The Super Mumford Form in the Presence of Ramond
and Neveu-Schwarz Punctures

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Daniel Joseph Diroff

IN PARTTAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Alexander A. Voronov

July, 2019



(© Daniel Joseph Diroff 2019
ALL RIGHTS RESERVED



Acknowledgements

I’d like to thank the organizers of the 2015 Supermoduli workshop at the Simons Center
for Geometry and Physics and those who put in the effort to put those excellent lectures
online. I am grateful to the speakers of the workshop R. Donagi, P. Deligne, E. Witten,
E. D’'Hoker and D. H. Phong whose efforts illuminated many interesting concepts. I'd
especially like to thank E. Witten for his insight and several valuable comments. Most
of all, I’d like to thank A. Voronov for introducing me to the subject, offering guidance

and for the frequent helpful discussions.



Abstract

We generalize the result of [I] to give an expression for the super Mumford form
1 on the moduli spaces of super Riemann surfaces with Ramond and Neveu-Schwarz
punctures. In the Ramond case we take the number of punctures to be large compared
to the genus. We consider for the case of Neveu-Schwarz punctures the super Mumford
form over the component of the moduli space corresponding to an odd spin structure.
The super Mumford form g can be used to create a measure whose integral computes
scattering amplitudes of superstring theory. We express p in terms of local bases of

H°(X,w’) for w the Berezinian line bundle of a family of super Riemann surfaces.
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Chapter 1

Introduction

Due to relatively recent computations done by E. D’'Hoker and D. H. Phong [2] and
new ideas pushed forward by E. Witten [3], the role of supergeometry in superstring
perturbation theory has been revived from what it once was in the 1980s. However,
the task of computing superstring scattering amplitudes have proved difficult due to
many complications boiling down to the fact that the underlying supergeometry was
not completely understood.

Scattering amplitudes in superstring theory are expressed as Berezin integrals over
various moduli spaces of super Riemann surfaces. One might hope that such integrals
would be computable via expressing supermoduli space as a fiber bundle over a bosonic
reduced space, allowing one to integrate in the odd directions fiberwise. In fact, this
is exactly the technique utilized in the D’Hoker and Phong results. However, this
assumption was only valid for low genus, as it was shown in a recent paper by R.
Donagi and E. Witten [4] that in general supermoduli space is not a fiber bundle over
its reduced space. This notion is significant in supergeometry and is known as splitness.

Essentially, one says a supermanifold is split if it can be expressed as such a fiber
bundle over a bosonic base. It is known that every C'°° supermanifold is indeed split
[5]. Thus in principal the theory of smooth supermanifolds is contained in the the-
ory of exterior algebra vector bundles over a smooth manifold. However, holomorphic
methods have proved to be very useful in studying super Riemann surfaces and their
moduli as holomorphic or complex supermanifolds need not be split. Thus holomor-

phic supergeometry is central in understanding computations of superstring scattering



amplitudes.

In bosonic string theory, the g loop contribution to the partition function can be

Z :/ dmg,
M,

where M, is the usual moduli stack of Riemann surfaces of genus g and dm, is the

written as the integral

so-called Polyakov measure. Suppose we have a universal family C, over M, and let
m: Cqy — My denote the projection.
In a famous theorem due to Belavin and Knizhnik, the Polyakov measure was shown

to be the modulus squared of a trivializing section of a holomorphic line bundle on M,,
dmg = pig N g

The form g4 is called a Mumford form and it is a section exhibiting the Mumford

isomorphism

(det m.92)" ® (det R'mQ) ™ 2 det m.0% ® (det R'm.0%) ™,

where (2 is the sheaf of relative differentials on C,. Here and henceforth, powers of vector
bundles, sheaves and vector spaces stand for tensor powers.

In the super case, the object one integrates over in computations of superstring
scattering amplitudes is slightly more complicated than simply 9y, see [6]. Nevertheless

there still is a relevant canonical super Mumford isomorphism,
(Ber W*w)5 ® (Ber Rlﬂ*w)_5 =~ Ber muw® ® (Ber lew?’)_

for w the relative Berezinian sheaf of a family of super Riemann surfaces of genus g.
The trivializing section that exhibits the above isomorphism is called the super Mumford
form. Such a form is useful in the super case in very much the same way as that of the

bosonic Mumford form, as sections of Ber T’

are super volume forms on 9M,. In a
paper by A. Voronov [I], an explicit formula of the super Mumford form was computed

over the odd-spin component of 9.
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In this paper we expand on those ideas and produce explicit formulas for the anal-
ogous super Mumford forms over the moduli spaces M., and M., of genus g > 2
super Riemann surfaces with Ramond or Neveu-Schwarz punctures. In both cases we
work under some assumptions regarding the local freeness of the sheaves Rim,w’. The
specifics are given at the end of Section |4} In the Ramond case we furthermore impose
the condition that the number of Ramond punctures ngi be strictly greater than 6g — 6.

We then discuss how these formulae give rise to a physically relevant measure. By
explicit formulas, we mean those written in terms of chosen sections of natural sheaves
defined on the moduli spaces.

The main results (Theorem and Corollary are found in Chapters|[5|and 6]
where the explicit formulas of the relevant super Mumford forms are presented. A review
of the basic theories of super mathematics are presented in Chapters [2| and |3] Chapter
is devoted to presenting the neccessary theory of super Riemann surfaces needed for
the main results of the paper. Appendices appear after in Chapter [A] containing a few
technical lemmas used in the main arguments as well as a general proof of the super
Mumford isomorphism. This work has been published and will appear in the Journal

of Geometry and Physics [7].



Chapter 2

Superalgebra

2.1 Super Linear Algebra

We begin by defining the basic algebraic objects one works with in super geometry. For
the remainder of the section we let k be a field of characteristic not equal to 2. We

closely follow the Chapter 1 of [g].

2.1.1 Super Vector Spaces

A super k-vector space V is a 7 /27 = Zs graded vector space over k,
V=WeaeWl.

Elements v € V; are called homogeneous. If v € Vjy then it is called even and if v € V}
it is called odd. For any homogeneous v we denote by |v| its degree, also called its
parity. Frequently we will use the notation v = vg + v1 to denote the decomposition of
an arbitrary element v € V into its even and odd parts.

A map between two super vector spaces T : V — W is a linear map that preserves
the grading, T'(Vp) € Wy and T'(V1) € Wi. We can then see that super vector spaces

over k form an abelian category. We define the dimension dimV to be the pair of



integers
dimV = dim V| dim V}

and the superdimension sdimV by the single integer
sdimV = dim Vj — dim V.

We have a parity reversing functor 11 taking a supervector space V to IIV defined
by
(IV)o=VW, [V)1=W.

Super vector spaces admit tensor products defined in the obvious way
(VW)= (Vo @ Wy @ (V1 & W)

(VeoW) =V W) e (Vo W).

Important in super algebra is the sign rule which is a specific choice of commutivity

isomorphism different from the classical one
Cy,Ww VoW WV

vw— (—1)PMy @ wv.

As is common in the subject, when giving definitions one frequently works with
homogeneous elements and it is understood to extend by linearity.

We denote by Hom(V, W) the set of all linear maps T': V' — W that preserve the
grading. Hom(V, W) is best understood as a usual vector space, or a super vector space
with trivial odd part. The category of super vector spaces admits an internal hom,

denoted Hom(V, W) defined by simply considering all k-linear maps graded via
Hom(V, W)y = Hom(V, W)

Hom(V, W); = Hom(V,IIW) = Hom(IIV, W).

In other words even elements of Hom(V, W) (also called even maps) are linear maps
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that preserve the Zg-grading, while odd elements (called odd maps) reverse the grading.
The dual V* of a super vector space V is defined then by V* := Hom(V, k).

A linear map T : V — W after choosing homogeneous bases for V' and W, corre-

T T
7~ [foo don
Tio Tn

The decomposition of T into its even and odd parts T' = Ty + 171 then corresponds to

Too To1\  (Too O n 0 Tn
Tio Tn 0 Tn Tip O

Example 2.1.1. k™"

sponds to a block matrix

The most basic example of a super vector space is simply

i = ék = <é Hk:> :

We caution that the notation £™™ is used in two distinct ways in this context and one

must take care to avoid confusion. In what follows the use will be clear from context.

2.2 Superalgebras and Modules over Them

A superalgebra A is a super vector space together with a super vector space morphism
A® A — A called the product. For our purposes we shall always assume that the
superalgebras we consider are associative and possess a unit. We say that A is super
commutative (or simply commutative) if the product morphism commutes with the

commutivity isomorphism c4 4. Specifically this is the requirement
ab = (=1)ll¥pg (2.1)

for homogeneous a, b.
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The tensor product A® B of super superalgebras is again a superalgebra with product
(a@b)(d @) = (=1)1"IPlag’ @ bb'.

This is an example of the general rule of thumb in super mathematics that when two
quantities are swapped a power of —1 to the product of their parities appears. This
general philosophy can help one in keeping signs straight later on.
In any superalgebra A we have the supercommutator (or simply commutator/bracket)
]
[a,b] := ab — (—1)“I"pa

so that A is supercommutative if and only if the supercommutator is trivial. The anti-

supercommutator (or anti-commutator/anti-bracket) is
{a,b} := ab + (—1)lalllpq,

We denote by [A, A] the sub-superalgebra of A generated by all expressions of the form
[a,a] and similarly for {A, A}.

Suppose now V' is a super vector space. Let T(V') denote the tensor algebra of V,
T(V) = @&,(V®") with the usual algebra structure given by concatenation of tensors,

then define the symmetric S(V') and exterior \(V') algebras of V' as follows
S(V):=T(V)/(v@w— (-1 @)

AV):=T(V)/(vew+ (-1)" 1w v)

where the denominators in the above quotients are the ideals generated by all expressions
of those forms for v,w € V. Notice that because of the sign rule we get the peculiar
formula S(k°") = I A (k™°), or in more generality, S(ITV) = ITA(V).

The algebras T'(V), S(V) and A(V) are all naturally Z-graded and hence can also
be thought of as superalgebras. Sometimes the notation 7°(V) = T'(V) is used to

emphasise the grading.
Example 2.2.1. The Sheaf of Differential Forms €Y,

On a manifold M (real or complex) one can consider the sheaf of differential forms.
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This is a sheaf of Z-graded algebras that are graded commutative. Reduction modulo

two of the grading allows one to view s as a sheaf of supercommutative algebras.
Example 2.2.2. The Polynomial Superalgebra A = k[z1,...,2m | &1, -, En].

The superalgebra k[x1,...,zm | &1, ..., &n] is the free superalgebra generated by the

even quantities z; and odd quantities &. Concretely every element f € A can be written
f = Zf](xlv"‘ 7xm)§l
I

where I C {1,...,n} is a multi-index and ¢/ = ¢&;, ... &, if I = {iy < - <i}. In fact
a more ”coordinate” free viewpoint would be to consider S(V"™I") where V™™ is any
m|n dimensional super vector space. After choosing a basis of V™" one can construct

an isomorphism S(V™") 22 A. This example will be ubiquitous is what follows.

2.2.1 Modules over Supercommutative Algebras

Let A be a superalgebra. M is a supermodule over A if it is a module in the usual
sense over A, is Zo-graded M = My ® M; and if the module structure respects parity
in the sense that |am| = |a||m| for all a € A,m € M homogeneous. We will typically
refer to M as simply a module over A and omit the phrase ”"super”. All of the usual
notions/operations of modules have super analogues and one can write them down
explicitly if they follow the philosophy of the sign rule. For instance the tensor product
M ® N of two modules over A makes sense as a supermodule with Z,-grading identical
to that of super vector spaces.

For any positive integers m, n, we let A™" denote the A module

Amin = éAea é(m).
=1 i=1

We say an A module M is free if it is isomorphic to A™" for some m,n. We will not be

concerned with free modules of infinite rank. The pair m|n is the rank of the module
M.
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The dual of an A module M is M* = Hom(M, A). Care must be taken when

discussing the canonical evaluation maps
M @QM—A MM — A.

According to the sign rule the first map is the usual one f ®@ m — f(m) while the
second is m ® f — (—=1)lM f(m) is potentially different by a sign. Of course these are
compatible with the commutivity isomorphism cps« pr. If M is free of finite rank then

one has the usual isomorphism
M ® M* = End(M)

m® f = (m' = mf(m')),

however in view of the two possible orderings above this is arguable not the most natural
isomorphism. In this light we will in this paper work systematically with evaluation map

M*® M — A in this order, which does produce a sign in the isomorphism
M*® M = End(M) (2.2)

(f@m) = (' = (=)l Whnf () )
If M is free with homogeneous basis {e1,...,ep |01,...,0,} then we define the left
dual basis or simply the dual basis {e], ..., e’ | 05,...,05 } for M* by the usual relations

ejlei) = dij,  05(05) = 0y

6*(01) = 0, 9;(6]) =0.

We emphasize we are choosing the dual basis to be natural with respect to M*@ M — A
rather than M @ M* — A which would lead to a notion of a right dual basis and
essentially amount to changing the 67 by a sign.

Given a morphism T : M — N between two A modules in classical algebra, one has

a canonical dual map T* : N* — M*, which differs from the usual formula by following
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the sign rule,

T*(f)(m) = (=0T (T (m)), (2:3)

if T' is an arbitrary (not necessarily even nor odd) map from M — N. This will produce

a slightly different form for the ”transpose” of a matrix in superalgebra.

2.3 The Berezinian and Related Constructions

2.3.1 The Supertranspose

Suppose M = MP1% and N = N"I* are free A-modules of ranks p|q and r|s respec-
tively. Suppose we have an A-module map T': M — N. Let e1...ep1q and f1,..., fris
be homogeneous bases of M and N respectively such that the first p (resp. r) elements
are even and the last ¢ (resp. s) are odd. To each such morphism 7" and choices of

bases we associate the (r 4+ s) x (p + ¢) matrix [T] = (TJ’) defined by the equations

r4+s

Tej =) fiT.
=1

Note how the entries T]’ appear to the right of the basis elements f;. We aim now to
relate the entries of the matrix [T] with those of the matrix of its dual map [T™] with
respect to the dual of the chosen bases. The relationship derived below will then be
regarded as the supertranspose and then will be thought off as an operation on super
matrices. Indeed by definition the matrix [T%] = (TJ*Z) is defined by the equations

ptq ‘
T fr =) e T}

=1

This allows us to compute the expression 7™ f7(e;) in two ways. First see that

p+q
T*f;(ei) = <Z 67; T]’,kk) (61)
k=1

_ (_1)\T]*’He:|jvj*l
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On the other hand,

T*f7 (ei) = (1) TV (T (ey))
= (—1)IT <i i Tk) (2.5)
— (_1)|T\|fj |Ti]'

In the end, we conclude
T = (_1)\Tj‘il\eflJrlTllf}‘\TiJ" (2.6)

Thus, if we write [T] in block matrix form

A B
[T]:(C D)'

then the matrix of [T7] is easy to identify according to (2.6). If 7" is an even |T'| = 0,

then
At Ct
(I T
—-B* D

with A? denoting the usual transpose of A. If T is odd |T'| = 1,

At (1
1=\ _, |
B D
This motivates the general definition of the supertranspose of a general supermatrix X

denoted by X, writing X is block form as above,

st
o (A BY (4 ), (A -y
C D —-B! D B, D!

Where the block matrices above were decomposed into their even and odd parts. We

then have [T*] = [T]*.
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2.3.2 The Supertrace

The evaluation map M* @ M — A gives rise to an A-linear map Hom(M, M) =
End(M) — A via the identification (2.2)) above. This map is called the supertrace. In

terms of the matrix
A B
X = ,

str X :(=trA —trD.

this is simply

The supertrace posseses several nice properties such as

1. str Xt =str X

2. str XX/ = (—1)XIIXstr X' X .

Others can be found, with proof, in [5], however most should not concern us here.

