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Abstract

This thesis deals with two topics involving topological “vortex-like” defects arising due to

the breaking of time-reversal symmetry. A recurring theme shall be the interplay between

the bulk properties and the physics at the boundaries of such systems.

In the first part of the thesis, we construct direct analogs of quantum Hall effect edge

modes in photonic systems with broken time-reversal symmetry. we will show how “photonic

crystals” built out of time-reversal breaking Faraday effect media can exhibit “chiral” edge

modes in which light propagates unidirectionally along boundaries across which the Faraday

axis reverses. The crucial feature underlying this idea is that the photon bands of interest

have non-zero Chern numbers (topological integers, which in the case at hand, represent

the winding number of the Berry gauge connection of the bands). Using both numerical

diagonalization and simple analytical models, we show how to construct photon bands with

non-zero Chern invariants, and we use them to realize the precise classical counterpart of

the electronic edge modes of the quantum Hall effect. To study these modes numerically,

we have designed and implemented novel real-space treatments of the source-free Maxwell

normal mode problem on a discrete network.

In the second part of the thesis, we focus on extreme type II superconductors in ex-

ternally applied magnetic fields. Motivated by experiments of Ong and collaborators on

the Nernst effect in the cuprate superconductors, we consider a model of a superconductor

which permits fluctuations only in the phase of the order parameter. In the presence of

the magnetic field, a net vorticity is induced in the system, and we consider the various

static and thermoelectric signatures of these superconducting vortices. Using numerical
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simulations, analytical calculations, and arguments from duality, we study thermoelectric

transport and boundary diamagnetic currents. We conclude that such simple models of

superconductors with fluctuations only of the phase degrees of freedom share qualitative

similarities with the experiments of Wang et. al. [69]. Interpretations of these experiments

as well as predictions are made here based on these idealized models.
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Chapter 1

Introduction

1.1 Some general remarks

In this chapter, we mention the essential physical ideas explored in this thesis without

getting into the formal details.

This thesis considers two seemingly disparate topics in condensed matter physics. The

first topic deals with Bloch states of photons (arising from the periodicity of the underlying

media), whereas the second deals with vortices in strongly type II superconductors in the

extreme anisotropic (quasi-two-dimensional) limit. No two topics could be more different.

However, a feature common to both topics is that time-reversal symmetry will be broken

in both cases. The most common way to break time reversal symmetry in an experiment is to

apply a magnetic field. However, time-reversal symmetry can also be broken intrinsically,

as in a ferromagnet, or as in an unconventional superconductor with a “p+ip” pairing

amplitude.

In the first topic of this thesis, we will be considering magneto-optic materials, that

usually display time -reversal breaking intrinsically (although the statements we make there

are not dependent on whether time-reversal is broken intrinsically or via an applied magnetic

field). In the second topic of this thesis, we will consider some properties of a type II

superconductor in applied magnetic fields.
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2

What kinds of interesting physics can we expect in systems such as those briefly de-

scribed above, when time-reversal symmetry is broken? We know from elementary quantum

mechanics that the time-reversal operator is anti-unitary, which means that we can always

express it as a product of a (basis-dependent) unitary operator and the complex conjugation

operator. Thus, when time-reversal symmetry is broken, the wave function is generically a

complex function with both an amplitude and a spatially-varying phase, and could permit

non-analytic, “vortex-like” defects.

To see how this could come about, (we neglect internal spin degrees of freedom here and

consider only complex scalar wavefunctions ), we will need to know the phase differences

of this complex function between two nearby points. Single-valuedness of this complex

function will place constraints on the winding number of this phase field.

In the case of Bloch states in the Brillouin zone, we will look at phase differences

of the wave functions between two nearby points in k-space; this way, we are naturally

led to the notion of a Berry connection and curvature - which we discuss in the next

chapter. In the 2D superconductor, we shall study the gauge-invariant phase differences

of the superconducting order parameter at two nearby points, which is proportional to the

local value of the supercurrent in the system (local phase differences of Bloch states in the

Brillouin zone carry no analogous physical meaning). For the photon bands, we will be

interested in the winding number of the Berry phase around the Brillouin zone boundary.

Single-valuedness of the wave functions constrains the winding number to be an integer. If

this integer is non-zero, there must be a gauge singularity of the wave function somewhere

in the Brillouin zone.

Let us contrast this with the case of a two dimensional superconductor. If the phase

of the superconducting order parameter winds by an integer multiple of 2π (again single-

valuedness of the order parameter in this simple case places the integer constraint) around

a closed contour in real-space, then it follows that the contour encloses a singularity of the

order parameter.

In both cases, these singularities are topological, and behave as point charges (which are
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topological defects of the electric field) in two dimensions (vortices). In the case of Bloch

bands, these topological gauge singularities in k-space have well-known consequences in the

quantum Hall effect of electronic systems [59].

It is important to stress here that unlike vortices in superconductors, the topological

singularities associated with the Berry gauge connection are not physical quantities, in the

sense that their positions depend on the choice of gauge: a local gauge transformation will

move the locations of these singularities in k-space. Thus, we want to make it clear that

the analogy between vortices (topological defects of the phase of the superconducting wave

function) and the gauge singularities of Bloch bands is not a perfect one. There is nothing

physical to be associated with the point-like “core” of a gauge singularity.

The goal of the first part of the thesis is to see how much of the well-known physics

of the quantum Hall effect can be transcribed to photonic systems, where the degrees of

freedom are neutral bosons. Here, the vortex-like defects in the Brillouin zone are static

objects; our goal is to see how they affect the real-space dynamics of the system.

The goal of the second part of this thesis will be to study the problem of thermoelectric

transport and diamagnetism in the context of simple vortex models in two dimensions. Here,

however, we will primarily be interested in the dynamics of vortices themselves. Although

the vortices exist even in the absence of a magnetic field, the net vorticity vanishes identically

in this case. The quantities of interest in this thesis, transverse thermoelectric transport

and diamagnetism, vanish in this situation.

1.2 Overview of the thesis

In chapter 2, we discuss Berry phases, Berry curvature, and Chern invariants, and point out

various connections between these objects and the quantum Hall effect. We also discuss a

model of a quantum Hall effect that does not require a net magnetic flux density, but rather

only time-reversal breaking. We explicitly construct this model, discuss its topological

structure, and point out the way the model’s parameters can be tuned to realize the “Chiral”

edge modes of the quantum Hall effect. These ideas will be the cornerstone of the essential
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material of chapter 3.

In chapter 3, we consider analogs of quantum Hall effect edge modes in photonic sys-

tems. Formal aspects of our formulation of the problem are presented in full detail, and are

supplemented with technical details, including especially the consideration of Berry curva-

ture in the case of frequency dependence of the constitutive relations of the system. We

next consider explicit models of systems with the interesting topological properties briefly

described here. We construct explicit realizations of unidirectional edge modes of light in

this system. These modes are the precise equivalents of the quantum Hall effect edge modes

in electronic systems. We present both numerical computations and analytical calculations

using simple models to confirm the concept.

In chapter 4, we discuss the numerical algorithms we have designed and implemented to

compute the photon band spectra. Our approach is different than the standard approach,

and has greater scope of applicability.

In chapter 5, we switch gears to the second topic of this thesis. We proceed along two

channels in this chapter. First, we consider a model of superconducting phase fluctuations

only (XY model) in an external field. We use TDGL (“model A”) dynamics and compute

αxy, the transverse thermoelectric coefficient as well as the magnetization at various tem-

peratures and fields. This numerical work is supplemented by analytical high temperature

expansions for these quantities. Next, we consider the dual coulomb-gas model in which

the vortices (not the phases) are the primary degrees of freedom. Using Monte Carlo sim-

ulations, we study the diamagnetism in this model and discuss work currently in progress

towards computing αxy. An appendix shows explicitly the relationship between the 2D XY

model in a magnetic field and a 2D Coulomb gas with a static background charge density.



Chapter 2

Berry Curvature, Chern invariants,

and a “zero-field” quantized Hall

effect in graphene

2.1 Introduction

This chapter is a review of the basic ideas of Berry curvature, Chern numbers, and quantum

Hall effect edge modes which will further be explored in subsequent chapters of this thesis.

Those readers already familiar with these concepts may skip ahead to the next chapter.

Recently, there has been a growing interest in the broad class of phenomena whose

dynamics are heavily influenced by the underlying topology of the Hilbert space of states

under consideration. Examples include the spin Hall effect in systems with spin-orbit cou-

pling, the anomalous Hall effect in Ferromagnetic insulators, and quantum Hall systems. In

all of the systems mentioned above, the idea of the geometric phase plays a crucial role in

determining the physics. When first introduced, the geometric phase was described within

the context of adiabatic evoution in quantum mechanical systems. Soon afterwards, how-

ever, Simon [53] recast the geometric phase in the more abstract, and general, language of

holonomy while simultaneously showing how it arose quite naturally in the context of the

5
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quantum Hall effect.

In this chapter, we quickly review the ideas of the geometric phase and some of their

physical consequences which will be explored in later chapters of this thesis.

2.2 Abelian Berry phases and the Chern invariant

A discussion of the Berry phase is usually initiated by considering a Hermitian eigensystem

which depends parametrically on a vector gµ, µ = 1, · · · , N :

H(g)|un(g)〉 = En(g)|un(g)〉 (2.1)

We assume that g acts as an ordinary vector without any underlying quantum dynamics

(a canonical example is the problem of Jahn-Teller distortions in molecular physics, in

which g is the set of nuclear coordinates, which are treated within a Born-Oppenheimer

approximation, are the classical parameters of the Hamiltonian, the electronic orbitals are

solved in the space of all nuclear separations, and the quantum dynamics of the nuclear are

altogether neglected). For all values of the parameter g the states |um(g)〉 span the same

Hilbert space. We solve the eigenvalue problem above for each value of g, and assume that

the states are ordered in some systematic fashion at each point in the parameter space.

Focus for the moment on a state |un(g)〉 which remains non-degenerate for all values

of g. The states of the eigenvalue problem are only defined upto an arbitrary g-dependent

unimodular phase factor: a local phase variation

|un(g)〉 → eiχ(g)|un(g)〉 (2.2)

does not affect physical variables such as the spectrum, density matrix, and the matrix

elements of all Hermitian operators in the Hilbert space. The phase ambiguity above is

quite similar to the U(1) gauge invariance of ordinary electrodynamics.

Since the Hilbert space remains fixed for all g, it is natural to compare the states |un(g)〉

for different values of the parameter g. The overlap of two states can generically be written

as a complex number with an amplitude and a phase:

〈un(g1)|un(g2)〉 = |〈un(g1)|un(g2)〉|eiAn(12) (2.3)



7

where An(12) is a quantity that depends on the spectral index n, as well as the (gauge-

dependent) values of the parameters g1 and g2. The overlap provides us with a notion of

parallel transport on the g - manifold, i.e. a means to compare states living on two nearby

points in parameter space.

This becomes clearer when we consider a series of overlaps along path in parameter

space
M−1
∏

m=1

〈un(gm)|un(gm+1)〉 = Zn exp

(

i
M−1
∑

m=1

A(m,m+ 1)

)

, (2.4)

where

Zn =
M−1
∏

m=1

|〈un(gm)|un(gm+1)〉|. (2.5)

The total phase picked up along this path depends on the choice of gauge used to define

each of the states. Notice that in the expression above, local gauge transformations will

cancel pairwise for all states along the path except for the initial and final points along the

trajectory. However, the overlap for the entire path is path-dependent - the value of Zn

clearly depends on the choice of path. At a glance, it therefore appears that such a phase

factor cannot possibly have any observable physical consequences, since observables must

always be described by gauge-invariant objects. New physics is unearthed, however, when

one considers closed contours in the space of parameters. In this case, if the states are

normalized for each value of g, then Zn = 1, and the final state must be equivalent to the

initial state upto an overall gauge-invariant phase factor.

To determine a closed-form expression for this phase difference, we take the continuum

limit of the above expressions. Starting from the overlap of two infinitessimally close states

in parameter space,

〈un(g)|un(g + δg)〉
|〈un(g)|un(g + δg)〉| ≡ exp (iAn(g) · δg) , (2.6)

we can work out an expression for An by expanding both sides of the equation above to

leading order in δg. The result is

Aa
n(g) =

〈un(g)|∇a
gun(g)〉 − 〈∇aun(g)|un(g)〉
2i〈un(g)|un(g)〉 . (2.7)
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When the states are normalized to unity, the expression above reduces to the familiar form

Aa
n(g) = −i〈un(g)|∇a

gun(g)〉 The vector field Aa(g) defined by taking the continuum limit

above is known as the Berry Connection.

The Berry phase picked up by a state |un〉 upon travelling on a closed path in g - space

is defined (modulo 2π) as

exp (iγn(C)) = exp

(

i

∮

C
dga · Aa(g)

)

(2.8)

When a local gauge transformation, Eq. (2.2), is applied to the state, the Berry con-

nection transforms as

Aa
n(g) → Aa

n(g) + ∇a
gχn(g), (2.9)

in analogy with the U(1) vector potential of electrodynamics. Extending this analogy

further, the curl of the Berry Connection must be the gauge-invariant analog of the magnetic

flux density, and can be written as a second-rank anti-symmetric tensor:

Fab
n (g) = ∇a

gAb(g) −∇b
gAa(g). (2.10)

This quantity is known as the Berry Curvature. It is easily seen then, that the Berry

phase picked up by a wave-function along some closed trajectory in parameter space can be

expressed as surface integral of the Berry curvature via Stokes’ theorem:

exp (iγn(C)) = exp

(

i

∫∫

SC

dga ∧ dgbFab(g)

)

(2.11)

We interpret Eq. (2.11) as a generalized Aharanov-Bohm effect [1] in which the Berry

phase of a wave function is given in terms of the “Berry flux” enclosed by the contour C in

parameter space.

2.2.1 Broken time-reversal symmetry and the Chern invariants

Let us now restrict ourselves to the case in which the parameter space is two-dimensional.

An example, and one which will be the focus of subsequent chapters of this thesis, is the

set of two-dimensional Bloch states of single particle Hamiltonians:

|ψn(k, r)〉 = exp (ik · r) |un(k, r)〉 (2.12)
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In this case, g is represented by the two components of the Bloch vector in the 2D Brillouin

zone, and the Hilbert space consists of the periodic parts of the Bloch wave functions. We

work in a fixed Hilbert space by considering only |un〉, the periodic parts of the Bloch states,

which are the solutions of the following:

H(k)|un(kr)〉 = En(k)|un(kr)〉 (2.13)

where H(k) = exp (−ik · r)H exp (ik · r). The Berry connection and curvature are readily

transcribed for this problem from the more general derivation above. One finds that the

Berry connection for the set of normalized states is simply Aa
n = −i〈un(k, r)|∇a

kun(k, r)〉,

and the Berry curvature, a pseudoscalar in two dimensions, is found by taking the curl of

the connection, to be

Fxy = −i〈∇x
kun(k, r)|∇y

kun(k, r)〉 − c.c (2.14)

The integral of the Berry curvature over the entire 2D Brillouin zone has a special signifi-

cance. By Stokes’ theorem, it is also given by the quantity exp (i
∮

C Aa(k)dka), where the

contour C is taken to be the boundary of the Brillouin zone. Although the definition of the

Brillouin zone is to a certain extent arbitrary, the phase factor is unambiguous: it represents

the Berry phase picked up by the Bloch wave function upon traversing the contour, and

is the k-space analog of the Bohm-Aharonov phase. Single-valuedness of the requires this

phase to be an integral multiple of 2π. Thus, we arrive at the result that the integral of the

Berry curvature satisfies
∫∫

BZ
Fxy(k, r)dkxdky = 2πC(1)

n , (2.15)

where C(1)
n is an integer known as the Chern number, or the member of the first Chern class

[43].

The Chern number is a topological index generally defined as the integral of the Berry

curvature over a closed 2D manifold. In this case, it simply represents the winding number

of the Berry phase of a state picked up around the Brillouin zone. Alternatively, it is a

count of the number of “Berry flux quanta” threading the plane of the 2D Brillouin zone.
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Chern numbers have well-known consequences in the quantum Hall effect. The zero

temperature Kubo formula for the Hall conductance

σxy =
1

L2

∫

dt〈[Jx(t), Jy(0)]〉 (2.16)

turns out to be related to the Chern invariant as follows: in the integer quantum Hall effect,

when the Fermi level lies in a gap, the total Hall conductance of the system is given by

σxy =
e2

h

∑

i∈occ

C(1)
i , (2.17)

where the sum is carried over all occupied bands.

More generally, the Chern number is a well-defined property of many-body ground state

wave functions of systems with a gap to excitations. One considers the ground state wave-

function |Ψ(r;φ)〉 on a torus (size Lx × Ly) with twisted boundary conditions [45]:

|Ψ(r + Lxx̂;φ)〉 = exp(iφx)|Ψ(r;φ)〉. (2.18)

In this case, the Berry connection can be defined simply as

Aj = −i〈Ψ(r,φ)| ∂
∂φj

|Ψ(r,φ)〉 (2.19)

The application of this formalism to Bloch states represents the special case in which the

twisted boundary conditions are implemented via the Bloch vector.

2.3 Zero field quantum Hall effect in graphene

To clarify some of these ideas, we present a simple model of Bloch states with broken time-

reversal symmetry having bands with non-zero Chern invariants and gapless edge modes.

The model considered here is that of two dimensional graphite (“graphene”) a system that

has received considerable attention recently mostly due to its robust quantum Hall effect.

The model described below is relevant to this thesis since it represents a method of obtaining

quantum Hall effects on systems using Bloch states only, and can therefore be transcribed

to non-electronic systems (we will do this in the next chapter).
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Figure 2.1: Tight binding electrons on a honeycomb network with broken time-reversal
symmetry. Open and dark circles mark the A and B sublattices respectively. First neigh-
bor hoppings connect sites with those belonging to the opposite sublattice, and a1,a2,a3

represent displacements from a B site to each of its nearest neighbors on an A site. Second
neighbor hopping occurs along the dotted lines. There is zero net magnetic flux through
each elementary plaquette (drawn with solid lines), but each closed path of second neighbor
hoppings encloses non-zero magnetic flux.

The system consits of spinless fermions at half-filling on a honeycomb lattice with the

following Hamiltonian:

H = −t1
∑

〈ij〉

(

c†i cj + h.c
)

− t2
∑

〈〈ij〉〉

(

c†ie
iφij cj + h.c

)

+
∑

σ=a,b

Uσc
†
σcσ (2.20)

The first term represents nearest neighbor hopping of electrons from the A sites to the B

sites and vice versa, the second term describes second neighbor hoppings that connect sites

on the same sublattice, and the third term is an inversion symmetry breaking perturbation

representing a relative difference of onsite energies on each of the two sublattice orbitals.

This is achieved, for example, by replacing the Carbon atoms of graphene by two species

of atoms, as in the case of Boron-Nitride, which is often used to form Carbon nanotube

structures. Time-reversal symmetry is broken in this model when the second neighbor

hoppings are minimally-coupled to a staggered magnetic flux pattern that produces a zero

net flux per unit cell.

Start with the clean graphene system without broken inversion or time-reversal symme-

try. Work in the two-component basis of Bloch states associated with each of the sublattices

(we assume a single orbital per site). In this representation, the Hamiltonian is given by
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H =
∑

k

h1(k) (2.21)

h1(k) =







0 −t1
∑3

i=1 exp (ik · ai)

−t1
∑3

i=1 exp (−ik · ai) 0






(2.22)

At half-filling, the system is a semimetal; the bandstructure contains gapless points at

each corner of the hexagonal Brillouin zone. By varying the two components of the Bloch

vector in the Brillouin zone (the two parameters in the context of the previous section), we

obtain degeneracies when
3
∑

i=1

exp (ik0 · ai) = 0 (2.23)

The energy dispersion in the vicinity of the zone corners (the Fermi points at half filling)

is linear, and the low energy effective Hamiltonian is given by a massless two dimensional

Dirac equation obtained by expanding the Hamiltonian in Eq. (3.8) to leading order at the

Fermi points:

H = v
∑

α

(

δkα
1 σ2 − δkα

2 σ1
)

, (2.24)

where v = 3t1|ai|/2h̄, and δkα = k − kα
0 and (α = ±1), marks the location of the two

distinct zone corners (the other four are related to these by reciprocal lattice translations).

For this reason, the zone corners, where the two bands touch, are known as Dirac points.

Next, we consider the effect of time-reversal and inversion symmetry breaking pertur-

bations. The sublattice orbital energies Uσ are generically of the form Uσ = m̄v2 + σmIv
2

(σ = ±1), where m̄ and mI are arbitrary real constants. We ignore the overall constant

term and inversion symmetry breaking term is readily diagonalized in the basis above as

h2(k) = mIv
2σ3. (2.25)

When time-reversal symmetry is broken, the system obtains a chirality; the real-space

phase pattern (see Fig. 2.3) is such that closed trajectories of second neighbor hoppings

(dotted triangles in Fig. 2.3) on the “A” sublattice pick up equal and opposite Bohm-

Aharonov phases to those on the “B” sublattice. Defining the displacement vectors b1, b2, b3,
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b1 = a2−a3, etc, along the next neighbor bonds, the time-reversal breaking term is written

in the above basis as

h3(k) =







−2t2
∑

i exp (ik · bi + iφ) + h.c. 0

0 −2t2
∑

i exp (ik · bi − iφ) + h.c






, (2.26)

where

φ = 2π (2Φα + Φβ) /Φ0, (2.27)

Φα and Φβ are the magnetic fluxes through the regions marked α and β, respectively in

Fig. ??, and Φ0 is the flux quantum.

β

α

α
β

α

αα
α

β

Figure 2.2: Staggered flux pattern used to break time-reversal symmetry in Haldane’s model.

By making use of some simple trigonometric identities, the three terms considered sep-

arately above are written compactly as follows:

H(k) = h1(k) + h2(k) + h3(k) (2.28)

h1(k) = t1

(

∑

i

cos (k · ai) σ1 + sin (k · ai) σ2

)

(2.29)

h2(k) = mIv
2σ3 (2.30)
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h3(k) = 2t2 cosφ

(

∑

i

cos (k · bi)

)

1− 2t2 sinφ

(

∑

i

sin (k · bi)

)

σ3 (2.31)

The low energy effective Hamiltonian of this model obtained by expanding to lowest order

about the two distinct zone corners is

H = v
∑

α

[
(

δkα
1 σ2 − δkα

2 σ1
)

+ (mI −mα
T ) v2σ3], (2.32)

wheremα
T = 3

√
3t2α sinφ (α = ±1) is the second neighbor hopping term to lowest order near

the Dirac points. Thus, the inversion and time-reversal symmetry breaking perturbations

to the clean graphene system generate “mass terms” in the low energy effective Dirac

Hamiltonian. At the lowest energies, there is negligible mixing between the two distinct

zone corners, and the Hamiltonian is the sum of two Dirac equations, one for each distinct

zone corner.

The zero temperature phase diagram of this system in the mI ,mT plane is shown in

Fig. 2.3. When mI = mT = 0, we recover the massless Dirac Hamiltonian h1(k), and the

bandstructure is the “massless” spectrum Eα
± = ±v|δkα|. Switching on either of the mass

terms opens up a gap at the zone corners, and the energy dispersion is the solution of the

massive 2D Dirac equation:

Eα
± = ±

(

v2|δkα|2 + (mI −mα
T )2 v4

)1/2
(2.33)

The now non-degenerate bands (±) have well defined Berry curvature fields in k-space:

Fxy
α± = ± v (mT + αmI)

(

|δkα|2 + (αmI +mT )2 v2
)3/2

, (2.34)

where mT = αmα
T = 3

√
3t2 sinφ. When mI = mT = 0, the Berry curvature is ill-defined

due to the degeneracy at the Dirac points, and the Berry curvature equation above assumes

the form of a Dirac monopole magnetic flux in k-space. When inversion symmetry is broken

while time-reversal symmetry is preserved (mT = 0), the Berry curvature field is an odd

function is the Brillouin zone:

Fxy
± (−k) = −Fxy

± (k), (2.35)
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and the integral of the Berry curvature for each band over the entire 2D Brillouin zone

vanishes identically - i.e. their Chern invariants are zero.

Next, consider the case when time-reversal symmetry is broken while inversion symmetry

is preserved. The Berry curvature field in Eq. (2.34) is now an even function in k-space; as in

the case above, its magnitude rapidly decays away from the zone corners. The contribution

from each of the distinct Dirac points to the integrated Berry curvature is πsgn(mT ) and

each Band has a non-zero Chern number

C(1)
± = ±sgn(mT ). (2.36)

When both inversion and time-reversal symmetries are broken, the relative strengths

of the two mass terms determines whether the two bands have non-zero Chern invariants.

There are also special critical lines along which mI = ±mT , where the gap at only one of

the two distinct zone corners vanishes. Thus, the critical lines separating the quantum Hall

regime from the ordinary semiconducting regime are lines along which the system becomes

a semi-metal again.

=

I

mT

(1)
_+C

(1)
_+C

(1)
_+C _+ sgn(φ)=

(1)
_+C _+sgn(φ)

=0

=0

m

Figure 2.3: Zero temperature phase diagram in the mI −mT plane. Graphene without any
broken symmetries is found at the origin of the plane, where it retains its massless Dirac
spectrum and its semimetallic state. Breaking inversion symmetry alone opens up a gap
at the zone corners and produces a conventional semiconductor. Breaking time-reversal
symmetry alone (without any net magnetic flux) produces a “zero-field” integer quantum
Hall system. The solid lines represent critical lines, separating the quantum Hall system
from the semiconductor, and along these lines, the gap vanishes at one of the two distinct
zone corners.

While all this can be seen trivially using the expression for the Berry curvature (Eq.

