realistic noise model is needed to examine the noise
resilience of our design. Additionally, our future work will explore extending quantum
DeepONet to accommodate more advanced architectures [69, 70], which will allow us to
address a broader range of applications.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 21

Figure 8: Effect of noise on quantum DeepONet for the example of antiderivate operator. (A)
L2 relative error between shots-based and ideal simulation results for different layers. (B) Proportion of
useful shots in total shots at different depolarizing noise levels λ when implementing error mitigation.
(C and D) L2 error between simulation results at different depolarizing level λ and true solution. (C)
Error mitigation is disabled. (D) Error mitigation is used. (E and F) The error for different neural
network size. We set λ = 10−4 for all gates and fixed the number of shots at 107. For each neural
network size, we performed classical training 5 times until the test error is reduced to 3%. Each training
run is quantumly simulated 3 times. The average and uncertainty of all 15 noisy simulation results were
then calculated. (E) The network depth of both the branch and trunk nets is fixed at 5, while the width
of both is varied simultaneously. (F) The network width of both the branch and trunk nets is fixed at
10, while the depths of both networks are varied simultaneously.

Acknowledgments
This work was supported by the U.S. Department of Energy Office of Advanced Scientific
Computing Research under Grants No. DE-SC0025592 and No. DE-SC0025593, and the
U.S. National Science Foundation under Grant No. DMS-2347833. We acknowledge helpful
discussions with Yunjia Yang and Min Zhu.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 22

A Model of quantum computing
Our work utilizes the quantum circuit model. It is an analogy to the classical circuit
where a series of gates are conducted to perform computation. For a basic quantum
circuit, there are three components: an initial quantum state, a series of quantum gates,
and measurements. The initial state stores the initial information, which is then changed
by the sequence of quantum gates. After the computation, the state is measured to get
classical bits as the final outputs. The unit of quantum information is a qubit, analogizing
to a bit in classical information.

In most of our work, we use statevector representation for quantum states. That is,
an n-qubit quantum state is a vector in C2n . Such a quantum state is often written as a
linear combination of basis states. For example, a general 1-qubit state |ψ⟩ is

|ψ⟩ = α |0⟩ + β |1⟩ ,

where the notation |·⟩ represents a statevector, basis state |0⟩ is [1 0]T , basis state |1⟩ is
[0 1]T , and |α|2 + |β|2 = 1 for complex numbers α and β. So, when we measure the state
|ψ⟩, there is an |α|2 chance to obtain a classical bit 0 and |β|2 chance to obtain a classical
bit 1. If neither α nor β is 0, then the quantum state is in the superposition of state |0⟩
and |1⟩. Similarly, a 2-qubit state is a linear combination of 2-qubit bases and the squared
norms of coefficients sum to 1. The 2-qubit basis states are |00⟩ = |0⟩⊗|0⟩, |01⟩ = |0⟩⊗|1⟩,
|10⟩ = |1⟩ ⊗ |0⟩, and |11⟩ = |1⟩ ⊗ |1⟩, where the operator ⊗ is the Kronecker product. If
a 2-qubit state cannot be factored into the tensor product of two 1-qubit states, then this
2-qubit state is entangled.

An n-qubit quantum logic gate is a 2n-by-2n unitary matrix. Several common 1-qubit
gates are

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H = 1√

2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
,

Rx(θ) =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]
, Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, Rz =

[
e−iθ/2 0

0 eiθ/2

]
,

and two widely used 2-qubit controlled gates are

CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X and CZ = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Z,

where I is the 2-by-2 identity matrix.
If an 1-qubit gate U applies on the first qubit of a 2-qubit state |χ⟩ and another 1-qubit

gate V applies on the second qubit simultaneously, the resultant computation is (U⊗V) |χ⟩.
Based on the gate definitions introduced above, an implementation of URBS(θ) according
to [46] is shown in Fig. 9. It can be verified that

URBS(θ) = [H ⊗H]CZ[Ry(θ) ⊗Ry(−θ)]CZ[H ⊗H].

