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ABSTRACT

We present both the theoretical framework and experimental implementation of permutation gates using logical phi-bits, classical acoustic
analogs of qubits. Logical phi-bits are nonlinear acoustic modes supported by externally driven acoustic metamaterials. Using a tensor
product of modified Bloch sphere representations, we realize all possible two logical phi-bit permutations including SWAP and C-NOT. We
also illustrate the scalability of a permutation for any number of logical phi-bits. Experimental demonstrations of these permutations require
a single physical action on the driving conditions of the acoustic metamaterial. All logical phi-bits exist in the same physical system. We
compare the phi-bit system with its quantum counterpart using Qiskit simulations, which illustrate the complexity of realizing these permu-
tations in a quantum context.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0241680

I. INTRODUCTION

Permutations are key elements in many types of algorithms
with application to cryptography, optimization, statistics, and
analysis.1–6 For digital computers, permutations pose a significant
challenge in terms of efficiency and computing time when operating
on large datasets. The parallelism of quantum computers holds the
promise of greater efficiency and reduced time. However, increasing
the number of qubits challenges state-of-the-art quantum comput-
ing platforms due to system decoherence leading to the accumula-
tion of errors.1 Quantum algorithms resort to performing circuits of
single and double qubit gates for realizing permutations.7,8

Quantum computing is essentially phase computing where a
coherent superposition of state of N qubit is defined by a multidi-
mensional vector with 2N complex components living in an associ-
ated Hilbert space. The basis of the Hilbert space depends on the
choice of the representation of the multi-qubit states. Quantum cor-
relations ought to make these components dependent on each other
and manipulable in a massively parallel manner. A computation
would then involve acting on the system to change all components
of the complex vector at once in a controllable manner through a
unitary operation (or gate), i.e., a rotation of the vector in the

Hilbert space. One of the challenges in quantum computing is the
fragility of multi-qubit superpositions arising from quantum deco-
herence of the wavefunction due to perturbations such as thermal
fluctuations.9 Another challenge is the weak correlation resulting
from computing hardware constraints of limiting the number of
qubits that can be manipulated simultaneously.10 Recently, mechan-
ical systems have shown great potential for performing computa-
tions. Such systems include acoustic metasurfaces,11–14 conventional
phononic crystals,14 topological phononic crystals,15,16 and granular
materials.17 In prior work, we demonstrated that nonlinear acoustic
metamaterials can support logical phi-bits (acoustic qubit analogs),
in which superposition of states can also be represented in an expo-
nentially scaling Hilbert space to achieve scalable gates for any
number of phi-bits.18,19 A logical phi-bit is a nonlinear acoustic
mode supported by an externally driven acoustic metamaterial,
which can exist in robust superpositions of states that are not sub-
jected to wavefunction decoherence. The two-level logical phi-bit is
a classical analog of a qubit. Logical phi-bits coexist in the same
physical domain defined by the metamaterial and nonlinearity
provide the strong correlation necessary to realize massively parallel
operations on multi-phi-bit states without hardware constraints.18
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In this work, we present both the theoretical and experimen-
tal realization of permutations using a system of logical phi-bits.
In Sec. II of this study, we define logical phi-bit as a nonlinear
acoustic mode supported by a metamaterial composed of linearly
arranged acoustic waveguides.18 We introduce a tensor product of
modified Bloch sphere representations of multi-phi-bit states,
which enables us to show in Sec. III that we can realize all possi-
ble two logical phi-bit permutations including SWAP and
C-NOT. We also show experimentally that a single physical
action on the driving condition of the acoustic metamaterial is
sufficient to perform these permutations. In Sec. IV, we demon-
strate the scalability of a permutation for any number of logical
phi-bits. Section V provides a comparison of the phi-bit system
with its quantum counterpart using Qiskit simulations. In
Sec. VI, we draw conclusions about the advantages of logical
phi-bit permutations.

II. PHYSICAL SYSTEM AND LOGICAL PHI-BIT

Logical phi-bits are generated with an acoustic meta-
structure consisting of three aluminum waveguides, 60 cm long
(approximately 1 cm in diameter) arranged linearly in a parallel
array with a lateral spacing of 2 mm filled with epoxy.18 The
waveguides are labeled 1, 2, and 3, with waveguide 2 positioned
between 1 and 3. At one end of waveguides 1 and 2, sinusoidal
waves of equal amplitude 80 V are generated with frequency f1 ¼
62 kHz and f2 ¼ 66 kHz, respectively, using ultrasonic transduc-
ers. Each transducer is driven by two separate signal generators to
reduce unwanted crosstalk. The third waveguide remains unex-
cited. The amplitude and the phase of the propagated wave are
measured at the other end of the three waveguides using another
set of ultrasonic transducers connected to an oscilloscope. The
experimental setup is shown and illustrated schematically in
Fig. 1.

The measured amplitudes were transformed to the frequency
domain using Fast Fourier Transform (FFT). On the spectral
domain, we observe strong peaks at the primary frequencies, f1 and
f2, as well as secondary peaks corresponding to nonlinear modes at
frequencies given by linear combinations of the primary frequencies,

F( p,q) ¼ pf1 þ qf2: (1)

In Eq. (1), p and q are the integer coefficients of the linear
combination of the primary frequencies. The modes corresponding
to the secondary peaks’ frequencies F( p,q) are identified as the
logical phi-bits. Therefore, a logical phi-bit is said to exist in the
spectral domain of this setup and all phi-bits, i.e., nonlinear modes
coexist in the same physical domain.

In the spectral domain, the complex amplitude of a nonlinear
mode with frequency pω1 þ qω2 at the end of the three waveguides
can be expressed as

U ( p,q) ¼
C1eif

( p,q)
1

C2eif
( p,q)
2

C3eif
( p,q)
3

0
B@

1
CAei( pω1þqω2)t , (2)

where C1, C2, and C3 are the complex amplitude of the complex
signal and f1, f2, and f3 correspond to the phase of the measured
signal. We can further normalize Eq. (2) to the complex amplitude
of the first waveguide,

U ( p,q) ¼

1
C2

C1
eif

( p,q)
12

C3

C1
eif

( p,q)
13

0
BBB@

1
CCCAei( pω1þqω2)t : (3)

A phi-bit with characteristic frequency F( p,q) can also be char-
acterized by the phase difference of the measured displacement
between waveguides 1 and 2 (f( p,q)

12 ) and between waveguides 1 and
3 (f( p,q)

13 ) by setting waveguide 1’s phase (f( p,q)
1 ) as the reference

phase as shown below,

f
( p,q)
12 ¼ f

( p,q)
1 � f

( p,q)
2 ,

f
( p,q)
13 ¼ f

( p,q)
1 � f

( p,q)
3 :

(4)

FIG. 1. (a) Picture of the experimental setup showing the array of elastically
coupled waveguides, two signal generators and amplifiers on the right, and an
oscilloscope on the left. (b) Schematic illustration of the experimental setup.
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Dropping the direct reference to waveguide 1, we simplify Eq. (3) to

U ( p,q) ¼ Ĉ2eif
( p,q)
12

Ĉ3eif
( p,q)
13

 !
ei( pω1þqω2)t : (5)

One can further expand the phi-bit displacement vector with
an orthogonal basis j0i and j1i, which represents the waveguides 2
and 3,

U ( p,q) ¼ Ĉ2e
if( p,q)

12 j0i þ Ĉ3e
if( p,q)

13 j1i: (6)

The phase differences are controlled by varying the driving
frequency f1 by Δυ ranging from 0 to 4 kHz while keeping f2 fixed.
We track the location of the phi-bit on the spectral domain and
compute the phase differences at each new phi-bit characteristic
frequency.