2.3.3 The Berezinian of an Automorphism

In supermathematics, the Berezinian is an analog of the classical determinant, it
plays a vital role in what follows. We let GL(p|q, A) denote the group of all auto-
morphisms of the free A-module 4”17, then GL(p|q, A) is naturally identified with all
invertible (p + ¢) X (p + ¢) matrices X which we write in the standard block form,

A B
X = .
We then define the Berezinian of X to be

A B
Ber X = Ber (C’ D> :=det (A — BD7'C)(det D)™, (2.7)
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Note that this definition makes sense as the matrix X is invertible if and only if both
A and D are. Clearly BerT € A is an even invertible element of A and in fact the

Berezinian gives a group homomorphism
GL(plg, A) — GL(1]0, A) = A}

Ber X X’ = Ber X Ber X'.

The proof of this fact can be found in many places including [5], the argument is some-
what tedious and we will not show it here. However taking for granted the multiplicative
property of the Berezinian, one can motivate the definition (7) by defining for X strictly

upper or lower triangluar, Ber X = det A(det D)~!, and notice the trivial factorization

(A B) (I BD—1> (ABD—lc o)( I 0)
- , (2.8)
C D 0 I 0 D) \Dc I

we remark again that X invertible implies both A and D are invertible. In fact, an

alternative factorization to (8) exists

(A B) ( I 0) <A 0 ><I A—lB>
= . (2.9)
C D CA- 1 T 0 D—CA B/ \o I

This then yields an alternative calculation for the berezininan
A B
Ber X = Ber <C D) = det A(det (D — CA™'B))L.

The analogy with the classical determinant can be seen as one has

1. BerT% = Ber T

2. Berexp (T') = exp (str T').

In general for any even invertible automorphism T of a free A-module M, we define
Ber T to be Ber [T] where the matrix [T] is expressed in any basis. The fact that the

Berezinian is a group homomorphism implies that this is well defined.
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2.3.4 The Berezinian of a Free Module

In classical algebra, given a free A-module M of rank n there is the notion of the
determinant of M, det M given as the maximal exterior power A" M. In this context
we have a useful interpretation of the determinant of an automorphism 7', namely as
the action of T" on det M. It is possible to find analogous statements regarding the
Berezinian.

Returning to the super case, for M free of rank p|g with ¢ > 0, there is no top
exterior power of M, simply because odd generators commute (in the classical sense)
in A®* M and thus, for example, given an odd generator 6 of M, 0¥ does not vanish for
any k. Nevertheless a super analog of the determinant exists and we denote it Ber M.

We explain two approaches as explained in [8], the first is a concrete realization. To

every homogeneous basis ey, ...ep | f1,... f; we obtain an element of Ber M denoted

[61,...,6p‘f1,...,fq],

subject to the relations given by

[Ter,....,Te,|Tfr1,....,Tf,] =BerTler,...,ep]| f1,.-., fql,

for T an automorphism of M. The A-module construted will be considered of rank 1]0
if ¢ is even and 0|1 if ¢ is odd. This realization is the one we will most frequently use.
One should notice that applying the above procedure to a free M of rank p|0 over
an purely even algebra A = Ag that this recovers the classical determinant.
Alternatively a basis independent definition was given in [5] and discussed in [8].
The motivation for the following is that in the non-super case, for an ordinary free

A-module M or rank n, one can see by a Koszul complex a canonical isomorphism

Eth.(M*)(A, S.(M*)) = /\ M,

where A is given the structure of a S®(M*)-module via augmentation.

The above expression can be understood in the super setting. That is, for M free of
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rank p|g over a supercommutative algebra A we set
BeI'M = m’g/v.(M*)(A, S.(M*))7
and for any even automorphism 7 : M — M we set
Ber T = action of T on Extge (4, S*(M")).

In greater generality, if T : M — N is an isomorphism between two A-modules then
T induces a map Ber M — Ber N also called BerT. In the case that M = N, such a
map Ber T : Ber M — Ber M can be naturally identified with an even invertible element

of A, and this agrees with the definition of Ber T" above.



Chapter 3

Supergeometry

3.1 Superspaces and Superschemes

The various different super-geometric categories we will work in will concern objects
which are specializations of the notion of a superspace. We follow closely the notation

and notions given in [5], [9].

Definition 3.1.1. A superspace is a locally ringed spaced (X, Ox) where Ox is a sheaf

of super-commutative rings.

A morphism of superspaces is the usual one; a morphism f : X — Y is a continuous
map |f|: X — Y of underlying topological spaces along with a map of sheaves Oy —

J+Ox such that for any point z € X, the stalk morphsim f; : Oy f;) — Ox . is local

fe(Mp)) Cmy.

The structure sheaf of a superspace X is Z/2 graded Ox = Ox 0@ Ox 1 and contains
a subsheaf Jx = Ox1 @ (93(71 generated by all odd elements. We sometimes omit the
subscript X and write J = Jx when it is clear from context.

We have a natural morphism
(X,0x/TJ) = (X, 0x)

corresponding to the projection Ox — Ox/J and refer to the superspace (X,Ox/J)

16
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as the odd-reduction of X, X,q. In most situations we will have equality of X,q and the
usual reduction X,.q corresponding to the sheaf generated by all nilpotents Ny. In [5]
the author discusses the distinctions between these two situations in more detail.

One also considers the split model of X or the associated graded space of X, namely

the superspace
gr X := (X, gr Ox)

where

g Ox =PI/ T =0x/ T T/T* 0 T T?...

n=0

We have the following notions:

Definition 3.1.2. Let X = (X, Ox) be a superspace and J denote the sheaf generated
by all odd-elements of Ox. Then we say

1. X is locally split if € := J/J? is locally free as an Ox,, = Ox/J module and
NE = grOx.

2. X s split if it is locally split and X = gr X globally

3. X is projected if there exists a right inverse p : X — X4 to the natural morphism
er — X.

We will mostly be concerned with supermanifolds, but will sometimes find it useful

to have a scheme-theoretic viewpoint in mind.

Definition 3.1.3. A superscheme X is a superspace (X, Ox) such that (X,Ox ) is an

ordinary scheme and Ox 1 is a coherent sheaf of Ox o-modules.

Superschemes can be covered by affine superschemes Spec(A) for supercommutative
rings A. Much of classical algebraic geometry immediately generalizes to the supercase,

therefore we do not pause here to elaborate.
Example 3.1.1. (Affine Space A™")

We discuss a natural assignment of an affine superscheme Ay given a super vector

space V = V,@Vp. Let V* = Hom(V, C) denote the internal Hom of all linear maps V' —
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C. Let S denote the graded ring Sym®(V*), and consider this as a super algebra whose

7 /2-grading comes from reduction modulo 2. One then has a canonical decomposition
Sym*(V*) = Sym*(V5) © A(V7)

where we take the exterior product in the usual classical sense. The affine superscheme
associated to V' is then Ay = Spec(Sym®(V*)) and in view of the decomposition above,
it is immediately seen as split. In the special case V = C™" = C™ @ (IIC)" we write
Ay = AT = Ccmin,

We remark that the seemingly harmless operation of parity change IT on modules
behaves non-trivially with respect to the functor V' — Ay. Indeed topologically Ay is

the same as the space associated to the classical vector space V, while for Ay it is
that of 17.

3.2 Supermanifold Theory

The most utilized notion for us is that of a supermanifold.

3.2.1 Basic Notions

Supergeometry can be thought of an extension of ordinary geometry where one adds
extra ”odd anti-commuting functions”. For supermanifolds one will find essentially two
different notions in the literature. We adopt the more algebro-geometric approach. In
this paper we denote the sheaf of holomorphic (resp. smooth) functions on C™ (R™) by
Ocr (CR3).

Definition 3.2.1. A complex (resp. smooth) supermanifold of dimension m|n is a

locally ringed space (X, Q) with
1. X a second countable Hausdorff topological space,
2. O a sheaf of supercommutative C (resp. R) algebras,

3. O is locally isomorphic to Ocm @ N\(&1,...,&n)
(resp. Caom @ N(&1s---56n))-
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That is, as a superspace, a supermanifold (X, Ox) is locally split. When it is clear
from the context, X will sometimes refer to the supermanifold (X,O) and |X| will
denote the underlying topological space.

The majority of our analysis will concern complex supermanifolds. By C™" we
mean the supermanifold (C™, Ogmin) whose structure sheaf is globally given by O¢m ®
A&, ..., &) and whose Zg grading is determined by reduction modulo two of the
standard Z grading of the exterior algebra. The {;’s are referred to as the odd generators
or odd coordinates. R™™ has the analogous definition. If U c C™™, then we call
Umr = (U, Ogmin ’U) a (an open) superdomain of C™",

Given any manifold (real or complex) M, and a vector bundle F' with sheaf of sections
F, the space (M, /\bM F) is a supermanifold of dimension dim M |rank F, where F is
taken to be odd and the Zy grading is the obvious one. Supermanifolds constructed in
this way are split.

Let X = (X,Ox) be a complex supermanifold and 1, ..., z,, denote local coordi-
nates in an open set U. Possibly shrinking this coordinate chart we find an isomorphism
Olu & Ocm|y @c N(&1,---,&n), then the collection (z1,...,2m[¢1, ..., &) are referred
to as local coordinates on (X, Ox). Therefore, locally every super function f is a Grass-

mann polynomial in the ¢’s with coefficients holomorphic functions of x1, ..., Ty,

@, mmlén, o 6) = D fi(m, . am)ér

Ic{1,..,n}

where {5 = &, -+ &, if I = {i; < --- < ix}. The vertical bar in the argument of f
simply reminds the reader of the even and odd variables.

The subsheaf J of ideals generated by the odd part O; is equivalently the sheaf gen-
erated by all nilpotent functions on a supermanifold. Thus X,eq is a classical manifold
and X,q = Xied-

A morphism ¢ : (X,0x) — (Y, Oy) of supermanifolds is defined simply as above,
as a morphism of locally ringed spaces, hence it is given by a pair (|¢[, ¢*) where
|p| : X — Y is a continuous map and ¢* : Oy — |¢[.Ox is a map of sheaves of
supercommutative algebras. Every such morphism ¢ induces a morphism of ordinary

manifolds ¢req : Xred = Yred-
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3.2.2 Construction of Supermanifolds by Gluing

As it is the case in classical geometry, sometimes it is useful to think of/construct
geometric objects by gluing pieces of local models together. This approach is useful
in the super setting as well and will allow us to construct more supermanifolds than
simply those that are split. Locally supermanifolds can be thought of as a gluing of
superdomains. We follow closely the ideas outlined in [10].

Indeed, let {U; = U]m‘n} be a collection of superdomains and {W;} be a collection

of open subdomains. Write O; = Op,. Suppose we have then isomorphisms
fiz + (W5, 05lw;) = (Wi, Oilw,)

we can then construct a supermanifold (X, Q) by setting the topological space to be

x = (wsl) / ~

with the quotient topology given by the usual equivalence relation, namely p; ~ ¢; if
¢ = |fijl(pj). The sheaf O is given as follows: for V' C X an open subset, we let 1%

denote the pre-image of V' under the equivalence class projection, then

OWV) ={(s;) | for all 4, j, s; = fi’si}
c LoV nw). (3.1)
j

It is a straightforward tedious exercise to verify this does infact give a supermanifold
(X, 0). We then say that (X, O), or more generally any supermanifold Y that is isomor-
phic to such a constructed X, is glued together by the data {U;, W;, {fi;}}. We remark
that if X is glued together by the data {Uj;, W, {fi;}}, then X,eq is glued together by
{U;, Wi, {(fij)rea}}-

Conversely given a supermanifold (X, Q) we may cover it with open sets {V}} such
that for each j we have an isomorphism of locally ringed spaces ¢; : (V;,Oly;) —
(Uj, Ocminly;).  Then trivially X is glued together by the data {U;,U; N Uy, {(¢i o
o5 Do, -
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Example 3.2.1. Projective Superspace P

We present 3 different approaches to the analog of projective space is supergeometry.
The first approach is to construct superprojective space by way of gluing as above. For
each i =0,1...m let U; = C™" and W; = U; — {0}, with (global) coordinates denoted
by ®g/js -3 Tjjjs s Tmyj | €15+ - - &nyj- Using the notation above we define the gluing
functions f;; via

fi = (W5, O4lu,;) = (Wi, Oilu,)

~ 1 ~

1
fii(Tri) = ——xp);
] / xi/j /]

1

Lifj

[ii(Chyi) = —&kj-

The resulting object we call projective superspace P™™. Clearly we have that ]Pm|"] =
P™ as one should expect.

For the second approach we discuss the algebro-geometric description of the projec-
tivization P(V') of any super vector space V =V, @ Vi. We let V* = Hom(V, C) denote
the internal dual of V, i.e. all linear maps V' — C which need not preserve parity. Let
S® = Sym*(V*) be the internal symmetric algebra on the dual and consider the set
Proj(S) of all homogeneous prime ideal of S which do not contain the irrelevent ideal
St = 8§21 The graded algebra S is also naturally Z/2-graded, S = Sp @ S;. The

decomposition V* = Vi @ V" then gives the decomposition for S
S = Sym*(V*) = Sym*(V5") @ A\ (V")

where we use the exterior algebra notation on the right hand side in the usual sense.

Then it is immediate that in fact as a set
Proj(S) = Proj(So) = Proj(Sym®(V;)).

Let Sreq = Sym®(Vj'), then S is naturally an S;eq module and so we can consider the
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corresponding sheaf S on Proj(Sred). We take this to be the structure sheaf O = Op(y

on superprojective space Proj(.5),

P(V) = Proj(S) := (Proj(Sreda), S) = (Proj(Sred),Sym'(Voj)\_@g/\(Vi*))

It is then immediate that P(V') is split as it is visibly modelled on P(Vy) equipped
with the locally free sheaf associated to the module Sym®(Vj) ® V{*.

Lastly we discuss a more functorial approach to P(V'), as a set as all rank 1|0 linear
subspaces of V. One then defines the topology and sheaf in the obvious manner. We
can describe P(V) in terms of its functor of points. It is the space representing the

functor which associates to any C-superscheme S, the set of locally free quotients
Os®@V —Q—0 (3.2)

or co-rank 1|0 (i.e. rank m — 1jn). On P(V) one has the tautological line bundle
Op(vy(—1) defined by ker (O]p(v) RV — Q), where the morphism Op(y)®V — Q arises
from the identity map id : P(V') — P(V).

Let us identify the reduction P(V)eq in this light and verify indeed it is P(Vp). For
any supermanifold X, its reduction satisfies the following universal property: namely
Xied 18 the unique ordinary manifold with embedding and X,.q < X, such that for any
other classical manifold S = S,eq with a morphism « : S — X there exists a unique

map o' : S — X,.q making the following diagram commute

v T
Xred

See that for V' = Vj @ Vi decomposed into its even and odd part, that P(V)eq =
P(Vp). Indeed, define an embedding P(Vy) — P(V) as follows: an S-point of P(1}) is a
surjection

Os@Vy — Q—0
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where Q is locally free of rank m — 1]/0. This maps to the S-point of P(V)

Os®V — Q® (0g® V) — 0.

It is then immediately seen that the universal property holds after noting that for an

ordinary manifold S, a sequence
Os@V — Q9 —0

with Q locally free of rank m — 1|n canonically decomposes into two sequences of locally

free sheaves of either purely even or odd rank. The odd part gives a surjection
Os@Vi — Q1 —0

of locally free sheaves of the same rank O|n which must be an isomorphism, hence
P(V)rea = P(Vp).

The projective space P(V') is canonically projected, i.e. there is a morphism P(V') —
P(V)rea = P(Vp). This is constructed as follows: given an S-point of P(V), we utilize
the surjective map Og ® V. — Og ® Vj and form the pushout

Os®V s Q s 0
| |
Os®@ VW y O > 0

The bottom row is then the corresponding S-point of the reduction.

