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Abstract – In this work we provide a novel class of degenerate solutions to the Dirac equation for
massive particles, where the rotation of the spin of the particles is synchronized with the rotation
of the magnetic field of the wave-like electromagnetic fields corresponding to these solutions. We
show that the state of the particles does not depend on the intensity of the electromagnetic
fields, but only on their frequency, which is proportional to the mass of the particles and lies
in the region of Gamma/X-rays for typical elementary charged particles, such as electrons and
protons. We have also calculated the electric current density corresponding to the electromagnetic
4-potentials connected to the degenerate solutions and found that it has the same spatial and
temporal dependence on the electromagnetic fields, rotating at an exceptionally high frequency.
This result indicates that the degenerate states may occur at locations where matter collapses,
e.g., in the central region of a black hole. Finally, we have calculated the spin of the particles
described by degenerate spinors and found that it rotates in synchronization with the magnetic
field and the current density.
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Introduction. – In a recent article [1] we have shown
that all solutions to the Dirac equation,

iγµ∂µΨ + aµγµΨ − mΨ = 0, (1)

satisfying the conditions Ψ†γΨ = 0 and ΨT γ2Ψ �= 0,
where γµ are the standard Dirac matrices and γ = γ0 +
iγ1γ2γ3 are degenerate, corresponding to an infinite num-
ber of electromagnetic 4-potentials Aµ, explicitly calcu-
lated in theorem 5.4 in [1]. In the Dirac equation, m and q
are the mass and the electric charge of the particle, respec-
tively, and aµ = qAµ. It should also be noted that eq. (1)
is written in natural units, where both the speed of light in
vacuum c and the reduced Planck constant � are equal to
one. Furthermore, in [1] we have shown that all solutions
to the Weyl equation are degenerate, corresponding to an
infinite number of electromagnetic 4-potentials, explicitly
calculated in theorem 3.1 in [1]. Some very interesting
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properties of Weyl particles, mainly regarding their con-
trol and localization, are discussed in [2,3].

As was also shown in [1], the degenerate solutions in the
case of free Dirac particles correspond to massless parti-
cles, except for particle-antiparticle pairs. However, the
net charge of the particle-antiparticle pair is zero, and
consequently the degeneracy is not particularly meaning-
ful from a practical point of view. Additionally, in a re-
cent work [4] we have shown that degenerate solutions for
massive particles can exist in potential barriers. However,
these solutions involve real exponential terms and, conse-
quently, they cannot describe the state of particles in free
space. Finally, it should be mentioned that in [5] we pro-
vide a general method for obtaining degenerate solutions
to the Dirac and Weyl equations, both for massive and
massless particles.

Degenerate wave-like solutions to the Dirac
equation and the corresponding 4-potentials. –
In this work we investigate the existence of degenerate
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solutions for massive Dirac particles involving only com-
plex exponential terms, which are well defined throughout
space and time. For this purpose, we have used the fol-
lowing general form of degenerate spinors:

Ψ =

⎛
⎜⎜⎜⎝

cosα exp (ih1)
sin α exp (ih2)
cosβ exp (ih1)
sin β exp (ih2)

⎞
⎟⎟⎟⎠, (2)

where h1, h2 are arbitrary real functions of the spatial co-
ordinates and time and α, β are real constants. Using the
above ansatz and requiring Ψ to be solution to the Dirac
equation for real 4-potentials, it is found that all spinors
of the form

Ψ = c1 exp (ih)

⎛
⎜⎜⎜⎝

cosα

sin α exp (id)
cosβ

sin β exp (id)

⎞
⎟⎟⎟⎠ (3)

are degenerate, satisfying the Dirac equation for the fol-
lowing 4-potentials:

see eq. (4) above

Here, c1 is an arbitrary complex constant, h, g are arbi-
trary real functions of the spatial coordinates and time
and

d =
4m [t − z cos (α + β)]
cos (2α) − cos (2β)

. (5)

In the above expressions we have also supposed that
cos (2α) − cos (2β) �= 0, cos (α + β) �= 0, sin (α − β) �= 0,

implying that

α ± β �= nπ and α + β �= nπ + π/2, n ∈ Z. (6)

An important characteristic of the degenerate spinors
given by eq. (3) is that they can describe particles of
any mass, including massless particles. In addition, the
aforementioned solutions correspond to particles in non-
localized states, which can exist throughout space and
time without any restriction. In contrast, the degenerate
solutions in [4] describe particles existing only in classi-
cally forbidden regions.