B Quantum states in the density-matrix representation
A density matrix represents a quantum state in quantum information, providing a more
general description than the statevector. In quantum computing, density matrices often
come when the discussion includes quantum noise because quantum noise, such as the

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 23

H • Ry(θ) • H

H • Ry(−θ) • H

Figure 9: An implementation of URBS(θ) according to Ref. [46], where the symbol of two connected
dots between H and Ry gates is the CZ gate.

depolarizing channel in Section 4.2, can result in non-unitary evolution. The resultant
quantum system may have pk probability in the state |ψk⟩ for multiple different indices k,
making a single statevector insufficient to depict it. To express this system in a density
matrix ρ, we have

ρ =
∑

k

pk |ψk⟩ ⟨ψk| ,

where
∑

k pk = 1. Thus, the density matrix ρ is trace-one, Hermitian, and positive semidef-
inite [61]. The state evolution governed by the unitary operator U is computed by

ρ
U→ UρU †.

The non-unitary evolution can be described similarly to the depolarizing noise channel
Section 4.2.

References
[1] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang,

and Liu Yang. “Physics-informed machine learning”. Nature Reviews Physics 3, 422–
440 (2021).

[2] Xiaoxiao Guo, Wei Li, and Francesco Iorio. “Convolutional neural networks for steady
flow approximation”. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. Pages 481–490. (2016).

[3] Weinan E and Bing Yu. “The deep Ritz method: A deep learning-based numerical
algorithm for solving variational problems”. Communications in Mathematics and
Statistics 6, 1–12 (2018).

[4] Yinhao Zhu and Nicholas Zabaras. “Bayesian deep convolutional encoder–decoder
networks for surrogate modeling and uncertainty quantification”. Journal of Compu-
tational Physics 366, 415–447 (2018).

[5] Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra
Kaushik. “Prediction of aerodynamic flow fields using convolutional neural networks”.
Computational Mechanics 64, 525–545 (2019).

[6] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and
Stephan Hoyer. “Machine learning–accelerated computational fluid dynamics”. Pro-
ceedings of the National Academy of Sciences 118, e2101784118 (2021).

[7] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involv-
ing nonlinear partial differential equations”. Journal of Computational physics 378,
686–707 (2019).

[8] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. “DeepXDE: A deep
learning library for solving differential equations”. SIAM Review 63, 208–228 (2021).

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 24

https://dx.doi.org/10.1038/s42254-021-00314-5
https://dx.doi.org/10.1038/s42254-021-00314-5
https://dx.doi.org/10.1016/j.jcp.2018.04.018
https://dx.doi.org/10.1007/s40304-018-0127-z
https://dx.doi.org/10.1007/s40304-018-0127-z
https://dx.doi.org/10.1016/j.jcp.2018.04.018
https://dx.doi.org/10.1016/j.jcp.2018.04.018
https://dx.doi.org/10.1007/s00466-019-01740-0
https://dx.doi.org/10.1073/pnas.2101784118
https://dx.doi.org/10.1073/pnas.2101784118
https://dx.doi.org/10.1016/j.jcp.2018.10.045
https://dx.doi.org/10.1016/j.jcp.2018.10.045
https://dx.doi.org/10.1137/19M1274067

[9] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. “Physics-informed
neural networks for inverse problems in nano-optics and metamaterials”. Optics Ex-
press 28, 11618–11633 (2020).

[10] Mitchell Daneker, Shengze Cai, Ying Qian, Eric Myzelev, Arsh Kumbhat, He Li,
and Lu Lu. “Transfer learning on physics-informed neural networks for tracking the
hemodynamics in the evolving false lumen of dissected aorta”. Nexus 1 (2024).

[11] Mitchell Daneker, Zhen Zhang, George Em Karniadakis, and Lu Lu. “Systems biol-
ogy: Identifiability analysis and parameter identification via systems-biology-informed
neural networks”. In Computational Modeling of Signaling Networks. Pages 87–105.
Springer (2023).

[12] Benjamin Fan, Edward Qiao, Anran Jiao, Zhouzhou Gu, Wenhao Li, and Lu Lu. “Deep
learning for solving and estimating dynamic macro-finance models”. Computational
Economics, Pages 1–37 (2024).