3.2.3 Super Vector Bundles

Vector bundles in supergeometry are most easily understood as generalizations of
their algebro-geometric counterparts in the classical situation. In algebraic geometry a
vector bundle on a space carries the same data as a locally free sheaf and this idea is
what we adopt here.

Let X be a supermanifold. A locally free sheaf F of rank r|s on X is a sheaf of
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Ox-modules that is locally isomorphic to the trivial bundle (9;[8 = 0% & (I10x)*. That

is, there exists an open cover of {U;} of X and sheaf isomorphisms

Flo, 5 (Ox|v,)"*

3.3
= (Ox|u,)*" ® (MOx|y,)**, 33

these are called the (a set of) local trivializations of F. We will use this notion as a
complete replacement for that of a super vector bundle. We remark that it is dangerous
to call F an even (odd) vector bundle if it is locally free of rank |0 (resp. O|r) for some
r. Indeed if Ox has nontrivial odd part then a locally free sheaf of rank r|0 does not
have the property that all of its sections are even. By an invertible sheaf (or line bundle)
we mean a sheaf locally free of rank 1|0 or 0]1.

Given a vector bundle F of rank r|s with trivializations {¢;} for an open cover {U;}
establishing the isomorphisms above in , the compositions g;; := ;o wj_l give Ox-
linear automorphisms of (O X|UmUj)r‘s- These are called (a set of) transition functions
for the vector bundle F. Just as in the usual case the vector bundle F is equivalent
to the data of its transition functions. This fact will prove useful in computations.
Specializing to the case that F is an invertible sheaf of rank 1|0 gives that the g;; form
a 1-Cech cocycle of the sheaf OX o of even invertible superfunctions and we have the
familiar result Pic(X) = H'(X, O% o); where Pic(X) is the group of isomorphism classes
of all rank 1|0 line bundles on X.

Letting JF denote the sub Ox-module generated by 7, we always have the exact
sequence

0—=+TJF—=F = Frea—0

defining the quotient F..q as a super vector bundle on X,¢q. In terms of transition
functions, if the cocycle g;; describes F then reducing modulo 7, the cocycle g;; mod J

computes the transition functions of the vector bundle Freq.

3.2.4 The Tangent and Cotangent Sheaves
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The Tangent Sheaf

A super C-derivation of Ox is a map D : Ox — Ox of sheaves of super C-algebras
such that (for homogeneous D)
D(ab) = D(a)b+ (=1)l@llPlg D(p).

The tangent sheaf of X is the sheaf of Ox-modules Der(Ox) of all super C-derivations.
We denote it by Tx and call sections of it vector fields. If xy,..., 25|61, .., &, are

coordinates on C™" then we have the odd coordinate vector fields determined by the

conditions 5
ng € (Temin )1
0 0
5 ) =0, 5o (6) =y

We have the following result from [10].

Proposition 3.2.1. The tangent sheaf Tomim is free of rank m|n with homogeneous
r 0
12,

generators the even and odd coordinate vector fields 8%1’ e % DE 0 e

This implies that the tangent sheaf of any m|n dimensional supermanifold is locally
free of rank m|n.
Analogous to the case in classical differential geometry, given any morphism 1 :
X — Y of supermanifolds one can define the differential or pushforward . of ¢ to be
the the Ox-module map
Vot Tx = " Ty

u(V) = Voo

thinking of V' as a C-derivation of Ox.

Let us now compute a Cech-cocycle that corresponds to the tangent sheaf. For sim-
plicity let us assume a supermanifold X is glued together by the data of two superdo-
mains U{nln and U;n‘n with coordinates x1,...,Zm &1, .. & and Y1, .., ym | C1y -+, Cn

respectively and an isomorphism ¢ : Wlm n WQm " between two sub superdomains.

Computing the pullbacks of the generators of the sheaf on VV2m In (abbreviating and
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writing simply £(2]¢) for f(r1,. .., 2m |1, &),

o yr = fu(xl€)

0 ¢ = n;(z|§)

we produce m even functions f and n odd functions 7; which are commonly referred
to as the coordinate transformations. One can then form the Jacobian matrix of this

coordinate transformation

Ofi(xl§)  Ofi(x[§)

3(y,C) _ al'j (9@
Az, &) | Im(=l§) Oni(z[§)
Iz 9&;

Now on W the tangent sheaf, by the above proposition, is freely generated by %
and % and similarly for Ws.

As ¢ : W1 — Wy is an isomorphism note two facts; the pushforward map . : Ty, —
©*Tw, is in fact an isomorphism of Ow,-modules and furthermore the pullback sheaf
©*Tw, has

0 o | 0 0

FIRRRRR Tl TR o
as an Ox-module basis.

By definition an arbitrary vector field V on X is given by vector fields V7, Vo with each
Vi a vector field on (a subset of) of W; that is compatible with the gluing isomorphism
¢, in the sense that Vo = ¢,V;. We say that in this case V5 is Vi expressed in the
coordinates y|(.

In fact the map ¢, expressed as a matrix g with respect to the coordinate vector

bases is exactly a cocycle that defines Tx. One can easily then compute

I T SRR B
P By Zz(w yk)ﬁTJj +;8x]~(¢ Ck)aTk

= Ofi(zlé) 0 = Onp(z|€) O
_ZT%7+ UR\EIS) 2

=1 a{L‘j OCJ
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and similarly

0 _§NORGal) 0 nom(ale) 0

AT o5; Oy o OG (3:5)

k=1 k=1

which shows that the matrix of ¢* is precisely the Jacobian gg«g The result persists

when one deals with an arbitrary supermanifold not necessarily built from two open
domains.

On a supermanifold one would hope that the sheaf 7Tx . of usual vector fields on

red
the underlying manifold have some relationship with the sheaf of super vector fields Tx.

Indeed we have the following.

Proposition 3.2.2. For any supermanifold X (real or complex) we have a canonical

isomorphism of O, eq-modules
(Tx)red = (Tx )red0 © (T )reas = T, © (T /T

where (J ) T*)* = Homo,, (T /T?, Orea)-

Proof. Let k = C or R. We will construct two maps (of sheaves of k-vector spaces)
(Tx)o — Tx,.q and (Tx)1 — (J/T?)* to then obtain a map on the direct sum. The key
idea is that given any derivation V of Ox, V' at worst "reduces degree”, in the sense
that

V(J*) c gkl

for any k. This is a trivial consequence of the derivation property. Any vector field V'

therefore, thought of as a derivation on O induces a map
V:J/T? = O0x/T

V(f+T))=V(f)+J.

However for even vector fields V = V{; we have that V| stabilizes J and hence ‘70 = 0.
Lastly it is immediate that 1% respects the Oyoq module structure on J/J 2 and thus we
obtain a map

(Tx)1 = (T/T?)"
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On the other hand, as every even vector field V stabilizes 7, we get an induced derivation
V:0/J — O/J defining a map

(TX)O - TXred'
In total we get a well-defined map of sheaves of k-vector spaces
TX — TXred D (j/jQ)*

V=Vo+Vi = V+ V.

The kernel of the above map can be identified as those derivations V' whose image
lies completely in 7, and hence contains the submodule J7x. This gives our desired

canonical map of O,eq-modules

(T )red = Tx,oq @ (T/T?)".

It is trivial now to show that in local coordinates this map is an isomorphism.

The Lie Bracket

On a supermanifold one also has the super Lie bracket [V, W] of vector fields defined
by (for homogeneous V, W)

[V, W]:= VW — (-=)VIWlwy,

One can easily check that this defines a derivation of parity |V||W|. Furthermore we

have the useful identity
VW] = fv, W] = (- WD £y,

for homogeneous f € O.
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The Cotangent Sheaf

The dual of the tangent sheaf is denoted Q% := Hom(Tx, O) is called the cotangent
sheaf. This is also locally free of the same dimension with the (local) basis given by
the coordinate one-forms dzy,...,dx,, |dy, ..., d&,. For any k let Ok = /\k Q& be the
kth exterior power of the cotangent bundle and let A\® QL = @kﬂl)f(. Sections of A® Q%
are called (super) differential forms, while homogeneous sections of degree k are called
(super) differential k-forms.

A similar calculation to the above will show that the transition functions correspond-
ing to the cotangent bundle is exactly the inverses of the Jacobians of the coordinate
transformations. This also is immediate when one recalls the transition functions of the
dual of a vector bundle F* are the inverses of the original those corresponding to F.

Following the convention in [§] we have the canonical pairing
() Tx ® Q% — Oy,

which implies the sign rule (aV,bw) = (—1)IVIIPlab(V,w). This pairing is used to define
the super exterior derivative (or simply the exterior derivative) d : Ox — Q% from the
equation

(V. df) =V (f)-

As in the classical case, d extends uniquely to as square zero derivation of the sheaf of

differential forms A® Q%
1. d>=0
2. d(aAB) =daA B+ (—Drkands, foraecQk,

and so for example DeRham Cohomology makes sense on a supermanifold.

Differential forms however play a very different role in supergeometry than that in
classical geometry. In the super setting the exterior algebra of a superalgebra (or sheaf
of superalgebras) is the quotient of the tensor algebra by the relations z ®@ y ~ —y ®@
if one of x or y are even and £ ® ( ~ ( ® £ if both £ and ¢ are odd. Hence in particular,

if X is a supermanifold of dimension m|n, n > 0 and £ a local odd coordiante, then
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the k-fold wedge product (d€)¥ = dé A --- A d€ is non-zero for each k. Thus, there is
no top exterior power of Q}( This shows that the identification of objects analogues
to volume forms from classical geometry, i.e. objects which it makes sense to integrate

over a manifold, is not the naive guess of super differential forms one might make.

3.2.5 The Berezinian Sheaf and the Berezin Integral

For vector bundles on ordinary manifolds, one had several common constructions
available that were essentially formal consequences of operations with vector spaces
such as direct sum, tensor product, determinant etc. In supergeometry one has a new
construction available known as the Berezinian.

Suppose F is vector bundle of rank r|s and let {g;;} be a cocycle corresponding
to F. We then define the invertible sheaf Ber F to be the bundle corresponding to
the transition functions {Ber g;;}. We enforce that Ber F is locally free of rank 1|0 if
s is even and 0|1 if s is odd. If e,...,e,|0,...,05 is a collection of local generators
trivializing F then the symbol [e; ... e, | 60; ...0,] denotes a trivializing section of Ber F.
Note that in the classical situation, this definition specializes to the definition of the
determinant of a vector bundle.

Similar to the classical situation, any exact sequence of super vector bundles on a
supermanifold X

..._>E71_>E_>E+1_>...

induces a canonical isomorphism
@i (Ber F) "V = Ox.

If X is a supermanifold then we define Ber X := Ber Qﬁ( and simply call this the
Berezinian of X. We emphasize that for two local coordinate systems z|¢ and y|( the

gluing law reads

Q

(y,¢

[y, Ayl dGa] = Ber 5o

[dx1,. .. dem|dEL, . . . dé).

o)
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Example 3.2.2. The Berezinian of Projective Superspace P™"™.

Let us compute the Berezinian for any projectivization P(V') for V' a super vector
space of dimension m + 1|n. The argument hinges on the identification of the cotangent
sheaf Qllp(v). We can describe it as follows: there is a canonical exterior derivative

d: Opry — Qﬂlm(v) which extends uniquely as a first order differential operator

by the simple formula d(f ® v) = df ® v extended by linearity. The fact that the vector
bundles involved are twisted by a constant sheaf will give that this is well defined.

On P(V) we have the natural sequence (as discussed in the functorial approach to
P(V) in Example (3.2.1))

0= Opay(=1) = Opry @V — Q — 0. (3.7)

Now pre and post composing d in (3.6) with the above short exact sequence gives us a
morphism

d

The morphsim we obtain Opy)(—1) — QH%,(V)®Q can be seen to be a morphism of Op(y)-
modules and furthermore, in local coordinates, to be an isomoprhism. The details of
this computation can be found in Manin’s book [5].

Using this fact, dualizing and twisting by Op(y/)(1) we arrive from (3.7)
0— Q]%"(V) — Op(v)(—l) QV* — O]P’(V) — 0.
This gives

BerP(V) = Ber Q[lp(v) = Ber (Opv)(—1) ® V*) = Opyy(n —m — 1).

The Berezin Integral
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We now move on to the question of integration on a supermanifold. We define
first the Berezin integral on the smooth split supermanifold R™™. As noted above any
function on R™" is written (uniquely as) a Grassmann polynomial in odd coordinates
&1,...,&, with coefficients smooth functions of ordinary coordinates x1,...,x, in the

following way,

f(xl,-..,$m|£1,---,§n): Z fl($17---axm)£l

Ic{1,...,n}

where &5 = &, -+ &, if I = {i1 < --- < ir}. We then define the Berezin integral of f
over R™™ to be
877,

i f(z|€) [day -+ day, | dEr -+ - dEy] = - mf(ﬂﬁ) dzy...dzp,

that is, we simply integrate in the usual way the highest nonzero coefficient of f in
its expansion in the £’s. Of course one deals with the convergence of the integral in
the usual ways, we will not pause here to comment. This definition can be extended
in the obvious way to integrals over arbitrary sub superdomains U™ of R™". As a
shorthand, it is common to write [dz1 - - - dxy, | d&1 - - - d€,] = [dx | d€].

This notation above suggests that the Berezin integral is an integral of not a super-
function but rather a section of Ber R™™. This viewpoint is the correct one as one has

the following super analog of the change of variables theorem.

Proposition 3.2.3. If ¢ : R™" — R™" s an isomorphism of smooth supermanifolds

with (z|§), and (y|¢) denoting coordinates on the source and target we have

~—

F(I0) [dy| d¢] = / o* FwlC) Ber 298 14 gy,

RmIn 8($) f)

The proof of the above proposition is non-trivial and can be found in [I0]. One

RmIn

can think of the Berezinian sheaf as exactly those objects which gives a coordinate
independent definition of the Berezin integral.

Now if X is an oriented smooth supermanifold, we define the integral of a global
section o € I'(X, Ber X) in the usual way, by finding a partition of unity and reducing

the the definition given above.
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Let (X, O) be now a complex supermanifold of dimension m|n. In this context we will

usually write Ber X = w. On X one can construct the sheaf of smooth superfunctions,

denoted by £. Loosely £ is defined by the condition that for each local trivialization

of O as Ocm @ A(C1,y--.,Cn) we take € to be trivialized on the same neighborhood as

R2m ON(a1, ..., an, B, ..., Bn)@C and then glued together via the transition functions
for O. Intuitively one thinks that the relationships

v =Rezy, wypr=Imz,, ar=Re(, Br=Im¢

are enforced in this construction. This has been made precise in a short paper of Haske
and Wells [I1], however we do not discuss this further. We will think of zy, Zx, Cx, Ck
as generators of £ analogous as to what is common in complex analysis, so that locally
every smooth superfunction f is of the form (abbreviating the indices and using the

usual multi-index notation)

f(za5’C7 CT) = fo](zaz)CIgJ

1,J

for ordinary (C-valued) smooth functions f7;. The sheaf £ then naturally has complex
conjugation.

Once the sheaf € of smooth superfunctions on a complex supermanifold is established
one has the notion of a smooth section of a complex super vector bundle F, namely
sections of the tensor product F ®p & (note that £ is an O-module). Furthermore we
denote by F, the complex conjugate vector bundle of F. We often write for the sheaf
of smooth sections of F as Fg. Of particular interest is the smooth Berezinian sheaf
wRW®E =: |w|?, as its sections yield natural objects that can be integrated over the
entire complex supermanifold X. Thus when comparing to the classical setting, sections
of w correspond to ”holomorphic top-forms” or forms of type (n,0) on a complex n-
manifold, while sections of |w|? correspond to genuine top forms or forms of type (n,n).