Another interesting remark is that the 4-potentials
given by eq. (4) can be substantially simplified setting
g = (∂h/∂z). In this case they take the form

see eq. (7) above

which is more convenient for studying the physical prop-
erties of the degenerate solutions and the corresponding
electromagnetic fields. Specifically, it can be easily ver-
ified that the 4-potentials given by eq. (7) become zero
assuming that

∂h

∂x
=

∂h

∂y
=

∂h

∂z
= 0, (8)

α = nπ +
π

2
or β = nπ +

π

2
, n ∈ Z (9)

and
∂h

∂t
= −m

sin (2α) + sin (2β)
sin (2α) − sin (2β)

. (10)

Here, it should me mentioned that the conditions de-
scribed by eq. (6) ensure that sin (2α)−sin (2β) �= 0. Thus,
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if eqs. (8)–(10) are valid, the degenerate spinors given by
eq. (3) are solutions to the Dirac equation corresponding
to zero electromagnetic 4-potential and field. As an ex-
ample, the following spinors,

Ψ0 = c1 exp (imt)

⎛
⎜⎜⎜⎝

0
exp (id)
cosβ

sin β exp (id)

⎞
⎟⎟⎟⎠,

Ψ′
0 = c1 exp (−imt)

⎛
⎜⎜⎜⎝

cosα

sin α exp (id)
0

exp (id)

⎞
⎟⎟⎟⎠, (11)

describe particles that could exist in a region of space free
of electromagnetic fields.

The electromagnetic fields corresponding to the
degenerate solutions and some important remarks.
– The electromagnetic fields corresponding to the 4-
potentials given by eq. (7) are given by the following for-
mulae, in Gaussian units [6,7]:

E = −∇ϕ − ∂A
∂t

=
4m2

q
cosα cosβ csc2 (α − β) csc (α + β)

× sec (α + β) (− sindi + cos dj), (12)

B = ∇ × A = −4m2

q
cosα cosβ csc2 (α − β)

× csc (α + β) (cos di + sin dj), (13)

where ϕ = a0/q is the electric potential and A =
− (1/q) (a1i + a2j + a3k) is the magnetic vector poten-
tial. It should also be reminded that the above equa-
tions are expressed in the natural system of units, where
� = c = 1.

An interesting remark is that the electromagnetic fields
given by eqs. (12), (13) resemble a circularly polar-
ized plane wave propagating along the +z-direction with
Poynting vector

S =
1
4π

E × B =

4m4

πq2
cos2 α cos2 β csc4 (α−β) csc2 (α+β) sec (α+β)k.

(14)

In addition, according to theorem 5.4 in [1], the spinors in
eq. (3) will also be solutions to the Dirac equation for an

infinite number of 4-potentials, given by the formula

bµ = aµ + sκµ, (15)

where

(κ0, κ1, κ2, κ3) =(
1, −ΨT γ0γ1γ2Ψ

ΨT γ2Ψ
, −ΨT γ0Ψ

ΨT γ2Ψ
,
ΨT γ0γ2γ3Ψ

ΨT γ2Ψ

)

= (1, − sin (α + β) cos d, − sin (α + β) sin d,
− cos (α + β))

(16)

and s is an arbitrary real function of the spatial coordi-
nates and time.

The electromagnetic fields corresponding to the 4-
potentials bµ − aµ = κµs are the following:

Es = −
(

2msq csc (α − β) sind + sin (α + β)

× cos d
∂sq

∂t
+

∂sq

∂x

)
i +

(
2msq csc (α − β) cos d

− sin (α + β) sin d
∂sq

∂t
− ∂sq

∂y

)
j

−
(

cos (α + β)
∂sq

∂t
+

∂sq

∂z

)
k, (17)

Bs =
(

− sin (α + β) sin d
∂sq

∂z
+ cos (α + β)

×
(

− 2msq csc (α − β) cos d +
∂sq

∂y

))
i

+
(

sin (α + β) cos d
∂sq

∂z
− cos (α + β)

×
(

2msq csc (α − β) sind +
∂sq

∂x

))
j

+ sin (α + β)
(

− cos d
∂sq

∂y
+ sin d

∂sq

∂x

)
k. (18)

In the above formulae sq = s/q. Consequently, particles
described by the degenerate spinors given by eq. (3) have
the remarkable property to exist in the same quantum
state in the wide variety of electromagnetic fields described
by eqs. (12), (13) and (17), (18). In addition, it should also
be noted that the factor d, given by eq. (5), is also involved
in the electromagnetic fields Es, Bs and, consequently,
they are expected to have similar properties with the fields
described by eqs. (12), (13).

