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Abstract: A novel method for finding the eigenvalues of a Sturm–Liouville problem is developed.

Following the minimalist approach, the problem is transformed to a single first-order differential

equation with appropriate boundary conditions. Although the resulting equation is nonlinear, its

form allows us to find the general solution by adding a second part to a particular solution. This

splitting of the general solution into two parts involves the Schwarzian derivative: hence, the name of

the approach. The eigenvalues that correspond to acceptable solutions can be found by requiring the

second part to correct the asymptotically diverging behavior of the particular solution. The method

can be applied to many different areas of physics, such as the Schrödinger equation in quantum

mechanics and stability problems in fluid dynamics. Examples are presented.

Keywords: differential equations; Sturm–Liouville problem; analytical methods; mathematical

physics; instabilities; fluid dynamics; hydrodynamics; magnetohydrodynamics

1. Introduction

Sturm–Liouville theory is of fundamental importance in many areas of physics and
mathematics and has important applications in a variety of physical phenomena: quantum
mechanics and stability problems in fluid mechanics, to name but two. Simple examples
have become standard knowledge of a physicist, mathematician, or engineer and are
taught at the undergraduate level, while more complicated cases are the subject of current
research. Standard methods to find solutions have been developed, e.g., [1,2], but there
is always room for improvement and better efficiency in finding the eigenvalues and the
corresponding eigenfunctions.

A Sturm–Liouville problem corresponds to a second-order differential equation of
the form

(p f ′)′ + q f = 0 , (1)

where p and q are functions of the independent variable x (a prime denotes a derivative with
respect to x), together with appropriate boundary conditions that the unknown function f
must obey. These boundary conditions involve only the ratios f ′/ f at the extreme values
of x enclosing the region of interest on the x axis. (Depending on the problem, this could be
the whole axis −∞ < x < ∞, a semi-infinite interval xmin < x < ∞ or −∞ < x < xmax, or a
finite portion xmin < x < xmax.) Note that the classical Sturm–Liouville problem is written
as (p f ′)′ + q f = −λw f , where w is a function of x, and λ is the eigenvalue. However, we
can include the right-hand side inside the last term of the left-hand side and write the
equation as in (1). Our purpose anyway is to study the more general Sturm–Liouville
problem in which the eigenvalue appears in a nonlinear way inside both q and p. This
is the form arising from the linearization of equations describing stability problems in
hydrodynamics and ideal magnetohydrodynamics; see, e.g., [3,4]. Motivated by the need
to find an efficient way to solve these problems, trying to identify which factors determine
their dispersion relation, and exploring ways to express the boundary conditions, we
arrive at the novel approach presented in this paper, which applies to all kinds of Sturm–
Liouville problems.
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In Section 2, we extend the minimalist approach developed in Ref. [5] to any Sturm–
Liouville problem. This provides a more economical way to solve the problem by trans-
forming Equation (1) to a single first-order equation. In Section 3, we present a new method
to split the solution into two parts and use them to conveniently express the boundary
conditions corresponding to non-diverging solutions asymptotically. We dub the approach
“Schwarzian” since the Schwarzian derivative and the fact that it remains unchanged under
Möbius transformations are key ingredients of the developed method. In Section 4, we
apply the method to examples from quantum mechanics. In Section 5, we discuss linear sta-
bility problems and present their Sturm–Liouville forms. An example for the stability of an
astrophysical jet is presented in Section 6; we also use the new method developed in Ref. [5]
for solving the complex equation resulting from the boundary conditions. Conclusions
follow in Section 7.

2. The Minimalist Approach

Since Equation (1) is linear in f and the boundary conditions involve only the values
of the ratios f ′/ f at the extreme values of x, we can reformulate the problem, following
the minimalist approach of [5], using as unknown the ratio of f with its derivative or,
equivalently, the function

F =
p f ′

f
. (2)

It is straightforward to show that Equation (1) is transformed to a first-order differential
equation for F

F′ = − F2

p
− q . (3)

The formulation significantly simplifies the problem of finding the eigenvalues since it
transforms the second-order original Sturm–Liouville equation to first-order. The new
equation is non-linear, but this does not complicate things if one uses a shooting method
to satisfy the boundary conditions; it only makes the procedure simpler by reducing the
number of first-order differential equations by half (the original second-order equation can
be thought as two first-order equations).

In some cases, especially when we integrate problems in real space, possible oscilla-
tions in f lead to F varying from infinity to infinity and back. One way to treat these cases

and smoothly pass infinities at points where f = 0 is to substitute F(x) = cot
Φ(x)

2
. More

generally, we can write

F(x) = F1(x) + F2(x) cot
Φ(x)

2
(4)

with the F1(x) and F2(x) of our choice. In this way, the zeros of f correspond simply to
Φ being an even multiple of π, and the solutions can be found without any numerical
difficulty by integrating the differential equation

Φ
′ =

2F1F2 + pF′
2

pF2
sin Φ − pq + pF′

1 + F2
1 − F2

2

pF2
cos Φ +

pq + pF′
1 + F2

1 + F2
2

pF2
. (5)

The boundary conditions for F are translated to boundary conditions for Φ, and they
are satisfied for the eigenvalues of the problem. Having found an eigenvalue, one could

return to the original equation or, simply, to Equation (2), which gives
f ′

f
=

F

p
, and by inte-

gration find f . (Although F and Φ are uniquely defined for a particular eigenvalue, there is
a free multiplication constant in the eigenfunction f , which is related to the normalization).
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3. The Schwarzian Approach

3.1. The Schwarzian g Approach

We can once more reformulate the problem and write its general solution using the
Schwarzian derivative. As will become clear later, this is particularly useful in cases where the
problem extends to asymptotic regions, as the new approach is linked to conveniently satisfy-
ing the boundary conditions there by automatically choosing the non-diverging solution.

It is straightforward to show that Equation (1) can be transformed to a “variable
frequency oscillator”

( f
√

p)′′ + κ2( f
√

p) = 0 (6)

with

κ2 =
q

p
−
(

p′

2p

)2

−
(

p′

2p

)′
. (7)

As explained in Appendix A, we can write its general solution as

f =
C1g + C2
√

pg′
, (8)

where g is a particular solution of the Schwarz equation

{g, x} ≡ g′′′

g′
− 3

2

(

g′′

g′

)2

= 2κ2 , (9)

involving the Schwarzian derivative {g, x}.
We can transform the latter to a system of first-order differential equations by writing

the expression for F =
p f ′

f
= − pg′′

2g′
− p′

2
+

pg′

g + C2/C1
(which is the general solution of

Equation (3), since Equation (8) is the general solution of Equation (1)) as

F = Fp +
e−2Λ

g + C2/C1
, (10)

where Fp = − pg′′

2g′
− p′

2
and e−2Λ = pg′. The last two equations together with Equation (9)

give the system

F′
p = −

F2
p

p
− q , Λ

′ =
Fp

p
, g′ =

e−2Λ

p
. (11)

The solution of the Sturm–Liouville equation is

f =
C1g + C2

e−Λ
; (12)

we remind the reader, though, that to find the eigenvalues, only F is needed.
Interestingly, the first from Equation (11) is the same as the original Equation (3),

meaning that Fp is a particular solution of that equation and does not necessarily satisfy
the boundary conditions. These conditions should be satisfied by the total F given by
Equation (10), which consists of two parts. Its second part can be found using the second
and third from Equation (11). We emphasize that only a particular solution is needed: the
initial values of Fp, Λ, and g at some initial point of integration are completely free. For
any choice of these conditions, we find F and apply the two boundary conditions at the
ends of the region of interest. One of them specifies the free constant C2/C1 appearing in
Equation (10), and the other gives the eigenvalues.
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3.2. The Schwarzian Φ Approach

An alternative way to solve the problem—particularly useful if there are points where
f = 0 (so F becomes infinity), but in general, with some potential connection to the phase

of oscillations of the function f —is to replace g +
C2

C1
with tan

Φ + C

2
(and constant C).