Here one can also consider super Dolbeault cohomology. Let Qg?’q) denote the sheaf
of differential forms of type (p,q), namely those forms o that can be written in local

coordinates
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o= Y fi(X)dX;NdXk
I=JUK

with fr smooth and where we use above the usual multi-index notation and let X denote
any of the local coordinantes (z1,...,Zmn|¢1,...,&,). One then has the usual Cauchy-
Riemann operator 0 satisfying the usual Leibniz rule and squaring to zero when viewed

9 More generally for each holomorphic super

as an odd derivation of the algebra Qg;
vector bundle F (locally free Ox-module) we let Q()?’q) (F) denote the sheaf of smooth

(p, q) forms with values in F and then we obtain a super Dolbeault resolution
0= FLalF) L aol?rF) 2.

which is an acyclic resolution just as in the classical case (as each Q%’Q) (F) is fine).

Hence the cohomology computes the sheaf cohomology H?(X, F).

3.2.6 Super GAGA

We pause briefly to discuss the GAGA principle in the super setting. When convenient
we often pass freely between the algebraic and holomorphic categories. This is done in
an effort to increase clarity and sometimes be more inline with the related literature.

As the goal of this work is largely applied: it is aimed at providing formulas for
objects related to measures arising from string theory and not too much in developing
foundations, it is natural to use whatever language or techniques are convenient and
available.

Super GAGA has been studied in [I2] and is mentioned in various places in the
lectures of [I3]. For example, in [12] it is shown that for algebraic sub supervarieties
X C P™™ there is a natural analytification functor X — X", as in classical GAGA, and

for which the natural maps
HY(X,F) — HI(X" F")

are isomorphisms for F coherent.

For the majority of our discussions, we work in the holomorphic category.



Chapter 4

Super Riemann Surfaces and

Other Preliminaries

4.1 Basic Notions

4.1.1 Definitions and Elementary Structure Theory

We briefly review some basic definitions and notions to setup notation. Super Riemann
surfaces are a certain class of complex supermanifolds of dimension 1|1, which carry an
additional piece of structure. These play the role of superstring worldsheets and their
theory very closely parallels that of classical Riemann surfaces.

We are interested in the moduli of these objects and thus have the following notion

of a family.

Definition 4.1.1. A family of super Riemann surfaces is a family of complex super-
manifolds  : X — S of relative dimension 1|1 equipped with a maximally non-integrable
distribution D of rank O|1, i.e. an odd subbundle of the relative tangent bundle Tx /g

such that the Lie bracket induces the isomorphism

[]:D* 5 Tx/s/D.

35
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The main complication in the study of families of super Riemann surfaces is the
presence of odd moduli. Essentially these should be thought of "odd parameters” on
which the super Riemann surface depends on. In fact, if only local properties of the
moduli space is of interest, it was shown in [14] that it suffices to study the slightly
more general objects consisting of super Riemann surfaces with an enlarged structure

sheaf. Specifically we now require that the structure sheaf is locally modeled on
Oc[f] & A(Tl, ... ,TL)

for some L. Here the 7’s are the additional odd parameters or ”odd moduli”. One
could also add additional even moduli but it turns out not to change the analysis. It
is custom (and admittedly somewhat confusing) to suppress this from explanation and
work in the situation of a single super Riemann surface with “odd parameters which it
depends on”.

Let us analyze some local structure.

Lemma 4.1.1. Locally we can find relative coordinates x|§ such that the distribution D

is generated by the odd vector field

0

0

Such coordinates are called superconformal.

Proof. The distribution D is locally free of rank 0|1 hence, around a point p € X we
can trivialize D in a coordinate chart z|¢ so that it is generated by the single odd vector

field 5 5
V= a(ﬂf)@ + b(xff)afg

for a odd and b even. Expanding in powers of & we write a(x|§) = ag(x) + a1(x)E,
b(x|§) = bo(x) + bi(x)§ with a1,by even and agp,b; odd. Since V' generates D, we can
map it to a generator of Dyeq , Vx,, = V mod J = by(x)0¢, and thus we see that by

is non-zero in the local chart and we conclude that b is invertible. A quick computation
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will show that (here primes denotes the x derivative)
%[V, V)=V
0 0 0 0
~ (atele) 2 +biole) g7 ) (atele) 5 + Ml 3
0 0
= (@lel€)a’(@l6) + a1 (@)b(l6) ) g+ (llE)0' () + DlalEPhn (w16)) 7

The condition that D? = Ty /D via the Lie bracket implies that V2 must generate this
quotient. This quotient is locally free of rank 1|0 and same is true for its reduction.
Hence, as above, we conclude that V2, = a1 (x)by(2)9d; mod JD? cannot vanish which
gives a1 # 0. As b is invertible we can define f(z|€) = fo(z)+ f1(2)¢ = b~'a and assume
V' is the generator f(x|£)0, + O¢. Noting that fi(x) does not vanish, possibly shrinking
the coordinate neighborhood, we can find a local holomorphic square root h(z), and

then the coordinate transformation

transforms V to

showing that D is generated by D¢ in these new coordinates.
O

We say a change of coordinates y|¢ is superconformal if D; and Dy are Ox-multiples
of each other.
Throughout this paper we will sometimes refer to a family of super Riemann surfaces

as a family of SUSY curves or simply by a SUSY family. It is well known [I5] that
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if the base S is reduced, we essentially get a classical object, namely a family of spin

curves.

Proposition 4.1.1. Let 7 : X — S be a family of super Riemann surfaces over a
reduced base S. Let J C Ox denote the sheaf of ideals generated by all odd elements.
Then

1. T is a locally free Oeq module of rank 0|1,
2. JF = Homomd(j, Ored) = Dreg
3. IIJ becomes a relative spin structure on the family X,.q — S, i.e.

(Hj®2) — j®2 ~ QAered/S?

where Il is the parity reversing functor.

Proof. Locally the structure sheaf Ox is isomorphic to a restriction of Og® Oc1ji. Thus
the decomposition (3) above implies that O,eq is locally a restriction of Ogxc and J is
locally a restriction of IIOgxc. This gives the first assertion.

Let J* = Homo, ,(J, Ored) denote the dual line bundle of 7 over X,eq and Tx and
Tx,., denote the relative tangent sheaves over X and X,.q respectively. By proposition

3.2 above we have the canonical decomposition

(Tx )red = (Tx )red,0 @ (Tx )red,1 = Tx,0q ® T

of O,eq modules.

On a super Riemann surface we have the exact sequence
0—D— Tx — D% —0
which can be reduced and yields an exact sequence of line bundles on X, 4.
0 — Dred — (Tx)rea — D23 — 0.

Decomposing the above exact sequence according to the Zo grading in fact gives another
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identification of the even and odd sub O,eq modules of (7x)red, i-6. Dea = J* and
D% = Ty, .. These two facts yield the desired result, (IL7)%? = Qﬁ(red /5"

O]

In other words, we have that the reduction of supermoduli space 9, of super Rie-
mann surfaces of genus g is the moduli space SM, of genus g Riemann surfaces equipped
with a spin structure.

We pause first to introduce some notation to make the following Corollary more
precise. We denote by SSch, Sch™? and Set the categories of superschemes, reduced
schemes and sets respectively. One can easily seen that We have a natural adjunction
between the functors red : SSch — Sch™! and 38 : Sch™! — SSch where 3 simply

views an ordinary reduced scheme as a superscheme in a trivial way. We denote by
€ ﬁored — 1sSsch

the counit of this adjunction.

Corollary 4.1.1. The reduction of supermoduli space M, of super Riemann surfaces

of genus g is the moduli space SMg of genus g Riemann surfaces with a spin structure.

Proof. The supermoduli space M, we view as the geometric object (precisely a super-

stack) which represents the functor (which we also denote by 9,)
M, : SSch — Set

S — {isomorphism classes of families of SUSY curves X — S}.

The reduction or reduced space (9My)req is by definition the geometric object which
represents the functor 9, o ¢, i.e. isomorphism classes of SUSY curves over a reduced
base. By Proposition this is exactly SM,.

O

It turns out that the moduli space 9, is not a supermanifold but rather a much
more general object known as a super algebraic stack. The specifics will not concern
us as it does not do us too much harm in working with 9, thinking intuitively that it

is a supermanifold. We can remark however that the stackyness of supermoduli space
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is forced on us immediately as every SUSY curve has a canonical automorphism given
simply by f — (=1)IfIf.

We will also use the notion of a family of supercurves, by which we mean simply a
family 7 : X — S of complex supermanifolds of relative dimension 1|1. Then a family
of SUSY curves is a family of supercurves with the extra data of the odd distribution
D.

4.1.2 The Berezinian of SUSY Curves

Let 7 : X — S denote a family of SUSY curves. Of fundamental importance to the

theory is the exact seqeunce
0— D — Tx/s — D> — 0. (4.2)
The map Tx/s — D®? is the composition
Tass = Tjs/D ' D
which in local relative superconformal coordinates z|¢ is the map determined by

0
— =D D D — 0.
Eye ¢ @ D, ¢

Dualizing (4.2)) gives
0— D2 — Q) g — D —0. (4.3)

The distinguished subsheaf D=2 — D=2 corresponds to the dual of the quotient
Tx/s/D, i.e. those relative one-forms that vanish identically on D. Since D is locally
generated by the odd vector field a% + & a%, a quick calculation will show that D2 is
locally generated by dxr — £d€.

Taking the Berezinians of gives a canonical isomorphism

wx/s = Ber Qﬁ(/s =BerD ! ® Ber D2
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As D! is of rank 0[1 and D2 is of rank 1|0, their Berezinians are canonically D!
and D2 respectively, hence

Wx/s = 'Dil.

Thus, in local coordiantes, the relative Berezinian of X over S can be also be thought
of as relative one-forms modulo dx — £d§. We will frequently denote relative Berezinian

sheaf by wx/g, or simply by w.

Connection Between the Berezinian and One-Forms

In [T6] an interesting and useful connection was made between one-forms and sections
of the Berezinian on a super Riemann surface. Combining the map Qﬁ( /s D! of |D
and the isomorphism D~ 22 w, we get a natural map taking holomorphic one-forms to

sections of the Berezinian Q% /s w. In local coordinates z|6 this is
f(z10)dz + g(=]0)d8 — (g(=]0) + f(2]6)0)[d= | db).

This map cannot be an isomorphism as Qk has rank 1|1 while w is of rank 0|1,
however in [16] it was noticed that upon restriction to d-closed one-forms, we do get
an isomorphism (here d is the usual exterior derivative). The inverse map we denote
by a : w — Z% = {closed holomorphic one-forms}. It is given in coordinates as, for
o = f(:10)(d= | o),

a(o) :=dOf(z|0) + wDyf(2]0), (4.4)

where w := dz — 0df is the local generator of D2 and Dy is the usual local generator
of the distribution. Note that above we have followed the convention in [16] and have
written the coefficient functions to the right of the forms df and w.

One can check that the local coordinate definition is well-defined and gives a
genuine map « : w — Z)l<. A coordinate invariant description of « is described in [6],
it is related to the notion of picture number and picture changing operators in string
theory. We will not need these notions here and so omit further discussion.

The natural map Qﬁ( /s W corresponds to what one might consider the “super

exterior derivative” d : O — w, very analogous to the classical situation. Locally this
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maps f = f(z|0) to
frdf = Dy(f)[dz] df].

4.1.3 The Sheaf of Superconformal Vector Fields

On a super Riemann surface one also has the sheaf of superconformal vector fields WW.
These are vector fields that preserve the supersymmetry in the sense that )V, D] C D.
We remark that the sheaf W is not an Ox-module but only a sheaf of C vector spaces.
Nevertheless W’s utility will be in the fact that it generates automorphisms of the the
super Riemann surface and thus will help us identify tangent spaces to the Moduli
spaces of interest.

Locally in superconformal coordinates x|, a vector field V

V= £, 5 + g D¢

is in W if and only if [V, D¢] = 0 mod D. A quick computation will give

1V, D = (20(2,8) — (-1)VIDe (2, €)) - mod D (4.5

which yields that the local form on a section of W is

D¢ f(z,
\4 sféﬂc 5)D§_

0
V= — 4+ (~1
F@,€) - +(-1)
The above local form of V' implies that the natural map (of sheaves of super C vector
spaces)
W — Tx/D

is an isomorphism. We emphasize that the above map is not a map between two vector

bundles, but nevertheless it will be useful to us in computation of cohomology.
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4.2 Residues and Serre Duality on SUSY Curves

4.2.1 Theory of Residues - Basic Definitions

Definition 4.2.1. A SUSY-disk, is a non-compact super Riemann surface A C CH

whose underlying topological space is a classical disk in C
Al ={z€C : |z| <€},

with a choice of global superconformal coordinates z|0 on A. That is, we take Oy + 00,

as the gemerator for the odd distribution D.

Definition 4.2.2. (Residue - Absolute Case) Let A be a SUSY-disk with coordinates

z|0. Then given a meromorphic section n of w = BerQX\ we write

o0

n={ Y (or+50)2" | [dz]do]
k>—N

for ag, Br € C. Then the residue of n at zero is

reso(n) := B-1.

It is easy to check that this is independent of superconformal change of coordinates
on A.

Definition 4.2.3. Letm: X — S be a SUSY family and q : Syeq — Xyeq @ section of the
reduced family. A SUSY-tubular neighborhood of q is an open set U C X containing Imq
with the restricted superconformal structure. We say a SUSY-tubular neighborhood is
trivial if there exists a SUSY-disk A and an isomorphism of families of super Riemann
surfaces

a:U=Z8xcA
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such that the following diagram commutes

Ured Cored ” (S Xc A)r@d

! Sred q

where ¢'(s) = (s,0).

Each such trivial SUSY-tubular neighborhood then has a canonical set of relative
superconformal coordinates coming from the pullback of the standard ones z|6 on the
SUSY-disk via a. We will frequently abuse notation and still denote these pullbacks by
z|6.

Definition 4.2.4. (Residue - Relative Case) Let 1 : X — S be a SUSY family,
q : Sred = Xyea a section and U a trivial SUSY-tubular neighborhood of q. Let j; = j :
U\ Imqg— X denote the inclusion.
Suppose 1 is a local section of mj*w. Write
n= D (ar+Bb)2* | [dz]db],

E>—N

for ag, Br local functions on S. Then we define the residue of n at q
resq(n) = B_1.
Thus the residue yields a morphism
resg 1 M w — Og

Of course, one must go ahead and prove that the above definition is independent
of all the choices made but this is done very much in similar fashion as in the classical
case. Here however, it is very important we work on SUSY curves as only superconformal

coordinate transformations preserve the residue.
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4.2.2 The Relative Cech Complex

Let # : X — S be a family of SUSY curves and assume we are given sections
q1y- -5 qQr ¢ Sted = Xyed, for some r > 1, of the reduced family mpeq : Xyed = Sreqa Such
that the following is true: For each k = 1,...,r we can find a trivial SUSY-tubular
neighborhood Uy, of g

U =285 x¢ Ag.

so that the Uy’s are pairwise disjoint.

For each k = 1,...,r choose superconformal coordinates zx|0) on the corresponding
SUSY-disks Ay and identify them with relative local superconformal coordinates on Uy.
Identify g with its image and let ji = jq, : Ux \ g — X denote the inclusion.

Under these assumptions we define a canonical relative Cech complex for which we
will use for cohomology computations and give an explicit description of Serre duality.

Define the open set U? = X\ (1 U- - -Ug,) and let F be quasi-coherent and flat over
S. For any open U C X with natural inclusion j : U — X we denote the “push-pull”
sheaf in the usual way

joi F = Fly.

For each such U we have a natural morphism of sheaves

F = Fly-

Definition 4.2.5. (Relative Cech Complex) Let F be a quasi-coherent sheaf on X, flat

over S. In the notation used above the relative Cech complex C*(X,F) is the complex

O—>~F|UO@@‘F|Uk i>69]:‘@1@\% — 0 (4'6)
k=1 k=1
where
(d(SOa S1y-- -5 ST))k = SOlUk\qk - Sk‘Uk\qk'

This complex will prove useful for computations below thanks to the following propo-

sition.
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Proposition 4.2.1. The complex

0 — F — C*(X,F)
is a me-acyclic resolution of F. Hence, in particular we have the natural identification
Rim,F = H' (7,C*(X, F)).