As an example, we suppose that the arbitrary function s
is constant. Then, the electromagnetic fields correspond-
ing to the 4-potentias bµ take the following form:

Et,w =
2m

q
csc (α − β) (2m cos α cos β csc (α − β)

× csc (α + β) sec (α + β) + s) (− sindi + cos dj),
(19)
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Bt,w = −2m

q
csc (α − β)

(
2m cosα cosβ csc2 (α − β)

× csc (α + β) + s cos (α + β)) (cos di + sin dj),
(20)

having the same spatial and temporal dependence on the
electromagnetic fields given by eqs. (12), (13). This practi-
cally means that the state of the particles does not depend
on the magnitude of the fields, but only on their spatial
and temporal dependence, given by the function

d =
4m [t − z cos (α + β)]
cos (2α) − cos (2β)

= ωdt − kdz, (21)

where
ωd =

4m

cos (2α) − cos (2β)
(22)

and

kd =
4m cos (α + β)

cos (2α) − cos (2β)
(23)

are constants related to the angular frequency and the
wave number, respectively. It should also be noted that
the phase velocity,

υph =
ωd

kd
= sec (α + β), (24)

is higher than the speed of light (c = 1 in natural units).
However, this does not violate the special theory of rel-
ativity since a sinusoidal wave with a unique frequency
does not transmit any information. It is reminded that
the phase velocity of an electromagnetic wave propagat-
ing through a medium can exceed the speed of light in
vacuum, as it happens in most glasses at X-ray frequen-
cies [8] and in unmagnetized plasmas [9].

Another interesting remark is that the frequency of
these wave-like fields depends on the mass of the parti-
cles. In more detail, in SI units, the factor 4m in eq. (22)
becomes 4mc2/� and consequently the frequency of the
oscillation is given by the formula

fd (SI) =
ωd (SI)

2π
=

4mc2

h

1
cos (2α) − cos (2β)

. (25)

For example, in the case of electrons(
me = 9.109 × 10−31 kg

)
the frequency of the oscillation

becomes

fd (SI) =
4.95 × 1020

cos (2α) − cos (2β)
Hz, (26)

corresponding to photons with energy higher than
2.05 MeV, in the region of Gamma/X-rays. Further-
more, in the case of heavier particles, e.g., protons(
mp = 1.673 × 10−27 kg

)
, the oscillation frequency takes

much higher values, above 9.09 × 1023 Hz, correspond-
ing to photons with extremely high energy, higher than
3.75 GeV.

Here, it should be noted that the electric charge ρ and
current J densities corresponding to the electromagnetic

4-potentials and fields described in this section, can be
calculated through the inhomogeneous Maxwell’s equa-
tions [6,7]:

∇ · E = 4πρ, (27)

∇ × B − ∂E
∂t

= 4πJ, (28)

which can also be written in terms of the electromagnetic
potentials, as

∇2ϕ +
∂

∂t
(∇ · A) = −4πρ, (29)(

∇2A − ∂2A
∂t2

)
− ∇

(
∇ · A +

∂ϕ

∂t

)
= −4πJ.

(30)

Consequently, in principle, any differentiable real func-
tions of the spatial coordinates and time can be used to
describe the electric and magnetic potential in a region
of space where the electric charge and current densities
are given by the above formulae. In practice, the re-
quired charge and current densities can be created using
appropriate distributions of positive and negative electric
charges moving at suitable velocities. For example, in an
electric conductor, the net electric charge density is zero
since the negative charge of the electrons is compensated
by the positive charge of the ions of the lattice. However,
the current density can be set to any desired form using
the appropriate voltage.

The above equations can be used to calculate the electric
charge and current densities corresponding to the wave-
like electromagnetic fields given by eqs. (12), (13), obtain-
ing that

ρ = 0,

J = −m3

πq
cosα cosβ csc3 (α − β)

× sec (α + β) (cos di + sin dj).

(31)

From the above equation it becomes clear that the current
density has the same spatial and temporal dependence
with the electromagnetic field, described by the param-
eter d, given by eq. (21). This practically means that the
vector of the current density rotates at an exceptionally
high frequency, given by eqs. (25), (26). Consequently, the
degenerate spinors presented in this article are expected to
describe particles in regions of space where electric charges
rotate at particularly high speeds. As can be easily de-
duced through the conservation law of angular momen-
tum, this is expected to occur in regions of space where
matter collapses, e.g., in the central region of a black hole.
Furthermore, the fact that the quantum state of particles
described by degenerate spinors is extremely robust under
a wide variety of electromagnetic perturbations may imply
that particles tend to maintain their quantum state as they
travel across the cosmos through a black hole. Obviously,
no one knows what happens at the center of a black hole,
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so the above argument is valid only in the case that the
particles are not destroyed, but re-emerge in another re-
gion of spacetime, as suggested by some theories [10]. Fur-
thermore, to study in more detail, the behavior of Dirac
particles in the region of a black hole, one should consider
the Dirac equation in curved spacetimes [11–14]. This is
quite an interesting topic and will be addressed in future
works.