2.34) of the low energy effective Hamiltonian linearized about the zone corners, this result
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also holds true for the full Hamiltonian in Eq, (2.28). If time-reversal symmetry is present,

the periodic part of the Bloch states at k and −k are related by complex conjugation

un(−k, r) = u∗n(k, r), (2.37)

whereas if inversion symmetry is present,

un(−k, r) = un(k, r). (2.38)

It follows then from the definition of the Berry curvature of Bloch band systems, that for any

periodic Hamiltonian, if time-reversal symmetry is present, F ab
n (−k) = −Fab

n (k), whereas

if inversion symmetry is present, F ab
n (−k) = Fab

n (k), and if both symmetries are present,

the Berry curvature vanishes identically.

Having looked at this system in some detail, we can now demonstrate the presence of

chiral edge modes along domain walls across which the Chern character of the Bloch bands

change.

2.4 Edge modes along domain walls of graphene

In Ref. [19], it was shown that the model above has chiral edge states. By looking at the

effect of a uniform magnetic flux density in the model described above, one works out the

Landau levels (they are relativistic levels due to the Dirac points) in the system. Edge modes

can then be shown from the spectral flow of states when the magnetic field changes sign,

and from the Streda formula [55], which relates the Hall conductance to the thermodynamic

derivative of the electron density with respect to applied field, at fixed Chemical potential.

From this relation, one sees [19] that the system accomodates edge states when the Fermi

level lies in the gap opened at the zone corners by breaking time-reversal symmetry.

We shall take a slightly different route here - one which will be employed in the next

chapter when we consider the photonic analog. Instead of using a uniform applied field,

we will tune the system’s own parameters such that the Chern number of the two bands of

interest change when we we cross a critical point in parameter space.
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We only need to look at the low energy Dirac Hamiltonian for the demonstration. For

simplicity, we set the inversion symmmetry breaking Dirac mass term mI to zero, and

imagine slowly tuning the time-reversal breaking mass term mT as a function of position.

Since each Dirac point contributes an equal amount of Berry flux (namely π), to the

integrated Berry curvature, we neglect cross-talk between each zone corner (we do this

by varying mT (r) on a scale much larger than a lattice constant), and treat each one in

isolation. With the position-dependence of the mass gap, we must replace the momenta by

δka → −ih̄∇a.

The Hamiltonian we consider here is then

H = −ih̄v
(

∂1σ
2 − ∂2σ

1
)

−mT (r)v2σ3 (2.39)

Since the Chern number is a topological “charge” that cannot vary continuously with

mT (in fact, it only depends on its sign), a smooth spatial variation in the Dirac mass term

will not change the Chern number of the bands.

However, we tune mT across it’s critical value mT = 0 and see what happens. When the

mass term changes sign in some region, the local Bandstructure will be governed again by

the massless Dirac equation. The bands which had non-zero Chern invariants, will touch

one another, and their Chern numbers are no longer well defined.

We can consider a simple case which will have all the features of interest; vary mT along

a single direction (say x), letting it vanish at x = 0, having opposite sign on either side

(Fig. 2.4).

We shall show that there are edge states here by solving for the zero-energy modes of

the Dirac equation:
[

−ih̄v (∂xσy − ∂yσ
x) −mT (x)v2σ3

]

ψ = 0 (2.40)

We look for spinor solutions in the basis in which σx is diagonal. Since the y-direction

retains translation invariance, we look for solutions of the form

ψα(r) = fα(x) exp (iαδkyy) , (2.41)
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Figure 2.4: A domain wall in 1D

where σxfα = αfα, α = ±1. The spinor fα obeys a first-order differential equation:

ih̄vσyfα(x) = m(x)vσzfα(x) (2.42)

We multiply through by σy, and obtain the differential equation

dfα

dx
=
αm(x)v

h̄
fα(x), (2.43)

whose solutions are

fα(x) = exp

(

αv

h̄

∫ x

0
dx′m(x′)

)

fα(0) (2.44)

It is now easily clear why there are unidirectional edge modes in this system. The total

wave function is

ψα(x, y) = fα(0) exp (−iαδkyy) exp

(

αv

h̄

∫ x

0
dx′m(x′)

)

(2.45)

These solutions correspond to localization in the x-direction and to free propagation in the

y-direction. Formally, we have solutions corresponding to free propagation in the positive

and negative y- directions (labeled by α). However, only normalizable states can correspond

to physical states. We see then that we have to throw away the state that blows up

exponentially in the x-direction and we are left with one state - electrons will travel in one

direction only. The zero-modes of the Dirac equation are our quantum Hall edge modes.

In the next chapter we see how all this arises in a photonic context. We have been

careful to never make use of a net magnetic flux - we have been working with Bloch states
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until now. Indeed, the electronic poperties which give rise to quantum Hall effects - charge,

and Fermi statistics, have not been invoked in the construction of the edge states.



Chapter 3

Photonic analogs of “chiral”

quantum Hall edge states

3.1 Introduction

The control of the flow of light using photonic band-gap (PBG) materials has received

considerable attention over the past decade [24]. Moreover, the potential for using artificially

structured “metamaterials”, such as the recently discovered “left-handed media” [39], has

shown considerable technological promise. In the past, significant progress has been achieved

in the field of photonics by making use of analogies with electronic systems. For instance,

the typical PBG material, a system with a spatially varying and periodic dielectric function,

was motivated by the well known physics of electronic Bloch states; the dielectric scattering

of light in periodic media presents the same formal solutions as those for the scattering of

electrons in periodic potentials.

Previous photonic bandstructure calculations have focused on the frequency dispersion of

the photon bands; it has been usually been assumed that a knowledge of the spectrum alone

represents a complete understanding of dynamics of the system. A primary goal of such

calculations has been the quest for a PBG material with a complete bandgap throughout the

Brillouin zone in some frequency range, which would prevent the transmission of light with

20
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frequency in the range of the Band gap. Both two and three dimensional bandstructures

possessing these properties have now been discovered [36].

Recently, however, in the study of electronic systems, it has become apparent that, even

in the absence of interaction effects, the dispersion relations of the energy bands do not

fully characterize the semiclassical dynamics of wavepackets, unless both spatial inversion

symmetry and time-reversal symmetry are unbroken[56]. The additional information, which

is not obtainable from knowledge of the energy bands εn(k) alone, is the variation of the

Berry curvature[53] Fab
n (k) = εabcΩnc(k), which is an antisymmetric tensor in k-space, where

Ωn(k) is analogous to a “magnetic field” (flux density) in k-space. The “Berry curvature”

in k-space is related to the Berry phase[6] in the same way that the Bohm-Aharonov phase

of an electronic wavepacket is related to the magnetic flux density in real space.

While the uniform propagation of wavepackets in perfectly translationally-invariant sys-

tems does not involve the Berry curvature, the “semiclassical” description of the acceleration

of wavepackets in media with spatial inhomogeneity of lengthscales large compared to the

underlying lattice spacing is incomplete if it is not taken into account. Recently Onoda et

al.[48] have pointed out the role of Berry curvature in photonic crystals without inversion

symmetry; while these authors characterize this as a “Hall effect of light”, the Hall effect

in electronic systems is associated with broken time-reversal symmetry rather than broken

spatial inversion symmetry, and we have recently discussed[20] some of the at-first-sight-

surprising effects that broken time-reversal symmetry could produce in photonic systems.

In the presence of non-vanishing Berry curvature, the usual “semiclassical” expression

for the group velocity of the wavepacket is supplemented by an additional “anomalous”

contribution proportional to its acceleration and the local Berry curvature of the Bloch

band. (The semiclassical treatment of electron dynamics becomes ray optics in the photonic

context). This “anomalous velocity” has played an important role in understanding recent

experiments on the anomalous Hall effect of ferromagnets [32], for example.

Perhaps the most remarkable among the “exotic” effects associated with Berry cur-

vature, however, is the quantum Hall effect [63], which has been the focus of intensive
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experimental and theoretical study in condensed matter physics for over two decades. The

physics of the quantum Hall regime and its connection with Berry Curvature phenomena is

now well understood. The possibility of transcribing some of the main features of the quan-

tum Hall effect to photonic systems, which brings into play new possibilities in photonics,

is the topic of this chapter. Specifically, we shall concern ourselves with analogs of “chiral”

(unidirectional) quantum Hall edge states in photonic systems with broken time-reversal

symmetry.

The quantum Hall effect is usually associated with two dimensional electron systems in

semiconductor heterojunctions in strong applied magnetic fields. By treating the plane of

the heterojunction as a featureless two-dimensional (2D) continuum, and considering the

quantum mechanical motion of electrons in the presence of a magnetic field, one obtains

the electronic Landau levels. The key feature giving rise to the quantization of the Hall

conductance is the incompressibility of the electron fluid: either due to the Pauli principle

at integer Landau level fillings, with the spectral gap to the next empty level given by the

cyclotron frequency, or when a gap opens due to strong electron-electron interactions at

fractional fillings[31].

While in the experimentally-realized systems, the quantum Hall effect derives from a

strong uniform component of magnetic flux density normal to the 2D plane in which the

electrons move, the integer quantum Hall effect can also in principle derive from the interplay

of a periodic bandstructure with a magnetic field. An externally applied magnetic field

in periodic structures gives rise to the celebrated Hofstadter model of Bloch bands with

an elegant fractal spectral structure depending on the rational value of the magnetic flux

through the unit cell [21] [10]. The influence of the lattice on the quantum Hall effect was

further investigated in an important paper by Thouless et al (TKNN) [59], who discovered

a topological invariant of 2D bandstructures known as the “Chern Number” a quantity that

was later interpreted in terms of Berry curvature [53].

At first sight, it seems implausible that any of the phenomena associated with the

quantum Hall effect can be transcribed to photonics. Incompressibility and Landau level
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quantization require fermions and charged particles, respectively, and it is not clear how one

could introduce an effect similar to the Lorentz force due to a magnetic field on a system of

neutral bosons. However, a hint that possible analogs could exist in photonics, comes from

the fact that a “zero-field” quantum Hall effect without any net magnetic flux density (and

hence without Landau levels) could occur in systems consisting of “simple” Bloch states

with Broken time-reversal symmetry, as was shown some time ago by one of us [19]. The

explicit “graphene-like” model investigated in Ref. [19] exploits the topological properties

of Bloch states, which motivated us to construct its photonic counterpart. This model has

also turned out to be a very useful for modeling the anomalous Hall effect in ferromagnetic

metals [49], and a recently proposed “quantum spin Hall effect”[25].

While incompressibility of the fluid in the bulk quantizes the Hall conductance, perhaps

the most remarkable feature of quantum Hall systems is the presence of zero energy excita-

tions along the edge of a finite system. In these edge states, electrons travel along a single

direction: this “one-way” propagation is a symptom of broken time-reversal symmetry. In

the case that the integer quantum Hall effect is exhibited by Bloch electrons, as in the

Hofstadter problem studied by TKNN[59], it is related to the topological Chern invariant

of the one-particle bands. The edge states necessarily occur at the interface between bulk

regions in which there is a gap at the Fermi energy, which have different values of the sum

of the Chern invariants of the fully occupied bands below the Fermi level. While the integer

quantum Hall effect in such a system itself involves the filling of these bands according to the

Pauli principle, and hence is essentially fermionic in nature, the existence of the edge states

is a property of the one-electron band structure, without reference to the Pauli principle,

which suggests that this feature is not restricted to fermionic systems. We have found that

they indeed have a direct photonic counterpart, and this leads to the idea that topologi-

cally non-trivial unidirectionally propagating photon modes can occur along domain walls

separating two PBG regions having different Chern invariants of bands below the band gap

frequency. In this chapter, we present the formal basis of such modes, along with explicit

numerical examples, simple model Hamiltonians, and semiclassical calculations confirming
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the concept.

We note finally, that while Berry phases are usually associated with quantum mechanical

interference, they can in principle occur wherever phase interference phenomena exist and

are governed by Hermitian eigenvalue problems, as in the case of classical electromagnetic

waves in loss-free media.

This chapter is organized as follows. In section II, we present the basic formalism of the

Maxwell normal mode problem in periodic, loss-free media, discuss the Berry curvature of

the photonic bandstructure problem, and consider the effects of broken time-reversal sym-

metry. In section III, we provide explicit numerical examples of bandstructures containing

non-trivial topological properties, and show the occurrence of edge states along domain wall

configurations. Motivated by the numerical results, in section IV, we derive a simple Dirac

Hamiltonian from the Maxwell equations using symmetry arguments as the guiding princi-

ple, and we show how under certain conditions the zero modes of this Dirac Hamiltonian

exhibit anomalous currents along a single direction due to the breaking of time-reversal

symmetry. It is these zero modes that play the role of the “gapless” edge excitations, as

we shall consider in detail. Section V contains semiclassical analysis, and we end with a

discussion and point out possible future directions in section VI.

3.2 Berry Curvature in the Maxwell Normal-mode Problem

In this section, we discuss the formal basis of Berry curvature in the photon band prob-

lem. We begin with the basic formulation of the photonic bandstructure problem, which is

somewhat more complicated than the electronic counterpart, due to the frequency response

of dielectric media. We then briefly review the connection between Chern numbers, Berry

curvature, and the occurrence of gapless edge modes along a boundary separating regions

where the bands have different Chern numbers.
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3.2.1 Basic Formalism

We will be solving the source-free Maxwell equations for propagating electromagnetic wave

solutions in linear, loss-free media, and will ignore absorption, nonlinear photon-photon

interactions, and other processes which do not conserve photon number. We also assume

that the constitutive relations, reflecting the response of the media to the electromagnetic

waves, are given by local, but spatially varying tensors with generalized frequency depen-

dence. The Berry phase, and the associated Berry curvature, are commonly identified with

quantum mechanics, but in fact are more generally associated with the adiabatic variation

of the complex eigenvectors of a Hermitian eigenvalue system as the Hermitian matrix is

varied.

In quantum mechanics, this Hermitian eigenvalue problem is the time-independent

Schrödinger equation; in the photonic context, it is the classical eigenvalue equation for

the normal modes of the Maxwell equations. In order to make the correspondence to the

standard quantum-mechanical formulation of Berry curvature clearer, we will use a some-

what unfamiliar Hamiltonian formulation of Maxwell’s equations, which is appropriate for

loss-free linear media. However, we should emphasize that that our results are in no way

dependent on the use of such a formalism, and are properties of the Maxwell equations,

however they are written.

In such a loss-free, linear medium, the coupling of electromagnetic modes having different

frequencies can be ignored, and the electromagnetic fields and flux densities X(r, t), X ∈

{D,B,E,H} will be of the form

X(r, t) =
(

X̃∗(r, ω)eiωt + X̃(r, ω)e−iωt
)

, (3.1)

where the quantities X̃ are in general complex-valued functions of position and frequency

with the property:
(

X̃(r, ω)
)∗

= X̃(r,−ω). (3.2)

The dynamics of these fields are governed by the source-free Maxwell equations:

∇× Ẽ = iωB̃ , ∇× H̃ = −iωD̃, (3.3)
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∇ · D̃ = 0 , ∇ · B̃ = 0. (3.4)

Consider a single normal mode λ propagating at frequency ωλ. For the moment, ignore

any internal polarization or magnetization modes of the medium, and assume instantaneous,

frequency-independent response of the dielectric material. In this limit, the permeability

and permittivity tensors, defined by the relations

B̃a(r, ωλ) = µab(r)H̃b(r, ωλ), (3.5)

D̃a(r, ωλ) = εab(r)Ẽb(r, ωλ), (3.6)

are both positive-definite Hermitian tensors and have well-defined, positive definite Hermi-

tian inverses ε−1
ab (r), µ−1

ab (r). Since we have assumed a linear, loss-free medium in which

photon number is conserved, it is convenient to work with a Hamiltonian formalism: the

time-averaged energy density of the electromagnetic radiation field is given by

Hem(r) = ue(r) + um(r), (3.7)

where

ue(r) =
1

2

(

D̃∗
λ, ε

−1(r)D̃λ

)

(3.8)

um(r) =
1

2

(

B̃∗
λ, µ

−1(r)B̃λ

)

. (3.9)

Then, if Hem is the spatial integral of the energy density, the fields E and H are given by

its functional derivatives with respect to the divergence-free flux densities D and B:

δHem =

∫

d3rEaδB
a +HaδB

a. (3.10)

In the local Hamiltonian formalism, the flux density fields D(r) and B(r) are the fun-

damental degrees of freedom, and they obey the following non-canonical Poisson Bracket

relations:

{Da(r), Bb(r′)}PB = εabc∇cδ
3(r − r′). (3.11)

This Poisson bracket generates the Faraday-Maxwell equations d(3.3):

dD

dt
= {D(r),Hem}PB,

dB

dt
= {B(r),Hem}PB. (3.12)
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Note that these equations do not generate the Gauss law equations (3.4), but merely ensure

that any divergences ∇aD
a and ∇aB

a are constants of the motion; the Gauss laws are

additional constraints that are compatible with the Faraday-Maxwell equations of motion.

If internal polarization and magnetization modes of the medium are ignored, a dis-

cretized form of the electromagnetic Hamiltonian is formally identical in structure to that

of a collection of real oscillator variables xi with non-canonical Poisson brackets

{xi, xj}PB = Sij, (3.13)

where Sij is a real antisymmetric matrix, and the Hamiltonian energy function is

H =
1

2

∑

ij

Bijxixj , (3.14)

whereBij is a real-symmetric positive-definite matrix. It is useful to introduce the imaginary

antisymmetric Hermitian matrix Aij = iSij; The canonical normal modes are given by

qλ ± ipλ = (γλ)−1
∑

i

u±iλxi, (3.15)

where γλ is an arbitrary scale factor, and where (uσ
iλ)∗ = u−σ

iλ , σ = ±, which obeys the

generalized Hermitian eigenvalue equation

∑

j

Aiju
±
jλ = ±ωλ

∑

j

B−1
ij u

±
jλ, (3.16)

with ωλ > 0, and the orthogonality condition

∑

ij

(uσ
iλ)∗B−1

ij u
σ′

jλ′ =
γ2

λ

ωλ
δσσ′δλλ′ . (3.17)

Because of the antisymmetric Hermitian property of the matrix Aij , and the positive-definite

real-symmetric property of the matrix Bij , this eigenproblem has real eigenvalues that either

come in pairs, ±ωλ, or vanish; these equations provide a straightforward transformation to

canonical form only if the generalized eigenvalue problem has no zero-frequency eigenvalues,

which is only the case if Aij is non-singular.

The coefficients uiλ are the analogs of the electromagnetic fields Ẽ(r, ω) and H̃(r, ω).

It is also useful to introduce the conjugate quantities

vσ
iλ =

∑

j

B−1
ij u

σ
jλ,

∑

i

(vσ
iλ)∗uσ′

iλ′ = δσσ′δλλ′ ; (3.18)
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these are the analogs of the flux densities D̃(r, ω) and B̃(r, ω), and Bij encodes the “con-

stitutive relations” between analogs of fluxes and fields.

The Hamiltonian formulation of the Maxwell equations indeed presents the difficulty

of having a null space of zero-frequency eigenvalues: by themselves, the Faraday-Maxwell

equations have static (zero-frequency) solutions B̃(r) = ∇f(r), D̃(r) = ∇g(r); the role of

the additional Gauss law constraints is precisely to eliminate these zero modes. The zero-

mode problem in the Hamiltonian formulation is the counterpart of the gauge ambiguity of

the solutions of Maxwell’s equations in the Lagrangian formulation.

In the Maxwell equations, Bij becomes the following positive-definite 6 × 6 Hermitian

matrix,

Bij →







ε−1
ab (r) 0

0 µ−1
ab (r)






. (3.19)

More precisely, this a 6× 6 block of an infinite-dimensional “matrix” that is block-diagonal

in terms of the spatial coordinate r. (The “A” and “B” matrix notation is common in the

context of generalized Hermitian eigenvalue problems, where the positive-definite charac-

ter of the “B” matrix guarantees reality of the eigenvalues; hopefully the context should

distinguish our use of the symbol B for such a matrix from the symbol B(r) used for the

magnetic flux density.) In this continuum limit, the antisymmetric Hermitian matrix Aij

becomes a 6 × 6 matrix block of differential operators:

Aac =







0 iεabc∇b

−iεabc∇b 0






. (3.20)

This A-matrix can be also be elegantly expressed using the 3 × 3 spin-1 matrix representa-

tions of the angular momentum algebra,
(

Lb
)ac

= iεabc:

A =







0 La∇a

−La∇a 0






. (3.21)

From the antisymmetry of A, it again follows that its eigenvalues come either in ± pairs,

or are zero modes, corresponding to static field configurations. Due to the presence of a



29

huge band of zero modes (one third of the spectrum), the A matrix cannot be written in

canonical form.

Using the Poisson-Brackets, we see that the equation of motion of the electric and

magnetic fields is a generalized Hermitian eigenvalue problem of the form







0 La∇a

−La∇a 0













Ẽλ

H̃λ






= ωλ







ε(r) 0

0 µ(r)













Ẽλ

H̃λ






. (3.22)

In this formalism, the energy-density of the normal mode (time-averaged over the periodic

cycle) is

u(r) =
1

2

[

Ẽ∗
λ H̃∗

λ

]







ε(r) 0

0 µ(r)













Ẽλ

H̃λ






, (3.23)

and the period-averaged averaged energy-current density (Poynting vector) is

ja(r) =
1

2

[

Ẽ∗
λ H̃∗

λ

]







0 −iLa

iLa 0













Ẽλ

H̃λ






. (3.24)

For practical real-space-based calculations of the photonic normal mode spectrum with

inhomogeneous local constitutive relations, it is very convenient to discretize the continuum

Maxwell equations on a lattice (or network) in a way that they in fact have the matrix

form (3.16), where the matrix Aij reproduces the zero-mode (null space) structure of the

continuum equations, and Hij represents the local constitutive relations at network nodes

(which come in dual types, electric and magnetic). In such a scheme, divergence-free electric

and magnetic fluxes flow along the links of the interpenetrating dual electric and magnetic

networks, while electromagnetic energy flows between electric and magnetic nodes, along the

links between nodes of the network, satisfying a local continuity equation (see the following

chapter). However, there is one further conceptual ingredient that needs to be added to

the formalism before we can discuss the Maxwell normal modes in “non-reciprocal” media

which have broken time-reversal symmetry.



30

3.2.2 Frequency dependence of the dielectric media

The formalism discussed so far treats the constitutive relations as static. In general, al-

though we will treat them as spatially local, we cannot also treat them as instantaneous,

and must in principle treat the local permittivity and permeability tensors as frequency-

dependent, ε(r) → ε(r, ω), µ(r) → µ(r, ω). This is because a non-dissipative time-reversal-

symmetry breaking component of these tensors is both imaginary and antisymmetric (as op-

posed to real symmetric) and is an odd function of frequency, making frequency-dependence

inescapable in principle.

These effects can on the one hand be treated in a Hamiltonian formulation by adding

extra local harmonic oscillator modes representing local polarization and magnetization de-

grees of freedom of the medium that couple to the electromagnetic fields. The full descrip-

tion of this is again a set of harmonic oscillator degrees of freedom described by equations

of the form (3.16). On the other hand, with the assumption that we are treating the elec-

tromagnetic modes in a frequency range that is not resonant with any internal modes of the

medium (i.e., in a frequency range where the loss-free condition is satisfied), we can elim-

inate the internal modes to yield a purely-electromagnetic description, but with frequency

dependent constitutive relations.

The details shall follow below, but we first state the result. If all oscillator degrees

of freedom are explicitly described, the eigenvalue problem for the normal modes has the

structure (3.16), where B−1
ij is positive-definite and real-symmetric. This guarantees that

the eigenvalues ωλ are real. However, the normal modes in some positive frequency range

ω1 < ω < ω2 can be treated by eliminating modes with natural frequencies outside that

range, to give an matrix-eigenvalue-like problem of much smaller rank of the form

∑

j

Aiju
±
jλ = ±ωλ

∑

j

B−1
ij (ωλ)u±jλ, (3.25)

where Bij(ω) is now a frequency-dependent matrix with a Kramers-Krönig structure. The

matrix Bij(ω) is no longer in general real-symmetric, but provided the eliminated modes are

not resonant in the specified frequency range it instead is generically complex Hermitian.
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The “eigenvalue equation” is now a self-consistent equation:

∑

j

Aiju
±
jλ(ω) = ±ωλ(ω)

∑

j

B−1
ij (ω)u±jλ(ω). (3.26)

This must be solved by varying ω till it coincides with an eigenvalue. Unfortunately, while

B−1
ij (ω) is Hermitian and non-singular in the dissipationless frequency range ω1 < ω < ω2,

it is not necessarily positive definite, so a priori, the eigenvalues ωλ(ω) are not guaranteed

to be real, except for the fact that we know that these equations were derived from a

standard frequency-independent eigenvalue problem which does have real eigenvalues. As

shown in subsection 3.2.3, the Kramers-Kronig structure of Bij(ω) reflects the stability of

the underlying full oscillator system, giving the condition that a modified matrix

B̃−1
ij (ω)) =

d

dω

(

ωB−1
ij (ω)

)

(3.27)

is positive-definite Hermitian in the specified frequency range, which is sufficient to guar-

antee reality of the eigenvalues in that range. Furthermore, the quadratic expression for

the energy of a normal mode solution is given in terms of B̃−1
ij (ωλ) rather than B−1

ij (ωλ),

reflecting the fact that the total energy of the mode resides in both the explicitly-retained

degrees of freedom (the “electromagnetic fields”) and the those which have been “integrated

out” (the non-resonant polarization and magnetization modes of the medium):

xi(t) = B−1
ij (ωλ)u+

jλe
iωλt + c.c., ωλ > 0, (3.28)

H =
1

2

∑

ij

B̃−1
ij (ωλ)(u+

iλ)∗u+
jλ,

dH

dt
= 0. (3.29)

If the frequency dependence of the positive-definite Hermitian matrix B̃ij(ω) is negligible

in the range ω1 < ω < ω2, so B̃ij(ω) ≈ B̃ij(ω0), with ω0 = (ω1 + ω2)/2, one can replace

B−1
ij (ω) in (3.25) by the positive-definite frequency-independent Hermitian matrix B̃−1

ij (ω0).