[13] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis.
“Learning nonlinear operators via DeepONet based on the universal approximation
theorem of operators”. Nature Machine Intelligence 3, 218–229 (2021).

[14] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. “Fourier neural
operator for parametric partial differential equations”. In International Conference on
Learning Representations. (2021).

[15] Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Ko-
vachki, Zongyi Li, Burigede Liu, and Andrew Stuart. “Neural operator: Graph kernel
network for partial differential equations”. In ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations. (2020).

[16] Zijie Li, Kazem Meidani, and Amir Barati Farimani. “Transformer for partial differen-
tial equations’ operator learning”. Transactions on Machine Learning Research (2023).

[17] Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming
Liu, Ze Cheng, Jian Song, and Jun Zhu. “GNOT: A general neural operator trans-
former for operator learning”. In International Conference on Machine Learning. Pages
12556–12569. PMLR (2023).

[18] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. “Neural operator: Learning maps
between function spaces with applications to PDEs”. Journal of Machine Learning
Research 24, 1–97 (2023).

[19] Sifan Wang, Hanwen Wang, and Paris Perdikaris. “Learning the solution operator of
parametric partial differential equations with physics-informed DeepONets”. Science
Advances 7, eabi8605 (2021).

[20] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu,
Kamyar Azizzadenesheli, and Anima Anandkumar. “Physics-informed neural operator
for learning partial differential equations”. ACM/JMS Journal of Data Science 1, 1–
27 (2024).

[21] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. “Fourier
neural operator with learned deformations for PDEs on general geometries”. Journal
of Machine Learning Research 24, 1–26 (2023).

[22] Tianping Chen and Hong Chen. “Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to dynamical
s”. IEEE Transactions on Neural Networks 6, 911–917 (1995).

[23] Lizuo Liu and Wei Cai. “Multiscale DeepONet for nonlinear operators in oscillatory
function spaces for building seismic wave responses” (2021). arXiv:2111.04860.

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 25

https://dx.doi.org/10.1364/oe.384875
https://dx.doi.org/10.1364/oe.384875
https://dx.doi.org/10.1016/j.ynexs.2024.100016
https://dx.doi.org/10.1007/978-1-0716-3008-2_4
https://dx.doi.org/10.1007/s10614-024-10693-3
https://dx.doi.org/10.1007/s10614-024-10693-3
https://dx.doi.org/10.1038/s42256-021-00302-5
https://dx.doi.org/10.48550/arXiv.2205.13671
https://dx.doi.org/10.48550/arXiv.2302.14376
https://dx.doi.org/10.48550/arXiv.2302.14376
https://dx.doi.org/10.48550/arXiv.2108.08481
https://dx.doi.org/10.48550/arXiv.2108.08481
https://dx.doi.org/10.1126/sciadv.abi8605
https://dx.doi.org/10.1126/sciadv.abi8605
https://dx.doi.org/10.48550/arXiv.2111.03794
https://dx.doi.org/10.48550/arXiv.2111.03794
https://dx.doi.org/10.48550/arXiv.2207.05209
https://dx.doi.org/10.48550/arXiv.2207.05209
https://dx.doi.org/10.1109/72.392253
http://arxiv.org/abs/2111.04860

[24] Pengzhan Jin, Shuai Meng, and Lu Lu. “MIONet: Learning multiple-input operators
via tensor product”. SIAM Journal on Scientific Computing 44, A3490–A3514 (2022).

[25] Min Zhu, Shihang Feng, Youzuo Lin, and Lu Lu. “Fourier-DeepONet: Fourier-
enhanced deep operator networks for full waveform inversion with improved accu-
racy, generalizability, and robustness”. Computer Methods in Applied Mechanics and
Engineering 416, 116300 (2023).

[26] Zhongyi Jiang, Min Zhu, and Lu Lu. “Fourier-MIONet: Fourier-enhanced multiple-
input neural operators for multiphase modeling of geological carbon sequestration”.
Reliability Engineering & Safety 251, 110392 (2024).

[27] Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris
Perdikaris. “PPDONet: Deep operator networks for fast prediction of steady-state
solutions in disk–planet systems”. The Astrophysical Journal Letters 950, L12 (2023).

