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PREFACE

Volume XII-B of the Lectures in Theoretical Physics contains
the proceedings of the session on High Energy Collisions of Elemen-
tary Particles which was held simultaneously with the session on
Mathematical Methods in Field Theory and Complex Analytic Varieties
during the second part of the Twelfth Boulder Summer Institute for
Theoretical Physics. It contains the text of all lectures and one
seminar. The text of other seminars and discussions during the ses-
slon have not been included.

The Institute was supported inpartby a grant from thé National
Science Foundation and in part by the University of Colorado.

The editors thank the lecturers for theilr cooperation in the
preparation of this volume and Mrs. Marion Higa for her expert typing
of the manuscript.
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Kalyana T. Mahanthappa
Wesley E. Brittin
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DAUGHTERS, CONSPIRACIES, TOLLER POLES:
SOME PROBLEMS IN THE REGGEIZATION
OF RELATIVISTIC PROCESSESt

E. Leader
Westfield College
London, N. W. 3 England

I. Introduction

Regge poles first made their appearance in physics within the
context of potential scattering1 in 1959. Soon afterwards a method
was sugges%?d for incorporating these ldeas into relativistic scatter-
ing theory,®’ and this led to some remarkable experimental predic-
tions.

In recent years, however, it has become clear that there are
enormous difficulties involved in generalizing Regge poles from the
realm of potential theory to that of the relativistic scattering of ele-
mentary particles. Only in the case of the elastic scattering of spin-
less particles is the generalization straightforward. In all other
cases there arise subtle and intricate problems, the solution of which
has involved many new concepts such as "daughter poles, "3) "con-
spiracies, nd) "Iorentz pc:les,“5 etc. Perhaps the most fascinating
and challenging of all these difficulties is the question of what hap-
pens att =0,

It will be the principal aim of these lectuwres to attempt to sum-
marise, unify, and above all, simplify, the various attempts which
have been made to deal with the problem of Regge behaviour att = 0.

All these attempts fall basically into two classes, the analytic
and the group theoretic, and it will become clear later that a full un-
derstanding of the relationship between these is not yet at hand, des-
pite the vast effort that has gone into this problem during the past
three or four years.

For this reason great emphasis will be placed upon a pedagogi-
cal approach to the problem. Whenever possible we shall try to look
at the difficulties from several different angles, and we shall often

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.



2 E. LEADER

use rather heuristic methods to get a feeling for the essential aspects
of the problem. The latter is absolutely necessary since the actual,
realistic calculations are bogged down in a morass of technical nota-
tion. However it does mean that the reader who is interested in seri-
ous calculations in the fleld will have to refer to the original papers
for the full details.

Since even our valiant attempt at a heuristic presentation is,
when one looks at it, still somewhat bogged down in technicalities,
we shall try to summarise here the overall picture as 1t now stands.

It is established beyond doubt that in order to ensure analyti-
city at t = 0 in inelastic reactions a given Regge pole must be accom-
panied by an infinite sequence of daughters. At t = 0 the daughter
trajectories are separated from each other by one unit of angular mo-
mentum, i.e. @,(0) =a(0) - n for the nth daughter trajectory. The
residue of each daughter is singular at t = 0, but the whole sequence
of daughters plus parent produces a nonsingular function att = 0. The
coefficients of the most singular part of the daughter residues can be
calculated explicitly. Also the slope of the daughter trajectories at
t = 0 is given explicitly in terms of the slope of the parent.

Still within the framework of considerations of analyticity it is
possible to characterize a Regge pole by a new "quantum" number M.
Regge poles with M = 0 are the usual, old-fashioned type. Regge
poles with M # 0 consist of a pair of poles, with opposite parity,
with trajectories a4 (t) such that a,(0) =a_(0). The pair of poles is
said to conspire with each other. Each of the parents in the pair is
accompanied by its own daughter sequence. Again explicit formulae
for the singular part of the daughter residues are known. It can also
be shown that the slopes and higher derivatives of the trajectories at
t = 0 for the + and - families are equal, up to the (M - 1)th derivative.
And the Mth derivatives, while not equal, are related to each other by
an explicit formula. The daughter trajectories need not be parallel to
each other or to the trajectory of their parent.

The quantum number M has a direct physical significance. If
one considers the leading term (at high energies) of the s-channel
helicity amplitude %)-a then for 2 Regge pole of type M, only the
amplitudes with helfcfty flip ¢ -=a =(d - b) =+M do not vanish as
t— 0. In old fashioned Regge Pole theory all amplitudes vanished at
t = 0 except those with ¢ =a and d = b--a very restrictive situation.

The above mentioned formulae for residues and trajectories are
all derived from a study of the analytic properties of the amplitudes
for totally inelastic reactions of the type

A+B-C+D
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and pseudo-elastic reactions of the type
A+B—+A+D.

However the factorizability of Regge pole residues enables one to
calculate the contribution of a Regge pole to an elastic reaction

A+B-A+B

from a knowledge of its contribution to the reactions
A+B-C+D
A+B—~A +D
A+B-C+8B

Thus one can calculate the slopes and residues for the Regge pole and
its daughters for elastic reactions as well.

Now in elastic reactions there are no problems of analyticity at
t = 0 and a single Regge pole gives an acceptable contribution. How-
ever there is an additional symmetry at t = 0 which is not satisfied
by a single Regge pole. A totally different approach, based on group
theoretical techniques, shows that this additional symmetry is satis-
fied by the contribution of one Toller pole, which 1s equivalent to an
infinite sequence of Regge poles. It is a remarkable fact that the
sequence of parent and daughter poles for elastic reactions, as de-
duced from inelastic reactions by factorisation, turns out to be pre~
cisely of the form of the infinite sequence which sums up to one Tol-
ler pole. A deep understanding of this extraordinary result is still
lacking.

The exposition which follows leans heavily on several sources.
The general introduction to the difficulties att = 0, and to conspira-
cles follows the work of the author?) and some unpublished work of
R. Omnes and the author. The method of obtaining a closed solu-
tion for the daughter residues is taken from the brilliant work of
8. R. Cosslett,ﬂ| and from a more recent, and more general discus-
slon of J. M. Wang and L. L. Wemg.8 The introduction of the quan-
tum number M is based on unpublished notes of the author, and is a
generaliﬁation of the work of G. C. Fox, T. W. Rodgers and the
author. T§1e group theoretical development is based on the work of
M. Tnller,5 D. Z. Freedman and J. M. Wang,m and R. Delbourgo,
A, Balamand J. Strathdee.ll)
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In Sec. II we shall briefly review the canonical steps in the
Reggeization of scattering amplitudes, and the origins of the diffi-
culties which arise att = 0.

Sec. III deals with inelastic reactions without spin and uses
analytic methods to derive the properties of the daughters.

In Sec. IV spin is introduced, and the new phenomena asso-
ciated with it are studied using analytic methods. Many properties
of the daughters can be found by an extension of the methods used
in Sec. III.

Sec. V is devoted to the group theoretical approach to elastic
scattering at t = 0. Some mention is also made of attempts to general~
ize this approach to inelastic reactions and tot # 0.

The author is very much indebted to W. E. Brittin and K. T. Ma~
hanthappa for thelr hospitality at the Boulder Summer Institute for
Theoretical Physics.

II. The Origin of the Trouble at 1t =20

Let us recapitulate very briefly the essential steps in the Reg-
geization of a relativistic process.

We are Interested in the high energy behaviour of a process

A+B-C+D (I1.1)

where the particles A, B, C, D have masses mp, Mg ..., spins sp,
sg- .- and four-momenta py, Pp... . The physical process (11.1)
taklas Flace in the s—channel, and is described by a helicity ampli-

tude f a (s,t), where s and t are the Mandelstam variables
=] + 2
s (pA pB) 7
s 2
t (pA + pc) . (I1.2)

Here s corresponds to the square of the center-of-mass-energy of
process (II.1), and t to the square of the momentum transfer. High
energies in (II.1) correspond to large values of s.

The main steps in the Reggeization of process (II.1) are the
following:

a) Forget about process (II.1).

b) Instead study the crossed, t~channel process

D+B~C+A (11.3)

where e.qg. D means the anti-particle of D. This process is des~-

cribed by the t-channel helicity amplitude f(tc%_ab(t,s) in which t now
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6 E. LEADER

plays the role of the square of the C.M. energy for (II.3), and s is
the square of the momentum transfer.

¢) Reggeize f{t) (considered as a function of t and 2, the t-
channel C.M. scattering angle) as though it were the scattering am~
plitude of a nonrelativistic potential problem, i.e., write a partial
wave expansion for £ t , perform the Sommerfeld-Watson transforma-
tion, pick up the Regge pole, and end up with an expression of the
form

valid for positive t and |Zt|" @,
d) Put in the signature factor to account for the exchange
potential in a relativistic process, getting
- f
(e ) =2t =0
¢ sin o t)

B Py,

)(—zt) . (11.4)

e) Notice that z; is a function of s and t such that § -» »
implies [ztl ~ », so that (II.4) is now valid for positive t and for
s —~ @,

f) Analytically continue (II.4) to t?e regio t< 0.

g) Invoke crossing to calculate i(s from f and hence arrive
at an expression for #(s) valid in the high energy physical region
t<0, s= o,

Now we shall see that only in the case of the elastic scattering
of spinless particles are the steps e), f), g} devoid of complications.
To see this we have to look at the detalled kinematics. The t-channel
C.M. scattering angle is related to the Mandelstam variables by

- 2 _ 2 3 3
2st + ¥ -t + (mD m 2 )(m(_‘ mA)

z = = (11.5)
t 55c %8B
where
2 - t - + 2 - _ 2 n
Uij L (mi mj) 1Tt (m, mj) ] (11.6)
and
= 2 2 + 2 + 2
EEmy’ tmgt vm St +my
Now in the case of elastic scatteringm, =m_, and m_ =m_, Eq.
) ) A C B D
(I1.5) simplifies to
+ = a2 prt a
. 25+t Z(mA My ) )
t % : *

L& - 4mA”)(t - 4mB‘*]'
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Then we see that for elastic scattering s + ® implies |zt| - o for any
fixed t. In particular, there is nothing special about the point t = 0,
and step (e) is valid.

However in the general case given by Eq. (II.5),s » @ implies
|zt| ~ o at fixed t, if and only if t # 0. Att = 0,on the contrary,

|z,| =1 (11.8)

independently of the value of s when m_ # me and m_ #m_.
If one pair of masses is equal, say my = me, qun a]% t=0

z =0 . (11.9)

Thus for inelastic processes, step (e) breaks down at t = 0, and this
discovery led to the question of whether Regge behaviour holds at

t = 0 in inelastic processes. This is the first of the major problems
in the Reggeization of relativistic processes, and it arises for inelas-
tic processes evenwhenthe particles are gpinless.

The second major problem arises for elastic processes when the
particles have nonzerc spin. Let us consider the consequences of
step (g). If the particles have spin then £(s) is related to £(t) by the
crossing matrix

(s) _ c'd'a’y’ _k)

fcd;ab cdab c¢’a’;d’'p’ (IT. 10)
We shall see later that f(s) has to behave like

(s) %| (a-c) + (d-b)|

fcd;ab « ast- 0 (11.11)

in erder to conserve angular mementum for forward scatterin(c_;. Then
(I1.11)and (I1.10) imply that certain linear combinations of f 1) have to
vanish at t = 0, i.e. the f\/ are correlated near t = 0. Since differ-
ent Regge poles can contribute to the various f(t) , this is tantamount
to requiring correlations among sets of Regge poles. This is a most
unexpected result, since one normally considers each Regge pole as
an independent physical entity, and if these correlations exist they
are of enormous physical significance.

From the above,we see that the standard method of Reggelzation
runs into serious difficulty at t = 0 for inelastic reactions and when
the particles have nonzero spin. In the following we shall study in
detail the attempts to overcome these difficulties.
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III. Inelastic Reactions Without Spin

A. Heuristic Introduction

Since it is often convenient to discuss a reaction as viewed
from the t-channel,it will be useful to introduce the following nota-
tion. If the physical reaction is elastic, i.e. m, = m . and m_ = mD,
then in the t-channel the initial and final states comprise pairs of
equal mass particles and the reaction will be said to be of the EE
type. Similarly for pseudo-elastic reactions, m, =m~, m_ #m
we use the label UE and for totally inelastic reactions where my #
my and my # m,, we use the label UU.

To see heuristically what is happening at t = 0 let us consider
a spinless UU reaction.

We have seen from II.5 that at t = 0, |z,] =1 and hence |zt| #
©as s » », The guestion is: Doces Regge behavior hold att =07 We
shall show now that the result |z;| =1 att = 0 is irrelevant to the
above question.

There are two rather different methods of seeing this:

a) Since we are dealing with a spinless process,the scattering
is described by one invariant amplitude A(s,t) which has Mandelstam
analyticity. The helicity amplitudes in the s and t channels are then
essentially identical to A, 1i.e.

.2 )= V20 =60 (. 1)

(zs 1s of course the cosine of the s-channel C.M. scattering angle).
Now a/A(s,t) clearly exists and is some function of s, say

t=0
/ A(s,t) = L(s) (111. 2)
t= 0
From (III.1) then, also
£ D,z) = 1) (111.3)
t-0

However, naively, using the fact that
_ﬂ z =1
%0 ¢

we get
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j f(t)(t z )

=0, z, = 1)
+%0

constant . (I11.4)

contradicting (III.3).
The fallacy of course lies in assuming that if

fx) = glpx))

then

L 1 =9( L969)

x- 0

a result which would only be true if the mapping x - @(x) is nonsingu-
lar and well behaved at x = 0. This is not the case for the mapping

(s,t)~ (t,zt)

which is certainly singular at t = 0 where it maps the whole s-plane
into one point.

It should be noticed that the above does not depend on s being
large, i.e. the trouble at t = 0 is here not essentially a problem of
Reggeization. Any theory which insists on working with f{t) (t,zt) will
run into difficulty.

In summary, the function f(t) (t,z¢) evaluated at t = 0, zE =1 has
nothing to do with the physics att = 0. If we wish to use £( (t,zt)
to see what happens at t = 0 we must first undo the transformation
(s,t) = (t,z) and write £\t (¢, z¢) in terms of nonsingular combi ations
of s and t before taking the limit t » 0. The requirement that it (t,z¢)
be expresslble in terms of analytic func{ ons of s and t will constrain
the possible functional dependence of £t on z¢, and these con-
straints will lead to the necessity of daughters w(\rl)'len we Reggelze.

b) There is an alternate way to see that { t)att= 0, 2y=1has
nothing to do with physics.

Consider the M-function

)=

M(p/Ppyi PpyiPp (pCpD|S - 1lp, .pp) (111.5)

By the Lorentz invariance of S, for the spinless case, we have
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M(ApC,ApD; ADA,APB) = M(pc,pD; pA,pB) (111.6)

where A is the 4 X 4 matrix specifying any real Lorentz transforma-
tion. Assuming, as usual, that M is an analytic function of the com-
ponents of the vectors which are its arguments, one generalizes
(I11.6) to hold also for complex matrices A which preserve the length
of the 4-vectors p;. In this way the analytic continuation which
takes one from the t~channel C.M. to the s-channel C.M. can be
effected by a complex Lorentz transformation.

Let us define

K=pA-pC=pD_pB

qa=%(p, * Po)
a’=%(p, +pp) (11.7)
and note that
Ka =t
q'K =%(m2A = l'nac) v
ey = L
- q’ K = - m?) (111.8)

We write M as a function of K, q, q’. Then by (III.6)

M(AK; Aa, Ag’) = MK; q.q9) (I11.9)

Now calculate K in the s-channel ¢.m. taking the Z axis along X.
One finds ‘

Xee) EKls channel = (820044 Ton t) (t1.10)
C.M.
where
=-—-—-1‘ 2 _ m3 3 _ .3
t=2/s <mA me ¥ My mB> (111.11)

Hence,att =0,
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K, , =t 1,0,0,1 ;e ‘ .12
(s) ( ) (I111.12)

i.e. Kis a light-like 4-vector att = 0. : ‘ R
However, if one calculates Kin the t—channel C M., one finds

'

Ky = Kt channer = /1:0:0 0 ' (@1.13)

C.M.
sothatatt=0

2 ' - K(?) = (0,0,0,0) (111.14)

i.e. Kg) is a null 4-vector at t = 0.

f(s)(s,zs) = M«(S)}q(s)lqzs)) (II11.15)
and T '

(t) N Ak
f (trzt) = M(K(t)' Q(t)' Q(t))

Hence in order to have the crossing relation (which in the spinless
case is trivial)

(£8) 0 o

we require the existence of a A such that

K (s) = AK(t) 2 (111, 16,)

Clearly from (III.14) and (III.12) att = 0 there is no A which can
satisfy (11I.16).

Thus there is no Lorentz transfomation, real or complex, which
relates the t-channel C.M. frame at £ = 0 to the physical s-channel
C.M. frame. So again we see that f\t/ att =0, zy = 1 is simply not
related to the physics.

In summary, the fact that |zt| 7" @as s—>®att=0has no bear-
ing on whether or nodt Regge behaviour holds at t = 0.

Let us turn now to the question of how to calculate the scatter-
ing amplitude at t = 0, and of what constraints are forced onto the
.Regge poles by the demands of analyticity.
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Suppose we have Regge behaviour for positive t, say t > t,
where to is the threshold for physical t-channel reactions. Since
A(s,t) is analytic and satisfies dispersion relations we can calculate
A(s,t) for t < t, from our knowledge of A(s,t) for t > ty by using a
fixed=-s dispersion relation. For simplicity we take a very simple
example

Als, t)——j —“ﬁfs—_ft—ldt' ; (111.17)

0

We are interested in the behaviour as s = ®. So we shall feed into
the integrand the high s behaviour of Im A(s,t). Notice that we only
need this behaviour for t = t;. Hence we take

ImA(s,t) ~ Im {B(t) Pa(t)(-zt)} ) (I11.18)

s = ®

In (III.18) we have absorbed all inessential factors into B(t).
Since for t #0, [zt| -+ ®as s— o we can expand (III.18) in
inverse powers of z :

t
Im A(s,t) Sﬁ@ Im {B {t) I:ao z(: +ay z:'-z + .. ]}
= {8 b 60" + by (0% 4 by (0
g~ ®

+ :]} (III. 19)

where we have used the fact (see Eq. (II.5)) that z; « st for large s
and t # 0. The coefficients a; or by are irrelevant to the argument.

Now one can show from the definition of the Froissart-Gribov
partial wave amplitude that for small momenta

)a (t)

B (t) « (111.20)

(Pic Pop

where Prc . PDp are the t-channel C.M. relative momenta. However,

=— 2 i = A D 3
pij T Jij ij =AC or BD (I11.21)

so from (II.6), in the UU case,
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o gy
PR e 20
and hence
Blt) <t (111. 22)
Thus one puts
Blt) =t Alt) (111.23)

where B({t) is analytic at t = 0.7
Putting (III.23) into (III.19) gives the final form of the integrand
. N ’ b (SRR _0 ’
ImA(s,t’) ~ Im {B(t') I:b sa(t ) +—-1,jsa 1 +t—% g% 2+ < ]}
g = © O th
(I11.24)
Substituting into (III.17), opening up the contour, and using
Cauchy's theorem to evaluate the integral,we pick up the residues of

the poles at t/ =t, and at t’ = 0 for the non-leading terms. Hence
we get

As,t) ~ B () [bo(t) s“(t) +b1t—(t) sOL(t)_1 +b27® son(t)_2 + .., ]

B(0)by (0) (0)-1 FB(0)ba(0) e(0)-2
i S - s

by (0) - - )-
= gtg( ) (B'(O) +a’(0)8(0) log s> sa(o) iy (111.25)

where 6’ and o’ are derivatives of E and o with respect to t.

The result (III.25) is a remarkable one. First it 1s, of course,
analytic at t = 0 despite the fact that individual terms blow up as
t- 0. This, of course, was guaranteed by the use of the dispersion
relation (III.17), which is manifestly analytic at t = 0.

tActually it is incorrect to use (II1.20) to deduce (III.22), since
(III.20) is supposed to hold for small PRC and pryp, whereas both
momenta = ®as t—~ 0. In fact, in the present approach cne need not
even have 8(t) analytic at t = 0 since no matter what happens to B(t)
at t = 0 the dispersion relation produces an A(s,t) which is guaranteed
to be analyticatt = 0. However, for the purposes of explicit calcu-
lation (III.23) is most convenient,
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Secondly, the leading term at t = 0 goes like sa(o), which is
the usual leading order Regge behaviour. Thus this method of reach-
ing the point t = 0 successfully produces a uniform asymptotic beha -
viourast- 0.

However, one has in addition ended up with terms like sa(O)—n
which can be shown to correspond to the existence of fixed poles in
the complex J plane at the infinite sequence of points J = a(0)-n. T
Thus we have what looks like a normal Regge pole plus a sequence of
fixed poles. Note that this does not contradict our assumption
(I11.18) that Im A(s,t) is given by a single Regge pole, since all the
fixed poles that have appeared are real,i.e. appear only in Re A(s,t).
However it does show that it would have been inconsistent to assume
that A(s,t) itself was given by just one Regge pole. In other words
in the UU case a single Regge pole is not compatible with the dis-
persion relation (III.18).

If one is prepared to tolerate this infinite sequence of fixed
poles then the amplitude given by (III.25) is quite acceptable. How-
ever fixed poles in the J-plane are generally considered taboo, since
it can be shown that they contradict the partial wave unitarity condi-
tion, * provided that the unitarity condition can be analytically con-
tinued to the point in question. It is possible that the cut structure
in the J-plane would prohibit this, thereby negating the argument
against fixed poles, but this does not seem a very plausible assump-
tion. Thus we must do something to get rid of the fixed poles. To
remove them we invoke a sequence of Regge poles delicately chosen

tA Regge pole is, of course,a pole of the analytically continued partial
wave amplitude at J = a(t) i(\ the comi)lex ]—flane. It gives rise to a
characteristic sequence s¢&, ga(®)=1 ~@)-2 o o . Con-
versely one can show that each term of the form g 0)-n corresponds
to a fixed, t-lndep?rsdent pole at J =a(0)-n. In particular the se-
quence of terms s 0)-1 7 Su(O}—Z ... does not simply represent the
power sequence which would correspond to one fixed pole at J=0.(0)-1.

$The unitarity condition which holds initially for physical values of J,
can be continued into the complex J-plane in the form of a disconti-
nuity equation

f](t + ie) - fI(t -ie) = 2ip fI(t + 1e) fI(t - ie)

If fI(t} has fixed (t-independent) poles in the J-plane, say fI(t}m—i—)\
for T« A then the left and right hand sides of the discontinuity quua—-
tion cannot balance as J— A. However, if the pole is at J = a(t) and

if q(t + ie) # & (t - ie) we have no contradiction since only one of the

factors on the right hand side blows up as J - a{t + i€).
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so as to cancel the fixed poles and at the same time to leave undis-
turbed the analyticity of A(s,t) att = 0.

Suppose therefore that there exists a second Regge pole (called
the "first daughter") with trajectory function a, (t) and residue 8, (t).
If we take

—G
Byt =t % '
its leading term will look like 51 t) b_(t) s (t). However, to cancel

the 1/t term in (III.25), the first daug?hter must have a more singular
residue. Thus, if we put

B, =t 715 @) (111.26)

then the contribution to A(s,t) will look liket

b (t) b, (t) £, (0) b_(0)
61(15) 2 Sa‘1 ® +'—1? sal (t)-1 + ... —'—I—‘Tg‘—-' sal (0)
B, (0) by (0) b, (0)
e B O (51 (0) + 0,7 (0) 5, (0) 10g 537071
(111.27)
If we now take
a, (0) = a(0) -1 (I11.28)
and
B(0) by (0) = =B, (0) b_(0) (111.29)
then adding (III.25) and (III.27) eliminates the fixed pole at J =
0{0) - 1. The leading terms left give :
A1)~ B by s 4 L {50 b, 00 *O7
T ACR N (111.30)

which, using (III.29), is analytic as t =+ 0. Note that the cancella-
tion is effected without any requirement on the slope a, (t).

+It 1s amusing to note that if we had given the parent a residue as
singular as B, (t) then 1f &’ (0) = 0 we would still recover the standard
Regge leading term at t = 0. Moreover we would end up not with a
daughter sequence but simply with one fixed pole at J = a.(0).
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Now we can repeat the process, introducing a second daughter
with a, (t) and

% (0) = a(0) - 2
and a still more singular residue
=t 50 .
Its leading terms will be

Ba (t) b (t) () B (05,0 92 (0)

b (0) |
=23, (0) +a5"(0) B,(0) log s] RO

(I11.31)

Putting together (III.31), (II1.27), and (III.25), one sees that the
cancellation requires

B(0) by (0) + B, (0) by (0) + B, (0) by (0) =0 ]

. : b, (0)
t.e., Ba(0) b (0) =-BO[b(0) -5 5] . (uL.32)
o
by (0) 87 (0) + b, (0) B, " (0) +b (0) B, () =0 (111.33)

which ylelds Ez' (0) in terms of B’ (0) and 51 ’(0) and also
by (0) B(0) &’ (0) + by (0) 0y (0) By (0) + b (0) a5 (0) B, (0) = 0 (1II.34)

which gives a,’ (0) in terms of &’ (0) and a, / (0).

Clearly we can, in principle, continue this process. The
slopes of the residues and trajectory of the first daughter are arbi-
trary, but thereafter the slopes for the second and higher daughters
will be fixed. Indeed, the second derivatives for the third and higher
daughters will be determined and so on. Note that in an expansion
about t = 0, powers of log s will appear.

The above approach gives a very clear idea of the role of the
daughters. However, it is not suitable for going much further. Thus
we now turn to a closed method of handling the problem.
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B. Formulation of the Daughter Prescription

Let f(s,t) be analytic as t = 0 and have an asymptotic expan-
sion in 1/s, or 1/s times powers of log s. We wish to represent
f(s,t) by functions of z; in such a way that despite (II.8) or (II.9) the
limit t = 0 taken in the functions of z; should correctly reproduce
f(s,t)ast= 0,

The precise situation is sensitive to the masses. For the UU
case letus fixm ., >m_  and m_ > m_. Then from (III.5),

C A D B
Zt -1
7 =8t+ 0(?) (II1.35)
where
g Bl B 2 L 3
.- {S+(m m JHm -m }(mAmD mcms}}
(mc )(m -m ] (m -m 3}(m 3-m3)
(111.36)
and § - ® as s = o,
= >
For the UE case with mA mc and mD mB,
zt=§/-t+0(t3/2) (I11.37)
where
- 2 El 2
§=Zs (ZmA '-mB+mD)
S
ZmA{mB m> ) § (I11.38)
Let us focus attention on the UU case. Suppose that
fs,t) = “(t) N g(s,1) (I11.39)
where
—u v
it = . .40
g(s,t) Z 9o B (log 2)° (III. 40)
M.V, 0
Then if

f(s,t) = f(t,x)

where x =i‘(zt - 1), we have
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a ®
b ~(5) Do o, bci x/1) (II1. 41)
p=N

where cpo{x; x/t) 1s a polynomial in 1/x of order p and a polynomial
in log (x/t).
Conversely if

o7
fe,x) = (f) 3, x,%/t) (III. 42)

and we want f (t,x) = f(s,t), we must ensure that: (i) &(t,u,v) has a
Taylor series about t = 0 at fixed u and v, whose first term is tN.
(i1) The coefficient of tP in the Taylor expansion of &(t,u,v) at fixed
u, v, should at worst be a polynomial in 1/u of order p and a poly-
nomial in log v.

These two points constitute a prescription for fixing the proper-
ties of the daughters so as to guarantee that the function 'f(t,x) is in
fact an analytic function of t when considered as a function of s and t.
However, it is unlikely that the above are necessary conditions. In
what follows, &(t,x,x/t) will represent a sum over the parent and
daughter amplitudes and the above conditions imposed on & will
enforce certain relationships between the residues and trajectories
of daughters and their parents.

In the UE case the result is modified as follows. If we put z =
2y and if

ft,z) = (%)a 3(t,z,2//t) (I11. 43)
then we must ensure that

8(t,z,z//t) =8, (t,2,2//t) +§ &, (t,z,2//t) (T11.44)
where

(z,2//1) (1II.45)
2

1

= \ P
= t
%12 {t,z,z//1t) Z 5
p=N

where is a polynomial in 1/2® of order p and a polynomial in
a e

log (z//t).
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C. Solution of the Daughter Problem for the UU Case
It is preferable to use the Mandelstam form for the Regge pole
contribution. This is obtained by replacing

1
P (2) oy -2 Q1@

sin o cos m O

in the usual formulae. Hence we have for the contribution of a single
Regge pole

_ 2+l 14re™

2 cos M

) (t.z,) Bt Q_,_;(-z) (III.46)

where T = %1 is the signature.
The complete contribution of parent plus daughters will look
like
-imxn
© 20 (t)+1 1+7_e
f(t) (t,zt) = z n n

n=0

Ba® Q_ ;-2

2 cos 1
%n n

(I11.47)

We already know from the heuristic discussion in Sec. III.A that we
must have

et,n(O) =a(0) -n . (I11.48)
We also saw that we should take
-an(t)-n _
B0 =t B, (111. 49)

where B, is analytic near t = 0.

We now see that because of the signature factor the cancella~-
tions will fail unless all the terms have the same phaseast=0.
This requires choosing

=0t (I11.50)
i.e., odd daughters have opposite signature to their parent.
We use
o
) =k Do) (1_15 IR Sl
Qyo1f2 =y (C52) Flo,w-2a: 757) (51
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and put
—ino.n
& =
chn(t)+1 .. cosma L Tn € s (_qn] T(-2q) IE!n(ﬂ= b ()
2a(t) +1 cosma 14q o M r2(<) T(-2a o) B{t) "n
(II1.52)

where clearly bo(t) =1, The bn(t) thus relate the daughter's residue,
etc., to the parent's.

Then (III.47) becomes
o

) _20(t)+1 1+t e ™ 12 (q)
g (t'zt) T2 cos o T(-2a) Bit) 2t )

® -z, - {t) )-
5 0 D e g
n=0 ) :

(I11.53)

We put

X=%(1-Z‘t) ]

and define

(t,x) = ) Yy b x" CRo e 20 Y s

so that

£ . )_z at)+l 1+7e M e (yq)
12 2 cos T o P{—Za}

- B) £e,x) . (111.55)

Now clearly (1II.54) is in the form of (II1.42), where we identify the
sum in (I11.54) as &(t,x,v). Thus the daughter properties will be
determined by the requirement that

p a_(t)+n-(t)
- Y b v " ™ Fleap ), -0 (@0 20 (1); 3)
atf & t=0
n=0
= polynomial in% of order p, and polynomial in log v for

p=0,1,2, ... X (111.56)
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It will be assumed that the derivative can be carried through the sum-
mation sign. For p = 0 we get, using (III.48), the condition

-n 1N
z b_(0) x F<—a(0)+n, -0.(0)+n; -20,(0)+2n; x) = constant.
n=0 (111.57)
A little thought shows that the only possible constant must be b,(0),

which equals 1. Hence the bn(O) are determined by (III.57) with
constant put equal to one on the right-hand side. The solution ist

1" (a0 (a0,

bn(o) Y (-20.(0) + n - 1)n (II1. 58)
where
v, E%&%’) . (111.59)

Substituting bn(O) into (III.52) glves for the daughter residues
in the UU case
U o 00 4y

B, )=t B, (111.60)

with

=UU _2n-20(0) -1 T(-2a(0) +n-1) =UU
B, (@ ol T(~2a) B (0. (111.61)
Thus the residue of the nth daughter at t = 0 1s completely determined
in terms of the parent's residue.

For p =1 the differentiation with respect to t ylelds three kinds
of terms, of which the most interesting comes from

5 9 {t)+n-a (t) a_+n-o

Y = [txn'(t) -a’{t)] logv - v ;

t+From Eq. (11), Chapter 4.3, of Reference 12, one can show that
(@), (o), (C+r-1)N(—r)

(-1)
IZN r! (c+r-l)r(a)N(b)N

N

z F(a+r, b+r; ¢c+2r; z) =z

Equations (III.57) and (III.62) are special cases of this.
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Since this is the only term involving log v we must have

Y 2,0 [a *(0) -’ (0] log v - x " Fl-a,, - ; ~20,; 9

n=0

= polynomial of order one in % and polynomial in log v.
(III.62)

Since the term on the left with n = 0 vanishes, it is clear that the
right-hand side of (III.62) can only be

ib; ©0) Loy " (0) = &’ (0)] log v .

From this it followst that

’ ’ - = 4 !
oy 0 - o (0) =22 =BG r0) -0’ @] . (mm.63)

Thus the slope of the trajectory of the nth daughter, for n2= 2, is
given completely in terms of the slope of the parent and first daughter
trajectories.

It is interesting to note that for large enough n, &, {0) - a’(0)
is of opposite sign to a, ' (0) - &’ (0). This might have some bearing
on large angle scattering. Also if the first daughter is parallel to its
parent, then so are all the other daughters.

Clearly, by looking at the other terms with p = 1 we will be
able to solve for bn’ (0), i.e., for the slopes of the residue functions.
Further, by looking at terms with p > 1 we will get information on
higher derivatives of o, (t) and Bp(t) at t = 0.

D. Solution of the Daughter Problem for the UE Case_
From Eq. (III.37) we see that z; itself, rather than z; - 1, is in
this case the most suitable variable to deal with. Hence we use

(o4
—z) = 2 mTla) op g -V
Q2 =5 L r(S+d, S wtdiz) . (64

Since F depends only on Z° , we will require only even daughters. We
begin with the sequence (III.47), summed over n even, and put

-'i‘(onn(t)+n)_
Bnlt) =t Bn(t) (II1.65)

+See footnote on previous page.
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and
frree ~ime, a =
Tt
n.{c‘n)_f‘{-a+&) L l+Te n.cosrrcc.gi_s()_b(t)
Eairm; (=) I‘{-an+é) 1+Te-irm cosma -~ ,a B(t) n
(111. 66)
with
bo(t) =1,
The daughter sequence is now
o z &
(t) _2a(t)+l 1 + e R 29> T(-a) = t
) (t’zt) 2 cos T o T(-o +%) m(/t)
/ta+n-q -n 0'n ' dn 1~
Z W0 = (g -3 ogtige)
n=0425k (II1. 67)
We put
X =z 3
v=x/Vt ,
and define
o o +n-o,
a - i _n
fto=(F) )Y b ax r( Do o
n=0,2,... (III 68)

Analogously to (II1.56) and the arguments that follow it, we require,
forp =0,

) b, O " P(a0)-n-1), H@(0)-n); Otk 5 ) =1 .
n=0,2,... (I11.69)

By putting n = 2m, this reduces to the same problem as (I11.57) and
the 'solution is
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SHGRC YN

m! (- -i‘-o.+m)m

me(O) s

Substituting into (III.66), we have for the daughter residues in the
UE case

n_n
UBy = 2 ZE () (i11.70)
with
étzjrﬁ(o) ={_r}1)1 - o —a(lcﬂ}g—:};)r(m @-2) .50 . @71

Now 1in Sec. III.C we derived a formula for the slope of the daughter
trajectories. Since the trajectory is a property of the Regge pole
itself, it must turn out that if we calculate the trajectory slopes in
the UE case we should find the same result. If not, then the whole
scheme is inconsistent. On the other hand, the universal property
of a Regge pole comes from the unitarity condition, which links dif-
.ferent processes together, and we have nowhere made use of this
condition. Hence it is by no means obvious that the slopes calcu-
lated in the UE case will be compatible with (IIT.63).

Let us therefore take p = 1 and look at the equation governing
the slopes. One has

z bn(o)[an,(o) -a’ (0] logv x "
n=0,2,...
F(-ﬁ(a,-n-l), -i‘(oc-n); -q,+n+;=; x—l3>
ba (0)

7(0) -a’(0)] log v

which yields
’ N - (20‘.—2m+l! m ’ o
Ay (0 -a’(0) -1 e’ -a'@]. (1.72)

Iterating (III.63) once, and putting n = 2m gives exact agreement with
(I11.72).
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Hence, for some non-obvious reasons, the UU and UE daughter
sequences are consistent.