The phase differences exhibit two consistent behaviors as a
function of the driving frequency f1. These behaviors are shown
in Fig. 2. The phase differences are the superposition of monoto-
nous continuous variations and sudden π jumps occurring at
certain frequencies. The continuous behavior is consistent across
all phi-bits. In particular, if we monitor the phase differences
between rods 1 and 2 and rods 1 and 3 at the primary frequen-
cies, namely, f12( fi) and f13( fi) where i ¼ 1, 2, the monotonous

contribution to f
( p,q)
12 and f

( p,q)
13 are given by pf12( f1)þ qf12( f2)

and pf13( f1)þ qf13( f2). Both behaviors are consistently
observed in all the phi-bits and used to achieve permutation
operations described herein. We further note that these behaviors

are general for phi-bits when driven at any frequencies f1 and f2,
that is, the π jumps can be observed at different frequency f1 for
each phi-bits.

Each logical phi-bit characterized by its frequency possesses
two independent degrees of freedom in the form of the measured
phase differences (f12 and f13). We make the choice of a Bloch’s
sphere representation of the state of a logical phi-bit (p, q) as
follows:

V ( p,q) ¼ sin(β( p,q))
eiγ

( p,q)
cos(β( p,q))

� �
: (7)

In Eq. (7), the Bloch sphere representation includes two
degrees of freedom β and γ. These two degrees of freedom are
taken as functions of f12 and/or f13. One has great latitude in
choosing these functions for each phi-bit in order to span its
Bloch sphere; specifically, the phase difference for each phi-bit is
determined by the multiplication factors p and q of the primary
frequencies f1 and f2, as described in the continuous behavior of
the system. This results in distinct phase differences for each
phi-bit at different frequencies, providing a mechanism for inde-
pendent control over the Bloch sphere parameters. Additionally,
π jumps are observed in some of the phi-bits phase differences,
providing additional control on parametrically spanning the
Bloch.

In this work, we are able to realize all possible permutation
gates acting on two phi-bits by taking γ ¼ 0. In this case, the
logical phi-bit has only real components, which is equivalent to a
rebit.20–22 β is also chosen as a function of f12 or f13. With this,

FIG. 2. Examples of observed phase differences f( p,q)
12 ( f1) and f( p,q)

13 ( f1) showing examples of continuous and π jump behavior. The values of p and q are given in the
figure legend.
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the representation of Eq. (7) is simplified to

V ( p,q) ¼ sin(β( p,q))
cos(β( p,q))

� �
: (8)

Consequently, the state vector of a two phi-bits system can be
represented as the tensor product of each phi-bits state vector,

V ¼

sin(β(1))sin(β(2))

sin(β(1))cos(β(2))

cos(β(1))sin(β(2))

cos(β(1))cos(β(2))

0
BBB@

1
CCCA , (9)

where β(1) and β(2) are associated to phi-bit 1 and phi-bit 2,
respectively.

Even though the superposition of states given by Eq. (9) is a
tensor product state, the nonlinear correlation between phi-bits 1
and 2 makes those components dependent on each other and,
therefore, changes in the state of phi-bit 1 are related to changes in
the state of phi-bit 2. This tensor product is limited to a subregion
of the two phi-bit Hilbert space.

III. PERMUTATION GATES ACTING ON TWO PHI-BITS

To implement permutations with two phi-bits, we introduce a
new representation of the two phi-bit state vectors,

V̂ ¼

sin(β(1))sin(β(2))
1
2
[(1� H(cos(β(2)))) � sin (β(1))þ (1þH(cos(β(2)))) � cos(β(1))] � cos(β(2))

1
2
[(1þ H(cos(β(2)))) � sin (β(1))þ (1�H(cos(β(2)))) � cos(β(1))] � cos(β(2))

cos(β(1))sin(β(2))

0
BBBBBB@

1
CCCCCCA
: (10)

In Eq. (10), H(x) stands for the Heaviside function such that

H(x) ¼ x
jxj ¼

1, x . 0
�1, x , 0

�
. The representation of a two phi-bit

state given by Eq. (10) is not in general a tensor product state and
spans a wider region of the two phi-bit Hilbert space. The compo-
nents of this vector are correlated with each other through the non-
linearity in the system.

For the sake of simplicity, we use a more compact
notation such that sin(β(1)), cos(β(1)), sin(β(2)), and cos(β(2)) are
written as S1, C1, S2, and C2, respectively. With this, Eq. (10)
becomes

V̂ ¼

S1S2
1
2
[(1� H(C2)) � S1 þ (1þ H(C2)) � C1] � C2

1
2
[(1þ H(C2)) � S1 þ (1� H(C2)) � C1] � C2

C1S2

0
BBBBB@

1
CCCCCA: (11)

Considering an initial vector V̂ ¼
V1

V2

V3

V4

0
BB@

1
CCA, we are seeking changes

in the driving conditions leading to changes in β(1) and β(2) such
that the state vector transforms according to

V� ¼ P � V̂ , (12)

where P is a 4� 4 permutation unitary matrix.

A. Realizing SWAP permutation gate

Here, we realize the permutation matrix,

P ¼
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0
BB@

1
CCA, which permutes the second and third com-

ponents of the two phi-bits state vector. This is the SWAP permu-
tation gate. Let us consider a two phi-bit system initialized at
arbitrary values of β(1) and β(2). Depending on the initial value of
β(2) (i.e., the sign of the C2), Eq. (11) gives two possible initial state
vectors. We choose C2 . 0 such that the initial state vector is
taking the form

V̂ ¼
S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA: (13)

To swap components 2 and 3 of this state vector, we need to
tune the frequency of the physical system such that the phase dif-
ference of phi-bit 1 (either f12 or f13 defining β(1)) remains cons-
tant and the phase difference of phi-bit 2 (defining β(2)) changes by
+π such as

β(1)� ¼ β(1),

β(2)� ¼ β(2) + π:
(14)

In Eq. (14), the * labels the phase difference after the change
in frequency. The change by π of β(2) changes the sign of C2 to a
negative value such that Eq. (11) gives a new state vector through
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the Heaviside function. As a result, the state vector transforms
according to

V̂ ¼
S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA! V� ¼

�S1S2
�S1C2

�C1C2

�C1S2

0
BB@

1
CCA : (15)

The minus signs come from the trigonometric relations
cos(β(2) + π) ¼ �cos(β(2)) and sin(β(2) + π) ¼ �sin(β(2)).

To a general phase of π associated with the – sign in V� that
we can disregard, the transformation can be expressed in terms of
the desired SWAP gate as follows:

V� ¼
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0
BB@

1
CCA

S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA ¼

S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA: (16)

To execute the SWAP gate experimentally, we consider β(i),

i ¼ 1, 2 to be the simplest function of f
( p,q)
12 by taking

β(i) ¼ f
( p(i),q(i))
12 . We choose phi-bit 1 to be the nonlinear mode

with (p ¼ 3, q ¼ �2) and phi-bit 2 to be the mode with
(p ¼ 3, q ¼ �1). The phase difference of phi-bit 1 (f(3,�2)

12 ) and
phi-bit 2 (f(3,�1)

12 ) is illustrated in Fig. 3. We initialized the phi-bits
at frequency f1 ¼ 64:05 kHz and tune the driving frequency to
64.15 kHz. At the initial frequency, the initial f12 of phi-bit 1 is
2.04 rad and the initial f12 of phi-bit 2 is 5.94 rad. After tuning, the
phase difference for phi-bit 1 remains nearly constant and the
phase difference for phi-bit 2 decreases by π through the π jump.
The change in state vectors for this permutation is shown below
where considering the absolute value of the state vector; we
observed the second and third components of the state vector are
swapped,

V̂ ¼
�0:30
�0:43
0:84
0:15

0
BB@

1
CCA! V� ¼

0:20
�0:82
0:52
�0:12

0
BB@

1
CCA: (17)

Disregarding the change in signs, the physical operation swaps
the second component with the third component while keeping the
first and the fourth components nearly the same. We note that the
numerical values of the components of the state vector may change
by no more than 0.1 due to the fact that the jump in phase is not
exactly π and that β(1) is not exactly constant over the range of fre-
quency spanned by the physical operation.