[28] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,
and Seth Lloyd. “Quantum machine learning”. Nature 549, 195–202 (2017).

[29] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al.
“Variational quantum algorithms”. Nature Reviews Physics 3, 625–644 (2021).

[30] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli, and
Stefan Woerner. “The power of quantum neural networks”. Nature Computational
Science 1, 403–409 (2021).

[31] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. “Quantum
circuit learning”. Physical Review A 98, 032309 (2018).

[32] Ashish Kapoor, Nathan Wiebe, and Krysta Svore. “Quantum perceptron models”.
Advances in Neural Information Processing s 29 (2016).

[33] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. “Quantum-enhanced machine
learning”. Physical Review Letters 117, 130501 (2016).

[34] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear
systems of equations”. Physics Review Letter 103, 150502 (2009).

[35] Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens
Eisert, and Liang Jiang. “Towards provably efficient quantum algorithms for large-
scale machine-learning models”. Nature Communications 15, 434 (2024).

[36] Nathan Wiebe, Daniel Braun, and Seth Lloyd. “Quantum algorithm for data fitting”.
Physical Review Letters 109, 050505 (2012).

[37] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger
Melko. “Quantum Boltzmann machine”. Physical Review X 8, 021050 (2018).

[38] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. “Quantum principal component
analysis”. Nature Physics 10, 631–633 (2014).

[39] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum support vector
machine for big data classification”. Physical Review Letters 113, 130503 (2014).

[40] Nishant Jain, Jonas Landman, Natansh Mathur, and Iordanis Kerenidis. “Quan-
tum Fourier networks for solving parametric PDEs”. Quantum Science and Technol-
ogy (2023).

[41] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz
Cincio, and Patrick J Coles. “Noise-induced barren plateaus in variational quantum
algorithms”. Nature Communications 12, 6961 (2021).

[42] Enrico Fontana, M Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J Coles.
“Non-trivial symmetries in quantum landscapes and their resilience to quantum noise”.
Quantum 6, 804 (2022).

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 26

https://dx.doi.org/10.1137/22M1477751
https://dx.doi.org/10.1016/j.cma.2023.116300
https://dx.doi.org/10.1016/j.cma.2023.116300
https://dx.doi.org/doi.org/10.1016/j.ress.2024.110392
https://dx.doi.org/10.3847/2041-8213/acd77f
https://dx.doi.org/10.1038/nature23474
https://dx.doi.org/10.1038/s42254-021-00348-9
https://dx.doi.org/10.1038/s43588-021-00084-1
https://dx.doi.org/10.1038/s43588-021-00084-1
https://dx.doi.org/10.1103/PhysRevA.98.032309
https://dx.doi.org/10.48550/arXiv.1602.04799
https://dx.doi.org/10.1103/PhysRevLett.117.130501
https://dx.doi.org/10.1103/PhysRevLett.103.150502
https://dx.doi.org/10.1038/s41467-023-43957-x
https://dx.doi.org/10.1103/PhysRevLett.109.050505
https://dx.doi.org/10.1103/PhysRevX.8.021050
https://dx.doi.org/10.1038/nphys3029
https://dx.doi.org/10.1103/PhysRevLett.113.130503
https://dx.doi.org/10.1088/2058-9565/ad42ce
https://dx.doi.org/10.1088/2058-9565/ad42ce
https://dx.doi.org/10.1038/s41467-021-27045-6
https://dx.doi.org/10.22331/q-2022-09-15-804

[43] Supanut Thanasilp, Samson Wang, Nhat Anh Nghiem, Patrick Coles, and Marco
Cerezo. “Subtleties in the trainability of quantum machine learning models”. Quantum
Machine Intelligence 5, 21 (2023).

[44] Marco Schumann, Frank K Wilhelm, and Alessandro Ciani. “Emergence of noise-
induced barren plateaus in arbitrary layered noise models”. Quantum Science and
Technology 9, 045019 (2024).

[45] Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte,
Patrick J Coles, Lukasz Cincio, Jarrod R McClean, Zoë Holmes, and M Cerezo. “Bar-
ren plateaus in variational quantum computing”. Nature Reviews Physics, Pages 1–
16 (2025).