E. Daughters in the EE Case
Since in this case the mapping

(s,t) = (&, zt)

is nonsingular at t = 0, there is no need at all for daughters. One
single Regge pole gives a contribution to f(t)(t,zt) which 1s analytic
att = 0. However, if the daughters exist, then we must examine
their role in the EE case.

By the factorization theorem we can calculate the EE residues
from the known UU and UE ones. We have for the 2m-th daughter

Bz (t) BZ (t)—[s2 (t)] (I11.73)

Using (III.60) and (III.70) gives

-2m -0, =2m

T Ul <y om [By. )]

BZm(t) t

showing that BEE(t) is regular at t = 0 and given by

[Bz Eio)2
BZm(O) ——;UU— {I11.74)
BZm( )
Substituting (III.61) and (III.71), we find eventually
6EE (0) = (m -0 -#)T(m+8)Tm - -3) T (-a) B ()
2m m! T'(m - a) 4/mTE& -a)
(I11.75)

Now we shall see later on, in the group theoretical approach to EE
scattering, that a single Toller pole (which Toller insists on calling a
Lorentz pole) gives rise to an infinite sequence of Regge poles at

t = 0, spaced by integers, as in the above daughter sequences. It is
a remarkable fact that the formula (III.75) for the residue of the 2m-th
daughter agrees with the corresponding formula (see (V.56) and Ref.
8) derived from the Toller pole. Thus the requirement of analyticity
in UU and UE reactions, plus factorization, leads to an EE sequence
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of daughters which just sums to one Toller pole. A full understand-
ing of this phenomenon is not yet at hand.

There are several points in the above which require further
clarification.

We have discussed only even daughters, 1.e., trajectories at
a(0) - 2m for the UE and EE cases, whereas the UU case had daugh-
ters at a(0) - n. The reason is that odd and even daughters cannot
both couple to an equal mass vertex, assuming that at the E vertex
we have either A=Cor A=C.

For example, if A = C we have a coupling to a particle-anti-
particle pair. Suppose they are bosons. Then if the Regge pole has
isospin T and signature 7 = (—l)I, we must have t(-1)T = +1 to satisfy
the Pauli principle. Now the whole family has the same T value, but
the daughters have alternating values of 1. Hence there are two
possibilities:

(i) If the parent couples to the E vertex, then its odd daughters
will completely decouple at the E vertex. This is the situation which
corresponds to the above analysis.

(ii) If the parent, and hence the even daughters, cannot couple
to the E vertex, then the sequence in the UE case will be

-irr(xn(t)
UE 1+
Y syAiies g g (u)
n=1,3,6,... cos ma (t) n (111.76)
and we must take
6UE (1)« F T 7

to get a finite result at t = 0 (cf. (III.70)). Then by factorization we
will have

UE .\
L By ) 3
6EE 1) = e T (I11.78)
B ﬁ}m(t] o0 =1

Similarly,
EE
B2n+1 ) <t

Thus, in this case we have only odd daughters coupled to the EE reac-
tion and they all decouple as t = 0. Hence the whole sequence
decouples at t = 0,
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IV. The Effect of Spin

When the external particles have nonzero spin the situation
becomes very much more interesting. As mentioned in the Introduc-
tion, even in the EE case, where there are no singularities att =0,
the effect of spin, working via the conservation of angular momentum
in the s—-channel, forces certain linear combinations of t-channel
helicity amplitudes to vanish as t = 0 at certain prescribed rates.
This, in turn, requires the existence of correlated Regge poles and
results in a rather unexpected spin dependence of the scattering am-
plitudes as t = 0.

Consider forward scattering

A+B=C+D

in the C.M. of the s-channel, and let the incoming particles have
helicity a, b, and the outgoing ones ¢, d. Since all particles are
moving along in one direction, say the z-axis, the orbital angular
momentum of each of them, being perpendicular to their direction of
motion, has no component along OZ. Hence if we consider the con-
servation of J,, the z-component of the total angular momentum, we
have:t

Initially: ]'z =a-b,

Finally: J =c-d.

So conservation of Iz at eS = 0 requires
a~-b=c-d .

In other words, the s-channel helicity amplitude for an arbitrary
transition fg-‘:f_ab(s ,es) must satisfy

(s) = oyl =i
fcd;ab(s' es 0) =0Ounlessa-c=b-d . (v.1)
Now one can refine the above argument to show that the larger we

-b) - (e - (s) -
make | (@ - b) - (c - d)| the faster fedap ™ 028 8= 0.

tRemember that according to the Jacob-Wick convention, B's helicity
is its spin projection along its direction of motion, i.e., in the minus
z direction if A is moving in the plus z direction.



28 E. LEADER
The result is

(s).ab(s 8,) = (sin 8 /2)I a-o)-to-d)| bes ~0. (Iv.2)

One (non-rigorous) way to see this is to note that in the Jacob-Wick
partial wave expansion of £ls),

&) oo =Yern L, 6 d6) (1v.3)

J

where X =a-b; [ =c-d; each d{'ﬁ has in it a factor

(1 . zsjblk-ul
2
where . = a-c, u = b-d which immediately gives (IV.2).*
Now es is given by

%
sing =2lswE 01" 0@ <m (av.5)

s %D

=(sin es/z)l)"“[ (v.4)

where @ (s,t) 1s the usual function specifying the boundaries of the
physical regions:

o(s,t) = stl=-s-t] - s(mE';3 -m]:;°‘)(mA’3 —mcg) —t(mA2 -mBz)(mCQ -mD’a)

- @2m2 - m2m ) m? mca'+sz-mB2) (V. 6)
and
sﬂa =[s - (m1 - mj)"‘][s - (m1+mj)2] A (v.7)

Notice that in an EE reaction, and only in this case, 1.e., if m

e A~
mC and mB mD, we have

sin es o tﬁ (Iv.8)

tOne can derive (IV.2) directly from the covariance conditions
discussed in Sec. V.
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Hence, from (IV.2), for EE reactions,

cd(:])o (s,0 )tc: : 2l (Iv.9)

This implies, via crossing, that

(t, z) t‘kh\'ﬂ‘
t=0

EMclalglb' f(t) (IV.10)

cdab '3’;d’v’

These are referred to as equations of constraint.

It would appear from the above that the condition (IV.2) is only
relevant to the behavior at t = 0 in the EE case, in the form of (IV.9)
or {IV.10). However, we are studying asymptotic behavior, and it is
legitimate to ask about the behavior of the leading term in s as s = «,

Provided we keep only the leading term in s at fixed nonzero t,
we have from (IV.4) that

sin esm 2 ./-t/s (iv.11)
independently of the masses, i.e., to leading order
sin 0 o« t% .

t=-0

Thus in leading order in s, there is no distinction between the various
mass sltuations and in all cases

£®) Al

d ab (leading order in s). (IV.12)

(se) o
t=0

A word of caution 1s needed in connection with (IV.4) and
(IV.12). The rate of vanishing as t = 0 as given represents a mini-
mum rate. Amplitudes can vanish faster, and indeed do so in various
models. However they may not vanish less rapidly without violating
analyticity. The behavior (IV.4) and (IV.12) has been called the
"kinematically normal behavior" or k.n.b.

The problems we had earlier in the UU and UE spinless cases,
concerning the analyticity of the nonleading terms in the asymptotic
expansion, will again appear when spin 1s present; and we shall
deal with this in Sec. IV.C. However there are entirely new features
which emerge when spin is present and it is fortunate that they can
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be understood in some detail simply by looking at the leading term as
s = », Thus we shall begin by cons{dering only the leading term in
the contribution of a Regge pole to f\8

A, Spin: Treatment to Leading Order in s

When spin is present, the contribution of a single bosonic (or
even Fermion number) Regge pole to the t-channel helicity amplitudes
is given by13

et
(t) _20+1 1l+Te
ca ab(t’ t) 2 cos T (- 1) Bca :dp © ’( z)
i 1 (IV 13)
where i i i : g
A'=d <D ;
Ll' =c -a ’
and the functions e:;]f;l , are analogous to the Q_ -1 To specify
them, define ail G
m’ =max"{|)\'|; ]'u'[}
n’ = min {|X'] ; [u’]}
# =sign (\' u’) ; (1v.14)
Then
PR g
-1t e ;'f, s (-2) = %—%:—['%—)) {Tt"~a)T (-Mm —on)l"(h’—on)l‘(—h’-a)}%
i r
X <1—z>§‘)‘ i ]<1+z
N 2
( ) ; P(-a-Hn' ke N’ i-20; —)
(IV 15)
where

’
COl )= 0N 1 <y,

lJI ’ ’
=(-1)" 1 A >t (Iv.186)
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It is worth noting the trivial but useful formulae
'X""“,' =ml +4‘Inl ,

14

I -u'| =m’ -&'n’ . (Iv.17)

Let us redefine the residue so as to absorb several factors. We put

g = £ B in the UU case,
B = t--e"/2 E in the UE case,
B=8 in the EE case, (Iv.18)
and define
Lt o2 LEEe R {r(m'«x)r(-m et )
21“(l 2 Poa;ab : (v, 19)

Note that y is still factorizable if B is. Then
%M'+eMm’)
¢t

S OER R SPTOR R Hb(t) (1 zt)

l—z -

( ) F(-a’, —a+sn’; -2a; 1 (V. 20)

where

L(t) == t-d,’ t—@/z

, 1 for UU, UE, EE respectively. (IV.21)
Now the above refers to the contribution of one single Regge pole
with definite signature T and parity P. So strictly speaking, y should
be labelled y ol ab('r P). We shall need the following very important
symmetry property of y:t

+This symmetry which was derived in Ref. 4 can be seen as follows.
Define helicity states which have a definite parity

S8
|7 @i o) =% {I; @ +o ¢ ¢ (-0 P P -d-p)}

(continued on following page)
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5555 ‘
Yog;-d-p{T B =T P CE (1) Yez,ap'™ P (V.22)

where (;5, (g are the intrinsic parities of Dand B and SD, Sp their
spins.
Let us put
S=+8
D B
= =(= - 5 .23
855 = 65 Cpl-D) (1v.23)

with ¢ =+1. Then under the operation of parity 0"3:
B1; db; o) =0 (-1)) |J; db; o)
So these states have a definite parity (-1)J 5.

Then the partial wave amplitude

J gl e |
Tca;ab (J; ca|T|7; aby

can be written in terms of partial wave amplitudes

J.o ={(T: cA* . .
Te5.db (J; ca; o|T|7; db; o)

corresponding to transitions of definite J and P, as follows:

J L J.c J.-o
Tcﬁ;ab ? (Tcé;ab h Tcé;a

Under Reggeization a Regge pole of parity P and signature v will
appear only as a pole in the amplitude witho =T1P.
Now since from 1ts definition

) Sty _
|7; -d-b; o) =0 Cp-1) [1: db; o)
we have
S_+S
J,0 = .y D B_J,0
TcE;—a—b c’CDQB( 1) Tcé;ab

and since B . - is the residue of T, we will have
ca;db
S_+S
T.P - 4y D B _.T,P
Bc&;-a—b i CDCB( 3 8 ea;db

and y then has the same property.
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It should be stressed that in any parity conserving theory we would
have a relation of the type

Y_c-3;-d-b f IRRAES X Yea:do *

However, (IV.22) is much stronger, and is a direct consequence of
the exchange of one P value in the t-channel.
Note also that if we utilize factorization to write

L R (- 7D (v.24)

then also

=T PE (Iv.25)

Y_3-b DB Ydb
Let us now calculate the leading order term as s *«. We do this at
fixed, nonzero t, so that s = @ corresponds to Zp . Firstly, from

(Iv.20) and (Iv.24), to leading order

il)\, im .,

(0 2 e'? E1oN

camdb =~ T Ya Ydb (1v.26)

Next, to calculate the leading term in f(s) we must use the
crossing matrices keeping only their leading term. This is obtained
by putting s = « in the expression for the crossing angles and the
resulting expressions are then independent of the external masses.
Using (IV.26) and (IV.22), one can then show that to leading order
in s

(8 _ _._ onyd-b_._ (s
fc—d;a—b =7 P(-1) I’;DB fca;é'b * (Iv.27)

This 1s a fundamental result, for we shall see that (IV.27) is incom-
patible with (IV.12).
Suppose at first that we are exchanging one Regge pole; so

that the phase factor in (IV.27) is fixed. Then from (IV.12) and
(1v.4), ‘

(s) o
£ %:3-b . 0t (V. 28)
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and therefore, using (IV.27) also,

f:s;i)ab_T 4 gDla('l)d " (S_)d a-b °* Al (Iv.29)
t=-0
But by (IV.12) directly
£« Al (Iv.30)
cd;ab =0

which contradicts (IV.29) unless y or A or both happen to be zero.

The only way to make (IV.28) and (IV.12) consistent with each
other is to make both f =2 .&h and f 5_}5_5_1) vanish at the faster of the
two rates, i.e., we must take !

&) A+ kD
i tqg# . (v.31)

Hence the spin dependence of f(s) , in a one pole model, is much more
restricted than the most generally allowed type given in (IV.12).

A classic example of this phenomenon occurs in nucleon-
nucleon scattering. There, the amplitude -

=8
2,4k

has (@-c) - (b~d) =0, so that o, can go to a constantas t ~ 0. How-
ever, in a one pole model, by (IV.31), we would get

g =t

The highly restricted spin behavior (IV.31) seems rather unrea-
listic, and certainly at present day energies does not correspond to
experiment. Thus we must try to get a less restrictive behavior by
taking a model in which two Regge poles are exchanged. Let us call
the poles (1) and (2). Then, to leading order in s, we have

(2)
) - ©? _ dhl
cd ab fcd;ab + fcd;ab - ti (Iv.32)

and, using (Iv.27),
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(1) (2)
fo-dia-p = OV EEB{(TP)l fcd:ab+('rp)2f(cd:ab} tj 0t |

(fv.33)

Clearly if (rP); = (tP), we are back where we started and (IV.33) will
contradict (IV.32). But if (rP); = -(rP), then (IV.33) is equivalent to

&0 @@ g

3 : (Iv.34)
cd;ab cd;ab t=0

which does not contradict (IV.32).
Without loss of generality, let us take (rP); =+1, (tP), = -1

and relabel the poles + and -. As s = », we have
+ a,(t)
f(S) ] )
- a ()
&) L4 , (Iv.35)

where U'd:(t) are the trajectories of the * type poles. Since (IV.32)
and (IV.34) have to remain compatible as s varies, we clearly need

a,(0) =a_(0) . (Iv.36)

Thus in order to break away from the restrictive behavior (IV.31), we
require the existence of a second Regge pole, a conspirator, with
opposite TP, and whose trajectory satisfies (IV.36). This is often
called a "parity doublet” conspiracy.

If) might be hoped that now that we have introduced a conspira-
tor, f(S can have the most general allowed behavior as t= 0, as
given in (IV.12). We shall see that on the contrary the behavior is
still highly restricted, though very different from (IV.31).

Let us first note that the crossing matrix M completely
factorizes:

c'd’a’p’
cdab

28 4kl B ¢ 8 Bl
(S = It) Mca ( lt) Mdb ( It) .

Then if we define a kind of s-channel residue by

(s) c’s’ - (c'-3a")
Yl =M~ 1) e ¥rge® (Iv.37)
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and similarly Y(gsb): then in leading order, from (IV.26),

(8~ e3P By Y By 20 (1v.38)

cd;ab
Thus the helicity dependence of f(s) factorizes to leading order in s.
We shall now see that Eqs. (IV.32) and (IV.34) are incompatible with
this factorizability.
Adding and subtracting (IV.32) and (IV.34) vields

()7 Al Al

cd;ab

()" _ |  E|aeu :
fcd;ab“ t t (Tv.39)
Thus both f+ and f will have the same dominant behavior as t - 0 and
this will be given by that term in (IV.39) which has the smaller expo-
nent. We can summarize the situation as follows: Define

m=max{|)»|;||-l|} '
n = min {[H,Iu[} ,
&= sign (\ ) . (Iv.40)
Then
fisd);:b = l’f((:sd);;b R (Iv.41)
t=0
Clearly this behavior is not factorizable. So f(s)+ and f(s)- cannot

have the general behavior given by (IV.41), which would in turn have
given £(S) in (Iv.32) the most genemlly allowed behavior.

We now wish to find the most general behavior for f(s) which
will be compatible with (IV.32) and (IV.34). We put for each of the
poles

f(S)

AU =90) + [u] -g@)}
cd;ab

(=4

t-0

(Iv.42)

This is manifestly factorizable, and since g is unspecified, perfectly
general. If g(i) = 0 we have the one-pole behavior (IV.31). So we
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wish to try to choose g(\) as large and positive as possible, thereby
getting away as far as possible from the restrictive one~pole behavior.
From (IV.41) and (Iv.42), g(,) must be such that

IM] + u] = gb) - g =m-n (Iv.43)
or
gl\) +glu) = 2n . (Iv.44)
We now show that this equation plus the principle of making g{\) as
large and positive as possible allows us to specify g(A) uniquely.
‘We shall construct g(\) step by step and the procedure is illustrated
in Fig. 2.
(1) Putx =p. Then (IV.44) implies
gh) < x| foralln . (Iv . 45)

Try to take g{A) = |»| for some value of \, say A =M, in order to
make g large; 1i.e.,

gM) =M . (1v. 46)
(1) Putx =M, M =-M. Then by (IV.44) and (IV.46),
g(-M) = | M|

Thus we can take also g(-M) = | M] . : Y
(1) Puth =M, u=|M| +n (n> 0). Then (IV.44) gives

g(M) + g(| M| +n) < 2 |M|
or, using (IV.46),
g(IM|+n) < [M] . (v.47)
Similarly, putting \ =M, u = =] M| - n (n> 0) gives
g-Im|-n) =< [M] . (1v.48)
(tv) Putrx =M, u=|M| -nz0 (n>0). Then from (IV.44),

g(M) + g(|M| - n) = 2(|M| - n)
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g(\)
. 4
Z
©
-
.?I
\ /\/ ’.f\.:\/‘,
5 Z N,
Noai{>= 8

: g(x)=|M|

Fig. 2. Optimal solution for g(.),
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or
g(|M| -n)< [Ml - 2n
which we can rewrite as
g)s 2u - M| forosus<|M| . (Iv. 49)
Similarly,
gl) s -2p - | M| for -|M|spuso0 . (Iv.50)

Hence we see that:
N (@) There exist at most two values of A, A =+M at which g(\) =
Ao

{b) Once the value M is chosen, and this is arbitrary, then
g(\) has to lle in the shaded region of Fig. 2 for all A.

Clearly, the optimal choice we can make is to take g(\) as
glven by the boundary curve of the shaded region in Fig. 2. This
corresponds to choosing equality in Eqs. (IV.47-50).

Hence the optimal choice 1s

glh) =g(|r]) (1v.51)
with
g\) =M for |A| > M,
g(M) =M G
gh) =2[r] - M for |A] < M, (iv.52)

where M 1s now a positive integer. This for any M is optimal in the
sense that g(\) is as large as possible for all .

Thus the optimal behavior for £\8) is characterized by an integer
M. This M isa kind of quantum number attached to the pair of con-
spiring Regge poles. It will turn out in the group theoretical analysis
of EE reactions at t = 0, that M can be identified with one of the
labels of a Toller pole in the O(3,1) expansion of the scattering ampli-
tude. However, as introduced above; M appears to have a more
general significance, and plays a role even in the UU and UE cases
where the O(3,1) analysis is inapplicable.

Substituting (IV.52) into (IV.42) gives
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A7 M| M-l
cdab

t=0

(Iv.53)

This gives some physical insight into the meaning of M. Only those
amplitudes with \ =+M and u =+M survive as t = 0. In other words,
when a Regge pole of type M couples to a vertex which has a spin
flip A, as viewed from the s-channelC.M., then as t = 0 only those
vertices with A =+M can go to a nonzero constant.

In the above, we constructed g(\) to ensure that (IV.41) is not
violated. However, this is not yet sufficient to satisfy both (IV.39)
and (IV.40). For we must also have

O N R 1 ¥

fedsab ~*¥cd;ab (v.54)
t=0
Let us put, for the leading term in s,
o (t)
(S) —é{lM |)"|I+IM h‘l”} i (t) S:!: (N.ss)

cd ab
where f(t) is analytic, nonzero at t = 0. Then (IV.54) implies

a (t) a_(t) VM

st ws Bgap® s =t (IV.56)

cd ab

where
vyt -] - M- 1} @esn)

Now in certain situa:reions vy = 0. Inthese cases (IV.56) puts no
restrictions on the 7. But if I}\I + |u| = M then one can show that
vy, > 0 and in these cases 87" is related to f~. The maximum value of

is M and this is attained whenever both || =M and [p] = M.
Choosing helicities in this range, (IV.56) implies that

o () a_(t)

tm <Bcd ab(t) H * ) _’_ (Bcd ab(t) 8 ) i

) £=0 at™

m=0,1,2, ... M-1 (Iv.58)
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Since these have to hold for arbitrary large s, it follows, on differen-
tiating the product, that also

m dm
- o, () == o_{t) ,m=0,1,2,...M-1. (Iv.59)

dt =0 dt =0

So for a conspiracy of the optimal type characterized by M, the first
M-1 derivatives of the trajectg&ies a4+(), a_(t) must be equalat t = 0.
Similar results hold for those B whose helicity labels satisfy
Ix] = M, |p] =M.
This completes the specification of the relationship between
the conspiring poles. They are now guaranteed to give amplitudes
£(s)* that satisfy both (IV.39) and (Iv.40). " -
Let us now see how the complete amplitude f(s) = f(s) + f(s)
behaves as t = 0, Using (IV.53) and (IV.56), we get finally

cd;ab

f(s)‘ = tﬁ‘X . té(m"l‘n) (IV.GO)
cd;ab
t-0
where

X=01+aNh-M) forn =z M

=0 forn<s M=sh

=1+ (M- form<s M<h+n
=2(M -m) + (&= 1)n form+h=sM . (Iv.70)

Note that the most generally allowed behavior is just (see (IV.12))
A0 -2n)

so X measures the deviations from this. Note that in general X # 0,
so we have failed to produce the most general behavior. The reason
for this failure can be traced to the property of factorizability.

Now in the above, we were working to leading order in s. How~-
ever, in the Regge pole model, the residue function multiplies the
function of s (or zt) which has the asymptotic expansion in powers of
1/s and therefore the coefficient of the leading term in s is the true
residue function (aside from trivial factors). Thus we can use the
leading order treatment to determine the behavior of the residue
function.
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B. Behavior of the Residue Functions ast— 0

We have above the behavior as t = 0 of the leading term for
large s of £(8) . We can now invert the crossing matrix and calculate
the behavior as t = 0 of the leading term for large s of f t) considered
as a function of s and t. However, the crossing matrices are sensi-
tive to the external masses, so the calculation has to be done sepa-
rately for U and E vertices.

Consider first the case mc # m Noting that the crossing
angles x behave as follows:

b4 (”:t) -0
3 ast=20
we get that
a? ’_ =7 _
8oty « llef-cl+la’-all (Iv.72)

t=0
Then, inverting (IV.37) and using (IV.53), we get
U

+
Ycl'a'l(t) C3
t=-0

4 =7
télM'lc'aH (1v.73)

for the factorized plece of the t-channel residue for a U vertex (see
(Iv.19) and (1V.24)).

A similar result holds for Y ifm_#m

Also from (IV.54) it follows that f%r a '[PU reaction

i A+ |
Yoraray *# Voratarn B+ W'D

for [A/] +|u'l=M . (Iv.74)

Otherwise, 1f the helicities are outside this range, there 1s no special
relationship between the + residues. (The plus sign in (IV.74) comes
about because Xp (=,t) and XD(‘”rt} -mast~0.)

Consider now the case m m Then Y, and Xg ™ w2ast-0.
Inveréing (Iv.37), one can then pick cui. the dominant term in the sum

for y_T-,, which is the term with |c-a] = M. This would then give
¢'a

Yorgr ™ constant as { = 0. However there is a complication owing to
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the fact that the sum runs over both y(s) and y(s) and the symmetry
of Y(S) under this reversal of helicitie® (cf., (7[6737) and (IV.38)) then
leads to certain cancellations in the sum.

The overall result is

E Y
+c! -
v P ey comstant - Lif rR(UMIC 3s
c a
t=0
t_zs
« Jt i op(-npMe 8-
or, more neatly,
E 1 M+C’-§'}
L Y
v = - (1v.75)

t=0

Notice that this implies that only one of the members of the conspir~
ing pair can couple at t = 0 to an E~type vertex.

Unfortunately there are two complications which modify the
range of validity of (IV.75):

(1) Let us call the common spin at the E vertex sp =83 =54.
Then the maximum value that |c-a| can ever achieve is 2sg. Hence
if M > 25y, then our argument above fails and we cannot pick up a
term with | c~a| = M in the sum. The best we can do is to pick up
thTI&erén ith | c-a| = 28, which then give an additional factor
°E . Thus

2s_+c’ -8’
= flM'stl  glirpen E JaEM>2s

t=0 (IV.76)

E(rp)
c’a’

(i1) When M =0, (IV.75) holds only for Regge poles with
PG(-—l)T =+1 or PC = +1, whichever is applicable in the given reac-
tion. For poles with PG(-1)T = -1 or PC = -1 and M = 0, one has
instead of (IV.75)

E 1 _sv
viP et e rpen® o

[N
1)0 a’ _

« t if 7P(- +1 . (tv.77)

The readon for the latter behavior is that there is an additional sym-
metry at an E vertex
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pG(-1)"
yEo-{ o )Py (1v.78)
PC

which a;ms the dominant terms in the sum, which for M = 0 are the
terms v \®/(t), identically zero when PG(-1)T or PC equal -1, The
above gal?fes a complete specification of the behavior of all residue
functions as t = 0. To get this, we used an optimal behavior for g(A).
It is amusing to note that if we had chosen a less than optimal solu-
tion for g{\), but one which nevertheless retained the property that
there exists a value A = M at which g(M) = IMI , then we would have
got the same behavior as above for the t-channel residues. This
glves an even more important role to M than before. Once there
exists a number M such that the contribution of the Regge pole to f(s)
does not vanish as t » 0 when || =|u| =M, then the entire behavior
of the residues as t = 0 is determined,

Working to leading order in s, we have succeeded in obtaining
the behavior of the residues for small t. We can now go on to study
the question of the analyticity of the non-leading terms and to see
how the daughter properties must be modified due to the presence of
spin.

C. Spin: Treatment to All Orders in s

1. The UU Case.
From (IV.20) we see that every term in the Regge expansion of
£() will have in it a factor

(1 + zt)i(m'+ +'n’)

l-zt

Thus we prefer to work with the amplitude
)43 (' +e'n’)

. 1+ zt
fezapttez) = \1T-2

The contribution of a single Regge pole to is then

fgg;ab(t,zt) : (Iv.79)

t
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[

l-2z
%ul)\l(trzt) =C()\,:Ll') Yul;)\l(t) L(t) ( 2 t)

X F(-a. +n', -a +e'n’; ~2q; 1 % 2 ) (Iv.80)
t

where we have written
Yes ;db = Yu'x !

The procedure for fixing the properties of the daughters will be as
follows. First we consider f as a function of the variables (s,t) and
establish its behavior near t = 0. Then we write a daughter sequence
for  and arrange the daughter residues, etc., so as to ensure that the
Regge model for t does not violate the specified behavior neart = 0.

From (III.35), (IV.79), and the fact that the UU crossing matrix
is nelither singular nor vanishingas t= 0 at fixed s, one can establish
that the most general allowed behavior of f near t = 0 is

t% (m; +e'n’)

o

t=-0

w (Iv.81)

It can, of course, vanish faster as t = 0 in practice, but it may not
vanish more slowly.

We shall treat the case of one parent (M = 0) separately from
the case where there are two conspiring parents (M 2 1).

(a) One Parent: -M = 0. The parent pole gives a contribution
to f which has an overall t-dependent factor which behaves like
(see (IV.73))

FMm'+n)

ast= 0.

If we choose 1/, u' so that &’ = +1, then this behavior is as singu-
lar as is allowed, and the daughter sequence must sum to a function
which is at worst constantas t—- 0.

Let us introduce daughters with residues

(n) - “n” (n)
Bu':X' )=t W (t) (v.82)

in analogy with (III.60) for the spinless case.
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If we define y ¢ (t) in terms of B( n) X {t) by a formula analo-
gous to (IV.19) in wﬁic}l o is replaced by“hn, then the contribution of
the nth daughter to f is

1-z\%
Atz =co )y o Ln<t)( > t)

2
r Tt _ Db
xF(-ann A R )

u

(Iv.83)

where in the UU case

-a_-n
n

Ln(t) =t (Iv.84)

It 1s clear that the daughter residues will have to have the same over-
all helicity dependent t-factor as the parent. Thus we put

() ) =T+ (n) ,®, n=0,1,2,... (IV.85)

where y( ) is analyticatt = 0.
Lastly, defining

(n) ) = b(“) :(t)y 1y @) (Iv.86)
the full daughter sequence will be
Eoastie) =cor ) dIVIND G g @y

X z b(n) L) x “nﬂl-a Fl-o ', -0 +& N =20 ; l)
R Y " n' x
n=0 (Iv.87)

where as earlier
x=#(1-2z) .
v =%/t . (Iv.88)

Taking then A ’, p’ such that &’ =+1, the series in (IV.87) will
have to satisfy the same conditions as the serles in (III.56); i.e., its



DAUGHTERS, CONSPIRACIES, TOLLER POLES 47

p-th partial derivative with respect to t must yleld at worst a polyno-
mial of order p in 1/x and a polynomial in log v.
For p = 0, we now find

) (1) (-a(0pn’) | (al0)n’)

bu'x (0) = n! '{-th(0)+n-1)n (V. 89)
from which the B(Ill? + can be calculated via (Iv.86), (Iv.82), and
M
(I1I.60).

Now the above was derived for the situation ¢’ = +1. In the
case ¢’ = -1, the t~dependence of the Regge term vanishes more
quickly than generally required, i.e., as

7 ¥ ’_ 1
t’b(m ik g compared with tﬁ‘(m iig/)

Thus the daughter sequence can sum to a function which diverges at
most llike t™° as t= 0. In other words, its p-th derivative can sum
to a polynomial in 1/x of order p +n’,

Now in order that a cancellation which is effective for certain
W', 1/ remain effective when say 1’ = -\’ it is necessary that the
parent and all daughters have the same syrrhmetry under A/ = -\’. By
(1v.86) this will be achieved if b@) , =b®) ., Thus our result
cannot depend on the sign of &' Hana (IV.%S} must hold also for ¢’ =
-1. To check this, let us choose #’ = -1, take p = 0, substitute
(Iv.89) into our sequence and see what emerges. One has then a
serles

oW
(n) . ’ ., L1
2 bu,)\,(O)x F(-a +n+m’, -a+n-h’; =20+ 2n; x)
n=0

which can be shown to sum tot

t+From Eq. (11), Chapter 4.3 of Ref. 12, and using Eq. (3) of Chapter
4.4, one can show that
e (b) (a-A) (c-a)
(1) r r r
« Ac-a: —
BB Ato-aiz) = ) (c#r-1)_(c-a+h)_
r=0

z Fla+r, b+r; c+2r; z)

from which the result needed follows.
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F(-n', -a +n'; -; %)

which is a polynomial of order h’ in 1/x. So everything is consistent
between the case ¢/ ==x1 for p = 0. We have not checked this con-
sistency for p > 1, but there is little doubt that it will hold.

(b) Conspiring Parents: M 21, Now f is given, to start with,
by the sum of the contributions of the two parents. Moreover, to
leading order in s, we will have

o o

a + + - ot

+
fu;;.}\/ - YLI"?)\, S ‘Yul;xl s

and the relationship (Iv.74) and (IV.59) between the + poles will gua-
rantee that f /., s does not have a more singular behavior than (IV.80).

When &e’ daughters are Introduced, each daughter sequence will
be designed to cancel unwanted singularities in the non-leading terms
coming from its own parent. However, thhe two sequences will have
to cooperate term by term to ensure that f is not too singular. To en-
sure this, we take analogously to (IV.74) and (IV.59),

-+

+ o (1) - o (t) ' '
+
Y(r})_ s ” +4"Y(n;), ,e s " « F0+n’) (1Iv.90)
(TR TR ta0
(n)* : v o = (n)*
where v are defined in terms of B analogously to (IV.19) and
where we have taken
+
+ -0 -n +
n n -(n
ﬂt(ll);)\l ) =t . L(l')ﬁ\' (t) (v.91)

in analogy with (III.60). The analogue of (IV.85) in this case, using
(Iv.73), is to put

@* . _ #0(MN] + [ MY -
Yu, o’ {ty =t Yul)\l (t) (Iv.92)

- (n)* . 4
where vy is analyticatt =0.
Then (IV.74) implies that

m + -
—dm <Y(l;1))\,+4,’ YL(:))X,>=O for m=20,1, 2, ... (VM’— 1)
dt H (Iv.93)
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where

'=#{n’ +n’ - |M-n') -IM-n[} . (v.99)

Now it follows from (IV.74) and (IV.59) that ifchl )\, (aft); x) is
any function analytic as a function of ¢ as t - 0, then

{Y(I}))\,(t)w(n) (60 +07 (500 60 0)

LU ('}) (%) (Iv. 95)

(n)

where C " (t;x) is analytic and nonzero at t = 0 and 1s given at
t=0 by

é(in +h')
(n)
Cyrs 03 = FFETmTT] é(m w75 1 }

(Iv.96)

t=0

Carrying out the differentiation and using (IV.74) and (IV.59), one
gets

(n)
u )

? + @(0))

,(0:x) =

[v ® (ra 7 (t)]
st M £=0

t=0

+ "M'
+ ;L(J.r}))\’(o) ava [Cp(n) 1(G t),x) - (,) L@, x)]
' (Iv.97)

VY
at

Let us now construct the daughter sequences. We have, ig-
noring the irrelevant factor 0./ ,u’),

+ +
Qo +n—Q

)= B Ey(n),(t)x 2

=

F(-an++m',-an++/n';-zqn”,-iw(%) Y (=) .o
n=0
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For each n value we can identify the factors multiplying y(n)i as
functions cp(n) (0%) of the type discussed above. Hence (IV.95) will
hold for each pair of terms in the series. Thus (IV.98) becomes

+
[+4 ’ I
2 s iy Xy AUIMA [+ MR () -+
ful;)\l(tlzt) (1-¢") (t) t Yul)\[(t)
a tn cx+
(n) -n_n 1 +, + +. 1
xzb“,)\,(t)x v ~ Pla ' ,-a +/N5-20 7 T)
n=0
’ 7
LU z CS‘,‘)X,(t,x) (Iv.100)
n=0
where we have
+
(n -(n -+
ul))\l t) = YL(J.'))\' {t)/ Yul)\l t) (Iv.101)
and CS}))\, (0;x) is given by(IV.97) with
: +n .
(n) . - n d,n r M. _ L1
cpu,)\/(oc,x,v) X v F( a ', o e -2a ; x) "
(Iv.102)
We now choose p’, A/ so that-¢’ = -1. We then further res-

trict p’, A’ to the reglonm’ 2 M =n’ so as to make the t factor in
(IVv.100) as singular as possible. In this region, the factor looks like

20 =n)

which from (IV.81) is already as singular as % can be. Thus by simi-
lar arguments to those used previously, we choose the pin) (0) so that

n -n . L
n=0

yielding .

(-1)7(a0)#n’) (- (0) - ')

(n) —
b",. ,(0) = n! (-20(0) +n - 1)

SR

for m =2M=h' ., (Iv.103)
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Also we shall have to require that

z c(n,)x,(o x) = polynomial in 1/x of order n’.
3 (Iv.104)

The latter re %uement clearly does not interfere with our deterrrz x)ma-
tion of the b\, since by (IV.97) it involves derivatives of the b'D
We shall not analyze (IV.104) further at this stage.