In Eq. (13), the value of the component of the initial vector
is determined by the constant functions β(1) ¼ f(3,�2)

12 and
β(2) ¼ f(3,�1)

12 and the specific value of the phases at the frequency
f1 ¼ 64:05 kHz. However, one can span the complete unit circle of
phi-bit 1 by choosing the function,

β(1) ¼ f(3,�2)
12 þ α(1), (18)

where α(1) [ [�π, π]. Similarly, one can span the complete unit
circle of phi-bit 2 by choosing the function

β(2) ¼ f(3,�1)
12 þ α(2), (19)

where α(2) [ [�π, π]. By choosing the value of α(1) and α(2), one
can generate any tensor product state of the two phi-bits as input

to the swap gate. The functions β(i) ¼ f
( p(i),q(i))
12 þ α(i), i = 1,2

enable us to select any input vector V̂ without losing the ability of
swapping the components by operating the following π jump,

β(2) + π since the π jump only affects the f( p,q)
12 .

B. Realizing C-NOT permutation gate

Here, we realize the permutation matrix,

P ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA, which permutes the third and fourth com-

ponents of the two phi-bits state vector. This is the C-NOT gate. In
this case, we use the same initial state vector as in Subsection III A
[Eq. (13)] but must restrict the initial phase difference such that
β(1) [ [0, π] and β(2) [ �π

2 , π
2

� �
.

By tuning the driving frequency, such that the phase differ-
ence of the first phi-bit exchange with that of the second phi-bit,

β(1)� ¼ β(2),

β(2)� ¼ β(1),
(20)

the transformed state vector becomes by permutation of indices:

V� ¼
S2S1
C2C1

S2C1

C2S1

0
BB@

1
CCA. This transformation is equivalent to the unitary

transformation of the state vector with a C-NOT gate by commuta-
tivity of the multiplication,

V� ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA

S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA ¼

S1S2
C1C2

C1S2
S1C2

0
BB@

1
CCA: (21)

We set β(i), i ¼ 1, 2 as a simple function of f( p,q)
13 only by

taking β(i) ¼ f
( p(i),q(i))
13 . We implement the C-NOT permutation

using experimentally measured data for phi-bit 1 (f(1,�2)
13 ) and

phi-bit 2 (f(�1,2)
13 ). These phases are shown in Fig. 4. The experi-

mental phase difference for phi-bit 1 lies between 0 and π. The
experimental phase difference for phi-bit 2 was translated by an
inconsequential constant ε to constrain it to be between �π

2 and π
2.

This translation is of the form β(2) ¼ f(�1,2)
13 þ ε. The C-NOT

permutation is achieved by initializing the phi-bits at frequency
f1 ¼ 63:15 kHz and tuning it to 63.70 kHz. The initial f13 for
phi-bit 1 is 0.76 rad, and the initial f13 for phi-bit 2 is 0.31 rad.
After frequency tuning, the phase differences of phi-bit 1 and
phi-bit 2 are exchanged so that the final phase difference for
phi-bit 1 is the initial phase difference for phi-bit 2 and the
final phase difference for phi-bit 2 is the initial phase difference
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for phi-bit 1. The initial and final state vectors are shown below
where we observed the third and fourth components are
swapped,

V̂ ¼
0:21
0:70
0:65
0:22

0
BB@

1
CCA! V� ¼

0:19
0:69
0:19
0:68

0
BB@

1
CCA: (22)

After permutation, the small changes in the numerical values
of the components (less than 5%) arise from the small amount of
noise in the experimentally measured phases.

In Eq. (22), the value of the component of the initial vector is
determined by the constant functions β(1) ¼ f(1,�2)

13 ¼ 0:76 and
β(2) ¼ f(�1,2)

13 þ ε ¼ 0:31 at the frequency f1 ¼ 63:15 kHz. It is
important to note that in the operation described above we have
considered two stages. The first stage is the initialization of the
state of the phi-bits, that is, defining the input vector V̂ . The
second stage corresponds to the C-NOT operation itself, which
transforms the input vector into an output vector, V�. In Eq. (18),
we have illustrated these two stages in a specific case; however,

there exists an infinite number of possible input vectors, which can
be operated upon. These inputs, which conserve the symmetry of
the crossing occurring at the frequency f1 ¼ 63:4 kHz, form a sub-
space of the Hilbert space of all possible states. One can generate
these inputs by using β(1)( f1) ¼ δ(f(1,�2)

13 ( f1)� f(1,�2)
13 (63:4 kHz))

and β(2)( f1) ¼ δ(f(�1,2)
13 ( f1)þ ε� f(1,�2)

13 (63:4 kHz)) for
f1 [ [63:15, 63:70 kHz]. Here, we have translated the crossing
point such that it occurs at the origin of phases. The rescaling
factor δ is used to span the complete range of angles. A second
infinite set of possible input states can be generated by using the
transformations β(1)( f1) ¼ δ(f(1,�2)

13 ( f1)� f(1,�2)
13 (63:4kHz))þ α

and β(2) ¼ δ(f(�1,2)
13 ( f1)þ ε� f(1,�2)

13 (63:4kHz))þ α, where α
translates the crossing after rescaling. The C-NOT operation can
subsequently operate on these infinite sets of inputs. To operate on
states within the complete Hilbert space, one needs to implement
another initialization step.

First one chooses one of the input states that conserves the
symmetry of the crossing within the infinite set of such states, for
example, let us consider one of the possible symmetry-conserving
input state, β(1) ¼ 0:76 and β(2) ¼ 0:31. This symmetry-conserving
state is redefined as a target state (β(1)t ¼ 0:76 and β(2)t ¼ 0:31).

FIG. 3. Experimentally measured f12 of phi-bit 1 f(3,�2)
12 and phi-bit 2 f(3,�1)

12 for implementing the SWAP gate by tuning the driving frequency from an initial marked by
the vertical dashed line to a final frequency indicated by a solid vertical line.
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One now needs to map a desired input to the target input state.
The mapping from a desired state (β(1)d and β(2)d , which can be used
to span the complete unit circle) to the target state can be done
with the functions β(1)t ¼ β(1)d þ α0(1), where α0(1) ¼ f(1,�2)

13 � β(1)d ,

and β(2)t ¼ β(2)d þ α0(2), where α0(2) ¼ f(�1,2)
13 � β(2)d . However, this

mapping is not invertible. Since one has great latitude in selecting
functions that can be used to realize the mapping, another possibil-
ity, without using translations is to employ a nearly constant func-
tion to create this mapping. For instance, one can use the mapping
β(1)t cos μβ(1)d and β(2)t cos μβ(2)d , where μ is a very small quantity
such that the cosine function is nearly constant over the complete
unit circle. With such a function, the level of accuracy is deter-
mined by the parameter μ. The advantage of this type of mapping
is its invertibility. We emphasize that the stage of the initialization
of the input state is separate from the stage of the C-NOT opera-
tion. It is also important to note that the mapping between the
desired state and the target state is taking place in the space of the
β(i)t and β(i)d , which scales linearly with the number of phi-bits.
Consequently, initialization does not cost significant overhead.
After initialization, the C-NOT gate can be applied to (a) the input

vector associated with symmetry-conserving states or (b) any other
input vector obtained through mapping to a symmetry-conserving
state, by tuning the frequency. We emphasize that the C-NOT gate
operates in the tensor product space of the phi-bits. It is this stage
which gives an advantage to operating with a phi-bit-based
approach. This two stage technique is general and employed
throughout the manuscript for exploring permutations.