Proof. Let U € {U°,Uy,...,U., Ui \qs,--.,U:\gr} be one of the open sets which appear
in the definition of C*(X,F) and j : U — X the inclusion. Let s € S be a point in the
base. We claim that for ¢ > 1

H'(Xs, (F|)|x.) = H' (X, Flyny,) = 0. (4.7)

Indeed ]:’UQX has support in the open set U N Xy C X, which is a Stein manifold.
Hence all higher sheaf cohomology groups vanish.
By (4.7) the natural base change map

(R'mFly), ®0s, k(s) — H'(Xs, Fly0y.) (4.8)

is trivially surjective, hence an isomorphism by the cohomology and base change theorm.
Thus by Nakayama, Riﬂ'*./—"‘U =0 fori>1. O

4.2.3 Serre Duality and the Trace Map

If F =w = Ber Qﬁ( /s is the relative Berezinian sheaf then by definition |D and

direct sum we obtain a map on the pushforward of relative 1-cochains

,
Zresqk 1 CHX,w) = Og,
k=1

which clearly descends to a map on the quotient

Zresqk : Rl'mw = 10N (X, w) /dr.CP(X,w) — Os.
k=1
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This is the trace map of Serre duality tr : R'm,w — Og and induces a perfect pairing
Rim (F) @ Rim (FY @w) — Og

for F locally free. A more general and complete account of Serre duality in the super

case is given in [I7], but for our purposes the previous description suffices.

4.2.4 An Induced Long Exact Sequence Computation.

Suppose we have a family of SUSY-curves 7 : X — S for which we are given a global
section ¢ of an invertible sheaf F, flat over S, such that ¢,q has simple zeros {qi, ..., ¢, }.

From this data we get a canonical short exact sequence
0 — Ox L>}"—>]-"\T—>0

where T' = {t = 0}, and an induced long exact sequence of sheaves of higher direct

images
0 — m.Ox _t T F — W*F‘T i) R17r*(’)X t R'7. F — 0.

Decompose T' = > T} into pairwise disjoint prime divisors so that Treq = > qx.
Then we can view each ¢ as a section of the reduced family g : Sied = Xyeq- Assume
furthermore we can find trivial SUSY tubular neighborhoods as in the assumptions of
Section

We wish to analyze this long exact sequence in more detail within the context of the
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relative Cech complex in Definition (4.2.5). We have the following diagram

t

mOx

> Ty W*f‘T

v v

m.0po & Bp—y Ov, —— 7r*-7:‘U0 @ Dl ”*I‘Uk ’ W*f‘TﬂUO ® Dj- ”*f‘TmUk

d d d
r t r r
_ _—
D=1 Ovia Dl Tr*f}Uk\Qk D W*I‘TQ(Uk\Qk)
R1,0x ! » R'm, F S

The connecting homomorphism ¢§ : m,F |T — R'7,Ox is computed in the usual
snake-lemma way, by follwing the zig-zag pattern on the above diagram starting from
the upper right to the lower left. Specifically let f € m,F ‘T be a local section and

interpret f as the element

f:(f0207f1""7f1")

where fi € W*‘F‘TﬁUk' Lift f to an element f = (0, f1,..., fr) and apply the Cech

differential

d.f = (le‘Ul\qp RN} fT|Ur\Qr)'

Lifting then under the multiplication by ¢ map (division by ¢ as we are away from
{t = 0} and looking at the image in the quotient, we conclude that the connecting

homomorphism § sends f € m,F ‘ o to the cohomology class

o[- |

t t

fr

ey ERlTF*Ox.

U1 \q1 UT\QT

The composition of this with the Serre-dual map R'm,Ox — (mw)v we denote by §'.

This is explicitly

5 W*.F‘T — (W*w)v

r £ 4.9
£ <77'—> ) resqk(n\UkJ;k o )) (4.9)
k\4dk

k=1
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We will use this explicit description of ¢ multiple times in the main arguments
presented below. We also consider a slightly more general argument than that just
given; namely when Ox is replace by some other invertible sheaf F’. The changes are

minimal and we do not pause to comment further.

4.3 Punctures

Scattering amplitudes of superstring theory are written as integrals over moduli
spaces of slightly more general objects than strictly super Riemann surfaces. These are
punctured super Riemann surfaces which we discuss now.

There are two types of punctures one can consider in the theory of SUSY curves,
known as Neveu-Schwarz and Ramond punctures. Neveu-Schwarz punctures are more
familiar, while Ramond punctures are a bit exotic. We focus on Ramond punctures

first.

4.3.1 Ramond Punctures

Suppose m: X — S of 1|1 is a family of supercurves along with an odd distribution

D C Tx/s such that the Lie bracket
po2 L oD

fails to be an isomorphism along an effective relative divisor F, in the sense that instead

[, ] induces an isomorphism
po2 Ll 7 oD Ox(-F).

In this case the family 7 : X — S is called a family of super Riemann surfaces with
Ramond punctures or a family of SUSY curves with Ramond punctures. The divisor F

is called the Ramond divisor. If we write F as a sum of minimal divisors (irreducible
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divisors)
nR
F=> Fi
k=1
then each Fj is called a Ramond puncture. One can think of a Ramond puncture as a
“puncture” in the distribution D itself.
Locally near a Ramond puncture Fj we can find a coordinate chart z|¢ so that Fy

is given by z = 0 and that D is locally generated by DZ = 0¢ + 2(¢0.. Such coordinates

are also called superconformal. The usual exact sequence now becomes
0 — D — Tx — D*(F) — 0.

Dualizing and taking Berezinians we conclude w = Ber X/S = D~!(—F). In fact, in
this case w remains a relative dualizing sheaf.

The reduction of the Ramond divisor is a sum of points on the Riemann surface
Xreds

nR
Fred = Z Tk
k=1
thus reducing the above exact sequence gives

nR
0 —> Drea — (Tx)rea — Dfﬁ(z k) — 0.
k=1

Note that the rank 0|1 line bundle Dyeq on X,eq is concentrated in odd degree, i.e. its
®

even part Dieq, is zero. Similarly the odd part of Dy

2(3°R%, k) = 0 is zero and hence
the above exact sequence actually splits canonically
ngr
(TX)red = (TX)red,O S¥ (TX)red,l = D?Qi(z Qk) S2] Dred-
k=1

Now by the Proposition we always have the identification (7x )red,0 = Tx,q, thus

nR
k=1
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In particular taking degrees gives
2deg Dieq +np =2 — 29,

where ¢ is the genus of the surface X. One concludes that the number of Ramond
punctures nr must be even.
We denote the moduli space of super Riemann surfaces with np Ramond punctures

by My.ny-

4.3.2 Neveu-Schwarz Punctures

Suppose 7 : X — S is a SUSY family. A Neveu-Schwarz (NS) puncture is simply a
section s : S — X of the map 7. Such a section is locally of the form U — U x C'I*, for
U C S open, and hence equivalent to a choice of an even and odd function on U. Hence
it is common to say that an NS puncture is given in local superconformal coordinates
by z = 2¢,( = (o for some choice of even and odd functions zg, (p on the base S.

Given an NS puncture s we have a natural associated divisor using the distribution

D. Namely, we use s to pullback D and then take its total space s*Dt°t,

(S*D)tot Dtot

| JP

S —2 X

This gives a subvariety (s*D)'*" — X, which is of relative dimension 0|1 over S. We will
denote this subvariety associated to s by div(s). Given such a family 7 : X — S with
nys NS punctures sq,...,Spyg, We denote by N = > UN5 div(s;) the Neveu-Schwarz
divisor.

We denote the moduli space of super Riemann surfaces with nyg Neveu-Schwarz

punctures by Mgy s-
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4.4 The Moduli Spaces 9,

nNsS,NR

We now turn our attention to the various moduli spaces of interest. By Mg 5y g,np We
mean the moduli space (stack) of super Riemann surfaces of genus g with nyg Neveu-
Schwarz and ngr Ramond punctures. If one or both of nyg or ng is zero we will simply
write Mg, Mg nns OF My ny. These stacks are fine moduli spaces in their appropriate

categories.

4.4.1 The Tangent Sheaf of M,

A closed point in 9, corresponds to a super Riemann surface X, and the tangent
space
Tx, My = (TXOWQ)O D (TXogﬁg)l

splits as usual. One has the following characterization of the even an odd parts of

Tx,9M,: an even tangent vector to M, at Xy is a map
Spec Cle]/(e?) — M,

where ¢ is an even parameter and mapping the unique C point of Spec Cle]/(¢2) to
Xp. By definition of a fine moduli space this is equivalent to a family over the base

Spec C[e]/(?) induced by the universal curve Cy

Spec Cle]/(e?) xo, Cg — Cq4

| |

Spec C[e]/(e?) ——— M,

whose special fiber is X(. In other words an element of (T'x,Mg)o is family X —
Spec C[e]/(£2) whose fiber over the point (¢) is Xo. We will call such a family an even
first order deformation of the single super Riemann surface Xj.

The argument is similar for the analysis of (Tx,9,)1, namely an odd tangent vector

at Xo is a family X — Spec C[n] with n an odd parameter and whose fiber over () is
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Xo. We will call these families odd first order deformations of Xj.

Now the key observation is that families over the two special bases specified above
with special fiber X are parametrized by the cohomology group H'(Xg, Wy), where
W is the sheaf of superconformal vector fields on Xg. This observation follows from,
e.g., the Cech description of H' (X, W) as locally automorphisms of X are described
by infinitesimal automorphisms, i.e. vector fields preserving the given structure. In
conclusion

TxyMy = H' (X0, Wo),

or in global terms in turns out [6],
Tom, = R'm.W

where W is the sheaf of relative superconformal vector fields and 7 : C; — 9, is the
projection from the universal curve.

This observation allows us to compute the dimension of 9,. To simplify notation
denote by Xg simply X and Wy by W. As mentioned above the sheaf W is canonically
isomorphic (as a sheaf of C-vector spaces) with the quotient sheaf 7x /D and hence, by
the SUSY structure, to D®2. As X is a single SUSY curve we have the natural splitting

of O = Oreq®J and also every invertible sheaf on X splits in a similar way, in particular

W =D =Df @ (T ©Dygd)-

By the proof of Proposition [3.2.2[ we saw that Dyeq = J ' and that HD;B}i = Q?}Z; was

a square root of the canonical bundle 2x . of the reduced space. Thus by classical Serre

red
duality on the reduced space, we conclude that the even and odd parts of H'(X, W)
are,

HY (X, W)o = HY(X,D22) = H(X,Q%2 )"

Hl(X, W) = H1<X7 Dred) = HHO(X’ Q?}i/f)*

The Riemann Roch theorem on X,eq then immediately gives

dim M, =39 — 3|29 — 2.



54
Adjusting the above arguments slightly allows one to compute the dimensions of the
moduli spaces with punctures. One must now consider a subsheaf YW C W of the sheaf
of superconformal vector fields that yield infinitesimal automorphisms of punctured

SUSY curves. The sheaf W’ still has the important property that
1 /
R W*W = Tgmg,nNS’nR.

We analyze the sheaf W separately for the cases of Neveu-Schwarz and Ramond punc-

tures.

4.4.2 The Tangent Sheaf of 9

gnNs

For a family of SUSY curves 7 : X — S with nyg punctures s, ..., s,,g, sections
of W' are defined to be vector fields preserving the distribution D in the sense that
(W', D] C D which also vanish on the divisor N := ", div(sy). In local coordinates one

can verify the analogous isomorphism (of sheaves of C-vector spaces)
W' = TX/S/D( - N)

In the presence of NS punctures D is still maximally non-integrable. Using the other

relationships derived for SUSY curves above, letting Nyeq = ), sk
W' = D®2(_N) = IDSZE( - Nred) @ Dred( - Nred)

thus,
HY (X, W) = HY(X, QP (Niea))"

HY(X,W')1 2 TTHO(X, Q2 (Nyea))".

Then as deg Nyeq = nys we have

dim My vs =39 — 3 +nns |29 — 2+ nns.



95
4.4.3 The Tangent Sheaf of I,

The analysis in the presence of Ramond punctures is slightly more subtle. Suppose
we have a single super Riemann surface with Ramond punctures, i.e. a family 7 :
X — Spec(C) over a point of super Riemann surfaces with Ramond punctures. The

maximally non-integrable condition is replaced by the isomorphism
2 L T D Ox (—F)

for an effective divisor F called the Ramond divisor. We write as above F = >, Fy,
with each Fj, a minimal/irreducible divisor, and Freq = >, qx- For this specific case
when dealing with a single curve the structure sheaf O = O,oq & J splits as usual and
as in the proof of Proposition [3.2.2] above we have that the odd part of the reduced
tangent sheaf is the dual J* = Homo, , (T, Ored):

(Tx )red,1 =T
On the other hand we know from above we know the even and odd parts of (Tx )req thus

Drea 2T Dd(Q ) = T
k

The sheaf W’ of infinitesimal automorphisms is simply W, the sheaf superconformal

vector fields defined by [W, D] C D. A local coordinate computation will show that
W = D#?
again as sheaves of C-vector spaces. Thus the splitting D®? = Dgi P Dreq gives
H' (X, W)o = H'(X, D) = (X0 (- > av))*
k

HY(X,W)1 2 H' (X, Dyeq) = TH"(X, Qx,,, ® D))"

In view of our argument showing the the number of Ramond punctures ng must be
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even, we get that deg Dyeq = 1 — g — ngr/2 and hence Riemann Roch yields

dim My, =39 —3+ngr|29 —2+ng/2.
In fact when both NS and Ramond punctures are considered we get

dim My nyemr =39 —3 +nns +nr |29 — 2+ nng +ngr/2.

4.5 The Riemann Roch Theorem on 1|1 Supercurves

The Riemann Roch Theorem has a nice generalization to the setting of 1|1 super-
curves, we discuss it now. If £ is an invertible sheaf on a supercurve X, the cohomology
groups H'(X, L) are naturally super C-vector spaces. We let h'(X, L) = dim H'(X, L)
denote the dimension. If it is clear from the context we will frequently not mention X
and simply write H*(L) for H*(X, £). Recall that for a super vector space of dimension
m|n the superdimension sdimV is defined to be m — n and thus we use the notation
shi(L) to denote sdim H*(L).

Definition 4.5.1. Suppose X is a 1|1 complezx supercurve. Let L be an invertible sheaf
on X. We define the Euler Characteristic of L to be

X(£) = h°(L) — h*(L)
and the super Euler Characteristic to be single integer
sx(L) = sh®(L) — sh*(L).

A single supercurve X is split and hence every invertible sheaf £ on X splits as the

direct sum as two line bundles on the reduced space,

L= Ered @ (ﬁred & \7)
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with Ox = Ox, , ©® J as usual. This observation allows us to formulate the Riemann

Roch Theorem on X as simply two applications of the classical Riemann Roch Theorem.

Theorem 4.5.1. (Riemann-Roch for Supercurves) Suppose X is a 1|1 supercurve and

L an invertible sheaf locally free of rank 1|0 on X, then
X(L) = (degL—g+1|degL +degT —g+1).
Hence in particular the super Euler Characteristic
sx(£) = —deg J

in independent of L.