Once we have the bﬁ'}% , (0) for #’ = -1 and the range of n’,)\’

as indicated in (IV.103), we can invoke factorization to find all the
other bS)))\, . Firstly, as discussed earlier, b(ff)x' cannot depend on

#' . Thus (IV.103) holds for both &’ =1,
Secondly, to find b nj ; whenh’, n’ > M, we can use factori-
zation in the form

Yy i YMM Yy ' M YMU' (Iv.105)

since MM, »’M, and Mp’ all fall in the range where (IV.103) holds.
Hence one finds

(n) (D 0(0) + 1) (-a(0) = M) (-a(0) +1')_
'(0) n! (—2&(0)+n-—1}n (-a(O)"'M)n

form’, nzMm . (Iv.106)
Finally, in an analogous fashion, if m’, h/ < M, we get

() (1" (w(0) - m’) | (-a(0) + M) (=x(0) ~n’)_
nl (-2a(0) +n - 1), (-a(0) - M)

m,n' <M . (Iv.107)
(n)

This completes the specification of the b*, ,(O) forall ), u’. How-

ever, we found the b( n) by using (I¥.100) in a special region of heli-
cities and using facto ( ation. So we have to go back to (IvV.100),
insert our values of b\ as given by (IV.103), (IV.106), and (IV.107)
and check that in all cases we do not violate (IV.81).

For the case ¢’ = -1, one finds
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z b(r}),(o)x—nf‘(-a+n+m’,~a+n—h’;—2a+2n;l)
pA X
n=0 1
{P(M -n, —a+n'; -a+ M; 3) forn’ =2 M

Fih'-M, -a -h'; -a - M; i) form’ < M (1v.108)

which are polynomials in 1/x of order W - Mand M - m’ respectively.
Then we shall have from (Iv.100) and (IV.108),

4 I_ =y ?
t%(m jal L M) g Ealpvid forn’ = M

"t -3 —m? _n? r_ .
R geM-n’ =) m-M gy

A

f

In both cases,

a ' —n
ful)\’“t‘%ﬁh )

iy

:h does not violate (IV.81). Of course, one still has to adjust the
" but this will not interfere with the determination of the

b n}k,(o). ()
H For the case &' = +1, the series involving b I} , (t) does not
contribute to £ " at all, and the non-violation of* * (Iv.81) can be
5 (n)
N ul)\ ?
=n’, fu')\' must be no more singular than

Zh+n’)

ensured by suitably adjusting the C For example, when ' = M

implying that
(n)

y C“,X, (0;x) = constant in x and polynomial in log v,
i (¢' =+1; m " =2M=n') . (Iv.109)

It turns out that this equation contains an interesting new piece of
information on the slopes of the trajectories, as we shall see later.

(¢) The Slopes of the Daughter Trajectories., Takingp =1,
i.e., considering the first partial derivative of (IV.100) with respect
to t, and isolating the terms proportional to log v (as was done in
(I11.62)), we find for the (+) family:




DAUGHTERS, CONSPIRACIES, TOLLER POLES 53

+ + n(2e0) = n + 1) o+ +
a ' (0) -a’ (0) = La," (0) - a’ (0)]
e 20.(0) (v.110)

giving the slope at t = 0 of all the + daughters. This formula is iden-
tical with the spinless result (III.63). 7

To find the slopes for the (-) family, remember that we have
from (IV.90)

m m
+ -

—d—n_1 o, (t) =im' . (t) , m=0,1,2, ...(M-1).

dt dt

t=0 t=0
Thus provided M = 2, (IV.110) will hold also for the (-) family and
an""(O) =a,""(0). To find the slopes of the (-) family when M =1,
let us return to Eq. (IV.109). In detail, it reads

z _x_nP(—a.+n+m', -a+n+h’;—2a+2n;i)x

n=
A T RS (n)
X7 [br}w(t)+bn)\,(t) Z BU oy "
Lot M, M =0
+
h’ ¢ & +n
+
dh' ;V ! 1:'(-an.""-m” % o' -Za.n+; ii
dt : L =0
= constant in x and polynomial in log v. (Iv.111)

In carrying out the differentiation there is only one term proportional
to log v. Isolating this term and choosing n’ =m’ = M, one has to
have

Z b(n) (0) [ *(t) ~a (t)]

dM
M

F(-o +n+ M, -a +n + M; -2a+n; i)
: dt

a (t) -a (t)]
£=0

(Iv.112)

which yields
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M {-0.(0)+M)
d + - n d -
M [2, © -a, (t)]’F (e (0)-M)_ M[“ -a"0] |t=0
(Iv.113)

Thus the difference between the M-th derivatives of the + daughters
is determined by the difference between the M-th derivatives of the
+ parents, att = 0. This result holds for all M. '

However, we can also use it when M = 1 in conjunction with
(Iv.110) to determine the slope of the (-) type daughters. Clearly
if we had done everything in terms of the (-) rather than (+) family
we would have found that (IV.10) holds also for the (=) family.

Thus for M = 2 all slopes are determined in terms of a(0) and
o’ {0), whereas for M = 1 the slopes depend on «(0), &’ *(0), and

a’~(0).

2. The UE Case

The situation in this case is very much m {? compllcatedh, and
it turns out to be more convenient to work with ) rather than £. We
put mp = mp =m; sp = s =sp and ask how singular £{t) can be as
t - 0. The situation here is very different from the previous cases
since in this case the crossing angles Xg blowupast= 0. Solif
the s- channel amplitudes are assumed analyfic at t = 0, by crossing
the £ will be quite singular. We have

1
5AB BD

—.__l___ | 2 _ 2y _ 2 3 _ 2
COS X = g 7 {t(s + m mC) 2m (mC m, )} ,

cos Xp = {t(s+m —m"a)—Zmz(m —mAz)} ,

“cp " BD (v.114)
where, in this case, 3
= {ttt - am®)} (Iv.115)
so that
COS X~ COS X t-é (v.116)

t=-0

Since the crossing matrices involve rotation functions like

E
db,b(xB) we shall have, using
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sp sp
dy s b(XB) = (cos xB) for cos xy =
that
) g
< t (Iv.117)
t=0

fu'X'

independently of the h(s}icities A, p. . This is then the most singular
behavior allowed for £t

Let us now look at the Regge model for f(t) We shall only treat
the case M'> 0, since M = 0 follows trivially from it.

Let us write the contrlbution of each Regge pole to f(t) as

£ = (- 3 ~a-1
ca db(t z ) -D"* t 03 (t) e ! (-zt) (rv.118)
where .
Ino 2
8 =2u,+1_1+-re 'tZB
‘ca;db 2 cos ca;db

Using the factorizability of 8, and remembermg that particles A
and C are at the U vertex, B and D at the E vertex, we ‘write

el @) af ' el
adb(t) oa(t) @db(t) . (1v.119)

Now from the leading order treatment (Iv.73), we know how
YU behaves as t = 0, from which it follows that

. 1!
8l ) = &=l (Iv.120)
H to0
and that for mC > mA,
- ' '
oaff’(t) - sign ') ﬁS; (t) = B M| | : (v.121)

which can be derived from (IV.56).
Also from (IV.75) we know the behavior of YE from which follows

L _ M+X‘}
naf’f(t) « t‘*{l R0 for M<2s,. (IV.122)
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Combining (IV.122) and (Iv.120), we get
i . M‘H\’}
S L)« I M ‘*{H”) (Iv. 123)

+ -
and (IV.121) does not give any relation between ® and 8 .
The daughter sequences are set up as usual. We take

o & a *
+ + n n n
20+l 147 e —_—t =
+ 2 +
(n) () = r; ‘ n =it . (“) L&) (V.124)
cos T
and define
’ 1 M+ (n) (rP)
p@ PR FIM-{w || FH1-0P)n -1) ) )
“1 Py [; . !
(Iv.125)
where B(n) is analytic and nonzero at t = 0. The justification for

(Iv.125) is as follows. Firstly we know that r, = (=1)0, Secondly,
from a study of the UU case one can show that one must have By

(~1)™ P which then makes (rP)y, = 7P. That the latter was neceasary
was seen from the fact that (TP)n controls the effect on the daughter
residues of ) = -4 . Thus if a daughter sequence is effecting a certain
cancellation of the singular terms of its parent for some value of ),
then the sequence mugt transform in the same way as the parent under
) = ~A 1in order to continue to effect the cancellation,

‘Once we have {TP) =P it is then necessary to have the factor
(-1)™ in (v.125) but thp reason is subtle and will only emerge after
Bg. (IV.147). In the meantime, let us take {IV.125) as correct and
study its consequences.

We see that odd daughters of a given parent will differ from it by
a factor /t, but will have the same factor as the other parent and its
even daughters. Thus the cancellation of the singular nonleading
terms of a given parent is achieved by a collaboration between its own
even daughters and the odd daughters of its conspirator parent. The
sequence will then look like
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M+
(o dv-l ] ga-cnM y s
ul;)\l ul)\l"'
n=0,2,4,...
(n)-
I W v
n=1,3,5,...
7
1+ (-1)MH) N (n)- (n)+
+ 20 n)+
t Z B et z AR
n=0,2,4,... n=1,3,5,...

(Iv.126)
Let us write (IV.126) in the form

E(l)(t;z,v)

:

O %IM-|M'||i a-0M)
“I.)\.I

M+A’
4 (1+ED)

) Z(z)(t;z,v)i (v.127)

where z = z,, vV = z//t.
Since for any )’ one of the t factors multiplying E(l)i ) will be a
constant, the overall t factor in (IV.127)is just t%‘lM"h‘l ﬁ which is

always less singular than the allowed behavior (IV.117). Take as an
example that A’ is such that

’
MR-
Then we require
o) P ’
— T, (t;z,V) = polynomial in 1/z of order 2s_~&|M-|p’||+p
avtp M t=0 E
(Iv.128)

and
—— 3, (t:z,v) = polynomial in 1/z of order 2s & | M-|p’|| +p+1.
wt° @) t=0 5

(Iv.129)

Thus even when p = 0 the sums are allowed to be polynomials,
whereas in all previous cases when we looked at p = 0 the sums had
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to yield a constant. Hence in this case we cannot find the B(T)‘))\*:(O)
uniquely from (IV.128), (Iv.129). H

In order to actually find the 8% (0) , we have to get much more
detailed information on the structure of f(t (t,z), which in turn de-
pends on the detailed structure of f 2l

Now by arguments similar to those used in obtaining (IV.2),
one can write

ff:?i);ab(s'zs) =- zs)%h-ul ez B I ff;sd);ab(s't) (V. 130)

in which f(s) is analytic at t = 0. We shall write f(S)(s,zs) as a
function of (t,zt] utilizing the additional information about the struc-
ture of £(s) as given by (IV.130). We take the expression (II.5) for

z¢ and solve for s getting, when mg = mp = m,

mm? -m ?)
s ='——A‘/._t—c' Zt +L2-i2 + 0(t3/2) N (IV.131)

Then substitute for s in the formula for zs:
1

z =————[s° - sT + 2st] (Iv.132)
S % %D
where gij is given by (IV.7). One has
" mim? -m 2|
A c %
fn = =, {1+o0¢ ) (Iv.133)
and similarly for SCD' Thus
z, =1+ O(t‘b) . (Iv.134)

Putting this into (IV.130) we thus see that work{n? at fixed z; and
expanding in powers of t yields a behavior for £ S) as t » 0 which is
identical with the behavior deduced in the leading order in s treat-
ment (cf. (IV.12)).

Next we take the expressions for the crossing angles (IV.114)
and substitute for s using (IV.131). We get

sign (m , - m_)
cos ¥ = C_ AL oidy (IV.135)
B Z,
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and a similar expression for cos XD
For the other crossing angles we get

cos X, = sign (mc - mA) + O(té) (Iv.136)

and similarly for cos x5. Using (Iv.135), (1v.136), (Iv.55) and the
inverse crossing relations, we get for f(t

() _ 80 T °E °E

“ )Ll(t )— s Z‘ & 0 5 e’ db'b(l/zt) da'd(l/zt) X
a,b
c,d

{%(lm la=c| |+| M- lb'dll)l:g RO R O)
a cd;a

+ |(a ~¢)-(b-d)| 0(1/5)} + higher order terms in t
(Iv.137)

where we have used our knowledge (cf. (IV.55)) of the specific form
of the leading term of £(s), Thus

S ’
(t,)x,(t z) =s*@ Y d Foler ) dagd(z;]){t;"“M"“””M"“ I
b,d

8 N 1 4
x[BC'd75’b ¥ Bc’d;a"b:l Tt A "(v.138)

The leading terms in the sums, as t - 0, will have behavior
?
1L T L S S

4 «
Since f(t) has a factor t‘H M_h‘l ‘ l in it and since we do not know the
structure of the other terms onthe right-hand side of (IV.138), we
cannot determine the polynomials to which Z(l)(z} must sum, if |p’| #
M. However, if u’ =+M then the only term on'the right-hand side of
(Iv.138) which goes as a constant is the first one, whose structure we
know. Thus for say u’ = M we must require
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S _1. P _ira A
Z(]_) or 2(2) o« Z db,b(z ) dald(z )[Bcld;5'b+ Bcld;alb]
b-d=+M

'
for (-1 ™M=1g-1 (Iv.139)

But again the right-hand side of (Iv.139) is an arbitrary polynomial,
since we do not know how 8 145 depends on b and d. So even in
the case p’ =+M the B™* are indetermined.

We shall see that the best we can do is to determine certain
linear combinations of the B(n) . Firstly we decompose the product of
d functions into irreducible components., We take

S S S S
-1 -1 b’-b -1 L)
dpry@ ) dgrgz) = (17 T df ) dgrge)

'— -
= ()P sz(s ,s_,8:d',-b") Cls.,s..8'd,-b) &, (V).
E'E E'E ATH (Iv. 140)
S

Now define for s’ 21/,

b’ -s
=(t) - E r.ar _ye (t)
le'7S’)\’ i z ( 1) C(SE,SE,S ;a’,-b )fp.’;a'b'
d’,b’ (Iv.141)
(a'-b'=)\')
Substituting (IV.140) into (IV.138) and then computing f(t), we get

b-s
~(t) - s’ =1 E roa L
ful;sll)\l z d’k’u(z ) (-1) C(SEISEIS ;d,=b) X
b,d

B M-{uf [+ M={uf D et r
g {t I:Bc'd;a'b + Bc’d;a’b]
+ Eluul 0(/t/2) + ... (V. 142)

Writing z =Z 2 and defining
b,d u d-b=u
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Boey= Y 1 F clegsg.stid,b) B (V. 143)

d-b=

c'd;a’b

we get finally

=(t) _ o(0) ¢ 21 B (M- M=l 1)
fu’;s'x’_s zd;,u(z ){t | M=ful| |+ M=u’]] "

M

A [+
X [Bu'u + Bu'u] + t% oVt/z)+ ... } (Iv.144)
t) (n)+

The Regge pole expression for f NG

will be obtained by replacing B

bI-SE (n)+
= - g r.3¢ _n!
B/ Z (-1) C(sE,sE,s ;% ,-b )Bp’:a’b'
anp’ (1v.145)
(d’-b’=\")

inside Z(l) and )3(2). We label these new sequences s and s

(1) (2)°
We now choose u' = M and repeating the argument which led to
(IV.139), we require

~

2(1) or 5(2) = z di:u(z-l) l:’é-‘l\-/lu+§1\_/fu:l for (-1)M+)"= lor-1.
u=tM (IV.146)

Using (IV.56) and (IV.143) we have that

R+ _ :!:X_
Byem = e

so (IV.146) becomes finally

’ B ’
2(1) or 2(2)‘* di;M(z l) forp’ = Mas (-l)Mﬂ =1lor-1.
(Iv.147)

’
1))\ +M

More explicitly, e.g., if (- =41, then (IV.147) reads
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a n
( z B(n)+ )\/(0)+ 2 (n) )\’(0))( z) (l_fz) :

n=0,2,4,... n=1,3,5,...

X F(=a+nth’, -a+n+e'h’; -20+2n; 1_) (z _1) (Iv.148)

which determines the B( nh fox; n even and the B
lar expression holds for (-1)A tM = -1,

The explicit solution of (IV.148) is much more difficult than
previous cases and has been given in Ref. 8.

Let us now see why the factor (-1) is necessary in (IV.125).
Consider e.g., the case (- 1)7t +M = 41, If we now look at the case
u’ = -M then the right-hand side of (IV.147) will involve a sequence
in 1/z which can be obtained from the case u’ =M by changing the
sign of the odd powers of l/z in d)\ (z"1). On the other hand,

x M
(n)-

for n odd. A simi-

changing u’ from M to -M on the left-hand side of (Iv.147) causes
the odd powers of 1/z in the even family members, but the even
powers of 1/z in the odd daughters, to change sign. Thus to attain
an overall change of sign of all odd powers of 1/z on the left-hand
side the odd daughters must change, in addition, by an overall minus
sign relative to the + parent and its even daughters. Hence the odd
daughters involved in the cancellation must have opposite TP to the
parent whose singularities they are cancelling. The factor (-1)n
precisely guarantees this.

Notice that in contrast to all previous cases, we will not be
able to use factorization to find the UE residues for |/ # +M from
those with u/ =+M. For we would need to use, e.g.,

B =B

Bu';s’x' M;s’M B

wis’M TM;s/n
which would be of no help.
However, factorization does give information about EE

processes.
3. The EE Case

To fit in with the.above notation, we write the contribution of
each Regge pole to f(t) as

5:2 ez = B oa:apt) e::ffu,bzt) (1v. 149)

where
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rren
8 - 20+l l+71e

ca;db 2 cos T ca;db

and then put

+
g P _t4{1+¢1>( )M+ g L{1+rrp( 1)M+“} 5 (@) 5156}
’ ! r . .
u'at u A
Finally we define
(1) blsy =~ 8'-sy
fS”Ll’;SI)\I = z z ['1) ("']-)
a’,b’ g ,c’
(al_bl=)‘.l) (Cl_al=ul)
o . 0 _=r )
C(sB,sB,s ;d’ ,-b’) C(sA 18p:8"5 cima )fc'é’;a’b'
(Iv.151)

where we have taken Sp (151
The Reggelzed form for f is given by replacing BH')\’ by

b'-s a’-s
~ _ _ B, A
Boruriern Y Z 1) P )
d’,p’ a’,c!
(dl b,—)\ ) (cl -l=u )

C(SBI SB,S,;aI l"b’) C(SAISA'S”;C’ 1"5,) Bclal;albl
(Iv.152)
in (IV.150) and (IvV.149). uU
If we now define a modified UU residue BH'X' by
2041 L+xe™ L« UU _ M-[uf|], FIM-P7]| LUU
2 cos ma i’ uia !
(Iv.153)
then the factorization theorem gives
~EE UU _ <UE ~EU
BS”IJI N va —B\);S')\' BS”}J.'IP : (Iv.154)
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Hence, from our knowledge of BUU and NEEU, we can calculate EEE.
The actual calculation is very complicated and can be found in Ref. 8.
It is also shown there that the EE residues thus evaluated are con-
sistent with the EE residues of the Regge poles contained in the ex-
pansion of a Toller pole (cf. Sec. V.).

V. The Group Theoretical Approach

A. Introduction

Consider first the spinless case. Let us examine the role of
group theory in giving us the usual partial wave expansion which is
the basis of the standard Reggeization procedure.

Let M(p ., P~; P=, pB) be the scattering amplitude for the t-

channel procegs SR

D+B- C+A :
The invariance of the scattering operator under Lorentz trans-

formations tells us that if the scattering is viewed in a Lorentz trans-
formed frame where the momenta have the values

then, for the spinless case, we have the covariance condition

M(Apc, Apgi APz, ApB) = M(pc, Pgi Py pB) g v.1)

Hence we can evaluate M in any frame we choose, provided it can be
reached by a Lorentz transformation from the frame in which we wish
to know the scattering amplitude. Because of energy-momentum
conservation, we can take M to depend on the three vectors:

P=pg=pp=ps+Pg : PP =t=20,
=45 - pp) .
/0' =%(pc n pA) . (V.Z)

By (V.1) we have

M(AP; I\/o', I\/o) = M(P;/o',/o) . (v.3)
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Now P is time-like. Hence we can always find a A such that
=2 =t 0,0, 0 . W.4)

In this reference frame, which is, of course, the t-channel C.M.
frame, we have

P = (Eﬁ, D) pg = (EB, -p)
pc=(EC,p_') pA=(E—. -p’)

where the Ej are known functions of t and the particle masses only.

We have now
E= -E
W _(D "B
/o = ) ' P ’

/’(t)=(E£2_—:E§'-. p’ ) ' (v.4a)
and we can write
M(P(t),/a(t) '/,(t)) =W p, o) . v.5)
Now note that for any rotation R,
rp®=p® (v.6)
So the covariance condition (V.3) gives
me®, R/o(t)' R’ th= M(P(t);/o(t),/o'(t))
or by (vV.5),
f(t)(t; Rp, Rp’) =f(t)(t; p. p") v.7)
since
SN S B R
(t)

An immediate conclusion is that at fixed t, £*/ is a function
only of the scalar product p * p’. Since |p| and |p’| are calculable
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in terms of t, we can say that f(t) is a function only of t and the
angle between p and p’.
An alternative way of looking at this is to put

R=R. B, :

= =

he) RP_, P, . (v.8)
where, e.g.,

p, =0, 0, [p|)

is along the z-axis, and to use (V.7) to write

(t) : ry = (t) L S
£ p, p) =1t B, . Rp_,P_p_z) (v.9)
where
R, =r! R ,
R'P R PR

is the rotation which takes p into the direction of p’. Since ﬁz and
Py are functions of t, we have that

f(t)(t: p,p')= f(t)(t: Rp_,p_) . v.10)

l.e., f(t) is defined at fixed t as a function on the rotation group.

It may therefore be expanded in terms of the representations functions
of the rotation group and this leads in the usual way to the Jacob-
Wick partial wave expansion.

All the above is very well known. We have repeated it just in
order to emphasize: (a) the group theoretical aspects of the steps
involved, and (b) that a functional approach is possible without need
of talking about intermediate states which are eigenstates of J (this
will be a great help later on). @

Let us notice that in fact £
in the sense that all momenta satisfy p;° =m
lows that

is also a function of the masses:
2. From (V.2) it fol-

i -
prReRmS on?)
and

/o' : P=é‘(mc3 —mAz) 5 V.11)
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Thus at fixed P the range of variation of/oand /o’ is restricted by
(V.11)., In particular, since

3o - ) oot oLyl oft) 50 905
® ®

it is permissible and consistent to rotate at fixed P', as is
needed in (V.7), while always satisfying (V.11).
Now notice thatatt =10,

p® ¢ =0)=(0, 0, 0, 0)
is a null vector. In this case, for any A € O(3,1) we will have
ap® =0 =p® ¢ =0

and therefore by (V.3),
(t) ; (t))

,A/o ,I\/O’(t)) —M(P P /o

By the same arguments as above, we can now conclude thatatt =0,
M is a function only of the Lorentz scalar product ae

However, from (V.11), if mypy # mp or m # my , we see that the
components of and »’ are 1nf1n1te which Fndlcates that something
peculiar is happening, as was discussed in Sec. IIT.A(b). Since for
the UU and UE cases att =0, P is actually light-like and not null,
we concluded that covariance does not permit us to find M by evalu-
ating it in the t-channel C.M. frame. Thus the additional symmetry
at t = 0 is only relevant for EE processes.

In this case one can restate (V.13) in a form analogous to

V.10), i.e.,

. (v.13)

= , (), _ (t)
’t 0 Y= (t=0; (V.14)
ol Ve

where A 1s the Lorentz transformation that takes (t) into the

directidn . Thus £(t) at t = 0 is defined as a function on the

homogeneous Lorentz group and can be expanded in terms of repre-

sentation functions of O(3,1), giving rise to the Toller expansion.
Note that since

et

we do not expect any serious difference between using the Toller
expansion or the usual partial wave expansion for the spinless case.
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B. The EE Case at t = 0 with Spin
Let MV be the usual generators of the homogeneous Lorentz
group O(3,1), and define

_ ik
It L)

Ki =]Oi . (v.15)

L

The states of a particle of momentum p, spin s, and helicity A are
defined by

_EPIS —1912 ij]3 -iaK3 - A
|p.sA) =e e e e |2,8.) =U(Lp)|p,s,X> (v.16)
where
p=(m,0,0,0 ,
p = m(cosh a, sinh & sin & cos o, sinh & sin 8 sin¢g, sinh a cos 8),
and
=L p .
P D P

The state IB,S,X) represents a particle at rest with spin pro-

jection )\ along some fixed z-axis.

Under a Lorentz transformation, these states have the compli-
cated transformation law:

— ] =l ’
UMlp,sAY =) DYy (Lo ML) [Ap,s A7) (v.17)
X,
where LX; A Lp is the Wigner rotation, and where LAp f; = Ap.

The M function is defined as the matrix elements of the S
operator in a basis designed to obviate the complicated transforma-
tion law (V.17). We thus define "states"

[prs.u} = z D{’z (L:) |p.s Y (v.18)
1\

where D® 1s a finite~dimensional representation function of O(3,1).
These states have a simple transformation law:
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0s
UM [posiud = ) DO M) [Apisau’) (v.19)
ul
i.e., they transform according to the (o,s) representation of O(3,1).

Note, however, that the states |p,s,u} are still eigenstates of the

momentum operators R,, and hence they cannot at the same time be
elgenstates of the Casimir operators of O(3,1).

We similarly definel4)

[o.swl =) DY@ ) (posa] . (v.20)
A

Then we define an M function by

Ma.qp®o Pa pD,p )= [pc,sf,c; Py rS; ,a|T|pD,si,d; Ppss,.b]
OS_ -1

=) D ,(L )D ,(L )D (L )Dbb(L )

oy Py Pp Pp

dlbl

(P8s0C .pA,sf,a’lTlpD,si,d':pB,si,b'> (v.21)

C
where we have put s S¢r 8 = s, and where the T-matrix
element on the rightﬁs inCEhe heli ]ity representation, but does not
have the additional phase used by Jacob and Wick. Then M satisfies
the covariance condition

M. ab(Ap Apgi AP, ApB)

os os [o1] os
f f i,-1 i,-1
Y. Dggr (W) D=y (1) Dy, 3() D,y (07

¢ ,a
al 'bl
M c'a’d’ b(pcl DA' 5’ pB) . v.22)

‘We can now couple the spins of C, A and ]3, B. We also
change to the variables P,/O,/o, (see Eq. (V.2)). Thus we define
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oo pm? = I = r
mI’m':Im(P’/o 70) Z_ C(sf, g J'ic,a, m')
c,a,d,b

. 3 e (Pe!
C(Si’ 8,0 Ji d, b, m) Mca;db(P'/" ,/a) . (v.23)
The covariance condition (V.22) now reads

: N oy’ 07, - !
My gm @B 427 h8) = D7 DTN o (Pip )
n,n (v.24)

Note that m can be thought of formally as the matrix element of a P-
dependent T operator:

n=Lp", 7, m'|TC)| & T, m} (v.25)
with the requirement, to satisfy (V.24), that
U T(P) U™ (1) = T(AP) . (v.26)
Now we saw earlier that att = 0, in the t~channel C.M.,
p=p®=0,0,0,00 .
Hence, in any Lorentz frame, we will have
P=(0, 0, 0, 0) )
Thus
mI'm';Im(P;/D’ ’/o)t=0 =m]'m';]m(oy' p) v.27)
By going to the t-channel C.M. we see thatatt =0,
/o(t)=(o, 0,0,1im) :
9=, p : (v.28)

where p’? = -mf2 and where we have put m, =mg =mf, Mp =my =my.
Thus in any frame, att =0,
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3 -

pP° =y
P2 =n? ) (v.29)

We now wish to write .0 in terms of some standard vectors,
thereby defining b as a function of the transformation which takes
the standard vectors into ! . The choice of standard vectors
seems to be fairly arbitrary. A simple cholce is

AP =m,0,0,0 )

P =m,0,0,0 (v.30)

in which case we will have

2 T2 Vel =

1 = ol 7
- JBD, 2 (v.31)
where t are clearly notreal Lorentz transformations For
example | in tﬁoe t-channel C.M. frame, where /o/o are glven by

(v.28), we will have
A =L (-<im/2) v.32)
t) z
/b

i.e., a boost in the z-direction through an imaginary angle o = -in/2,
i.e., areal rotation in the zt plane.

The covariance condition (V.24) holds also for complex Lorentz
transformations, so we have

o7 -1
M i 2 ) = Z D,,M?,)D (A1)

; In(o’/”"“(;o’/o ) (v.33)

where
\/L, 7 = \/L,_l \A/ .
Vb PP
Finally, we define the function
=V 07 ' L
B/ m® =) Do My o 0328 0) (v.34)

n
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This function has simple properties and can be interpreted formally as

e m@ =27 P=0, 17 m’ [T UW)] 5,P=0,7,m}. (v.35)

Note that F(A) is defined for all /\ in the complex Lorentz group. Note
also that the interpretation (V.35) is formal in the sense that the
states involved have to be considered as analytic continuations of
the actual physical states. To do this rigorously is difficult and it
is therefore more convenient to consider & simply as a function of its
arguments, and not to emphasize its interpretations in terms of matrix
elements of operators.

From (V.33) and (V.34) we have the right and left covariance
properties of J:

(R) = XD] W3, L0

'J»J.;ml sJm

!
B ®0) =) DL R ) (v.36)

1
where R is any rotation. The transformations which constitute the
right and left covariance groups are, respectively, the intersectmn
of the groups of transformations which leave both P and /o and both
P and &’ invariant.

It is the satisfaction of these covariance conditions which
distinguishes the Toller expansion from the Regge expansion. It can
be shown that these covariance conditions ensure that the constraint
equations (IV.10) are satisfied at t = 0, and we shall see later that
each term in the Toller expansion separately satisfies them. Thus a
model or an approximation involving one or a few terms in the Toller
expansion will preserve the vital property (V.36).

The choice of expansion for &(A) is dictated by the desire that
each term in its expansion should possess the essential symmetry
properties of ¥, Consider, for example, what happens for t > 0,

We could define the analogue of ¥(A). It would be, in the t-
channel C.M.,

3t . R = Lo L U(R)l/o(t) © 5, m

where P{t), etc., are given by (V.4) and (V.4a). The covariance
groups of F{t;R) are now limited to rotations about the z axis, and
one has, e.g.,
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. = o lpm .
gl-lml;]-m(tl R RZ@)) e 3]-Iml;]-m(th) .

The standard partial wave expansion for F(t;R) would be
.R) = i j
Byt s R =Y, B SO A ®)
i

and since
a, RR E)=eP"d, ®

we see that each term in the expansion satisfies the covariance
property of Z(t;R).

If we now go tot = 0 in this expansion, it is impossible to
satisfy the covariance conditions of 3(\) since d’ ,  is not even
defined for the transformations of the covariance group, which at
t = 0 becomes O(2,1).

We thus need an expansion based on a group which 1s large
enough to accommodate the full symmetry properties of &A). The
precise choice of group depends upon the choice of standard vector
used in defining ¥(A). With our choice and working in the t-channel
C.M., the covariance groups are the rotations O(3), and % is a func-
tion of

A t) @) = A ) A ()
0 1 = O

where
\/(,/ (t) = LZ(-in/z) ’
Aot) =R gy gy L i/2) . (v.37)
where R is the rotation from the direction of/o(t) to that of /0' ®) .
Thus
= ¥ -1 -
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Hence, the simplest choiceJr is the group O(4) which is
isomorphic to the group composed of the elements of O(3) together
with the boosts corresponding to imaginary velocities.

Now, in general, if one has a group G with elements { g} and
representation functions »C +(g), then if certain conditions are
satisfied, one can expand Hinctions £(g) by

(g) =j‘ z fr(:l’m/ Qg’ml (9) dc v.39)

¢
m,m

and the inversion is given by

C - oC*
oo = 8 (@ f@dg . (v.40)

coefficients f ;. depends upon f(g) being defined on the whole

group G. Thus 'we cannot use too large a group for the expansion.
In our case the group is O(4), and we therefore expand F(\)

in terms of the representation functions of O{4).

The unitary, irreducible representations are written

Note that the gossibility of inversion, i.e., of finding the expansion
m

jo
jr?l'j'm' (A) and have the following main properties: If A =R, an
ordinary rotation,
j L j
sjm;jlml(R) =6jjl Dmml(R) (v.41)

where DJ is the usual representation function of O(3). If A = Lz (ia) =
R, (&),
tz

igo jo
Ag]'m;]"m’ (Lz(m)) S djmj' (iar) (v.42)

igo
where the d are known functions.

TIn Toller's work (Ref. 5) the group O(3,1) is used. This is a more
natural group to use than O(4) but it has the complication of being
noncompact, and this enormously Increases the mathematical diffi-
culties involved. The use of O{4) corresponds to the treatment of
Freedman and Wang (Ref. 10).
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.1.
The parameters jo’ o0 run over the range:

jo=01 illizl LU ]

c =1,2,3, .... F

IR A + .

387 =15l |J0| +1, ... (0-1) . (V.43)

To include parity, one must extend the representations. The
parity operator £ has the following commutation relations with the
group generators:

D>
—
9

o

1l
—
-

i (V.44)

D>
—
3>
k)
Il
1
—

As a result, the parity operator changes the sign of jo when operatlgw;g
onthe basis states |jO o; j m} which furnish the representations go
There will then be two situations:

If jo =0, we can take

@|j°=0, o; jm) =:P(_1)Jlj0=0’ o; j m} with r_P=i1

and hence we ‘can represent the space inversion element Ad, for j0 =0
by* ‘ :
P:c ¢ = - j /
ﬂjm;j'm'(l\*) f( 1) 6jjl Gmm' . (V'45)

If 5, # 0, we can take

2 BT el = o (<1YTM | _ S
P |j,0ijm} f(l) |-, 0i 3 m}
where M = |j ] .

. Ifweputj =qM, q=+1, and label the states |M,s,q; j m},
then P has the eﬁect of changing g - -q. Hence we will have repre-
sentation functions for jo #0,

TThe ranges given correspond to the group O(4). To get half-integer
angular momenta, one must consider the group SU(2) ® SU(2).

The phases used here and in (V.46) are chogen to agree with Toller's
work (Ref. 5).
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Mo j+M 2M
9,
jmq;i mlq/(/\ )=(-1) 5q' -’ 8, iy & mm’ q . (v.46)

For group elements A not involving any space inversion, we have

Pio - Ocr
Bt ) =850 W) :

Mo aqM ,o

, . A) =8 .

il Jlmlql( ) qqa’ ﬂJmJ m’ +(A) (v.47)

We can now apply the general expansion formula (V.39) and
(V.40) to our case. Initially, we have

. i
Byt ™) =) Z ) T a0 m’s L) 85 )

o i‘n’ P
jn
- - M
+
YooY ) EAS w97 ) v.48)
M>0 o j‘n’q’
ing
and the inversion formula, e.g.,
[ e -
3],n o g ™ Im = [ B () sj n'q’: jng® dh (V.49)

0o(4)
where the symbolf dA means integration over the group using an
invarilant measure.
Fortunately, many of the plethora of labels in (V.48) and
(v.49) are redundant. One can show that the integrals (V.49) vanish
unless j' =7, m’ =n’, JT=n, and m =n. Moreover, one can show

that 8*1\,/[ " +ing is independent of n and n’. All these results follow

from the use of the covariance conditions (V.36) which F(a) satisfies:r

TFor example, every A inO(4) can be writtenas A =Ry A, Ry where
R, and R, are ordinary rotations and A,y is a rotation in the zt plane.
We can then use (V.36) to write

(R, A_, R3)

3]"m';]m(A) = zt 2
- 7 i)
» z Dmlnl (R:) Dnm(Rg) 'Jllnl ;]'n(Azt)
1

7'm’;Jm

Substituting this into (V.49) and performing the integrations over the
ordinary rotations then yields the results quoted.
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Thus the final expansion is much simpler:

= PO gpio
3I'm';]'m(A) Z‘ 30T ﬂj:m,;Im(l\)
O,f
M,o M,o
+Z Z ¥ a' T sI’ q’ qu(A) - (v.50)
M>0 o,q,q'

Note, as mentioned earlier, that each term in the expansion satisfies
the covariance conditions of %(A). For example,

£ = pi0
8% OB y}: LAV (VA )
/'Mll

J
Z mI m’ In(A) Dnm(R)

which is in accord with (V.36) .

Up to now we have not considered the consequences of the
invariance of the S matrix under space inversion. This leads to fur—
ther covariance properties for F(A) under the transformation A = 1\ s A
orA=A A where, as earlier, A is the group element corresponding
to a space inversion.