Substituting g in the expressions above and using the chain rule (A7) with {g, Φ} =
1

2
, we

conclude that the general solution of the “variable frequency oscillator” is

f ∝
1

√

pΦ′ sin
Φ + C

2
, (13)

and Φ is a particular solution of

{

tan
Φ + C

2
, x

}

≡ Φ
′′′

Φ′ − 3Φ
′′2

2Φ′2 +
Φ

′2

2
= 2κ2 . (14)

We can transform the latter to a system of first-order differential equations by writing

the expression for F =
p f ′

f
= − pΦ

′′

2Φ′ − p′

2
+

pΦ
′

2
cot

Φ + C

2
as

F = F1 + F2 cot
Φ + C

2
, (15)

where F1 = − pΦ
′′

2Φ′ − p′

2
and F2 =

pΦ
′

2
. The last two equations together with Equation (14)

give the system

F′
1 =

F2
2

p
− F2

1

p
− q , F′

2 = −2F1F2

p
, Φ

′ =
2F2

p
. (16)

The solution of the Sturm–Liouville equation is (with D a normalization constant)

f =
D√
F2

sin
Φ + C

2
. (17)

(We again remind the reader that to find the eigenvalues, only F is needed.) (Some caution
is needed when one calculates the square root

√
F2 in Equation (17). Since the constant D is

arbitrary, we are free to chose, e.g., the principal square root. In cases, however, in which,
as x varies, the Arg[F2] crosses the value π, we should change the branch to avoid a false
discontinuity in ℑ[√F2].)

The equations of the Schwarzian Φ approach are, of course, equivalent to the ones

of the g approach; they correspond to the substitutions g +
C2

C1
= tan

Φ + C

2
, e−2Λ =

F2

cos2
Φ + C

2

, and Fp = F1 − F2 tan
Φ + C

2
. Note also that tan

Φ + C

2
can be seen as a Möbius

transformation of e−iΦ, and the substitutions g +
C2

C1
= e−iΦ − eiC, e−2Λ = −2iF2e−iΦ, and

Fp = F1 + iF2 lead also to the equations of the Schwarzian Φ approach.
It is interesting to note the connection of the Schwarzian Φ approach with the one

described at the end of Section 2. If in that approach we substitute Φ → Φ + C and
require the Φ

′ as given by Equation (5) to be independent of Φ (i.e., choose F1 and
F2 such that the coefficients of sin Φ and cos Φ are zero), we arrive at the Schwarzian

Φ approach. Similarly, the substitution F = Fp +
e−2Λ

g
in Equation (3) gives g′ =
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e−2Λ

p
+

(

−2Λ
′ +

2Fp

p

)

g +

(

q + F′
p +

F2
p

p

)

g2

e−2Λ
. The replacement g → g + C2/C1, and

most importantly, the requirement that g′ be independent of g, leads to the Schwarzian g
approach and Equation (11).

3.3. Non-Diverging Asymptotic Solutions

Besides offering a way to express the general solution of a Sturm–Liouville problem,
the Schwarzian approach can be used to choose the non-diverging asymptotically solution
of a physical problem. In the g approach, this is achieved through the minimalist approach
(solve the solution for F) and the splitting of F into two parts, as shown in Equation (10).

Suppose that we examine the behavior of the solution near x = +∞. The two indepen-

dent solutions of Equation (1), or equivalently, of Equation (6), behave as
1√
p∞

e±iκ∞x =

1√
p∞

e±iℜκ∞xe∓ℑκ∞x. One of them is diverging and dominates any linear combination in

the general solution. This is the case for the part Fp of the solution that by itself satisfies the
original Equation (3); see the first from Equation (11). The diverging solution corresponds
to a positive real part of Fp/p, and thus, e−2Λ decreases exponentially according to the
middle from Equation (11). Although e−2Λ vanishes asymptotically, the freedom to choose
the additive constant C2/C1 in Equation (10)—essentially, the fact that the Schwarzian
derivative remains the same under Möbius transformations—allows us to make the second

part of the solution important. By choosing g + C2/C1 → 0, this second part
e−2Λ

g + C2/C1

becomes
0

0
, and by applying L’Hôpital’s rule, we find that it equals

−2Λ
′e−2Λ

g′
= −2Fp.

The resulting sum follows exactly the non-diverging branch since Fp +
e−2Λ

g + C2/C1
→ −Fp.

It is instructive to exactly solve the case where p = 1 and q is a constant, corresponding
to an oscillator with complex constant “frequency” κ =

√
q. Without loss of generality,

we can choose the root with a positive ℑκ. A particular solution of Equation (11) is

Fp = −κ tan(κx), e−2Λ =
1

cos2(κx)
, g =

tan(κx)

κ
. Asymptotically, lim

x→+∞
g =

i

κ
. Choosing

the additive constant such that
i

κ
+

C2

C1
= 0, we find F = Fp +

e−2Λ

g − i/κ
= iκ. We see that

although the random combination of the independent solutions corresponds to Fp and the

diverging solution Fp =
p f ′

f
⇒ f = exp

(

∫

Fpdx

)

∝ cos(κx), the solution corresponding

to F = iκ is F =
p f ′

f
⇒ f = exp

(

∫

Fdx

)

∝ eiκx and has the physically acceptable

behavior lim
x→+∞

f = 0. (The general solution of Equation (11) is Fp = −κ tan(κx + D1),

e−2Λ =
D2

cos2(κx + D1)
, g = D2

tan(κx + D1)

κ
+ D3. Repeating the process, we again find

F = iκ, confirming that only a particular solution is needed, not the general solution.)
The above can be applied to other asymptotic regimes, e.g., to x → −∞. They can also

be applied in the asymptotic regimes ϖ → ∞ and ϖ → 0 in cylindrical coordinates.
Similarly to the Schwarzian g approach in the Φ approach, Equation (15) can be written

F = (F1 + iF2) +
2iF2

ei(Φ+C) − 1
, (18)

and this can be seen as a way to split the solution into two parts. The first part, F1 + iF2,
satisfies by itself the original Equation (3) if Equations (16) hold and corresponds to the

diverging solution asymptotically. The second part,
2iF2

ei(Φ+C) − 1
, can be used to find the

non-diverging solution by choosing the constant C such that ei(Φ+C) = 1 asymptotically.
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Had we chosen the Schwarzian Φ approach to solve the oscillator problem (with
constant p = 1, q = κ2, and ℑκ > 0), starting the integration from some point with arbitrary
conditions, the solution would behave asymptotically as Φ ≈ De2iκx + D0, F1 ≈ −iκ,

F2 ≈ iκDe2iκx. (The general solution is cot
Φ + D3

2
= D2 cot(κx + D1).) The resulting

F = −iκ + iκDe2iκx cot
De2iκx + D0 + C

2
, for D0 + C = 0, would have given the physically

acceptable solution F = iκ.