C. Permuting components 1 and 2

Let us use the initial state vector of Subsection III B with the
same restrictions (β(1) [ [0, π] and β(2) [ �π

2 , π
2

� �
).

To achieve permutation of components 1 and 2 of the state
vector, we must tune the frequency of the physical system such that
β(1) is exchanged with the β(2) and β(1) increases by π

2 and β(2)

decreases by π
2,

β(1)� ¼ β(2) þ π

2
,

β(2)� ¼ β(1) � π

2
:

(23)

FIG. 4. Experimentally measured f13 of phi-bit 1 f(1,�2)
13 and phi-bit 2 f(�1,2)

13 for implementing the C-NOT gate as a function of driving frequency. Vertical lines (dashed
and solid) as in Fig. 3.
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Using the exchange of indices and the trigonometric relations,
cos θþ π

2

� �¼�sin(θ), sin θþ π
2

� �¼ cos(θ), cos θ� π
2

� �¼ sin(θ),
and sin θ � π

2

� � ¼ �cos(θ), the initial state vector transforms
according to

V̂ ¼
S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA! V� ¼

�C2C1

�S2S1
C2S1
S2C1

0
BB@

1
CCA: (24)

There is a π phase difference between some of the components
of the new state vector due to the sign change. This operation is
described below,

V� ¼
0 �1 0 0
�1 0 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

S1S2
C1C2

S1C2

C1S2

0
BB@

1
CCA ¼

�C1C2

�S1S2
S1C2

C1S2

0
BB@

1
CCA: (25)

The transformation matrix in Eq. (25) is the product of a
phase gate and the desired permutation gate, such that

0 �1 0 0
�1 0 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA ¼

�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA:

Disregarding the change in sign, we have achieved the permu-
tation of the first and second components.

This permutation is achieved by expressing β(i), i ¼ 1, 2 as a

simple function of f( p,q)
13 such that β(i) ¼ f

( p(i),q(i))
13 and using exper-

imentally measured data of phi-bit 1 (f(1,�2)
13 ) and phi-bit 2

(f(�1,2)
13 ), as shown in Fig. 5. For this permutation, the experimen-

tal phase difference of phi-bit 1 is translated by a constant phase
such that it lies between 0 and π. The experimental phase differ-
ence of phi-bit 2 is translated by another constant phase ε such
that the phase difference falls between � π

2 and
π
2. This translation

is of the form β(2) ¼ f(�1,2)
13 þ ε. The phi-bits are initialized at

frequency f1 ¼ 63:45 kHz, and the frequency of the system is
tuned from its initial value to 63.95 kHz. At the initial frequency,
the initial f13 for phi-bit 1 is 1.12 rad and the initial f13 of
phi-bit 2 is −1.08 rad. After tuning, the phase difference for
phi-bit 1 becomes the initial phase difference of phi-bit 2 plus π

2
and phase difference of phi-bit 2 becomes the initial phase differ-
ence of phi-bit 1 minus π

2. This gives the change in state vectors
shown below,

V̂ ¼
�0:80
0:20
0:41
�0:39

0
BB@

1
CCA! V� ¼

�0:21
0:80
0:41
�0:40

0
BB@

1
CCA: (26)

Making abstraction of the change in sign, V� is obtained by
simply permuting components 1 and 2 of V.

The small variations in numerical values of the state
vector components result from small noise in the experimental
data.

In Eq. (26), the value of the component of the initial vector,
fixed input state, is determined by the constant functions β(1) ¼
f(1,�2)
13 ¼ 1:12 and β(2) ¼ f(�1,2)

13 þ ε ¼ �1:08 at the frequency
f1 ¼ 63:45 kHz. An approach similar to that of Sec. III B can be
used to create any desired input state by mapping it to a fixed
input state (or any symmetry-conserving state). Here, we require
that β(1) and β(2) maintain a π

2 change and a consistent separation
as we translate the state. One can initialize the states by using
β(1)( f1) ¼ f(1,�2)

13 ( f1)þ α and β(2)( f1) ¼ f(�1,2)
13 ( f1)þ εþ α for

f1 [ [62:00, 63:50 kHz] to generate any input for the permuta-
tion process. The translation factor α is used to select a subspace
of the Hilbert space of all the infinitely possible states and main-
tain spacing between the β(i), where i = 1, 2. This separation-
conserving state can then be mapped to any desired input state
using the same invertible mapping approach described in
Sec. III B, with β(1)t cos μβ(1)d and β(2)t cos μβ(2)d , where μ is a very
small quantity such that the cosine function is nearly constant
over the complete unit circle. After the initialization stage which
takes place in the linearly scaling space of phases, one can apply
a change in tuning frequency in a separate stage to permute com-
ponents 1 and 2 of any input state whether it is a separation-
conserving state vector or an input vector obtained by mapping
to a separation-conserving state. Again, we emphasize that this
permutation gate operates in the tensor product space of the
phi-bits state.

D. Permuting components 1 and 3

We consider the initial state vector of a two phi-bits system
with the following restrictions on β(1) and β(2): β(1) [ [π, 2π] and
β(2) [ π

2 ,
3π
2

� �
. With this C2 , 0 and Eq. (11) gives the initial state

vector below,

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA: (27)

To permute components 1 and 3 of the state vector, we must
tune the frequency of the physical system such that β(1) is
exchanged with the β(2) and β(1) increases by π

2 and β(2) decreases
by π

2 as was also done in Subsection III C:

β(1)� ¼ β(2) þ π

2
,

β(2)� ¼ β(1) � π

2
:

(28)

By permuting the indices and using the same trigonometric
relations as in Subsection III C, the state vector transforms
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according to

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA! V� ¼

�C2C1

C2S1
�S2S1
S2C1

0
BB@

1
CCA: (29)

This transformation permutes the first and third components
and is equivalent to a transformation achieved using the matrix
given below,

V� ¼
0 0 �1 0
0 1 0 0
�1 0 0 0
0 0 0 1

0
BB@

1
CCA

S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA ¼

�C1C2

S1C2

�S1S2
C1S2

0
BB@

1
CCA: (30)

The transformation matrix in Eq. (30) is the product of a
phase gate and the desired permutation gate, such that

0 0 �1 0
0 1 0 0
�1 0 0 0
0 0 0 1

0
BB@

1
CCA ¼

�1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 1

0
BB@

1
CCA

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0
BB@

1
CCA:

By disregarding the phase change in the transformed state vector
V�, we have successfully permuted the first and third components
of the state vector.