For example, one has

WA ) =Cq¢ {n) (v.51)

3]"m';]m B 3] m’;Jm

where the ('s are the Intrinsic parities of D and B.
If we consider a term in the expansion (V.50) with 1= 0, then
since by (V.45),

Ko = (-1\J abo
87 A ) S (1Y BT W)

we see that we must have

P _ S
870 =0 i p D FCF

S0 =17 -
EI’:I #0 only 1ff> (-1) €5 Cp - (V.52)
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Similarly, one requires = (- l)I Catc
For the terms in (V.50) w1thJ 75 0, we have from (V.46),

M,o J+M M,c M
® AA,)=(-1 .
' m ]-mq( ) =(-1) ]- - q’;Im—q(A) q
and therefore we must have
M,o J+M ZM M c
3Ilql :J-q QD C ( ) Jq (V )
and similarly,
M,o 7'+M ,2M _M,o
F_; = -1 3 .
' la'q TR Se CBT T a 1 a’ ;T

C. Zoller Poles
The expansion (V.50) is Tollerized in a manner analogous to
the usual Reggeization procedure. The sum over g is written as a
contour integral, the contour is opened 4 la Sommerfeld-Watson, and
the poles of 3#/7 and 5M,c in the complex o plane are picked up.
The representation functions appearing in (V.50) are of the

form
o=-1

Mo. ]-II _ Mo‘
(‘/LP’&)P&)) y d ']”’ (m/Z)Dmlm(R 1) d]./Im].(—iTT/Z)
I'=M (v.54)

Im,Im

where we have used (vV.38) and (V.43) and have written R for
R () L)
Vi .

When ¢ becomes complex, the sum in (V.54) is meaningless.
Hence we first write (V.54) as

M,c o= 1 N
SR )—z ary _ym/2) D ®R™)
J'm’;Jm At) (1) I m’,o
/ / N=0
aMo (~4m/2) (v.55)
o-1-N,m,J i

and this expression can be analytically continued in o. The use of
(Vv.55) amounts to a choice of a particular continuation.

We now assume that ‘I‘f 7 and 3}\4 T have poles in the

complex o plane whose pos1tions are indevendent of 7, 7', q, q’.
This assumption ensures that the contribution of each pole individually
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satisfies the covarlance requirements of F(A). Note in particular that
the covariance under space inversion, (V.53), forces the same pole

into both 3 Ja and 3}\'}&9.1 3 Thus for M # 0 there are effec~
tively two coiné:ident poles pllaying a role together. This is the ana-
logue of the parity-doubling which was found necessary for Regge
poles characterized by M # 0 (cf. Sec. IV.A, in particular Eq. (IV.35),

(Iv.36) and discussion thereafter).

If we consider a pole ato =a + 1, say in 3‘P T , with residue
BI, 7 then we will have I
,a,+1
Bl gy (t))« s Z dromt o (im/2) d (2
,a,+1
a ,m, (-1 /2) (v.56)
where @ =a - n. If the pole is in GM’? we would have
n J'a iJa
aM, co+1
2
Tt ™ L0 @ Z BI alq Z 4 m’ (i /)d m’ @)
2R q n
qu °‘+1 (~in/2) . v.57)

Now %’m' ;Im(./(_, ) }) is essentially the irreducible

t-channel helicity amplitude fﬁ ' (defined in (IV.151)) evaluated
Jm

T

att =0, Thus (V.56), (V. 57;[) are precisely in the form of a sequence
of Regyge poles, correspo? ing to the parent and daughter sequence in
the Regge axpansion of £t The Regge residues can be identified as

the coefficients of dmm, (zt) in the sequence. Note that the require-

ment that the Regge residues factorize forces the Toller residues to
be factorizable.

1”'(‘)ne has
+s
i £ ()
gl'm';lm( /”'(t) (t)) =1 Eyrm i m
where f(t) is defined in (IV.151).
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The contributions of a single Toller pole, as given in (V.56)
and (V.57), appear as an infinite sum over Regge pole contributions.
This, however, is not the form in which Toller presents his results,
We thus recast (V.56), (V.57) using an identity proved by Bitar and
Tindle, 15 namely-

Zd Aoy g B ) Mt —Edl ma wrahe )

7'm o o mI Tuy’
(v.60)
where
cin § = sinh 8’ sin B
v sinh v t
+— Sinh & sin @
Biny sinh y '
cos y =Sosh 8 sinh 8 cos 8 + sinh § cosh 8’
¥ sinh y ’
cos 4 = cosh 6’ sinh & cos 8 + sinh §’ cosh &
¥ sinh vy d
and

cosh y= cosh 6§’ cosh § + sinh 5’ sinh § cos 8 .

In our case,

8 =8, . p=-in/2 , &' =in/2
and hence,
cosh y =z, 7
b =m/2 ]
Yy =-n/2 y

Hence, for example, for a Toller pole with M # 0 we get

(A y<Yd /2 &, (n/2)
D'(t) = (t)
" my um

[dM'E"“(thg e )] (v.61)

31 m’ ;Tm

Tuy
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where ¢ = (5 ¢p ¢ ¢5 (-1,

The asymptotic behavior of the dM’M-1 functions is
M,a+1 a—l M-}J.'
dm, (z) 2,5 lzt| ;i v.62)

Hence, independently of J, J', m, m’, the t-channel helicity ampli-
tude at t = 0 has leading behavior |z |2,

Let us finally calculate the s-channel C.M. helicity ampli-
tude. It is simplest to calculate § (S) the s-channel analogue of f( )
defined by

-s a-s
(Sl')l ]-n z ( 1) B (-l) A C(SB SB I'; dl "b' n’)
: s (s)
C(SA s, §i ¢, -8, n) fcd;ab : (v.63)
The crossing relations then give
7(s) J =(t)
T W 0/2 dp /2 EE L (V.64)

m,m’

The constraintcondition at t = 0 (cf. (IV.9)) requires that

z(s)
I’n’,In - 6n’n

Substituting (V.61) into (V.64), we get

i) o gMoatl

M a+l
500" ®nn {Yny’ (= )

(z )+Cd

Hence the constraint at t = 0 1s automatically satisfied by the Toller
pole expression.

Moreover, from (V.62), we see that for a Toller pole charac-
terized by M,
(&) a-| M-|n||
I n’;Jn = “n'n lzt| {¥ielo5)
and only the amplitudes with n = n’ =+M have the asymptotic behavior
|z,|*. This ig in agreement with the results obtained to leading order
in Bec. IV.A,
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Thus the group theoretic treatment, using O(4), which is only
valid at t = 0, in EE cases, gives results which are consistent with
those obtained from a study of the UU and UE cases. This is a re-
markable result and it would be very interesting to have a deeper
understanding of this fact.

D. Group Theoretic Methods in the UU and UE Cases
" Several attempts have been made to utilize expansions based
on O(3,1) or O(4) for UU and UE cases where there is no genuine
additional symmetry at t = 0. We shall give a brief resumé of these
ideas and to be specific we shall restrict ourselves to UU reactions.
One can work with a function analogous to 3., , _ (A) which
will have two additional labels: J mim

p=my® - my )
A= mcz -mA‘"’ 7

to remind us that the masses are not equal. Let us simply write this
function as F(A; A, A7),

Now %(\; A, A”) is defined only for those transformations
which leave P invariant. In this case, att =0, P is no longer a null
vector, as it was the EE case, but is now a light-like vector. Thus
we can only give a meaning to ¥ when A is an element of E,, the group
which leaves the vector (1, 0, 0, 1) invariant. Thus if we proceed to
expand ¥ in terms of O(3,1) or O(4) representation functions

F(; A, a) =z Mo ar) M)

it will not be possible to determine the coefficients SMU(A . A", since
the inversion formula, (V.40), involves integrating A over the whole
group O(3,1) or O(4).

However, when A = A’ =0, the coefficients are determinable
and one can make models in which the A, A’ dependence is either
ignored or put in explicitly, but arbitrarily.

Alternatively, one can hope that given the function %(A; A, A”)
defined for A € E; there exist well-behaved analytic continuations of
¥ in the variable A onto the whole complex Lorentz group.

In the same spirit one can consider t # 0 in the EE, UE, or UU
cases, where again there is no O(3,1) symmetry, and nevertheless try
to make an expansion based on the O(3,1) representation functions.
One has now a function J(t; A; A, A’) and expansion coefficients
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&’Mc (t; &, A') determinable only att=A =A’ =0. Again, the beha-
vior away from this point can be put in in some model dependent
fashion. It should be stressed that the use of this type of expansion
involves very strong assumptions, far beyond those needed in the EE
caseatt=0.

In any event, ignoring the dubious nature of the assumptions
involved, one will have an expansion of the schematic form:

A ’ M,o,., T 10
3]-lml;]-m(tl Al A: A )N z Z 3jjl (tl Al A :I m ,]'m) sl;/Em';jm(A)

o,Mj,j’ (v.66)

Notice that here we have a sum over j, j*. This is because the
covariance group is not large enough to force j =7, i’ =J', as it did
in the EE case att =0,

One can now proceed to Tollerize or Reggeize (V.66). One
assumes that the position of the poles in :FM,’U{t: A, A TPm” ,Jm),
considered as a function in the complex o ;Hane, depends only on M
and t. The contribution of one of these generalized Toller poles then
looks very much like (V.56) or (V.57) for arbitrary t, where now the
residues are functions of t. It can be seen that this formulation leads
to daughters which are separated from each other by integer values
for all t. TFor example, if the parent trajectory is considered to be
linear, then all daughter trajectories are parallel to it. Since this is
a much more restricted sequence of daughters than required in the
analytic solution of the daughter problem, we have to conclude that
the assumptions used in this approach are much too strong.

Nevertheless, the above approach is useful in that it provides
a daughter sequence with good analytic properties and in that it sheds
some light on the structure of the singular daughter residues. To see
this, note that the physical scattering is given when f = ' 3
Itﬁis easy to show that independently of the choice of standard vectors

e o, 1 A p! 5 15 decomposed into rotations and a real boost
&ng the z axis, then the boost angle is always given by

il
L AT2

cosha =

Thus

-3

a a_ 2 3_
i[ZmD + 2mB t] [ch + ZmA

cosha =

t]%} V.67)
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and this is well behaved in the region t =+ 0, so there should be no
problems of analyticity for a generalized Toller pole contribution.

As an example, consider a UU reaction with t small and posi-
tive., We work in the t-channel C.M. and define the standard vectors

2 =gl 0. 0,00
A =02, 000 (v.68)

where | 2| and | 2| are finite as t= 0.
We now have A = L = A1

e

\/(_, =

A0
(t) it

A (t)-L
2L ot L e

where the Ls are boosts in the zt plane such that

E_.—-E
L. 1 |,0,0,0)=(~——~D B,O,O.Ip_l) )
w YA 2
P

A where
/o o (t) (t)

(t) ‘

. w o V8

and

E.~E
fy 21,0 0.0 =(‘Cz_A , 0,0, |B'|> . v.70)

where |p|, |p’| are given by (III.21) and (II.6).
Hence we can again decompose

s m®™ w0 R e ®)

o o0

» j// MIO_
z ay o @)D ®) dj”mj(l/'t, A2V

sl

v/
and defining fJI'm’ . m(t) as the coefficient of D’ (R) in (Vv.66), i.e.,

(t) = Zs % 1'magm) A7, L ) AT @)
Im iJm i'm’ /v() j /bgv).n)

J:J
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we end up with (V.66) in the form
] N 4 j
& =4 (t)) 2 fI'm';Im(t) Dm’m’(zt)
j

3 7 7,
Il /"'(t)/v (V.73)

which is the form of the usual partial wave expansion in the t-channel
C.M. .

We can now see clearly that each partial wave amplitude £ t)
is singular as £t -+ 0 in order to ensure that the sum (V.73) is analy-
ticas t~ 0. The precise form of the singularity is shown in (V.72),
since L _(y)and L _,(;) become singular as t » 0 in order to satisfy

(vV.70). (REmembé'Dthat | 2| is finite, but |p| = « when t~ 0.)

Lastly let us just mention a less ambitious approach to t # 0
in which one first expands %(t; A) for small t and then applies the
group theoretical analysis to each coefficient of t in the expansion.ll)
This seems to be a more realistic approach than the generalized
expansions used above, but unfortunately there seem to be ambigui-
ties in its formulation which may, in principle, be unavoidable.
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Introduction

The interest of a large part of the community of elementary par-
ticle physicists has been focused in recent times on the Veneziano
model. The reason for such widespread interest is that this model,
although admittedly still unsatisfactory from many points of view,
already contains many of the properties that one believes to be true
in general and is at the same time sufficiently simple to allow expli-
cit calculations.

Although it is certainly premature to say whether or not a new
chapter of physics has begun, in the hope that this may be so, it is
probably useful to present a panorama as complete as possible of the
main developments that have lately occurred in the field of high energy
strong interaction dynamics. Hopefully, the present lectures should
provide a sufficlient basis for an outsider to be able to follow further
developments in the field.

In the first part of these lectures, we shall review some of the
most significant steps that have taken place starting from the work on
finite energy sum rules. In the second part, we will mostly be inter-
ested in discussing the various physical and mathematical properties
of the Veneziano model and only very briefly comment on its many ap-
plications and various generalizations.

I. Finite Energy Sum Ruleg and Further Developments

A. Finite energy sum rules 1)
The finite energy sum rules (FESR) of Dolen, Horn and Schmid
are an almost immediatg generalization of the superconvergence sum
rules of de Alfaro et al®) and are, therefore, a consequence of analy-
ticity. Their advantage is that they allow one to study nonsupercon-
vergent amplitudes much in the same way as one would study super-
convergent amplitudes since they put on gqual footing all Regge poles
irrespective of whether their intercept is = -1 (which is the critical
value for writinga superconvergence sum rule). One of the major de-
velopments of FESR is the idea of duality (which was proposed in 3
slightly different form and with different motivations by otherauthor 5
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An indirect consequence of FESR can also be considered the Veneziano
model4) and a new form of the bootstrap idea (see Sec. I.B).

The basic assumptions in writing a FESR are that the amplitude
a) satisfies a dispersion relation and b) can be expanded as a sum of
Regge poles at high energies and as a sum of resonances at low ener-
gies. We parametrize an individual Regge pole as
L] - e—imx (t)

o (t)
sinma® (L +am)

R, =B(t)

" (.1)

where + characterizes the signature and, because of its crossing
symmetry, the variable

S -u

2M

v = (.2)

is used. For the sake of completeness, we briefly review next the
usual derivation of a FESR. This will allow us to discuss the basic
assumptions that one uses as a starting point for further develop-
ments.

The assertion is now that if an amplitude F(s,t) is well repre-~
sented by Regge poles for a certain v = N then within the same approx~
imation we have the FESR

N a
- n Im F(s,t) B 8N
5, M) "{ K N dy G+n+ 1)l + 1) (I.3)

where o= a(t) and the sum is over Regge poles. The integration is
over the right hand cut in s and includes the Born term.

We can begin by noticing in the above formula one ambiguity
which will play a major role in future developments, namely, where
can we safely cut off the integral in (I.3)? In other words, what
criterion (if any) can be used to determine the value of N for which
the above approximation holds?

To show how (I.3) comes about, let us start from an amplitude
F(v) which is antisymmetric and satisfies an unsubtracted dispersion
relation. By using crossing symmetry we can then write

_2v ¢ ImEGY)
Fv) = o U dv’ . (I.4)

If the leading Regge pole in the asymptotic expansion of F({v) has
Re o < -1, then we have a superconvergence relation
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[Fmre) av=0. (1.5)
o]

However, if the leading Regge pole is above -1 (but below 1), we can
write (I.1) as

o 4
R =EL "B N w<1) (1.6)

+Y o Tl + 1) V2-y2

and subtract it off the complete amplitude. This process can be re-
peated as many times as needed to arrive at a superconvergent ampli-
tude after sufficiently many Regge poles have been subtracted out so
that, without any loss of generality, we can write

@

[/ avim[F-Rl=0 (I.7)
(o]

Let us now label with i all Regge poles such that cxi(o) > -1, with j
those such that o (0) < -1 and, finally, with k those corresponding to
ock(O) = -1. Therefore, (I.7) can be written explicitly as

@ B a
fo [ImF _EF(Ef"'_l) v i]d\) =Bk . (.8)

Notice that each integral in the l.h.s. diverges if taken separately.
We are now going to assume that we can cut off the integral at some
suitable value vp55 = N and attribute the (vanishing) high energy tail
of the integrand to the Regge poles with a; < -1. (This essentially
amounts to assuming that, for a sufficienflly large v, the amplitude
can be approximated by a sum of pure Regge poles without back-
ground.) Thus

el

N B, v a2 B o,
< Y S N
j‘o[ImP—X '*{%*”]dvﬁNz TSI dv=g, (1.9)
i j

All integrals are now separately convergent and we get the FESR

ui U.j
N BN B.N B
_oImF, _ i i _k _
S(N) = LN dv_ZTfai+2)+ZF{a1+2)+ =
i j
L

= _BNT
i ; Tl +2) L)
all a
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The general FESR of an arbitrary moment n can be established
in a completely analogous way. Notice that in (I.3) or (I.10) there
is no further reference to any special role played by the value q) = -1
which appears critically in the derivation of superconvergence sum
rules. Also, the latter are obtained from (I.10) by letting N = « if
all a < -1. However, whereas for N -+ ® (0. < ~1) we recover again
the exact expression (I.5), Eq. (I.10) or (I.3) are not exact in that
we have already supposed that N is so large that for v > N we can
approximate F with a (finite) sum of Regge poles.

One can similarly derive (formally) FESR for negative n to get

(m)
Im F(v) Nt ™ £ (0)
f it dyi= L Mo+ )@-m  m! (m 20)
= 0 m< 0 (1.11)

Im T ;
The above formula makes sense so long as * Iv=0 is zero, Form =
v

0, in particular, if @ = 0, we used a subtraction constans (scattering
length). This is, essentlally, the argument used by Ig1 to estab-
lish the existence of the P’ trajectory.

The literature concerning FESR in their various aspects has
boomed tremendously in the last years and it 1s practically impossible
to give a complete list of references. We can distinguish not less
than five major developments that have occurred as more or less
direct consequences of FESR:

i) Use of low energy data on mN and KN to study P, P/, p, N
and A, contributlons together with an analysis of NN data to deter-
mine intercepts of P/, w, p and A, trajectories together with the study
of the relative importang]e of the Pomeranchukon and other trajectories
in Compton scattering.

ii) Use of photoproduction data to study 1 and contributions?)

iii) Derivation of continuous moment sum rules8) These are ob-
tained considering dispersion integrals for either (- p2)Ye~ ImYE (y)or

Yo lin'-‘(\)) in which vy is considered as a continuous parameter. The
use of these new sum rules allows one to get a continuous curve S
instead of the discrete points S,. Furthermore, one can now intro-
duce both the real and imaf)mary part of the amplitude into the game.

iv) Veneziano model. This is not, strictly speaking, a direct
consequence of FESR but it is hard to see how this model could have
been devised without all the background represented by the results on
FESR.

v) FESR allow a revival of bootstrap ideas. This possibility
was already mentioned in Ref. 1 and gave rise to many different appli-
ctations. 19)-16) The applicationll} 12} of these new bootstrap
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techniques which we will briefly consider here does not make use of
the full content of FESR, but rather of that particular aspect of it
which is presently called "duality" and which we shall discuss at
length later on.

The original bootstrap scheme suggested in Ref. 1 was to use
FESR to bootstrap trajectories in the crossed channel and to calculate
resonance widths by saturating FESR with resonant states. Mandel-
stam”/ was, however, the first to suggest the viability of the narrow
resonance approximation (NRA) bootstrap procedure by showing how
the ¢ can bootstrap itself in a frame in which FESR are used with a
finite number of Regge poles. Freund10 showed that one can boot-
strap p and P’ from the mN spectrum while this cannot be done for the
Pomeranchuk., A corralatiori %f this phenomenon with other effects
was later noticed by Harari and will be discussed later on (Sec.
1.G.).

Of a somewhat different nature is the bootstrap mechanism pro-
posed by Chew and Pignotti. 15) These authors, in fact, argue that
since there exists a connection between a peripheral (crossed chan-
nel) and a resonance (direct channel) effect, the explanation of the A,
as a peripheral reaction (Deck effect) or as a true resonance, would
amount to the same, and one should not count both these effects as
independent ones.

Another interesting lixl'lg)of attack to the bootstrap problem has
been proposed by Chu et al in which some of the previous simpli-
fying assumptions {(zero width, linear trajectories) are relaxed. The
numerical results are perhaps not very conclusive.

In the present lectures we will only discuss briefly the boot-
strap of Ref. 11 and 12, both because this seems to be the most natu-
ral development of FESR and also because it leads in a very straight-
forward way to the Veneziano model. We will, however, not discuss
the preliminary point of why Regge behavior and crossing symmetry
require indefinitely rising trajectories, also because it is still con-
troversial how these trajectories should be asympt)otically rising.
Glalfr{ﬁ have been made both in favor of a linear!® and of a square
root behavior (to within logarithmic Eatﬁtors in both cases).

We will now very briefly discuss why a NRA cannot, strictly
speaking, be consistent with a FESR. First, notice that a NRA re-
quires that we can write

i 2 2t -
Im F(s,t) -Z (20 +1) Bm,) P, (1 + —5 ) st -as))  (1.12)
) ‘ £
so that Eq. (I.3) (with one Regge pole) becomes
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a.(N)

Z (22 + l)B(m L(l +
=0

oft) +n+1
2> B G@ rnr TGO+ 1)

(I.13)
Taken literally, the above equality is impossible since the

r.h.s. is a smooth function of N whereas the 1.h.s. increases dis-
continuously with N. We may, however, assume that Eq. (I.13) must
be valid only at those N values for which a(N) is integer with a
smooth interpolating function in between. Then, we want to solve for
B(t) once B(m,?®) are given for discrete values of £ as £ - =, Taking
the difference in (1.13)

(2 +3) Bm?, ) 2, (1 +m—x§t_—m) mo" el
(m. 2 )on(t)+n+1 -~ (m B)a(t)+n+l
B(t) “E . (1.14)
at) +n+ 1]TQA +alt)
Using the asymptotic form (t # 0)
1+ ex L‘/
{,+l< JL Z {,*Q(‘lﬂ{lltl%) PI: ]
we find
Bm,? ;) ’ Itl% [(mal)a(t)mﬂ - (m,? N (t)+n+1]
g (1) Lo (Tf{'m&]% (m)(,2+1)n () +n+ 1) Tlalt)+ l)exp[Z{.]
(I.15)

which shows that the 1.h.s. is in the form of a product of a function
of 2 times a function of t whereas the r.h.s. is not.

Finally, the validity of a NRA can also be questioned on an em-
pirical ground since most of the baryon resonances do not have a neg-
ligibly narrow width. What is more important, however, is that
the widths of baryon resonances on given Regge families seem to grow
as/s (see Fig. 1).
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Fig. 1. Plot of the widths of the Ny and Ag resonances (l.a)
and of the Yy and Y, rEEhOI]ElnCGS lying on the exchange
degenerate A(1115) and & *(1385) Regge trajectories.
AV's growth is well exhibited.

B. The New Bootstrap

The novelty in the bootstrap approach represented by FESR is
that low energy effects can be used to predict Regge parameters.

The question now becomes very drastically dependent on what
value one should use for the cut off N. The point is that we want to
saturate the low energy integral in (I.3) by a small number of reso-
nances in order to introduce a number of parameters not so large as to
make the result doubtful. So N cannot be too large, typically 1 or 2
GeV. This, however, means that we are going to use the Regge
approximation in a region which nobgcily dared before to consider
accessible to a Regge pole analysis since there still are many
resonances. However, if we forget the approximations needed in
deriving (I.3) and take the latter literally, then we would conclude
that the Regge pole fit extrapolated to intermediate energies should
reproduce the amplitude integrated from 0 to N (this is what is usually
called the "averaged" amplitude). The only blemish in this argument
is that this will be true so long as the approximation used in deriving
(I.3) is good and this explicitly assumed that we already were in the
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Regge regime. Conversely, if the approximation 1s good we are al-
ready in the Reggel)d%rg?in and the above conclusions must hold. A
clear cut example™’’ in which the conditions required above seem
to be met is the difference of total cross sections [gt(ﬁ+p] - ot{rr'p)]
(see Fig. 2). The charge exchange reaction K™p - Kon has been
analyzed in the same spirit by T. lasinski. The preliminary conclu-
sion is that the fit is qualitatively good (although statistically rather
poor). We shall return to this point in Sec. I.G. (see also Ref. 56).

L2

N,(1688)
n Ng1650)
08—
N_{i5i8) Na(ZZOO)
L 14 N, (3030}
(2190) N(2650) i
= I Ny 8 =
& D4 A(2850)
g
!
e
E 5 S |
o
[
—
-04atk Alles0)
—AL1236)
-o8 | I | J== es 0 S e )
5 10 s 20 25 20 55 40 45
PlNC(GeV/c)

Fig. 2. Plot of the difference ofrr—p and 1-r+p total cross
sections. Curve I represents the low energy
nonresonant amplitude as obtained from phase shifts
and curve II is the extrapolation of the p Regge
trajectory contribution (from Ref. 23).

The above startling hypothesis that the Regge pole fit extrapo-
lated from the high energy down to the intermediate energy region
equals some local average of the scattering amplitude is nowadays
referred to as the "Dolen-Horn-8chmid duality.” We shall return to
it in Sec. I.F.

Let us now look in detail at the analysis of mm = mw which was
made by Ademollo et al. 11,12 The choice is due to the fact that
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one single invariant amplitude T crossing symmetric in s, u, t des-
cribes the process in which only I =1, G =+, odd J normal parity
resonances are allowed. We define the invariant amplitude A(s,t,u)
in terms of the T-matrix as

= euvpc eu Plv Pzp P - Als,t,u) (I.16)
where P; are the pion fouwr momenta, e, is the w polarization vector.

A(s,t,u) has only dynamical singularities andis free of
kinematical ones. Also, it 1s completely symmetric in s, t, u.

The only known resonances with the correct quantum numbers
for the present problem are the p meson and the g(1650) meson lying
on the p trajectory. Also, there is only one possible Regge pole (the
p trajectory) and the FESR becomes

N a(t)+n
n
jl; v ImA(v,t)dv—u{t +n<vo> (1.17)
where \ is a scale factor and
z=—Bftl B . oo
BO= T 0) " Tl @ ® = const)-
The trajectory is taken to be linear
alt) =0, +a’'t . (I.18)

In the first saturation step one chooses (I.17) to be saturated by the
p only (N is thus taken below the g-meson mass) whose contribution
is calculated in the NRA. It empirically turns out that the optimum
cholce for N is half-way between the p and g mass. Evaluating Eq.
(I.17) one gets {with n = 0)

a-1
2 _ a3 _ 3 _alt) 1
2m? - 3m? -m? +t=25ls (“)[z\»oa’ (1.19)
where
o+l
_re+2 -1
@1«1)—[—2 ] [1‘(a+2)] (1.20)

The 1.h.s. of (I.19) vanishes att = Uf -2m .2+ 3m and so
a(t) must have a zero at t= -.53 (GeV/c)® which is just what one
finds in mN charge exchange. Imposing the above condition in the
linear approximation for & (t), one finds the consistency equation
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5, @) = (2v,0/)%! (I.21)
which for
2v,a’ =1

1s very well satisfled for -1.5<t< .5 (GeV/c)f® .

One can then go one step further and saturate (I.17) with both
p and g mesons, It is found that the position of the dip does not
change very much (it 1s now at t > -.58 (GeV/c)?) and that the equa-
tion is satisfied (at least approximately) for a larger interval of nega-
tive t.

In general, if r resonances lying on a Regge trajectory are used,
the self consistency condition becomes

Qr(cx) =l bo(r.22)

with

o+l
T(@2r-1) [a+§r-2] (1.23)

Qr(q) C T(2r +a)

The case r = 3 is given in Fig. 3 which shows how well (I.22)
is satisfied for a rather large t interval. Furthermore, from (I.23) it
is manifest that for any fixed o

Lim

r oo BE@=1 .
A
Dy(a)
-1.5
/ ~.5
L ] 1 1 =

Fig. 3. Plot of &, (@) as defined by Eq. (I.23) (from Ref. 11).
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The very successful picture described above 1s, however,
partly spoiled by the conclusions reached in Ref. 11 when trying to
saturate the bootstrap equations with more and more resonances. It
is found, in fact, that with increasing |t| one cannot saturate the
resonance side to the Regge term since the latter becomes increas-
ingly large compared to the former. In other words, the bootstrap
cannot selfsustain with one single trajectory.

A gossible way out was propose_d12 after the observation of
Schmid!3) that the partial wave projection of a Regge pole gives rise
to loops that look very much similar to those obtained in the phase
shift analysis of resonances. We shall return to this point later on
(Sec. I.E.) but, following this observation, it was sugges‘ced1 that
the bootstrap program previously outlined could be accomplished by
taking into account parallel daughter trajectories.

Although the results are not as conclusive as one would like
and many points still need clarification, the above example is cer-
tainly a very successful example of the new bootstrap ideas previ-
ously discussed.

C. FESR vs. the Interference Model
We can now discuss the advantages of the FESR as compared to
the so-called interference modelz‘” which we shall refer to as the
RIM (for Regge interference model) but not to confuse it with the DIM
(diffraction interference model) of Ref. 22.

The general argument brought against the RIMl) 123),25) is that
if we use a formula of the form
= +
F FRegge FRes ) (1.24)

the tail of FRres. superimposes to the Regge term (which is already
supposed to give the asymptotic form) to yield double counting. Con-
versely, the Regge term continued to low energies gives again a con-
tribution superimposed to the resonance term and thus double counting.
Occasionally, the above criticism is rephrased trying to give it
a more stringent meaning on a theoretical basis but, in our opinion,
it really only confuses the issues. In one way of saying it, one
would argue that whereas F is suited to describe s-channel ampli-
tudes (because of its s—-chanhal poles), FR ~is sulted to describe
t-channel amplitudes. Thus (I.24) is like g%%‘tmming up s-channel and
t-channel amplitudes which is wrong. This argument is, however,
fallacious because Fp,q . does not, in general, provide a complete
description of the s-channel amplitude and so FRegge does not, in
general, give a full representation of t-channel amplitudes. In either
case there ought to be a background term for the above argument to
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hold through and in fact it was just the presence of such a back-
ground term that motivated the authors of Ref. 25 to use parametri-
zations of the form (I.24).

In another way of arguing, one would start from the observation
that the partial wave expansion on the one hand and the Regge expan-
sion on the other hand are two complete descriptions of the same am-
plitude and conclude that one should not use (I.24). Again the same
kind of fallacy as before is met here since one should first prove that
there is no background in either one of the two representations since
neither a Regge expansion nor a resonance expansion is, in general,
complete from a mathematical point of view.

The point, however, remains that the first objection we men-
tioned, about double counting, is certainly valid when using (I.24)
(unless further specification is given concerning the behavior of each
term). This can be given a better qualitative, if not quantitative
meaning, if we retain the basic assumption already made in Sec. I.B.
that we can neglect background contribution in the Regge pole fit al-
ready in the region of 1, 2 GeV. If this assumption is made, then
TESR tell us that the sum of Regge terms alone gives a fit to the
smoothed out experimental curve. Under these conditions, Eq. (I.24)
would count essentially twice the contribution of a resonance, once
in the explicit term Fp,q, and another time in Fregge which "knows"
already of the averaged value of the resonance (or at least of part of
it). Notice, however, how the argument in its prediction of double
counting depends on having completely neglected any background
(this was assumed to derive Eq. (I.3)). If, however, this background
is not completely negligible (or, rather, if the Regge and the reso-
nant background do not cancel exactly), then we can say, at best,
that there is a "larger than one" counting in writing down Eq. (I.24)
but also a "less than double" counting.

To avoid the above double counting problem, the authors of
Ref. 1 suggest that instead of (I.24) one should write

F -(F__ (1.25)

= +
1:‘Regge 1:‘Res Res

where the last term is supposed to remove the discrepancy that arises
from adding the asymptotic tail of the resonances together with the
Regge term. At the same time this term serves the purpose of remov-
ing the contribution of the Regge pole fit extrapolated at low and in-
termediate energies where, according to FESR this term already repre-
sented some sort of "averaged amplitude” (see Fig. 1).

It i1s now clear that if all resonances enter with the same sign,
then the inclusion of the term (FRes) is rather important whereas if
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they alternate in sign and have comparable strength, then <FRes> =0,
Finally, if it were true that the resonant background was totally neg-
ligible in writing a partial wave expansion, then we would have

1:‘Regge - <1:‘Res> (I.26)
and conversely if the Regge background was totally negligible, then
Fres (FReS> . (1.27)

The theoretical implications of (I.25) (which constitutes what is
called Dolen-Horn-Schmid duality) and of (I.26), (I.27) will be dis-
cussed in Sec. I.F.

We want now to examine briefly the evidence in favor of (I.25)
as compared to {I.24). Crucial tests to check whether (I.25) is a
good substitute for (I.24) are cases in which resonances occur with
the same sign; we next discuss a few of the examples given in Ref. 1.

i) Ima’ (+)§k10!/k. This is the average of m¥p total cross sec-
tions. Extrapolating the Regge fits down to k~ 1 GeV/c one gets
somewhere in between 35to40 mb whereas the experimental average
is (37 £ 7) mb in which the error gives the size of the resonance en-
hancements over the background. Thus the extrapolated Regge fit
already saturates the averaged amplitude and there is no room left for
the resonances to contribute whereas around this energy value there
are at least four resonances amounting to over 25 mb.

i1) Imw B(")!k,El!. In Fig. 4 the amplitude is given as recon-
structed from phase shifts data and the Regge pole fit is also shown.
It appears that the reconstructed amplitude is smaller than the one
obtained from resonances only and thus the Regge contribution cannot
represent the background term since they would be of opposite sign.

Imv 8"
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Fig. 4. Value of v Im B(‘) (v,0) as reconstructed from phase
shift (curve I) and as calculated from a resonance
model (curve II) and from Reégge poles {curve III)
(from Ref. 1).
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iii) Tr+p backward differential cross section. According to the
well known argument of Barger and Cline,?4) backward ntp scattering
is largely saturated by the direct channel resonance below 4 GeV/c.
On the other hand it has also been s‘nownze) that the Regge fit alone
extrapolated down to the same energy interval accounts for most of
the data. In this case, therefore, not only is {I.24) ruled out be-
cause it would lead to a very severe double counting, but (I.26) and
(I.27) seem to hold. Due to the absence of diffraction (which should
be negligibly small in the backward direction) this example is also
particularly crucial to check whether resonances alone can describe
entirely the angular (:Sistribution in the backward scattering region.
Preliminary results seem to provide a positive answer to such a
question provided resonances on several A trajectories are taken
into account.

The previous are examples in which the predictions of the FESR
quite sharply contrast thOSle) of the RIM. Other less unambiguous
tests have been suggested™’ where the inherent ambiguity stems from
the fact that not all resonances contribute with the same sign and
large cancellations occur. Such is the Ezfe of m~p backward scebtgsar—
ing which was fitted both with the RIM, "~ “"with Regge poles only
and with a pure resonances model . 28

In conclusion, we can say that the inadequacy of the conven-
tional RIM model seems fairly well established. Its possible modifi-
cations to avoid double counting will be discussed in Sec. I.J.

In Sec. I.G. we will also shortly review the way in which the
DIMZZ} would differ from the RIM with respect to the previous prob-
lem of double counting.

D. 8chmid Loops
Recently, Schmidls) showed that the partial wave projection

(in the direct channel) of a Regge amplitude of the form

a(t)-1 -ima (t)
_ \) 1l -e
el \)o> sin Tra(t) (1.28)

gives rise to loops in the Argand diagram (Fig. 5) of the familiar
structure that one sees when analyzing resonances. He therefore
offered the interpretation that these loops be associated with direct
channel resonances.

If one defines a resonance by the requirement that:
i) A resonance leads to an energy variation of the resonating phase
shift which describes a circle in the Argand diagram of the real vs.
the imaginary part of the corresponding partial wave (the radius of the
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1.86

Fig. 5. Argand diagram for £ = 3 for the reactionmm - nw (from
Ref, 12); dots along the curve denote masses in GeV.

circle being the elasticity of the resonance) and if one further
assumes that the converse is true, i.e.

ii) Every loop in the Argand diagram is a resonance; then Schmid's
conclusion that the loops of Ref. 13 are associated with resonances
is an inescapable consequence. This would be so in spite of the fact
that the (traditionally) more familiar property of a resonance, i.e. a
pole in the second energy sheet, is completely absent from (I.28).
The explanation for the absence of such a pole-aspect would be that
Eq. (I.28) is already an asymptotic expansion which does not have
entire recollection of all the properties of a resonance but only of
some. From this point of view, it may be interesting to recall that it
has been shown recently29 that the slope of the small angle angular
distributions is a rather sensitive indicator of resonances. Here also,
the pole aspect is totally absent.