3.4. The Quantization Condition

Suppose we follow the Schwarzian Φ approach (the steps are trivially similar if we
follow the Schwarzian g approach). Solving Equation (14) with arbitrary initial conditions,
we find a sort of background for the solution for F. (We remind the reader that to find
a particular solution is enough: there is no need to find the general solution.) This is
because the expression for F given by Equation (15) depends on the free constant C, so
by appropriately choosing this constant, we can satisfy one of the boundary conditions of
the problem.

There is always a second boundary condition to satisfy, and this can be done with the
shooting method, i.e., change the eigenvalue until the second condition is also satisfied (for
each eigenvalue, the constant C is found from the first boundary condition).

It is of particular importance to discuss the case where one (or both) boundary is at
infinity. As already discussed, the second-order differential Equation (1) has two asymptotic
solutions: one diverging and unphysical and another finite and physically acceptable. Their
superposition is diverging, and for this reason, it is nontrivial to find the acceptable solution.
The Schwarzian approach solves the problem by splitting the solution F into two parts;
see Equation (15). The part F1 is dominated by the asymptotically diverging behavior.

The inclusion of the second part of the solution F2 cot
Φ + C

2
is the way to correct things

and have the sum follow the physically acceptable, finite solution. Although F2 vanishes
asymptotically (if F1 = p f ′1/ f1, we get F2 ∝ 1/ f 2

1 from the middle from Equation (16), and

thus, if f1 diverges, F2 vanishes), this is achieved by requiring infinite cot
Φ + C

2
, i.e., have

a “quantization” condition of Φ + C being equal to an even multiple of π asymptotically.
From a different point of view related to causality, if we want the two boundary

conditions to “communicate”, the term in Equation (15) that includes C, which contains the
information of the first boundary condition, should remain present at the location of the

second boundary condition. If Φ
′ vanishes, this is possible only if cot

Φ + C

2
diverges.

Another way to reach the same result is by observing Equations (13) or (17). If Φ
′

vanishes asymptotically, the only way to have finite f is by requiring sin
Φ + C

2
to be zero

as well.
Lastly, looking Equation (6), the second part remains important and corrects the

diverging behavior of the first if, asymptotically, ei(Φ+C) = 1.
For all these reasons, the related boundary condition is:

if Φ
′
BC = 0 then ΦBC + C = 2nπ , n ∈ Z . (19)

If the two boundaries are at ±∞, then the quantization condition is that Φ +C is equal to
an even multiple of π at both ends, so the difference is also an even multiple of π. Instead of
both conditions, the eigenvalues can be found using the following single quantization condition:

if Φ|′1,2 = 0 then Φ|2 − Φ|1 = 2nπ , n ∈ Z . (20)

The corresponding quantization conditions in the Schwarzian g approach are:

if g′BC = 0 then gBC + C2/C1 = 0 , (21)
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if g|′1,2 = 0 then g|2 − g|1 = 0 . (22)

The quantization conditions, and the Schwarzian approaches in general, offer a con-
venient way to solve the problem exactly in cases where the regime of interest extends to
asymptotic regions where all functions approach constant values. This applies to x = ±∞

in Cartesian geometry, but it also applies to ϖ → 0, ∞ in cylindrical geometry and to
r → 0, ∞ in spherical geometry (with ϖ and r the cylindrical and spherical radius, respec-
tively). When the regime of interest does not include asymptotic regions, it is sufficient to
follow the minimalist approach of Section 2. Of course Schwarzian approaches still can
be used, but the boundary conditions are F|1,2 = FBC|1,2 at the two extreme values of the
independent variable (x or ϖ or r) and not the quantization conditions.

4. Examples in Quantum Mechanics

4.1. Quantum Morse Potential

The Schrödinger equation − h̄2

2m
Ψ
′′ + (V − E)Ψ = 0 is a Sturm–Liouville problem,

and with proper normalization, the Morse potential corresponds to the choice p = 1,

q = ε − λ2(1 − e−x)
2

(the origin has been transferred to the minimum of the potential).
The eigenvalues can be easily found following the Scharzian Φ approach, i.e., integrating
Equation (16) starting from x = 0, moving toward positive and negative x, and requiring

the difference
Φ|+∞ − Φ|−∞

2π
to be an integer.

Figure 1 shows the numerical results for λ = 5. Integration in the region −7 < x < 15
is sufficient to give the eigenvalues (we need to resolve the region in which F2 remains
practically nonzero and not the whole x axis). The results agree with the known expression
for the eigenvalues ε = λ2 − (λ − n − 1/2)2 with n = 0, 1, 2, . . . and positive λ − n − 1/2
(corresponding to bound states with energy less than V∞); see, e.g., [6]. The quantum

number n corresponds to the integer
Φ|+∞ − Φ|−∞

2π
− 1.

5 10 15 20 25
ε1

2

3

4

5

Φ (xmax) -Φ (xmin)

2π

-2 -1 1 2 3 4
x

-1

1

2

3

Φ
2π

Φ(18.75)(x)

2πΦ(10)(x)

2πΦ(25)(x)

2π

-1 1 2 3 4 5
x

-4

-2

2

4

F1

F2 -1 1 2 3 4 5
x

-10

-5

5

10

F=F1+F2Cot(
Φ-Φ∞
2

)

F(18.75)(x)

F(18.74)(x)

F(18.76)(x)

-q (x)

- -q (x)

Figure 1. Solution for the Morse potential with λ = 5 for initial conditions Φ(0) = 0, F1(0) = 0,

F2(0) =
√

q(0). Top left panel: the value of
Φ|+∞ − Φ|−∞

2π
as a function of ε (integer values corre-

spond to the accepted eigenvalues). Top right panel: typical behavior of Φ(x) (shown for various

values of the eigenvalue ε). Bottom left panel: the functions F1 and F2 for the third eigenvalue

ε = 18.75 (corresponding to n = 2). Bottom right panel: the function F for the eigenvalue ε = 18.75

and two neighboring values of ε. The function F approaches asymptotically one of the ±√−q, which

are also shown. At large x, the blue curve follows the acceptable branch with f ′/ f ≈ −
√

−q(x),

while the red and green curves follow the unphysical branch with f ′/ f ≈
√

−q(x).
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The bottom right panel of Figure 1 shows the function F. Asymptotically, according to
Equation (3), we expect the function F to approach either +

√−pq or −√−pq. As x → ∞,
these correspond to positive/negative f ′/ f , i.e., an exponentially increasing/decreasing
f , respectively. Any superposition of the two solutions of the second-order differential
Equation (1) is dominated by the exponentially increasing part and is unacceptable as
a physical solution of the problem. The acceptable solution corresponds to cases where
the exponentially increasing part is absent, and this is what happens for the eigenvalues.
Indeed, as shown in the figure, the blue curve, which corresponds to the eigenvalue
n = 2, follows the acceptable branch F → −√−q, while the red and green curves, which
correspond to slightly smaller and larger values of ε, respectively, follow the unphysical
branch F → +

√−q. Similarly, we understand the behavior of F in the asymptotic regime
x → −∞.