This permutation is achieved with the same two phi-bits as in
Subsection III C. However, the experimental phase difference of
phi-bit 1 was adjusted by a constant to fall between π and 2π as
shown in Fig. 6. The experimental phase difference of phi-bit 2 was
translated by another constant ε to lie between π

2 and
3π
2 . This trans-

lation is of the form β(2) ¼ f(�1,2)
13 þ ε. The phi-bits are now ini-

tialized at frequency f1 ¼ 63:45 kHz. At the initial frequency of
63.45 kHz, the initial f13 of phi-bit 1 is 4.61 rad and the initial f13
of phi-bit 2 is 2.39 rad. This permutation is achieved by tuning the
frequency to 63.95 kHz. Upon tuning, the phase difference of
phi-bit 1 becomes the initial phase difference of phi-bit 2 plus π

2
and the phase difference of phi-bit 2 becomes the initial phase dif-
ference of phi-bit 1 minus π

2. The resulting change in state vectors

FIG. 5. Experimentally measured f13 of phi-bit 1 (f(1,�2)
13 ) and phi-bit 2 (f(�1,2)

13 ) for implementing the permutation of components 1 and 2. Vertical lines (dashed and
solid) as in Fig. 3.
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is illustrated below,

V̂ ¼
�0:68
0:73
0:08
�0:07

0
BB@

1
CCA! V� ¼

�0:09
0:73
0:67
�0:08

0
BB@

1
CCA: (31)

Independently of some changes in sign, this transformation
permutes components 1 and 3 with minimal change in the numeri-
cal value of the components themselves.

In Eq. (31), the value of the component of the initial vector, fixed
input state, is determined by the constant functions β(1) ¼ f(1,�2)

13
¼ 4:61 and β(2) ¼ f(�1,2)

13 þ ε ¼ 2:39 at frequency f1 ¼ 63:45 kHz.
However, one can span the complete unit circle of phi-bit 1 and phi-bit
2 by using the same approach described in Sec. III B, which maps the
desired input to the fixed input state.

E. Permuting components 1 and 4

For the permutation of components 1 and 4, let us consider a
two phi-bit system initialized at arbitrary values of β(1) and β(2).
Like Subsection III A, Eq. (11) gives two possible initial state vectors

depending on the initial value of β(2) (i.e., the sign of the C2). Here,
we choose C2 , 0 such that the initial state vector takes the form

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA: (32)

Tuning the frequency to manipulate the phase difference such
that β(1) increases by π

2 and β(2) by π,

β(1)� ¼ β(1) þ π

2
,

β(2)� ¼ β(2) þ π:
(33)

Adding π to β(2) makes C2 . 0, by virtue of the trigonometric
relation cos(θ þ π) ¼ �cos(θ), this affects the value of the
Heaviside function in Eq. (11) such that the vector V becomes

�S1S2
C1C2

S1C2

�C1S2

0
BB@

1
CCA. The minus signs arise from the trigonometric relation

FIG. 6. Experimentally measured f13 of phi-bit 1 (f(1,�2)
13 ) and phi-bit 2 (f(�1,2)

13 ) for implementing the permutation of components 1 and 3. Vertical lines (dashed and
solid) as in Fig. 3.
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sin(θ þ π) ¼ �sin(θ). This first step effectively swaps components
2 and 3. Using the trigonometric relations employed in Sec. III C
to address the change in β(1) by π

2 transforms the state vector as

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA! V� ¼

�C1S2
�S1C2

C1C2

S1S2

0
BB@

1
CCA: (34)

In matrix form, the whole operation takes the form

V� ¼
0 0 0 �1
0 �1 0 0
0 0 1 0
1 0 0 0

0
BB@

1
CCA

S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA ¼

�C1S2
�S1C2

C1C2

S1S2

0
BB@

1
CCA: (35)

The unitary transformation in Eq. (35) is effectively the
product of a phase gate with the desired permutation gate as
follows:

0 0 0 �1
0 �1 0 0
0 0 1 0
1 0 0 0

0
BB@

1
CCA ¼

�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

0
BB@

1
CCA:

To within phase changes of the components of the state
vector, we have realized the gate that permutes the first and the
fourth components of the state vector.

This permutation is achieved by expressing β(i), i ¼ 1, 2 as a

simple function of f( p,q)
12 and by taking β(i) ¼ f

( p(i),q(i))
12 using exper-

imentally measured data of phi-bit 1 (f(3,�2)
12 ) and phi-bit 2

(f(�6,�3)
12 ), as shown in Fig. 7. Here, there is no restriction on the

range of values of the phase differences, and we used the raw exper-
imental data without adjustment. The permutation is achieved by
initializing the phi-bits at frequency f1 ¼ 63:35 kHz and tuning it
to 64.65 kHz. At the initial frequency, the initial f12 for phi-bit 1 is
1.43 rad and the initial f12 for phi-bit 2 is 0.34 rad. After tuning,
the phase difference for phi-bit 1 increases by π

2 and the phase dif-
ference for phi-bit 2 increases by π. Increasing the phase difference
of phi-bit 1 by π

2 reverses the order of the state vector, by permuting
simultaneously components 2 and 3 and components 1 and 4.
Increasing the phase difference for phi-bit 2 by π permutes again
components 2 and 3, leaving just the permutation of components 1
and 4. The change in state vectors for this permutation is shown
below,

V̂ ¼
0:33
0:13
0:93
0:05

0
BB@

1
CCA! V� ¼

�0:03
�0:10
0:94
0:32

0
BB@

1
CCA: (36)

Considering the absolute value of the state vector components,
we observed the permutation of the first and fourth components of
that vector. Again, small variations in numerical values result from
the experimental noise.

In Eq. (36), the value of the component of the initial vector,
fixed input state, is determined by the constant functions
β(1) ¼ f(1,�2)

12 ¼ 1:43 and β(2) ¼ f(�1,2)
12 ¼ 0:34 at frequency

f1 ¼ 63:35 kHz. However, one can span the complete unit circle
of phi-bit 1 and phi-bit 2 by using the same approach described
in Sec. III B, which maps the desired input to the fixed input
state.

F. Permuting components 2 and 4

We consider the initial state vector of a two phi-bits system
with the same restrictions on β(1) and β(2) as in Subsection III D:
β(1) [ [π, 2π] and β(2) [ π

2 ,
3π
2

� �
. Equation (11) gives the same

initial state vector as in Eq. (27). The frequency of the driver must
be tuned such that one exchanges β(1) and β(2),

β(1)� ¼ β(2),

β(2)� ¼ β(1):
(37)

This tuning transforms the state vector as shown below,

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA! V� ¼

S2S1
S2C1

C2C1

C2S1

0
BB@

1
CCA: (38)

This transformation permutes the second and fourth compo-
nents of the state vector, which is equivalent to the unitary trans-
formation using the matrix below,

V� ¼
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0
BB@

1
CCA

S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA ¼

S1S2
C1S2
C1C2

S1C2

0
BB@

1
CCA: (39)

This permutation is achieved by expressing β(i), i ¼ 1, 2 as a

simple function of f( p,q)
13 only by taking β(i) ¼ f

( p(i),q(i))
13 and using

experimentally measured data of phi-bit 1 (f(1,�2)
12 ) and phi-bit 2

(f(�1,2)
12 ), as shown in Fig. 8. For this permutation, the experimental

phase difference for phi-bit 1 was translated with a constant to con-
strain the value between π and 2π. The experimental phase differ-
ence for phi-bit 2 was adjusted by a constant ε such that the value
falls between π

2 and 3π
2 . This translation is of the form

β(2) ¼ f(�1,2)
13 þ ε. The permutation is achieved by initializing the

phi-bits at frequency f1 ¼ 63:15 kHz and tuning the frequency to
63.70 kHz. The initial f13 for phi-bit 1 is 3.72 rad, and the initial
f13 for phi-bit 2 is 3.28 rad. After this tuning, the phase differences
of phi-bit 1 and phi-bit 2 are swapped so that the final phase differ-
ence for phi-bit 1 is the initial phase difference for phi-bit 2 and
the final phase difference for phi-bit 2 is the initial phase difference
for phi-bit 1. The change in state vectors is shown below where we
observed the second and fourth components of the state vector are
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permuted,

V̂ ¼
0:07
0:54
0:83
0:11

0
BB@

1
CCA! V� ¼

0:06
0:08
0:82
0:56

0
BB@

1
CCA: (40)

Noise in the experimental data induces small variations in the
numerical values of the initial and permuted state vectors.