Additionally, it should be noted that, setting cos (2α)−
cos (2β) = 2/n, n ∈ Z, in eq. (25), the energy of the pho-
tons becomes exactly equal to the one required for the
production of n particle-antiparticle pairs. Consequently,
the degenerate spinors given by eq. (3) could also be re-
lated to the Schwinger effect [15–21].

Finally, it is particularly interesting to study the spin of
the particles described by the degenerate spinors given by
eq. (3). Specifically, the expected values of the projections
of the spin of the particles along the x-, y-, and z-axes are
given by the following formulae [22,23]:

Sx =
i

2
Ψ†γ2γ3Ψ =

|c1|2
2

(sin (2α) + sin (2β)) cos d,

(32)

Sy =
i

2
Ψ†γ3γ1Ψ =

|c1|2
2

(sin (2α) + sin (2β)) sin d,

(33)

Sz =
i

2
Ψ†γ1γ2Ψ =

|c1|2
2

(cos (2α) + cos (2β)). (34)

From the above expressions it becomes clear that the ex-
pected value of the projection of the spin of the particles
on the x-y plane rotates in synchronization with the mag-
netic field of the wave-like electromagnetic fields given by
eqs. (12), (13) and (19), (20). Therefore, the synchroniza-
tion between the spin of the particles and the wave-like
electromagnetic fields can be regarded as a key feature
of the degenerate solutions presented in this article. Fur-
thermore, under the conditions described by eqs. (8)–(10),
e.g., in the case of the degenerate spinors given by eq. (11),
the rotation of the spin of the particles occurs even in the
absence of an electromagnetic field. Thus, it can be con-
sidered that the electromagnetic fields should be synchro-
nized to the rotation of the spin of the particles and not
the opposite.

Conclusions. – In conclusion, we have provided a
novel class of degenerate solutions to the Dirac equation
for massive particles, where the key feature is the synchro-
nization between the rotation of the spin of the particles
and the magnetic field of the wave-like electromagnetic
fields corresponding to these solutions. We have shown
that the frequency of these wave-like electromagnetic fields
depends on the mass of the particles and lies in the region
of Gamma/X-rays for typical subatomic particles, such as
electrons, protons, etc. Another interesting characteristic
of these fields is that their phase velocity is higher than the
speed of light in vacuum, which does not violate the special

theory of relativity, since a sinusoidal wave with a single
frequency does not transmit any information. We have
also calculated the electric current density corresponding
to the electromagnetic 4-potentials and fields associated
with the degenerate solutions and found that it rotates at
an exceptionally high frequency, in synchronization with
the magnetic field. This result indicates that this situa-
tion may occur in regions of space where matter collapses,
e.g., in the central region of a black hole. Finally, we have
shown that the spin of the particles described by degener-
ate spinors rotates in synchronization with the magnetic
field and the electric current density.

Data availability statement : The data that support the
findings of this study are available upon reasonable request
from the authors.
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[13] Alan Kostelecký V., Phys. Rev. D, 69 (2004)
105009.

[14] Birkandan T. and Horta M., EAS Publ. Ser., 30 (2008)
265.

[15] Schwinger J., Phys. Rev., 82 (1951) 664.
[16] Brezin E. and Itzykson C., Phys. Rev. D, 2 (1970)

1191.
[17] Ringwald A., Phys. Lett. B, 510 (2001) 107.

50001-p5



Georgios N. Tsigaridas et al.

[18] Popov V. S., J. Exp. Theor. Phys. Lett., 74 (2001)
133.

[19] Müller C., Voitkiv A. B., Grün N., Phys. Rev. A, 67
(2001) 063407.

[20] Acharya B., Alexandre J., Benes P. et al., Nature,
602 (2022) 63.

[21] Berdyugin A. I., Xin N., Gao H. et al., Science, 375
(2022) 430.

[22] Thomson M., Modern Particle Physics (Cambridge
University Press, Cambridge) 2013, ISBN: 97811070
34266.

[23] Kobe D. H., Int. J. Theor. Phys., 21 (1982) 685.

50001-p6