The bottom left panel of Figure 1 shows the functions F1 and F2. The former corre-
sponds to a superposition that includes the unphysical branch and behaves asymptotically

as ≈ +
x

|x|
√−pq, while the latter approaches zero at x → ±∞. Nevertheless, its contri-

bution is crucial and results in F = F1 + F2 cot
Φ + C

2
following the physically acceptable

branch if ε is an eigenvalue.
The eigenvalues do not depend on the initial conditions at x = 0. Our choice in

Figure 1 was F1(0) = 0, F2(0) =
√

q(0) such as F′
1(0) = 0, and thus, the value of Φ

′ remains
as close to a constant as possible ,since Φ

′′(0) = 0 and Φ
′′′(0) = 0. In the general case, the

choice Φ
′′ = 0, Φ

′′′ = 0 at the initial point is possible and corresponds to initial values

F1 = − p′

2
, F2 = pκ. This is not necessary, but it is a convenient choice as it avoids as much

as possible oscillations in the functions F1,2. In the shown case, the oscillations in F are
solely due to the tan function. On the contrary, Figure 2 shows the numerical results for
different initial conditions, and we see that F1,2 oscillate. The end result in the function F
and the eigenvalues are the same, as expected, and are independent on the initial conditions
of the integration. Since F is the same as in Figure 1, we show in the bottom right panel of
Figure 2 the eigenfunction f (with arbitrary normalization). The blue curve corresponds to
the eigenvalue, while the red and green curves correspond to two neighboring values of ε

(clearly, f diverges at x → ±∞ if ε is not an eigenvalue).

5 10 15 20 25
ε

2
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1
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Φ-Φ∞
2

)

f(18.75)(x)

f(18.74)(x)

f(18.76)(x)

Figure 2. Same as Figure 1 but for a boundary condition F2(0) = 1. The functions Φ(x), F1(x),

F2(x) are affected by the choices of the conditions at x = 0, but the difference Φ|+∞ − Φ|−∞ and

the function F(x) are the same for the same eigenvalue ε. The eigenfunction f (x) (with arbitrary

normalization) for the eigenvalue ε = 18.75 and two neighboring values of ε is shown in the bottom

right panel.
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The same results can be found using the Schwarzian g approach. The problem of the
oscillations that make F infinity at points where f = 0 can be circumvented by working
in the complex domain. Figure 3 shows the results of the integration of Equation (11) in
the interval −7 < x < 15 with initial conditions g(0) = 0, Λ(0) = 0, and Fp(0) = i

√

q(0).
The resulting F, given by Equation (10) with C2/C1 = −g|−∞, is the same as the one found
using the Φ approach. The eigenfunction f (given by Equation (12)) is also the same, apart
from a complex multiplication constant.

5 10 15 20 25
ε

0.5
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g(xmax)-g(xmin)

-1 1 2 3 4
x

-0.20

-0.15

-0.10

-0.05
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g-g∞

-1 1 2 3 4
x

-2
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Λ
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x
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Fp

-1 1 2 3 4
x
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10

F

-1 1 2 3 4
x

-0.3

-0.2

-0.1

0.1

0.2

f=
g-g∞
e-Λ

Figure 3. Solution for the Morse potential using the Schwarzian g approach. In all panels, the real

part of the functions are shown with blue lines, and the imaginary parts are shown with orange lines.

The eigenvalues for which g|+∞ − g|−∞ = 0 (practically, g(xmax)− g(xmin) = 0 with xmin = −7,

xmax = 15) can be seen in the top left panel. The other panels correspond to the solution for the third

eigenvalue ε = 18.75.

4.2. Quantum Harmonic Oscillator

The Schrödinger equation for a harmonic potential corresponds to the choice p = 1,
q = 2ε− x2 (with proper normalization). Following the Schwarzian Φ approach, integrating

Equation (16) starting from x = 0 and requiring the difference
Φ|+∞ − Φ|−∞

2π
to be an

integer, we find the expected eigenvalues ε = n + 1/2 as shown in Figure 4.
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F=F1+F2Cot[
Φ-Φ∞
2
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F(2.5)(x)

F(2.49)(x)

F(2.51)(x)

-q[x]

- -q[x]

Figure 4. Solution for the quantum harmonic oscillator. Left panel: the value of
Φ|+∞ − Φ|−∞

2π
as a

function of the eigenvalue. Right panel: the function F for the eigenvalue ε = 2.5 (in blue) and two

neighboring values (in red and green). The function F approaches asymptotically one of the ±√−q,

which are also shown. The blue curve follows the acceptable branch with f ′/ f ≈ −x at large |x|,
while the red and green curves follow the unphysical branch with f ′/ f ≈ x.

4.3. Paine Problem

This is a test spectral problem corresponding to p = 1, q = λ − 1

(x + 0.1)2
with

boundary conditions f (0) = f (π) = 0; see Ref. [2]. Since the region of interest does
not contain asymptotic regimes, it is sufficient to use the minimalist approach (and not
the Schwarzian). To avoid infinities at possible points where f = 0, especially since
we work in real space, it is better to use the method described at the end of Section 2.
The boundary conditions are F(0) = F(π) = ∞. Adopting the simplest possible choice

F1(x) = 0, F2(x) = 1, the boundary conditions are cot
Φ(0)

2
= cot

Φ(π)

2
= ∞. Equation (5)

can be integrated in the interval x ∈ [0, π] starting with Φ(0) = 0. The second condition
corresponds to Φ(π) = 2nπ with integer n: a condition that gives the eigenvalues. The
numerical results are shown in Figure 5. The eigenvalues are λ ≈ 1.51987, 4.94331, 10.2847,
17.5599, 26.7828, 37.9643, 51.1131, 66.2361, 83.3385, 102.424, 123.497, 146.558, 171.611,
198.657, . . .

10 20 30 40 50 60
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x
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Φ
2π

λ=10
50

100

Figure 5. Left panel: the value of
Φ(π)

2π
as a function of the eigenvalue. Right panel: typical behavior

of Φ(x) (shown for various values of the eigenvalue λ).

5. Stability Problems

The stability problems in fluid or plasma dynamics can be formulated using two
functions: y1, related to the Lagrangian displacement of fluid elements, and y2, related to
the perturbation of the total pressure. The corresponding system of differential equations
can be found, e.g., in Equation (27) of Ref. [4]

d

dϖ

(

y1

y2

)

+
1

D

(

F11 F12

F21 F22

)(

y1

y2

)

= 0 . (23)

This applies to non-relativistic and relativistic ideal magnetohydrodynamic cases in cylin-
drical geometry in which the unperturbed state depends only on the cylindrical radius
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ϖ; a similar system of equations exists in other geometries as well, e.g., in Cartesian ge-
ometry with the unperturbed state depending on x (actually, the equations of [4] can be
directly simplified to that case if we ignore terms that depend on the curvature of the
coordinate system).

Instead of system (23) of the two first-order differential equations for y1 and y2, it is
equivalent to work with one second-order differential equation for either y1 or y2, i.e., use
either Equations (32) or (33) of [4]:

y′′1 +

[

F11 +F22

D +
F12

D

( D
F12

)′]

y′1 +

[

F11F22 −F12F21

D2
+

F12

D

(F11

F12

)′]

y1 = 0 , y2 = −Dy′1 +F11y1

F12
, (24)

y′′2 +

[

F11 +F22

D +
F21

D

( D
F21

)′]

y′2 +

[

F11F22 −F12F21

D2
+

F21

D

(F22

F21

)′]

y2 = 0 , y1 = −Dy′2 +F22y2

F21
. (25)

As shown in Appendix B, these can be written as a Sturm–Liouville problem and solved
using a Schwarzian approach.