It may be, however, that conditions 1), ii) are not really enough
to guarantee that a resonance is being seen. For one thing, for ex-
ample, Schmid loops do not give rise to any even minimal bump in
elther angular distribution or cross section (since the various partial
waves compensate each other). Also, by unitarity true resonances
must occur in all processes with the same direct (s) channel quantum
numbers whereas Schmid loops are due to t-channel exchanges.
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The question, therefore, arises of how can two different Regge poles
give rise to the same set of resonances (example, 7T —+ T and 7T -
NN have the same s-channel but differentt-channel quantum numbers).
The above objections30) are of a different relevance and the first is,
really, the very crucial obstacle to believing that these loops are really
resonances. The second objection could be met by actually assuming
that this situation jlsz)an ideal key to the new bootstrap. Furthermore,
a specific example has shown that the partial wave analysis of

T = Tw, T~ THy =g and 7T ~+ TH, =} (. being the helicity of the
H(990) meson) shows the same loop structure in all three channels in
spite of the difference in their spin structure. However, the same
trajectory contributes here so that the argument is not conclusive.
Another objection31) is that in partial wave projecting (I.28) one not
only finds the loop for 4, = s, discussed in Ref. 13 but one finds
(infinitely) many more for £ > s, . This means that even if we identify
a given loop at a given energy with an experimentally observed reso-
nance occurring at a given angular momentum, we would in addition
have infinitely many other resonances at higher value of angular
momentum (@ancestors). Whereas the appearance of these ancestors
does not, strictly speaking, conflict with any theoretical principle,
their existence would, certainly, lead to a drastic modification of
what one intuitively believes to be a resonance. It is, however, to
be noticed that the phenomenon of resonances occurring at the same
energy but different angular momenta is not ruled out on experimental
basis.

It has been suggested32) that ancestors should be included in
the error bars since one may argue that their effect becomes negligibly
small and that they appear as the effect of the (small) violation of
unitarity occurring in a Regge pole treatment. However, although it
is true that each gingle ancestor gives a small contribution, this may
not be the case3 wheé'x f)na has infinitely many ancestors.

Other objections 4 to the interpretation of Schmid's loops as
resonances have been raised by various authors. For instance, not
only should there be resonances of low mass and very high spin, but
also it is easy to obtain loops that rotate clockw'észﬁ by combining
two or more Regge poles. Also, Kreps and Logan have analyzed
m p - m°n and concluded that there is a lack of correspondence be-
tween Schmid's loops and experimental resonances contrary to Lip-
shutz's claim3%) that most resonances and loops can be identified.

Probably the best way to exhibit the ambiguity associated with
Schmid's interpretation of his analysis is seen if one replaces the
energy dependent formula (I.28) with the purely t-dependent factor

_ eirro.(t)_

A ; aft) =a + bt,
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In this case (see Fig. 6) we still have the same kind of loops as
before.36) We must therefore conclude that the entire "loop" struc-
ture assoclated with a Regge pole can be traced back to, essentially,
the signature factor. Since the latter was originally introduced be-
cause of crossing symmetry arguments, it is hard to see its possible
connection with resonances. On the other hand, as will be dis-
cussed below (Sec. I.I.) it is just the fact that these loops are

.21
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Fig. 6. Argand diagram for £ = 1 from the amplitude A = eim(t)

(from Ref. 36).
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connected to the signature factor that allows one13) to give an in-
direct support to the idea of duality through the mechanism of ex-
change degeneracy.

A final word of caution seems, finally, necessary in taking as
absolute truth the result of a phase shift analysis since it is well
known that, for instance, several resonances could be very close
together without one being able to resolve them through a partial wave
decomposition. Evidence for a resonance coming from partial wave
analysis should, in general, be taken with some care unless inde -
pendent supporting evidence can be obtained.

In conclusion, as we have seen, almost every argument dis-
cussed before can be seen in a light either supporting or casting
doubts on the validity of Schmid's conjecture. The least one can say
is that the subject is, certainly, very controversial, and although
Schmid's conjecture opens an entirely new field, it must be realized
that the acceptance of it is close to being an act of faith. Possibly,
one could rephrase St. Augustine by saying that,"He who believes
will understand."

The acceptance of conditions i), ii) as defining a resonance
(which is now dissociated from bump effects3”? ) has very interesting
consequences which will be discussed in the next sections and which
give rise to the new dynamical mechanism of duality.

E. Classical Interpretation of Regge Poles

In order to appreciate better what is so new about the Schmid
conjecture, we recall here the usual interpretation that was given of a
Regge pole. Because of the nonrelativistic origin of a Regge pole,
and of its subsequent interpretation in relativistic terms, traditionally,
a Regge pole which determines the leading asymptotic behavior in the
direct channel, has been associated to the exchanges that occur in
the crossed channel. This interpretation has been ?onsiderably
strengthened by the work of Fubini and ct‘n.'\.rcn'kers38 on the so called
multiperipheral medel where it was shown that the se(j)es of ladder
diagrams in the crossed t=channel has the typical & : behavior as
s - @,

More recently, it has been shown by Van Hove39) that a tower
of sin(qle particles exchanges in the crossed channel can, again, give
an s% t) behavior at large energies, reinforcing the conclusions drawn
previously. This is, also, the motivation for an interference model.

It should be stressed that in the "old fashioned” interpretation
of Regge poles discussed above, the conclusion is that a Regge pole
is a manifestation of the crossed channel exchanges, which is, there—
fore, free of direct channel resonances but not of direct channel
branch points. This point is important to make because soon we will
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particularly be interested in cases in which the only singularities are
poles. To see the relevance of the above point we first give a
Definition: We shall say that an amplitude F(s,t) is Regge behaved
if its asymptotic behavior as |s| - = is 8(t) s%{) uniformly40) in the
entire complex s plane except, possibly, for an (arbitrary) direction

P |, p0) 5

Iarg(seie)l >¢>0.

0=<06 =< 2m 6 fixed. (1.29)

We can then state the following:4l)

Theorem I: No entire function of finite order can have an asymp-
totic power~like behavior along every direction except possibly one.
If this one direction is not excluded then, as an immediate conse-
quence of Picard's theorem on essential singularities, we have:

Thecrem II: The only entire function that has a uniform power-
like asymptotic behavior is a polynomial.

We do not know of any comparable theorem for functions of in-
finite order.

Using Theorem I we can say that given an amplitude A(s,t)
which is purely meromorphic as a function of both o.(s) and cx(t)43) and
is Regge behaved in both s and t, the part which contains only crossed
crossed (t) channel poles (and is thus entire in a(s)) cannot be Regge
behaved in s except, possibly, if it is infinite order.44) +45) This,
however, does not apply when there are cuts. Therefore, the above
argument simply means that, according to the traditional interpreta-
tion of Regge poles we would not have said anything like "the crossed
channel poles build up the direct channe! asymptotic Regge behavior"
but rather that the Regge pole term corresponds to crossed channel ex-
changes and knows nothing about direct channel exchanges (but must
certainly have direct channel cuts).

The revolutionary idea cantained in Schmid's conpjecture (Sec.
I.D.) can now be seen to be a modification of the above picture in
which one would say that a Regge pole knows not only about the
crossed channel, but also about the direct channel exchanges.

F. Duality
In the very recent times an extraordinarily large literature has
grown centered about the new concept of "duality” in spite of the
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fact that this concept seems very difficult to define unambiguously.
As a consequence, the range of definitions of duality is extremely
broad going from the requirement of cyclic symmetry between the ex~
ternal identical particles (which guarantees crossing symmetry but it
is not demanded by it) to the requirement that the sum of resonances
in the direct channel is the one that gives rise to the Regge poles.
A whole spectrum of definitions exist in between but the most com-
monly used definition seems to be‘le) that the direct channel reso-
nances "build up" to the asymptotic Regge behavior. This is a local
generalization of the original "averaged" statement contained in
Ref. 1.

We first attempt a classification of the definitions that seem
more commonly used.

A) The amplitude i) obeys crossing symmetry requirements, ii) results
from the sum of infinitely many poles in each channel, iii) is Regge
behaved in each channel. This can be rephrased by saying that we
can indifferently sum the spectrum of resonances in either the direct
or the crossed channel. Each expansion is complete and Regge
behaved.

B) At intermediate energies the sum of direct channel resonances
smoothed out coincides with the extrapolated Regge behavior. Alter-
natively, the latter gives in a sense a semilocal average of the reso-
nance peaks.

C) The sum of direct channel resonances asymptotically builds up

(at least in part) to the asymptotic Regge behavior.

It is clear that there is a considerable overlapping between the
above definitions. We will now briefly discuss them to point out
some of their inherent ambiguities. Also, for reasons to be discussed
below, we will assume that the Pomeranchuk term is excluded from
our present considerations.

First, we notice that definition A) is, probably, the broadest
among the various definitions given above. Not only does it leave
room for some generalized interference model47) /48) put it may be
compatible with Van Hove's and Durand's mode13?) and it may ulti-
mately reduce to the usual mechanism by which Regge poles were dis-
covered in potential scattering. In the second formulation of A) it is
understood that the sum of resonances in different channels may con-
verge in different domains so that such formulation can be given a
well defined meaning only if we can sum the series of resonances in
closed form and analytically continue it.

We would like to emphasize that in definition A} the essentially
new ingredient as compared to the pre-duality models is the require-
ment that there are infinitely many poles and that Regge behavior (as
defined by (I.29)) holds with respect to each variable. It is the latter
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condition that makes the difference with a phenomenological inter-
ference model but, for any practical purpose, a "duality model” can
then be disguised as a "generalized interference model"47) ,48) even
in the case of meromorphic amfiitudes as the specific example of the
Veneziano model will show.44) Notice that it is condition (ii) in the
definition A) that provides the new dynamical agsumption (see, how-
ever, Ref. 22) because no set of poles forms, mathematically speak-
ing, a complete basis. This dynamical assumption becomes then,
most naturally, the foundation of the new bootstrap outlined in Sec.
I.B.

Definition B) which we shall refer to as "weak dualitz"44) is
the same definition which arises from the context of FESR as men-
tioned already in Sec. I.C. It is an inescapable consequence of the
same hypotheses that led us to (I.3) (that is, neglect of the high
energy background contribution to the asymptotic Regge expansion)
plus the further assumption that the low energy contribution (the
1.h.s. in (I.3)) can be well approximated by pure resonant effects.
The latter is still another assumption since mathematically speaking,
no set of poles represents a complete basis as already mentioned.
Therefore, weak (or Dolen-Horn-Schmid) duality can be mathematically
stated by Eq. (I.25). The only visible trouble in the above definition
lies in its ambiguity concerning the "semilocal average" represented
by (PRes) . It is also worth noticing explicitly that nothing in either
definition B) or Eq. (I.25) distinguishes the situation in which the
asymptotic behavior is originated by crossed channel poles from the
one in which neither cross nor direct channel poles are responsible
for the high energy behavior). As in the case of definition A), there-
fore, weak duality could still be reconciled with the familiar mecha-
nism of potential scattering. Furthermore, its distinction from A) is
that it does not explicitly require an infinity of poles nor does it en-
force crossing symmetry. The latter is a consequence of the way
FESR were derived starting from a one-dimensional dispersion relation.

Definition C) which we shall refer to as strong duality,44) rules
out the old fashioned potential scattering mechanism and requires that
the sum of direct channel resonances builds up locally to the crossed
t-channel Regge pole. Suggestions that this could be a possible
mechanism are found in Refs. 3, 4, 13, and 46.

It is quite clear that strong duality contains weak duality as the
particular case in which Egs. (I.26), (I.27) simultaneously hold and
this explains the adopted terminology.

In Refs. 49 and 50 collective sets of references are given in
which definitions of weak and strong duality, respectively, are either
given or implied (these are certainly not complete references).
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It is easy to convince oneself that definition C) is a most de-
ceptive ene and that if one takes it at face value it (3ssentially can-
not be given a definite and unamhiguous meaning.44 This 1s so un-
less it is interpreted in the sense of def. A) (in which case, however,
the statement that direct s-channel poles "build up" to the s-Regge
behavior cannot be distinguished from the equally meaningless state-
ment that crossed t-channel poles build up to the s-Regge behavior).

The first problem opened by def. C) is that mathematically
speaking the concept that the poles of a function should determine its
asymptotic behavior does not hold (for instance, for a purely mero-
morphic function the role of its zeros is equally important). If we
want, however, to insist on def. C) as a new dynamical request and
we want it not to coincide with A), the only way is to assume that the
s-Regge behavior comes uniquely from that part of the amplitude that
contains only s-channel poles. This implies that one can write

ris,0) =& 5,0 + PP, 1) (1.30)
where F(s) contains only s-channel poles and is Regge behaved ac-
c¢ording to our definition (I.29). For purely meromorphic amplitudes,
this model would require Fls (s,t) to be entire in t. Also Flt)(s,1)
would have to be entire in s and bounded by Regge behavior as [s|
- o, Theorem I of Sec. I.E. above, however, guarantees that the
latter requirement is excluded for functions of finite order and type.
Unless the latter case holds we can conclude that def. C) makes no
sense in mathematical terms for amplitudes meromorphic in a(s) and
o{t). If Regge cuts are allowed, theorem I does not hold any more but
in this case there is no way to give a meaning to def. C).

It should be noticed that the difficulty asg?j:iated with def. C)
goes essentially back to Mittag-Leffler theorem on functions with
infinite isolated singularities. This theorem states that such func-
tions are determined by their poles and residues only to within an en-
tire function. In physical terms, this problem reflects itself in the
ambiguities inherent in the use of the word "resonance." The only
information (coupling constant or residue) that we have about a reso-
nance is in the neighborhood of the pole which is, in fact, in a region
inaccessible to experiment. The latter point adds still more ambi-
guity (to the determination of the width of the resonanée) but, even if
we could measure the residue just at the pole, this would essentially
give no information on the structure of the resonance away from it.

In other words, we could modify the form of a resonance in an arbitrary
way provided we would not alter the residue and the position of the
pole. This fact is, actually, more or less consciously used by every
phenomenologist when he adjusts the energy dependence or the
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centrifugal barrier or the tail of the resonance to get a better fit.
However, what Mittag-Leffler theorem means is that this freedom in
changing the form of a resonance away from the pole is a mathematical
and not a physical ambiguity. The only principle that could help in
reducing the above ambiguity would be inelastic unitarity which is,
unfortunately, intractable.

In the following, when using the word duality, unless other-
wise stated, we will always refer to def. A).

It should, finally , be emphasized that if this property of duality
holds, the ultimate consequence of it would be that the forces (i.e.
the crossed channel exchanges) \gs:)uld be determined once the direct
channel singularities are given;5 this is, of course, the content of
bootstrap.

G. The Pomeranchukon Diffraction Interference Modal

It has been pointed out by Freund'" and Hararil?) that the
Pomeranchukon seems to play a rather special role and should in fact
be absent from all considerations made above. The reason for this
is that whereas "ordinary" Regge trajectories canbe bootstrapped using
the resonance approximation to FESR, this seems not to be the case
for the Pomeranchukon so that it has been suggested that it should be
built from the nonresonating backgroup.

Among the arguments brought against considering the Pomeran~
chukon as an ordinary Regge trajectory are;

a) there is no conclusive evidence of particles lying on such
trajectory;

b) the slope would be essentially different from that of all Regge tra-
jectories (i.e. much flatter and not inconsistent with zero);

c) the only "simple" dynamical origin that one can conceive for the
Pomeranchuk is in terms of diffraction.

Other strange properties of the world of high energy physics
which are not, probably, distinct from the above uncertainty on P are:
A) K+p, K"’n, pp and pn total cross sections are essentially constant
fx;t:)m 2 to 20 GeV/c contrary to what happens for K p, K'n, pp. pn,
mp,

B) K'p and pp angular distributions are essentially structureless and
do not show secondary maxima;

C) the above channels are, exactly, those for which well established
resonances do not exist in the s-channel at low energies whereas all
other channels (K™p, pp, nip) appear filled with "low" energy s-
channel resonances.

The suggestion that the Pomeranchukon is made of the nonreso-
nating background {contrary to the program outlined in the previous
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sections for all other Regge poles), is meant to be the way out to
both sets of phenomena a) +c) and &) * C).

First, one notices that P dominates at large s and small t irres-
pective of whether there are resonances or not so that it is hard to
correlate P to the presence of s-channel resonances. Assuming that
it is related to nonresonating (diffractive) effects, this implies that
if we start from a FESR (I.3)

N . Nm,i+n+l
[ vV ImFadv =Z Bi(t)

o, +n+ 1
o i

and we split F into a "resonant” and a "background" part, we can
write

N (t)+n+1
[ VimrF (t) N (1.31)
- v bg S uP(tJ +n+1 i
N o, (1) +n+1
n
J‘o v Im Fres z 8. {t)—"{t}Tn-\‘_l (1.32)

1#P

When Im Frgg ™ 0 for -2 < v < », we are led, for sufficiently
large N {say > 2 GeV), to

u. (t)+n+1

Z By () Wl =0 (1.33)
i#p

Furthermore, if we choose a reaction such that the t-channel
quantum numbers prevent P from contributing, then we expect the
amplitude F to be real.

Under these conditions, and assuming the validity of Schmid
conjecture, we would have the following picture:

i) all total cross sections of reactions for which no important reso-
nances are known should be essentially constant; this accounts for
point A) above. Conversely, total cross sections for processes with
many resonances should still decrease with energy eventually to reach
the Pomeranchuk limit.

ii) In view of the absence of I = 2 resohances, ' Ot (TT Tr ) should be
constant and if the mm amplitude is parametrized w1th P, P, p, this
leads to

(1.34)
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o= = Wprpam ) (1.35)

Whereas {I.34) is well satisfied, there seem to be no data inconsis—
tent with (1.35). Similar analysis for mK, KK and KN gives

\

a_ =0
G

%, =Gp

Opwe = Cpan (1.36)

(with corresponding relations between residues).

iii) All high energy KN, NN reactions in which P cannot be exchanged
must have a real amplitude. This is, of course, a prediction very
hard to test and agrees with the absorptive model prediction (although
it is less restrictive).

iv) If one parametrizes pp and K+p in terms of Reggé poles

= + - - +
Fpp TP TP’ Tp Tw T, P
+ = - =
FK b TP+TP, +Tp Tw T, (r.37)

and makes use of the exchange degeneracy (I.34) and (I.36), one
finds that, aside from Tp, the amplitude for pp = pp and K"p - K+p
using the parametrization (I.1) is proportional to

a

— P
sin 1'r<:,p

and therefore there is no zero atap = 0. This in turn means that Ppp
and F+. angular distributions have no dips and are essentlally
structureless.%4) On the other hand, for K™p, for instance, we have

= + + + + .
PK'p TP TP’ Tp Tw TAe . (1.38)
Aside from Tp., the amplitude is therefore proportional to

e—i'rrcxp

o
ps1nrr0tp
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whose imaginary part vanishes at ap = 0 where there is therefore a
dip (similar conclusions hold for ntp).

This accounts for point B) above and C) is taken care of by
construction.

The picture proposed above, while explaining A), B), C), is
consistent with the interpretation of the Pomeranchukon as a diffrac-
tive effect and models to construct it along this line have been
proposed.55)

If the above discussion is correct, we should be able to use a
modified interference modeI”) in which P is added to resonance con-
tributions without incurring any double counting. It is clear that
this modified intergezr)ence model is nothing more than the diffractive
interference model (DIM) which should, accordingly, be free of
double counting troubles. Whether or not this is actually so, clearly
depends on the specific parametrization chosen but it should be
stressed that the problem of double counting is certainly absent if
one uses the procedure of Ref. 22 of fitting the data by determining
the resonance parameters through the fit itself rather than taking them
from the tables. It is comforting that these two sets of values for the
resonance parameters are very close. The model has been success-
fully applied to reproduce K™p elastic data in the intermediate energy
region (see Fig. 7). Recently it has been used to give a fairly suc-
cessful fit56) to K™p ~ K™p and K™p - K, n angular distributions to-
gether with K™p = K™ p polarization data from 1 GeV/c to about 3 GeV/c
for the K~ lab, momentum. Furthermore, the model has been used to
fit mp data .57) The model has also been tested in forward 1'rN58 find-
ing good agreement with the data. This result has, however, been
questioned by Dance and Shaw® 9) who found that, in the same case
considered in Ref. 58, the DIM fails badly and the data gan reason-
ably well be reproduced by a simple isobar model (@lthough the dis-
crepancy increases with increasing energy). Much to the same con-
clusion come the authors of Ref. 60 who conclude that at much higher
energies than those considered in Ref. 58, the DIM fails unless a
large number of (as yet undiscovered) resonances is found.

The seemingly paradoxical conclusion that one can draw from
the above discussion is that the result depends largely on the authors.
This is perhaps not so surprising if we keep in mind the discussion of
Sec. I.F. on the ambiguities inherently associated with the concept of
resonance. For instance, the discrepancy between the results of Ref.
58 and 59 is, essentially, due tothe differences in the parametrization
of the resonances.

The conjecture that P is solely due to nonresonating background
has been analyzed by Rosner®l) who has shown that the system that
arises is inconsistent. He showed that if one assumes o to be flat
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Fig. 7. K_p d K_p differential cross section from .7 to 1.2
GeV/c. The broken line curves are fits to the data
using a Legendre expansion up to sixth order and the
continuous line is the result of the fit with the diffrac-
tive interference model (from Ref. 22).
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in all meson-meson, meson-baryon and baryon-baryon channels that
are thought to lack resonances (i.e. channels outside 1 and 8 for MM,

, 8 and 10 for MB and all BB) and one makes, be51des factorizabi-
11ty, the additional assumptions that channels with direct channel
resonances have a monotomically decreasing cross section, and f’
and o decuuph_ from § = 0 particles, then as a consequence, for in-
stance, 51(7 p) is energy dependent whereas ctr+p} is flat. The con-
clusion reached in Ref. 61 is that there must exist enhancements in
channels with unusual quantum numbers (exotic resonances). These
exotic resonances should manifest themselves in BB systems.

The fact that not even pf) does show any prominent resonance
structure may, however, mean that these exotic resonances may be
very hard to discover. Furthermore, it has been pointed out by Pin-
sky that another way out of the difficulty mentioned before is to
assume that there exist Regge cuts together with Regge poles. The
larger number of parameters thus introduced does, essentially, leave
freedom enough to solve the problem without the need for exotic
resonances.

H. Graphical Duality

It has been recently su gested63) that one can use a graphical
version of the quark rnodel64 to give a visualization of duality. Dua-
lity here is taken according to definition A) of Sec. I.F. Since there
is no way of putting this graphical form into an analytic structure,
there is, however, no way of checking that Regge asymptotic behavior
holds.

We assume that all incoming and outgoing particles as well as
the poles in all channels are not exotic so that they can be repre-
sented by a three-quark or a quark-antiquark system. We will say,
following Harari's definitionf3) that duality appears if the process is
given in terms of "legal diagrams." The rules for drawing a legal
diagram are, in turn, extremely simple:

i) There are three types of quarks p, n, ) that do not change iden-
tity; every external baryon is made with three quark lines running in
the same direction and every meson is made with two quark lines run-
ning in opposite directions;

ii) in any baryonic channel we can cut the diagram into two by cutting
only three quark lines (and not, 4q + q etc.); in any mesonic channecl
we can cut the diagram in two by intersecting only two lines.

In Fig. 8 the first three examples represent "legal diagrams"
whereas the fourth is "illegal" since the BB channel requires inter-
secting four lines.

The physical assumptions to give meaning to those diagrams are
that all baryons lie in the 1, 8, 10 SU(3) multiplets and all mesons




116 ENRICO PREDAZZI

M~ —M M —M
M/:)\.M BﬁB
M~ . — B Bb/e
82— =M  5——35

(c) (d)

Fig. 8. "Legal" quark diagrams for (a) meson-meson scattering,
(b,c) meson-baryon scattering; (d) is an "illegal" dia-
gram for baryon-antibaryon scattering.

in the 1 and 8 multiplets. Furthermore it is assumed again that, aside
possibly for the Pomeranchukon contribution, the scattering amplitude
is the sum of single-particles states.

Duality is supposed to manifest itself if one can assume that
one can describe the entire scattering as sum of either one-particles
states in the direct channel or the crossed channel (in agreement with
definition A) of Sec. I.F.).

One immediate consequence of the above discussion is found in
the confirmation of the prediction of exotic resonances in the BB sys-
tem. As seen in fact from Fig. 8d, in at least one of the s and t chan-
nels we must cut 2q + 2q lines contrary to the previous rules.
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Assuming now that the complete duality program can be accom-
plished, one would approximate the imaginary part of the amplitude
by resonances (the real part may receive contribution fron far away
resonances and is scarcely affected by the nearby resonances be-
cause it vanishes just at resonance). Therefore, if a process does
not exhibit direct channel resonances, its amplitude (@side from the
Pomeranchukon) will be real. The real part will in turn vanish only
if both the s and u channels lack resonances.

For detailed predictions following from this graphical method,
we refer to the original papers. 63)

I. Experimental Support forthe Pringiple of Duality

The most interesting theoretical consequence of duality is,
perhaps, the possibility of a completely self-consistent bootstrap
calculation in which the knowledge of gither the direct or the crossed
channel poles provides all the needed information., Due to the large
arbitrariness in the parametrization of a resonance, this program
needs a large number of confirmations before it can be taken as a
practical dynamical scheme. Therefore, a less ambitious approach
is probably needed to find some support forthe idea of duality. Re-
calling the previous developments, we see that the necessity of ex-
cluding the Pomeranchuk from the duality game was a most important
(and still rather mysterious) step. This has led also very naturally to
the prediction of exotic resonances whose discovery would be a strong
(although indirect) support forthe idea of duality. Unfortunately, as
the example of pp— pp teaches us, it may be very difficult (if at all
possible) to reach this sort of confirmation.

However, the very general exchange degeneracyes) previously
noted (I.34), (I.36) may also be taken to within the limits of its ex-
perimental validity, as an indirect support for dualitil. The argument
is, essentially, the same already given by Schmid! ) that if odd sig-
nature meson {rajectories (w, ¢, p etc.) and even signature trajec-
tories (3, , P, P’etc.) are exchange degenerate, then the signature
factor in K*p is real (and so is in pp) whereas is complex in X"p (and
pp). According to the discussion of Sec. I.D., therefore, the former
channels cannot give rise to any loop in the Argand diagram while the
latter can. The Regge trajectories that are known to be exchange de-
generate are Y*, A, and the meson trajectories §see Fig. 9). Ny and
N, trajectories are only partially degenerate.32 +66) These trajec-
tories will have, in general, different residue functions but their
slopes are essentially the same. Thus, there is a large economy of
parameters which would be surprising if considered as a mere acci-
dent whereas it can simply be a reflection of the validity of the boot-
strap program.67 As pointed out before, in fact, it provides an
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Fig. 9. Plot of the exchange degenerate meson (p, w, P’, AE)
and baryon (A, Yl*) trajectories .

explanation for the absence of structure in both total cross sectionla)

and angular distributions for pp and K'p and in PP - 1-r'*‘d.66 At the

same time it also gives an indication that the I = 2, im phase shifts

are negative. 68) The implication of excha%%% degeneracy on the

hadron spectrum has algo been discussed.

Direct, although not conclusive, confirmations of the duality
idea can, on the other hand, be consideréd the fits with resonances
only to a) oyt p) = oetlm p) (see Fig. 1 and Ref, 1, 23); b) K'p-
Kyn (Ref. 24); c) backward itp - mtp (Ref. 25, 26); d) backward
angular distribution n'p = wtp (Ref. 27); e)backward 1 p - p (Ref.
28). Also, in the same category, we have the fits with the DIM (Ref.
22, 56, 57, 58). As mentioned, these fits are not free of ambigui-
ties59),60) essentially due to the large number of parameters and
freedom in parametrization of resonances.

More confirmations either direct or indirect are needed (along
the above lines and also in the frame of multiperipheral Regge models)
before definite conclusions on the validity of the principle of duality
can be drawn.
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J. Generalized Interfereance Model (GIM)

Alessandrini, Amati, and Squires47) have argued that the duality
program as outlined in Sec. I.F. (according to definition C) and the
interpretation of Schmid's loops as resonances (Sec. I.D.) run
against a few conceptual difficulties in that if the Regge amplitude
indeed results from a superposition of direct channel resonances

9; Pf,i(zs] (s - Si)_l that gives

R _© (1) e'm- .
At :24 Bj(t) S T‘((x,j(t)) sin n—a,j(t) (I.39)
)

then:
a) The partial wave amplitudes arising from the r.h.s. of (I.39) do
not have the poles in the second sheet that one would assoclate with
a genuine resonance.

b) The amplitude A,f‘ represented by ther.h.s. of (I.39) does not have
the experimentally observed peaks.

c) The partial wave projection of the r.h.s. of (I.39) leads to ances-
tors in positions unlikely to correspond to resonances.

These objections have been considered in Sec. I.D. when dis-
cussing Schmid's loops. The point here is that in Ref. 47 it is sug-
gested that Schmid's loops have essentially nothing to do with reso-
nances and their occasional coincidence with the actual position of
resonances is a dynamical coincidence that can be attributed to the
universality of all Regge trajectories {except the Pomeranchukon), and
which can be traced back to the fact that all Regge trajectories have
the same slope and that it is the signature factor which is the one
responsible for the appearance of Schmid loops. As a consequence,
they suggest addingthe direct channel poles to Ay and writing

g, P
1 4',1

A=A + —
Regge s -5
1 i

(zs}
. (1.40)

In order to avoid double counting, it is assumed that the para-
meters in (I.40) should not be taken from the tables but used as free
parameters to determine the resonance parameters. Thus, since
ARe ge has partial waves which are rapidly varying functions of
eneggy, if it happens that a Schmid loop 1s in phase with a resonance,
then the parameter g, will not be simply related to the elasticity of the
resonance and may even be complex or negative. By construction,
there would therefore be no double counting.
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The bootstrap program that was one of the main features of the
duality program would still be possible. In fact, the last term on the
r.h.s. of (I.40) can be continued a la Van Hove39) to the physical
region of the t-channel writing

a.(s) -irrocj (s)
R_V ] e + 1
As Z BJ'(S) t I‘(G.j (s)) sin 1'rc>Lj (s) : (I.41)
j
Alternatively one could write
9 Px,itzs) 95 Pz,j (z,) Ix Ptk(zu)
A% ) e R ) e (r.42)
i i j i kK k

where the g's are sufficiently well behaved so that

i) the sum over Legendre polynomials of physical argument (| z| <1)
converges in such a way that a limited number of resonances is
needed;

ii) the sum over Legendre polynomials outside the physical z domain
can be summed with a Sommerfeld-Watson transform to give a Regge
pole.

In this case a finite number or even one Regge trajectory could
reproduce itself whereas if a Regge pole in the s-channel must be
generated by t and/or u Regge poles, this can necessarily happen
only if there are infinitely many poles (so that the corresponding
series can diverge). It should also be noticed that, as proved in Ref.
70 (see also Sec. { . and Ref. 20), for a sum of narrow resonances
to reproduce an g% t behavior, an infinite number of Regge trajec-
tories is needed. Even when the narrow resonance approximation is
removed, it appears very difficult to saturate a Regge pole behavior
with bona fide resonances.”!)

The model discussed in this section is, really, only a simple
minded model for a background. The major shortcoming of the model
is that this background appears as a fairly rapidly varying function
and this implies, as already discussed, that the parameters do not
directly reflect the residues and positions of the poles which come
out only after the dynamical analysis outlined before has been
performed. 72)

Several examples of GIM have been explicitly constructed.

It has been recently shown by ]en9048 that an amplitude can,
under very general assumptions, be decomposed in the form of a GIM
in which double counting is avoided by making sure that the direct
channel resonances do not contribute to the high energy part of an
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FESR in the sense that they are contained in a term which is strictly
superconvergent in the sum rules of any moment. Fur;hermore, as
will be discussed later (part II), it has been shown that even the
Veneziano model (i.e. a purely meromorphic amplitude exhibiting
duality according to def. A of Sec. I.F.) can be cast into the form of
a GIM. Thus, it is not unreasonable to conjecture that GIM and dual
models are actually the same thing. In fact, Def. A of Sec. I.F. is
in no way contradictory to the definition of the GIM or to Eq. (I.42).
The only difference would be that in a dual model one would not ex-
plicitly decompose the amplitude as one would do ina GIM. Should
this conjecture turn out to be generally true, one would conclude that
a lot of very heated controversial statements between partisans of
dual and GIM models have been rather fruitless,

In partial support of our conjecture, we notice that the GIM has
the same kind of ambiguities encountered when discussing the duality
program. These ambiguities are most evidently displayed bf/ (1.42)
and are, once again, implicit in Mittag-Leffler's theorem.® ) They
can, as we already discussed, be summarized by saying that one
could add or subtract entire functions to the pole terms of Eq. (I.42).
A different way of stating this ambiguity is found in the result of At-
kinson et al”3) that if a saturation of superconvergence is given with
a tower of infinitely many resonances, other infinite saturations of
this superconvergence problem are also possible.

Finally, it must be mentioned that the form of GIM derived by
Okubo et al48) has been obtained using dispersion relations as a
starting point (just like FESR) and does in fact display certain duality
properties. This makes the parallelism between dual models and GIM
even more stringent.

II. The Veneziano Model and Its Properties

A. Preliminaries to the Venezianc Model

Repgently, an extraord;,nary interest has arisen in connection with
with the Veneziano model.?) This interest is due to many combined
factors. First of all the Veneziano model (V.M. hereafter) displays ina
beautifully simple fashion most properties that one would like to attri-
bute toanamplitude according to the discussion of part I. Second, the
model is at the same time sufficiently simple for practical computa-
tional purposes and for a complete itvestigation of its mathematical
properties but is already sufficiently complicated to provide examples
of the ambiguities we have discussed before and-fs-Glarify many phy-
sical aspects of the program outlined in part I. Third, thé itodel cafi.
be generalized in many respects. last, and more important, the
model seems to have the unprecedented virtue that it also works.
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By this we do not mean to say that there are no problems (just the
contrary), but that the general picture that emerges from it agrees
substantially with our present experimental knowledge. However,

not only is there some confusion about what its merits are (on a purely
theoretical ground) but there are also quite a few points on which one
would like to improve it. For instance, its most noticeable and seem-
ingly incurable defect is its intrinsic violation of unitarity; also, its
analytic properties are not exactly what one would like them to be.

In spite (and partly because) of the above points, it is easy to pre-
dict that the V.M. will be the natural arena for theoretical physics in
the near future although it is at present impossible to foresee whether
it will represent a fundamental first step toward a new chapter in the
understanding of strong interaction physics.

In the following (Secs. II.B. to II.K.) we will discuss the V.M.
in its various aspects both from a physical and from a mathematical
point of view trying to point out both its positive as well as its un-
satisfactory properties. Sec. II.L. will be devoted to a very brief
qualitative discussion of the successes met in applying the V.M. to-
gether with a few words of caution against excessive optimism in the
interpretation of these successes. In Sec. II.M. we will then list
and briefly discuss the many generalizations that have been proposed
in the literature.