[46] Jonas Landman, Natansh Mathur, Yun Yvonna Li, Martin Strahm, Skander
Kazdaghli, Anupam Prakash, and Iordanis Kerenidis. “Quantum methods for neu-
ral networks and application to medical image classification”. Quantum 6, 881 (2022).

[47] Scott Aaronson. “Read the fine print”. Nature Physics 11, 291–293 (2015).
[48] Hsin-Yuan Huang, Richard Kueng, and John Preskill. “Predicting many properties of

a quantum from very few measurements”. Nature Physics 16, 1050–1057 (2020).
[49] Joran van Apeldoorn, Arjan Cornelissen, András Gilyén, and Giacomo Nannicini.

“Quantum tomography using state-preparation unitaries”. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Pages 1265–1318.
SIAM (2023).

[50] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. “Can we gain more from orthog-
onality regularizations in training deep CNNs?”. In Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing s. Page 4266–4276. NIPS’18Red
Hook, NY, USA (2018). Curran Associates Inc.

[51] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. “Orthogonal deep
neural networks”. IEEE Transactions on Pattern Analysis and Machine Intelligence
43, 1352–1368 (2019).

[52] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang
Zhang, and George Em Karniadakis. “A comprehensive and fair comparison of two
neural operators (with practical extensions) based on FAIR data”. Computer Methods
in Applied Mechanics and Engineering 393, 114778 (2022).

[53] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart.
“Model reduction and neural networks for parametric PDEs”. The SMAI Journal of
Computational Mathematics 7, 121–157 (2021).

[54] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. “Quantum computing with
Qiskit” (2024). arXiv:2405.08810.

[55] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion” (2017). arXiv:1412.6980.

[56] Lu Lu, Shin Yeonjong, Su Yanhui, and Em Karniadakis, George. “Dying ReLU and
initialization: Theory and numerical examples”. Communications in Computational
Physics 28, 1671–1706 (2020).

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Pages 770–778. (2016).

[58] Kuangdai Leng, Mallikarjun Shankar, and Jeyan Thiyagalingam. “Zero coordinate
shift: Whetted automatic differentiation for physics-informed operator learning”. Jour-
nal of Computational Physics, Page 112904 (2024).

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 27

https://dx.doi.org/10.1007/s42484-023-00103-6
https://dx.doi.org/10.1007/s42484-023-00103-6
https://dx.doi.org/10.1088/2058-9565/ad6285
https://dx.doi.org/10.1088/2058-9565/ad6285
https://dx.doi.org/10.1038/s42254-025-00813-9
https://dx.doi.org/10.1038/s42254-025-00813-9
https://dx.doi.org/10.22331/q-2022-12-22-881
https://dx.doi.org/10.1038/nphys3272
https://dx.doi.org/10.1038/s41567-020-0932-7
https://dx.doi.org/10.1137/1.9781611977554.ch47
https://dx.doi.org/10.48550/arXiv.1810.09102
https://dx.doi.org/10.1109/TPAMI.2019.2948352
https://dx.doi.org/10.1109/TPAMI.2019.2948352
https://dx.doi.org/10.1016/j.cma.2022.114778
https://dx.doi.org/10.1016/j.cma.2022.114778
https://dx.doi.org/10.5802/smai-jcm.74
https://dx.doi.org/10.5802/smai-jcm.74
http://arxiv.org/abs/2405.08810
http://arxiv.org/abs/1412.6980
https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0165
https://dx.doi.org/https://doi.org/10.4208/cicp.OA-2020-0165
https://dx.doi.org/10.1109/CVPR.2016.90
https://dx.doi.org/10.1016/j.jcp.2024.112904
https://dx.doi.org/10.1016/j.jcp.2024.112904

[59] Daniel Stilck França and Raul Garcia-Patron. “Limitations of optimization algorithms
on noisy quantum devices”. Nature Physics 17, 1221–1227 (2021).

[60] Diego García-Martín, Martin Larocca, and Marco Cerezo. “Effects of noise on the
overparametrization of quantum neural networks”. Physical Review Research 6,
013295 (2024).