Proof. Immediate based on the observed decomposition of J and the classical Riemann

Roch formula. ]
In the special case X is a SUSY curve we have

Corollary 4.5.1. (Riemann-Roch for SUSY Curves) Suppose X is a SUSY curve and

L and invertible sheaf on it locally free of rank 1|0, then

X(L) = (degL—g+ 1| degL).

and

Proof. By Proposition J is a spin structure on X and hence has degree g — 1. [

We remark that if we are working with a family of 1|1 supercurves 7 : X — S the
above two results still can be of use. Namely if £ is an invertible sheaf on X such that
both 7L and R'm, L are locally free over S then the fiber of Rim, L at any point s of
S is H'(X,, L|x,). By the local freeness assumptions, the dimensions of these super
vector spaces will not change as we vary s and hence Theorem and Corollary

compute the ranks of the vector bundles Rim, L.
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4.6 The Super Mumford Isomorphism

We follow [I] closely. Let m : X — S denote a family of 1|1 supercurves. For any
locally free sheaf 7 on X we can consider the invertible sheaf B(F) on S, called the
Berezinian of cohomology of F. If each Rim,F is locally free, then B(F) is given by

B(F) = ®; (Ber Rimr, F)(~1"
Moreover, for every short exact sequence of locally free sheaves on X
0—F —F—F"—0,
we get a canonical isomorphism
B(F')® B(F") = B(F).

Hence, in particular any isomorphism f : F — G induces an isomorphism B(f) :
B(F) — B(G).

For w = Ber Q}( /s the relative Berezinian, we set for each 7,
)‘j/2 = B(w®j).
Serre duality gives the canonical identifications A5 = A_j)/2. The super Mumford

isomorphism(s) are the following canonical isomorphisms amongst the A; /5.

Proposition 4.6.1. (The Super Mumford Isomorphism) For any family of 1|1 super-

curves w: X — S we have canonical isomorphisms

~ (—1)771(25-1)
Ajje = 1/2 e

In particular,
Azjp = A Ja-

Proofs of the super Mumford isomorphisms can be found in [I] and [13]. We have

also included a proof in Appendix We will denote by p the trivializing section of
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/\3/2)\1_/52. Such an object is called the super Mumford form.
In the following we will consider two separate situations:

1. m: X — S is a family of super Riemann surfaces of genus g > 2 with np Ramond

punctures such that:

(a) The sheaves Rim,w’ are locally free for i = 0,1, j = —2, 1,0, 1.
(b) nr > 6g — 6.

2. m: X — § is a family of super Riemann surfaces of genus g > 2 with nyg

Neveu-Schwarz punctures such that:

(a) The sheaves Rim,w’ are locally free for i = 0,1, j = 0,1,2,3.

(b) mew has rank g|1.

In each case we produce a concrete proof of the corresponding super Mumford isomor-
phism A3/, = )\‘;’ /2 and use it to produce the main results.

We make heavy use of the higher direct image sheaves of the relative Berezinain
Rim,w’ and emphasize that in both situations we work under the assumption that these
sheaves are locally free. We pause to discuss this assumption more in depth at the end
of Section (.11

The conditions listed for the Neveu-Schwarz case speak to the fact that we work
over the component of the moduli space M., 4 corresponding to an odd spin structure.
Hence, fiberwise Ilw,oq gives an odd nondegenerate theta characteristic.

We begin with the Ramond case.



Chapter 5

The Ramond Puncture Case

Here we derive our first main result: an explicit formula for the super Mumford form
i on the moduli space of super Riemann surfaces with np Ramond Punctures M., ,.
This can then be used to create a measure on M., ,, whose integral computes scattering
amplitudes of superstring theory. The following arguments were heavily inspired by the
work done in [I§], [I] and [19].

Throughout this section we let 7 : X — S denote a family of genus g > 2 SUSY
curves with ng Ramond punctures with Rim,w’ locally free and ng > 6g—6. We denote

the Ramond divisor by F.

5.1 Some Riemann-Roch Calculations

In the special case that S is a point the structure sheaf Ox admits the global
decomposition Ox = Ox, , ® J. This allows one to decompose any super holomorphic

line bundle £ into the direct sum of two ordinary holomorphic line bundles over X,¢q as
L= ['red S (ﬁred & \.7) . (51)

Here J C Ox again denotes the sheaf of ideals generated by the odd elements. The
summands above are exactly the even and odd parts of £. We are most interested in the

case £ = w® = wJ with our goal being to identify the ranks of these bundles. By the

60



61
local freeness assumption (and the cohomology and base change Theorem), to compute

these ranks it suffices to assume that S is a point. Thus by the decomposition (5.1))
rank R, L = h'(Lyed) | h (Lreq ® J) (5.2)

for £ of rank 1]0 (and vice versa for £ or rank 0[1).

In Section we saw that the Berezinian sheaf w was identified with D~!(—F).
Furthermore, one can easily see [6] that if S is a point, Tx,., = D?(F)rea and thus
the distribution D had degree 1 — g — ng/2. Arguing in this fashion, i.e. utilizing the
classical Riemann-Roch theorem on X .4, a slightly tweaked Proposition and the
assumption that ng > 6g — 6, allows one to complete the tables below of the various
ranks of the sheaves Rim.w’. The calculations involved are somewhat tedious and we

omit them here.

J rank w*wfed rank m(wfed ®J) rank 7w’
-2 np+3—3g 3nr/24+2—-2g9 |nr+3—3¢g|3ng/2+2—2g
—1|ng/2+2—-2g np+1—g nr+1—g|ng/2+2—2g
0 1 ngr/2 1|ngr/2
0 g g10

j | rank le*wfed rank Rlm, erd ® J) | rank Rlm.w’

2 0 0 0[0

-1 0 0 0]0

0 g 0 g0

1 nr/2 1 1|ng/2

Let us now address the issue of local freeness of the sheaves R'm,w’ on the base S.
Specifically for our purposes in the Ramond case we are interested in the local freeness
of those sheaves with ¢ = 0,1 and j = —2,—1,0,1. Common cohomology and base
change arguments give immediately that the sheaves Rim,w’ with i = 0,1, j = —1, —2
are indeed locally free. Unfortunately for the others, it seems that there is no elementary
argument to guarantee their local freeness. In fact, similar issues have been discussed in

the literature before. A result in [20] essentially shows that there is no super version of
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Grauert’s classical theorem of algebraic geometry, which would yield the desired result.
The author would like to thank E. Witten for his helpful and stimulating comments

regarding this issue.

5.2 The Super Mumford Isomorphism /\3/2)\1’/52 = 0Og Ex-

plicitly

Our goal now is to prove explicitly the super Mumford isomorphism A3 /QA;/52 = QOg,
following every step carefully to identify the trivializing section p corresponding to the
image of 1g under the above isomorphism. We will express p in terms of bases chosen
for the locally free sheaves Rim,w’.

The isomorphism will follow from 3 short exact sequences of sheaves on X

0 — Ilw - O — Ol —> 0, (5.3)
0— 0 -5 Hw! — (Mw Dy — 0, (5.4)
0—Tw ! S w?— w2y — 0, (5.5)

where t = ITt’ for ¢ is an odd global section of w™!, and T is the divisor {t = 0}. From
these one concludes utilizing Serre duality (noting B(ILF) = B~(F))

B(Olr) 2 X, B((Iw Yr) AT, and B ™r) 2 Azph. (5.6)

An important lemma is shown in [I] and [I3], a proof of which is also given in
Proposition of the Appendix, stating that given any invertible sheaves £ and K
of on X and any effective relative divisor D of dimension 0|1 over the base, we have a

canonical isomorphism B(L|p) = B(K|p). Using this result we get that the left hand
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sides of the three equations in (5.6 are all canonically identified and thus,

N ZAT Ay A Z AT, = Agn ZAY

giving the super Mumford isomorphism.
We will follow the above argument in detail to identify p in terms of specified bases

for the sheaves Rim,w’.

5.3 Various Bases

To simplify notation we let r :=ngr/2 — g+ 1. We choose a distinguished odd global
section ¢’ of w™! such that ¢/_; vanishes to first order at points qi,...,q,. Set It/ =t
and near each point g choose local superconformal coordinates zy |0}, centered at gy so

that ¢ expands in these coordinates as

t' ~ Zkfk(zkwk)[azk ‘ a9k]'

We denote by T the divisor {t’ = 0} = {t = 0} and assume it is disjoint from the

Ramond divisor F (which is an open condition).

Local Basis for m,w:

The rank of 7w is ¢|0, thus we choose an (even) basis

By = {¢1,..., 94}

Near each ¢; we expand

i ~ (D57 + b O+ O(z0)) [z | dBy],

where gp?’i are even/odd functions from the base.



Local Basis for 7, O:

We take
BO = {1 | t,(pl’ e ,t/SOQ,é-l’ . '57‘71}7

to be a basis in m,O where
& ~ (€ + 770+ 0(=))
near q.

Local Basis for m,w™!:

Let

B,-1 = {t?¢1,... ,t’2g0g, &, U 1 00,...op [t T g )
be a basis for m,w™!. In local coordinates near each g expand

0j~ (Uf’_ + U;.c’+9k + O(Zk))[azk ‘(%k]’
Tj ~ (Tf’* + Tf’_Qk: + O(21))|0z, | Oa,]-

Local Basis for m,w™2:

Let

B2 = {t% t'r,... AT g,y |

t,3g01, ey tlg(pg,tafl, ey t,2£T,1,t,0'1, e tIUT,¢1, ceey ¢T},

be a basis for m.w™2 and as above expand near each g

nj ~ (" 400+ O()) [0, | 94,7,

64
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Wy~ (W57 + 95T, + O(20))[0s, | 9, 1%

Local Basis for ., (w’|7):

We have singled out a specific odd global section ' of w™!, for which we defined a
divisor T'= {¢' = 0}. We assume this is disjoint from the Ramond Divisor F and then
take

Buily = {[0:1 106, -, [0, | 0,17 |01[0=, |0,V - .., 0:[0:, | 0,17}

to be a basis in w’|y (for j = 0 we denote by 1 = [0, | 95, ]° the element which is the
function 1 near each g, similarly 130 will sometimes be shortened to 6;). To shorten
notation we will sometimes use wy, for [0, |9y, ].

Now by Serre duality we identify R'm,w’/ = (m,w!™7)*, and hence by taking dual
bases we get local bases B}, and B for R'm.w and R'7T.O respectively (recall from
Section that both Rlm.w™! and Rlm.w=2 vanish).

The five (ordered) bases above give rise to generating elements of their respective

Berezinian of cohomology,

dy 2 = Ber B, ® Ber By € A9
dp := Ber Bo ® Ber B, € \g

d_1/2 = BerBw—1 € )\_1/2 (57)
d_1 := Ber Bwfz ISP
dj/2 = Ber B, € B(W|7).

5.4 The First Short Exact Sequence

We now study in detail the first short exact sequence shown in (5.3). Considering
the induced long exact sequence in cohomology and utilizing Serre duality we obtain

(Note: R'7,(O|r) will vanish as T has relative dimension 0]1),

x b

0 — I(mw) 0 — (Ol 1) LN I(7.(0))* — (me(w))" — 0. (5.8)
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We emphasize that the morphism ¢’ is that as was described in Section and by
equation . We will sometimes write ¢'(s) = (-, 6(s)) where § : 7,(O|r) — IR 7w
is the usual connecting homomorphsim and (-, -) is the Serre duality pairing.

Under the first map the (odd) basis II{¢1,... ¢4} of II(mw) maps to {ty1,...tp,}
(note the presence of ¢ and not t') which is then completed to the chosen basis Bo =
{1]ter,...,teg, &1, &1} of mO. The restriction map then sends the ty;’s to zero
and the remaining basis elements to {1|7|&1|r,...,&—1|r}. In terms of our chosen

(ordered) basis B, for m.(O|r), these are in components

r
1|T = Z 1k’7
k=1

r . (5.9)
k,— k
Glr =) & L+ > & 01y
k=1 k=1
We will complete {1|7|&|r,...,&—1|r} to a basis by taking certain lifts under &’
of elements of I1(m.(O))* and compare this with Bpj,..

As described in (4.9)

T

5(5)(h) = 3 resy, (T) (5.10)

k=1
for h € m,0O. We remark that the meaning of taking the residue at g of the expression
hs/t means to take the local function defining s near g and compute the resulting
residue.
Now, in view of the exact sequence we see that the image of the map 7, (O|r) —
II(7,(O))* sending s > 0'(s) = (-,0(s)) is the kernel of t* : II(7,(O))* — (m«(w))* which
is spanII{1* | &5, ..., & 1 }. Thus (-, (s)) expands as

r—1
(- 6(s)) = (L, 8())1* + D (&, 6(s))&R- (5.11)
k=1
On the other hand, the kernel of ¢* is spanned by the set

{<‘7 5(11»7 SRR <'7 5(17“)> ’ <'7 5(91»7 R <75(07“)>}7

and hence equation (5.11]) applied to each member of the (ordered) set above yield the
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various expressions

(130 =resy () (10060 =res ().

(G001 =resy () (600000 = resy, ().

which in view of the local expansions of Section can be encoded in the (2r x r)

matrix _ -
resq, 1/t resq &1/t ... resg &1/t
W resg, 1/t resg &1/t ... resg&r—1/t

resq 01/t resq &6/t ... resq &r_161/t

resq, 0./t resq &10,/t ... resy 10/t

Letting A = (a;;) denote any (r x 2r) left inverse of A" gives us lifts to m,(O|r) of
the elements {1* | &5, ..., &1},

T T
1* = Z ayjlp + Z atj+r0k 1k,
=1 =1 (5.12)

T T
;.‘_1 = Z anglk + Z aj7k+,49k1k.
k=1 k=1
Therefore combining (5.9) and (5.12)) we have that the bases

{1|T7£T7 s >§:—1 ’gl‘Tw .. 7§T—1’T7 iv*}

and
{11,...,1,|61,...,0,}
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of m.O|r are related by the matrix

_ 1 1 i
L SR S B 31 21 an
27_ 27_
1 0/2’2 e anQ 51 e gr—l al’g
37_ 37_
1 asg .. ar3 1 A S a3
_ "
az r cee Ay oy 51’ NS 1 air
My = It §,+ (5.13)
0 agpy1 ... Qrr+1 1 e fr_l a1,r+1
2+ 2+
agr4+2 ---  Qpr42 1 57«,1 a1,r+2
~14+ ~1+
a29r-1 -+ Qror—1 & co §0T a2
_0 ag or ... ar 2y 5{’—’— . f:f_l ai,or ]
That is, we get
Ber {1|7,& | &7, I*} = Ber My &
in B(O|r) = Ber . (O|r). Therefore under the canonical isomorphism
B(O|r) = A12)0
we have the identification
Ber {HT, fz | £k|T7 1~*} = Ber M() 50 == dl/gdo. (5.14)

5.5 The Second Short Exact Sequence

We move on to analyze the second short exact sequence (5.4]). Our specified bases
for the sheaves listed here are compatible with this short exact sequence, except for the
third term. The induced long exact sequence after Serre duality reads

/

0— m0 -5 T (Mw™) — 7 (Tw™!7) AN (mew)* — 0.
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We aim to replicate the argument given in Section [5.4] to relate the two bases

we have for m,(Ilw~!|7). The key again is understanding the connecting homomor-

phism § : m.(llw™!|r) — R7.O and its composition with the Serre duality map
& me(Mw ™ 7) % Rlr,0 - (Tew)*.