It will appear that there is a large disproportion between the
time devoted to the discussion of the properties of the V.M. on the
one hand and of its applications and generalizations on the other
hand. The point, however, is that the subjects covered in both Secs.
II.L. and II.M. would in themselves warrant a new entire chapter and
this would make the present notes excessively lengthy. Furthermore
the arguments of Secs . II.L. and II,M, are at the same time the most
controversial and the ones in which things are moving particularly
fast, so that any conclusion drawn now may be subjected to a drastic
revision very soon. The properties of the V.M., on the contrary,
seem by now sufficiently well established (although, admittedly, not
yet in every respect) so that the disproportion mentioned.above is
somewhat justified. ]

B. Derivation of the V.M. .

The original derivation of the ¥, M .‘4*) wag actually a brilliant
extrapolation from the work of Ademollo et al, 1) devised to give a
crossing symmetric content %o the bootstrap model discussed in Sec.
I.B. We rememper K3t it was suggested that a good parametrization
fof A(s,t,0) For mr ~ 1w is
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At = Bra-aa@®@ v sow @y
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with B = const. Veneziano suggested that (II.1) should be replaced
by

A(s,t,u) = B [F(l - a(s)) T - aft)) + Symmetric ]

™ (2 - a(s) - alt)) permutations

(11.2)
which reduces to (II.1) as s » =at fixed t (provided a(s) » ) and
treats in a completely crossing symmetric way the s an ¥ channels.
In the following we shall use the notation

Tl -a(s)) T -aft))

V(s,t) = TC - a(s) - o) " (11.3)
Since the Venezlano amplitude is a beta function
V(s,t) =B(1 -a(s), 1 -~al(t) (11.4)

from the well known properties of beta functions, we see that (II.3)
exhibits an infinite set of simple poles in both s and t channels at
every value for which

g(s)=n or gty =m (n =1,2, ...) . (I1.5)
m

Double poles, however, never appear since if both conditions (II.5)
are satisfied, then

afs) +at) =n+m

and the gamma function at the denominator gives a zero.

Before discussing the various properties of (II.3), we want to
exhibit a "derivation" of it. Actually, a more appropriate wording
would be that we want to give some plausibility arguments to show
how (II.3) can be introduced.

Suppose we want to write an amplitude which possesses an
infinite number of poles in the s-channel in an integral form. One
possible way74) is to write

)
A(s,t) =j' dv v &8
0

f(v,s,t) (11.6)
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where f(v,s,t) is regular at v = 0. Eq. (II.6) is well defined for any
Re afs)< 1. When 0 < Re a{s) < 1, we can perform an integration by
part and get

<
1]
=

1-e(s) 1
v flv,s,t) 1 1-(s),,
A(S It) - 1 = CL(S) in = T & CL{S) J‘ v fV(V:S:t)dV
v=20 0
1
_f(1,s,1) 1 1-als) /..
"1 2al) TToem Y Y S RS, o

Now the integral at the r.h.s. of (II.7) is defined for Re a(s) <2
and we have explicitly exhibited the singularity that prevented us
from using (II.6) beyond the point a(s) = 1, namely, a (simple) pole at
that point. Therefore, provided £(1,s,t) be regular at a(s) = 1, we can
use (II.7). Clearly we can push the domain of validity of (II.7) arbi~
trarily to the right in the complex &(s) plane provided that f(v,s,t) is
differentiable an arbitrary number of times and its derivatives are reg-
ularatv=0and v=1.

If we now want to crossing symmetrize between the t and the s
channel, one possible way to do it (but certainly not the only one) is
to write

-a(t)

fv,s,t) =(1 -v) glv; s,t) (11.8)

where, by requiring
glv; s,t) =gl - v; t,s) (11.9)
we make A(s,t) = Aft,s) . Eq. (II.6) becomes then

_q(s)(l . V)_a(t)

1
A(s,t)=[ dvv glvi s,t). (i1.10)
0

We can then repeat the above argument to show that A(s,t) as
defined in (II.10) has an infinity of (crossing symmetric) simple poles
in the s and t channels at the points (II.5) provided that g(v; s,t)
satisfles (II.9) and is regular (together with all its derivatives) at
v=0andv=1.

In particular, if we choose

glvis,t)=1 (I1.11)



DEVELOPMENTS IN HIGH ENERGY PHYSICS 125
we get, as a special case, exactly the Veneziano amplitude since
(I1. 10) appears now to be the integral form of the Euler B-function

1
B(x,y) =%(’;‘{LI%’%=% dvvx'l(l —v)y_l . (I1.12)

Refx,y) > 0

Another "derivation" of (II.3) has, again, been given by Vene-
ziano’5) by using the Khurl expansion.

It should also be mentioned that Schmid32) has shown that for-
mulating superconvergence at infinitely many discrete t-values one
can construct an amplitude which coincides with (II.3). By construc-
tion, however, this solution depends crucially on the various assump-
tions that are made so that, although very elaborate and ingenious,
we do not think that this method sheds very much light on the ques-
tion of how fundamental or unique Eg. (I1.3) may be. This conclusion
is reinforced by the analysis of West’6) who has considered the same
problem discussed by Schmid32) under somewhat different assump-
tions.

Clearly, the example represented by (II.3) can be adapted to
describe essentially any invariant amplitude in which the quantum
numbers of the channels are given. This can be seen by suitably
modifying (II.3) as follows

Cn -a(s)) Clm - alt)
T(p - afls) - alt)

p =
Vnm(s,t) = (11.13)

where, for what was said previously (to avoid the appearance of
double poles and of ancestors) one must assume

max (m,n)< p<m+n {m,n=z0). (11.14)

In Eq. (II.13), m, nand p are integer or half-integer positive num-
bers (according to whether the corresponding Regge trajectory will be
a meson or a fermion trajectory). The particular example of Eq. (II.2)
provides a crossing symmetric amplitude, but one can similarly con-
struct amplitudes that satisfy general crossing symmetr% requirements.
This has been done for a number of physical processes. 7)

Crossing is actually one of the most appealing features of
(II.3) since this is the first time that an explicit, very simple, com-
pletely crossing symmetric amplitude has been written down without
having to crossing symmetrize a posteriori. Because of this explicit
crossing symmetry we can concentrate onthe properties of (II.2) in
one given channel and they will be valid in every channel.
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C. Asymptotic Behavior
If we assume that

lats)] - = (I1.15)

5]~ =
then, at fixed t, and for any s such that

larg a(s)| =¢ e>0 (II.16)
we have, using Stirling formula

Ve~ T -a@)-aE1*®

s~ =

(11.17)

We therefore come to the conclusion that the V.M. is asymp-
totically Regge behaved (according to the definition of Sec. I.E.)
provided only that the Regge trajectory a(s) is, asymptotically, linear
in s

afs) - 0(s) . (1I1.18)

HEE

Due to the combined properties discussed so far: 1) crossing
symmetry, il) poles in all channels, iii) Regge behavior, we imme-
diately conclude that Veneziano's amplitude has duality according to
definition A) of Sec. I.F. We shall discuss later whether or not
duality according to definitions B) and C) is also a property of (I1.2).

If one next considers what happens when both a(s) and aft) tend
to infinity (asymptotic behavior | s| - o at fixed angle), assuming
(II.18) to hold and applying Stirling formula again (with the same limi-
tation (II.16)) one finds

lim
S = +o
t = -

~-s const
(e Juc

V(s,t) =0 (I1.19)

The above behavior (which is a strict consequence of the linear
growth of the Regge trajectory) is a somewhat unsatisfactory predic-
tion of the model. This is not so much so because of the fixed angle
bound of Cerulus and Martin ) predicting that an amplitude cannot
decrease faster than an exponential in /s’9) (up to logarithmic fac-
tors) since this bound is derived under the assumption of analyticity
conditions that are not satisfied by the V.M. Rather, a more com-
pelling reason 1is that Eq. (II.19) shows a too fast rate of decrease
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than allowed by experiments. The plot of a(s) given in Fig. 10 (see
Ref. 80) is obtained by fitting p-p angular distribution at high energy
with a Regge form. A deviation from a straight line is definitely evi-
dent for s < —6(§;ev/c)2. This is, on the other hand, simply the effect
of Orear's fit81 at large angles.

a(s)
+
1
N\

-16 -4 -2 -0 -8 -6 -4 -2 0
s(Gevzc)2

Fig. 10. Plot of a(s) in the negative s region is derived from
high energy p-p elastic data (from Ref. 80).

Whereas one could argue that the evidence mentioned above
comes from elastic scattering data and the V.M. cannot contribute to
the Pomeranchukon (see Sec. I.G.) so that a direct comparison is not
fair, the point is that the diffractive contribution is expected to be
negligible in the large angle region. Furthermore, it appears that the
large angle behavior of the V.M. would be the correct one should the
"effective” Regge trajectory o (s) deviate asymptotically from a
straight line toward a /s behavior as suggested by many authors. 19)

D. Analyticity

Here and in the following the word analyticity will neverbe used
in the conventional sense in which it has often been used for scatter-
ing amplitudesin physics, i.e. referring to the property of satisfying
a dispersion relation or a Mandelstam representation. The amplitude
(I1.2) cannot, strictly speaking, satisfy any dispersion relation or
Mandelstam representation because it is a purely meromorphic func-
tion of a(s), a(t) and a(u); furthermore, it is badly behaved in the
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unphysical domain of the s - u - t Mandelstam plane for s =+ and
t/s - positive constant. However, the fact that an amplitude does
not satisfy Mandelstam representation does not mean that it cannot
have good analytic properties.

With the above clarification, the V.M. has a priori rather nice
analytic properties since the following structure holds:
i) we have an infinite number of resonances in every channel cor-
responding to the values (II.5)

a(s) =n n=1,2,3,... (1I.5)

provided “(5)33‘» ®,
ii) (II.3) may have, in principle, a very complicated cuts structure
provided this structure is due to the properties of a.(s). This is quite
clear since a gamma function is a meromorphic function of its argument
and therefore it is only if a(s) possesses cuts that this will be true
for the amplitude in the V.M. )

We now want to explore the possibility that a(s) satisfies the
analyticity properties that we would expect on physical grounds. If
% is the physical threshold we will suppose that

Ima(s) =0 s<Y% (I1.20a)

Im afs) > 0 s> (I1.20b)

Re a(s) » =, a(0) =<1 (I1.20c¢)
S—t®

Condition (II.20b) is the requirement that the total width of a
resonance be positive. Condition (II.20c) guarantees that infinitely
many "true" resonances are found (whenever Re a(s) crosses a posi-
tive integer) and that in the negative s region Re a(s) does not oscil~
late to infinity. In fact we can as well suppose that Re a(s) has no
zeros on the negative s axis. Under these conditions a.(s) is propor-
tional to a Herglotz function and can therefore be written as

a(s) =R(s) H(s) (I1.21)

where R(s) is a polynomial and H is a Herglotz function

H(s) =H(0) +s {a+] M&}ds’} (I1.22)
by

S!(s! -
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with H(0) and A real (A 2 0). Therefore, if one takes the simplest
choice

R(s) = const (11.23)
one would be led to the conclusion that, unless A = 0

lim  o(s) =As (11.24)
HE=

in agreement with that required by (II.20) which was needed to obtain
Regge behavior. Notice, however, that the above argument is only a
plausibility argument in favor of an asymptotically linear behavior
since nothing prevents A from being zero. In this case, whereas a(s)
would still be linear around s = 0, it would increase less than linearly
as |s] - », but it can be shown82) that the deviation from linearity is
very small.

E. Unitarity and the Structure of Resonances

Unitarity is the most troublesome aspect of the V.M. to the ex~-
tent that in order to avoid its violation either one has to give up the
analytic properties that one would expect an amplitude to display, or
else one must allow ancestors to appear.

To see how this comes about, we have to give a closer look to
the resonance structure and to the ensuing analytic properties of the
V.M.

Let us consider the resonance at a(s)=n+1. Remembering that at
z = -n one has

n
rey e S el (11.25)

n! z+n
b o

the residue of V(s,t) ata(s) = (n + 1) is

T -a) (1"

Rn(t) = Tl -n-aft) n (11.26)
Using
_T(z) _,qnTl+1-2)
Pz -n) (-1) T(Q - 2) (I1.27)
one finally finds
_Tln+af)) 1
Rp(® = T(alt) n! (11.28)
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Notice that if we interpret a(s) as the Regge trajectory, we
would like to require that the residue at the resonance a(s) =n + 1 be
a polynomial in t at most of the same order. A look at (II.28) shows
that Rn(t) is indeed a polynomial in t of erder n if and only if gft) is
strictly linear. Whereas this is compatible with (II.18) which was
needed to get Regge asymptotics, it is incompatible with the analy-
ticity requirement discussed in Sec. II.E. since no strictly linear
amplitude can satisfy a dispersion relation of the form (II.22). One
could get away by giving up the dispersion integral for the Regge tra-
jectory and therefore assume that the latter is indeed strictly linear

afs) =a+a’s=a+bs. (I1.29)
Under these circumstances, however, we cannot but violate unitarity
a priori. Unitarity, in fact, requires the residue R, (t) to be a real
polynomial in t. This is possible only if both ¢ and &’ are both real.
But, if this is so, the condition

als)=n (11.30)

means that the whole spectrum of the V.M. does not consist of bona
fide resonances but is made of poles on the real s axis. As discussed
in part I, this situation is referred to as "narrow resonance approxima-
tion"9) (NRA). From the point of view of unitarity, the trouble is that
this corresponds to having a situation in which the imaginary part of
the resonance, 1.e. the total width of the resonance is zero, whereas
the residue at the pole, i.e. the partial width is nonzero. This is,
clearly, a violation of unitarity and in fact, for what was said before,
this violation inherently occurs in every NRA.

Essentlally we can summarize things as follows:
a) we can let a(s) obey (II.22) so as not to spoil analyticity; this
turns out not to be a straightforward point at ali83) and we shall dis-
cuss how one can do this in the following. In this case, a(s) cannot
be purely linear and as a consequence, ancestors must appear.
b) we can assume a(s) not to satisfy (II.22) and to be linear with
complex coefficients. In this case, the total width is nonzero but the
partial width is complex (ghosts) and unitarity is violated.
c) we can assume a(s) to be strictly linear with real coefficients (in
this case If the residues of the Legendre polynomials are positive,
there are no ghosts). The total width of the resonance is, however,
zero (narrow resonance approximation), and unitarity is, again,
violated.
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In either case b) or ¢), both unitarity and analyticity are lost
(the latter in the sense that there are no cuts and the amplitude is,
strictly speaking, a purely meromorphic function of s, t, u).

Normally, in discussing or applying the V.M., possibility c¢)
above is the one considered and we now want to discuss it a bit more
in detail. In this case, not only the V.M. is, as mentioned above,

a meromorphic function but there also follows a fairly unpleasant con-
sequence concerning the region of validity in which the Regge asymp-
totic behavior takes place. To apply Stirling formula, in fact, limita-
tion (II.16) must be imposed. However, if a(s) is real, (II.16) im-
plies that the Regge asymptotic behavior of V.M. holds along every
direction in the complex s plane except on the real axis {(and on an
arbitrarily small cone centered around it). We are thus in the situa-
tion in which, given an information on the real s axis (where physics
occurs) we extrapolate from it in order to obtain a model in which this
behavior holds uniformly, just to find ourselves in the condition that
the only domain where this model does not reproduce the wanted be-
havior, is the one which we used to proceed to our extrapolation. It
is clear, however, that the above difficulty does not represent, in
practice, a great obstacle to a determined physicist.

In principle, the above objections can be circumvented by say-
ing that in the NRA the imaginary part of the amplitude is an infinite
sum of Dirac delta functions and that the cut along the real axis has
been replaced by an infinity of poles. Due to the structure of the
model, this prescription is, clearly, a modification of the model it-
self which to some extent spoils the crossing properties of the origi-
nal amplitude in that one has to select a channel. If, for instance,
we take s to be positive, then the prescription would require that

Im Vs(s,t) =7 Z %:ﬁ—%!l 5(n+ 1 -afs))
n=0

- VU Lo+ aft) P
Re V_(s,t) = Z TR LU padBleett i3
n=0

The modified amplitude Vg(s,t) defined in (II.31) would now,
formally, satisfy a dispersion relation.

From the point of view taken above, therefore, one would say
that the exclusion of the real axis from the asymptotic behavior cor-
responds to the recollection of a cut in the amplitude. The point,
however, remains that the above procedure does indeed give rise to a
somewhat different model than represented by (II.2) which is purely
meromorphic function of a(s).
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Yet another aspect of the violation of unitarity in the V.M. will
be discussed in Sec. II.J. in connection with the appearance of fixed
poles singularities.

Before ending this section, we want to comment on the general
implications of the inherent violation of unitarity in the V.M. It has
been argued°7) that after so many essentially fruitless attempts of
explicitly enforcing unitarity (in some approximate way) in the field
of high energy physics, it may be reasonable to start from a model in
which unitarity is violated a priori but crossing is preserved. This
may well be soand this attitude has led one to consider the Veneziano
amplitude as some sort of Born approximation which should then be
unitarized.84 +85) The solution of this problem would essentially
amount to carrying on the "nonlinear" part of the program outlined in
Ref. 75. The fact that unitarity is, intuitively, so very important in
the high energy domain, on the other hand, may cast doubts on the
final possibilities of success of such a program. It should also be
noticed that the present situation is in agreement with the general
frustrating fact that in practice it seems impossible to satisfy at the
same time unitarity and crossing. By this we do not mean that this is
actually impossible since it has been prDVE!dBG that, at least under
certain assumptions, unitarity and crossing are simultaneously com-
patible. What we mean is that so far no example of a model has been
produced in which it is manifestly obvious that unitarity and crossing
can bot&?ess?tisfied at the same time. The reason for this is that it
is hard J to guarantee crossing symmetry when the only explicit
formalism in which one can check that the unitarity limit is not vio-
lated is the partial wave expansion. Thus, although it is a conceiv-
able program(the one of unitarizing the V.M. in its partial wave ex-
pansion), the risk is that in this way crossing symmetry is lost; fur-
thermore, therf?g}s no guarantee that the asymptotic Regge behavior will
be preserved.

F. Daughters. Decoupling of the Odd Daughters.

As noticed in Sec. II.E., the residue R_(t) as given by (II.28),
together with (II.29), is a polynomial in t of order n which is just
what we would expect from the identification of a(s) as the Regge tra-
jectory. The fact that all powers of t from n to zero are present means
that beside the leading Regge trajectory (parent) there are (parallel)
daughters spaced of one unit of angular momentum. The usual analy-
ticity arguments or 0(4) symmetry arguments would in the present case
require the daughters to be spaced of two units of angular momentum.
It should be remarked that there is in principle nothing against these
odd trajectories. In fact, according to the general decomposition of
mm - mw, the only condition that must be satisfied is that the invariant
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amplitude A(s,t,u) be crossing symmetric which is the case for (II.2).
More explicitly, one notices that if a(s) =n + 1, the two resonant
terms in (II.2) [ that is V(s,t) and V(s,u)] have the overall residue

R () +R () =—[Torel)  Lo+al) (11.32)

n!l (i) T (e {u))

Eq. (II.39) is a polynomial of order n in both t and u which, if we
write t and u in terms of cos 64 (fg scattering angle in the channel in
which s is en rg variable) is a polynomial in cos® Ay of maxi-
mum orderf denotes the largest entire number contained in
n/2). This 5 o course just what we expect for a crossing symmet-
ric amplitude and there is a priori nothing wrong in the presence of
odd daughters. 4)
It has been, however, shown by Veneziano ™’ how a simple de-
vice can altogether get rid of these odd trajectories. Suppose again
a.(s) linear and let us consider the first "unwanted" pole at even inte-
gerg's, i.e. a(s) = 2. According to (II.32) the residue in this case is

Rz = aft) +a(u) (for a(s) = 2) (I1.33)

and the pole is absent if we demand that this residue 1s zero. This
can be satisfied by imposing that

a(s) +alt) + als) = 2. (I1.34)

The very remarkable thing happens that condition (II.34) not
only takes care of eliminating the pole at a.(s) = 2 but removes also
all subsequent even resonances a.(s) = 2n and thus completely de-
couples the odd daughter trajectories. An interesting consequence of
(II.34) in the specific case of mm - mw 1s that it leads to the predic-
tion that

a[-2m 2 +m ® + 3m 3] =q(-.53{(GeV/c)?) =0 .
P w (II1.35)

This condition was already derivedll) in Sec. I.B. as a consequence
of FESR and already commented upon.

Applying the same technique and the same constraint (II.34) to
the case of m = wp (in which the only trajectéry in either s or u is the
A, and the only in the t channel is the p) we get

“Az (s) + aAg (u) +o.p(t) =39 (11.36)
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which demands

o "=a, - (11.37)

Furthermore using mpa = .G(GeV/_c)EJ in (I1.36) one gets

3 2

3m —muf—m9+m

0, 1(0) = - —Eoglegttgl = J36  (U.38)
3 P W m

which predicts

m, = 1350 MeV . 1I.39
e (1r.39)

Similar applications of constraints of the form (II.34) have been
considered by other authors. 0 y

An important byproduct of constraints of the form (II.34) arises
now 1if we consider the entire amplitude in the V.M. According to
(II.2) this reads

A(s,t,u) =V(s,t) + V(u,t) + V(s,u). (11.40)
Let us consider the limits s » = at fixed t. In this case, since
s+t+u=%X

it is seen that u » -« and therefore if V(s,t) 1s Regge behaved (with
the restriction (II.16)), so is V(u,t). The question remains, however,
of what is the behavior of V(s,u). This depends crucially on the rela-
tive growth of o.{u) and a(s). However, if (II.34) holds, we can
rewrite

Vis,u) = Sinmal) e 4 (I1.a1)

sin ma (u)

so that V(s,u) is, in this case, Regge behaved to the same extent of
vis,t).91)

It is also easily checked that for the Regge behavior of the
entire amplitude (II.40) not to be spoiled, it is actually sufficient to
replace (II.34) with the less restrictive condition

a(s) +aft) +afu) =c=22 (11.42)

and, strictly speaking, it is enough that -
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lim [o(s) +a(u)] = const . (11.43)
larg s|>¢
t fixed

The above argument implies that a constraint on the trajectories
of the form (II.34), (II.42) can be necessary to give a well defined
meaning to the asymptotic behavior of the entire amplitude.

As it will turn out, the validity of constraints between the
Regge trajectories in the various channels will be crucial in the prob-
lem of the compatibility of the V.M. in which the analyticity is res-
tored by letting a.(s) satisfy a dispersion relation (see Sec. II.H.).

It should also be mentioned that other ways have been suggest-
ed to decouple the odd trajectories by either (1) adding nonleading
terms92) (satellites) or (ii) modifying the model itself in a more dras-
tic way.93 +94),95),96) Thege modified forms could provide alterna-
tive possibilities to the V.M. when constraints of the form (II.34)
lead to predictions that do not agree with experiment (such is the
case formn’- np, ormm = wH; also, the corresponding condition93
for mm = mm is only satisfied within 10% if one uses for the p trajec-
tory the same parameters derived from the case of mm = mw). Further-
more the hope is, of course, that drastic modifications of the V.M.
can improve the theoretical situation also from other points of view.

G. Positivity Condition

For an elastic scattering, unitarity requires the residues at the
resonances to be positive. Such a positivity condition although less
restrictive than the unitarity requirement which, in addition, demands
positive total widths etc., should nevertheless be satisfied in a phy-
sically satisfactory model, That this is not a trivial condition has
been show&?y Oehme in trying to saturate superconvergence
relations.

The analysis of the positivity condition in the V.M. has been
carried out by several authors and here we will only state the results.
First, a numerical analysis 8) has shown that for the leading term of
the V.M. in nmr scattering

_T( -a(e) T - alt)
o T -afs) - alt) (11.44)

there are no ghost states among all daughters up to the 50th recur-
rence (for linear tra,];)et):tories whose intercept is ¢ (0) = 3).

Other authors 9 have analyzed the positivity condition within
the general context of the properties of the V.M. in the complex
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angular momentum with results similar to those of Ref. 99. Oehme
has shownl00) that, with the exception of the lowest term (II.44)
individual higher Veneziano terms of the general form (II.14) have
infinitely maxb;i negative residues. Finally, the general result has
been proved1 ) for the leading term (II.44) that all residues are
asymptotically positive provided only that

a(0)>% . (11.45)
This means that, at most, (II.44) will have a finite number of ghosts.

H. The V.M. and Complex Regge Trajectories

The problem of whether or not one can modify the structure of
the V.M. to have at the same time analyticity and nonautorgatic vio-
lation of unitarity has been considered by a few authors .83 .95),102)
In particular in this section we want to discuss what would happen if
we retained the V.M. and allowed a.(s) to become complex and satisfy
a dispersion relation (II.22). This has been the attitude taken by
Roskies.83) (See also Ref. 103.) Because of what was said in Sec.
II.E. it is quite obvious that even if we succeed in removing the vio-
lation of analyticity, and having finite total widths, there still would
be the problem that ancestors should appear. One may, however,
argue that this is preferable tothe appearance of resonances having
zero total widths but finite partial widths.

The trouble with letting a(s) satisfy a dispersion integral is
that, clearly, one cannot have a relation of the form (II.34) any more.
As a consequence, it may happen that the third term V(s ,u) in (II.40)
becomes unbounded as s - « at fixed t. In fact, it tutns out that
Im q(s) is very strongly constrained-in orc&er to avoid that V(s,u) will
diverge. The following theorem holds:33
Theorem. Suppose

©
- s Ima(s”) '

@) a(s) =a + bs - j‘z T =) ds (II1.46)
(b) Im a(s) s +eo . (11.47)
{c) For some p, 0 <<l

Iml _s -0 ass- o ; (11.48)

s 8]
@ I(s) = l"ll‘—"f{ﬁl (11.49)

s
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satisfles a smoothness condition of the form
|1(s,) - I(s3)| < C|sy - sa|" (11.50)

for some C, y> 0 when |s, -s5| < 1.
If we now denote

g(s) =als) +al) ., (11.51)
then the following is true
1 1-u
a) |Re gls}| < C” s ins ass-w (11.52)
(B) There exists a k> 0 and a sequence Sp for which

Re g(sn}

— ==y G.{Sn} 2 k . (I1.53)

We refer for the rather lengthy proof of this theorem to the ori-
ginal paper83) and simply notice that the consequence of it is that one
finds that the V.M. is still Regge behaved only if

Sli_r.nw l%%)- = +o for all positive u (I1.54)
s

but

j‘—I‘“—:;(ﬂds<= : (11.55)

Under the above conditions, the poles move away from the first
sheet and the amplitude is still Regge behaved in every direction of
the s-plane outside the cone (II.16).

An example of ¢(s) for which the conditions discussed before
hold is

Im a(s)
g

—_—8
wnsy V7 1 % (11.56)
Inserting (II.56) into (II.46) one gets

a(s) =bs +§ v—il(f,n s)1 Vel (I1.57)

g—o

and the amplitude behaves as
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A, tu) =~ [a(s)]*W ~ s ® 1 +—{9‘—@-— (e MV B ]

by - 1)
(I1.58)
i.e. consists of powers of s with logarithmic corrections. As shown
long ago by Freund and Oehme104) the term with logarithms arises
from cuts in the complex angular momentum whereas the first term is
due to Regge poles. Thus, when Im g # 0, besides Regge poles at

t=a(s)-n n=0,1,2,...

the model has cuts which end at each of the Regge poles.

As already noticed, we also have ancestors because now the
residue R (t) (I1.28) is not a polynomial of t any more. It is argued
in Ref. 83 that although these ancestors lie on the Regge trajectories
£ =a(s) + n, they are not really Regge poles in the usual sense since
they will not contribute to the leading behavior.

More specifically, the argument goes that at a given energy sp
not all the infinite partial waves that resonate do couple strongly.

In the expansion of the residue Rn(t) in Legendre polynomials

Rn(t) =2 c{,n PL(z) (11.59)

the coefficients decrease very rapidly (with an exponential law) with
increasigg at fixed n. Furthermore, one has that C; ,, is maximum
for £ = n®., This observation could also, incidentally, reconcile the
present trend of linear growth of Regge trajectories with the previously
noted deflection to a square root asymptotic behavior in the sense that
the latter would be exhibited by some sort of "effective” Regge
trajectory.

If we retain the usual definition of the width of the resonances
in terms of the trajectories on which they lie

r(s) = —nals) (I1.60)

d Re g
fs—ds

we see that in the present case this implies

%

Pe~—»=— (ir.61)

(n s)V

It is amusing to note that the behavior (II.61) is extremely close
to the empirical one suggested by the plot of Fig. 1.
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Other examples have been suggestedgs) (102) in which the same
qualitative situation as in (II.61) arises in the sense that the "width"
of the resonances, far from being zero, increases rapidly with energy.
This may actually represent an indication that as the energy increases,
the effect of a resonance becomes less and less pronounced so that,
for every practical purpose, their effect washes out to some smooth
background.

I. Duality and the Interference Model in the V.M.

As previously noted, the V.M. does certainly possess duality
if def. A of Sec. I.F. is used. This is, however, not so surprising
since, in fact, this definition has been given with an eye on the V.M.
As remarked before, the key dynamical ingredient in this definition of
duality is the assumption that infinitely many resonances appear and
act as if they could represent a complete set in some way. Without
this, duality would be indistinguishable from crossing symmetry and
Regge behavior. With the above qualification, one should perhaps
be explicitly cautioned that def. A of Sec. I.T. of duality may reveal
still too limited when trying to construct an amplitude that also satis-~
fies unitarity and normal analyticity requirements. In these condi-
tions, probably, a somewhat less restrictive definition of duality may
be needed. However, special care in devising such definition of
duality was given to avoid any specific commitment as to whether the
asymptotic behavior should arise from poles only. One may therefore
hope that such a definition could still be effective also for amplitudes
which are not purely meromorphic.

‘We now want to briefly discuss whether the stronger definition
C) of duality can be applied namely, whether it is true or not in the
V.M. that it is the direct channel poles that build up to the asymp-
totic Regge behavior. That this sentence cannot be given any well
defined meaning was the content of Ref. 44 and was already discussed
in Sec. I.F. Summarizing very briefly, the argument was that so long
as direct and crossed channel poles coexist together one has equal
rights to attribute the asymptotic behavior to either set or to a com-
bination of them or, more probably, to the effect of very many proper-
ties of the function under consideration (poles, zeros, etc.). The
stronger statement was, however, proved in Ref. 44 (see also Ref. 45)
that one could not give a meaningful content to def. C of Sec. I.E.
unless one could prove the existence of an entire function (of s) of
infinite order which was also Regge behaved (according to
the definition of Sec. I.E.) as |s| = =. Even if such a function would
exist, however, def. C would still be ambiguous.
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In Ref. 44 the above results are proved by showing that the
V.M. can generally be cast in the form of a generalized interference
model.47)r48) To show this, consider for instance

_TQ -als)) T ~ o)
V(s,t) = oLy~ (11.62)

(the same considerations apply to V(t,u) and V(u, s)) and let us use
the integral representation

1
Vi, 0 =] dexE) 1oy (1.63)

0
valid for Re[a(s), a(t)] < 1. As noted previously, the s-channel poles
(direct channel poles) are associated with the lower limit of integra-
tion whereas the t-channel poles (crossed channel poles) come from
the upper limit of integration. Therefore, if we split

Vist) =V (s.t) +V,(s,t) (11.64)
with
a
v (s.t) =j0 ax x %) ) o
a]‘ - a(s)
YT JF@lt), 1 -als): 2 -als)ia) (I1.65)
and

l-a
v (s,t) = [ ax x4 - 06)
0

a- a)1 - aft)

=————7—— F (afs), 1 - alt); 2-aft); 1 -a)
1 - aft) 271 s

(2F1 being the usual GGauss hypergeometric series), we see that
Vg(s,t) contains only direct-channel poles and Vi(s,t)-contains only
crossed —~channel poles. The parameter a is completely at our dis-
posal provided we do not choose it real and negative or real positive
= 1 where the hypergeometric functions in (II.65), (II.66) have cuts.
If we can choose a such that for |a(s)| = =, Re a(s) >0, Vi(s,t) gives
the entire asymptotic behavior (II.17) whereas Vg(s,t) goes there ex-
ponentially to zero, the decomposition (II.64) makes the V.M. indis-
tinguishable from a generalized interference model.
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Recalling thatlos)
lim ROV o ) NI I
B-mP(a'B' Y Z) r("{‘@) ( BZ) [1+0<_]'B—Z|'>:|
+1¥(}3 P2 (gz)*Y |:1 i 0(|lel>] (I1.67)

we see that provided
Re [{1 —a)a(s)] <O ) (I1.68)

the asymptotic behavior of (II.66) is exactly given by (II.17). In the
same case (and with the further limitalt&gil given by (II.16)) one can
also check that V4(s,t) goes to zero, Notice that if ¥ = arg(l - a),
condition (IT.68) ensures that Vt(s ,t) gives the asymptotic behavior
in the open half plane

3m

T -¥<arga(s) < 2

2 - Y (I1.69)

In particular, if ¥ is chosen close to 1, we find that (II.64) pro~
vides a decomposition of the V.M. in the form of an interference
model in the open half plane Re a(s) > 0 with the wedge |Re afs)| < e
(¢ arbitrarily small) excluded.

This result clarifies the close connection between models show-
ing duality (according to def. A of Sec. I.F.) and generahi&ed inter-
ference models and, combined with the findings of Jengo and of
Hsu, Mohapatra and Okubo, 48) gives also a very strong support to
the conjecture of Sec. I.J. of an equivalence of the form "duality"
==> generalized interference models." It is not, however, obvious
that the arrow in the above equivalence statement can be reverted.

It should explicitly be noticed also that Coulter, Ma and Shavéa)
use the V.M. as a guide to suggest an interference model which is
slightly different from the one discussed here. Taking the limit |s}-e
at fixed t, they essentially replace the term V(s,t) (containing s-
channel resonances) with resonant terms but retain the asymptotic
contribution coming from V(u,t) since this is essentially real (as s -
+») and cannot give rise to any loops in the Argand diagram. This
procedure not only very heavily relies on the validity of Schmid's
conjecture (Sec. I.E.) but appears also rather arbitrary. The appli-
cation of the above prescription to the fit of m~p —» w~p backward scat-
tering seems, on the other hand, rather encouraging.

We finally want to see whether the V.M. can be said to satisfy
duality at least according to def. B of Sec. I.F., i.e. In the sense of
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satisfying FESR. Clearly, strictly speaking this is not possible if we

consider the amplitude of the V.M. as a meromorphic function. Vene-
ziano,4) however, has shown that (II.2) can be made to satisfy super-
convergency relations if interpreted in the sense of a NRA according to
the discussion at the end of Sec. II.E. (see (II.13)). To see this the

following steps are needed: first one takes a smoothed Regge form for
Im A(s,t)

Im A (s,t) ~B Tla(t)) Tla(s))

(I1.70)
Regge —

and one verifies that

alt) -
Im A [a(s)+J—L] (11.71)

Regge I‘(cr.{t}}

coincides with (II.70) up to the second leading term.
The first moment sum rule reads (v = %L)

N aft) = 1
_iB (20/ )
_]'0 dv v Im A(v,t) = o) N? 2@+ 1 ;

The last step needed is to assume that (@ccording to (I1.31)), for
for s positive V(s,t) + V{u,s) give

(I1.72)

n (L -aft) 6(s - sn)
a'T'(n) T(2 - n - a(t)

Im Alv,t) = -B z (-1) +(tesu). (I1.73)

n=1
Setting N midway between the nth and the (n + 1)-th resonance we now
get

%'n @ + 4n) Tl + 2n) _
/L Tl+1)T@n+1)

n=0
T+ 2+ 2m)
T2 +a)T(2m + 1) m + 1(“) (Ir.74)
where &, is the same function already encountered in Sec. I.B.
] __ T(zm+1) a+2+4m>°‘+1 il
m+1l T{@+2+2m) " i
As in Sec. I.B. the consistency condition requires
() =1 (11.76)

m+1
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which is rather well satisfied for a(t) < 2m and becomes a strict equal-
ity as m - = at fixed a(t). Also, if a(t) < -1, from (II.74) we obtain
the usual superconvergence sum rule.

We therefore conclude that, to the extent to which the modifica-
tions of the V.M. leading to (II.70), (II.71) and to (II.73) are ac-
cepted, the V.M. satisfies FESR and therefore also duality according
to def. B of Sec. I.F. is in a way a property of the model. Remember-
ing, however, the remarks made in Sec. II.E. on the NRA interpreta-
tion of the V.M. we see also that def. B of duality (Sec. I.F.) is
literally not applicable to the V.M. Notice also that in the previous
argument the term V(u,t) has been completely ignored; furthermore,
the disagreement between (II.71) and (II.70) rapidly increases as we
move away from the asymptotic region.