In Eq. (40), the value of the component of the initial
vector, fixed input state, is determined by the constant functions
β(1) ¼ f(1,�2)

12 ¼ 3:72 and β(2) ¼ f(�1,2)
12 ¼ 3:28 at frequency

f1 ¼ 63:15 kHz. However, one can apply this permutation to input
states in the complete Hilbert space by using the same approach
described in Sec. III B, which maps the desired input to the fixed
input state.

G. Cyclic permutation or downward shift permutation

For a cyclic permutation where all the elements of a state
vector are shifted downwards, we use the same initial state vector as

in Subsection III D [Eq. (27)] but must restrict the initial phase dif-
ference such that β(1) and β(2) are [ π

2 ,
3π
2

� �
. The driving frequency

of the system must then be tuned such that the phase difference
β(1) is exchanged with the β(2) and β(2) increases by π

2,

β(1)� ¼ β(2),

β(2)� ¼ β(1) þ π

2
:

(41)

This tuning transforms the state vector as shown below,

V̂ ¼
S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA! V� ¼

S2C1

�S2S1
� C2S1
C2C1

0
BB@

1
CCA: (42)

The minus signs arise from the trigonometric relation
cos θ þ π

2

� � ¼ �sin(θ) and sin θ þ π
2

� � ¼ cos(θ). This transforma-
tion shifts the first three components down and brings the last
components to the first index, which is equivalent to the unitary

FIG. 7. Experimentally measured f12 of phi-bit 1 (f(3, �2)
12 ) and phi-bit 2 (f(�6, �3)

12 ) for implementing the permutation of components 1 and 4. Vertical lines (dashed and
solid) as in Fig. 3.
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transformation using the matrix below,

V� ¼
0 0 0 1
�1 0 0 0
0 �1 0 0
0 0 1 0

0
BB@

1
CCA

S1S2
S1C2

C1C2

C1S2

0
BB@

1
CCA ¼

C1S2
S1S2
S1C2

C1C2

0
BB@

1
CCA: (43)

Disregarding the phase change, one observed that we have suc-
cessfully implemented a downward shift permutation of the state
vector. The unitary transformation in Eq. (43) is effectively the
product of a phase gate with the desired permutation gate as follows:

0 0 0 1

�1 0 0 0

0 �1 0 0

0 0 1 0

0
BBB@

1
CCCA¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

0
BBB@

1
CCCA

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0
BBB@

1
CCCA:

A cyclic permutation is implemented by expressing β(i),

i ¼ 1, 2 as a basic function of f( p,q)
13 only by taking β(i) ¼ f

( p(i),q(i))
13

and using experimentally measured data of phi-bit 1 (f(1, �1)
13 ) and

phi-bit 2 (f(�1, 2)
13 ), shown in Fig. 9. Phi-bit 1 exhibits the behavior of

a π-jump; however, the cyclic permutation requires a π
2 jump.

To achieve this permutation, the experimental phase difference

for phi-bit 1 was translated with a constant ε(1) and scaled the
π jump to π

2 jump by a factor of 0.5. The experimental phase
difference for phi-bit 2 was translated with a constant ε(2) such
that the value lies between π

2 and 3π
2 . This translation is of the form

β(i) ¼ f
( p(i),q(i))
13 þ ε(i), where i = 1, 2. The permutation is achieved

by initializing the phi-bits at frequency f1 ¼ 62:40 kHz and tuning
the frequency to 63.70 kHz. At the initial frequency, the initial f13 for
phi-bit 1 is 2.32 rad, and the initial f13 for phi-bit 2 is 3.63 rad.
During this tuning, the phase difference for phi-bit 1 and phi-bit 2 is
exchanged such that the final phase difference for phi-bit 2 is the
initial phase difference for phi-bit 1 plus π

2 radians, and the final
phase difference for phi-bit 1 is the initial phase difference for phi-bit
2. The initial and final state vectors are shown below where we
observed the components of the state vector have been shifted down,

V̂ ¼
�0:34
�0:65
0:60
0:32

0
BB@

1
CCA! V� ¼

0:33
0:36
0:64
0:59

0
BB@

1
CCA: (44)

The small deviations in the components of the initial and per-
muted state vectors are a result of experimental noise.

FIG. 8. Experimentally measured f13 of phi-bit 1 (f
(1, �2)
13 ) and phi-bit 2 (f(�1, 2)

13 ) for implementing the permutation of components 2 and 4. Vertical lines (dashed and solid) as in Fig. 3.
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In Eq. (44), the initial vector, fixed input state, is deter-
mined by the constant functions β(1) ¼ f(1,1)

13 þ ε(1) ¼ 2:32 and
β(2) ¼ f(�1,2)

13 þ ε(2) ¼ 3:63 at frequency f1 ¼ 62:40 kHz. However,
one can apply this permutation to input states in the complete
Hilbert space by using the same approach described in Sec. III B,
which maps the desired input to the fixed input state.

Note that this cyclic permutation is effectively equivalent to
performing a sequence of two different permutations. The first per-
mutation is realized by the π

2 jump near 62.40 kHz. The second per-
mutation is realized by the crossing in phases at the frequency
63.45 kHz. The sequence of these two permutations completes the
cyclic permutation as follows:

V̂ ¼
�0:34
�0:65
0:60
0:32

0
BB@

1
CCA! V 0 ¼

0:32
0:60
0:65
0:34

0
BB@

1
CCA! V� ¼

0:33
0:36
0:64
0:59

0
BB@

1
CCA: (45)

H. Summary of required initial phases

In Subsections III A–III G, we demonstrated the capability of
realizing all possible permutations of the components of the state
vector of a two phi-bits system with a single representation of that

state vector. However, the theoretical and experimental realization
of these permutations imposes some constraints on the range of
values that can be spanned by the phi-bit phases β(1) and β(2).
These constraints are summarized in Table I. These constraints
are determined by the choice of representation. These constraints
are imposed on the β(i); however, one has freedom in choosing the
functions β(i)(f(i)

12, f
(i)
13), where f(i)

12 and f(i)
13 are determined by the

experimental system and conditions.

FIG. 9. Experimentally measured f13 of phi-bit 1 (f
(1, 1)
13 ) and phi-bit 2 (f(�1, 2)

13 ) for implementing a cyclic permutation. Vertical lines (dashed and solid) as in Fig. 3.

TABLE I. Constraints imposed on the phi-bit phases required for specific permuta-
tion operation.

Permutation β(1) (rad) β(2) (rad)

SWAP Any value Any value

CNOT 0 < β(1) < π �π
2 , β(2) , π

2

Components 1 and 2 0 < β(1) < π �π
2 , β(2) , π

2

Components 1 and 3 π < β(1) < 2π π
2 , β(2) , 3π

2

Components 1 and 4 Any value Any value

Components 2 and 4 π < β(1) < 2π π
2 , β(2) , 3π

2

Cyclic π
2 , β(2) , 3π

2
π
2 , β(2) , 3π

2
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Note also that all gates are exploiting the continuous
behavior of phases in Table I but the SWAP gate (exploiting
the sharp discrete jump behavior of phases) requires the
mapping from any desired input to a fixed target input. The
freedom one has in creating this mapping enables us to con-
sider applying sequences of gates using different functions for
the β(1) and β(2).