Following the same argument as given in Section and slightly generalized argu-

ments of Section 4.2.4] we again have

T

(0(s)) = 8'(s) = Y resy, (()3) - (5.15)

k=1

In terms of the basis B, each (-, (s)) expands as

(- 8(s)) = Y (0 8(5))5- (5.16)

j=1
Thus, we apply (5.16) to each member of the basis B,,-1|, and encode it in a (2r x g)
matrix B’. To simplify notation let wy, = [0, | 9p,],
resq, p1wi/t ... resy pgew/t
B — resq, 1w, /[t ... Te€Sy pgtoy/t
resq, 1611/t ... resq pgbiw/t
resq, 10w/t ... resy pgbrw, [t

Hence we can invert (non-uniquely) the relationships (5.16)) encoded in B’ by finding
any left inverse to B’, call it B = (b;;) which yields lifts to m.(Ilw™!|7) of the elements

{el, 05}

T T
0= > begwi+ Y b5, (5.17)
j=1 j=1
Now in m.(Ilw™!|7) the two bases IIB,,-1|, and

{Tl‘T7’ . 'aTng|Tv‘10’1ﬁv' . 'a&i|01|T7"'7O_T‘|T}7
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are related by the matrix M_y s,

r 1, r,— 1,+ o+
1 1 T1 1
TTL PR TTI,-S- 7_77:,-5-
birs1 .. bi2r b1 ... biy
M 15 = : : : - (5.18)
bgri1 . bgor bg1 ... bgr
1,+ r,+ 1, r,—
01 01 g1 01
01’+ UT’JF O'Tl’ 0;’
Therefore the relationship
Ber {7—1|T7 e 7Tr—g‘T) QOT, e ,(,0; ’ O’1’T, ey Ur’T} = BerM,l/Q 5,1/2
along with the canonical isomorphism \g ® B(Ilw™!|7) = /\j /o> gives
-1,;-1 _
dO d71/2 = Ber M_1/25_1/2. (519)

5.6 The Third Short Exact Sequence

We analyze the final short exact sequence (5.5). In this case as Rlm.(w™!) =
R'm,(w™2) = 0 and the induced long exact sequence is actually the short exact se-

quence

0— m(Mw™ ) -5 mw? — m(w2|r) — 0.

This allows us to quickly identify a basis of 7.(w™2|7) coming from the chosen basis

B,,-2, namely {m|r,...,n-|7|¢1|r,...,¢¥:|r}. This is related to the basis {w? | Ow?}
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by the matrix

i 1’ ) 1’_ [
mt o T )
1,+ r,+ 1,— r,—
n e n T
Moy = P o (5.20)
(Ih O A A c
KA A T
Therefore in B(w™2|7) we have
Ber {"71’T7 S 7777“‘T | w1’T7 ce 7¢7“T} =Ber M_1 04
and under the identification )\:1/2 ® B(w™2|7) = A_1, we get
d_1d71/2 = Ber M_15_1. (5.21)

5.7 An Expression for p

The calculations done in Sections and [5.6] gave

dl/gdo = Ber MO 50,
dald:%/Q = Ber M_1/2 5_1/2,

d_1d71/2 = Ber M_; 5_1.

Serre duality yields do = d 2, and by the argument in [1] and [13] one identifies for
each j, d;/5 = dp. These facts give by elementary algebra

Ber M_1Ber M_y,5 ,
T (Ber My)2 L2

Thus, we obtain an explicit expression for the trivializing section u:
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Theorem 5.7.1. Suppose m : X — S is a family super Riemann surfaces of genus

g > 2 with ng Ramond punctures such that:
1. np > 69 —6.
2. The sheaves Rimyw! are locally free fori=0,1, j = —2,—1,0, 1.

Then the super Mumford form p may be expressed via the sections chosen in as

_ Ber Mg)?
—d_+d 5 (
W= N2 Ber My Ber M_y

where Mo, M_1 /5 and M_y are given by , and respectively.

€ )\,1)\1’/52 ~ Og,

5.8 A Measure on M.,

Here we follow an idea of E. Witten in [2I]. Thus far we have an explicit formula

1_/52 on the moduli space
-5

My.ng- The significance of such a section is that the line bundle A_1A] /2 18 related to

for the super Mumford form g, trivializing the line bundle A_1 A

the Berezinian of My, .

As discussed in Section the tangent sheaf to My, is R'm IV where W is
the sheaf of infinitesimal automorphisms, which is seen to be isomorphic (as sheaves of
C-vector spaces) to D2. Hence, by Serre duality and the isomorphism w™2(—2F) = D?
one sees that

Ber M., = Ber Oy . = Ber T (W3 (2F)).

gin

Noting that Rlm,.w?(2F) = 0, we will write this as
Ber M., = B(w?(2F)). (5.22)
Trivially we have the short exact sequence

0 — w? — WP(2F) — WP (2F)/w® — 0.
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By Corollary of the Appendix we have canonically the identification

B(w?(2F)) = B(w®) = A3 (5.23)

Now Serre duality identifies A3/, with A_1, and thus the super Mumford form x can

in fact be thought of as a section of Ber My, , valued in a certain line bundle
p € Ber My, @ /\1—/52 = Oy -

In bosonic string theory (without punctures), the analogous argument would yield
a form similar to p such that its modulus squared could genuinely be regarded (in the
sense that one had a natural pairing between the analogous factor )\1—/52 and its conjugate)
as a section of the smooth Berezinian (or simply the determinant in this case) of the
moduli space of Riemann surfaces. The celebrated result of Belavin and Knizhnik [22]
states that this procedure indeed yields the integrand of the bosonic string partition
function, the so-called Polyakov measure.

In superstring theory the super Mumford form p plays a similar role to its bosonic
counterpart, in that it can be paired with something analogous to its complex conjugate

to yield a genuine measure. However, the story is a bit more complicated. The interested

reader can learn more in E. Witten’s notes [3].



Chapter 6

The Neveu-Schwarz Puncture

Case

Suppose now we have a family 7 : X — S of SUSY curves of genus g > 2 with nyg
Neveu-Schwarz punctures. We will reproduce the arguments of [I] and [19] to write
down the explicit formula for the associated super Mumford form p. We then discuss
how this form can be used to create a genuine measure on My, -

As in the Ramond case, we make local freeness assumptions on the higher direct
images Rim.w’ and describe y in terms of chosen local bases for these sheaves. Here
specifically we work with Rim,w’ for i = 0,1, j = 0,1,2,3. We then relate this to a

section of Ber 9 As the first part of the following argument is identical to the one

ginNNS-*
found in [I] and [19], we quickly review the procedure to establish notation but omit
some details.

We also assume that we are working over the component of M., corresponding
to an odd spin structure. That is, for the relative Berezinian sheaf w we assume that
mw has rank g|1. Thus on each fiber the reduction Iw,eq gives an odd nondegenerate
theta characteristic.

We choose an odd global section v/ € w and consider the short exact sequence

0 — Ox = Tw — (Iw)|p — 0

where v = II/ and D = {v = 0} = {v/ = 0}. This short exact sequence and the two
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others obtained by twisting by w and w? is what we focus on. Similar to the argument

given in the Ramond case, using these three short exact sequences we can produce the

5
1/2°

As v/ is an odd global section of w its divisor D has the property that its reduction

super Mumford isomorphism Az, = A

Dyeq is a finite sum of g — 1 points (which we assume to be distinct),

g—1
Dred = ij'
j=1

For each j we choose local superconformal coordinates z; | (; centered at p;.

6.1 Bases

We choose specific local bases here of the sheaves Rim,w! and mww|p and analyze
their compatibility to the above mentioned short exact sequences. The ranks of these
various sheaves are easily computable using the same techniques as used in Section [5.1

of the Ramond case.

Basis in 7,0x:

The rank of m,Ox is 1|1 and thus we take the local basis

Boy = {11¢},

where £ expands near each pj as

€~ (EP7 + TG+ O(z))

where £%% are some even/odd functions from the base S.



Basis in 7,w:

The rank of 7w is g|1 and we take the local basis
By = {p1, -, 941,V €|V},
expanding each ¢; near pj, as
;i ~ (5T + oG+ O(2)))[dz; | d¢).

Basis in 7,w?:

The rank of m,w? is g|2g — 2. We take the local basis

2 2
sz = {V/ 7X17"'7Xg*1‘1/9017"' aV,QDgflvyl £7¢1>"'

expanding each x; and v; near p; as
Xi ~ OG5 G+ 0(2)ldz; | d¢ 1,
Vi~ (W5 + PTG+ O(2))dz; | dg)*.

Basis in 7,w3:

The rank of w3 is 3g — 3|29 — 2. We take the local basis

Bw3 = {V/2§017"' 71//2()09—17V/3€7V/w17"' 7V/wg—170'17"'

7¢972}7

yOg—1

13 7 /
‘V YV X1, 5V Xg—1,P1," 7pg—2}7

expanding each o; and p; near pj as

i ~ (05 + 07 G+ O(2))) [dzy | dG),
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pi~ (0 + Pl G+ O(29)) [dzs | ).

Basis in 7, (w™!):

The rank of 7, (w™!) is 1|0 and we take the local basis
B,-1:= {g/yl}

Basis in m,w’|p:

With the aid of the specific chosen local coordinates z; | (; we take the local basis
(for j > 0)

Bwj|D = {[d21|dcl]j7 T [ng,1|ng,1]j | G1 [dzl|dC1]j7 T 7Cgfl[dzg71|ng71]j}-

Finally we utilize Serre duality, the canonical isomorphisms R'm,w’/ 2 (m,w!™7)*, to
construct local bases for R'1,Ox, R'mw, R'mw?, and Rlm,w? by taking the image of
the corresponding dual bases of those already specified. We denote these bases by B ;.

We set

)\j/2 = B(w])

Using these bases, we consider the following local generators of the various A; /o,

do := Ber Bo, ® Ber B, € \g
dija :=do € A2

di :=BerB,» ®BerB _, € A\ (6.1)
d3/ = Ber B3 € A3/s
dj/2 = Ber B, € B(w|p).
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6.2 Relating the Chosen Bases

The first short exact sequence is
0 — Ox - Tw — (Tw)|p — 0
which gives the long exact sequence on cohomology (after using Serre duality)

0 — mO0x —= mew — M (w)|p — (Tew)* — T(1.0x)* — 0.

-1 ~

Following the work of [I] or [I9] we conclude under the canonical isomorphism A} /o

Ao ® B(w|p)~! that

dy , = Ber My dody (6.2)
where M is the block matrix
A
M= (" (6.3)
Bj
where A is the (g — 1) X (2¢g — 2) matrix
@%’Jr . 8051;71,+ gpi’f e cpgfl’*
A= o :
1+ 14| 1- -1,—
Pg—1 -+ @g—1 Pg—1 --- ‘Pg—l

and Bj is any left inverse of Aj.

Similarly, the exact sequence

0 — Tw 2 w? — (WH)|p — 0,

yields

0 — Hmuw — mew? —» 7T*(w2)|D — (7, O0x)* — (W*W_l)* — 0.



Arguing again as in [I] and [19] we conclude

di = Ber My dy 01,

where My is the (29 — 2) x (2g — 2) square matrix

17+ Q*I,JF 177 97177
X1 eX] X1 %1

1+ g—1,+ 1,- g-1,—
Xg—l e Xg—l Xg—l R Xg—l

My =

17_ 9_17_ 1)+ 9—114‘
(I N 11 1 R 14

17_ g_lv_ 17+ g_l7+
wg—? e wg_2 wg_2 e 1/}9_2

0 0 0 1

Lastly, the final short exact sequence
0 — w? 5 Tw? — (Hw?)|p — 0

gives

*

0 — mw? -5 Imw? — I (w?)|p — (mew ™)

Thus, under )\;2 ~ \B(w?|p)~! we conclude

d—l

3/2 = Ber M3 d15_1

3/27

where M3 is the (29 — 2) x (2g — 2) square matrix

— 0.
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1)+ 9—174‘ 17 9—17—
P1 £1 P1 p
1,4+ g—1,+ 1, g—1,—
Pg—2 Pg—2 Pg—2 Pg—2
-1
¢ 0 0 0
M = ! (6.7)
1 1,— 1 -1
017 Jil ) Ul,-i- N o_i] ,+
17_ g_]-a_ 17+ g_17+
Oy v Ogq Oy -er Ogy

Under the canonical isomorphism guaranteed by Proposition of the Appendix,

we have that
—1)7-1

( _
60 =

Combining this with the identifications (6.2), (6.4) and (6.6)), we get the desired formula
for the super Mumford form g as in [I] and [19].

Theorem 6.2.1. ([, [19]) Suppose m: X — S is a family of super Riemann surfaces
of genus g > 2 such that:

1. The sheaves Rimyw’ are locally free fori=0,1, j =0,1,2,3.
2. m.w has rank g|1.

Then the super Mumford form p may be expressed via the sections chosen in as

 derd Ber Ms Ber Ms
K 3/201 /2 (Ber My )? )

where My, My and Ms are given by , and respectively.

6.3 Relation to Ber .,

In the situation without any punctures, such a formula for u is of immediate interest

as the Berezinian of 9, is simply A3/p, hence p is interpreted as a section of the
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Berezinian of supermoduli space valued in a certain line bundle. However, when one

considers punctures the story is a bit different, as it is no longer true that A3/, is

Ber M. s- In Section we saw that Tom,, . = Rz, W = R'71,D?(—N) for

N =3 V7 div(sy) the Neveu-Schwarz divisor. Serre duality then gives that instead we
have Ber M =~ B(w3(N)) = Ber m.w?(N).

Let Nyeq = D qr be the reduction. Then each gy is a divisor in X,eq that is a single

gnNNs

point in each fiber of 7. We choose an even global section of w3(N), call it 7, that
vanishes to exactly first order on each gi. For each k we choose local coordinates x, | Oy

such that 7 near each ¢ is
T ~ xp(ag + bk + O(zy))[dxy | dOg].
7 then induces a short exact sequence
0 — w? 5 W3(N) — W3 (N)|y — 0,
which in fact gives the short exact sequence on cohomology
0 — Tw® = Tuw?(N) — mw?(N)|xy — 0.

The rank of m,w3(N) is 3¢g—3+nys | 29 —2+nyg, thus we construct a local basis for
w3 (N) in the following way: first we consider the image of B,s under 7 and complete

it to a basis. Namely we construct
Bw3(N) =718, U B

where B’ is
B, = {Oél,"' 7anNs|Bla"' 7BnNS}-

We expand each o and 3 near g; as
aj ~ (a5 + a0, + O(x;))[da; | dO;)°,

Bj ~ (BY + B0 + O(x))[dw; | dO;)?,



and let

Bosnyy =

{[d$1’d91]3, ) [dans’denNs]S ’ th [dx1|d01]3? o

Putting

53{\;2 := Ber Bw3(N)

dé\;Q := Ber Bw3(N)7

we easily see that in the canonical identification

B(w(N)) 2 A32 B’ (N)|n)

[N

70”NS [danS’denNS]S}

we have
N ! N
d3/2 = BerM d3/2(53/2,
where
1 1 -
alHr o Oz?NS’+ ap’ 0/11N57
17+ nNs,t 17_ nNSs,—
Qnys -+ COnpyg Anyg Qnig
M =
/817_ NNS,— 17+ nNs,t
1 ce 1 1 1
517— NNS,— 1,+ nNs,+
nNs o nNs nNs nNs
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(6.8)

Combining this discussion with that of the Section [6.2] we obtain the following corollary.

Corollary 6.3.1. Suppose w: X — S is a family of super Riemann surfaces of genus

g > 2 with nyg Neveu-Schwarz punctures such that:

1. The sheaves Rimyw’ are locally free fori=0,1, j =0,1,2,3.

2. mww has rank g|1.
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Then via the sections defined in , and matrices in , , , ,

the expression

Ber Ms Ber M.
N ._ gN (sN \—1 ;-5 3 2
o= d3/2(53/2) d1/2(B67’M1)2 Ber M’

gives a trivializing section of the line bundle
BerMy.pnye @ B(<A)3(N)]N)71 ® /\1_/52

on Mynpys-

Thus the constructed object 4V can be viewed as a section of the Berezinian of the
moduli space M., With values in a particular line bundle.
The utility of such a formula for pV is that it indeed can be used to construct a

measure on I The process of constructing this measure depends on the particular

gnNs-
type of superstring theory one is working in, heterotic or Type II for example. In
[21] such a process is described, however it assumes the object one starts with is a
section of Ber M., s @ )\1_/52 rather than what is given in Corollary in a section
of Ber My.n s @ B(w?(N)|n) 1@ A;/52. In calculating scattering amplitudes, one inserts
so called vertex operators at each puncture. The collection of them can be thought of
as sections of B(w?(N)|y). Hence, after multiplying with the form p”¥ we indeed arrive

at a section of Ber M., o @ A;/52. The details of this discussion can be found in [3] and
[21].
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Appendix A

A Few Technical Results

A.1 More on the Local Structure Near a Ramond Punc-

ture

Here we develop a few technical statements used in the main arguments of the paper.