There are two essential differences compared to the classical Sturm–Liouville prob-
lems, of e.g., quantum mechanics, for the examples examined so far. The first is that the
eigenvalue enters nonlinearly in the problem and in both functions p and q. The second
is that we work in the complex domain, i.e., all known and unknown functions are com-
plex. This is unavoidable if we are interested in finding unstable modes, in which case the
eigenvalue is a complex number. (One can follow either a temporal or a spatial approach,
which correspond to a real wavevector and a complex frequency or a real frequency and a
complex wavevector, respectively). The methods remain the same though.

There are many variants of the procedure: working with y1 and the Schwarzian g
approach, with y1 and the Schwarzian Φ approach, with y2 and the Schwarzian g approach,
or with y2 and the Schwarzian Φ approach. All are equivalent to each other. One could think
that the Schwarzian Φ approaches describe more naturally oscillations of the eigenfunctions,
but this is not the case. In the complex domain, the oscillations do not lead to zeros
of the unknown complex function, since this requires its real and imaginary parts to
vanish simultaneously. On the contrary, g approaches are slightly preferable because the
corresponding differential equations are simpler and, more importantly, the quantization
condition does not involve a trigonometric function (as a result, it does not contain an
arbitrary integer). In real space, as in most examples presented so far, the g approach
is problematic because the function F becomes infinite at some points. In the complex
domain though, this happens only at poles, which are automatically circumvented during
the numerical integration. (When we integrate a differential equation in the complex
domain, we need infinite accuracy to hit a pole: something impossible numerically. For
this reason, the integration passes without problem close to poles. See a related discussion
in Appendix C of [5].)

As explained in [5], only the ratio Y =
y1

y2
is involved in the boundary conditions that

determine the dispersion relation of a stability problem, not the functions y1, y2 separately.
The function Y is always continuous, even at interfaces (discontinuities) of the unperturbed
state. For this reason, if we choose the Sturm–Liouville for y1, it is advantageous to replace
y′1/y1 with the continuous function Y using the second from Equation (24). Similarly, if we
choose the Sturm–Liouville for y2, it is advantageous to replace y′2/y2 with the continuous
function Y using the second from Equation (25). Essentially, we follow the minimalist
approach of Ref. [5] and work with Y alone by integrating the equation

dY

dϖ
=

F21

D Y2 +
F22 −F11

D Y − F12

D . (26)
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The Schwarzian approach splits the Y function in two parts and helps with expressing the
asymptotic boundary conditions in a convenient way.

Details and all the needed equations for all variants can be found in Appendix B.
The asymptotic behavior near the axis is discussed in Appendix C. According to this, the
formulation with y2 should be avoided in the case m = 0 when the quantization condition
is applied on the axis. All other variants are equivalently applicable.

Here, we summarize the procedure for two variants in order to use them in an
example case.

5.1. Formulation with y1 and the Schwarzian Φ Approach

In this case, the ratio Y and the eigenfunctions are given by

1

Y
= Y4 −Y3 cot

Φ1 + C

2
, y1 ∝

1
√

Y3 e
∫ F11+F22

D dϖ

sin
Φ1 + C

2
, y2 =

1

Y
y1 , (27)

where Φ1, Y3, and Y4 are a particular solution (with arbitrary initial conditions) of the
system of Equations

Y ′
4 = −F21

D − F22 −F11

D Y4 +
(

Y2
4 −Y2

3

)F12

D , Y ′
3 = 2Y3Y4

F12

D +
F11 −F22

D Y3 , Φ
′
1 = 2Y3

F12

D . (28)

The application to each problem with specific boundary conditions is obvious:

• Suppose we have a jet in 0 ≤ ϖ ≤ ϖj with known YBC at ϖ+
j . We integrate

Equation (28) starting from ϖj with arbitrary conditions for Φ1, Y3, Y4, and the free
additive constant C chosen as Y|ϖj

= YBC is satisfied, with Y|ϖj
given by the first from

Equation (27). The eigenvalues are found from the quantization condition on the axis

sin
Φ1axis + C

2
= 0 (the condition Y3 → 0 on the axis will be automatically satisfied by

the solution of the differential equations). Note that in case of internal discontinuities
of the unperturbed state inside the jet, we keep integrating the equations passing each
of them while keeping Φ1, Y3, Y4 continuous.

• Suppose we want to find numerically the solution for 0 ≤ ϖ ≤ ∞. We integrate
Equation (28) starting from an arbitrary point with arbitrary conditions for Φ1, Y3,
Y4 toward both directions, i.e., toward ϖ = 0 and toward ϖ = ∞. The quantization

condition sin
Φ1∞ − Φ1axis

2
= 0 gives the eigenvalues. If we additionally need to

find the eigenfunctions, we specify the constant C from either sin
Φ1∞ + C

2
= 0 or

sin
Φ1axis + C

2
= 0.

5.2. Formulation with y1 and the Schwarzian g Approach

In this case, the ratio Y and the eigenfunctions are given by

1

Y
= Y4 −

e−2Y3

g1 + C2/C1
, y1 ∝

g1 + C2/C1

e−Y3+
∫ F11+F22

2D dϖ
, y2 =

1

Y
y1 , (29)

where Y4, Y3, and g1 are a particular solution (with arbitrary initial conditions) of the
Equations

Y ′
4 = −F21

D − F22 −F11

D Y4 +
F12

D Y2
4 , Y ′

3 = −Y4
F12

D +
F22 −F11

2D , g′1 =
F12

D e−2Y3 . (30)

The application to each problem with specific boundary conditions can be done
following the same steps as in the Φ approach, with the boundary conditions on the axis
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and at infinity replaced by g1axis + C2/C1 = 0, and g1∞ + C2/C1 = 0, respectively. (If both
apply, the eigenvalues can be found by the single condition g1∞ − g1axis = 0.)

6. An Example for the Stability of Astrophysical Jets

In this section, we apply the Schwarzian approach to the stability of a particular
non-relativistic jet model considered by Cohn in Ref. [7]. The reason behind this choice
is mostly connected to the fact that there are analytical solutions for some choices of the
parameters, and we can use them to test the results of the new method.

In the unperturbed state, we assume that there is a uniform cylindrical jet of radius
ϖj consisting of a hydrodynamic fluid with constant polytropic index Γ = 5/3, density ρj,

sound velocity csj, and pressure Pj =
ρjc

2
sj

Γ
moving with bulk velocity Vj ẑ = Mcsj ẑ (ẑ is the

symmetry axis, and we use cylindrical coordinates ϖ, ϕ, z). The environment of the jet is
assumed to be a cold, static, ideal, magnetized plasma with constant density ρe = ηρj and

an azimuthal magnetic field B =
I

ϖ
ϕ̂ with constant I. This field corresponds to a surface

current at the interface ϖ = ϖj whose value is connected to the internal pressure through

the pressure balance Pj =
I2

2ϖ2
j

.

We use units for which lengths are measured in ϖj, wavelengths in 1/ϖj, velocities in

csj, frequencies and growth rates in csj/ϖj, and densities in ρj, and a factor
√

4π is absorbed
in the magnetic field (Lorentz–Heaviside units). The expressions of the various Fij/D
needed for this non-relativistic ideal magnetohydrodynamic stability problem can be found
in Section 5.6 of Ref. [4] and are summarized in Appendix D.