This in turn allows the eigenvalue problem to be transformed into the standard Hermitian

eigenvalue problem

Hijw
(λ)
j = ωλw

(λ)
i ,

(

w(λ),w(λ′)
)

= δλλ′ , (3.30)

with scalar product
(

w,w′) ≡
∑

j

w∗
jw

′
j , (3.31)
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valid for positive ωλ in the frequency range where B̃ij(ω) ≈B̃ij(ω0), with

Hij =
(

B̃1/2(ω0)AB̃
1/2(ω0)

)

ij
, (3.32)

and

u+
iλ ∝

∑

j

B̃
1/2
ij (ω0)wjλ. (3.33)

This allows well-known Berry-curvature formulas from the standard Hermitian eigenproblem

[53] to be quickly translated into the generalized problem. It turns out that when the full

problem with frequency-dependent constitutive relations is treated, the standard formula for

the Berry connection remains correct with the simple replacement B̃ij(ω0) → B̃ij(ωλ) ( the

Berry curvature and Berry phase can both be expressed in terms of this Berry connection).

3.2.3 Technical details

In this section, we shall provide the details of the generalization of the normal mode problem

to include the frequency-dependent response of the media outlined above. We shall couple

the electromagnetic fields to harmonic oscillator degrees of freedom of the medium. Defining

φiσ and πiσ (i = 1, · · ·N , σ = ε, µ) to be a set of N independent canonically conjugate

oscillator coordinates and momenta respectively, which represent internal polarization and

magnetization modes, we consider the total Hamiltonian

H = Hem +
∑

σ

Hσ , (σ = ε, µ), (3.34)

where, for instance,

Hε =
∑

i

Da (αiε(r)aπiε(r) + βa
iε(r)φiε(r))

+
1

2

∑

i

ωiε

(

πiε(r)2 + φiε(r)2
)

.

The first term above represents the local coupling between the electric fluxes and the

polarization modes, whereas the second term represents the energy of the oscillators them-

selves. A similar equation exists for the magnetization degrees of freedom coupled with the



33

magnetic fluxes. The Hamiltonian, as stated in Eq.(3.34), is real-symmetric and positive-

definite, and therefore, its eigenvalues are real. The electric and magnetic fields are ob-

tained by varying the Hamiltonian with respect to the associated flux densities: Ea(r) =

δH/δDa(r), Ha(r) = δH/δBa(r)

Ea(r) = ε−1
ab (r)Db(r) +

∑

n

(αa
nε(r)φnε(r) + βa

nε(r)πnε(r)) , (3.35)

and similarly for the field Ha. The time-evolution of the oscillator modes are obtained from

the Hamilton equations of motion (letting ∂tφnσ = −iωφnσ, etc)

−iωφnε(r) =
δH

δπnε(r)
= ωnεπn(r) + βa

n(r)Da(r) (3.36)

iωπnε(r) =
δH

δφnε(r)
= ωnεφnε(r) + αa

nε(r)Da(r). (3.37)

We invert this equation to solve for the oscillator coordinates and momenta in terms of

the fluxes:







φnε(r)

πnε(r)






=

1

ω2 − ω2
n







ωn iω

−iω ωn













αa
nε(r)

βa
nε(r)






Da(r). (3.38)

By substituting Eq.(3.38) into the expression for the electric field (3.35), we obtain a

correction δε−1
ab (r ω) to the permittivity tensor coming from the oscillator modes:

δε−1
ab (r ω) =

∑

n

(

Γε
ab(r)(ω + ωn) − Γ∗ε

ab(r)(ω − ωn)

ω2 − ω2
n

)

, (3.39)

where

Γab
ε (r) = (αa

nε(r) − iβa
nε(r))

(

αb
nε(r) + iβb

nε(r)
)

. (3.40)

Finally, the correction term above to the permittivity is expressed in Kramers-Krönig

form as

δε−1
ab (r, ω) =

∑

n

(

Γε
ab(r)

ω − ωn
− Γε∗

ab(r)

ω + ωn

)

. (3.41)
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The same formal manipulations occur in the frequency dependence of the magnetization

modes; in the end, the constitutive relations are given by a tensor B(r, ω) defined by

B(r, ω) =







ε−1(r, ω) 0

0 µ−1(r, ω)






, (3.42)

which is written in Kramers-Kronig form as:

Bab(r, ω) = Sab(r) +
∑

n

(

Γab(r)

ω − ωn
− Γ∗

ab(r)

ω + ωn

)

. (3.43)

The first term, Sab(r) = limω→∞B(r, ω) is the same tensor defining the Hamiltonian

in Eq.(3.14). In the zero frequency limit,

Bab(r, 0) = Sab(r) −
∑

n

(

Γab(r) + Γ∗
ab(r)

ωn

)

. (3.44)

Stability of the medium imposes the following important constraint:

B(r, 0) > 0. (3.45)

Eliminating Sab in Eq.(3.43) using Eq.(3.44), we get

δB(ω) =
∑

n

[

Γ

(

ω

ωn(ω − ωn)

)

+ Γ∗
(

ω

ωn(ω + ωn)

)]

where δB(ω) = B(ω) −B(0). Whereas B(ω) is not a positive-definite matrix, the quantity

which is guaranteed to be positive-definite in lossless frequency ranges is

B̃(ω) = B(ω) − ω
∂

∂ω
B(ω) > 0, (3.46)

because

B̃(ω) = B(0) +
∑

n

1

ωn

[

Γn

(

ω

ω − ωn

)2

+ Γ∗
n

(

ω

ω + ωn

)2
]

, (3.47)

and Γn, Γ∗
n, and B(0) are all positive-definite tensors.

Although B(ω) is not positive-definite, we will be interested in cases where

det(B(ω)) = 0. (3.48)
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When this condition is satisfied and B(ω) has no zero modes corresponding to metallic

conditions, there is a well defined inverse tensor B−1(ω)

B−1(r, ω) =







ε(r, ω) 0

0 µ(r, ω)






. (3.49)

From the stability condition stated for B(ω), there exists a similar condition for B−1(ω):

B − ω
∂

∂ω
B = B

(

B−1 + ω
∂

∂ω
B−1

)

B > 0,

where we have made use of B−1B = 1 and ∂/∂ω
(

B−1B
)

= 0. Supplementing the inequality

above with the condition in Eq.(3.48), we obtain

B̃−1(ω) ≡ ∂

∂ω

(

ωB−1(ω)
)

> 0. (3.50)

The eigenvalue problem is solved for each value of the Bloch vector k in the first

Brillouin zone, and The formal strategy for obtaining the energy eigenvalues is to solve

A|un(k)〉 = ωn(k)B−1(ω(k))|un(k)〉, and then to vary ω until it coincides with a fre-

quency of an eigenmode. The stability condition (see Eq.(3.50)) guarantees that such a

prescription enables us to find the entire spectrum in a lossless range of real frequencies,

where B̃−1 is Hermitian.

Indeed, if we consider for the moment the Hermitian problem

(

A − ωB−1(ω)
)

|un〉 = λn(ω)|un〉, (3.51)

and vary ω to find the zero modes

λn(ω) = 0, (3.52)

the stability of such a prescription is guaranteed only if

∂λn

∂ω
< 0, (3.53)

so that the eigenvalues are monotonically-decreasing functions of ω. But from first-order

perturbation theory, we know that the requirement above is satisfied only if
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〈un|
d

dω

(

ωB−1(ω)
)

|un〉 > 0, (3.54)

which is precisely equivalent to the condition in Eq.( 3.50).

When we eliminate the internal oscillator (polariton) modes and explicitly substitute

the expressions in Eq.(3.38) into the total Hamiltonian, Eq. (3.34), we obtain the following

quadratic form that involves only the electromagnetic flux densities:

H =
1

2

∑

ij

B̃−1
ij (ω)(ui)

∗uj . (3.55)

Our result can be summarized as follows. We begin with our total Hamiltonian, Eq.(3.34),

which can be written as a positive-definite real-symmetric matrix whose states live in an en-

larged Hilbert space containing electromagnetic flux densities and internal oscillator modes.

When we “integrate out” the non-resonant internal oscillator modes of the media, we are

left with a set of effective constitutive relations of the form

viλ =
∑

j

Bij(ωλ)u+
jλe

iωλt + c.c., (3.56)

and an effective Hamiltonian (which represents the conserved time-averaged energy den-

sity of the electromagnetic fields as well as the oscillator modes) that involves a different

tensor B̃ij(ω) given in 3.55. Using the relation in Eq.(3.46), we can equivalently write the

Hamiltonian as

H =
1

2

∑

ij

B̃ij(vi)
∗vj. (3.57)

For the case of generalized frequency dependence considered here, the normalization of

the electromagnetic fields are given (up to a scale factor) in terms of the time-averaged

energy density, Eq.(3.55):

∑

µν

(

uµ)∗, B̃−1(ωµ)uν

)

=
1

ωµ
δµν . (3.58)

Finally, the matrix B̃−1 and not B−1 enters the expression for the Berry connection, since

it also defines the normalization of our states.
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3.2.4 Berry curvature in Hermitian eigenproblems

Let Hij(g) be a family of complex Hermitian matrices defined on a manifold parameterized

by a set g of independent coordinates gµ, µ= 1, . . . D It is assumed that the matrix is generic,

so its eigenvalues are all distinct; as it is well-known, three independent parameters must be

“fine-tuned” to produce a “accidental degeneracy” between a pair of eigenvalues. Thus if the

parametric variation of the Hermitian matrix is confined to a two-parameter submanifold,

each eigenvalue ωλ(g) will generically remain distinct. Under these circumstances, the

corresponding eigenvector is fully defined by the eigenvalue equation and normalization

condition, up to multiplication by a unimodular phase factor, that can vary on the manifold:

wλi(g) → eiφ(g)wλi(g). (3.59)

This is the well-known “U(1) gauge ambiguity” of the complex Hermitian eigenproblem.

Associated with each eigenvector is a gauge-field (vector potential in the parameter space),

called the “Berry connection”:

A(λ)
µ (g) = −i (wλ(g)), ∂µwλ(g)) , ∂µ ≡ ∂

∂gµ
. (3.60)

This field on the manifold is gauge-dependent, like the electromagnetic vector potential

A(r), but its curvature (the “Berry curvature”), the analog of the magnetic flux density

B(r) = ∇ × A(r), is gauge invariant and given by

F (λ)
µν (g) = ∂µA(λ)

ν (g) − ∂νA(λ)
µ (g). (3.61)

The Berry phase associated with a closed path Γ in parameter space is given (modulo 2π)

by

exp
(

−iφ(λ)(Γ)
)

= exp

(

−i
∮

Γ
Aµ(g)dgµ

)

. (3.62)

.

Ignoring frequency-dependence, the oscillator system has

H(g) = B1/2(g)AB1/2(g), (3.63)
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where the positive-definite Hermitian matrix B(g) can continuously vary as a function of

some parameters g, but A is invariant. Then converting to the oscillator variables gives

A(λ)
µ (g) = Im.





(

u(λ), B̃−1(g, ωλ)∂µu(λ)
)

(

u(λ), B̃−1(g, ωλ)u(λ)
)



 . (3.64)

Here B−1(g) has been replaced by B̃−1(g, ωλ) which is the correct result when frequency

dependence of B−1(g, ω) is taken into account (see subsection 3.2.3).

3.2.5 Photonic bands and Berry curvature

In the case of periodic systems, the normal modes have discrete translational symmetry

classified by a Bloch vector k defined in the Brillouin zone, i.e., defined modulo a reciprocal

vector G. For fixed k, the spectrum of normal mode frequencies ωn(k) is discrete, labeled

by band indices n, and, as emphasized by Sundaram and Niu[56] in the electronic context,

the Bloch vector of a wavepacket plays the role of the control-parameter vector g.

In order to compute the Berry curvature of the photon band Bloch states, we shall find

it convenient to work in a fixed Hilbert space for all Bloch vectors k, and we do this by

performing a unitary transformation on the A “matrix” (which becomes the 6 × 6 matrix

of differential operators (3.20) in the continuum formulation of the Maxwell equations) as

A(k,∇) ≡ e−ik·rA(∇)eik·r = A(∇ + ik). (3.65)

Note that parametric dependence on the Bloch vector k is a little different from parametric

dependence on parameters g that control the Hamiltonian. After projection into a subspace

of fixed k, the “A” matrix also becomes parameter-dependent, while (if the constitutive

relations are taken to be completely local) the “B” matrix in the photonics case is only

implicitly k-dependent through its self-consistent dependence on the frequency eigenvalue.

(Parameter-dependence of the “A” matrix does not affect the expression (3.64) for the

Berry connection.)

The discrete eigenvalue spectrum ωn(k) is then obtained by solving the self-consistent

matrix-differential-equation eigenvalue problem:

A(k,∇)un(k, r) = ωn(k)B−1(r, ωn(k))un(k, r), (3.66)
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where B−1(r, ω) is the 6×6 block-diagonal permittivity-permeablity tensor diag(ε(r, ω),µ(r, ω)),

and un(k, r) exp ik · r represents the 6-component complex vector (Ẽn(k, r), H̃n(k, r)) of

electromagnetic fields of the normal mode with Bloch vector k and frequency ωn(k). The

eigenfunction satisfies the periodic boundary condition un(k, r + R) = un(k, r), where R

is any lattice vector of the photonic crystal, where B−1(r + R, ω) = B−1(r, ω).

The transcription of Eq.(3.64) to the case of periodic media then gives the three-

component Berry connection (vector potential) in k-space as

Aa
(n)(k) = Im.





(

un(k), B̃−1(ωn(k))∇a
kun(k)

)

(

un(k), B̃−1(ωn(k))un(k)
)



 . (3.67)

The scalar products in Eq.(3.67) are defined by the trace over the six components of un(k, r),

plus integration of the spatial coordinate r over a unit cell of the photonic crystal. By

construction, if a “Berry gauge transformation” un(k, r) → un(k, r) exp iχn(k) is made,

Aa
(n)(k) → Aa

(n)(k) + ∇a
kχn(k).

In three-dimensional k-space, the antisymmetric Berry curvature tensor F ab
(n)(k) =

∇a
kAb

(n)(k) − ∇b
kAa

(n)(k) can also be represented as the three-component “Berry flux den-

sity” Ω
(n)
a (k) = εabc∇b

kAc
(n)(k) (the k-space curl of the Berry connection), to emphasize the

duality between r-space and k-space, and the analogy between Berry flux in k-space and

magnetic flux in r-space,

If a wavepacket travels adiabatically (without interband transitions) through a region

with slow spatial variation of the properties of the medium, so the photonic normal-mode

eigenvalue spectrum can be represented as a position-dependent dispersion relation ωn(k, r),

the wavepacket must be accelerated as its mean Bloch vector k slowly changes to keep its

frequency constant. When translated into the language of photonics, the semiclassical

electronic equations of motion then become the equations of ray optics:

n̂adka

dt
= −n̂a∇aωn(k, r), (3.68)

dra

dt
= ∇a

kωn(k, r) + Fab
n (k, r)

dkb

dt
, (3.69)

where n̂ ∝ dr/dt is parallel to the ray path, ∇a ≡ ∂/∂ra and ∇a
k ≡ ∂/∂ka (it is useful to

use covariant and contravariant indices to distinguish components of spatial coordinates ra
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from the dual Bloch vector components ka). The Bloch-space Berry curvature F ab
n (k, r)

controls the additional “anomalous velocity[27]” correction in (3.69) to the familiar group

velocity of a wave packet va
n(k) = ∇a

kωn(k), which is active only when the wavepacket is

being accelerated by the inhomogeneity of the medium.

Before we conclude our general discussion on Berry curvature in photon band systems, we

must state the constraints that inversion and time-reversal symmetries place on the tensor

Fab
n (k). In what follows, we will use the Bloch state wn defined in Eq.(3.33). If inversion

symmetry (I) is present, the periodic part of the Bloch state wn(k has the following property:

wn(k) = wn(−k) whereas if time-reversal symmetry (T) is present, wn(k) = w∗
n(−k). If

only (I) is present, it then follows that F ab
n (k) = Fab

n (−k), whereas if only (T) is present,

Fab
n = −Fab

n (−k). If both symmetries are present, then the Berry Curvature is identically

zero everywhere except at isolated points of “accidental degeneracy”, where it is not well-

defined. When Fab
n is non-zero, the phases of the Bloch vectors cannot all be chosen to be

real. These properties will be crucial when we consider the effects of various symmetry-

breaking perturbations on the photon band structure.

3.2.6 Topological structure of the photon bands

The main consequence of having bands with non-zero Berry curvature field is that if the

path C is closed and encloses an entire Brillouin zone, the single-valuedness of the state wn

requires that

exp

(∮

Aa
ndka

)

= exp

(∫ ∫

dka ∧ dkbFab
n

)

= 1

or,

∫ ∫

SC

dka ∧ dkbFab
n = 2πC(1)

n , (3.70)

where C(1)
n is an integer, the Chern invariant associated with the nth band, and have well-

known consequences in the quantum Hall effect: in the integer quantum Hall effect, where

the interactions among electrons are weak, the Hall conductance is expressed in terms of

the sum of all Chern invariants of bands below the Fermi level [59]:
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σH =
e2

2πh̄

∑

i,εi<εf

C(1)
i . (3.71)

The gauge structure of the photon band problem outlined above is formally analogous

to the local U(1) gauge invariance of ordinary electromagnetism. Note that the gauge

invariance refers to the phase of the of the six-component electromagnetic fields as a whole;

adding arbitrary phase k-dependent phase factors to each field separately will in general

not preserve the Maxwell equation constraint.

A phase convention can be specified, for instance, by arbitrarily choosing real and imagi-

nary axes of the phases; the local gauge-dependent phase fields of the electromagnetic Bloch

states are then represented as two-component rotor variables at each point of the Brillouin

zone. In addition, a gauge choice may be made separately for each band so long as the

spectrum remains non-degenerate.

By representing the phase covering on the Bloch manifold this way, the possibility of

the occurrence of topological defects of the gauge field become transparent. Local gauge

transformations correspond to local smooth deformations of the rotor variables, and the

Chern invariant corresponds to the total winding number of theses rotor variables along a

closed path enclosing the entire Brillouin zone.

In the case of two dimensional Bloch bands, the defects of the phase field are gauge

singularities, having a zero-dimensional point-like “core” region where a phase convention

is not well defined. It is clear that Bands can have non-zero Chern numbers only if time-

reversal symmetry is broken. Otherwise, the Berry curvature will be an odd function of k,

and its integral over the entire 2D Brillouin zone vanishes.

In three dimensions, the defects of the phase field are line defects or “vortices” and their

stability requires quasi- degeneracies to occur along isolated lines in reciprocal space.

In the photonic system of interest, even if photon bands can have non-zero Chern num-

bers, there can be no Hall conductance as given above due to their Bose statistics (and

hence, to their finite compressibility). However, the connection between edge modes and

Chern invariants is independent of statistics: if the Chern number of a band changes at
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(a)

(b)

+

Figure 3.1: A representation of the phase fields of the photonic Bloch states in a two
dimensional Brillouin zone using two component rotors. The entire set of six electric and
magnetic fields is associated with a single phase at each point in the Brillouin zone. The
Chern invariant simply represents the winding number of this phase along the Brillouin
zone boundary and is also given by the integral of the Berry curvature F xy over the two
dimensional Brillouin zone. The phases in (a) correspond to bands with both inversion and
time-reversal symmetries, and the phases of the band can be chosen to be real every where
in the Brillouin zone. For bands having non-zero Chern invariants (b), the phase around
the zone boundary winds by an integer multiple of 2π and there is a phase vortex-like
singularity somewhere in the Brillouin zone where the Berry connection cannot be defined.
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an interface, the net number of unidirectionally moving modes localized at the interface is

given by the difference of the Chern numbers of the band at the interface. We shall consider

the problem of how Chern numbers can change across an interface in the next section.

CRCL
B

F

Figure 3.2: The number of forward minus the number of backward moving edgemodes
equals the difference of the Chern number of the band across the interface.

Since the Chern invariant of a band is a topological number, it therefore cannot vary

smoothly as we vary some parameter of the periodic eigenproblem. So long as a band

remains non-degenerate, its Chern number cannot vary. However, if we tune some parameter

λ of the Hamiltonian to a critical value λc such that two bands having non-zero Chern

invariants touch at some isolated point in the Brillouin zone when λ = λc, the two bands

can exchange their Chern numbers at these degenerate points; if we tuned λ beyond its

critical value, the bands would emerge with different Chern invariants. Since the total

Berry “magnetic flux” of all bands remains fixed always, if only two isolated bands exchange

their Chern numbers at points of degeneracy, the sum of their Chern numbers must remain

invariant [53].

Generically, 2D bands with both time-reversal and inversion symmetry touch at isolated

points of accidental degeneracy in a linear conical fashion, forming “Dirac cones” in the

vicinity of which the spectrum is determined by a massless Dirac Hamiltonian:

H ≡ ω − ωD = vD

(

δk1σ1 + δk2σ2

)

, (3.72)

where vD, is a parameter that gives the slope of the cone close to the accidental degeneracy.
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C(1) =− −1

C(1)
+ = 1 C(1)

+

kx

ky
ωD

ω

λ λc

= −1

C(1) =− 1

Figure 3.3: As we tune some parameter λ of the Hamiltonian across a critical point where
“accidental degeneracies” occur, and two bands touch in a linear fashion forming a “Dirac
point”, Chern numbers of bands may be exchanged.

3.3 Broken T and I in photonics

In this section, we shall discuss our strategy for constructing photon bands with non-zero

Chern invariants, and “chiral” edge states, whose existence is confirmed in the following

sections.

To break time-reversal symmetry in photonics, we shall need magneto-optic materials

(i.e. a Faraday rotation effect). Such materials are characterized by their ability to rotate

the plane of polarization of light, when placed in a magnetic field, and are used in conven-

tional optical isolators. The amount of rotation per length is known as a Verdet coefficient,

which depends on temperature as well as on the wavelength of light. Materials known to

have large Verdet coefficients (∼ 100mm−1 at wavelengths of the order of microns) are the

iron garnet crystals such as Ho3Fe5012 [7]. Due to the breaking of time-reversal symmetry

in this materials, the eigenfrequency degeneracy is lifted for light characterized by different

states of circular polarization.

While such magneto-optic devices employ magnetic fields in the direction of travel of the

light beam, we shall be interested in two dimensional photonic crystals with the magnetic

fields placed perpendicular to the plane of propagation of light, as shown in Fig. 3.4. We

shall call the axis perpendicular to the 2D photon bands the Faraday axis, and the setup

here is reminiscent of a 2D electron gas placed in a perpendicular magnetic field.
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r)(

H

H

ε

(b)(a)

Figure 3.4: In the conventional Faraday effect used in optical isolators, light travels in the
same direction as the applied field, resulting in the rotation of its polarization plane. How-
ever, in the photonic analog of a 2DEG heterojunction, light travels in the plane perpendicu-
lar to the applied field. The Faraday coupling is introduced as an imaginary, anti-symmetric
component of the permittivity tensor.

Although we now have a means of introducing broken time reversal symmetry, we still

need a strategy for the nucleation of equal and opposite pairs of Chern invariants on bands

near points of accidental degeneracy. To do this, we choose hexagonal lattice geometry.

The threefold rotation symmetry of such a system guarantees the existence of Dirac points

in the Brillouin zone corners when both inversion and time-reversal symmetry are present ;

in this case the only irreducible representations of the space group of three-fold rotations

correspond to non-degenerate singlets and degenerate doublets. As a simple example con-

sider the case of free photon “bands” with dispersion ω = c|k| in the first Brillouin zone

of a triangular lattice. The eigenfrequencies of the photons are six-fold degenerate at the

zone corners. Adding a weak periodic perturbation in the constitutive relations will lift

the degeneracy and the bands will now be either non-degenerate or will form degenerate

doublets, as demanded by the symmetry of the perturbation. Due to the 6-fold rotation

symmetry, the doublets are allowed to have a linear dispersion close to the zone corners

and shall be our Dirac points of interest, whereas the non-degenerate singlet bands disperse

quadratically. We shall provide explicit examples of hexagonal photonic bandstructures

having Dirac points in section V.

While the existence of such Dirac points are virtually guaranteed in triangular lattice

systems, their stability has little to do with lattice geometry. Such points are stable in two

dimensions only because of the presence of time-reversal symmetry and inversion symmetry,
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when the eigenvalue problem is a real-symmetric one: in this case it is possible to find

“accidental” degeneracies by varying just two parameters, according to the Wigner-von

Neumann Theorem. Thus, if the perfect hexagonal geometry of the constitutive relations

is slightly distorted, the Dirac points will simply move elsewhere in the two dimensional

Brillouin zone.

If, however, inversion or time-reversal symmetry is broken in the system, the eigenvalue

problem becomes complex Hermitian, and according to the Wigner-von Neumann theorem,

three parameters are required to ensure stability of the Dirac points - in this case, the Dirac

point degeneracy of the 2D bandstructure is immediately lifted. In both cases, the two

bands which split apart each acquire a non-zero Berry curvature field Fxy(k).

If inversion symmetry alone is broken, Fxy(k) is an odd function of k, as discussed

above. While the bands do have interesting semiclassical dynamics due to their anomalous

velocity, they do not have any interesting topological properties since their Chern invariants

are identically zero.

On the other hand, if time-reversal symmetry alone is broken, via the Faraday coupling,

the Berry curvature field will be an even function of k, and each band which split apart due

to the Faraday coupling will have equal and opposite non-zero Chern invariants.

Finally, if we can slowly tune the Faraday coupling in space, from a positive value,

across the critical value of zero, where the local bandstructure problem would permit Dirac

spectra, to a negative value, we would generate a system of photonic bands with non-zero

Chern numbers, that get exchanged at the region of space corresponding to the critical zero

Faraday coupling. It then follows, that modes with exact correspondence to the integer

quantum Hall edge states would arise in such a system. In the following section, we shall

display this explicitly using an example bandstructure.