These were motivated by [21].

Suppose we have a family of SUSY curves with ng Ramond punctures 7 : X — S.
Denote by w = Ber X/S, the relative Berezinian sheaf. Let F denote the Ramond
divisor and decompose it F = > '® Fj, into its ng minimal components. Recall that
near a Ramond divisor Fj there are coordinates x | § such that the divisor Fy is given

by {z = 0} and distribution D is generated by

Here the distinguished subbundle of Q% /s s D~%(—F) and admits a generator
wy = dx — z0d6.

Coordinates near a Ramond puncture for which Dj (or wj) generate D (resp.
D~2(—F)) are called superconformal. A superconformal change of coordinates near

a Ramond puncture is a change of coordinates z | ¢ such that one still has F = {z = 0}

87



88
and DZ is a Ox-multiple of Dj. One can also phrase this condition equivalently as the
form wz is a multiple of wj.

It turns out that the possible choices of superconformal coordinates near a Ramond
puncture is restricted. In fact, this is heavily exploited by E. Witten in [23] to define
the notion of odd periods of closed holomorphic one-forms on such a family of Ramond
punctured SUSY curves. Witten phrases this constraint on coordinates as “The odd

coordinate 6 is defined up to sign and a shift by an odd constant.”

Lemma A.1.1. Let z |0 denote superconformal coordinates near a Ramond puncture

Fi. Any superconformal change of coordinates z|( can be expressed as
z = f(x)+ \(z)0
¢ =v(x)+g(x)f
for even f,g and odd ¥, \. We then have
1. g(0)2 =1, and
2. X(0)¥(0) = 0.
Proof. After some tedious calculations one finds that the condition wz is proportional
(9% 00N o (92,00
or  cor ) ~\o0 *>es)

In terms of the functions f, g, A and v this condition is the pair of conditions

to wyp is

and

F@)g(@)? + Ma)p(z)g(x) = 2 f'(z) — 2 f (@)1 ()9 ().

The first of these two conditions says that A and ¢ are proportional, hence their product
vanishes. Using this and dividing by f(x) in the second equation gives (note f # 0 away

from x = 0)

g(x)? = %f’(x) — a(a)y (z). (A1)



89
As the change of coordinates was superconformal, the divisor Fj was given as both
the zero locus of x and z, hence in particular f(0) = 0. This implies that the ratio
z/f(x) = 1/f'(0) as & — 0. Hence, taking z — 0 in yields g(0)% = 1, giving (1.
Assertion follows immediately from A(z) = f(z)g(z)y(x), recalling that f(0) = 0
and ¥ (x)? = 0. O

Lemma will allow us to trivialize Ber m,(O/O(—2F)) canonically over the
base S. Combined with Proposition this will give a natural trivialization of
Ber 7. (w3(2F)/w?). This result proved significant in Section as it allowed us to
connect the Mumford form constructed in Theorem with sections of Ber M., ..

Lemma A.1.2. The Berezinian of the locally free Og-module m.(O/O(—2F)) is canon-
ically trivial,
Berm (O/O(-2F)) = Og.

Proof. We work locally on S. First, decompose F = )} F}, into its irreducible com-
ponents. Then Ber m,(O/O(—2F)) = @i Ber m.(O/O(—2F})) and so it suffices to show
the result for each Fi. To simplify notation, for the remainder of the proof write F for
some Fy.

Choose superconformal coordinates x| # near F = {x = 0}. With these coordinates

one can trivialize Ber m,(O/O(—2F)) by the element
Ozlo = [17 Z | 0, $9] (A2)

where 1,z,6,20 in (A.2) are to be understood as their images in O/O(—2F). We
claim that the element o,y is in fact canonical, in the sense that if 2 | ¢ is another

choice of superconformal coordinates we have 0,9 = 0|¢. Indeed, for such a change of
coordinates, write as in Lemma

z = f(x)+ Ax)b,

¢ =1(x) +g(x)o.
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Looking at their images in the quotient O/O(—2F), we see that modulo O(—2F)

z = f'(0)z + X(0)z#,
¢ =1(0) +4'(0)z + g(0)8 + ¢'(0)0, (A.3)
2¢ = f'(0)p(0)x + f'(0)g(0)z6.

Hence, in 7, (O/O(—2F)), the change of basis matrix A from {1,z | 0,20} to {1, z, | {, 2¢}

is given by

L0 ¥(0) 0
A |0 SO ¢ f0)4(0)

0 0 g(0) 0

0 X(0) g(0) f(0)g(0)

Recalling from Lemma that g(0)? = 1 and ) (0)(0) = 0, a quick calculation will
show that Ber A = 1. Thus the element o = 0,9 = 0|¢ is independent of the choice of
superconformal coordinates.

This local argument glues to a global canonical isomorphism Ber 7,.(O/O(—2F)) =
Ogs.

O

Now, with the aid of Proposition we obtain

Corollary A.1.1. There is a canonical isomorphism
(Berm.(0]£))%* = Og.
Hence, in particular for w the relative Berezinian sheaf, we get a natural identification
Berm, (w?(2F) /w?) = Og.

Proof. By Lemma Berm, . (O/O(—2F)) = Og is naturally trivial. On the other
hand, by Proposition

Ber 7,(0/O(—2F)) = Ber (O| ) ® Ber (O(—F)|5)
>~ (Ber 1, (O|£))%2.
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From here, it follows that

Ber 7, (w?(2F) /w?) = Ber (w(2F)| ) @ Ber (w*(F)|7)
~ (Berm, (O] 5))®? (A.5)
= Og.

A.2 A Proof of The Super Mumford Isomorphism

Here we attempt to explain in detail the canonical super Mumford isomorphism in
the spirit of A. Voronov [I] and P. Deligne [13]. We work in the algebro-geometric
setting where the fundamental object of interest is a morphism f : X — S of complex
superschemes which is proper and smooth of relative dimension 1|1, i.e. a family of
supercurves. Of course, an interesting case is one of that of a SUSY family.

Let f: X — S be any morphism of complex superschemes. If F is locally free on
X, flat over S then one considers h(F), the Berezinian of cohomology of F (above we
denoted this by B(F)), which if all higher direct images R!f,F are locally free on S is
given by

WF) = QR 7).

(2
Let w = Ber Q}( /s denote the relative Berezinian line bundle, we denote by A;, =
h(w®7). When f: X — S is a family of supercurves, the super Mumford isomorphism
is a canonical isomorphism

~ \®5
Azja A I
This will come from a study on the nature of the functor h.

Proposition A.2.1. Suppose f : D — S is a smooth proper morphism of complex
superschemes of relative dimension 0|1. For any line bundle IC of rank 1|0, flat over S,

we have the canonical isomorphism
h(K) ® h(Op)~" = Og.

Proof. As the morphism f is smooth and proper of relative dimension 0|1, it follows

that f is a finite morphism of degree say d, and that f,Op is locally free on S of rank
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d|d. As such there is a canonical norm map, the morphism of sheaves of groups
Normp g : f«Op o — Ogg (A.6)

defined completely analogously as in the classical case. That is, for an open set U C S
on which f,Op is trivial, we have for each element g € f.O,  the Og-automorphism
mg : fxOp — f«Op given by multiplication by g. The map in is then g — Berm,,.
This definition glues nicely by the properties of the Berezinian.

The morphism ((A.6)) induces a morphism

NOI‘II]D/S : HY (Sa f*OE,O) — Hl(S7 Og’,(}) (A7)

which should be thought of as a group homomorphism between the group of invertible
f+Op-modules to invertible Og-modules.

Now as the map f is finite, it follows that the natural map
H(S, £,0p5) — H'(D, 0} ) (A.8)

is an isomorphism. In other words, f./KC is invertible as an f,Op-module if and only if
KC is an invertible O p-module.
Hence, composing the inverse of (A.8) with (A.7) we get a group homomorphism,

which we still denote by Normp g
Normp /g : Pic D — Pic S. (A.9)

Let us elaborate on the map . To compute Normp,g(K) one finds an open
cover and trivializations {U; C S, 8; : fiK|y; — f«Oply,} and then considers the line
bundle on S defined by the cocycle {U; N Uj;, Normp,5(8; o B;l)}.

The rest of the proof will go as follows: we will show that there is a natural isomor-
phism

h(K) = h(Op) ® Normp g(K) (A.10)

and then show that in fact, the map of (A.9)) is trivial. To see (A.10) we find and open
cover {U;} of D so that simultaneously f.KC and f,Op are trivialized as f,Op and Og
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modules respectively. Denote these trivializations by

Bj : f*’C‘Uj — f*OD’Uj

d|d
g; + f+xOplu; — 0 U,

Then {U; NUj, g; o (B o ﬂj_l) o gj_l} is a cocycle representing K as a locally free Og-

module. Thus, {Ber (gi o(B;o 5]71) o g]l)} are the transition functions for A(KC) with

respect to this cover. The maps §; o ;!

J
as such they are multiplication by some element 3; ;. Thus the transition functions for

are each automorphisms of f.Opl|y,nu;, and

h(K) can be written as

{Ber (gi ompg, ;o gj_1>} = {Ber (gi o g]._1> Ber (mg, ;)}

(A.11)
= {Ber (giog;") Normp,s(6:)}

which is visibly a set of transition functions for the bundle 2(Op) ® Normp (k). The

triviality of the bundle Normp,g(K) will be shown in a lemma given below. O

Lemma A.2.1. Suppose f : D — S is proper and smooth of relative dimension O|1.

Then the natural norm map
Normps : f+Op oy — Og

is the trivial morphism.

Proof. For sufficiently small V' C S, the preimage 7=(V) C D is isomorphic to a finite

product of copies of V' x C°' =: V[a], @ odd (more precisely this is true in the étale

topology).

n

a vy =J[vxcl = f[ Vo).
k=1 k=1

Hence, locally any g € f.Op  is a direct sum g = @gy, of even invertible functions

9k = gi + g € Ovlag] = Ov @ Oyay,
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and so for Berm, we see that
n
Bermg = H Bermy, .
k=1

The matrix of the endomorphism mg, with respect to the basis 1, oy, is

0

9r 0
Mar = ( 1 0) ’

9 9k

with gg invertible. Hence, in fact Ber my, = 1g and the claim follows. O

Before we can move on to our main result, we need a few preliminary facts regarding

Berezinians.

Lemma A.2.2. Let f : X — S be a morphism of superschemes, F,G locally free Ox -
modules of ranks m|n and r|s respectively, and IC an invertible Og-module of rank 1|0.
Then

1. Bero, (F®G) = Bero, (F) " ® Berop, (G)™™"
2. W(F® f*K) = h(F) @ KX, where sx(F) is the super euler characteristic of F.
Proof. Property (1) is an easy extension from the classical formula

det 0, (V@ W) = det o, (V)™ @ det o, (W)™,

Then (2) follows from (1) and the projection formula R f,(F ® f*K) =2 R f,F@ K. O

Proposition A.2.2. Let f: X — S be a family of supercurves. Given line bundles M

and L of rank 1|0, flat over S, there is a canonical isomorphism
(M ® L) = h(M)®h(L)@h(0Ox) .

Proof. We carry out this proof in the special case that f, M is locally free on .S, and M

admits global sections on X.
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Consider the projective bundle Pg(f.M) = Proj (Sym®((f.M)")). Recall that a
T/S-point of Pg(f. M), where g : T'— S is an S-scheme

Ps(fsM)
e
T—% 45
is precisely the data of an invertible sheaf XY on T of rank 1|0 along with a surjection

g (M) — KV — 0.

Equivalently, it is the data of rank 1|0 invertible sheaf K along with a short exact

sequence of vector bundles
0—K—g"fM — 9 — 0,

this is the viewpoint we adopt. If g : T — S is an S-scheme, denote by X', ', M’ L’
the corresponding objects pulled back to the family f': X xgT — T.
We will show that given a T'/S-point g : T'— S of Pg(f.M), given by the injection

K — g* f«M, one can produce an isomorphism
hM @ L)@ L) =2h(M)®hOx)?

We will denote this corresponding isomorphism by ar(K — g* fuM).
The desired isomorphism for the lemma will come by choosing any S-point. We will
then show that the resulting isomorphism was in fact independent of this choice. The

argument is as follows: the base change diagram is

x 9, x

b

T 248

and we have a natural isomorphism ¢*f, M = fl(¢')*M = fLM' and furthermore the
map K — fiM'’ corresponds to a map (f')*C — M. To avoid unpleasant notation, let
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us simply drop the prime and write f = f/, X = X’ etc. Let D be the divisor of this
section of M ® f*IC™1, then it is an effective relative Cartier divisor and we obtain a
short exact sequence

00— ffK—M-—M|p—0

and a similar one by tensoring with £
0 =LK —=>LIM— LIM|p — 0.

These imply
h(M) @ h(f*K)~! = h(M]p),

h(LRM)@ (L )= (Lo M|p).

Now by Proposition in fact the right hand sides are canonically identified and
thus by property [2] of Lemma we conclude

W(M) ® h(Ox) ™ @ K=XOX) = h(L o M) @ h(£) ! @ KX,

Finally we recall that the super euler characteristic is in fact constant for a family of su-
percurves (Theorem [4.5.1]above), so sx(Ox) = sx(Lx) and we obtain the isomorphism
ar(K — g* fuM).
The construction outline above constructs a map from the 7'/S-points of Pg(f.M)
to the set
Tsome,. (h(L£' @ M') @ (L)1, h(M') @ h(Ox:) ™).

By assumption, we can find a global section ¢ € T'(X, M), which we view as a
nowhere zero morphism t : Og — f.M. For any base change g : T — S, this gives rise
to natural section t’ : Op — fIM’ = g* f, M and hence a natural T'//S point of Pg(f,.M)

0—O0p 5 g fM — Q — 0.

Thus for each S-scheme g : T — S, the section t gives a distinguished element oz% =
ar(Or LA g* fxM). As any two isomorphisms of line bundles differ by a global invertible

function, we can view our construction as a map from the 7'/S-points of Pg(f.M) to
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the set I'(7, OF), associating the T'/S-point g : T — S, K — g*f«M to the unique

global invertible function A on 7" so that
ap(K = g* fuM) = Aaf.
We will denote this A by Ap(K — ¢g* fxM). One can easily check that this assignment
{9:T— S, K= g fuiM} — Mp(K = g* f M)
is functorial in 7', and hence by Yoneda’s lemma, this is equivalent to a S-morphism
A:Ps(fiM) — Gy s

which in turn is equivalent to a choice of global section v € I'(Ps(f«M), Opg(s,.11)). We
claim v = 1. Indeed, let o be the section associated to the distinguished S/S-point
given by t : Og — f.M. We then have the commutative diagram

foM) =2 G s

/l/

which on global sections reads

L(Ps(fM), Opg(r,m))) 5 T(S, 0%) [, 27 ]

Note that the morphism 7# : T'(S,0%) — T'(Ps(fiM), Opg(s. 1)) is an isomorphism
by basic properties of projective space, and hence o# is its inverse.

Hence v = A#(x) = 1 if and only if 6 (y) = 1g, but this is trivial since by



98

construction and functoriality we have that

o (y) = (o7 o AT)(2)
= )\5(05 — f*./\/l) (A.l?)

The knowledge that v = 1, then implies the desired isomorphism is independent
of the S-point chosen. Indeed for any S/S-point id : S — S of Pg(f. M), given by
K — f«M, we get a corresponding section ¢’ of w. By construction we then have
(e #(y) = As(K — fxM) = 1g. This completes the proof.

[

This immediately gives a proof the super Mumford isomorphism (Proposition 4.6.1)).
Proof. (Proof of Proposition |4.6.1)) We apply Proposition to £L = llw and M =
[I7~'wi~1 and obtain utilizing Serre duality

(—1)7 _ =2 (-1)77!
Aija = Ao

Inducting on j yields the result. In particular, A3/, = )\‘;’ /2°
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