The dimensionless parameters that fully determine the unperturbed state are the Mach
number M in the jet (velocity of the jet in units of the sound velocity in the jet) and the
density ratio η (density of the environment over the density of the jet). We assume in the
following M = 1 and η = 0.01.

Suppose we follow the temporal approach and need to find the eigenvalues and
eigenfunctions of unstable modes (∝ ei(mϕ+kz−ωt) with ℑω > 0) corresponding to wave-
length k = π, m = 0. Applying the Schwarzian g approach, we start the integration of
Equation (30) from the jet surface toward smaller and larger ϖ. The eigenvalues ω are
the roots of the quantization condition g1∞ − g1axis = 0. Following the method presented
in Section 3 of Ref. [5], the roots of this complex function can be found through the iso-
contours of Ψ = Arg[g1∞ − g1axis] in the ω plane: the so-called Spectral Web. This term
was introduced by [3] for a similar map showing “solution paths” and “conjugate paths”,
which correspond to particular isocontours of Ψ, and was generalized by [5] to the map
of Ψ in which the roots can be distinguished from poles. The roots are seen as positive
line charges in this map, i.e., points of discontinuities around which the Ψ increases as we
move counterclockwise. Poles of the complex function are also seen in the map as negative
line charges, and they can be distinguished from the roots because around poles, the Ψ

decreases as we move counterclockwise.
The left upper panel of Figure 6 shows the resulting Spectral Web. Evidently, there is

one root ω ≈ 3.08 + i1.97. (Note that any choice of initial conditions at the starting point
of the integration leads to the same result for the roots, i.e., the eigenvalues, although the
Spectral Web and the positions of poles—if they exist—in general differ).

The left middle panel of Figure 6 shows the Spectral Web resulting from the boundary
condition Y|ϖ=ϖ+

i
− Y|ϖ=ϖ−

i
= 0, which is simply the continuity of Y at the jet surface,

using the analytical expressions that exist for this particular model. (The analytical
solution for the jet interior ϖ < ϖj corresponding to the finite eigenfunction on the axis

is Y = − λϖ

ρjω
2
0

J1(λϖ)

J0(λϖ)
, where λ =

√

ω2
0/c2

sa − k2, and ω0 = ω − kVj. For the environment

ϖ > ϖj, the solution that represents an outgoing wave with a decreasing amplitude has
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Y =
ϖ4

I2

[

− z2U

(4 − z)U + 2zdU/dz
− 1

]−1

, where z =
−iω

|I|/√ρe
ϖ2 and U(a, b, z) is Tricomi’s

(confluent hypergeometric) function satisfying the Kummer equation z
d2U

dz2
+ (b − z)

dU

dz
−

aU = 0 with a =
3

2
+ i

k2|I|/√ρe

4ω
, and b = 3. In addition to Ref. [7], details for the interior

and exterior solutions, respectively, can be found in Sections 5.1 and 5.4.2 of [4] (adapting
these results to the non-relativistic present case).) The resulting eigenvalue is identical to
the one found using the Schwarzian approach.
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-0.002
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Im[y2]

Figure 6. Left column, upper panel: the Spectral Web for the Schwarzian g approach starting the

integration from the jet surface with initial conditions g|ϖ=1 = 0, Y3|ϖ=1 = 0, Y4|ϖ=1 = 0. Left

column, middle panel: the Spectral Web using the analytical expressions of Y inside and outside

the jet. Left column, lower panel: the Spectral Web for the Schwarzian Φ approach starting the

integration from the jet surface with initial conditions Φ1|ϖ=1 = 0, Y3|ϖ=1 = 1, Y4|ϖ=1 = 0. Right

column: the eigenfunctions for the eigenvalue ω ≈ 3.08 + i1.97 with arbitrary normalization (we

can freely multiply both y1 = ℜy1 + iℑy1 and y2 = ℜy2 + iℑy2 with the same arbitrary complex

constant—their ratio Y is uniquely defined).

The eigenfunction can be directly found from Equation (29) by knowing the eigenvalue
and choosing C2/C1 = −g1axis. The result is shown in the right column of Figure 6.
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Note that in both asymptotic regimes, near the axis and at large distances, the function
e−Y3 vanishes and the eigenfunctions approach constant values. Thus, it is sufficient to
perform the integration in the region where these functions vary significantly. For the case
shown in Figure 6, it was done in the interval 0.01 < ϖ < 10.

Applying also the Schwarzian Φ approach, the eigenvalues ω are the roots of the

quantization condition sin
Φ1∞ − Φ1axis

2
= 0. The bottom left panel of Figure 6 shows the

corresponding Spectral Web. Apart from the root at ω ≈ 3.08 + i1.97, in this case, there are
two poles and some curves of discontinuities that correspond to crossing of poles during
the integration. The existence and the positions of the poles and the curves of discontinuity
depend on the initial conditions, but the root is always the same.

The eigenfunction Y corresponding to a particular eigenvalue is the same no matter
which approach we use to find it. The eigenfunction y1 is also the same apart from a
multiplication complex constant, which is free due to the linearity of the problem. The
same multiplication constant appears in y2: in agreement with the ratio Y = y1/y2 being
uniquely determined.

Repeating the process for other values of k, we find the dispersion relation shown in
the left panel of Figure 7.
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k

0.05

0.10

0.50

1
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10

ω m=0

0.1 0.5 1 5 10
k

0.05

0.10

0.50

1

5
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ω m=±1

Re[ω]

Im[ω]

Figure 7. The dispersion relation for the model with M ≡
Vj

csj
= 1, η ≡ ρe

ρj
= 0.01, and m = 0 (left)

and m = ±1 (right).

Using the Schwarzian approach, we can extend the results in the parametric space
to values for which no analytical solutions exist. It is beyond the scope of this paper to
carry out this interesting task and analyze the physics of the solutions; we only show the
dispersion relation for the m = ±1 non-axisymmetric modes in the right panel of Figure 7
(the result is independent of the sign of m in this particular case).

7. Conclusions

In this work, we develop a novel way to solve Sturm–Liouville problems by following
the minimalist/Schwarzian approach, which is particularly useful when the boundaries
are at asymptotic distances. The minimalist approach is a first step toward economy
and efficiency since it reduces the differential equation to first-order. The second step is
the Schwarzian approach. Although the resulting differential equation is nonlinear, the
properties of the Schwarzian derivatives allow us to split its general solution into two parts.
The first part is any particular solution, and the form of the second part can be used to
explore under which conditions the sum is non-diverging asymptotically.

Essentially, the Schwarzian approach finds the non-diverging solution from any partic-
ular solution and, simultaneously, the eigenvalues for which this is possible. It can be seen
as an alternative to other methods to choose the non-diverging solution of a second-order
linear differential equation, e.g., the termination of series found using the Frobenius method
in quantum mechanics, which, however, can be applied to simple cases only. The new
approach can be applied to any case and to stability problems as well, in which the eigen-
value enters nonlinearly in both functions p and q. The application of the method requires
numerical integration of ordinary differential equations; in cases where the boundaries are
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at asymptotic distances, it is sufficient to continue the integration as long as the resulting
unknown functions vary significantly.