[61] Michael A Nielsen and Isaac L Chuang. “Quantum computation and quantum infor-
mation”. Cambridge University Press. (2010).

[62] IBM. “IBM quantum platform”. https://quantum.ibm.com/ (2024).
[63] Kenneth Wright, Kristin M Beck, Sea Debnath, JM Amini, Y Nam, N Grzesiak, J-

S Chen, NC Pisenti, M Chmielewski, C Collins, et al. “Benchmarking an 11-qubit
quantum computer”. Nature Communications 10, 5464 (2019).

[64] Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. “Modeling and simulat-
ing the noisy behavior of near-term quantum computers”. Physical Review A 104,
062432 (2021).

[65] Mirko Amico, Helena Zhang, Petar Jurcevic, Lev S Bishop, Paul Nation, Andrew
Wack, and David C McKay. “Defining best practices for quantum benchmarks”. In
2023 IEEE International Conference on Quantum Computing and Engineering (QCE).
Volume 1, pages 692–702. IEEE (2023).

[66] Samudra Dasgupta and Travis Humble. “Impact of unreliable devices on stability of
quantum computations”. ACM Transactions on Quantum Computing (2024).

[67] Yuxuan Yan, Zhenyu Du, Junjie Chen, and Xiongfeng Ma. “Limitations of noisy
quantum devices in computational and entangling power” (2023). arXiv:2306.02836.

[68] M. S. Moreira, G. G. Guerreschi, W. Vlothuizen, J. F. Marques, J. van Straten,
S. P. Premaratne, X. Zou, H. Ali, N. Muthusubramanian, C. Zachariadis, J. van
Someren, M. Beekman, N. Haider, A. Bruno, C. G. Almudever, A. Y. Matsuura,
and L. DiCarlo. “Realization of a quantum neural network using repeat-until-success
circuits in a superconducting quantum processor”. npj Quantum Information 9 (2023).

[69] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis.
“DeepM&Mnet: Inferring the electroconvection multiphysics fields based on oper-
ator approximation by neural networks”. Journal of Computational Physics 436,
110296 (2021).

[70] Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. “Multifidelity
deep neural operators for efficient learning of partial differential equations with appli-
cation to fast inverse design of nanoscale heat transport”. Physical Review Research
4, 023210 (2022).

Accepted in Quantum 2025-05-17, click title to verify. Published under CC-BY 4.0. 28

https://dx.doi.org/10.1038/s41567-021-01356-3
https://dx.doi.org/10.1103/PhysRevResearch.6.013295
https://dx.doi.org/10.1103/PhysRevResearch.6.013295
https://dx.doi.org/10.1017/CBO9780511976667
https://quantum.ibm.com/
https://dx.doi.org/10.1038/s41467-019-13534-2
https://dx.doi.org/10.1103/PhysRevA.104.062432
https://dx.doi.org/10.1103/PhysRevA.104.062432
https://dx.doi.org/0.1109/QCE57702.2023.00084
https://dx.doi.org/10.1145/3682071
http://arxiv.org/abs/2306.02836
https://dx.doi.org/10.1038/s41534-023-00779-5
https://dx.doi.org/10.1016/j.jcp.2021.110296
https://dx.doi.org/10.1016/j.jcp.2021.110296
https://dx.doi.org/10.1103/PhysRevResearch.4.023210
https://dx.doi.org/10.1103/PhysRevResearch.4.023210

	Introduction
	Methods
	Quantum methods for network layers
	Reconfigurable beam splitter gate
	Loading classical data input
	Quantum pyramidal circuit
	Tomography for extracting classical output
	Error mitigation
	Summary and remarks

	Quantum orthogonal neural network
	Quantum DeepONet
	Training quantum DeepONet
	Quantum physics-informed DeepONet

	Ideal quantum simulation results
	Function approximation
	Antiderivative operator
	Advection Equation
	Burgers' Equation
	Quantum physics-informed DeepONet

	Effects of noise
	Finite-sampling noise in tomography
	Depolarizing noise on a RBS gate
	Noisy simulation results
	Function approximation
	Antiderivative operator

	Conclusions
	Model of quantum computing
	Quantum states in the density-matrix representation