IV. SCALABLE INVERSION PERMUTATION

All the permutations implemented in Sec. III are realized with
the very same representation of the two phi-bit state vectors
[Eq. (10)]. Here, we employ an earlier representation of the state
vector, that is, the tensor product shown in Eq. (9), to implement a

permutation matrix P ¼
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0
BB@

1
CCA, which inverts all the

elements of the state vector. This is to show that different permuta-
tions of the state vector of N phi-bits system can be achieved using
an appropriate representation and we further demonstrate the
viability of achieving a scalable permutation using the same
representation.

Using the tensor product representation of two phi-bits
described in Eq. (9), we are able to invert the entire state vector
by taking the phase difference for each phi-bit through a + π

2
change,

V ¼
S1S2
S1C2

C1S2
C1C2

0
BB@

1
CCA! V� ¼

C1C2

�C1S2
�S1C2

S1S2

0
BB@

1
CCA: (46)

The minus signs arise from the trigonometric relation shown
in Subsection III C. This inversion can be realized by initializing
the two phi-bits state at arbitrary values and is equivalent to the
unitary transformation matrix below,

V� ¼
0 0 0 1
0 0 �1 0
0 �1 0 0
�1 0 0 0

0
BB@

1
CCA

S1S2
S1C2

C1S2
C1C2

0
BB@

1
CCA ¼

C1C2

�C1S2
�S1C2

S1S2

0
BB@

1
CCA: (47)

For experimental demonstration of this inversion, we start by

expressing β(i), i ¼ 1, 2 as a simple function of f
( p,q)
12 only by

taking β(i) ¼ f
( p(i),q(i))
12 and using experimentally measured data of

phi-bit 1 (f(4, �3)
12 ) and phi-bit 2 (f(4, �2)

13 ), shown in Fig. 10.
We initialize the phi-bit at the frequency f1 ¼ 62:10 kHz and the
effect of tuning the frequency to 62.55 kHz leads to a decrease
in the phase difference of phi-bit 1 and 2 by π

2. The transforma-
tion of the state vector is shown below and disregarding the sign
change in V� one sees that the elements in the state vector are

inverted,

V ¼
�0:81
�0:05
�0:58
�0:04

0
BB@

1
CCA! V� ¼

�0:08
0:63
0:09
�0:76

0
BB@

1
CCA: (48)

Furthermore, we demonstrate the scalability of this operation
by extending it to a system of three phi-bits. For this, we use a
tensor product representation of the state vector.

The experimentally measured data of phi-bit 1 (f(4, �3)
12 ),

phi-bit 2 (f(4, �2)
12 ), and phi-bit 3 (f(4, �1)

12 ) are illustrated in Fig. 11.
The frequency was again tuned from the same initial frequency of
62.10 kHz to the same final frequency of 62.55 kHz so that the
phase difference for each phi-bit decreases by π

2 radians. The
change in state vectors from this tuning is shown below,

V¼

S1S2S3
S1S2C3

S1C2S3
S1C2C3

C1S2S3
C1S2C3

C1C2S3
C1C2C3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

�0:76

0:28

�0:05

0:02

�0:54

0:20

�0:03

0:01

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
!V� ¼

�C1C2C3

C1C2S3
C1S2C3

�C1S2S3
S1C2C3

�S1C2S3
�S1S2C3

S1S2S3

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

�0:02

�0:07

0:20

0:60
0:03

0:01

�0:24

�0:73

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

(49)

Independently of some sign changes in Eq. (49) that arises
from the trigonometric relation shown in Subsection III C, we have
successfully inverted all the components of this state vector.

In Eqs. (48) and (49), the value of the component of the
initial vector is determined by the functions β(1) ¼ f(1,�2)

12 and
β(2) ¼ f(�1,2)

12 and the specific value of the phases at the frequency
f1 ¼ 63:45 kHz. However, one can span the complete unit circle of
phi-bit 1 and phi-bit 2 by using the same functions described in
Sec. III A [Eqs. (18) and (19)], which translate the β(1) and β(2).

Note that the three phi-bits have the same p ¼ 4 and we could
use any other phi-bits by scaling. By this, we achieve a general scal-
able inversion for any number of phi-bits. Recall that logical
phi-bits are nonlinear modes supported by the physical domain of
the metamaterial (a volume of approximately 3 × 60 cm3). Phi-bits
do not have a specific size. Increasing the number of phi-bits does
not increase the spatial extent of the physical system. The metama-
terial can support tens to hundreds of logical phi-bits providing a
basis for large scale operations. However, scaling to large numbers
of phi-bits would require a tighter control on the driving frequency
as well as on the sources of noise affecting the phi-bit phases f12
and f13. Here, we have limited our demonstration to driving fre-
quency increments of 50 Hz. An easily achievable tighter control of
the frequency, with increments of 1 Hz, would significantly reduce
error in the permuted elements of multi-phi-bit state vectors. Small
uncertainties in f12 and f13 constitute another possible source of
errors in operating the permutations. The magnitude of these
uncertainties appears to be dependent on the amplitude of the
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nonlinear phi-bit mode, which varies with the driving frequency.
Nonlinear modes with low amplitudes appear to exhibit larger
uncertainties in phase. Considering a fluctuation in phase with
magnitude Δf rad, the permuted components of a N multi-phi-bit
state vector may deviate to first order from their original values by
the linear function NΔf. These deviations could become large for
large numbers of phi-bits. The inversion permutation utilizes the
continuous behavior of the phases. Since N phi-bits exhibit the
same overall scaled continuous behavior, an averaging scheme
could be used as a correction to smooth the data and significantly
reduce that source of error. Using this approach of averaging with
five phi-bits exhibiting continuous behavior, we were able to esti-
mate a single phi-bit Δf � 1

1000. This estimate is made by compar-
ing the average to the linear combination of phases of the primary
frequency pf12( f1)þ qf12( f2) and pf13( f1)þ qf13( f2). Indeed,
amplitudes of the primary frequency are large, which have negligi-
ble uncertainty in the phases. This magnitude of deviation would
enable permutation of the components of an N ¼ 50 phi-bit state
vector (i.e., 250 components) with an accuracy of approximately 5

100.
However, averaging the phases of a large number of phi-bits is
likely to decrease Δf further. Additional reduction in phase varia-
tion can also be achieved by fabricating a metamaterial with a
tighter tolerance than the one used here.

It is possible to achieve a permutation of multi-phi-bit state
vectors with complex components. For instance, modifying the
representation of a single logical phi-bit “j” given in Eq. (3)
according to

V (j) ¼ eiθ
(j)
sin(β(j))

e�iθ(j) cos(β(j))

� �
, (50)

where θ(j) is some function of the phi-bit phases.
The tensor product states of phi-bits 1 and 2 then take the

form

V ¼
ei(θ

(1)þθ(2))S1S2
ei(θ

(1)�θ(2))S1C2

ei(�θ(1)þθ(2)) C1S2
e�i(θ(1)þθ(2))C1C2

0
BB@

1
CCA: (51)

As done in this section, we can operate on the Sj and Cj for
each phi-bit through the βj (which is effectively dependent on f12)
to permute the product of trigonometric functions. To achieve the
permutation of the complex components, we need a simultaneous
change of sign of the θ(j). This can be achieved by making θ(j) a

FIG. 10. Experimentally measured f12 of phi-bit 1 (f
(4, �3)
12 ) and phi-bit 2 (f(4, �2)

12 ) for implementing a 2 phi-bit inversion. Vertical lines (dashed and solid) as in Fig. 3.
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function of the additionally available phase of the logical phi-bits,
f13. This function can be designed to perform the desired sign
change θ(j) through changes of origin and scaling upon tuning the
driving frequency.