3.4 Explicit Realization of Edge modes

An example of a photonic bandstructure with the desired properties is shown in Fig. 3.6.

It consists of a triangular lattice of dielectric rods (εa = 14) placed in a background of
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air (ε = 1) with a area filling ratio of f = 0.431. The authors of ref. [52], in a quest

for optimal photonic bandgap materials, first studied this system. They computed the

TE mode spectrum and found a full band gap in the TE spectrum. We have reproduced

numerically their calculation and have also computed the spectrum for the TM modes.

Figure 3.5: The hexagonal array of dielectric rods, as seen from above.

The key feature of this particular system which is of importance to us are the presence

of a pair of Dirac points in the spectrum of the TE modes which are well isolated from

both the remaining TE and TM modes. Each of the six zone corners contains the Dirac

cone spectrum, but there are only two distinct Dirac points, the others being related by

reciprocal lattice translations of these points. In this particular system, the two Dirac points

are related by inversion in k-space.

As we have discussed, a gap immediately opens when either inversion or time-reversal

symmetries are broken in this system. We break inversion symmetry in the simplest possible

way by introducing a slight imbalance in the value of the dielectric tensor inside the rods

about a line of inversion symmetry (in the hexagonal system, the symmetry of 3−fold

rotations will also be broken along with inversion symmetry). We parameterize the inversion

symmetry breaking by defining the quantity

mI = log

(

ε+
ε−

)

, (3.73)
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Figure 3.6: Photon bands in the kz = 0 plane of a 2D hexagonal lattice of cylindrical
dielectric rods. Electromagnetic waves are propagating only in the x − y plane (Brillouin
zone shown in the lower right). As in Ref. [52], the rods have a filling fraction f = 0.431,
ε = 14, and the background has ε = 1. The band structure contains a pair of Dirac points
at the zone corners (J).

where ε+ and ε− are the values of the permittivity inside the rods on either side of an

inversion axis.

To break time-reversal symmetry, we add a Faraday effect term in the region outside

the rods. This is done by giving the dielectric tensor a slight imaginary component without

varying the constitutive relations inside the rods:

outside rods: ε−1
ij (x) =







ε−1
b iΛ

−iΛ ε−1
b






, (3.74)

inside rods: ε−1
ij (x) =







ε−1
a 0

0 ε−1
a






. (3.75)

We also define a parameter

mT = Λ, (3.76)

to define the strength of the time-reversal symmetry breaking perturbation.
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Figure 3.7: Phase diagram of the photonic system as a function of inversion and time-
reversal symmetry breaking. In regions I and III, the gap openings of both Dirac points are
primarily due to inversion symmetry breaking, whereas in regions II and IV, the breaking
of time-reversal symmetry lifts the degeneracy of the bands which formed the Dirac point.
In all four regions, the two bands of interest have non-zero Berry curvature, but only in
regions II and IV do they contain non-zero Chern numbers.

We first determined the phase diagram of the system in the (mI ,mT ) plane by breaking

both inversion and time-reversal symmetry, and locating special values of the symmetry

breaking parameters that result in the closing of the bandgap at one or more Dirac points

(Fig. 3.7). The phase diagram separates regions characterized by bands just below the

band gap having a non-zero Chern number from regions with all bands having zero Chern

numbers. The boundary between these phases are where the gap at one or more of the

Dirac points vanishes, as shown in Fig. 3.7. Since there are two Dirac points, each phase

boundary corresponds to the locus of parameters for which the gap at one of the Dirac points

closes. Thus, both Dirac points close only when both lines intersect, namely at the point

(mI = 0,mT = 0), where both inversion and time-reversal symmetries are simultaneously

present. When inversion symmetry alone is broken, the Berry curvature field of Dirac point

1 is equal in magnitude and opposite in sign of the Berry curvature at the second Dirac

point. When time-reversal symmetry is broken, on the other hand, each Dirac point has an

identical (both in magnitude and sign) Berry curvature field. In this case, the photon bands

which split apart at the Dirac point each have Non-zero Chern number, which depends only
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on the direction of the Faraday axis (±ẑ).
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Figure 3.8: The bandgap opened by time-reversal breaking as a function of the strength of
the Faraday coupling shows that the gap is linearly proportional to Λ.

We have also studied numerically the frequency gap as a function of the time-reversal

breaking perturbation above and found that so long as the dielectric tensor remains positive-

definite, the gap increases linearly with εxy (3.8). This will be important when we consider

effective Dirac Hamiltonians for this problem: as we shall see, the fact that exactly at the

zone corner, the gap rises linearly with MT is consistent with the spectrum of a massive

Dirac Hamiltonian with mass MT . Thus, we have shown an example of a bandstructure

which contains Dirac points whose gaps can be tuned using time-reversal and inversion

symmetry breaking perturbations. We can now show the existence of “chiral” edge states

in this system.

To study edge states in this system, we introduce a “domain wall” configuration across

which the Faraday axis reverses. As we shall now show numerically, (and justify analytically

in the following section), the edge modes that occur along the domain wall are bound states

that decay exponentially away from the wall while propagating freely in the direction parallel

to the interface. In order to study the exponential decay of these modes, we glue together N

copies of a single hexagonal unit cell along a single lattice translation direction R⊥, which

shall be the direction perpendicular to the domain wall. We treat this composite cell as
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a unit cell with periodic boundary conditions. Since a domain corresponds to a certain

direction of the Faraday axis, we study a configuration here in which the axis changes

direction abruptly across the domain wall from the +ẑ to the −ẑ direction.

x

+

+
+++

+

+

+ _
__

__
_

_

Figure 3.9: In a system with periodic boundary conditions, there are necessarily two domain
walls separating regions with different faraday axes. We study the gap of the spectrum at
the (now non-degenerate) Dirac points as a function of the distance x between the two
walls.

When we consider the spectrum on a torus, there are necessarily two domain walls.

Furthermore, since many unit cells are copied in this system, there are as many duplicates

of the bands in the enlarged system under consideration. We study the bandgap precisely

at the Dirac point as a function of the fractional distance between the two domain walls on

the torus x (Fig. 3.9) for a composite unit cell consisting of N = 30 unit cells copied along

the R⊥ direction. When x = 0 or x = 1, the two domain walls are at the same point, and

this corresponds to a single domain with a single Faraday coupling Λ. For all other values of

x, the “unit cell” comprises a two domain system with non-equivalent lengths. In Fig. 3.10,

the gap between the two bands closest to the Dirac frequency decays exponentially as a

function of the distance between the two domain walls. We shall show that the exponential

decay in the gap corresponds to the localization of the edge modes along each domain wall.

The small gap at intermediate values of x, when the two walls are far apart corresponds to

the fact that each edge mode has a small amplitude, and therefore hardly mix with each
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other at those length scales.
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Figure 3.10: The spectral gap between the two bands which split apart due to the breaking
of time-reversal symmetry. The spectrum is computed on a torus for the extended system
consisting of 30 copies of the hexagonal unit cell. Furthermore, domain walls, across which
the sign of the Faraday axis flips are introduced, and the spectrum is plotted as a function
of the separation x between the walls (see also Fig. 3.9).

When the domain wall is introduced, translational symmetry is still preserved along the

direction parallel to the wall, and the states of the composite system of 30 unit cells can be

labeled by k‖, the Bloch vector in the direction parallel to the wall. Figures 3.11, 3.12,and

3.13 consist of a spectral series of a system without any broken time-reversal symmetry

(Fig. 3.11), with uniformly broken time-reversal symmetry (Fig 3.12), and a domain wall

configuration (Fig. 3.13) for the 30 unit cell composite system. The bands are plotted

along a trajectory in k-space in the k‖ direction which contains the two distinct Brillouin

zone corners. It is clear that in the domain wall, there are two additional modes formed in

the band gap that arose from the Faraday coupling. Since the domain walls are duplicated

on the torus, the spectrum of edge modes will also be doubled; in Fig. 3.13, only the two

non-equivalent modes are shown. Each mode in the band gap has a free photon linear

dispersion along the direction of the wall; moreover, both have positive group velocities,

and therefore propagate unidirectionally.

To be certain, however, that these “chiral” modes are indeed localized near the interface,

we have numerically computed 〈u(r)|B−1|u(r)〉, the electromagnetic energy density (the B
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Figure 3.11: The spectrum of the composite system consisting 30 copies of a single hexagonal
unit cell duplicated along a direction R⊥. Both inversion and time-reversal symmetries
are present, and the Dirac points are clearly visible. While the composite system has a
spectrum containing many bands, only two bands touch at the Dirac point. The dispersion
is computed in k space along the direction parallel to the wall.
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Figure 3.12: The same system as above, but with broken time-reversal symmetry without
a domain wall. There is a single Faraday axis in the rods of the entire system.
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Figure 3.13: Same system as above, but with a domain wall introduced corresponding to
maximum separation of the walls on the torus. The two additional modes present in the
gap correspond to edge modes with a “free photon” linear dispersion along the wall. There
are two modes, since across the domain wall, the Chern number of the band just below the
band gap changes by 2.

matrix, defined in section II, is not to be confused with the magnetic flux density), the

photon probability density in real space. We have computed this quantity along with all

the spectra of the composite system using the real space bandstructure algorithms described

in the following chapter. As shown in Fig. 3.14, the energy density is a gaussian function,

peaked at the position of the domain wall, decaying exponentially away from the wall.

From this calculation, we extract a localization also approximately 5 unit translations in

the direction perpendicular to the interface.

We have therefore shown here using explicit numerical examples that photonic analogs

of the “chiral” edge states of the integer quantum Hall effect can exist along domain walls

of hexagonal photonic systems with broken time-reversal symmetry. We have studied the

unphysical case in which such domain walls are abrupt changes in the axis of the Faraday

coupling. However, due to the topological nature of these modes, a smoother domain

wall in which the Faraday axis slowly reverses over a length scale much larger than a

unit cell dimension would also produce such modes. The most important requirement for

the existence of these modes, is that at some spatial location, the Faraday coupling is
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tuned across its critical value. How this particular tuning is effected is irrelevant. In the

following section, after deriving the effective Hamiltonians for these modes, we shall consider

a smoothly varying Faraday coupling, which corresponds to an exactly soluble system, and

shall show the evolution of these modes as the smoothness of the Faraday coupling is varied

towards the step function limit considered here.
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Figure 3.14: The real-space electromagnetic energy density profile associated with the edge
modes in Fig. 3.13 plotted as a function of the direction perpendicular to the domain wall
(and “integrated” over the direction parallel to the interface) and fit to a gaussian profile.
The integrated energy density depicted here plays the role of the photon probability density
which confirms that light is confined to the interface.

3.5 Model Hamiltonian Approach

The crucial feature exploited in the previous sections was the possibility of tuning bandgaps

at Dirac points by adding time-reversal breaking perturbations. Before adding these pertur-

bations, the linear conical spectrum at these Dirac points are governed by two dimensional

massless Dirac Hamiltonians, and time-reversal or inversion symmetry breaking perturba-

tions contribute mass terms to the Hamiltonian. In this section, we shall construct these

Dirac Hamiltonians starting from the Maxwell equations for two dimensional photonic sys-

tems with hexagonal symmetry.

To motivate a discussion of Dirac Hamiltonians in photonic systems, we begin this
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section by considering a “nearly-free photon” approach in which a two dimensional “free

photon” spectrum consisting of plane waves is perturbed by a weak periodic and hexagonal

modulation of ε(r). Due to the underlying symmetry of the perturbation, the plane waves

mix in a manner to generate Dirac points in the zone corners of this system. We then

consider the effect adding time-reversal and inversion symmetry breaking perturbations in

this system and derive an expression for the Dirac mass. We then revert back to our photon

band problem and derive expressions for the Dirac mass in these systems.

In analogy with the “nearly-free electron” approximation, we consider the photon propa-

gation problem in the weak-coupling regime, in which the dielectric properties of the medium

act as a weak perturbation. We solve the Maxwell normal mode problem for Bloch state

solutions, and work out corrections to the free photon dispersion relations in the Brillouin

zone boundaries. We shall assume continuous translational invariance in the z-direction,

and study the propagation of electromagnetic waves in the x-y plane.

The free photon constitutive relations are isotropic and uniform in the plane:

B0 =







ε0 0

0 µ0






. (3.77)

We consider the “free photon bands” in the first hexagonal Brillouin zone depicted in

Fig. 3.15. Let Gi, i = 1, 2, 3 be the three equal-length reciprocal lattice vectors each

rotated 1200 with respect to one another. The hexagonal zone corners correspond to the

points ±Ki, where K1 = (G2 − G3) /3, etc., and |K| = |G|/
√

3. At each of the zone

corners, the free-photon spectrum is six-fold degenerate with ω0 = c0K. In two dimensions,

the modes decouple into TE (Ex, Ey,Hz), and TM (Hx,Hy, Ez) sets, and we shall focus

only on the TE modes and consider the 3-fold TE mode symmetry at the zone corners

(the TE and TM modes do not mix in 2 dimensions). The eigenvalue equation for the

free photon plane wave modes at the zone corners is A|u0〉 = ω0B
−1
0 |u0〉, or equivalently,

B
1/2
0 AB

1/2
0 |z0〉 = ω0|z0〉 and the states |z0〉 = B

−1/2
0 |u0〉 satisfy 〈z(λ)

0 |z(λ′)
0 〉 = δλλ′ .

Next, keeping the uniform isotropic permeability fixed, we add a weak periodic pertur-

bation to the permittivity of the form
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Figure 3.15: In the weak coupling approach, the free photon TE mode plane waves are
perturbed by a periodic modulation in the permittivity. The plane wave frequency at the
three equivalent zone corners (Ki, i=1,2,3) is lifted by the permittivity in “k·p” perturbation
theory into a non-degenerate singlet and a degenerate doublet.

λB−1
1 =







ε0λVG(r) 0

0 0






, (3.78)

with

VG(r) = 2
3
∑

n=1

cos (Gn · r) . (3.79)

After this perturbation is added, the TE and TM modes no longer remain degener-

ate; while the TM modes remain 3-fold degenerate at the zone corners at the frequency

ω = c0|K|, the TE modes split apart into a singlet and a degenerate doublet. We now de-

termine the splitting to leading order in λ with within a weak-coupling “nearly-free photon”

approach.

With the periodic perturbation, the eigenvalue problem is

A|u〉 = ω
(

B−1
0 + λB−1

1

)

|u〉, (3.80)

which is equivalent to

B
1/2
0

(

A − λωB−1
1

)

B
1/2
0 |z〉 = (ω0 + δω) |z〉. (3.81)

The energy splittings are worked out in degenerate perturbation theory (see subsection

3.5.1) as
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δωn

ω0
= −λ〈z̃n|B1/2

0 B−1
1 B

1/2
0 |z̃n〉

= −λ〈ũn|B−1
1 |ũn〉,

where |z̃n〉 are appropriate combinations of the three free photon plane-plane waves that

diagonalizes the periodic potential. These states are obtained by requiring them to be

invariant under 3-fold rotations in the plane. Instead of writing the fields in the coordinate

basis, it is convenient to use a redundant basis of the three vectors (eiK1·r, eiK2·r, eiK3 ·r),

with
∑

n Kn = 0, and Ki · Kj = −K2/2, i 6= j. In this basis, the magnetic field of the TE

modes is written as (η = e2πi/3):

Hz
1 = (1, 1, 1) , (3.82)

Hz
2 = (1, η∗, η) , (3.83)

and

Hz
3 = (1, η, η∗) . (3.84)

The corresponding electric flux densities are easily obtained:

D
‖
1 =

1

ω
(ẑ × K1, ẑ × K2, ẑ × K3) , (3.85)

D
‖
2 =

1

ω
(ẑ × K1, η

∗ẑ × K2, ηẑ × K3) , (3.86)

D
‖
3 =

1

ω
(ẑ × K1, ηẑ × K2, η

∗ẑ × K3) , (3.87)

and

|z̃i〉 =







E
‖
i

Hz
i






. (3.88)
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Clearly, these are the plane wave solutions that satisfy Maxwell equations and transform

appropriately under 3-fold rotations in the plane. We are therefore led to the simple result

that the splitting at the zone corners due to the mixing of the three plane waves is related

to the integral over the unit-cell of the electric fields and the periodic potential, which is

a traceless, real-symmetric 3 × 3 problem. It is easy to see that the problem is traceless

because diagonal terms of the form 〈ui|B1|ui〉 vanish identically since ui are plane waves.

To leading order in λ, the three photon bands split to form a singlet band at frequency

ω0 = c0|K|
(

1 + λ/2 +O(λ2)
)

and a degenerate doublet at frequency

ωD = c0|K|
(

1 − λ/4 +O(λ2)
)

. (3.89)

Exactly at the zone corners, the singlet and doublet states above diagonalize the pertur-

bation in Eq.(3.78). To leading order in λ and δk ≡ k−Ki, the deviation in the Bloch vector

from the zone corners, the states |z̃2(δk)〉 and |z̃3(δk)〉, (where |z̃i(δk)〉 = exp(iδk · r)|z̃i〉),

which are degenerate at δk = 0 mix and split apart linearly as a function of |δk|, forming

a “Dirac point”. To leading order, the Dirac point doublet does not mix with the singlet

state |z̃1(δk)〉. The effective Hamiltonian governing the spectrum of the doublet, to leading

order in δk is a 2D massless Dirac equation:

ω±(δk) = ωD ± vD (δkxσ
x + δkyσ

y) , (3.90)

where vD = c0/2 + O(λ), and σi are the Pauli matrices written in the subspace of the

doublet states. The linear dispersion of the doublet in the neighborhood of the zone corners

is immediately obtained by solving Eq.(3.90):

ω = ωD ± vD|δk|. (3.91)

The frequency of the singlet band remains unchanged to leading order in δk: ω0(δk) =

ω0+O(|δk|2). Thus, we have shown that the periodic modulation of the permittivity having

3-fold rotational symmetry gives rise to a quadratically dispersing singlet band and a “Dirac

point” with linear dispersion.
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Figure 3.16: Spectrum of photon dispersion in the vicinity of the zone corners. We have
arbitrarily set λ < 0 so that the singlet band has a lower frequency than the Doublet. Free
photon spectra are given by dashed lines. Away from the zone corners, the free spectrum
is not affected to leading order in λ.

Next, we add a Faraday term, with an axis normal to the xy-plane, to the permittivity

tensor εxy = −εyx = iε0η(r, ω), where

η(r, ω) = η0(ω) + η1(ω)VG(r). (3.92)

Both η0(ω) and η1(ω) are odd functions of ω. In the limit that the Faraday coupling

is much weaker in strength than the periodic modulation, |η0|, |η1| � |λ| � 1, the mixing

between the non-degenerate singlet state and the doublet remains negligible, and the energy

of the singlet state is unaffected by the Faraday perturbation. However, the doublet states

split apart at the Dirac point. Using the expression for the Dirac point splitting, derived in

subsection 3.5.1, we find that the splitting of the doublet at the zone corner is given by

ω± − ωD = ±vDκ, κ = |K|
(

3

2
η1(ωD) − 3λη0(ωD)

)

. (3.93)

Away from the Dirac point (but still close enough to the zone corners so that the “nearly-free

photon” approximation for the three plane wave states remains valid), the doublet bands

acquire a dispersion

ω = ωD ± vD

(

|δk|2 + κ2
)1/2

, (3.94)
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which is the spectrum of a 2D massive Dirac Hamiltonian:

ω±(δk) = ωD ± vD (δkxσ
x + δkyσ

y + κσz) . (3.95)

The Dirac points that occur in the “nearly-free photon” approximation are not isolated

points of degeneracy, since, away from the zone corners, the two bands which formed the

Dirac point merge together to resume their original free-photon form. Consequently, the

type of modes studied in the previous section cannot be reproduced using this type of

weak-coupling expansion.

However, we can gain understanding by suppose that we have the exact solutions of

the electromagnetic Bloch states and eigenfrequencies of a system containing isolated Dirac

points, such as the one studied numerically in section IV. We can use precisely the same

weak Faraday coupling approximation to work out the splitting of the Dirac point with a

Faraday term. Assuming we are given example photonic bandstructures of long hexagonal

systems with kz = 0, which contain only isolated Dirac points, a weak Faraday coupling

would split apart the bands that formed the Dirac point, and the splitting is identical to that

in (3.94). Suppose that the two bands having a Dirac point, otherwise form a PBG with a

gap ∆ � vDκ (as in the case of the numerical example given in the previous section). In

this case, since the Faraday term removes all points of degeneracy, the now non-degenerate

bands have a well-defined Berry curvature field

F±(δk) = ±1

2
κ
(

|δk|2 + κ2
)−3/2

, (3.96)

which decays rapidly away from the Dirac point, and contributes a total integrated Berry

curvature of ±π. Since there are two non-equivalent Dirac points in the hexagonal geometry

under consideration, the net Berry curvature of the system is the sum of the contributions

from each Dirac point. If, as in the case under consideration, spatial inversion symmetry is

preserved, but time-reversal symmetry is broken, the Berry curvature fields at each Dirac

point of a given band add, giving total Chern numbers ±1 for each of the split bands. How-

ever, if time-reversal symmetry were preserved, and inversion symmetry breaking caused
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the gap to open, the Berry curvature field of each Dirac point for a given band are equal in

magnitude but opposite in sign, and the Chern number would vanish.

As before, to get unidirectional edge modes of light in this system, the Faraday coupling

must be tuned across its critical value η(r, ω) = 0. To do this, we consider a Faraday

coupling that varies slowly and adiabatically in space, we shall assume negligible frequency

dependence of the Faraday coupling, and we shall parameterize the local value of the Faraday

coupling by a smoothly varying function κ(r), which is positive in some regions and negative

in other regions of the 2D plane perpendicular to the cylindrical axis of the hexagonal array

of rods. Due to the adiabatic variation of κ(r), each point in space is characterized by

a local bandstructure problem, and the splitting at the Dirac point is given again by the

expression in (3.94), but with the local value of κ. In this limit, the smooth variation of

κ(r) leads to a 2D Dirac Hamiltonian with a adiabatically spatially varying mass gap. At

all points where κ(r) = 0, the local bandstructure in the vicinity of the Dirac point is the

massless 2D Dirac Hamiltonian; provided that |κ(r)| � ∆, the PBG, the spectrum far away

from the Dirac points is unaffected by κ(r). In what follows, we assume that when κ = 0,

our bandstructure contains Dirac points which are formed by two isolated bands in a PBG

region having no other points of degeneracy.

We neglect the mixing between modes at different Dirac points, and consider the sit-

uation in which κ(r) vanishes along a single line ( x = 0 for instance), and we assume

translational invariance along the direction parallel to the interface (y−direction). As be-

fore, we consider the degenerate perturbation problem of the normal modes close to the

Dirac point. Now, however, the coefficients of the degenerate solutions of the Maxwell

equations are spatially varying quantities. Let |uσ(±kD)〉, σ = ±, be the degenerate solu-

tions (i.e. the periodic parts of the photon Bloch state wave functions) at a pair of Dirac

points when κ = 0. With the local variation, we take spatially varying linear combination

of these Bloch states

u(kD, r) =
∑

σ,±

ψσ(r) exp (±ikD · r) uσ(±kD, r), (3.97)
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and arrive at the fact that the local value of the splitting of the two bands at kD is

ω+(kD) − ω−(kD) = 2κ(r). (3.98)

In the neighborhood of the Dirac point, the degenerate perturbation problem gives us

a 2D massive Dirac Hamiltonian, with δkx replaced by the operator −i∇x in the position

representation, since translation symmetry in the x-direction is broken by κ(x). We thus

obtain an expression of the form vDK̂|ψ〉 = δω|ψ〉, and

K̂ = −iσx∇x + δk‖σ
y + κ(x)σz . (3.99)

The Bloch vector in the y-direction, which remains conserved due to the preservation of

translation invariance along this direction, is kDy + δk‖.

For the particular choice of κ(x) = κ∞ tanh(x/ξ), ξ > 0, (where κ∞ is the asymptotic

value of the Dirac point splitting at distances � ξ from the interface), the problem is

exactly solvable, since the Dirac Hamiltonian K̂, when squared, becomes a 1D Schrödinger

Hamiltonian K̂2 corresponding to the integrable Poschl-Teller Hamiltonian [30].

To see how this comes about, we explicitly work out the operator K̂2, making use of the

anti-commuting property of the Pauli matrices {σa, σb} = 2δab :

K̂2 − δk2
‖ = −∇2

x + κ(x)2 − σyκ′. (3.100)

The spatially varying Dirac mass term that changed sign across the interface becomes a

“potential well” with bound states given by[30]

ω0(δk‖) = ωD + sκvDδk‖, sκ = sgn(κ∞) (3.101)

ωn± = ωD ± vD

(

δk2
‖ + κ2

n

)1/2
, n > 0. (3.102)

where |κn = 2n|κ∞|/ξ, n < |κ∞ξ/2. In the n = 0 mode, light propagates unidirectionally,

with velocity vD, in the direction parallel to the wall. All other bound modes are bidirec-

tional modes. The numerical example of a Dirac mass studied in the previous section that

changed sign abruptly, as a step function, has the 1D Schrodinger problem in an attractive
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delta function potential as its square. Consequently, as we have seen, the model permitted

for only a single bound state, corresponding to the unidirectional mode.

-20 -15 -10 -5  0  5  10  15  20

δk||

ωD

ω

Figure 3.17: Spectrum of the integrable Poschl-Teller model. With the exception of the zero
mode, all bound states correspond to bi-directionally propagating modes localized at the
interface where the function κ(r) = 0. The zero mode, on the other hand, is unbalanced,
and furthermore, it corresponds to unidirectional propagation.

For the generic case, the second order differential equation for the n > 0 bound states

can not be solved analytically. However, a formal solution for the zero mode eigenfrequency

can be obtained, as it is obtained by solving a first order equation, as we now discuss.