Two Schwarzian approaches are presented, the g and Φ, that correspond to different
ways to split the general solution into two parts. Although they are mathematically
equivalent, they have some practical differences. The g approach is simpler, but it cannot
trivially handle the infinities in f ′/ f when the function f is real and oscillates, as in
the examples presented in relation to the Schrödinger equation in quantum mechanics.
Nevertheless, as we saw in the example for the quantum Morse potential, it can still be
used by working in the complex domain, even though the eigenvalues are real. When f is a
complex function, as in stability problems, there is no problem with infinities, since zero for
a denominator (pole of f ′/ f ) requires fine-tuning to make both parts, real and imaginary,
vanish simultaneously.

The Φ approach can be seen as a transformation of the g approach, but it successfully
handles the mentioned infinities in f ′/ f when the function f is real and oscillates. One
could think that the function Φ is connected with the phase of the oscillations. This is true in

some cases, but not always. The form of the corresponding eigenfunction ∝
1√
F2

sin
Φ + C

2
represents the superposition of two oppositely moving waves, but in general, the amplitude
is highly variable, so the result is not a standing wave in general. It is an open question
if other Schwarzian approaches, corresponding to different transformations and different
ways of splitting the general solution into two, can be more closely related to the oscillations
of the eigenfunctions, especially in stability problems. Another interesting question is
related to the freedom to choose the initial condition that determines the particular solution.
Is there an optimal choice?

Besides questions related to the deeper understanding of the symmetries behind the
quantization condition and the somewhat unexpected existence of the method itself, its
practical use is obvious. It helps with solving difficult problems with relative ease without
needing to work the asymptotic behaviors, e.g., near the symmetry axis and near infinity in
cylindrical jet problems, and without the need to integrate the equations at very small and
very large distances.
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Appendix A. Properties of the Schwarzian Derivative

The Schwarzian derivative of a function g(x)—in general, complex and with a complex
argument—is defined as

{g, x} ≡ g′′′

g′
− 3

2

(

g′′

g′

)2

, (A1)

where prime denotes the derivative with respect to x.
An important property of this derivative is that if G1 and G2 are two linearly indepen-

dent solutions of
G′′ + κ2G = 0 (A2)

with κ a function of x, then their quotient g =
G1

G2
satisfies the Schwarz equation

{g, x} = 2κ2 . (A3)
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Conversely, if g is a solution of {g, x} = 2κ2, then G1 ∝
1

√

(1/g)′
and G2 ∝

1
√

g′
are two

independent solutions of G′′ + κ2G = 0. Thus, the general solution of Equation (A2) is

G =
C1g + C2
√

g′
. (A4)

The proof can be done as in Ref. [8]. Direct substitution shows that G1,2 are solutions of
Equation (A2). Also, by substitution, we find that their Wronskian G1G′

2 − G2G′
1 is constant,

so they are indeed linearly independent.
In fact, every second-order linear differential equation can be written in the form of

Equation (1) and can be transformed to a “variable frequency oscillator” in the form of
Equation (6), and its general solution can be written through a particular solution of the
equation involving the Schwarzian, as in Equation (8).

Some other useful properties follow (a, b, c, d are complex constants):

{

ax + b

cx + d
, x

}

= 0 ; (A5)

{

ag + b

cg + d
, x

}

= {g, x} (A6)

(a Möbius transformation leaves the Schwarzian unchanged);

{g, x} = {g, Φ}
(

dΦ

dx

)2

+ {Φ, x} (A7)

(can be thought as a chain rule for {g ◦ Φ, x});

{g, x} =

{

g,
ax + b

cx + d

}

(ad − bc)2

(cx + d)4
(A8)

(the chain rule for Φ =
ax + b

cx + d
).

Appendix B. Sturm–Liouville Formulation for Stability Problems

In the next two subsections of this Appendix, we analyze the Sturm–Liouville for-
mulation for the functions y1 and y2 separately. These are thought of as functions of the
cylindrical radius ϖ, and a prime denotes the derivative with respect to that variable.

Appendix B.1. Formulation with y1

Equation (24) is equivalent to a Sturm–Liouville problem for y1:

y′′1 + 2γ1y′1 + b1y1 = 0 ⇔
(

e
∫

2γ1dϖy′1
)′

+ e
∫

2γ1dϖb1y1 = 0 , (A9)

γ1 =
F11 +F22

2D +
F12

2D

( D
F12

)′
, b1 =

F11F22 −F12F21

D2
+

F12

D

(F11

F12

)′
, (A10)

and the expression for y2 (as function of y1) is

y2 = − D
F12

y′1 −
F11

F12
y1 . (A11)

The corresponding “variable frequency oscillator” is

(

e
∫

γ1dϖy1

)′′
+ κ2

1

(

e
∫

γ1dϖy1

)

= 0 , κ2
1 = b1 − γ2

1 − γ′
1 . (A12)
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Its solution in the Schwarzian g approach is

y1 =
C1g1 + C2

√

g′1
D
F12

e
∫ F11+F22

D dϖ

, {g1, ϖ} =
g′′′1

g′1
− 3

2

(

g′′1
g′1

)2

= 2κ2
1 . (A13)

Writing
1

Y
=

y2

y1
= − D

F12

y′1
y1

− F11

F12
as

1

Y
= Y4 −

e−2Y3

g1 + C2/C1
, (A14)

we end up with the following system:

Y ′
4 = −F21

D − F22 −F11

D Y4 +
F12

D Y2
4 , Y ′

3 = −Y4
F12

D +
F22 −F11

2D , g′1 =
F12

D e−2Y3 . (A15)

Similarly, in the Schwarzian Φ approach,

y1 ∝
1

√

Φ′
1

D
F12

e
∫ F11+F22

D dϖ

sin
Φ1 + C

2
,

Φ
′′′
1

Φ′
1

− 3Φ
′′2
1

2Φ′2
1

+
Φ

′2
1

2
= 2κ2

1 , (A16)

and by writing
1

Y
=

y2

y1
= − D

F12

y′1
y1

− F11

F12
as

1

Y
= Y4 −Y3 cot

Φ1 + C

2
, (A17)

we end up with the following system:

Y ′
4 = −F21

D − F22 −F11

D Y4 +
(

Y2
4 −Y2

3

)F12

D , Y ′
3 = 2Y3Y4

F12

D +
F11 −F22

D Y3 , Φ
′
1 = 2Y3

F12

D . (A18)

Appendix B.2. Formulation with y2

Equation (25) is equivalent to a Sturm–Liouville problem for y2:

y′′2 + 2γ2y′2 + b2y2 = 0 ⇔
(

e
∫

2γ2dϖy′2
)′

+ e
∫

2γ2dϖb2y2 = 0 , (A19)

γ2 =
F11 +F22

2D +
F21

2D

( D
F21

)′
, b2 =

F11F22 −F12F21

D2
+

F21

D

(F22

F21

)′
, (A20)

and the expression for y1 (as function of y2) is

y1 = − D
F21

y′2 −
F22

F21
y2 . (A21)

The corresponding “variable frequency oscillator” is

(

e
∫

γ2dϖy2

)′′
+ κ2

2

(

e
∫

γ2dϖy2

)

= 0 , κ2
2 = b2 − γ2

2 − γ′
2 . (A22)

Its solution in the Schwarzian g approach is

y2 =
C1g2 + C2

√

g′2
D
F21

e
∫ F11+F22

D dϖ

, {g2, ϖ} =
g′′′2

g′2
− 3

2

(

g′′2
g′2

)2

= 2κ2
2 . (A23)
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Writing Y =
y1

y2
= − D

F21

y′2
y2

− F22

F21
as

Y = Y2 −
e−2Y1

g2 + C2/C1
, (A24)

we end up with the following system:

Y ′
2 =

F21

D Y2
2 +

F22 −F11

D Y2 −
F12

D , Y ′
1 = −Y2

F21

D − F22 −F11

2D , g′2 =
F21

D e−2Y1 . (A25)

Similarly, in the Schwarzian Φ approach

y2 ∝
1

√

Φ′
2

D
F21

e
∫ F11+F22

D dϖ

sin
Φ2 + C

2
,

Φ
′′′
2

Φ′
2

− 3Φ
′′2
2

2Φ′2
2

+
Φ

′2
2

2
= 2κ2

2 , (A26)

and by writing Y =
y1

y2
= − D

F21

y′2
y2

− F22

F21
as

Y = Y2 −Y1 cot
Φ2 + C

2
, (A27)

we end up with the following system:

Y ′
2 =

(

Y2
2 −Y2

1

)F21

D +
F22 −F11

D Y2 −
F12

D , Y ′
1 = 2Y1Y2

F21

D +
F22 −F11

D Y1 , Φ
′
2 = 2Y1

F21

D . (A28)

The formulations with y1 and y2 are, of course, equivalent. Actually, by replacing

Y1 = −Y sin
Φ1 − Φ2

2
, Y2 = Y cos

Φ1 − Φ2

2
in Equation (A27), we find Equation (A17),

with Y3 =
1

Y sin
Φ1 − Φ2

2
, Y4 =

1

Y cos
Φ1 − Φ2

2
(this corresponds to a Möbius transforma-

tion that leaves the Schwarzian unaffected).
So both formulations are equivalent with the following symmetrical expressions:

Y = Y
sin

Φ1 + C

2

sin
Φ2 + C

2

, y2 =
D sin

Φ2 + C

2
√

e
∫ F11+F22

D dϖY sin
Φ1 − Φ2

2

, y1 = Yy2 , (A29)

Φ
′
1 = 2

F12

D
1

Y sin
Φ1 − Φ2

2
, Φ

′
2 = −2

F21

D Y sin
Φ1 − Φ2

2
, (A30)

Y ′ =
(F21

D Y2 − F12

D

)

cos
Φ1 − Φ2

2
+

F22 −F11

D Y . (A31)

Asymptotically, sin
Φ1 − Φ2

2
→ 0, and the quantization condition is sin

Φ1 + C

2
→ 0 (the

seemingly equivalent sin
Φ2 + C

2
→ 0 is not accurate in cases with m = 0 when the

quantization condition is applied on the axis, as discussed in Appendix C).

Appendix C. The Stability Problem near the Symmetry Axis ϖ = 0

• For m ̸= 0 near the axis, all limits dij = lim
ϖ→0

ϖFij

D are constants (given in Appendix B

of [4]), and the relations d22 = −d11, d2
11 + d12d21 = m2 hold.
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Using these, we can find approximate expressions for the functions given by

Equation (A10) ϖγ1 ≈ 1

2
, ϖ2b1 ≈ −m2, ϖ2κ2

1 ≈ 1

4
− m2. The solutions of

Equations (A13) and (A16) behave as g′1 ∝ ϖ2|m|−1, Φ
′
1 ∝ ϖ2|m|−1: approaching zero as

ϖ → 0. The approximate solution of Equation (A18) is Φ1 ≈ Φ1axis + C0ϖ2|m|, Y3 ≈
C0|m|

d12
ϖ2|m|, Y4 ≈ |m| − d11

d12
, and thus,

1

Y
≈ −C0|m|

2d12
ϖ2|m| cot

Φ1axis + C + C0ϖ2|m|

2
+

|m| − d11

d12
. For all values of Φ1axis + C that do not satisfy the quantization condition,

the result is the unphysical branch
1

Y
≈ |m| − d11

d12
. For Φ1axis + C = 2nπ though, the

resulting
1

Y
≈ −|m|+ d11

d12
is the acceptable solution (see Equation (5) in [5]).

Similarly, we can find approximate expressions for the functions given by Equation (A20):

ϖγ2 ≈ 1

2
, ϖ2b2 ≈ −m2, ϖ2κ2

2 ≈ 1

4
− m2. The solutions of Equations (A23) and (A26)

behave as g′2 ∝ ϖ2|m|−1, Φ
′
2 ∝ ϖ2|m|−1: approaching zero as ϖ → 0.

• For m = 0, near the axis, the constant limits are b11 = lim
ϖ→0

F11

ϖD , b12 = lim
ϖ→0

F12

ϖD ,

b21 = lim
ϖ→0

ϖF21

D , b22 = lim
ϖ→0

F22

ϖD (see Appendix B of [4]).

Using these, we can find approximate expressions for the functions given by

Equation (A10) ϖγ1 ≈ −1

2
, b1 ≈ −b12b21, ϖ2κ2

1 ≈ −3

4
, and for the solutions of

Equations (A13) and (A16): g′1 ∝ ϖ, Φ
′
1 ∝ ϖ (approaching zero as ϖ → 0). The approx-

imate solution of Equation (A18) is Φ1 ≈ Φ1axis + C0ϖ2, Y3 ≈ C0

b12
, Y4 ≈ −b21 ln ϖ,

and for Φ1axis + C0 = 2nπ, the resulting
1

Y
≈ − 2

b12ϖ2
is the acceptable solution (see

Equation (6) in [5]).
Similarly, we can find approximate expressions for the functions given by

Equation (A20): ϖγ2 ≈ 1

2
, b2 ≈ −b12b21 + 2b22, ϖ2κ2

2 ≈ 1

4
. However, in this case, the

solution of Equation (A23) g′2 ∝ ϖ−1 does not approach zero as ϖ → 0. So this method
should be avoided when using the quantization condition on the axis.

Appendix D. The Stability Problem for Non-relativistic Cylindrical Jets

If the unperturbed sate has density ρ0(ϖ), pressure P0(ϖ), bulk velocity V0(ϖ)ẑ, and
magnetic field B0 = B0z(ϖ)ẑ + B0ϕ(ϖ)ϕ̂ satisfying the equilibrium condition

dP0

dϖ
+

d

dϖ

(

B2
0z

2

)

+
1

ϖ2

d

dϖ

(

ϖ2B2
0ϕ

2

)

= 0 , (A32)

the linearization of the ideal magnetohydrodynamic equations lead to system (23) with

−ϖ
F11

D =
B2

0ϕκ̃2 + 2B0ϕk
(

B0ϕk − B0zm/ϖ
)

ρ0ω2
co − (kco · B0)

2
,

F22

D = −F11

D , (A33)

ϖ
F12

D =
κ̃2ϖ2

ρ0ω2
co − (kco · B0)

2
, −ϖ

F21

D = ρ0ω2
co − (kco · B0)

2 +
B2

0ϕ

ϖ2

B2
0ϕκ̃2 − 4B0zk(kco · B0)

ρ0ω2
co − (kco · B0)

2
, (A34)

κ̃2 =
ρ0ω4

co
(

ρ0c2
s + B2

0

)

ω2
co − c2

s (kco · B0)
2
− k

2
co , cs =

√

ΓP0

ρ0
, kco = kẑ +

m

ϖ
ϕ̂ , ωco = ω − kV0 . (A35)
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