As a final note concerning gates with N � 3 phi-bit, one can
operate on only some of the phi-bits. The phi-bits that are not
affected by a frequency shift are those exhibiting constants f

( p,q)
12

and f
( p,q)
13 over the corresponding range of driving frequency.

By selecting phi-bits with varying and constant phases, one can
operate on some phi-bits without affecting other phi-bits. For
instance, in Fig. 9, phi-bit ( p ¼ 1, q ¼ 1) has a f(1, 1)

13 , which
exhibit a π

2 jump between 62 and 63 kHz while phi-bit
( p ¼ �1, q ¼ 2) and phi-bit ( p ¼ 1, q ¼ �2) in Fig. 5 have both
f(�1, 2)
13 and f(1, �2)

13 remaining constant in that frequency range. A
frequency shift from 62 to 63 kHz will, therefore, affect only the
state of one phi-bit and not the other two.

V. QISKIT QUANTUM CIRCUIT COMPARISON

In this section, we compare some of the experimentally
realized permutations in Secs. III and IV using phi-bits to their
quantum counterparts using circuits developed with Qiskit. Qiskit

is an open-source software development kit used in the design and
optimization of quantum circuits.23 We make use of the quantum
simulator option of Qiskit using the available quantum gates in the
Python library. Operations on quantum bits are realized with
quantum circuits composed of sequential single and two qubit
gates.23 We begin with all qubits in the state j0i, and for compari-
son purposes, we proceed to initializing the state vector of the qubit
system to the same state vector as the phi-bit system. A quantum
circuit breakdown into single and double qubit gates does not nec-
essarily represent the number of physical actions required to
achieve the quantum permutation operation. The implementation
of gates in terms of physical actions depends on the quantum com-
puting platform used so gate time could be a useful metric for com-
paring the efficiency of qubit-based and phi-bit-based permutation
operations. However, for the sake of convenience, we utilize the
number of physical actions necessary for quantum permutations as
a metric to compare with phi-bit-based permutations achieved
using a single physical action such as tuning the driving frequency
f1. In terms of operations time, a single phi-bit physical action is in
the order of 1 ms. This is the time that is needed to establish a
steady state for the acoustic wave in the waveguides. With a wave-
guide length of 0.6 m and longitudinal speed of sound of

FIG. 11. Experimentally measured f12 of phi-bit 1 (f(4, �3)
12 ), phi-bit 2 (f(4, �2)

12 ), and phi-bit 3 (f(4, �1)
12 ), for demonstrating scalable inversion. Vertical lines (dashed and

solid) as in Fig. 3.
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approximately 5000 m/s, it takes 0.24 ms for a wave to travel back
and forth along the waveguide. This time may not be favorable in
terms of permutation with two phi-bits; however, a permutation of
the 250 components of an N ¼ 50 phi-bit state vector would be
realized in the same order of time. Furthermore, once at a steady
state, the lifetime of phi-bits is arbitrarily long and determined by
the steady state driving time of the system. Phi-bits can be main-
tained in a coherent state for an arbitrarily long time.

The SWAP gate is a defined quantum gate in Qiskit. The cor-
responding circuit is made up of three sequential CNOT gates as
shown in Fig. 12(a). The circuit necessary to realize the permuta-
tion of components 2 and 4 of a two qubit state vector is illustrated
in Fig. 12(b). The circuit requires seven sequential C-NOT gates.
The Qiskit circuit for inverting a two qubit state vector uses a
sequence of three C-NOT, two Pauli-X (single qubit), and two
C-NOT gates as shown in Fig. 12(c).

Scaling the qubit-based inversion to a larger number of qubits
will require an even more complicated circuit. Recall that the
phi-bit-based operations require a single physical operation, illus-
trating the exceptional power of the phi-bit system. Due to the fra-
gility of quantum states, to maintain data integrity for large scale
qubit-based inversion may also require additional hardware (ancilla
qubits) and/or hardware independent gates. Phi-bits are coherent
and do not require such additional hardware and software.

VI. CONCLUSION

We describe a physical system constituted of an array of three
externally driven acoustic waveguides. Logical phi-bits that are
analogs of qubits appear as nonlinear modes in the system. The
state of a logical phi-bit is represented on the Bloch sphere as a
function of two phase differences measured between the wave-
guides. A modified tensor product representation of two logical
phi-bit states with real components enables us to explore

conditions leading to all possible permutations (including the
SWAP and C-NOT gates) acting on all possible input states.
Initialization of the input states and permutations are performed in
separate stages. The initialization stage is performed in the linear
scaling space of phases, while the permutation stage is performed
in the product space of multiple phi-bits with the single physical
action of changing the driving frequency. The permutation of the
state vector components is achieved to within +1 factors associated
with general phases of π. These permutations are demonstrated
using experimental data from the driven system. One realizes the
permutation unitary transformations by tuning the system driving
frequency. The input is determined by the initial phi-bit phase dif-
ference and the associated representation. The phase differences are
physically modified by tuning the frequency. The new phase differ-
ences and the initial representation determine the output. The
unitary transformation is performed by physical action on the
system itself. Additionally, we have introduced and demonstrated
the scalability of the inversion of the components of a 2N dimen-
sional state vector arising from N logical phi-bits. We show that
permutations are not limited to state vectors with real components
but can also be realized with complex components. Changes in
these complex components upon the single physical action can also
be used to correct for the +1 factors.

We compare using logical phi-bits to their quantum counter-
parts in the context of the open-source software development kit,
Qiskit. The result of the two approaches shows the advantage of
logical phi-bits over equivalent quantum circuits. All Qiskit circuits
employ a sequence of single and two qubit gates, unlike logical
phi-bits that perform a simultaneous permutation of state vectors
with just a single physical action.

In this paper, we limited the demonstration to single permuta-
tion operations, that is, we have not addressed sequences of opera-
tions on different sets (pairs) of phi-bits. However, sequences of
operations can be achieved by tuning the frequency over

FIG. 12. Quantum circuit from Qiskit used to (a) achieve the SWAP gate and (b) permute components 2 and 4 of a two qubit state vector. (c) Quantum circuit to invert a
two qubit state vector. The disentangler creates the initial state. The output state vector is indicated as a dashed vertical line.
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subsequent intervals. For instance, let us consider one pair of
phi-bits, A and B, which have phases f12 that exhibit continuous
behavior and a sharp π jump at some frequency f, and another pair
of phi-bits, C and D, which have phases f12 that also exhibit con-
tinuous behavior and a π jump at a frequency f 0 . f . By subtract-
ing the predicable continuous behavior from the phases of both
pairs of phi-bits, we obtain f0

12 for phi-bits A, B, C, and D, which
are essentially constant over all frequencies except for frequency f
for the pair A and B and f 0 for pair C and D. Tuning the driving
frequency such that it crosses f operates on some representation of
the AB phi-bit state vector but not on the CD state vector. Further
tuning of the frequency past f 0 operates on the CD state vector but
not on the AB state vector. This is a simple illustration of how one
can operate sequentially on two distinct pairs of phi-bits. More
complex sequences of operations could be achieved while including
the continuous behavior. This will be the subject of future work.
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