Starting from the Dirac equation for the more general case

vD (−iσx∇x + −iσy∇y + κ(x)σz) |ψ±〉 = δω|ψ±〉, (3.103)

by definition, the “zero mode” has the free photon dispersion along the direction parallel

to the wall, which implies that the function |ψ〉 ∝ exp(iδk‖y). We are thus left with the

equation

(−iσx∇x + κ(x)σz) |ψ±〉 = 0. (3.104)

Multiplying both sides with σx, we arrive at the following first order differential equation :

(∇x + κ(x)σy) = 0, (3.105)

which has as its formal solution

|ψ±〉 = exp

(

iδk‖y + α

∫ x

dx′κ(x′)

)

|φ±(α)〉, (3.106)
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where σy |φ±(α)〉 = α|φ±(α)〉. Although there are formally two solutions for the zero mode,

corresponding to α = ±1, only one can occur; the other is not normalizable and thus cannot

represent a physically observable state.

3.5.1 Derivation of the Dirac Point Splitting

In this section, we derive a general expression for the frequency splitting at the Dirac point

caused by inversion or time-reversal symmetry breaking perturbations. We will use “Bra-

ket” notation to represent our eigenvectors instead of writing equations for each component.

We suppose that we know the exact eigenstates of the problem

A|u0〉 = ωDB−1
0 |u0〉, (3.107)

and that the solutions are two fold degenerate at the Dirac point, as for example, in the

numerical examples we have considered. Now add a perturbation in the constitutive rela-

tions:

B−1 = B−1
0 + λB−1

1 . (3.108)

This term represents our inversion or time-reversal breaking perturbation. To find the

splitting of the Dirac point (our “Dirac mass”), we solve the modified problem

A|u〉 = ω
(

B−1
0 + λB−1

1

)

|u〉. (3.109)

Since the B−1
0 matrix is positive-definite, it has a well defined positive-definite inverse

square root matrix B
1/2
0 , and we can rewrite the unperturbed problem in the form of a

conventional Hermitian eigenvalue problem

B
1/2
0 AB

1/2
0 |z0〉 = ωD|z0〉, (3.110)

where

|z0〉 = B
−1/2
0 |u0〉. (3.111)

The new eigenvalue problem with the symmetry breaking terms is

A|u〉 = ω
(

B−1
0 + λB−1

1

)

|u〉

= ωB
−1/2
0

(

1 + λB
1/2
0 B−1

1 B
1/2
0

)

B
−1/2
0 |u〉,
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which subsequently is rewritten in the canonical form as

B
1/2
0

(

A − λωB−1
1

)

B
1/2
0 |z〉 = ω|z〉, (3.112)

where |z〉 = B
−1/2
0 |u〉. The correction to the spectrum to first order in perturbation theory

in the eigenvalue problem above is then

δω = −ωDλ〈z0|B1/2
0 B−1

1 B
1/2
0 |z0〉

= −ωDλ
〈u0|B−1

1 |u0〉
〈u0|B−1

0 |u0〉
.

We have restored the normalization factor for the state |u0〉 in the last line above. Thus,

our main result here is a general expression for the splitting of the Dirac point frequency

spectrum, given by the dimensionless quantity

δω

ωD
= −λ〈u0|B−1

1 |u0〉
〈u0|B−1

0 |u0〉
. (3.113)

3.6 Semiclassical Analysis

Now let the “Dirac mass” term that opens the photonic band gap be a slowly varying

function κ(x) that changes monotonically (and analytically) from −k0 at x = −∞ to k0 at

x = +∞. The photonic spectrum of modes with wavenumbers k = kD +δk near the “Dirac

point” kD, and which become doubly-degenerate at kD, is an adiabatic function of x:

ω(x, δkx, δky) = ωD ± vD

(

δk2
y + k(x, δkx)2

)1/2
,

k(x, δkx)2 = δk2
x + κ(x)2, (3.114)

where vD > 0 is the “Dirac speed”. For k(x, δkx)2 < k2
0 , the modes are evanescent as

x → ±∞, so are localized on the wall. In the x − δkx plane, the contours of constant

k(x, δkx)2 < k2
0 are simple closed curves, enclosing a finite dimensionless area φ(k2), given

by

φ(k2) = 2

∫ x+

x−

dx
(

k2 − κ(x)2
)1/2

, (3.115)
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where x−(k2) < x+(k2) are the two “turning point” solutions of κ(x±)2 = k2 . Since κ(x)

is assumed to be monotonic, this can be written as

φ(k2) = 2

∫ |k|

0
dy
(

k2 − y2
)1/2

(

1

κ′+(y2)
+

1

κ′−(y2)

)

,

κ′±(k2) ≡ dκ

dx

∣

∣

∣

∣

x±(k2)
, (3.116)

Note that this transformation has turned φ(k2) into a signed area, where sgn(φ) = sgn(k0),

which is indeed the correct form (the function φ(k2) vanishes as k0 → 0, when its domain

k2 ≤ k2
0 shrinks to zero). In the limit k2 → 0, x±(k2) → x0, the formal location of the

interface. Then κ′±(k2) → κ′(x0), and φ(k2) vanishes as

φ(k2) → πk2

κ′(x0)
, (k/k0)

2 → 0. (3.117)

It is very instructive to examine the special case

κ(x) = k0 tanh(α(x − x0)), (3.118)

which is integrable. In this case,

κ′(x) = αk0sech
2(α(x − x0)), (3.119)

k0sech
2(α(x±(k2) − x0)) =

k2
0 − k2

k0
. (3.120)

Thus the explicit dependence on x±(k2) can be eliminated, and

κ′±(k2) = α

(

k2
0 − k2

k0

)

. (3.121)

This make the integral for φ(k2) trivial (it becomes expressible in terms of a simple Hilbert

transform), and the asymptotic small-k2 form (3.117) remains valid for all values of k2 in

the domain of the function:

φ(k2) =
πk2

αk0
, k2 ≤ k2

0 . (3.122)

Then the frequency of the interface mode with wavenumber δky = δk‖ along the interface

can be expressed as

ω(δk‖, φ) = ωD ± vD

(

δk2
‖ + κ2

⊥(φ)
)1/2

,

κ2
⊥(φ) ≡ |αk0φ|/π. (3.123)
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A standard “semiclassical” analysis of interference effects on a light ray trapped in a “waveg-

uide” at an interface would conclude that the “quantized” values of φ corresponding to

interface modes were

φn = 2πn+ γ, (3.124)

where γ is a “Maslov phase”, usually π. In this case, comparison with the exact solution of

the integrable problem confirms that this problem instead has a vanishing “Maslov phase”

γ = 0. This can be attributed to an underlying “Z2” Berry phase factor of −1 (Berry phase

of π) for orbiting around the degeneracy point at (x− x0, kx) =(0, 0).

We then conclude that the interface modes at a slowly-varying interface are in general

given (for small δk‖) by

ω0(δk‖) = ωD + vDsgn(k0)δk‖,

ωn±(δk‖) = ωD ± vD

(

δk2
‖ + k2

n

)1/2
, n ≥ 1,

φ(k2
n) = 2πn, k2

n ≤ k2
0 . (3.125)

The unidirectional “zero mode” persists however sharp the interface is; the bidirectional

modes with n ≥ 1 must obey 2πn < φ(k2
0), which has fewer and fewer (and eventually no)

solutions as the width of the interface region shrinks. In the special case of the integrable

model (3.118), this spectrum is exact for small δk‖ without any condition that the wall is

slowly varying.

3.7 Discussion

We have shown that under certain circumstances, the zero-energy modes of the 2D Dirac

Hamiltonian are have the same properties of the edge modes of quantum Hall systems:

they are chiral (unidirectional), and dissipationless. We have taken a system that can be

described by a 2D Dirac Hamiltonian, and we have tuned the parameters of the system in a

special way, such that the mass term of the Dirac Hamiltonian changes sign at certain critical

values of a tuning parameter. In the photonic system, this tuning parameter is precisely
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the Faraday effect, a perturbation that breaks time-reversal symmetry and generates Dirac

mass terms in a system with hexagonal symmetry.

We have shown that analogs of quantum Hall effect edge modes can exist in photonic

crystals whose band gaps can be tuned by a Faraday coupling. The crucial new feature

we present here here is that photonic systems can have bands with non-trivial topological

properties including non-zero Chern invariants. These in turn can be varied in a controlled

manner to yield unidirectional (“chiral”) edge modes. The edge modes are robust against

elastic back-scattering since they are states which are protected by the underlying 2D band

structure topology. However, they are not robust against photon number non-conserving

processes, such as absorption and other non-linear effects. We believe that this could be

an entirely new direction in “photonic band structure engineering” due to the absence of

scattering at bends and imperfections in the channel.
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Figure 3.18: We have shown in this chapter that because the photon bands (b) cannot
be filled as in the electronic case (a), they can have no analog of the bulk quantum Hall
effect. However, the Chern number is a topological invariant of Bloch states independent
of the constituents. With the Faraday term, we are able to tune the system such that the
total Chern number below a photonic band gap changes across in interface, which gives
rise to unidirectionally propagating edge modes of photons localized at the interface. These
modes are direct analogues of the “Chiral” edge modes of electronic systems which occur
at interfaces between two regions having different total Chern invariants below the Fermi
level (i.e. with different Hall conductances).
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A practical realization of such one-way transmission channels in photonics will necessar-

ily have to deal with the problem of finding a magneto-optic material with a strong enough

Faraday effect to confine the light close to the interface. Furthermore, in a practical design,

the problem of TE/TM mode mixing when light is confined in the direction perpendicular

to the 2d system will have to be addressed. A practical design could, for instance, make

use of PBG materials to confine light in the z-direction.

Throughout, we have been discussing the case of two dimensional bandstructures. The

stability of the Dirac points, and the topological Chern invariants which we derived are

not stable in a three dimensional bandstructure. The reason for this is as follows. In the

two dimensional bandstructures, the Dirac points are not degenerate with other modes.

However, the Dirac points will be degenerate with other bands when kz, the Bloch vector

in the z-direction, is non-zero. This would destroy the robustness of the edge modes. A

successful realization of the modes discussed here will therefore also have to confine the

light to two-dimensions. A possible way to achieve this would be to vary the filling factor

of the dielectric rods along the z-axis, so that the light would remain confined to a region

of somewhat larger filling factor. To design the correct shape of the rods to achieve this,

one must remember that the two dimensional bandstructure itself is highly sensitive to

the filling factor of the rods. One must be careful, therefore, not to introduce states in

the vicinity of the Dirac points by varying this filling fraction too drastically. This is a

somewhat delicate optimization problem, but there is no reason to believe that the problem

is insurmountable. It is interesting to think of the technological applications of the modes

constructed and analyzed in this chapter. Provided the effect of photon number non-

conserving effects remains minimal, there are many interesting applications of these modes

for which conventional optical isolators remain inappropriate. The chirality of the modes,

for instance, could be employed to define a photonic analog of a bit. As these modes are

robust against backscattering and imperfection along bends, they could be used to transmit

light (and information) in a narrow frequency window with minimal loss. There seem to

be endless possibilities for the use of a topologically protected dissipationless unidirectional
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modes of light in fields as diverse as computer science, engineering, and medicine.

Although there are many obstacles to the realization of such interesting effects in pho-

tonics, none of them are fundamental, and we believe that these unidirectional channels

could have potentially useful technological applications which could in principle be realized

someday through “bandstructure engineering”.



Chapter 4

Numerical Algorithms for

bandstructure computations

In this chapter, we shall describe our formulation of the photonic bandstructure problem

which has been used in the numerical computations of the edge mode spectra.

The standard approach to the numerical problem of computing photon spectra in di-

electric media [41] is restricted to periodic structures, and the complication of anisotropy in

the constitutive relations is usually omitted. Within the standard approach, the Maxwell

normal-mode problem is recast into an ordinary Hermitian eigenvalue problem of Schrodinger

type A|ψ〉 = ω|ψ〉, where

A = ∇ ×
(

1

ε(r)
∇×

)

(4.1)

and |ψ(r)〉 is the local magnetic field vector H(r). The divergence-free condition ∇ ·H = 0

is an auxiliary condition which is justified within the approximation that the permeability

tensor remains isotropic and uniform. The divergence-free condition is then used as a

criterion to accept or reject possible solutions to the eigenproblem. The eigenvalue equation

is written in k− space after expanding the fields in a set of plane waves, whose wave vectors

are reduced to the first Brillouin zone, and standard linear algebra packages are used to

treat the brute-force diagonalization of the problem. With this method, it is not possible

to study frequency-dependent constitutive relations.

72
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The method to be discussed below, however, is based on a real-space discretization of

the Maxwell normal-mode problem. It is by no means restricted to periodic media (and

can be readily used to study photonic “quasicrystals” [38] for which Bloch states do not

exist). Furthermore, anisotropy and frequency dependence of the constitutive relations are

immediately tractable within our method. Our motivation for developing this method has

already been discussed in the previous chapter - in which we studied modes associated with

domain walls in real space, across which the sign of the time-reversal breaking Faraday

perturbation (an imaginary, anti-symmetric component of the dielectric tensor) changed.

The numerical approach described here only requires that the medium remains loss-free,

linear, and describable by local constitutive relations. No other restrictions are imposed.

Since we always neglect absorption/emission and other non-linear processes of light (i.e.

we work within an approximation of photon number conservation), we seek a Hamiltonian

formulation of the source-free Maxwell problem.

We have already described the basic formal structure of the continuum Hamiltonian

formulation of the Maxwell normal mode problem in the previous chapter.

In the numerical implementation of a Hamiltonian formulation, we shall treat the con-

tinuum flux densities 〈y| = (D,B) rather than 〈r| = (E,H) as our fundamental dynamical

variables. The former set obey the source-free Gauss’ relations:

∇ · |y〉 = 0. (4.2)

The Hamiltonian of our system is given by the following quadratic form:

H =
1

2

(

D, ε−1D
)

+
1

2

(

B, µ−1B
)

. (4.3)

Furthermore, the propagating solutions of Maxwell’s equations require the fields to be

coupled in non-canonical Poisson bracket relations:

{Da(x), Bb(x′)} = εabc∇cδ
3(x− x′) (4.4)

The two sets of fields are related by |y〉 = B|r〉, where B is the matrix of constitutive
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relations introduced in the previous chapter:

B =







εab(r) 0

0 µab(r)






(4.5)

The source free Maxwell equations are slight variants of the ones described in section

II. Written as a generalized eigenmode problem of form

AB̃|y〉 = ω|y〉. (4.6)

The matrix A is the imaginary anti-symmetric matrix introduced in section II, and

B̃ = B−1 is a positive-definite Hermitian matrix. The eigenmode problem here is formally

analogous to the problem of a non-canonical harmonic oscillator with Hamiltonian

H =
1

2

∑

ij

B̃ijyiyj, (4.7)

and Poisson brackets

{yi, yj} = −iAij . (4.8)

Since A is imaginary and anti-symmetric, its eigenvalues are either zero, or come in pairs

with opposite sign. It is the presence of zero modes which prevents a canonical treatment

of the problem. In the Maxwell problem, one third of the A matrix eigenvalues are zero

modes.

4.1 Spatial discretization of the normal-mode problem

We now discuss the spatial discretization of this problem which is needed for the compu-

tational algorithm. We start by constructing a tessellation of space into polyhedral cells,

whose vertices Re
i shall store the local inverse permittivity tensor ε−1

ab (Re
i ). We also define

the sites Rm
i , where the local values of the inverse permeability tensor µ−1

ab (Rm
i ) will be

represented. The polyhedra whose vertices are Re
i are “dual” to the polyhedra whose ver-

tices are the sites Rm
i , as we explain below. For the moment, however, consider only the

electric component.
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Φ

ΦD

B

Figure 4.1: The generic discretization scheme for the photon Band structure problem. Space
is broken up into polyhedra. Local electric energy density is defined at the vertices of each
polyhedron, and the electric fluxes, defined on the edges of the polyhedron, connect two
electric energy sites. The volume of the polyhedron is associated with local magnetic energy
density, and magnetic fluxes “live” on the faces of the polyhedron. The scheme here has
electric-magnetic duality in that a dual polyhedron can be defined on the vertices of which
magnetic energy density defined, etc. The scheme here is inspired by lattice QED, which
ensures the correct long wavelength photon dispersion; the only difference here is absence
of sources.

Before we discuss the fluxes, we note here that the polyhedra of electric sites need not

form a regular array - the set of points may be chosen quite randomly, and in a sophisticated

calculation, the points could be chosen in an optimal fashion in order to discretize the

continuum most efficiently (the criterion of what set of points are optimal for a given

problem will depend on the geometry of the system to be studied on a macroscopic scale).

4.1.1 The Voronoi cell construction

Having specified the points where the electric constitutive relations are defined, we next

describe a scheme by which we partition the local electric energy density in space. To each

point in the electric lattice Re
i , we identify a volume of space which is closer to the point Re

i

than to any other electric point. This is a generalization of the wigner-Seitz construction

of Brillouin zones, and is known as the Voronoi construction. The voronoi construction is

the most general method of assigning energy to each point, and it is also used to define the

network properties of the electric polyhedron: two points Re
i and Re

j are neighbors if their

respective Voronoi cells share a common face. We label each Voronoi cell by the site Re
i to
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which they belong.

If two electric sites are neighbors as defined above, then local energy density may be

transported from one cell to its neighbor via the electric flux vector, which will be associated

with the common face connecting the two sites Re
i and Re

j . To endow the flux with a

direction in real space, we associate a normal vector to each face of the voronoi cell (the

sign of the normal vector is ambiguous and we are free to set our own Z2 convention here).

Notice that in the special case in which the points Re
i form a simple cubic array, the electric

fluxes are defined on the directed bonds of the lattice. Having specified a convention for the

signed area of each face of every Voronoi cell, we can unequivocally identify each electric

flux vector to either be entering or leaving a Voronoi cell.

Let us define the quantity δj(R
e
i ) associated with each electric flux Φe

j of the system by

δj(Ri) = +1 if Φj is an outward flux, δj(R
e
i ) = −1 if it is an inward flux, and δ(Re

j) = 0 if

Φj is not associated with one of the faces of the Voronoi cell Re
i . This way, we define the

electric divergence of each cell to be

δΦe(Re
i ) =

∑

j

δj(R
e
i )Φj (4.9)

4.1.2 Self-duality

Having specified the electric energy sites and fluxes, we now turn to the magnetic sector.

To each polyhedron of the electric sublattice, we associate a dual polyhedron whose vertices

will consist of the set Rm
i where local values of the inverse permeability tensor µ−1

ab (Rm
i )

are defined. The duality is such that the vertices Rm
i of the magnetic site polyhedra are

associated with the enclosed volumes of each of the electric polyhedra (we do not require

the magnetic sites to correspond to the centroid of the electric polyhedra; the requirement

that they remain somewhere in the interior is sufficient. This way, magnetic energy can flow

from one site Rm
i to another Rm

j via local magnetic fluxes Φm which we associate with the

links of the magnetic polyhedron. We can repeat the above construction for the magnetic

cells Rm
i by constructing the dual magnetic Voronoi cells and by defining the local magnetic

divergence δΦB(Rm
i ) as in Eq. 4.9. In both cases, the fluxes will be divergence free due to
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the absence of electric and magnetic sources in our formulation.

The self-duality of the source-free Maxwell equations (in three spatial dimensions) is

preserved in our method. To see this, observe that we need not have defined a second dual

set of polyhedra to describe the magnetic sector of our system. Simply by working with

the electric polyhedra, we may proceed correctly by associating magnetic energy density

with the enclosed volume of each polyhedron, and magnetic fluxes with the faces of the

polyhedron, as shown in Fig. 4.1. As we did in the Voronoi construction, we choose a

convention for the sign of the area of each face of the electric polyhedron. This will ensure

well defined magnetic fluxes satisfying the local divergence-free condition. The next thing to

describe is the coupling of the electric and magnetic fluxes which comes from the Faraday-

Maxwell equations.

Φe
i

Φm
j

Figure 4.2: The topological linking number Lij which encodes the Poisson bracket relations
equivalent to the Faraday-Maxwell equations. The Linking number shown here corresponds
to Lij = +1, since the two loops are oriented such that, for example, the flux Φe

i crosses the
surface whose perimeter consists of magnetic fluxes Φm

j , and flows in the same direction as
the outward normal vector of the loop, and vice-versa.

From the value of the outward normal vector for each face of the electric polyhedron,

we can associated perimeters of every polyhedron face with directed loop - whose signs

are determined by a right-hand convention based on the choice of the outward normal



78

vector. The perimeters allow us to define electromotive forces (EMFs) and magnetomotive

forces (MMFs) locally Having specified the directed loops of the system, we now shall see

that the Hamiltonian dynamics, given by the Poisson-bracket relations in Eq. 4.8, takes a

particularly simple and elegant form in this construction. We define the linking number Lij

between an electric flux Φe
i and magnetic flux Φm

j to be zero if the directed loops associated

with fluxes Φe
i and Φm

j do not entwine. We also define the linking number to be Lij = +(−)1

(see Fig. 4.2) if the loops associated with the two fluxes entwine in a positive (negative)

manner. The Faraday-Maxwell equations are expressible in terms of the linking numbers

as

∂tΦ
e
i =

∑

j

Lij
∂H

∂Φe
i

, (4.10)

∂tΦ
m
i = −

∑

j

Lij
∂H

∂Φm
i

(4.11)

The flux derivatives in the above equations are the EMF’s and MMF’s along the electric

and magnetic perimeters, respectively. The Faraday-Maxwell laws relates the EMF around

the perimeter associated with an electric flux Φe
i with the time variation of the magnetic

flux traversing the face bounded by the perimeter. In this fashion, the electric and magnetic

fluxes are coupled in a purely topological (i.e. metric independent) fashion as

{Φi,Φj} = Aij = iLij (4.12)

We now consider the problem of discretizing the Hamiltonian on the network. We

construct a local Hamiltonian of the form

H =
∑

i

h(Re
i ) + h(Rm

i ). (4.13)

To encode the Poisson bracket relations correctly, we simply tabulate the linking numbers

associated with every pair of fluxes in the system. Clearly, such a matrix will be huge but

extremely sparse, reflecting the locality of the Maxwell equations.

While the Poisson bracket relations are purely metric-independent, the Hamiltonian

involves the geometry of the network. To generate the local Hamiltonian matrix, which

couples fluxes of the same type only in standard electromagnetism, we proceed as follows.
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For each vertex Re
i of the electric polyhedron, we first determine the number of electric

fluxes associated with the vertex (which is the same as the number of links emanating from

the site, or , in the Voronoi construction, the number of faces of the Voronoi cell). Next, we

compute the scalar products of every electric flux pair (which depends on the geometry of

the polyhedron, and the anisotropy of the constitutive relations), and compute the inverse

areas and lengths associated with each such flux. The Hamiltonian in the magnetic sector

proceeds in precisely the same manner, except that the inverse areas and volumes of the

magnetic fluxes are computed using the dual polyhedron. To see how all this is done within a

simple context, we shall construct the Hamiltonian matrix and the Poisson bracket relations

for the case where the set of points Re
i form a regular lattice.

4.2 Discretization on regular lattices

In this section, we make some of the ideas presented above more concrete by discussing

a practical implementation of the structure on a regular network. We have successfully

implemented the discretized versions of the Poisson bracket relations and the Hamiltonian

on simple cubic, body-centered cubic, and face-centered cubic networks, but for the sake

of clarity, we describe here the simple cubic implementation. The ideas presented here are

somewhat similar to earlier work by Pendry [51], where a simple cubic network was used to

compute transmission amplitudes of photonic systems. Although the discretization scheme

is similar to Ref. [51], our formulation of the eigenvalue explained above is entirely different.

Consider the simple cubic lattice, with the lattice spacing set to a. The elementary

translations,

a1 = (a, 0, 0) ,a2 = (0, a, 0) ,a3 = (0, 0, a) , (4.14)

and half-translations bi = ai/2 will be used to identify all the flux sites. In this network,

the inverse permittivity ε−1
ij tensor will “live” on the vertices {Re

i } = {la1 +ma2 + na3},

whereas the permeability µ−1
ij will live on the dual lattice sites corresponding to the centers

of each cube of the electric lattice: {Rm
i } = {(l + 1/2) a1 + (m + 1/2)a2 + (n + 1/2)a3}.

The dynamical flux variables “live” on the links of this network as follows: {D j(Re
i )} =
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{Re
i + bj}, {Bj(Rm

i )} = {Rm
i + bj}, (j = x, y, z). Thus, the electric fluxes (Φe(Re

i +

bj) = Dj(Re
i )/a

2) are associated with the directed links of the simple cubic lattice whereas

the magnetic fluxes (Φm(Re
i + bj) = Bj(Re

i )/a
2) are defined on the directed faces of the

network, which are the directed links of the “dual” magnetic network (which is also a simple

cubic array). Since each face/link of the network unambiguously specifies the type of flux

associated with it, the superscripts {x, y, z} of the fluxes are redundant, and are omitted.

R

R

BD

D

D

D

B
D

D

D B

D

D

m

e

Figure 4.3: The enumeration of the Basis on the simple cubic network. Here, D and B refer
to the electric and magnetic flux sites, respectively.