K. Angular Momentum Properties of the V.M.

The properties of the V.M. in the complex angular momentum
plane and in the Lorentz plane have been studied by a number of
authors.gg)'107)'108)'1 9),110),111),112),113)

We shall in the following consider the specific example of linear
trajectories (II.29) and concentrate on the case of M elastic scatter-
ing for which the building block is given in Eq. (II.44). The results
can be stated as follows:

i) the partial waves have, for physical 4, the correct threshold
behavior;

i1) the positivity condition (see Sec. II.G) holds if a(0) = %;

iii) there are in the complex # plane, infinitely many Regge poles with
parallel trajectories spaced by one unit of angular momentum;

iv) there also are fixed poles1 +109) at the negative integers (non-
sense wrong signature integers, according to a somewhat accepted
terminology); )

v) partial waves do exhibit some sort of dualityll0 in the sense that
the contribution from the Regge amplitude in the crossed channel is
roughly the same as that of the direct channel pole in calculating low
energy quantities;
vi) in the Lorentz plane there also is an infinite sequence of Lorentz
poles and, again, fixed poles at negative integers.

We now turn to the analysis of points iii) and iv) above for
which we use107' the expansion

_ 1 a T(n+1+a(s) 1
ST Ry I W ey e e
n=0

(I1.77)

which, together with
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alt) =a+a't (@' >0)
s =408 +P)
t =-2k2(1 - 2)
z (s) =1+ M—il—kg—;& (11.78)
can be rewritten as
V(s,t) =r(ql(s)) T i F(nlf(nl:f)(s)) = _lzn(s) . (I1.79)

n=0

The partial wave projection of (II.79) is now

B 1 C T+ 1 +a(s)
fL(s) T 20/ KT (a(s)) Z Tn + 1) QJL(zn(S)) (1x. 80)

n=0

which is the Frolssart-Gribov expression for the continued partial
wave. Therefore, (II.80), wherever it converges, provides a unique
continuation to f&(s) . To find the region of convergence of (II.80),
we set

£,(s) = Z £, () (11.81)
n=0
and note that for n-» «
( ) BO (S) 31 (S)
f S) ~ + e ok
in o+ 1){, +1 - afs) (n + I)L + 2 -aqaf(s) (11. 82)

where the first coefficients are given by

ST T D) eyt L
Bole) = T+ 3720 @) T

B, (5) = 8o (s)[ﬂﬁ)—(ﬂg‘-u) -+ DR )]

(11.83)

Eq.(1I.80) shows that fy(s) satisfies the usual threshold conditions
wherever it converges and (II.83) shows that f;(s) is a holomorphic
function of ¢ for
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Re £ > Re a(s) (11.84)

and provided
L#-m (m=1,2,...) (11.85)

The continuation below (II1.84) can be performed by writing

= =1 B_(s)
. m
£,6) =5, (6 +) [f&n‘NZ T myTale) ] 8o
n=0 meg @+1
with
N-1 ®
; 1
9y n =2 %‘S’Z L+m+1-als)

m=0 n=0 {oain)
N=-1
=) B ) C+m+l-as) - (11.87)
m=0

In (I1.87), ¢ (x) is the Riemann zeta function. 114)

the series at the r.h.s. of (II.86) is now for

The convergence of

Re L > Re al(s) - N (I1.88)

so that fp (s) is now the sum of a regular function (the series) plus a
finite sum of zeta-functions. Due to the analytic properties of the
zeta function whose only singularity is a first order pole with unit
residue at unit argument, we conclude that the only singularities of
gJLN(S) are poles at

L=a(s) -m m=0,1,2, ...) (I1.89)
with residue By (s). These residues have been computed107) and their
expression 1s rather involved analytically

m a (s)
N ina(s) p p-ofs) -#
Bm(s) 2 cosmal(s) e z ) 2
p=0
‘Tl - als) -3) cP T ~E (g (11.90)

m-p
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where

H P
=2 12,0(s)_d
a(s) (n) a(s)(2a’ @) ik

z,(s)y y/Zcx KB -afs) -1

[tz v ]

y=0

zO(s) was defined in (II.78) and C?‘((O) are Gegenbauer polynomials of
zero argument.

In Ref. 109 the problem of fixed point singularities is specifi-
cally considered and it is shown that there are infinitely many fixed
poles at negative integers arising solely from the V(s,u) term in the
complete Veneziano amplitude. This is at first sight very surprising
since these nonsense wrong signature poles are visually related to the
presence of the third double spectral functionll (p(s,u) in the spe-
cific case we are discussing) which is by construction absent from
the Veneziano model. One therefore must conclude that the third
spectral function is not a necessary but only a sufficient condition
for fixed poles to appear.

In Ref. 109 it is also shown that it 1s possible to modify the
V.M. in such a way as to kill all the fixed point singularities by add-
ing nonleading satellite terms to (II.44) only at the price of removing
completely V(s ,u).

As it is known, fixed poles conflict with unitarity so that their
presence implies a further violation of unitarity besides the ones dis-
cussed in Sec. II.E.

As a final comment, we notice that an analysis of the same
kind as the one briefly discussed before leads to very similf\flso?ﬂv)l—
sions in analyzing the V.M. in its Lorentz plane properties
and we refer to the original papers for a complete discussion of this
problem.

K. Miscellaneous Properties

In the previous sections we have discussed most of the better
understood properties of the V.M. Many are still, However, left out
and we shall just mention a few here without entering too much into
details.
a) Exchange degeneracy. It is rather easy to convince oneself that
the condition that certain channels are free of resonances demands
an exchange degeneracy in the V.M. (the argument is, essentially,
the same already given in Part I).
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First notice that, for linear trajectories, the slopes must be the
same or else there would be physical regions in the fixed angle limit
where the Veneziano amplitude

C(n - aj(s)) T(m - g(t)
Tp - ay(s) - a;(t)

ng(ai(s), a, ) = (11.92)

would tend to infinity. The intercepts, however, may be different.
Next, if we consider the I = 2 s-channel i = T amplitude

1

2
A(s,tw) = V) @ (6), @ ) - V) (6) - )

-V 6), a ) + V) @), o @) -

1 1
-Vi e (u),a @) -v.. @ ®), alu))
11%p f 117 o f (I1.93)

it is clear that we must have
ap(S) =q (s) (11.94)

in order to guarantee that there are no s-channel poles.

Similar considerations can be made for the other cases where
no direct-chanpel resonances are known. It has, however, been
pointed out that such a strict exchange degeneracy would, for
instance, imply the impossibility of nmZ scattering. Furthermore ex-
change degeneracy seems so far well obeyed by mesons but not so
much by baryons so that one may be forced to introduce satellites in
the V.M.

b) Parity doubling. Similar conclusions as previously obtained on
the need to introduce satellites are reached when one tries to avoid
the unpleasant feature of parity doubling in tTT,ﬁase of reaction pro-
cesses involving two or more spin particles.

c¢) Factorization. This is one of the properties of the V.M. that has
not been thoroughly investigated until recently. The most compre-
hensive analysis has been given by Fubini and Veneziano8® (see also
Ref. 118, 119) who considered the structure of the residue at each
pole by decomposing it into the minimum number of linearly independ-
ent terms which would, separately, be in a factorized form. This
decomposition is shown to be independent of the number of initial and
final lines (see Sec. II.M. for the discussion of the generalization of
the V.M. to the many point functions). The number of linearly inde-
pendent terms denote the degeneracy of the state and, essentially,
"count” the number of states one has to deal with. If §; =a +fn is
the position of the pole, the number of terms increases like expla/n].
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This explosive proliferation of states is attributed to the many body
nature of the problem. A further complication of the problem is repre-
sented by the appearance of ghost states connected with the difficulty
discussed in Sec. II.G.

The factorization procedure discussed in Ref. 85 appears as a
necessary preliminary step to the unitarization program attempted in
Ref. 84.

In a somewhat less sophisticated approach to the problem,
Freundl18) has shown that higher and higher order terms in the V.M.
are needed to ensure factorization of the parent Regge trajectory and
of the first few daughters.

d) Uniqueness. From the discussion of the previous sections it is
quite obvious that there can be no answer to the question of to what
extent the V.M. can provide a unique parametrization to a scattering
amplitude unless one makes very definite assumptions on what prop-
erties one wants to attribute to such an amplitude. For instance,
one may want to allow a superposition of infinitely many terms of a
Veneziano type but in such a way that there are no ghosts, no parity
doubling, no fixed poles and factorization is obeyed together with
crossing and Regge behavior. No such program, to the best of our
knowledge, has been shown to be feasible although many authors
have variously commented on the uniqueness of the Veneziano repre-
sentation.32),119),120),121) A fortiorl, the conclusionl22) that the
V.M. must be considered more fundamental than a model should be
taken with some reservation.

L. Remarks on the Applications of the V.M.

It seems essentially impossible to report in any simple and co-
herent form on all the a&)lications that have been given of the V.M.
These applications77) ' ,90),110),116),122),123 mainly deal with
i) predictions of coupling constants and comparison with experiment,
ii) low energy effects and connections with chiral symmetry, iii) ana-
lysis of scattering problems and high energy predictions.

The general panorama that emerges from the analysis of the
various applications of the V.M. is that an overwhelming majority
of results seem to lend support to the validity of the simple V.M. as
a lowest order approximation to nature in describing both low as well
as high energy effects (the former better than the latter). Words of
caution are, however, not absent!10),116) an4 thege appear espe-
cially relevant?10) in relation to the exciting Fossibﬂity of connec-
tions between the V.M. and chiral symmetry. 22) Furthermore, as
mentioned above, the largest number of successes obtain in the low
energy domain. Whereas this is not so surprising since violations of
unitarity are expected to play a major role especially at high
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energies, it also opens the question of which among the aspects of the
the V.M. is likely to be mostly responsible for the agreement that one
obtains with experiment. It would, clearly, be desirable that the
"dynamical” aspects of the V.M. should be the ones that are at work
and by dynamical we mean the duality aspect (@according to def. A of
Sec. 1.F.). Some doubts on this possibility are, however, cast by
the results of Ref. 124 where it is shown that all the predictions ob-
tained by Lovelacelzz) from the V.M. can essentially be reproduced
with a simple isobaric model which is crossing symmetric and, to
some extent, remodeled on the low energy expression that one de-
rives from the V.M. 125)
We conclude this section with an explicit example which is
very much instructive on how one can be deceived when drawing gen-
eral conclusions from a specific model. )
It has been recently shown by Martin starting from a dis-
persion relation approach, using some unitarity (positivity of the
spectral function) and applying crossing symmetry in a very smart
way, that the following inequalities hold for the s-wave of oy = Ty,

£, (3.205) > £,(.2134) > £,(2.9863) (11.95)

(the values in parenthesis are squared c.m. energies in units of mn3=1).
Furthermore, Martin's procedure also shows that the last inequality in
(I1.95) is a very tight one.

We can now ask ourselves what result we would get using the
V.M. since everything is now fixed.

If A° and A® are the I = 0, 2 isospin amplitudes in the s-chan-
nel, one has

AL, (s tu) = 8A° +3A°

1 1 1
o -Vll(otp(t), cxp(u)) —%[Vll(ap(S), u.p(t)) + Vll(ap(S),cxp(l(lI)I).]%)

Taking linear Regge trajectories and performing an expansion of (II.96)
up to terms of the order (s/mp"3 ? and partial wave projecting the £ =0
contribution in the s-channel, one obtains

f,(s) =c; + ¢y (58 - 16s) (1I1.97)

where ¢, and c, are given in terms of qD(O) and q'p(O) (c, >0). From
(I1.97) we find

fo(s,) - fols;) = 5c,(~s, + s.)(-(s, +s,) +3.2) (11.98)
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Using s, = .2134 and s, = 2.9863 we see that the last factor at the
r.h.s. of (II.98) reduces to .0003 which means that the rightmost
inequality derived by Martin (II.95) is actually satisfied with the
equality sign. This agreement between the prediction of the V.M.
and the results derived by Martin in a completely different context is
certainly striking and one may therefore wonder whether this agree-
ment is not the result of something more basic than the specific
model.

To show that this is so, let us write the most general crossing
symmetric amplitude that one can write in the second order of (s/mpz).
This is seen to be

A(s,t,u) =a +b(s® +t® +u®) + c(st + su +ut) =
=a+ (2b-c)[s? +12 +st-4(s + t)] (11.99)

where the second line follows from s +t + u =4, The £ = 0 partial
wave projection of (II.99) gives

£,(s) =a —%(Zb - o) +%(Zb - o)(5s® - 16s)  (11.100)

The above formula shows that the striking agreement of (II.98) with
(I1.95) holds for every model in which 2b - ¢ > 0 independent of any
specific detailed dynamical property of the model such as poles,
Regge behavior and so on and is a mere consequence of the assumed
crossing symmetry.

M. Generalizations of the V.M.

Very many generalizations of the V.M. have been proposed and
we can distinguish several different kinds of generalizations.

Aside from the modificaf)ions which are in the form of a general-
ized interference mode170 72 and from the work of Khuri,3 the sim-
plest kind of generalizations of the V.M. have usually been motivated
by the desire to improve the V.M. in some of its aspeets.

The work of Roskies®3) has been largely discussed already as
an attempt (see also Ref. 103) to incorporate analyticity and unitarity
in the V.M. without altering its structure.

In Ref. 92 (see also Ref, 127), it is shown that one can use a
superposition of the form

A(s,t) =z a, Vo (5.0) (I1.101)

r
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(where ng(s,t) is as defined in (II.13)) in order to achieve decoup-
ling of daughters without having to use constraint conditions of the
form (I1.34). The coefficients a, in (II.101) are chosen as to eli-
minate alternate trajectories and not to spoil the asymptotic Regge
behavior. This leads to the closed form

A(s,t) = B(-a(s), -a(t)) 31:'2['(!.(5), -a(t), -8;
-3 (a(s)+alt), &lls)+alt) - 1); % (11.102)

where B 1s the Euler beta function and ,F, is the generalized hyper-
geonietric series. The parameier § is given by

5 =%(4a’u® +3q + 1)

(where a(s) =a +0a's).

A somewhat formally analogous attitude is taken in Ref. 128 in
order to modify the large angle behavior of the V.M. which, as dis-
cussed in Sec. II.C, does not agree with experimental findings. The
form used in Ref. 128 is, however, very much different, in practice,
from the one of Ref. 92.

In order to remove the poles of the V.M. from the first to the
second sheet, Martint29 suggested treating (II.2), (II.3) as a dis-
tribution (see (II.31)). Accordingly, he wrote

1

V(als), at)) = [ o) Vixa(s), xalt)) dx  (11.103)

*m
where ¢(x) is an arbitrary meromorphic function of x, positive in the
interval xm+ 1 which vanishes at both ends of integration. In this
way, the positivity is retained (if present in the original Veneziano
amplitude) and the poles move to the second sheet. Regge behavior
is, however, lost. The form (II.103) represents thus an alternative
to Roskies' proposal (Sec. II.H) in which the appearance of ancestors
is traded for the loss of Regge behavior. A somewhat similar attitude
is taken by Huang.

In the context of a more radical modification, it has been
shown95) that a (crossing symmetrized) sum of terms proportional to

e (t)

-1 () AU+ 119 I
Als,t) = e 21-"1( 8 -bs; 1 -2 ;2)  (m.109)

has i) the correct analytic properties (cuts); ii) the poles at integer
values of ¢ spaced of two units (no need for killing of unwanted
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daughters); 1ii) positive residues at resonance provided only the para-
parameters a, b are positive; iv) Regge-like asymptotic behavior.
Also, a(t) can be assumed: v) to satisfy a dispersion relation such
that vi) the total width of the resonance is positive and vii) a(t) has
an asymptotic square root type behavior!9) so that the large angle
behavior is of the correct form. However, (II.104) has also cuts in
the angular momentum plane and its low energy behavior is very hard
to reconcile with Adler's self consistency condition contrary to what
happens for the V.l\/I.122

Another modification, in the form of an infinite product, leading
to nonlinear trajectories with Regge behavior and poles with polyno-
mial residues has been given by Coon.131) Also a more ambitious
program with the Mandelstam representation as a goal has been
suggested.

A triple product of gamma functions representation has been
suggested by Virasoro93) (see also Ref. 94). For the case of mmm = 7w,
this reads

I“(l —20.(5)]1_.{1 -zcc(t)) T‘{l ~20.(u})

As,t,u) =B

r{z - a(sz) - a(t) )I‘(2 = u(t% - c.(u))riz - a[u% - a(s})

(11.105)

In this representation the decoupling of odd daughters is auto-
matic, complete s,t,u crossing symmetry is displayed by one single
term, no fixed poles seem to appear, and furthermore, Eq. (II.105)
reduces to the Veneziano amplitude (II.2), (II.3) if the supplementary
condition (II.34) is imposed. Comparatively little attention has been
devoted to the Virasoro amplitude (see, however, Ref. 132) and, pro-
bably more work is needed because of its very appealing features.

It should, however, be noticed that the explicit asymptotic be-
havior of (IT.105) has not been investigated in detail in the case of
nonlinear trajectories and does not seem easy to reconcile with Regge
behavior. Also, the form (II.105) cannot be written in the form of an
infinite product (contrary to what happens in the case of the V.M.).
Finally, one can notice that if a{s) and/or a(t) are positive odd inte~
gers, (II.105) has a simple pole but no pole is present if all a(s), af(t)
and a(u) are positive integers. This 1s, again, in contrast té what
happens in the V.M. However, if (II.105) is multiplied by T'(2 -a(s)/
2-a(t)/2-a(u)/2) all the previous troubles disappear and furthermore
the original formula is essentially unmodified if the trajectory is
linear. A new set olfag?les is, however, introduced.

Mandelstam, finally, has given a generalization which em~
bodies both the Veneziano and the Virasoro forms as special cases.
This is in the form of a double integral
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v v
= ( 1-x L TS M IR
As,t,u) = [ dx dy-Ly{2 = y)} {x(Z i
- 13V -9 =
_{x +xz 1} a 2-0.(s) . 2 “(t)(z—x—y) 2 (u)
2 (11.106)
where the range of integration is
x<l,y<l,x+y>1 (I1.107)

and v, , V5, Vs are parameters that in limiting cases reproduce either
(I1.3) or (I1.105). 134)

In a totally different philosophy, Bardakci and Ruegg” on the
one hand and Virasoro!3%) on the other hand have generalized the
V.M. to the five point function by making use of an extension of the
integral representation (II.12} for the beta function. The result is

1 1 du, du
Vs(s,t,u)=[ [ 'i—_'i*:ai ul_l—o"12 uz_l_%‘3 ua_l_a“ uzl_a"s ugl_asl
0 0 i (I1.108)
where ¢, =a + oL’sl2 etc. (the indices labeling the corresponding
particles) and indices 1, j denote any two nonsuccessive integers
(counting 6 and 1 as equivalent). The variables vy satisfy the con-
straints

e
Us = u, (I1.109)

It can be checked that only three of the five equations (II.109)
are linearly independent so that there are only two effective integra-
tion variables in (II.108). The latter can then be rewritten as

o I-q l-g i TR
= B = - T Tl = 7] [ e
Vs (5,t,u) Io J‘g duy du, uy U (1 oy u,,,)
l-u, THoen -2-0
\\m) (1 -uy u,) 18 (I1.110)
1 Uy

This formula has simple poles in all channels and reggeizes
both in the single and double Regge limits in all channels. The appli-
cation of this model to determine coupling constants has proved
rather successful.,136) The results of Ref. 134, 135 have been further
extended_ to the general case of N point functions by variocus authors.
authors. 137) Much work seems, however, to be still needed on this
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subject both in a detailed analysis of the asymptotic behavior and to
extend these results to the case of particles with spin. The only
partial result so far reported in the latter direction refers to the case
of mm =+ S where S has arbitrary spin and parity. 138 We should also
mention that a generalization of the N point function to incorporate
isospin has also been discussed. 139)

A very ambitious program has been started by Kikkawa, Sakita
and Virasoro i1 in which the V.M. is used as an input to be
treated as a Born term. A technique based on an extensive use of
dual diagrams (both in the sense of projective geometry as well as in
the sense discussed in I.F) is introduced in which the contribution
of intermediate states is taken by means of Feynman-like diagrams.

The final aim in this approach is to obtain some sort of unitarity
corrections; it is proved, in fact, that the sum of these diagrams
gives rise to a trajectory which is no longer linear. The difficulties
associated with this program are, however formidable especially when
nonplanar diagrams (generating Regge cuts) are taken into account.

It is especially in the context of this attempt to unitarize the
Veneziano amplitude that the work of Fubini and Venezianass) on the
factorization properties seems very relevant. Only future investiga-
tion will, however, tell what will be the probabilities of success in
the development of such a program.
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REMARKS ON DIFFRACTION SCATTERINGt#

F. Zacharilasen
California Institute of Technology
Pasadena, California

I. Introduction

There exist at present, and have for several years, two entirely
different phenomenological descriptions of high-energy elastic scat-
tering (i.e., of diffraction scattering; and indeed these independent
phenomenologies apply to diffraction dissociation processes as well),
One of these is the Regge pole model; the other may conveniently be
called the "classical” model, and it really includes a class of models
which have in common a picture in which diffraction scattering is
simply the collision of two fuzzy round balls of a given finite radius.

Both models satisiy the requirements- that the total cross section
becomes constant at high energies, and in addition the forward elastic
amplitudes, in both cases, asymptotically become pure imaginary.
Experimentally, of course, constant total cross sections seem clearly
to be required, and the real parts of scattering amplitudes are certain-
ly much smaller than the imaginary parts, for high energies, and may
well disappear altogether in the truly asymptotic region. Hence both
of these facets of the two models are consistent with present data.

The fundamental difference between the two models lies in the
"shrinkage" of the diffraction peak: In the Regge case, the high-
energy elastic scattering amplitude T(s,t) has the form!

aP(t) -im & (t)
T(s,t) = L - (—S> 53
g ]

sinm a(t) 2

and hence the elastic differential cross section approaches

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969,

$Work supported in part by the U. S. Atomic Energy Commission
under Contract AT(11-1)-68 of the San Francisco Operations Office,
U. S. Atomic Energy Commission.
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2

do 1 (CLP (t)-1) log s/so
It — Ter ft) e (I.1)

S — -]

where
—ir onP(t)
f) =—Bl)__  lte
ginm af(t) 2 s,

cLP(t) is called the Pomeranchuk trajectory (we assume ap(0) = 1); s is,
as usual, the total center-of-mass energy squared and t is the invari-
ant momentum transfer. £f(t) is some function of t and s_ 1s some (ar-
bitrary) constant. 2

For small t, a4, t)-1~t aP’ (0), so that near forward directions

2a._(0) t log s/s
W@ e T e (1.2)

The cross section thus has an exponential forward peak in momentum
transfer, but the peak shrinks logarithmically with increasing energy.

The "classical" model, on the other hand, has simply the form
T(s,t) » -is £(t) and hence

d 1
—df — 1 lEWI° . (1.3)
s-—i@

At present, both of these models are phenomenological, in that
neither can be derived from any "fundamental” theory. One does not
know whether conventional field theory, or "S-matrix theory," or the
bootstrap theory, or anything else, leads to either (I.1), or to (I.3),
or to something else.

Experiment also does not, as yet, clearly distinguish between
the two models.2) It seems that mtp and 7p elastic scattering deve-
lop a saturated non-shrinking forward peak at high energies, and that
the size in momentum transfer of this saturated peak grows as the en-
ergy increases. The experimental differential cross section for m™p is
shown in Figure 2. In the case of pp scattering, for energies between
10 and 30 BeV (s = 20 to 60 BeV®) the same situation seems to prevail,
as is shown in Figure 1. At higher energies, however, from 30 up to
70 BeV (s = 60 to 140 BeV®) the forward peak in pp elastic scattering
seems to shrink again, and in fact if one fits the cross section with
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Fig. 2. Differential cross section for n_p elastic scattering.
From Ref. 2.

the form (I.2) in the range 0,008 < -t < 0.12 (BeV)®, one finds a slope
a.’ (0) = 0.40 + 0.09/(BeV)® .9) For pp elastic scattering, again a
non-shrinking peak appears, at energles s = 16 and 32 (BeV)? . (In
fact, here the peak may even anti-shrink a bit.) The cross section
is shown in Fig. 3. Elastic K+p and K p scattering has also been
measured at energies up to s = 27 (BeV)?; the cross section for X™p is
shown in Fig. 4. Here again, the forward peak anti-shrinks some-
what.

The experimental evidence, therefore, on the face of it would
seem to favor the form (I.3). However, the data is still all at finite
energy, and it may still be possible to fit it with the Regge model, if
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Fig. 4. Differential cross section for K_p elastic scattering.
From Ref. 2.

one allows a.(t) to be sufficiently flat, if one adds in some other
Regge trajectories, and if one perhaps allows for some other terms
such as Regge cuts,

The motivation for the Regge pole model is to put diffraction
scattering on the same fobting as non-elastic (e.g., charge exchange)
two body processes, which do seem to be well described by forms
like (1) (but, of course, with different trajectories a(t)).

The "rules” of Regge theory, briefly, are as follows A

Each Regge trajectory is associated with a glven channel (i.e.,
a given set of quantum numbers such as isospin, strangeness, etc.),
and in addition each trajectory is associated with a given signature
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{even or odd). In any two body process in which some channel can be
exchanged, each trajectory associated with that channel contributes,
at high energy, a term

—im e (t)
2

t
sin o (t)

aft)[lxe

(s/so) (I.4)

to the amplitude. (Here the £ is chosen according to whether the tra-
jectory carries even or odd signature.)

Furthermore, at any positive value t at which an even (odd) sig-
nature trajectory & (t) takes on an even (odd) integer value (half-inte-
ger for fermion channels), then there is a particle in the associated
channel of that integer spin and mass /t; i.e., a(M?) =J. These par-
ticles are said to lie on the trajectory a(t).

Now, to incorporate diffraction scattering into the general Regge
picture, one invents a trajectory aP(t) , called the Pomeranchuk tra-
jectory, of even signature and associated with the vacuum channel
(i.e., the channel with no quantum numbers). It is this channel
which is exchanged in diffrattion, or diffraction dissociation, pro-
cesses. The choice op (0) = 1 is usually (though not always) made,
because, using (I.4), its contribution to the elastic scattering ampli-
tude at t = 0 and large s is then

T(s,t) = - 1B(0)/2 (s/so) g (I.5)

that is, pure imaginary and proportional to s. This insures that, by
the optical theorem, orp(s) - B(0)/2s, = const. at large s. Even sig-
nature is required to avoid the existence of a massless spiln one par-
ticle.

The existence of the trajectory ap(t) then leads directly to (1).

We may next ask what particles lie on ap(t). These will be
particles with no quantum numbers and spins of ot, 2+, 4"', ... ete.,
The 07 particle would occur at t< 0, i.e., would have imaginary
mass, since a(0) = 1; hence, it is presumably absent. Candidates for
the 2% particles might be £,(1260), or £, (1515).

Other Regge trajectories seem experimente)illy to be very closely
straight lines with slopes near one per (BeV)? ) ap(t) is also near-
ly straight, its slope would be ~ 0.63 if f, were on it, or~ 0.43 if
f ’ were on it.

Now if ap (t) really has a slope of this order, then the form (I.1)
cannot by itself fit the high-energy elastic scattering data. It is be-
lieved, however, that there is at least one other trajectory, called the
P’, in the vacuum channel, and at the energies available it will also
contribute to the elastic amplitude. In addition, other trajectories,
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such as p, can have effects too. The form (1), then, while valid at
every large s, is too simple at presently available energies, and
should be replaced by

—im ap (t)

BP(t) aP(t) l+e
e @ &) Tz

+ (same with P - P’)
+ (same with P -+ p, + opposite signature).

‘With this amplitude, and appropriate choices of the functions B(t), it
is possible to fit all elastic scattering data.4) However, in order to
fit the lack of observed shrinkage, a small slope for P is required, in
the vicinity of e’ (0) & 0.3 or less .4) Tnis corresponds more closely
to the situation where fo' lies on P than where f0 lies on P, Presu-
mably, then, f_ lies on P’, and if this is the case, and if G.P' (0)~%,
the slope of the P’ is 0.395/(BeV)® which is close to the slopes of
other Regge trajectories. There is a minor difficulty with this assign-
ment, however. At t =0, the P must be a pure SU(3) singlet, since
it is associated with the vacuum channel. The fo' , however, seems
to be a mixture of singlet and octet with a considerable amount of
octet in it. This requires the mixing angle to vary considerably be-
tweent =0 and t = (1515 BeV)?, which is certainly not impossible,
but not wholly pleasant either.

One then ends up with a situation in which all Regge poles have
similar slopes (~ 1/(BeV)?) except P, which has a much smaller slope
(< 0.3/(BeV)?; perhaps ~ 0.1/(BeV)?).

To summarize, it is possible to fit the elastic cross sections
with the Regge pole model, at the price (which violates the original
purpose of the Regge model) of making the P rather peculiar--namely
a lot flatter--than all other known trajectories.

Finally, it is also important to keep in mind the fact that all
these fits are quite fuzzy. There are so many parameters available
that none of them are very precisely fixed by the data, and by the
same token, it is unlikely that enough data will ever exist to eliminate
the Regge model with 100% certainty. This is reflected in the fact
that a large range of slopes for the Pomeranchuk trajectory have been
used in different fits to the same data, varying all the way from 0 to
0.7/(BeV)?.

The motivation for the classical model is entirely the opposite
from that of the Regge model. Whereas one may well accept the Regge
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description of non-diffractive processes, one abandons the Pomeran-
chuk trajectory and ascribes elastic scattering, and diffraction disso-
clation reactions, to an entirely different mechanism.

Let us outline the arguments used to derive the form (3); as will
be seen, these are very much based on a simple physical picture of
e’lementgs’y particles, and have as a result a considerable intuitive
appeal.> - ' : ‘ ‘

" We write, at large s,

d 1 ‘
d—f,=16"sa |T(s.t)|® . (1.6)

“ The amplitude T(s,t) has a partial wave expansion

T(sit) = 3 (24+1) P, (cos 0) T(s,L) (1.7
where, for large s, 218 JL(S)
- n,(s) e -1
T(s,) = - 167 —= T . (I.8)

It ié éoiiiienient ‘tb,rewr,,i,t'e Eq -.(I. 7) ih the iinpact parameter fofm o 6).

(s 1) =2 J‘ bdb J_(b/~t) T(s ,2) (1.9)
o !

where (24+1) =/s b.

Now what happens physically at large s? Intuitively, we might
expect the phase shift § to vanish, and the absorption 1 to depend
only on b, the impact parameter, and not explicitly on the energy.
Thus we have

T(s, L) = - 16n”—r'-(}—’21u (1.10)
and hence
T(s,t) = 4mis [ bdb ] (b/-t) () - 1)
S :
==1s ) (1.1)
where

£(t) = 4n [ bdb ]o(b/-t) 1 -n) . (1.12)
o]
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Hence we have, at large s, the form

do 1 2 :
et | £(t)] : (1.13)

This form really depends only on the belief that n is a function
just of b. Physically, this follows if one thinks of the scattering as
if it were from a particle made up of material which absorbs a constant
amount per unit volume, and has some well-defined geometrical shape
which 1s independent of the energy of the scattering particle.

A further hint that (I.11) is the proper asymptotic form is pro-
vided by studies of the high-energy limit of quantum electrodynamics
(quantum electrodynamics is, after all, the source of all of our beliefs
about everything), where it is c]aimedf) that -is f(t) is indeed found
to hold. (However, something must alter this form in quantum elec-
trodynamics if t is positive, as is explained in detail in the following
section of these lectures.)

Now, the question arises, how different are the Regge and
"classical” models really? Are they compatible with each other ?

Superficially, the answer is certainly yes. The Pomeranchuk
Regge pole term in the scattering amplitude looks like

-im a_(t)
Bpt) Bt (1, B

T(s,t) iy um (S/So) = ] (I.14)

and this is supposed to dominate the amplitude at large s. Now if
u,P(t) - 1, for all t, we have

T(s,t) =~ -1 B (1)/2 (s/5 ) (1.15)

so that if we identify
f(t) = BP(‘c)/Zs0 (I.16)

we have precisely the "classical” form. Thus it seems that the clas-
sical model is simply a special case of the Regge theory, one in which
the Pomeranchuk trajectory is precisely flat. This would also mean
that no particles lie on ocP(t) , so that the embarrassment of trying to
decide whether fj, or fo’ , or whatever, is on the Pomeranchuk trajec-
tory disappears.
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This would appear to be a happy resolution of the conflict be-
tween the two models, but unfortunately it's too easy. It turns out,
as we'll see in the following section, that the "classical" result
T(s,t) » -1s f(t) is very hard to reconcile with the general principles of
field theory (or S-matrix theory if you prefer), so that a flat Pomeran-
chon is not allowed.

One is thus faced with a conflict: The "classical" model fits
the data better, and is intuitively very appealing, but (almost) con-
tradicts general principle, while the Regge model satisfies all general
principles, but isn't anywhere near as good a phenomenological des~
cription of the experimental situation, unless rather peculiar behavior
is assigned to the Pomeranchon.

In conclusion, and for the sake of completeness, we should at
least mention the existence of a third class of models, which lies
somewhere between the two we have been discussing so far. These
are the so-called hybrid models. On the simplest level, they consist
merely of saying that the scattering amplitude is the sum of the dif-
fraction scattering of the "classical" model plus some (non-Pomeran-
chuk) Regge poles, such as the P/, Thus

B, ) —im Gp (t) ap, (t)
T(s,t) » - s £(t) + ——b Lite =
g sinm o ' (t) 2 s
P o]
+ (possibly other Regge poles) J (1.17)

Clearly, such models still abandon the truly high-energy behavior
to the simple form (I.11). The additional Regge terms are only present
as finite energy corrections.

On a more sophisticated level, the hybrid models attempt to
unitarize the expression (I.17). In effect, this amounts to allowing
repeated Regge "exchanges" in the scattering amplitude. As is well
known, this generates Regge cuts, soone now has an amplitude with
-is f(t), with assorted Regge poles, and with Regge cuts as well.
Evidently, one now has a considerable amount of freedom in fitting
data, and so it is perhaps not surprising that the hybrid models agree
reasonably well with quite a broad range of data. (For further detalls,
and in particular for a list of references, see Ref. 3.) Nevertheless,
the asymptotic amplitude is still just given by (I.11). If one attempts
to replace -is f(t) by a Pomeranchon with a large (~ 1/(BeV)?) slope,
the arithmetic of the hybrid models may still be carried through, and
one now has a normal Regge model but with Regge cuts from repeated
Regge pole exchange included too. Now, however, the agreement with
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experiment is much less impressive ~-- in other words, the addition
of Regge cuts to the "normal” Regge model is not enough to save the
experimental situation.

To conclude this introductory section, we shall henceforth ac-
cept the experimental preference for something like the simple -is f(t)
form as convincing, and therefore we shall next concern ourselves
with its theoretical implications.

II. Compatibility With Unitarity and Analyticity
As we have seen, in many ways, both experimental and theoret-
ical, an appealing model is that an elastic amplitude approaches

T(s,t) - -is £(t) (I1.1)

at large s and fixed (negative) t. Now on rather general grounds we
expect T(s,t) to have very restrictive analyticity properties, which
suggest that the form (II.1) should apply outside the physical (t < 0)
region for the scattering as well, and in fact should continue to hold
for positive t. If (II.1) holds beyond the first threshold in the t~chan-
nel (presumably at t = 4m;?), then t-channel unitarity is violated, as
was first noticed by Gribov. 1

To understand Gribov's argument, and to incorporate what we be-
believe to be the analyticity properties of T(s,t), let us write the am-
plitude at large s in the form

T(s,8) = T Gx, 1) + T (=, 1) (I.2)
where x =1+ s/thB , and where
+ A Alz,t
T ,t) =a +bx +—0 LB (I.3)
t t 22 (z -x)
xo(t) t

Here, a and b are arbitrary functions of t. We choose to use Xi and t
as varlables instead of s and t; we believe that T(s,t) is, at large s,
symmetric in the interchange of s and u and hence even in x; (recall

= - Zq,cEl (I -%x), u=- th3 (1 + x{)); we make the assumption that
T(s,t) is an analytic function of s (or x¢) for fixed t, with the usual
cuts, and we subtract the dispersion relation (II.3) twice to allow for
asymptotic behavior in s like that given by (II.1).