The non-canonical Poisson bracket relations between the electric and magnetic fluxes

are implemented by the following equation:

{Φe(Re + bi),Φm(Rm + bj} = i
∑

σ=±

σεijkδ
(

Rm − Re, bi − bj + σbk
)

, (4.15)

where we have made use of the Kronecker delta function δ(x,y) = 1 if x = y and 0

otherwise. Furthermore, the Hamiltonian is simply

H =
a2

2

∑

n

∑

ij

ε−1
ij (Re

n)Φe(Re
n+bi)Φe(Re

n+bj)+µ−1
ij (Rm

n )Φm(Rm
n +bi)Φ(Rm

n +bj) (4.16)

From the discretization above, we construct the basis set, on which our A and B matrices

will act, by defining |Re + bi〉 and |Rm + bi〉 to represent the local electric and magnetic

fluxes, respectively. The A-matrix has the following action in this basis:
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A|Re + bi〉 = i
∑

jk±

±εijk|Re + bi ± bj〉

A|Rm + bi〉 = −i
∑

jk±

±εijk|Rm + bi ± bj〉

The B-matrix, which encodes the local constitutive relations is a sum of independent

electric and magnetic parts. As part of the input data, the user supplies the local values

of the permittivity and permeability tensors on their respective sites. We define (repeated

indices are not summed in the following set of equations)

aiε−1
ij (Re)aj = a2Bij(Re) (4.17)

aiµ−1
ij (Rm)aj = a2Bij(Rm) (4.18)

If the system is described by constitutive relations that are purely diagonal, the B-matrix

acting in this Hilbert space is purely diagonal. The off-diagonal parts of the constitutive

relations will couple nearby fluxes on the lattice.

Next, we consider the complication where the constitutive relations are frequency- de-

pendent. We tackle this by introducing extra degrees of freedom in our lattice corresponding

to local oscillator modes. We discuss this in the simple context of the cubic network next.

4.3 Polaritons: frequency-dependence of constitutive rela-

tions

We have already discussed the formal aspects of the frequency dependence of the constitutive

relations in the previous chapter. Here, we consider its implementation on the discrete

network. For the sake of concreteness, we consider the implementation on the simple cubic

network above.

Until now, our dynamical variables were simply our electric and magnetic fluxes, which

are associated with directed links and faces of our electric lattice respectively. To treat

the frequency dependence of the constitutive relations, we expand our Hilbert space and
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introduce dynamical oscillator degrees of freedom at each of the electric and magnetic sites

Re and Rm, and denote them as electric and magnetic polarization degrees of freedom,

respectively. Each electric or magnetic polarization mode on any given site are represented

by a set of canonical oscillator coordinates and momenta φna, πna respectively (here n is an

integer that labels the mode, and a = x, y, z) obeying the Poisson bracket relations:

{φσ
ma(r), πσ′

nb(r
′)} = δabδmnδ

σσ′

δ(r − r′), (4.19)

where σ = e,m. On the discrete network, the electric and magnetic polarizations live on

different sites, the Dirac delta function in the Poisson bracket above becomes a Kronecker

delta and is automatically satisfied by keeping the electric and magnetic polarization modes

as independent degrees of freedom. On each polarization site Rσ, let N(Rσ) be the number

of oscillator modes needed to capture the frequency response of the media. We allow the

possibility that N(Rσ) may vary from one site to another. Our system is now characterized

by two sets of Poisson brackets - those which are non-canonical representing the fluxes,

and the canonical relations representing the oscillators. The A- matrix, is enlarged to

accommodate the oscillator modes as follows. We add to our flux basis the states |Rσ; 1, n, a〉

and |Rσ ; 2, n, a〉 to represent φσ
na and πσ

na respectively. We choose the following convenient

linear combination

|Rσ ;±, n, a〉 =
(|Rσ ; 1, n, a〉 ± |Rσ ; 2, n, a〉)√

2
(4.20)

The action of the discretized A -matrix on these states is the simple diagonal

A|Rσ ;±, n, a〉 = ±|Rσ;±, n, a〉 (4.21)

It thus turns out that in this expanded basis, the A-matrix is no longer anti-symmetric.

Next, consider the B-matrix enlarged to accommodate the polarization modes. For the

sake of notational simplicity, we only discuss electric polarization. The magnetic polariza-

tion modes are constructed in exactly the same manner. As we have recorded in the previous

chapter (section 3.2.3), we suppose that each oscillator mode n has a natural frequency ωn

associated with it, and the additional energy purely due to the oscillator mode is

Hε =
∑

i

Da (αi(r)aπi(r) + βa
i (r)φi(r)) +

1

2

∑

i

ωi

(

π2
i (r) + φi(r)2

)
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Let us define

Za
n(r) = αa

n(r) + iβa
n(r) (4.22)

As we saw in the previous chapter, the coupling of the oscillators to the local fluxes above

led to the definition of a Hermitian tensor

Γab
n (r) = Za∗

n Zb
n (4.23)

In the discrete network, the natural frequencies ωn(Re), and the tensors Γab
n (r), in

addition to the inverse dielectric tensor, will live on the electric polarization sites Re (these

are the input variables in our problem).

When the basis |Re;±, n, a〉 is used, the B-matrix has the following additional couplings:

B|Re; +, n, a〉 = ωn(Re)|Re; +, n, a〉 +
1

2

∑

j,±

Zj∗
na(R

e)|Re ± bj〉 (4.24)

B|Re;−, n, a〉 = ωn(Re)|Re;−, n, a〉 +
1

2

∑

j,±

Zj
na(R

e)Re ± bj〉 (4.25)

This completes our specification of the matrices when the constitutive relations have fre-

quency dependence. We have assumed all along that the characteristic frequency of the

media is out of range of the frequencies of interest.

4.4 Boundary conditions

Having assembled the machinery, we now discuss the boundary conditions. In order to get

out the photon band spectra of a crystal, we proceed as follows. We consider a single unit

cell of the crystal of interest, we discretize space as described above such the discretization

forms a fine mesh closely approximating the continuum. To study the spectrum as a function

of the Bloch vector, we study the unit cell of the crystal on a torus (of dimension Lx ×Ly,

where Lx and Ly are the discretizations in the x, and y directions), with twisted boundary

conditions for the fluxes:

Φσ(r + Laâ) = exp(ika)Φ
σ(r) (4.26)
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By varying k in the Brillouin zone, we can compute the spectra of the bands. This was the

method by which we determined spectra of two dimensional bandstructures in the previous

chapter.

It is also quite straightforward to consider metallic boundaries with this method, as

follows. We place the perfect conductor on our network, and determine the electric sites

corresponding to zero values of the inverse dielectric tensor. When these zero’s are intro-

duced, it becomes clear that some fluxes emanating from these sites do not contribute to

the energy, and must be excluded when we create our basis set. In the perfect metal, we

will also have magnetic flux sites which are static since the electric fields are identically

zero. These static magnetic flux sites must also be excluded. In our basis set, we keep all

fluxes whose Poisson brackets with the Hamiltonian do not vanish.

4.5 Summary

We now recap the results of this section and make a few additional comments.

In our scheme, The electrical fluxes, ΦD are defined on the edges of the polyhedron,

while the magnetic fluxes, ΦB are associated with the faces of each cell. Finally, magnetic

energy and the local inverse permeability tensor µ−1
ij (r) are defined on the centers of each

polyhedron.

This discretization scheme preserves the self-duality of the source-free Maxwell equations

in three dimensions; for each such electric polyhedron described above, there is a dual

magnetic polyhedron whose faces correspond to the edges of the electric polyhedron, and

whose center corresponds to the vertices of the electric polyhedron.

The discretized form the A matrix couples electric fluxes to magnetic ones, and vice-

versa. The coupling is (see Fig. 4.4)

ADB
ij = {ΦD

i ,Φ
B
j } = 0,±i. (4.27)

The B matrix couples fluxes of the same type, and depends on the geometry of the

polyhedra used to discretize space. For the case of a simple cubic discretization, and for
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ΦB

ΦD
ΦB

ΦD

ΦB

ΦD

Figure 4.4: The discretized form of the A, which contains the Poisson bracket relations of
the fluxes. Shown here are example configurations of {ΦD

i ,Φ
B
j } = +i (top), −i (middle),

and 0 (bottom).
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the electric fluxes (see Fig. 4.5),

Bii =
1

2

(

ε−1
ii (r1) + ε−1

ii (r2)
)

(4.28)

Bij =
1

4
ε−1
ji (r2). (4.29)

i
j

x

x

1

2

Figure 4.5: The discretized form of the B, which contains the contains the geometric as
well as the dynamics information. It couples fluxes of the same type only, and allows for
anisotropy in the constitutive relations.

Identical relations involving the inverse permeability tensor are constructed for the mag-

netic fluxes. With the present formulation, the complete Hamiltonian of the system is

expressed as a sum of local terms, H =
∑

n h(rn), with

h(rn) =
∑

ij

Bij(rn)yiyj. (4.30)

Using this method, we can handle the case where the constitutive relations have generalized

anisotropy, and vary in space.

Both the A and B matrix are sufficiently sparse and are stored as matrix-vector multi-

pliers and are treated using a Lanczos algorithm. The standard Lanczos method determines

extremal eigenvalues, while we seek the small positive eigenvalues of Eq. 4.6 that are just

above a highly-degenerate set of zero modes.

The Lanczos adaptation for the Photonic problem is done by modifying the A matrix

to

A → A′ = ABA − 2ω0A, (4.31)
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A′B|y〉 = ω(ω − 2ω0)|y〉. (4.32)

Here, ω0 is the lowest eigenvalue, and the low lying (negative) eigenvalues of the modified

problem are now the physically relevant ones which are easily found with the Lanczos

implementation. The dimensions of the matrices are d = 6N , where N is the number of

points used to discretize the constitutive relations. We have found system sizes up to 106

to be accessible within this approach.



Chapter 5

Vortex dynamics and the Nernst

effect

In this chapter, we study the problem of thermoelectric transport of extreme type II super-

conductors in a magnetic field. The magnetic field, which breaks time-reversal symmetry,

endows the system with a net imbalance of vortices. These vortices, which are topological

defects of the phase of the superconducting pair amplitude function, act in many ways as

ordinary charges, which are defects of the electric field. We shall restrict our attention to

the somewhat idealized case of a two-dimensional superconducting layer, in which case, the

vortices are point defects. In this chapter, we investigate the role vortices play in ther-

moelectric transport experiments of extreme type II superconductors. The work here is

motivated by a series of experiments done by Ong and collaborators on the Nernst effect

and diamagnetism in the cuprate superconductors. The results presented here could also

apply to quasi 2D granular superconductors, and Josephson junction arrays. The work pre-

sented in this chapter has been the result of an ongoing collaboration with Daniel Podolsky

and Ashvin Vishwanath at U.C. Berkeley. I also have benefited from enlightening discus-

sions with David Huse on this topic, whose ideas are reflected in some of the material of

this chapter. At the time of writing, the material in this chapter remains unpublished.

88
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5.1 Introduction

Since their discovery almost two decades ago, the cuprate superconductors continue to

present a formidable challenge to our understanding of strongly correlated electronic sys-

tems. To date, a definitive microscopic theory which accounts for the superconductivity

when the parent mott insulating materials are doped remains controversial. The primary

challenge amounts to understanding the pseudogap regime, the crossover region between

the mott insulating and superconducting phases which possesses many anomalous experi-

mental signatures. The understanding of the relationship between the superconducting and

pseudogap regimes continues to be one of the central puzzles in this area.

While these issues remain theoretically unresolved, recent experiments that have probed

the dynamics and transport properties in this region of the phase diagram, have placed im-

portant constraints on potential theoretical models. In one such experiment, the frequency-

dependent electrical conductivity σ(ω) was measured in underdoped BSCCO at zero applied

field [12]. The results indicate that the proliferation of vortex- antivortex pairs contribute to

the short time dynamics in the system above Tc. The experimental data is consistent with

the notion first introduced by Emery and Kivelson [15], that the superconducting transition

into the “normal” underdoped region marks the loss of phase coherence, rather than the

destruction of the superconducting gap and pair formation.

Furthermore, the experiments on the Nernst effect [69] [67] [65] [66], and more recently,

the measurements of diamagnetism [34], [64] have produced strong evidence for the presence

of vortex degrees of freedom at temperatures well above Tc, which seem to develop smoothly

out of the ordinary type II superconducting vortices below the transition temperature. In

the Nernst experiments (see Fig. 5.1), the system is placed in a magnetic field (H = Hẑ

with ẑ taken to be along the c-axis), in a thermal gradient (−∇T = −x̂ dT
dx ), and a DC

electrical voltage is measured in the y-direction under open-circuit boundary conditions in

both x and y directions. The Nernst signal is defined by the ratio

en =
Ey

−∇T (5.1)
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x
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Figure 5.1: The setup of the Nernst experiment. A temperature gradient in the x-direction,
and a magnetic field in the z-direction are applied. The DC electrical voltage is measured
along the y−direction.

It is easily seen why the Nernst experiments are an ideal probe of vortex motion. If

the system consisted of quasiparticles alone, the open circuit boundary condition constraint

would be satisfied by a counterflow of hot and cold quasiparticles whose Hall voltages

cancel identically, resulting in a negligible transverse electrical signal. Despite the heuristic

nature of the above argument, the approximate cancellation of the Nernst signal in a system

consisting of charged quasiparticles alone is well understood [54]. Vortex motion, on the

other hand, can easily account for a non-zero Nernst signal; as a vortex diffuses down the

temperature gradient, its phase slippage produces a voltage pulse transverse to its direction

of motion. If there is a net imbalance of vorticity, which occurs at non-zero applied fields,

there will be an unbalanced electrical signal which is interpreted as the Nernst signal.

While the frequency dependent conductivity measurements are heavily dependent on

the dynamics of quasiparticles, the Nernst signal and more recent measurements of magne-

tization [34] [64] seem almost to be independent of quasiparticle dynamics. Indeed, while

both conductivity and Nernst experiments point to vortex-like behavior above Tc, the tem-

perature at which this behavior emerges differs depending on which experiment is used as

the probe. The conductivity experiments, not surprisingly, point to a somewhat lower onset

temperature of vortex excitations, which can be attributed to the complication of quasipar-

ticle dynamics. For this reason, the Nernst experiments shall be the primary focus of this

chapter.

Since the precise microscopic mechanism for superconductivity in the cuprates remains
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unknown, theoretical work on the Nernst effect have all been phenomenological in flavor.

Among the existing theoretical treatments of the Nernst experiments, the most promising

approach has been to consider the Nernst signal as arising from superconducting fluctua-

tions [61] obeying model A critical dynamics in the notation of Hohenberg and Halperin

[22]. In this approach, vortices are not explicitly invoked, and thermoelectric response of

superconducting (amplitude and phase) fluctuations is considered within time-dependent

Ginzburg-Landau (TDGL) theory. At high temperature, near the onset temperature for

the Nernst signal, a model of gaussian superconducting fluctuations accounts reasonably

well for the experimental data, especially at optimal doping [61].

Here, we present a study of transverse thermoelectric transport within an idealized lat-

tice london model that contains only phase fluctuations arising from vortex motion. Our

model does not contain fermionic quasiparticles, nor does it contain amplitude fluctuations.

Furthermore, due to the highly two dimensional nature of the layered cuprate superconduc-

tors, we are motivated to further simplify the problem by studying the Nernst effect in a

two dimensional model.

This chapter is organized as follows. First, we review the magnetic phase diagram of

a type II quasi 2D superconductor, derive our model Hamiltonian - the 2D frustrated XY

model, and discuss the simplifying assumptions being made therein. Next, we consider

relaxational (model A) dynamics for the Hamiltonian, construct expressions for currents,

while carefully taking into account surface magnetization currents which do not transport

net charge or energy. The magnetization and transverse thermoelectric transport coefficient

αxy are measured in simulations of the frustrated XY model with model A dynamics. We

also show analytical results for the magnetization and αxy at high temperatures.

In the second half of the chapter, we repeat some of the calculations above in the dual

vortex representation using the Coulomb gas Hamiltonian. We consider the problem of dy-

namics of the Coulomb gas, and also discuss energy transport in this model. We then show

results of measurements of magnetization and αxy from Monte Carlo simulations. Some an-

alytical results for magnetization at low temperatures are also presented. We also present
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numerical results of thermoelectric transport in the dual model for small system sizes. We

see that up to finite-size effects, the results from both the 2D frustrated XY model and its

dual counterpart, the 2D coulomb gas model, are consistent with each other. Our main

conclusion here is that 2D models with only phase fluctuations capture much of the exper-

imentally observed phenomena of the Nernst effect and diamagnetism in the underdoped

cuprate superconductors. Our work is consistent with the picture that the supercoducting

transition in this regime is not a conventional BCS-type depairing transitions, but rather,

it marks the loss of phase coherence in these systems.

5.2 Basic layout of the problem

In this section, we first provide some background by considering the phase diagram of a

type II superconductor, focusing on quasi two dimensionality, and we consider the effects of

thermal fluctuations on the mean field phase diagram [17]. From this, we setup our model,

and discuss the simplifying assumptions being made.

5.2.1 The Magnetic phase diagram of a type II superconductor

A superconductor is classified as “type II” if the ratio of its magnetic penetration depth λ

to its coherence length ξ is greater than 1/
√

2.

At the level of mean-field theory, a type II superconductor has two distinct broken

symmetry phases. At the lowest temperatures and fields, there is the Meissner phase, char-

acterized by perfect diamagnetism, in which the system exhibits long-range phase coherence,

and off-diagonal-long- range-order (ODLRO),

lim
r→∞

〈Ψ†(0)Ψ(r)〉 ≈ 〈Ψ†(0)〉〈Ψ(r)〉 6= 0. (5.2)

Above a critical field Hc1(T ), the field begins to penetrate the system in the form of h/e∗

vortices, and in addition to having ODLRO, the system breaks translational symmetry

forming a vortex lattice. At higher fields and temperatures, the vortex lattice melts and

the system loses its superconductivity altogether.
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Figure 5.2: Magnetic phase diagram of a layered quasi 2D extreme type II superconductor.
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When thermal fluctuations and disorder are properly taken into account [17] [16], the

picture changes dramatically. Although the Meissner phase does not change much, the vor-

tex lattice is less robust against disorder and fluctuations. For instance, quenched disorder,

due to random pinning centers for the vortex cores, destroys the vortex lattice, and gives

rise to the “vortex glass” phase [17] which remains superconducting, as long as the vortices

remain pinned. We will ignore the Meissner phase in this chapter, and we do not study the

complications associated with disorder. For a comprehensive account, see Ref. [17].

At higher temperatures, but at fields below the mean-field Hc2(T ), fluctuations melt the

vortex lattice (or glass) into the “vortex liquid” phase, which is no longer superconducting

(it has an Ohmic “flux-flow” resistance caused by the motion of vortices), at least at length

scales larger than the zero temperature coherence length. This region of the phase diagram

is connected by a smooth crossover to the normal phase above the mean-field upper critical

field HMF
c2 . In the vortex fluid phase well below Hc2, there are local superconducting

correlations still present, and the system can be consistently described using mobile vortices.

However, the vortex picture begins to break down at higher fields, since pairing is essentially

lost in this regime. The vortex liquid phase will be the focus of this chapter.

The phase diagram for a quasi 2D (layered) system is shown in Fig. 5.2. At zero field,

there is a Kosterlitz-Thouless transition which occurs at a temperature, which is larger than

the 2D melting temperature, but which is less than the mean field transition temperature.

Depending on the anisotropy of the system, there will be a regime at low fields where the

system will display 3D XY criticality. As the field is increased, however, there is a first

order melting transition of the vortex lattice or glass into the liquid state which occurs

somewhat below the zero-field Kosterlitz-Thouless temperature [16]. We shall always have

in mind a highly anisotropic layered material which remains quasi 2D essentially throughout

the vortex liquid regime. In this case, we may assume that the superconducting transition

temperature occurs roughly at TKT .

To be concrete, we consider the Ginzburg-Landau free energy for a layered type II

superconductor in the presence of a magnetic field. The free energy density for such a
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system is of the Lawrence-Doniach type:

f =
h̄2

2mab

∣

∣

∣

∣

(

∇ − i
e∗

h̄c
A

)

ψn(r)

∣

∣

∣

∣

2

+a(T ) |ψn(r)|2+
1

2
β |ψn(r)|4+

∑

<n,n′>

Jz

∣

∣ψn − ψ′
n

∣

∣

2
, (5.3)

where n labels the layer, mab is related to the inverse coherence length in the ab plane, Jz

is the strength of the interlayer Josephson coupling.

The interlayer coupling cannot strictly vanish; in this case, although the systems conduc-

tivity will remain large, the Meissner phase is absent). However, we assume that Jz << TKT ,

so that the 3D regime is essentially suppressed. Well above the superconducting transition,

this system will consist of decoupled layers, each resembling a 2D superfluid film.

Well above the mean field transition temperature, the parameter β can be ignored,

and the system has gaussian superconducting fluctuations. Thermoelectric transport in the

gaussian regime has been treated in [61] ).

Here, we will consider the regime which far enough above Tc such that a 2D description

applies, but we also want to be sufficiently below the mean field transition temperature

(where a(T ) changes sign) so that the amplitude of the superconducting order parameter

remains frozen. When β is large, the value of Tc is suppressed well below its mean field

value, and the dominant fluctuations are those of the phase. In this limit, focusing on a

single independent layer, we have

ψ(r) =
√
ρs exp(iθ(r)), (5.4)

where ρs is a constant equal to the superfluid density, which we take to be a constant

with no dynamics - an approximation equivalent to the statement that the superconducting

phase fluctuations are classical, and our free energy resembles that of a London model of

a superconductor. We further simplify the free energy by working in the extreme type

II limit, where the superconducting coherence length ξ is much smaller than the magnetic

penetration depth λ and the fluctuations in the gauge fields A may be reasonably neglected:

when the system’s penetration depth is much greater than the coherence length, it is quite

reasonable to approximate the system as being placed in a uniform magnetic flux density.

Thus, neglecting magnetic excitations altogether, along with fluctuations in the quadratic
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term above, we obtain

F =
h̄2

2m

∫

d2rρs

(

∇θ(r) − e∗A

h̄c

)2

. (5.5)

The gaussian free energy makes the problem seem trivial; the missing ingredient here is that

we have not considered the compact nature of the phase angles, a feature which permits

topological defects - the vortex degrees of freedom. To remedy this, we shall work instead

with a 2D frustrated XY model, and while the London model, strictly speaking, is defined

in the continuum, we discretize onto a lattice:

H = −J
∑

<ij>

cos (θ(rj) − θ(ri) −Aij) , (5.6)

where J = h̄ρs/m, (we set the lattice spacing to unity) ri are the sites of a two-dimensional

network, θ(ri) are angular variables defined on each site, corresponding to the phase of

the superconducting order parameter (pair amplitude). Aij = are quenched gauge fields

defined on each link of the network as

Aij =
e∗

h̄c

∫ j

i
A · dr (5.7)

The gauge invariant quantity of course, is the magnetic flux density perpendicular to the

superconducting plane (a is the lattice spacing) :

Ha2 = ∂xA
y − ∂yA

x. (5.8)

With these conventions, if the magnetic flux per plaquette of the lattice is one flux quantum

φ0 = hc/e∗, then the gauge field Aij winds by 2π around each plaquette

The model described here has been studied extensively in the past, both analytically

[47] and (mostly) numerically [57]. In addition, most of the previous work here has been

focused on numerical studies of special values of the external field: an example is the “fully

frustrated” XY model, which occurs when there is half a flux quantum per plaquette. Our

primary interest here is in the thermoelectric transport properties of this model, which have

received somewhat less attention. We are interested not at particular values of the applied

field; our main goal is to study thermoelectric response in this system as a function of

applied field. In the next section, we introduce dynamical equations for the phase variables.
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5.3 Relaxational Dynamics

To study transport, we must introduce some dynamics for the angles. There are many

possible choices for the dynamics of the phase variables θ(ri, t), the only constraint being

that it faithfully reproduces the equilibrium thermodynamic quantities of the Hamiltonian.

In general, transport coefficients, such as the electrical and thermal conductivities, will

depend on the details of the choice of dynamics, since their values depends on the relaxation

time. Interestingly, however, the transverse thermoelectric coefficient, αxy, does not depend

on the relaxation time, a fact that can be understood from dimensional analysis, as we shall

show later. An interesting and unresolved issue is to what extent αxy is independent of the

choice of dynamics. For instance, if we chose our dynamics such that various relaxation times

depended either on energy or momentum, it is not clear whether αxy remains insensitive to

the value of the relaxation time.

Among the simplest dynamical choices are purely relaxational dynamics, for which

τ θ̇(ri) = − δH
δθ(ri)

+ η(ri, t), (5.9)

where the first term causes the phases to relax towards local minima of the free energy

landscape, whereas the second term, the gaussian white noise, represents interactions with

the phase variables with local degrees of freedom operating on a shorter length and time

scales than those of interest (they transport charge and energy on much shorter time scales

than the hydrodynamic ones of interest - observe that our lattice discretization used for the

phases are in no way connected to the underlying chemical lattice). In our problem, they

could represent, for example, a phonon bath, and without them, the system would remain

trapped in metastable states. To ensure that the system obeying these dynamics reaches

equilibrium, the correlators of the noise must satisfy

〈η(ri, t)η(rj , t
′)〉 = 2Tτδijδ(t− t′) (5.10)

The model described above, also known as time-dependent-Ginzburg-Landau (TDGL), or

Model A dynamics [22], does not contain any conserved variables. Other dynamical choices,
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which do contain conserved variables, include for instance the resistively-shunted-junction

(RSJ) dynamics, which are appropriate for granular superconductors, and which conserve

the local supercurrent at each junction. Still another example is that of Monte Carlo

(i.e. Metropolis) dynamics, which are closely related to relaxational dynamics in classical

systems. The issue of which set dynamical equations appropriately describes the super-

conducting transition has received much attention during recent times. To date, the issue

remains unsettled (see, for instance, [2] and references therein). In what follows, we shall

use the relaxational TDGL dynamics to compute the transport coefficients of interest.

5.4 Transport

Within the dynamical framework described above, local charge and heat current densities

were heuristically motivated by the authors of Ref. [60] (see also [61] ) for the system with

both amplitude and phase fluctuations:

j = −i e
∗h̄

2m∗
〈ψ∗

(

∇ − i
e∗

h̄c
A

)

ψ〉 + c.c. (5.11)

jQ = − h̄2

2m∗
〈
(

∂t − i
e∗

h̄c
A0
)

ψ∗
(

∇ − i
e∗

h̄c
A

)

ψ〉 + c.c., (5.12)

where A0 = cφ, and φ is the electric potential. When the amplitude of the order parameter

is held fixed, we obtain the following:

jij = J sin (θj − θi −Aij) (5.13)

jEij = −J
2

(

θ̇i + θ̇j

)

sin (θj − θi −Aij) (5.14)

The various transport coefficients are then obtained either by computing the average

value of these currents in externally applied electric fields and temperature gradients, or

by calculating the various current-current correlation functions in equilibrium via the Kubo

formulae. In the absence of the magnetic field, the task of determining transport coefficients

is fairly straightforward and both the external gradient and Kubo formula methods will

produce the same result.
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5.4.1 Magnetization currents

In the presence of a magnetic field, however, the current profile of the system can be

dramatically be modified by the presence of diamagnetic currents which remain confined to

the surface of the system. These currents are non-zero even at equilibrium in the absence of

electric fields and temperature gradients. In general, the energy and charge current densities

can be separated into a transport sector and a magnetization sector, namely,

j(r) = jtr(r) + jmag(r) (5.15)

jE(r) = jE
tr(r) + jE(r) (5.16)

where the charge and energy magnetization currents are defined by

jmag(r) = ∇ × M (5.17)

jE
mag = ∇ × ME, (5.18)

and ME is known in the literature (see e.g. [11] and [46] ) as the ”energy magnetization”,

representing the flow of energy around the edge of the system due to the breaking of time-

reversal symmetry. The heat current density is defined by

jQ(r) = jE(r) − φ(r)j(r), (5.19)

where the total current densities are used in the definition above. Magnetization currents

are divergence-free and by definition, they do not transport net charge or energy. Therefore,

∫

j(r) · n̂ dl =

∫

jtr · n̂ dl (5.20)

∫

jE(r) · n̂ dl =

∫

jE
tr · n̂ dl (5.21)

Here, the integral is over a path that traverses the sample, and we compute the total charge

and energy currents that cross this curve (n̂ is perpendicular to the local tangent vector to

the curve).
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It turns out however, that there is a slight subtlety with the heat current. Unlike the

energy and charge currents, the heat current cannot be sifted apart into a transport current

and a divergence-free ”heat magnetization” current. To see this, we use 5.19, and find that

jQ(r) = j
Q
tr + ∇ × MQ + ∇φ× M , (5.22)

where j
Q
tr(r) = jE

tr(r) − φ(r)jtr(r), and MQ = ME − φ(r)M (a quantity that does not

seem to have a clear physical meaning). Thus, the heat current, when integrated across a

path with traverses the system, is

∫

j
Q
tr(r) · n̂ dl =

∫

(

jQ(r) + ∇φ(r) × M
)

· n̂ dl (5.23)

This fact will prove to be crucial when measuring transport coefficients, which we next

discuss.

5.4.2 Transport coefficients

Let us define

Jtr =
1

L

∫

jtr · n̂ dl (5.24)

J
Q
tr =

1

L

∫

j
Q
tr · n̂ dl (5.25)

The various transport coefficients which are measured in experiments are related to the

transport part of the electric and heat currents as follows:







Jtr

J
Q
tr






=







σ α

α̃ κ̃













E

−∇T






. (5.26)

The transport coefficients σ, α, respectively, the electrical and thermoelectric conductivities,

and the thermal thermal conductivity, κ, defined by J
Q
tr = −κ∇T under open circuit

boundary conditions, is given by κ = κ̃− α̃σ−1α. The Nernst signal, defined in Eq. 5.1, is

given by the ratio

eN =
αxy

σxx
, (5.27)
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where we have neglected contributions from αxx and σxy which only contribute when

particle-hole symmetry is broken. This “zero Hall angle” approximation seems to be con-

sistent with experimental data of flux-flow resistivity and the Nernst signal.

By looking at the Kubo formulae for the electrical conductivity,

σxx =
1

T

∫ ∞

0
dt〈jx(t)jx(0)〉, (5.28)

and for αxy

αxy =
1

T 2

∫ ∞

0
dt〈jx(t)jEy (0)〉, (5.29)

and by looking at the formulae for the currents themselves, we see that the electrical con-

ductivity is proportional to the TDGL auto-correlation time, whereas αxy is independent of

it. Consequently, the Nernst signal, along with the electrical conductivity is quite sensitive

to the choice of dynamics, whereas αxy is less dependent on this choice. For this reason, we

will for the most part focus on αxy rather than eN . This will also be the case later in this

chapter, when we formulate the problem in the dual vortex representation.

Additionally, the transport coefficients obey the Onsager relations, which require that

α̃ = Tα. Clearly, if the wrong currents are calculated (e.g. jQ instead of j
Q
tr), then

one will find that the Onsager relations are not verified, and that the resulting transport

coefficients have nothing to do with those measured in experiments. Therefore, we must be

careful to add or to subtract the contributions from the magnetization currents in order to

remain on the correct track. We have computed the transport coefficients both numerically

and analytically at high temperatures by recasting the Langevin equation of motion into

an action principle. We shall first describe the numerical simulations and next the high

temperature expansions.

5.5 Results

We have simulated the frustrated 2D XY model (Eq. 5.6) with relaxational (model A)

dynamics (Eq. 5.9) The phase degrees of freedom are discretized on the sites of a square

lattice, and the gauge fields live on the directed links of the 2D lattice. We integrate the
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Langevin equations of motion via a standard fourth-order Runge-Kutta method [5]. First,

we establish the Kosterlitz-Thouless transition in this model by measuring the universal

jump in the helicity modulus at zero magnetic field, which is given by the standard formula

[68]:

Υ = −< U >

2N
− β

N

∑

i

sin (θi+x̂ − θi) , (5.30)

where U is the total energy of the system, and N are the number of lattice sites. We

measure this quantity on a torus, and find that TKT = 0.887J , which is consistent with the

known literature. In what follows, we shall report all temperatures in units of TKT . We

have also studied numerically the helicity modulus at finite fields and find that our numerics

reproduces standard numerical results [57]. We do not mention them further, as they are

not relevant to our main focus.

Whereas the Kosterlitz-Thouless transition temperature is determined on a torus, we

use a cylindrical setup to measure the remaining quantities. The geometry is described in

Fig. 5.3. If either electric fields or temperature gradients are present, they are applied along

the axis of the cylinder. Transport coefficients are also computed using the Kubo formu-

lae by computing current-current time displaced correlation functions along the azimuthal

directions of the cylinder.

We focus first on magnetization, which is independent of the choice of dynamics. We

measure the diamagnetic reponse of our system to the externally applied magnetic field

by measuring the surface magnetization currents along the edge rims of our cylinder. We

have studied the supercurrent profile (i.e. the gauge-invariant phase differences associated

with each link of the lattice) and indeed, we find the edge mode corresponding to the

magnetization currents; the bulk currents are vanishingly small at equilibrium. To measure

the magnetization, we make use of the relation

M =
Nx
∑

x=1

〈jy(x)〉 (x− x0) , (5.31)

where Nx is the lattice discretization along the axial direction (taken to be the x-direction),

〈jy(x)〉 is the average supercurrent density at position x, and x0 is an arbitrary constant
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Figure 5.3: Geometry used in the simulations, the results of which are presented below.
External fields are applied along the axial direction of the cylinder and in the measurements
of the transverse thermoelectric coefficients, the resulting steady-state currents are measured
along the azimuthal direction.

(since
∑

x j
y = 0). This relation is identical to M = 1/2 (r × j), applied to the cylindrical

geometry. The numerically computed magnetization is shown in Fig. 5.4. Indeed, there is a

separatrix in the data at T = TKT , below which the magnetization diverges logarithmically

at low fields, and above which the magnetization appears linear in the magnetic flux density.

The data is shown as a function of applied field (in our units, a unit flux quantum represents

2π worth of flux). Various temperatures (in units of TKT ) are shown.

Next, we consider dynamical quantities. The electrical conductivity is determined both

via the Kubo formula, and via the direct method, in which an electric field (introduced via

a time-varying vector potential E = −∂tA) is applied and the resulting bulk supercurrent

density profile is computed. We have verified that indeed both methods produce statistically

equivalent results. The results shown in Fig. 5.5 are obtained via the direct method on

a 60 × 60 cylindrical system. The data corresponds to the same temperatures as those in

Fig. 5.4. The conductivity becomes roughly field-independent above a critical field, but

continues to decrease with increasing temperature in this model. Since we have neglected

the quasiparticle contribution here altogether, the results here can be thought of as the
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Figure 5.4: Magnetization measured in Langevin simulations of the frustrated XY model.
The data is plotted for temperatures 0.5,0.75,1.0,1.25,1.5,1.75,2.0, in units of TKT .

vortex contribution (i.e. ”flux-flow”) to the conductivity. A more accurate model will take

into account quasiparticle dynamics. We note here that the conductivity depends rather

sensitively on the choice of dynamics. Simulations of the XY model with RSJ dynamics, for

instance, produce qualitatively different results with different finite-size scaling properties

(see Ref. [23]).

We next turn to our principal transport quantity of interest, the transverse thermoelec-

tric coefficient αxy which describes the electrical response of the system perpendicular to

an applied temperature gradient. By the Onsager relations, αxy may also be determined by

measuring the transport part of the heat current perpendicular to an applied electric field.

We have found that in the numerical simulations, measurements of αxy and α̃xy/T are

equivalent within statistical noise. We have also found that the α̃xy experiment produces

a considerably higher signal-to-noise ratio. The same was found in simulations of the full

TDGL equation having phase and amplitude fluctuations (including the quartic term) [42],

as well as in the dual Coulomb gas approach to be described later on in the chapter. To

measure αxy, we again impose an electric field via the time variation of the vector potential

along the axial direction of the cylinder, and we determine the transport part of the heat
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Figure 5.5:

currents which develop along the azimuthal direction under steady state conditions.

Figures 5.6 and 5.7 show the results for the 60× 60 cylindrical system for temperatures

below and above TKT respectively. For temperatures below TKT , αxy appears to diverge

logarithmically for low fields (it certainly vanishes at zero fields, as required, which is not

presented here).

Above TKT , however, this divergence disappears, as shown in Fig. 5.7. A signal which

is statistically different than the noise persists in this model up to temperatures twice the

Kosterlitz-Thouless transition temperature. Our simulations also show the characteristic

asymmetry of αxy (which is equivalent to the Nernst signal eN up to a constant above TKT ,

since the experimentally determined resistivities at these temperatures are roughly field

independent), namely, that the signal rises sharply at low fields and decreases slowly after

reaching its maximum value. Furthermore, the fields at which the maximum is reached

(which Ong and collaborators refer to as the ”ridge field” [69]) increases as a function of

temperature, which is another feature visible in our simulations.

We see from our simulations then that the 2D frustrated XY model, a simple model for

an extreme type II superconductor with an infinitely large pair-amplitude (but which lacks
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Figure 5.6: The transverse thermoelectric coefficient αxy for a 60× 60 cylindrical system at
temperatures 0.5,0.75, and 1.0 in units of TKT .
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Figure 5.7: αxy measured for temperatures above the Kosterlitz-Thouless transition tem-
perature. The data shown corresponds to the temperatures 1.25, 1.5, 1.75, and 2.0 in
units of TKT . At temperatures as high as twice TKT , a statistically significant value of the
thermoelectric coefficient is detectable.
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phase coherence) produces anomalously large transverse thermoelectric transport signatures

well above the Kosterlitz-Thouless transition temperature. In the following section, we

generate some analytical results which are consistent with our numerical simulations at

high temperatures.

5.6 High temperature expansions

In this section, we derive analytical expressions for magnetization and αxy at high tem-

peratures. The high temperature expansion for magnetization is a standard exercise in

statistical mechanics, whereas to compute αxy, we recast the Langevin equation of motion

into an effective action and generate high temperature expansions with this action. The

conversion of a classical stochastic differential equation into an action principle was shown

by Martin, Siggia, and Rose [40].

First, we consider the calculation of magnetization. By expanding the XY model parti-

tion function in powers of K = J/kBT ,

Z =

∫

Dθ
∏

<i,j>

[1 −K cos (θj − θi −Aij)] (5.32)

At leading order on a square lattice, the magnetic field dependence of Z will come from

closed diagrams enclosing a single plaquette. Also, we see that the result is then gauge

invariant since only the magnetic flux per plaquette enters the result. From the partition,

one computes the free energy and the magnetization. The result is

M

T
= −2πe∗kB

8h
K4 sin

B

Bc2
+O

(

K6 sin
2B

Bc2

)

, (5.33)

where the correction comes from closed diagrams which enclose two plaquettes (and hence

twice the flux).

To obtain a series expansion for αxy in powers of K, we recast the Langevin dynamical

equations of the XY model in terms of an effective Martin-Siggia-Rose [40] action, so that

the expectation value of a dynamical variable X is computed as

〈X[θi]〉 =

∫

Dθi X[θi] exp (−S0[θi] − S1[θi]) , (5.34)
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where

S0 =
1

4Tτ

∫

dt
∑

i



τ2θ̇2
i + J2





∑

j∈N.N.(i)

sin (θj − θi −Aij)







 , (5.35)

and

S1 =
J

τ

∫

dt
∑

<ij>

cos (θj − θi −Aij) (5.36)

The high temperature expansion is done perturbatively in J , using the J = 0 action, which

is gaussian in θ̇. We compute αxy using the Kubo formula for an infinite plane. Note

that the Kubo formula, which involves a dynamical correlation function, becomes a static

quantity in the Martin-Siggia-Rose action, which is a space-time action. Again, at leading

order in K, we pick up contributions from closed diagrams enclosing a single plaquette. The

result using the Kubo formula for αxy is

αxy =
2πe∗kB

16h
K4 sin

B

Bc2
+O

(

K6 sin
2B

Bc2

)

(5.37)

Interestingly, at leading order, we find that the ratio

−M
Tαxy

= 2, (5.38)

If the same analysis is repeated on a different lattice we do not get the same K-dependence

for M and αxy. For example, on a triangular lattice, M/T ∼ K3 at leading order, since

the smallest closed diagram consists of three bonds. The same holds true for αxy using

the MSR action principle. This is not surprising; at temperatures much greater than the

transition temperature, we do not expect to find universal results. But surprisingly, the

ratio of −M/T to αxy remains the same. The reason for this robustness is not clear.

5.7 Dynamics and thermoelectric transport in the dual vor-

tex model

In this section we study the Nernst effect in a dual representation in which vortex positions

play the key role. Having understood diamagnetism and transverse thermoelectric trans-

port signatures of the frustrated XY model, it may seem unnecessary to study the dual
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version of this problem. However, in the XY model, the degrees of freedom are the local

phases variables, and vortices are not at all invoked. By formulating the problem in a way

that vortices play the primary role, we can gain further insight and learn how vortex pa-

rameters (core energy, entropy, etc) influence the Nernst effect. If the experiments do tell us

something about vortex properties above the transition temperature, we will have a greater

handle on a possible microscopic approach to the problem. Furthermore, although dual

representations have been used to study equilibrium properties of the Kosterlitz-Thouless

transition, it remains unclear whether both phase and vortex representations give rise to the

same thermoelectric signatures in a magnetic field. That will be the task in the remainder

of this chapter.

We consider the dual vortex representation of the XY model in which the vortices “live”

on the sites of the dual lattice (see Fig. 5.8), and a dual electric field e is defined on the

links of the dual lattice, by

e(x̃) = ∇θ(x) × ẑ (5.39)

where the tildes are used to flag the dual sites. With this definition, the circulation of ∇θ

along a contour c in the original lattice translates to the outward flux of the dual field e

across the boundary c, and therefore, the electric fields satisfy Gauss’ law:

∆ · e = 2πnv (5.40)

In this representation, the transverse part of the electric field represents the smooth spin

wave deformations, whereas the longitudinal part is associated with vorticity.

The well known decoupling between spin wave and vortex degrees of freedom occurs

in the Villain representation of the 2D XY model; the spin wave hamiltonian is gaussian,

whereas the vortex excitations are described by a Coulomb gas model, as can be shown

using standard manipulations (see Appendix (B.1):

Z = ZSW ·
∞
∑

n(r)=−∞

e
−2π2βJ

∑

r,r′
[n(r)−b]V (r−r′)[n(r′)−b]

(5.41)
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θ s

e

n

v

Figure 5.8: The phase variables θi are defined on the original lattice sites (denoted by closed
circles), while ∇θ and Aij , the vector potential, are defined on the links (solid lines) of this
lattice. In the dual 2D Coulomb gas model, the vortices and the static background charge
density live on the dual lattice sites (marked by “ ×”), whereas the electric fields live on
the links (dashed lines) of the dual lattice. Vortices are associated with non-zero curls of
the supercurrent and non-zero divergences of the dual electric fields.

Here, V (r) is the inverse lattice propagator given in momentum space by

V (r) = ρs
2π

L2

∑

k

eik·r

2 (1 − cos(kx) − cos(ky))
, (5.42)

and at large distances, V (r) ∼ log(r). As shown in Appendix (B.1), b is the static back-

ground charge density on each dual lattice site and corresponds to the magnetic flux per

plaquette of the XY model in the Villain approximation. The Villainized XY model is dual

in this way to a 2D plasma of vortices + static background charge interacting logarithmi-

cally.

The equilibrium properties of the Coulomb gas model are well understood; at low tem-

peratures, and zero applied fields (i.e. no background charge), the system is composed

of tightly bound vortex-antivortex pairs forming a dielectric insulator and above the KT

transition, free vortices begin to proliferate, converting the system to a mobile plasma of

charges. The dynamics, and in particular, energy transport in this representation has proven

to be more tricky. The reason for this is the decoupling of spin-waves and vortices in this

Hamiltonian - precisely the same feature which makes static properties more tractable. The

Coulomb gas Hamiltonian is purely electrostatic, and has no well-defined dynamics. We

will see how to get over this issue later. As far as I know, there has not been any careful
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treatment of thermal transport in this model.

A systematic treatment of the dynamics of the Coulomb gas was done in an influential

paper by Ambegaokar, Halperin, Nelson, and Siggia (AHNS) [3]. We will now briefly review

the essential points of this paper, using a somewhat more transparent approach.

AHNS were mainly interested in the electrical signatures of a mobile plasma of vortices

in superfluid thin films. First, they considered the problem of driving the film substrate with

a DC current. By computing the magnus force on a vortex due to its motion relative to the

condensate and the drag force coming from the interactions of vortices with the underlying

substrate, they were lead to a phenomenological Langevin equation for the motion of a

vortex:

ṙi = Γnie(ri) + ηi, (5.43)

where ri are the coordinates of the vortices, e is the dual electric field, η a noise term coming

from the interactions with the bath, and Γ is an effective diffusion constant. They showed

that an externally applied DC electrical current is related to an external dual electric field

acting on the vortices in the direction perpendicular to the applied electrical current (the

supercurrent is given in terms of the local electric field - see Eq. 5.39 .

In addition to this, we have the Josephson relation, which connects a DC electric field

to a current of vortices perpendicular to the electric field:

E = φ0ẑ × jv, (5.44)

where jv is the vortex current density.

Taken together, the Josephson equation and the definition of the dual electric field state

that electric(vortex) currents are related to dual(electrical) voltages in the perpendicular

direction:






J

E






=







0 ρsε

φ0ε 0













j

e






(5.45)

where

ε =







0 −1

1 0






(5.46)



112

is the unit antisymmetric matrix in the xy plane and to avoid confusion, we have used upper

and lower case letters to refer to the electrical and dual quantities, respectively .

Armed with this insight, we can relate transport coefficients in the phase representation

considered above to those in the vortex model.

Just as we did with the XY model, we can write down linear response equations for the

vortex transport coefficients:







j

jQ






=







σv αv

Tαv κ̃v













e

−∇T






(5.47)

Of course, the heat current remains invariant under the duality transformation, since the

same quantity is expressed in terms of different variables (note also that in the 2D Coulomb

gas model, the temperature is not inverted with respect to the original Villain model - see

Appendix B.1). We will discuss the energy current shortly.

While it is interesting to consider all possible relationships between various transport

coefficients, we shall focus on the vortex representation of σ and αxy, which we have studied

above using the XY model. We shall again use the approximation that the Hall angle is

zero, which amounts to the condition that the only non-zero electrical transport coefficients

are σxx = σyy = σ and αxy = −αyx.

We consider a system in which, for simplicity, the temperature gradient is along the

x-direction. In the electrical language,

Jx = σEx (5.48)

and

Jy = σEy + αyx(−∇xT ) (5.49)

In the vortex representation, this translates to

ρsey = φ0σjy (5.50)

ρsex = φ0σjx − αxy(−∇xT ) (5.51)
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written in a more conventional way,

jx =
ρs

σφ0
ex +

αxy

φ0σ
(−∇xT ) (5.52)

jy =
ρs

σφ0
ey (5.53)

From this, we read off the transport coefficients:

σv =
ρs

σφ0
(5.54)

and

αv
xx =

αxy

φ0σ
(5.55)

Therefore, the Nernst signal, defined in Eq. 5.1 has a particularly simple form in the vortex

representation:

en = φ0α
v
xx (5.56)

It is important to stress here that the Nernst signal written in this language involves diagonal

parts of transport coefficients. In the following sections, we compute these conductivities

in Monte Carlo simulations of the 2D coulomb gas model.

Next we consider the problem of formulating the energy current in the vortex model.

Clearly, we cannot work with the Coulomb gas Hamiltonian written in terms of the loga-

rithmic interaction between vortices. Since the spin waves have been integrated out in this

model, energy moves instantaneously over large distances each time a vortex moves about.

We shall instead use the local formulation of the Coulomb gas involving electric fields which

are constrained to obey Gauss’ Law.

In addition, we need some dynamical rules that govern these electric fields. The analogy

between vortex dynamics and electrodynamics was also given in AHNS [3]. Motivated by

third sound (i.e. spin wave) experiments, AHNS considered the case where the local super-

fluid density (integrated across the film thickness) was a dynamical variable (local deviations

in film thickness) along with the phases. In this case, one arrives at the Hamiltonian version

of the XY model

H =
1

2C

∑

r

n2
r − J

∑

ij

cos(∆θ), (5.57)
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where ni is the local superfluid density, related to the local film thickness, and is conjugate

to the phase variables φ. AKNS were then able to motivate phenomenologically the analogy

with electrodynamics by viewing ni as a magnetic field in the direction perpendicular to

the film (a scalar in 2D), considered ∇θ× ẑ to be an electric field, while the vortices acted

as ordinary charges [3].

In the Hamiltonian XY model, spin waves and vortices are no longer decoupled. Using

this analogy with the Maxwell equations, it must follow that the energy current is simply the

Poynting vector. To make contact with the Coulomb gas, we ought to consider the limit in

which the speed of light is much larger than the characteristic diffusive vortex currents. We

will now describe the local model with energy currents which will be used for the numerical

simulations of the 2D Coulomb gas.

5.8 Model Hamiltonian, equilibrium and dynamics

As argued above, we will need to abandon the logarithmic electric potential of the 2D

Coulomb gas in favor of local electric fields that are constrained by Gauss’ law. Using

Gauss’ law, we write the partition function above in terms of the electric fields, namely

Z =

∫

DelDet

∏

r

δ(∆ · e − 2πn(r))e−βU (5.58)

where et and el are respectively, the transverse and longitudinal parts of the electric field,

and

U =
∑

i∈ links

e2i /(4π) (5.59)

The Villain decoupling of spin waves and vortices is easily seen as well in the expression

above. Writing e = el + et, letting

el = ∇φ (5.60)

and

et = ∇× a (5.61)
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(where a is an analytic vector function, and φ is a scalar field obeying the 2D Poisson

equation), we can immediately see that

∫

d2re2 =

∫

d2r
(

e2l + e2t

)

(5.62)

since the cross-term
∫

d2rel · et = 0, which can be shown using an integration by parts.

Written this way, the formulation is equivalent to a U(1) non-compact lattice gauge theory,

(the electric field link variables can take any real value consistent with Gauss’ law) and we

will use this representation in our numerical simulations.

We will now describe our method of sampling this partition function in Monte Carlo

simulations. We consider a 2D square lattice whose sites contain charges corresponding to

the superconductor vortices. The links of the lattice contain electric fields. Our Monte Carlo

consists of two basic and simple moves. In the first move, a bond is chosen at random on

the lattice, and a vortex/anti-vortex pair is placed on the link with some randomly chosen

moment (a Z2 choice for each bond). In order to satisfy Gauss’ law, we insert an electric

flux e = 2π on the link directed from the vortex to the antivortex. The move is accepted

or rejected based on the Metropolis criterion with the Hamiltonian

H =
1

4π

∑

i

e2i (5.63)

In the second move, a plaquette is chosen at random, and a random electric curl is

added to the plaquette. Similar simulations have been considered in a soft condensed

matter context[37]; the authors of this work have established that these moves alone are

sufficient to equilibrate the system and to yield the correct thermodynamic quantities. The

simulation proceeds by randomly interpolating between these two moves, and a single Monte

Carlo time step passes when each bond and plaquette has experienced a move. 106 time

steps are used for equilibration and 107 steps for computing averages.

We start with simulations done on a torus for which the total charge must always remain

at zero. We consider both the neutral plasma and the one-component plasma in which

there are more vortices than there are anti-vortices, due to an applied magnetic field. In
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the neutral case, the system is initialized to a vacuum containing neither fields nor charges,

and the moves above are attempted. In the non-neutral case, we place a static background

charge on each lattice site and work with a fixed net vorticity n+−n− given in terms of the

magnetic induction (and must cancel the background density to maintain net neutrality)

n+ − n− = B/φ0. (5.64)

The simulations of the one-component plasma, are initialized with a fixed number of vortices,

a neutralizing background is added to the lattice, and the electric fields are initialized in a

way such that Gauss’ law is satisfied on each site. The simulation then proceeds identically

to the case of the neutral plasma.

5.8.1 Helicity Modulus and the KT transition

We first consider the neutral case and measure the Kosterlitz-Thouless transition tempera-

ture. Since this has not been done using this approach in the past, we describe our method.

A rough estimate of the KT transition temperature is given as usual from free energy

considerations. We use the superfluid hamiltonian (set h̄ = m = 1), and consider the

free energy cost of introducing an isolated vortex (the energy associated with creating a

vortex in 2D diverges logarithmically with system size, but the configurational entropy

associated with placing the vortex somewhere on the lattice also diverges logarithmically):

F = (πρs − 2T ) log(R), where R is the system size. Thus for T > πρs/2, vortex proliferation

is favored by the entropy term. This is a quick (yet reasonably accurate) estimate of the

KT transition temperature. Comparing the electric field hamiltonian to the superfluid

hamiltonian, we see that in the electric field language, ρs = 1/2π, and therefore, we expect

to see the transition to occur near T = 0.25.

An important quantity in the study of the KT transition is the helicity modulus Υ,

(which involves ρR
s , the renormalized spin wave stiffness), and which describes the rigidity

of the XY model (or the equivalent superfluid film) to an externally imposed uniform twist

in the system [18]. We have used the helicity modulus also for the XY model, but now, we

reinterpret its physical meaning in terms of vortex parameters.
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More specifically, considering for the moment the superfluid language, the helicity mod-

ulus is defined as the difference in free energy of a system with imposed twist (i.e. a uniform

superfluid velocity) and one without the twist:

F(v) −F(0) =
1

2
ρR

s v
2 (5.65)

As vortices begin to proliferate, the system loses its rigidity to externally applied twists and

the helicity modulus falls to zero; i.e. vortices reduce the effective superfluid stiffness. For

the Villain model, the expression for the helicity modulus is

Υ ≡ ρR
s

ρs
= 1 − lim

q→0

ρs

T

〈m(q)m(−q)〉
q2

(5.66)

Where the second term involves the vortex density correlation function. As we have done

with the XY model, we look for the universal jump in the helicity modulus [44] from the

value zero just above the transition temperature to the value (2/π)Tc just below it. This is

the primary diagnostic we use to detect the KT transition.

In the language of the 2D Coulomb gas, the helicity modulus is the zero wave-vector

component of the inverse capacitance (or more precisely the inverse permittivity), which

represents the system’s rigidity against externally imposed electric fields. At low tempera-

tures, the system behaves either as a vacuum or as an insulator containing tightly bound

+/- pairs and the system has a large inverse capacitance. As the vortices become unbound

and mobile, they screen externally applied voltage, and the system behaves as a metal with

zero inverse capacitance. The expression for the inverse permittivity is exactly the one given

above in eq. 16.

To compute the helicity modulus above, one needs to measure the vortex density, com-

pute its Fourier transform, and extrapolate to q = 0, which is hardly accurate on smaller

lattices. However, it is possible to measure this quantity entirely in real-space, as we now

discuss.

The key quantity that renormalizes the inverse permittivity are zero wave vector voltage

fluctuations which, on a torus, represent “winding number” excitations in which a +/- pair
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created next to one another, migrate around the torus, and and annihilate, leaving behind

a voltage V = 2π.

These winding number excitations are equivalent to long wavelength polarization modes

which are most effective in screening externally applied voltage and gives the system its

metallic character. The second term in eq. 16 can be recast in terms of the total wind-

ing number after expanding it in a multipole expansion (the leading term is the dipolar

contribution).

ε−1(0) = 1 −
〈E2

tot〉
4πTL2

(5.67)

where

Ea
tot =

∑

r
Ea
r (5.68)

Figure 5.9 shows the measured values of the helicity modulus ε−1 for various system sizes.
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Figure 5.9: The helicity modulus, which marks the onset of the KT transition, is equivalent
to the long wavelength part of the inverse dielectric tensor in the Coulomb gas representation
of the XY model. Shown here are the helicity moduli measured using eq. 17 for four different
sample sizes on a torus (N by N square lattices).

The drop in the helicity modulus at a temperature near 0.25 is consistent with the crude

prediction made earlier. The curves clearly show the universal jump phenomenon and

unmistakably identifies the KT transition.

To analyze further the static properties of the KT transition using the local MC algo-

rithm, we have measured the specific heat. According to KT theory, there is an essential
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singularity in the specific heat at the critical temperature which is followed by a large, non-

universal peak above Tc, which occurs due to the entropy liberated by the mobile charges

[9]. While the essential singularity is weak and cannot be seen in numerical simulations of

finite size systems, we have observed the peak in the specific heat above Tc.

5.8.2 Cluster updates and the vortex depletion layer

As it stands, the simulations described above suffer from two difficulties. First, the MC

move which involves creating a vortex-antivortex pair in conjunction with an electric flux

update along a single link results in enormous string tensions. This dramatically suppresses

vortex mobility and causes artificial pinning. This is especially a problem at temperatures

near and below TKT , which is also the regime of interest. Due to this artificial pinning, the

dynamics are severely affected.

A second problem with this approach is that the vortices were never allowed to leave or

enter the system. In retrospect, it seems quite clear that the magnetization described in the

previous sections must be caused by an equilibrium vortex depletion near the boundary of

the superconductor. The intuitive picture is as follows. First, there is the externally applied

magnetic field, which, in the dual language translates to the gauge-invariant static back-

ground charge density. Second, there is a net repulsion between two vortices of like charge.

As the magnetic flux density increases, the background charge more strongly attracts its

mobile vortices, and the system approaches the state of net neutrality (vortex density +

background density = 0) i.e. 0 magnetization. If the applied fields are low, however, there

is a slight net vorticity, these charges feel each other (at low temperatures) via the logarith-

mic interaction, but they don’t feel strongly attracted to the background. Thus, by leaving,

the vortices can dramatically lower the free energy of the system. At higher temperatures,

screening kills off this effect.

By looking into the XY model with Langevin dynamics, we have gained considerable

insight into the problem. In particular, the compactness of the phases solve both problems

above with ease - it is effortless for vortices (defined modulo 2π) to move about and to
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exit/enter the system with open boundaries.

To obtain a similar situation in the dual system, we have implemented a more non-local

cluster update instead of the single link update described above. We found that cluster

updates on a 3x4 patch of the lattice enhance mobility down to T = 0.5TKT , even at the

lowest vortex densities.

The cluster updates dramatically suppresses string tension and enhances mobility. The

MC move proceeds as follows: vortex-antivortex pairs are still placed at nearest neighbor

sites of a lattice (we call the bond connecting these two sites the “principal bond” (see

Fig. 5.8.2). First, we randomly pick a principal bond along which the charges are to be

potentially placed. Next, we determine the appropriate 3 × 4 cluster associated with this

bond, and consider placing a set of electric fields on this cluster which satisfy Gauss’ law

and have zero curl on each plaquette (as it turns out, this is a unique configuration which

minimizes the energy). The move is accepted by the standard Metropolis criterion, and if

accepted, the entire cluster is updated.

Next consider a system with finite boundaries. See Figure 5.10. We shall define the

boundary between the superconductor and the vacuum to live along a bond: on the super-

conducting side, the bond terminates on a site which obeys Gauss’ law, and on the opposite

side, the bond ends in a site where charge is not defined, and Gauss’ law makes no sense

(see Fig. 5.10). To get the physics of charges leaving and entering the system, we again

make use of cluster moves as described above. The only new feature now, is that if some

part of the cluster happens to lie outside the system, the electric fields which would have

been placed there are not taken into account in the Metropolis weighting, and if the move

is accepted, only internal sites are updated. Clearly, such moves are enhanced near the

boundary (in the physical system this is also true due to the reduction of the superfluid

density along the boundary). If a charge is created outside the system, it is annihilated,

and Gauss’ law is neglected on the external sites (see Fig. 5.11).

To check whether the cluster updates are an improvement as far as pinning goes, over

the local updates, we consider the (dual) voltage auto-correlation function in a system with
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Figure 5.10: The geometry which permits vortices to enter and exit the system. The
X’s mark sites which are external to the system but are connected via a bond to the
superconductor. If a charge happens to be generated on these sites, it is immediately
annihilated.
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Figure 5.11: The cluster move near a boundary. Here, the dotted lines represent parts of the
cluster which are in the vacuum, and these links are neither considered in the Metropolis
function, nor are they updated if the move is accepted. in this case, if this move is accepted,
the + charge will be destroyed before proceeding, leaving behind the - charge inside the
system. This is the charge depletion layer and is the dual perspective of diamagnetism.
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periodic b.c.

〈Vx(0)Vx(t)〉 = A exp (−t/τ) (5.69)

In particular, we look at the autocorrelation time τ , which tells us how long (in units of

MC time) it takes for two configurations to be completely uncorrelated. This is directly

related to the mobility of vortices - the larger the autocorrelation time, the more sluggish

the vortices move (if at all).

It is clear that string tension plays less important a role as the density of vortices

increase: imagine pulling two vortices apart, and if a third one intercepts the string, the

tension is immediately relieved.

We have studied the autocorrelation time at the lowest vortex densities (magnetic fields)

as a function of temperature. We have found that by going from the link to the cluster,

we have gained at least a factor of 2 in temperature. At such low magnetic fields, we can

reasonably go down to as low as T = 0.6TKT using this method without any error. Below

this, however, we again fall into trouble. This trouble quickly disappears when we increase

the magnetic flux density.

Having set up this numerical apparatus, we now make use of it to determine the Mag-

netization of the superconductor. We consider the cylindrical geometry of Fig. 5.10. Deep

inside the cylinder, beyond say a distanceX0 from the edge, the system is essentially neutral:

the background charge density cancels the vortex density on average. The supercurrents

also vanish deep inside the system at equilibrium. Recall from above that the magnetization

can be obtained by looking at the edge supercurrents (take x = 0 to be the boundary):

M =

∫ X0

0
dx〈Jy(x, y)〉 = ρs

∫ X0

0
dxex (5.70)

By Gauss’ law,

M = 2πρs

∫ X0

0
dxx (〈n(x) − b) , (5.71)

which means that the magnetization is really just the surface polarization density in the

charge depletion region near the edge of the cylinder. This quantity is measured in equilib-

rium simulations and indeed, we see obtain the magnetization which resembles the results
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obtained from the frustrated XY model. Figure 5.12 shows the magnetization for a 20× 20

cylinder for temperatures T = 0.9, 1.0,1.25,1.5,1.75, 2.0 in units of TKT . We see the separa-

trix near the transition temperature below which the magnetization diverges logarithmically

at low fields, and above which it vanishes in that limit. Had we not permitted vortices
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Figure 5.12: The magnetization determined by measuring the equilibrium surface polar-
ization in the vortex model. We have permitted charges to escape, and have made use of
cluster updates. Temperatures shown correspond to T = 0.9, 1.0, 1.25, 1.5, 1.75, 2.0 in units
of TKT . The measurements have been made on a 20 × 20 cylinder. Any discrepancies with
the results from the XY model considered earlier are finite size effects.

to enter and exit the system, we would not have been successful in computing the magne-

tization. Having gained some confidence from the statics, we next turn to the problem of

computing dynamics using this model.

5.8.3 Dynamics: preliminary results

The Monte Carlo metropolis dynamics will now be employed to compute αxy. First, we

define our currents. In this model, we have three types of currents: supercurrents, vortex

currents, and the energy current. The supercurrents are defined in terms of the dual electric

fields, as we have discussed. It is also straightforward to define a vortex current in our

problem. Consider the MC move in which a vortex-antivortex pair is created at two nearest

neighbor sites. This move is equivalent to one in which a single vortex moves along the link.

Thus, each time we create a vortex anti-vortex pair, we generate a vortex current pulse in
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the system. We must divide by the value of the time step (i.e. the conversion from MC

time to real time) in order to have the proper dimensions.

To define the energy current, we recall our earlier discussion on the analogy with Maxwell

equations. When a vortex moves, the spin waves will transmit its energy across the system,

precisely the way the photon fields transmits energy and momentum along large distances

of a charge in motion. With this in mind, we define a local heat bath, associated with

each plaquette center. In Fig. 5.13, we label the 4 electric fields e1 · · · e4, and change the

circulation by an amount δ. Using the expression for the local energy density ui = 1/4πe2i ,

we see that the energy change associated with each link are δui = eiδe/2π + O(δe2), for

i = 1, 2, and δui = −eiδe/2π + O(δe2), for i = 3, 4. When this plaquette is updated,

e4     X

e

e

+

+

_

δ

δ

δ

1

2

3

e e

e

_ δe

e

Figure 5.13: The local energy current used in our simulations. The arrows depict the flow
of energy from the center of the plaquette (local heat bath) to the bonds. We have used a
convention for the flows in which each of the electric fields are positive.

a pulse of energy δeei/2π travels from the local bath to bond i. The signs of the energy

current are shown in Fig. 5.13. The O(δe2) terms do not contribute to the current - they

each travel away from the bath to the bonds and their sum cancels. If we did not associate

the bath with the plaquette centers, these terms would not cancel - the statement of linear

response, then, is to associate the baths with the plaquette centers. As we did for the vortex

currents, we divide the energy pulses by the value of the time step to define the current

properly. In both cases, the choice of the time step is made such that there is agreement in
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the transport coefficients between the Kubo formulae and externally applied gradients in

the linear response regime.

A more careful look at the expression for the energy current shows that it is closely

related to the energy currents in the Langevin equation. The plaquette is the precise dual

analog of updating an angle in the XY model: upon identifying δe/τ with θ̇ (τ is the value

of the time step), and using the definition of ei in terms of the gauge invariant phase angle

differences, we see that this form of the energy current is the dual version of the expression

used in the Langevin simulations of the XY model above. Using the definition of the currents

above, we have verified the Onsager relations both for the supercurrents and for the vortex

currents. We have also verified that the Kubo formulae and the direct external applied field

methods produce the same transport coefficients to within statistical error.

There is a subtlety associated with the Onsager relations here that is worth mentioning.

With this model, we can pass both steady state (dual) voltages and currents, and the results

depend on which external perturbation is used. First we consider imposing a steady state

vortex current in the system. Since Gauss’ Law ∆ · e(r) = 2πn(r) is strictly conserved in

our simulations, we find by differentiating both sides with respect to the time step τ , and

by using the equation of continuity for the vortex density (in the bulk of the system) that

j =
δe

δτ
(5.72)

Thus, to impose a steady-state vortex current, we increase the value of every electric field e

by an amount j at each time step. Care must be made to ensure linear response. By doing

this, we are actually applying a DC electric field E in the system. When we measure the

steady-state energy current, we obtain αxy.

We can also apply an external dual electric field eext to the system. We do this in

the simulations by adding a term δU = eext · P to the moves which create a vortex anti-

vortex pair, where P is the dipole moment associated with the created pair. By doing this

we drive the vortices in the direction of eext. When we measure the steady state energy

current with this probe, we determine the Nernst signal, not αxy. This can be seen from

the phenomenological transport relations for the dual vortex currents. Notice here, that
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the measurement of αxy is independent of the choice of τ , as we found in the XY model:

both the external probe, namely the electric field Eext, and the energy current are inversely

proportional to τ , and αxy, their ratio, is independent of it. However, if we applied an

external dual electric field eext, which is independent of τ , we measure the Nernst signal

eN , which is inversely proportional to τ (recall that the electrical conductivity σ ∝ τ).

Therefore, there are two sets of Onsager relations:

α̃xy = Tαxy, (5.73)

and

α̃v = Tαv, (5.74)

where αv = αv
xx = eN/φ0. The latter set of relations represent the correspondence between

the Nernst and Ettinghausen effects.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

α x
y 

(e
*  k

B
/h

)

flux per plaquette

Figure 5.14: Measurements of αxy made on a 20 × 20 cylinder at T = 0.9, 1.0 (in units of
TKT ). We have applied an electric field E along the axis of the cylinder (or equivalently, we
have driven a vortex current j in the azimuthal direction), and measured the heat current
in the azimuthal direction. Results resemble those from the XY model simulations, except
for finite size deviations, which are substantial.

To illustrate this, we have done simulations on small system sizes where we have mea-

sured the heat current in response to applied electric fields Eext (Fig. 5.14), and dual electric

fields eext (Fig. 5.15). Both simulations are done at the same temperatures (T = 0.9, 1.0, in

units of TKT . Indeed, we find that whereas the former experiment gives us αxy, the latter
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Figure 5.15: Using the same geometry as in Fig. , we apply an external dual electric
field eext, along the azimuthal direction which drives the vortices along this direction. We
measure the heat current in the azimuthal direction in response to this perturbation, which
yields αv , a quantity that is proportional to the Nernst signal. The units are arbitrary,
depending on the choice of time step. The temperatures are T = 0.9, 1.0 (units of TKT ).

generates eN . We have thus established all the necessary features to determine αxy more

systematically. This shall be the task for the immediate future.

5.9 Future Work

Having established the fact that the frustrated XY model and the dual Coulomb gas sys-

tem (with the appropriate background charge density) can be used to explain the large

thermoelectric and diamagnetic response in an extreme type II superconductor, we now

briefly mention work currently underway. First, with the 2D coulomb gas model, we shall

generate results for αxy using larger system sizes to compare with results from the TDGL

simulations of the frustrated XY model. Having studied this correspondence, we plan on

studying the effect of a vortex core energy, and the effects of internal vortex states (which

is implemented by choosing a temperature dependent core energy) on αxy. One of the

important issues here that remains to be explored is the connection between αxy and the

entropy per vortex. With our simulations, we will be able to answer these questions.



Appendix A

Appendix to Chapter 3

A.1 Derivation of spinor Hamiltonians of Section 3.5: the

standard approach

Here, we present a derivation of the results of Section 3.5 using a more standard approach,

one which perhaps might be more familiar to the reader.

Analogous to the “nearly-free electron” approach to electronic band structures, a weak

periodic perturbation in the dielectric properties of a medium is considered in the nearly-

free photon approach, the Maxwell normal mode problem is solved for bloch state solutions

in this medium, and corrections to the zeroth order, free photon dispersion relations are

obtained in special regions of interest in the brillioun zone. Our attention shall be restricted

to a case in which the weak periodic “potential” forms a two dimensional hexagonal lattice.

In what follows, the lattice spacing shall be set to unity.

Fig. 3.15 depicts the hexagonal Brillouin zone. In the uniform case in which the constit

utive relations are ε−1
ab = δabε

−1
0 and µ−1

a b = δabµ
−1
0 , there is a 3-fold degeneracy at the zone

corners.

We shall study the dispersion in the vicinity of these points when a weak periodic

modulation is added to to the zeroth order constitutive relations above:

128
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ε−1
ab = ε−1

0 δab +
∑

Gi

ε−1
ab (Gi) (A.1)

The sum in the second term above is over the three reciprocal lattice vectors shown in

Fig. 3.15. We will need to consider off-diagonal anisotropy in the permittivity tensor when

we introduce the Faraday coupling to break T (this will be done in the follwing subsection).

We will not need to modify the permeability.

We solve the Maxwell normal-mode problem, written in the very standard “Schrodinger”

form,

∇ ×
(

ε−1(r)∇ × H(r)
)

= ω2H(r), (A.2)

for Bloch state normal modes.

We restric attention to 2D, and make use of the fact that in this case, the full 6 × 6

Maxwell eigenproblem decouples into two 3 × 3 (“TE” and “TM”) problems. We focus on

the TE modes, for which the set (Ex, Ey,Hz) are the degrees of freedom. We will consider

the dispersion in the vicinity of the zone corners first for the case in which both T and I

are present. Then, we will consider the effect of breaking T.

When time-reversal symmetry is present, the eigenproblem is (focusing on in plane

propagation)

ε−1
0

(

|k|2 − ω2

c20

)

Hz(k) +
∑

G

ε−1

G
k · (k−G)Hz(k −G) = 0 (A.3)

Focusing on the vicinity of the zone corners, and defining δki = k − Ki, we consider

the degenerate perturbation theory problem where the three plane wave modes near the

zone corners mix (i.e. a “nearly-free photon” approximation). Setting each Fourier modes

of the inverse permittivity equal to one another, ε−1
Gi

= ε−1
1 (which is a real quantity, since

time-reversal symmetry is not broken at this point), we obtain a 3 by 3 real- symmetric

eigenvalue problem, which in the basis x = (Hz(δk1),Hz(δk2),Hz(δk3)), is an equation
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Ax = ω2x, where

A =















k2
1 λk1 · k2 λk1 · k3

λk2 · k1 k2
2 λk2 · k3

λk3 · k1 λk3 · k2 k2
3















, (A.4)

where λ = ε0ε
−1
1 .

The solutions to this problem are easily obtained. Exactly at the zone corners, there

is a non-degenerate state, corresponding to the uniform superposition of the three plane

waves, having eigenfrequency ω0 = c0|K| (1 − λ/2). In addition, there are two degenerate

states with frequency ωD = c0|K| (1 + λ/4). The states belonging to these eigenfrequencies

correspond precisely to those in Eq. 3.82.

The nearby (δk 6= 0) are also readily obtained. One finds that the non-degenerate mode

is unaffected to leading order (it disperses quadratically), whereas the doublet states have

linear dispersion

ω± = ωD ± vD · δk, (A.5)

where vD = c0/2 +O(λ) is the Dirac velocity. This is our Dirac point.

Next, we break time-reversal symmetry by introducing imaginary off-diagonal elements

(Faraday coupling) in the inverse permittivity tensor.

We shall keep the diagonal elements of the inverse permittivity the same as before, and

we shall consider only purely imaginary off-diagonal elements. Namely, let ε ′
G

correspond

to the Fourier component of the Faraday coupling:

ε−1
xy (r) =

(

ε−1
yx (r)

)∗
= i

∑

G

ε′Ge
iG·r (A.6)

Again, we set this Fourier component to a constant ε−1
2 . Repeating the same degenerate

perturbation theory analysis above, we can show, after a little bit of algebra, that the effect

of the Faraday coupling is to add an imaginary antisymmetric matrix B, where

B = iε−1
2















0 k1 × k2 k1 × k3

k2 × k1 0 k2 × k3

k3 × k1 k3 × k2 0















(A.7)
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Again, this term does not affect the non-degenerate mode which we ignore from this point

onwards. Exactly at the zone corners, the extra term above opens up the gap at the Dirac

point. The spectrum is

ω = ωD ± vD

(

|δk|2 + κ2
)1/2

, (A.8)

with

κ =
3

2
ε0ε

−1
2 |K| (A.9)

Putting it all together, we can derive the spinorial form of the Hamiltonian near the

Dirac points. We use the states in Eq. 3.82. We write them as

u(r) = (1, η∗, η) (A.10)

v(r) = (1, η, η∗) , (A.11)

where η = exp(2πi/3). These states refer to the scalar Hz fields, and the notation . We

will not need the electric fields here. The effective Hamiltonian that governs the mixing of

the states at finte δk will be obtained from

Heff (δk) =







u† (A+B)u u† (A+B) v

v† (A+B)u v† (A+B) v






(A.12)

The strategy is to work out the A,B matrices, and the states u and v to leading order in

δk, using the definition

Heff







u

v






= (ω(δk) − ωD)







u

v






. (A.13)

A detailed calculation shows that indeed,

Heff (δk) = vD (δkxσ
x + δkyσ

y) + κσz, (A.14)

which is the main result of this analysis.
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Appendix to Chapter 5

B.1 Mapping the frustrated XY model onto a one-component

Coulomb plasma

In this appendix, we map the XY model in the Villan representation onto the one component

plasma with a static background charge density.

We start from the 2D XY model in an external magnetic field (“frustrated XY model”):

H = −J
∑

<ij>

cos (θj − θi −Aij) , (B.1)

where Aij =
∫ rj

ri
A · dr, and ∇× A = 2πb. “Villainize” the action to get

ZV =

∫

Dθ
∏

<ij>

∞
∑

lij=−∞

e−lij
2/2βJeilij(θj−θi−Aij). (B.2)

Tracing over the angles, we get the constraint that the link variables lij must be divergence-

free, which in turn lets us express them as a curl of a scalar “height” field

lx = ∇yh

ly = −∇xh,

which enables us to map the Villain model on to the “solid on solid” model

ZS.O.S =
∏

r

∞
∑

h(r)=−∞

e
− 1

2βJ
|∇h|2

e−i( ~A×∇h)·ẑ (B.3)
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Here, the scalar field h is defined on the dual lattice sites. Next, apply the Poisson summa-

tion formula
∞
∑

n=−∞

Sn =
∞
∑

m=−∞

∫ ∞

−∞
dxS(x)e−2πimx (B.4)

to map the “height fields” in S.O.S to the spin wave field of 2D coulomb gas (the integer

fields m above then are interpreted as integer vortex variables):

Z =
∏

r

∑

m(r)

∫ ∞

−∞
dφ(r)e−

1

2βJ
|∇φ|2e−i( ~A×∇φ)·ẑe−2πim(r)φ(r) (B.5)

Before integrating out the spin waves, we rearrange the term involving the gauge fields A

as follows. Imagine taking a continuum limit of the lattice partition function above. The

products over sites becomes a functional integral of the Action

∫

d2r

(

− 1

2βJ
~∇φ · ~∇φ− iẑ

(

~A× ~∇φ
)

− 2πim(r)φ(r)

)

(B.6)

Written this way, we may integrate the second (and first) term by parts and obtain the

following gauge-invariant action involving b:

∫

d2r

(

− 1

2βJ
φ(r)∇2φ(r) + 2πiφ(r) (b−m(r))

)

(B.7)

Finally, after reverting back to the lattice and doing the gaussian integral over the spin wave

fields φ(x), we arrive at the coulomb gas representation of the frustrated 2D XY model:

ZCG = ZSW

∑

m

∏

r,r′

e−2π2βJ(m(r)−b)V (r,r′)(m(r′)−b) (B.8)

Thus, the magnetic flux per plaquette in the starting XY model translates to a static

background charge density.
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