Now let us suppose A(z,t) = z F(t) as z - ». Then we have, as
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x, F(t) % (t) - x
T+(xt,t) ~a+bx, - "ﬁ log( °Xom t) (1. 4)

and hence, as s =+ o ,

x, F(t) x, F(t)
log (- xt/xo) +

T(s,t) - log (xt/xo)

= ixt F(t) =1 s/ths F(t) = - is f(t) i (I1.5)

Thus the required asymptotic form is obtained, and obtained, we note,
for all t.

In particular, it applies for 4mrr2 < t < first inelastic threshold.
In this regilon, unitarity requires

1 1 3 3 2
0(1 -x® -x,2 -x,7-2%x %, %X,)
Im T(s,t) = oft) [dx, [ dx, L 2 2=
I i VI - -x,% -x,° - 2x %, X,
*
T (8,, t) T(sg, t) ., (11.6)

where p(t) = = 1/32m2 Yt - 4m? /t, and where x, , = l+s, »/2q°.
This relation is valid in the physical region for the t-channel; that is ,
for -1<x, %x,, X, < 1. It may, however, be continued out of this re-
glon in to the region where x > 1, and thus into the region where s is
large. To carry out the continuation, note the identity

8(l -~ x®-x,%- %7+ 2x %, x,)

=% ; (24+1) P, ) P, be;) P, (co) .
(I1.7)

With this relation, with Eqgs. (II.2) and (II.3), and with the well-
known fact that

e R D ‘
Jl X - Xy2 - X7+ 2X Xy X,

1
2 [ o5 R =Qk) (11.8)
-1
it 1s easy to show that the unitarity relation (II.6) may be rewritten

Im T(s,t) = &(t) +T“—T o) [ dzy [ dz, Alz; 1) Alz, 1)
1 1

%: (2L+1) (P, &) + P, (-x) Q, (z1) Q,(z5) . (11.9)
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The function 5(t) appears due to the fact that the dispersion relation
for T(s,t) was twice subtracted, and can easily be expressed in terms
of a(t). Since a(t) was arbitrary, so is aft).

Finally, we note another identity, namely:

1 © e(Z = Z_)}
2 (2+1) P, ) Q, (21) Q, (22) = j‘ —r ;
4 1 \}z2+z19+z23 -1-2z, 2z, z
(I1.10)
Here z,, is the largest root of the denominator:
z =2, 2, +Vz,.3— Isza— 1.s
Making use of this, we have
-] -]
1
mre,y =2 [ LEd) g, Lokt (Ir.11)
my oz-x Ty z+x
where
0z - = }
plz.1) -2 p(t) ‘” dz, dz, il ol - a_ 1-2z2z z, AlE ) Azt
(I1.12)

Now, if the asymptotic form (II.1) is to hold, we should expect
p(z,t) » z Im F(t) (11.13)
as z » . On the other hand, we know
Alz,t) » z F(t) (11.14)
so we can also calculate how p(z,t) in fact behaves from (II.12).
large z, the dominant contribution to the integral in (11.12) comes from

large z, and z,, so the asymptotic form (II.14) can be used. We then
have

2/22, A
o) P OEOR [ day [ an % (22, = %)
~2 o0 P 2 J? dz:
p(t) (F(t))? 2z log z (11.15)

311



DIFFRACTION SCATTERING 177

We are thus led to a contradiction; hence the assumed asymptotic be-
havior is inconsistent with t-channel unitarity.

The same argument may be rephrased, in what is perhaps a more
transparent way, in terms of t-channel partial waves. From (II.3) we
find that the partial wave amplitude is

1
T =8 [ ax, T bt P )
-1

1
= [aft) - dz> 6
< xg(t) B Lo

+%<o(t) -= j A—(z—'ﬁ dz) % j (z,t)QL(z) dz .
" x, X, {t) (1. 16)

(Note that if A(z,t) - z F(t), the separate terms on the right-hand side
are singular at £ = 0, 1, but the entire combination is nevertheless
finite.)

The last term on the right-hand side of (II.16) can be analyti-
cally continued into the complex £ plane. The Tt partial wave ampli-
tude is thus a smooth piece, plus Kronecker deltas 6;, and §;;. The
coefficients of the Kronecker delta depend on the subtraction constants
a and b; the purely Regge theory corresponds to the case where a and
b are such as to cancel the integrals in the coefficients of the Kro-
necker deltas, leaving a purely smooth function of £: In pure Reg-
geism,

T+(t,a)=1% ] AE1Q,(z) dz . (I1.17)

x,(t)

Now, for our case, we want to assume A(z,t) » z F(t) as 2 - ». Then
near £ =1, we find

ren=E0 Lo (11.18)

Exactly at £ = 1, on the other hand, T is finite:
+
T (t,1) =% blt) ! (I1.19)

Now let's impose t-channel elastic unitarity. This says that for 4m1_r’3
< t < inelastic threshold,
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+ ST + + * ok
T (t,2) =T (£,4) =21p{t) T (,2) T (t,.2 ) (I1.20)

for any complex 4. Near £ = 1, the left-hand side is ~ 1/4-1, but the
right-hand side is ~ {(1/¢-1)2. Even though this form for T is not valid
exactly at 4 =1, it is valid arbitrarily close to it, so there is a con-
tradiction.

The physics here is exactly the same as that in Gribov's argu-
ment, and in words, is expressed by saying that fixed poles in £
(viz., 1/4-1) are incompatible with unitarity.z) The fact that the pole
is not strictly present (because of (I1.19)) is not really relevant to the
argument.

In any event, we are faced with a paradox. The form (II.1) is
incompatible with general principles -- if it holds not only for t< 0
but also for £t > 4m_*. How can one escape the difficulty? One way
is to say that som&low the form (I1.1) fails at t = dm_®. For example,
a Regge cut could pass through 1 att = 4m,T3 and take over the asymp-
totic behavior for this and larger values of £.2) The difficulty with
this is that any sign of this cut is not present experimentally; fur-
thermore, such cuts would have to conveniently appear at each t-
channel threshold.

Another possibility is that in the limit s -+ « the analyticity prop-
erties of T(s,t) fail, so that, for example, f(t) is replaced by
£(t) 8(dm,® - t). Here the difficulty is that no model with this feature
has been constructed, and it may in fact be impossible to do so.

An altogether more pleasant way out of Gribov's difficulty is the
following. 3

It 1s well known that a Regge trajectory a(t) has branch points in
t at physical thresholds of all channels to which the trajectory couples.
It may be, however, that every trajectory has a branch point att =0
as well, and that each trajectory 1is real only between t = 0 and the
lowest available threshold, for the following reason.

In potential theory, when two Regge trajectories a(t) and a, (t)
collide (that is, when there is a value t, such thata(t;) = oy (t;)),
then hoth trajectories develop a square root branch point at t = t, 4
Let us suppose this is also true in the relativistic theory. If a tra-
jectory a(t) collides with a set of trajectories a;(t) at values t =ty
(that is, if a(ti) = qi(ti)) , then o,(t) has square root branch point at
each t,, so that a(t) has a set of singularities like zi: Ci \ft - ti .
A Regge cut is just a continuous superposition of Regge poles; hence
if a trajectory a(t) collides with a Regge cut we may plausibly antici-
pate that a.(t) has a continuous set of singularities of the form
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t

o]
[ o) vi-t7 at’ ,

where ty 1s the value of t at which a,(t) collides with the leading edge
of the cut.

Now any Regge trajectory, when coupled with the Pomeranchon
aP(t), generates a Regge cut, and if cx,r( =1 the trajectory crosses
the leading edge of this cut at t = 0. 5 Therefore , we expect any
Regge trajectory to develop a singularity at t = 0 of the form

t
o

[ oceH/E-t at’

If C(t’) behaves like any integer power (t')n near t’ = 0, then the
singularity in a(t) is like /t ol , L.e., a square root branch point.

It is interesting to note that attempts to calculate a Regge tra-
jectory dynamically, using methods which are sufficiently sophisti-
cated to generate Regge cuts, al)so seem to yleld the result that the
trajectory is complex for t< 0.

For the understanding of elastic scattering the left-hand cut in
a trajectory can have great significance. For suppose the Pomeran-
chuk trajectory ap (t) has a square root branch point at t = 0, so that

aP(t) =1+/t glt) ,
and suppose g(t) is analytic with only the usual right-hand cut in t.
Then gf(t) is real for t < 4m|.r . and hence Re °P (t) = 1 precisely for
t< 0;1.e.,
N = +
o ) =1+1Im %, (t)

for t < 0. Then the usual Regge pole theory tells us that, at large s
and negative t, the contribution of the Pomeranchon itself approaches

18p (t) 1Im c,P(t) log s/so l—en Im ap (¢
T(s.t) - sinh 1 Im a. (t) (S/S Ve ( 2
i Im a. (t) log s/s
= -1s £ft) e E o (I.21)

where
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I (t)
P(t) eTr m G.P

ft) = (11.22)

m Im onp(t) - Im c,P(t)
e -e

To this, of course, must be added the contribution of the cut with
which the pole collided. This is not precisely of the form (II.1);
however, the resulting differential cross section is still given by

dU o 2
at 161'1' If(t)l

so that no shrinkage of diffraction peaks exists. On the other hand,
since Im ap(t) #O0fort> 4 Gribov's paradox is resolved.
Incidentally, if Im cxm}-{) Ct (C > 0), then from (I1.22) we have

Bp(t)
flt)y » - ——
(o]

2nCt
e

for large negative t. Thus we find that an exponential behavior for f(t)
is consistent with only a slow variation of BP(t).

One further constraint follows from t-channel unitarity, and that
is the following. The partial wave unitarity relation, for complex 1,
and in the t-channel elastic region, appears in Eq. (II.20). This uni-
tarity equation has a pole on both sides, att = G‘P (t). If we equate the
regidues of this pole, we obtain

* *
1l=21p(t) T (t, % (t)) . (I1.23)

Now one part of T(s,t) is given by (II.21), and this contributes to
T(t,2) a term

P(t]
T, L) = 0 (I1.24)
where
Gp ®
5 Tlep®) +1) [ q? Bp (t)
Bplt) = zf I‘(o, ® +%) 'E.'o— 2 a:P'{t} ¥1) (.29

* *
For small Im o _(t), this term will dominate T (t, ap (t)). Thus we ob-
tain the result that
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- %
Bp ()
1 =21 pft) e=m—mm—= .
t) —o (L
!J'.P( ) o (t)

or
Im a..(t) = p(t) éP(t) 2 (11. 26)

and this 1s valid if Im g.,(t) is small, in particular near threshold .7)
Unfortunately, we learn nothing from t-channel unitarity about Im txAP(t),
or £(t), for t < 0, which is the region of primary interest for us.

This pretty much exhausts what we can get from t-channel uni-
tarity, and we must turn to s-channel unitarity for further information.

The first questionwhich arises 1s whether the form (II.21) is
compatible with s~channel unitarity. It i1s not easy to answer this
question clearly, since at large s, s-channel unitarity is highly in-
elastic and hence is quite complicated. It 1s necessary to assume a
model for high energy n-particle production amplitudes in order to test
(I1.21). The most natural such model to take is the multi~Regge pole
model,s) in which the amplitude for n particle production is written

512\% (t1) [523\ %2 (t5)
TZ -n =f (tl) R(t1) ('_s.— Bz (t]_ ltg) .R(tg) T) e

o] o)
<,"n—l(tn—l)
n-1l,n
ceoRE ) C~—~—*—So ) Boo1 o) (11.27)
where ‘ DR ey
1+e t
REt) =2 oinT ale) '
where
- JERY-|
t, = (a; - p) §
where

2 2
Sy ,041 = @ T 9yy) )

and where the momenta for the process 2 - n are labelled p + p’ —
g; +qg + ... +qy, as shown in Pigure 5. The form (II.27) is,
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Fig. 5. Multi-Regge graph describing the process p + p’ =
q t ... +'qn 5

according to the multi-Regge model, valid when all 'ci are small and all
palr energles sy, 4] are large.

The multi-Regge form, assuming that it is valid over all of
phase space, and with certain assumptions about the behavior of the
Bi(ti_l . t;), has been used to test s-channel unitarity; and within
these assumptions the form given in (II.21) is inconsistent when all
04(t;) are chosen to be gy (t;) with Op (0) =1 J

However, the authors of Ref. 9 point out that several things
might invalidate their result. Among these is the possibility that the
Pomeranchuk trajectory cannot be dealt with by itself, without also
including the effects of its assoclated 4 -plane cut. Our Pomeranchuk
trajectory has a non-zero imaginary part for negative t only because of
the existence of its associated cut. Without the cut, a,(t) = 1 for all
t, which violates t-channel unitarity as well'as s-c¢hannel unitarity.
Thus in our case the Y-plane cut is inseparable from the trajectory
itself, and we may hope that everything will in fact turn out to be
consistent with s—channel unitarity, when the cut is included
too.

An additional possibility is that for some as yet entirely un-
understood reason, there is a rule that the Pomeranchuk trajectory
cannot be exchanged more than once in the multi-Regge model. If this
were the case, the calculation in Ref. 9 is clearly irrelevant. It is
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interesting that the existing experimental evidence seems to support
such a rule.10

We therefore conclude that a Pomeranchuk Regge trajectory,
whose real part is identically one for t < 0 { but whose imaginary part
varies) can be consistent with all known requirements.

The next question is, how do we calculate the functions
Im c,P(t) and f(t) appearing in Eq. (IT.21)? At present, there is no
clean way to do this, but certain approximate methods do exist which
at least beginto answer part of this question, and we shall turn to
these next.

III. Calculations of f(t)

We learned in the last section that the asymptotic form
T - - is f(t) was not allowed, but that the modified form given in Eq.
(I1.21) was. Evidently, if Im 0. is small, the first form will be a good
approximation in the t < 0 region.

If we assume, then, this asymptotic behavior, can we calculate
£(t) and/or Im o (t) from anything? The first source of information on
these functions is s-channel unitarity, and we shall begin with a dis-
cussion of this.

Let us recapitulate our choice of normalization. The scattering
amplitude T(s,t) is chosen so that, at large s,

g—f=ﬁ IT—(S'—")IQ (II1. 1)
and s-channel unitarity then reads, at large s and neéaﬂve t,
Im T(s,t) = (Im T(s ’t))inelastic
1 02t ty+2t ty+ 2ty to-tP -t Bt
" 16n7s N2t +2 b+ 2t b= - 2 - 1 i
T(s,t,) T (s,t,) . (111. 2)
Here, (Im T) refers to the contribution to Im T of all inelastic

intermediate s?a?es fn the unitarity sum. The optical theorem relates
Im T(s,o0) to the total cross section: Again for large s,

Im T(s,0) = - s cT(s) . (111.3)

Finally let us write the partial wave expansion
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T(s,t) =) (2¢+1) Py (cos 8) T(s,L) (111.4)
2

where the partial wave amplitude is

: 218, (s) ;
s ) =-16nE e F-n/a . (111.5)

So much for normalizations. Now let us assume that

i Im at) log s/s0
T(s,t) » ~ is f(t) e + cut contribution. (111.6)

as s = », t fixed and negative. Thus

g—f - ﬁ | £t)]? (111.7)
and, since
Im T(s,t) = - s £(t) cos (Im a(t) log s/so) (111.8)
we have
a.5(s) - £(0) . (1i1.9)

Now let us insert our ansatz into s-channel unitarity, Eq. (III.2).
We have, ignoring for the moment the cut contribution,

s f(t) cos (Im a(t) log S/SO) = - (Im T(s,t))i

nelastic ‘
s dty dt, 1(im aft,) - Im alt,)) log s/s0
+ T6n2 J‘.r e — f(tl) f(tz) e i B
A (I11.10)
If we furthermore assume that Im a(t) is small for t < 0, and that
(Im T(S't))inelastic - =5 fo(t) + 0(Im q,(t)) (111.11)
then we get, approximately,
£t) = £,0) + 5= [f — £(t,) £(t,) + 0(Im a(t)) . (II1.12)

This equation has, of course, been written down many times beforel}
(apart from the +0(Im o.(t))). But while it looks attractive, it obviously
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does not solve anything but merely moves the difficulties into fo{t) :
or, rather, into (Im T)inelastic' Some theoretical models for £, will
be discussed later, but before doing that, it may be of interest to use
Eq. (III.12) and experimental knowledge of f(t) to find what experiment
says fo(t) looks like.

The best available high energy elastic data is for pp scattering;
the experimental results are shown in Fig. 1.2) 1 principle, one can
use Eq. (III.7) and this data to extract f(t); however, this is possible
only if the experimental data are truly from the asymptotic region.
From the figure, it is clear that at larger values of t, dg/dt is still
s-dependent, so if our assumptions are at all valid, at these larger
t's one 1s not yet asymptotic. For small t, on the other hand, no s-
dependence is evident, so here one may hope Eq. (III.7) applies. Out
tot~ - 2 (BeV)?, then, we can (hopefully) get £(t) from the data, and
hence f(t) from Eq. (III.12). These two functions are displayed in
Fig. 6. The crucial thing to notice is that f;(t) changes sign near t~
- 0.7 (BeV)®; this feature is a consequence of the rapid falloff of £(t),
and results from the fact that the integral in Eq. (III.12) cannot fall
as fast as f itself, so that it eventually overtakes f, thereby making f,
negative. The behavior of f, for larger (negative) t is, as mentioned
earlier, unreliable because the data are not yet asymptotie. (A method
of extracting the truly asymptotic do/dt from measured do/dt for large
but not asymptotic s would obviously be of great value.)

An additional way of comparing Eq. (III.12) with experiment is
worth mentioning at this point. We had found o = f(0). Equation
(TI1.12) allows us to break up or into the elastic and inelastic total
cross sections, by writing

= +
Op cT(elastic) cT(inelastic) (111.13)
and we have

cT(inelastic) = fo(O) (TII.14)

while

1 dt, dt, f(t,) f(t;)
) (IT1. 15)

cT(elastic) = <1 o =

Any theoretical model for f,, together with a solution of (111.12), then
permits the prediction not only of do/dt but also of oqlelastic)/o..
This ratio is well measured in both pp and mp scattering; the results
are 0.24 + 0.01 for ppand 0.16 + 0,01 for mp.

t=0
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Fig. 6. The functions £(t} and f,(t), calculated from the pp
elastic data of J. V. Allaby et al, Physics Letters 28B,
67 (1968), at P = 19-3 (Bev)® .
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There 1s a model due to Van Hove based on Eq. (III.12), which
it may be of interest to describe .3) This model assumes , somewhat
arbitrarily, that fo is simply an exponential:

_ At
£() =B e

(111.186)
Since this f, has no sign change, we know already that it cannot fit
the experimental data; nevertheless, it is amusing to carry out the
solution of Eq. (III.12) for this case.

Let's try a solution for f(t) of the form

@ An‘t
ft)= 2, B_e , (I11.17)
n
n=1
We substitute this in Eq. (III.12), and note that

di, dt, A LHA b (AnAm/An+A it

"
IJ—“— e _An+Ame . (u1.18)
Thus we have
© At ©« BB (AA /A+A )t
n _ At 1 n m nm n m
Z_: Bpe =B, el 47 E_ e o .(I11.19)
n=1 n,m=1 "n"m
Evidently this is solved by
m An—m
L T A =A,/n (I11.20)
m n-m
and
n-1 B B n-1
_ 1 m n-m __1 m(n-m)
By = T6n E A +A 16w A, “~ n S Sl - (1. 21)
m=1 n m 1 m=1
Let us now define
B = (16m A /n) C_ . (111.22)

Then
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n & "m Tn-m
and
£(t) = L6m A, Z Sn gt/
Define
An,tx

\nC
G(X)ZT

so that f(t) = 16m A; G(1). Now laplace transform G(x):

@ Cn

=° =-SX = . n_
L(s) j(;e Gx) dx n§=:1 TeowyS R

Next define

© C

- ___"n___ _n-At/s
L(s,y)—rE1 sta /s ¥ : 3

Then L(s) = L{s,1) and

3 b n-A, t/s-1 -1 -At/s
<. 1 = 1 = 1
3y (s,y) n§=:l C,v y

]
Now F(y) 1s easy to evaluate; we have F(y) = 2 Cn y?
(111.23), we see that n=1

(F(y)® -Fly)+C, y=0
or

Fly)=%+%.,/1-4C, v .

F(y).

(111.23)

(I11.24)

(111.25)

(111.26)

(111.27)

(II1.24)

and, using

(111. 25)

(1I1. 26)

Since F(0) = 0, we must take the negative root. We c¢an now integrate

the differential equation (IiI.24), and we find
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1
L) =L, 1) =5 [ 4y’ )7 TAYE o /T v, e
o]

Finally, we must invert the Laplace transform to get G(x):

1 Cctiw o
G =z [ L&e  dx; (111. 28)
c-le
then
o %
ft) =G@) =8, [ L (1-/1-4C, y)I (2/Atlogy") .
oY @ (111.29)

This solves our problem. We have evaluated f(t), and hence do/dt,
for all t. In particular, att =0, Eq. (III.29) ylelds the result that

1+,/1-4 G,
or = £(0) = 16mA, {1 -/T-4C, +5logC, ————— ) .
1-/1-340,
(111, 30)
We also have, of course, oT(inelastic) =B, =16m A, C,. Hence,
gT(elast.(c) Ny GT(inelastlc)
o7 R
Cy
=1- Tr T (111.31)

1-/1-4C, +%1°901TTIT_

1

The right-hand side takes on its maximum value at C, =1 (note, in
fact, that the entire solution fails if C, > %; we shall see the physical
reasons for this later), and this value is 0.2. Thus we have the re-
sult that oplelastic)/op < 0 .2.5) This is contradicted by the pp data;
however, we already know that this model cannot explain the experi-
ments because it has no sign change in fo(t) .

Another way to see the disagreement with experiment is to note
that the data suggests, at the very smallest t, a falloff in do/dt like
exp (10t). Thus we expect A, ~ 5/(BeV)® . However, because of our
restriction that G, <%, we then get too small a value of £(0), and
hence of (do/dt),—y, to fit the experimental value of 90 mb/(BeV)? (or,
in more sensible units, of 225/(BeV)*).
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A final remark of interest in the Van Hove model is that the
asymptotic form of f(t) for large t comes out, from (III.29), to be

Jlog £ C, -2,/-A,t log & C,
ft) — 1l6m —{:a-—— e x (II1.32)

t—-

This behavior f{t)~ 1/t e_“/——t is a faster falloff than seems indicated
by the data, wh}ch looks more like f(t)~ t™ . (In fact, a model due to
Chou and Yang4 suggests that f(t) ~ (F(t))® where F(t) is the proton
electromagnetic form factor. We will return to this in more detail
later.) However, aswe have already indicated, at large it is unlikely
that the experiment is as yet in the asymptotic region, so just what
f(t) is for large t is not really known.

To summarize, the Van Hove model, while it does not fit the
data, is a useful illustration of how Eq. (III.12) could be used, pro-
vided that one is given an input fo(t) from someplace else. Our next
task, then, should be to actually calculate an accurate f,(t) from in-
elastic intermediate states.

IV, Partial Waves

For many purposes, it 1s more convenient to look at the partial
wave amplitude rather than the entire T(s,t). We had, we recall, de-
fined the partial wave amplitude by

216, (s)
2

E n{" (S) e -1

T(s ,4) = - 16m 5 71 (v.1)
Unitarity for partial waves reads

1 =-mn2(s)

I S °] 2 E( %
Im T(s %) ek T(s,4) 16m - ( 2 . (Iv.2)

Hence,

E L ﬂLE (S)
(Im T(S’L))inelastic) = -16m P e e (Iv.3)

Let us now invoke our assumption that Im T(s,t) = -s f(t) + 0(Im  (t))
and (Im T(s’t))inelastic = -5 fo(t) + 0(Ima(t)). Then

E,
lﬁnp 2

l-n206) 1
——— =3 [ dlcos 8) P (cos 0) £ (t) . (v.4)
-1
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Equation (IV.4) permits us to calculate the inelasticity for any
fo(t): explicitly,

o]
n2(e) =1 - ﬁ IS at £ (1) B, (142t/s) . (Iv.5)

Note that if u (s} » 1 as s = = for fixed £, we must have

o
Jatf @) =0
-0

which demonstrates, among other things, that fo(t) would have to

change sign. Experimentally, it 1s unclear if this equation holds or

not, since fo(t] is not known for large (negative) t. Thus we do not

know what experiment suggests for my ().

In the Van Hove model, we had £, =8, e

large s,
- -A,8/2
n, (s) = ‘/ -ZTTJE e IL_'_%(AIS/Z) / {Iv.6)

and if we let s = », we have

t
1", which yields, for

n, (s) -yl - B,/4mA, =T-4C; . w.7)

Thus, in order that ny(s) remainreal (which is obviously necessary

physically) we must have C,; < 4 in the Van Hove model, This is the
physical origin of the restriction we found earlier. If the restriction

is satisfied, the my approaches some constant betweenOand lasymp-
totically.

The principal value of the partial wave approach may lie in the
fact that it permits us to make finite s corrections to the asymptotic
differential cross sections. In the models we are discussing, we ex-
pect 6{,(5) - 0as s -+ », so that

n,(s) -1
T(s,4) = - 16 J’T . (Iv.8)
Thus

T(s,t) - 16m 1 2, (24+1) P, (cos 8)(n, ()-1) = - 1s £(t)
) » 0 (Iv.9)

and therefore for large s
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o]
EROES! -% j_'sdt P, (L +2t/5) £(t) . (V. 10)

(This equation is, of course, exactly the same as (IV.5), in view of
the relation (III.12) between £(t) and f,(t).) Thus, if we knew the
true asymptotic do/dt, and hence f(t), we could calculate nL(s).

Now the phase shift itself satisfies a dis;ﬁrsion relation.
Again, (for s much bigger than masses) we have

log n, (s’) Ims, (') |,
_ _/s bt , /8 — e ds’,
SL(S) ™ -F JsT (s'-3) Lo m I S5 (5! -8)
®inelastic LHC (Iv.11)

It 1s plausible to believe that the Ieading behavior of §; (s) can be
calculated from this relation, using the (known) asymptoticn L’S-
" These phase shifts, together with n, , can then be inserted into Eq.
(Iv.1), and the partial wave expansion summed, to get a corrected
T(s,t). This T(s,t), of course, approaches -is f(t) as s -+ «, but for
finite s deviates from it, and the deviation is larger, for larger t.
Thus we may be able to compare the corrected T to experiment at fi-
nite s, and thereby check that a guessed asymptotic £(t) is correct.
To make this idea more specific, let us write, for finite but
large s,

T(s,t) = T(s,t) + AT(s,t) (Iv.12)

where T(s,t) = - is £(t) is the purely imaginary and truly asymptotic
amplitude. Corresponding to this, let us write

T(s,2) = T(s,L)+AT(s ,2) (Iv.13)
and
n, (8) = ﬁL(s) +4m, () (v.14)
where =
_ n, (s) - 1
T(s ,1) = - 161 — : (Iv.15)

Next, from (IV.1), we evidently can deduce that
1
B 1
nL(s) cos 2 6&(s) =1+ T ‘[‘ dx P&(x) Im T(s,t) (Iv.16)

-1
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and that

1
nL(s) sin 2 GL(S) = -ﬁ _]‘ dx PL(X) Re T(s,t). (v.17) /

-1

Now, for large but finite s, we expect the phase shift 6, to be
small., Thus (IV.16) and (IV.17) become, to first order in 6§,

. . [e) a
e
n(s) =1+ [ dtPp, (1+2t/s) Im T(s,1) (v.18)
-5
and

1
l16ms

0
ny (8) 8, (s) = - _fs dt P (L + 2t/5) Re AT(s, 1), (V. 19)

But Im T(s,t) ~ Im T(s,t) = - s £(t), so that
o
n, (6) 7, (5) = 1 -% [ ate,(2t/s) 560) (V. 20)
-8

and An/n~ Im AT/Im T<< 1,
_ We may next invoke Eq. (IV.11). Let us write 51,(5) =
6{,(8) + AGL(s) , where

/s ® log 'F]L(S')
ry = _v5 _— ’
5,(8) = -2 ] P T e 98 (Iv.21)
inelastic
Then
@ . An,(s”)
A8, (s) = 'f‘_s _F d? -L 7
L 2m /s"(s'-s) q,(s")
s 1
inelastic
Ims, (s')
/s L
+ I 7=y as' . (v.22)
T 1He Js'(s"-8)

Certainly the first term in (IV.22) is much less than the integral in
(Iv.21); if this were the full story, we would conclude directly that
A /B ~ An/ﬁ << 1. However, the left-hand cut contribution to the
phase shift muddies the stary somewhat. We may hope that, since s
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is so large and positive, while s’ in the LHC integral is always nega-
tive, that the LHC integral is relatively unimportant. Thus we may
hope that A5/§ << 1, so that in Eq. (Iv.19) we may replace the left-
hand side by s (s) b, (s). Then Eq. (IV.19) may be inverted, to give
us an expression for Re T(s,t):

Re AT(s,t) = - 16m 3, (24+1) P, (x) m, (s) 5,(s) . (IV.23)
7 L 1 a
Hopefully, and provided that the LHC contribution may be neglected,
this formula gives a reasonable approximation the real part of the
amplitude, in the region of large s but not so large s that it has gone
away entirely. We may remark, in closing, that for computational
purposes, it may be convenient to replace (IV.23) by the impact para-

meter form
[--]

Re AT(s,t) = - 8ms [ b db ] (b/~t) n(b) (s,b) (Iv.24)
o]

where, as usual, (2¢+1) =/s b. Inany event, whether (IV.23) or _
(Iv.24) is more convenient, the expression (IV.21) is to be used for 5.

V. Models for f(t)
We left the basic problem, the calculation of f,(t), at the end
of Section III. In pictwres, fo(t) is displayed in Fig. 7. Explicitly,

(Im T(s,t)) =-% nz=j3 @m* s*( P T, " (v.1)

inelastic f-n

where the sum is over all states of three or more particles, and Ty,
1s the amplitude for the intlal two particles to go to an n-particle
state, and likewise for T¢_, . P is the total four-momentum of the
scattering, so that P® = s, Pn is the four-momentum of the n-particle
state.

Our fundamental assumption is that Ty, 1s such that fer large
s, (Im T) Aalagtie becomes proportional to s Rlp to higher order terms
in Im aft)), and (Im T)ipelastic = —18 fo(t). Equation (V.1) can then,
in principle, be used to calculate fo(t) .

What is needed is a model for T;_, ., that is, for the amplitude
for two particles to become n particles. Varlous such models can be
thought of, some of which are suggestive, but none which have, so
far at least, led to a really convincing understanding of the experi-
ments. A partial list, with a brief explanation, of varlous models
follows.
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ig. 7. ia i
Fig Diagram representing contributions to (Im T(S’t))inelastic

(1) Suppose that the scattering particles are composite, and for sim-
plicity, suppose they are made of two constituent particles. {An il-
lustration, if the scattering particles were mesons, might be quark-
antiquark for the two constituents.) Then a simple picture for

(Im T)inelastic is gilven in Fig. 8. Now suppose that the constituent-
constituent scattering amplitude, at high energies, also has the cha-

racteristic form

Tls/t) g = - 18 £,(1) ' (v.2)

Fig. 8. Model for (Im T)inelastic in terms of some elementary
constituent particles.
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with some function fs (t). Then it is very easy to see that the dlagram
of Fig. 8 yields, for {Im T) , the result
inelastic

(Im T(s,t)) - -3 (FR)P fC(t) . v.3)

inelastic
Equation (V.3) is derived assuming that off shell effects in the con-
stituent-constituent amplitude (V.2) are negligible, so that the off
shell amplitude which actually appears in the center of Fig. 8 can be
replaced by the on shell amplitudes. In that event, F{t) in Eq. (V.3)
is precisely the electromagnetic form factor of the scattering particle,
normalized to F(0) = 1, and calculated in the approximation illustrated
in Fig. 9. (This approximation, incidentally, ylelds a form factor
falling off at least as t™ for large t.l)) Thus

f,0 =10 FQP . (v.4)

Fig. 9. Bethe-Salpeter model for (Im T)inelastic'

J

Note that one version of this model is that the composite particle (if
it is a meson, say) is made up of itself and itself, so that the con-
stituent particles and the scattering particles are the same. Then we
would have f~(t) = £(t). But then Eq. (V.4) is manifestly inconsistent
since it would require f,(0) = £(0), which clearly contradicts Eq.
(I11.12). Presumably, this inconsistency is a result of the neglect of
off mass shell effects at small t (In particular, att = 0). For large t,
it is plausible that off mass shell effects are unimportant, so that
(V.4) with £ (t) = £(t) might hold, but for small t it is a priorl unlikely
to be true, and in fact turns out to be false,
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In the absence of a theory from which fC (t) can be calculated,
Eq. (V.4) and this entire composite model, is essentlally useless.
Perhaps only one remark is worth making, namely the following: If
f.(t) » const. = Cas t— =, and if P(t) ~ t™0 for large t (n = 2 experi-
mentally), then f_(t) ~ t=2n for large t. But then the solution to Eq.
(IT1. 12) yields £(t) ~ t=21 at large t as well, since the integral in
(IT1.12), with an input of f(t) ~ t—Zn, itself behaves asymptotically
like t=20, Thus we have £(t) ~ (F(t))® for large t, a result first sug-
gested by Chou and Yang,“/ and later elaborated on by Abarbanel,
Drell, and Gilman,3) among others.
(if) A second type of model consists of guessing a form for Ty o n
and making use of Eq. (V.1) directly. Evidently, in order to be con-
sistent with Eq. (III.12), and, indeed, with our entire outlook, our
guess for T, , . must be such as to yield an (Tm T)inelastic propor-
tional to s %apart from higher order terms in Im ¢_(t’)) at large s.
Various models suggest themselves. For exampl%, the multi-Regge
model provides a form for Ty , pr @S described at the end of Section
II. However, various difficulties (which have yet to be cleared up)
were mentioned there, which make its use.lin this context somewhat
ambiguous. Perhaps a less deep, and more phenomenological, choice
is to assume

n a
B -a(p ),
Ty = C 121 o ol (v.5)

where (pL) is the transverse momentum of the i-th produced particle.
Such a model is, roughly, consistent with present data.
(1i1) A somewhat simplified version of model (ii) is simply to say
(Im T)jpelastic ©an be approximated by a sideways ladder, as shown
in Fig. 9, and to calculate the ladder using the Bethe-Salpeter equa-
tion. '
However, with regard to both models (ii) and (i1i), (and indeed,
for any models which try to calculate, or guess T ), one may say
that the crucial ingredient is a form for T, which'can give an
(Im T)inelastic which is linear in 5. No %reasonable) such model has
yet been made. In particular, (V.5) will certainly not give a linear
behavior without dependence on (p")i, and, as was indicated earlier,
the multi-Regge model for T _, , with a flat Pomeranchon input does
not yleld a linear dependence for (Im T){pelagtic Unless one adopts the
ad hoc (but possibly true) rule that the Pomeranchon is exchanged
only once.

We must therefore end on a somewhat inconclusive note: there
exists, as yet, no plausible theory of diffraction scattering which
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starts with the basic assumptions of particle physics (that is, with
unitarity, crossing, analyticity) and proceeds to a differential cross
section. All that one can do is to use these general principles to
pinpoint the production amplitude Tz - 35S the missing piece in the
puzzle. Until a reliable theory of Ty 4 nr valid over most of phase
space, is constructed, progress in understanding diffraction pro~
cesses will be very limited.
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CAUSALITY IN ELECTROPRODUCTION
AT HIGH ENERGY?t

Lowell S. Brown
Department of Physics
University of Washington
Seattle, Washington

I. Introduction

Electron scattering serves to produce a virtual photon of
space-like four momentum which probes nucleon structure in a very
clean way. Elastic scattering experiments have been carried out ex~
tensively, and we now have a fairly detailed knowledge of the
nucleon form factors as functions of the virtual photon mass. In
these experiments, the nucleon recoils elastically, the photon inter-
acts with the nucleon material in a coherent manner, and these form
factors are related, roughly, to the average shape of a nucleon.
High energy inelastic electron-proton scattering experiments are now
being performed although as yet we have only preliminary results.
The inelastic total scattering cross section is described by two
structure functions that depend on both the photon energy (V) and the
photon mass (K¥). In the inelastic process the photon interacts in
an incoherent manner and it probes, roughly, the instantaneous con-
struction of the proton rather than the average shape found in the
elastic scattering experiments. The structure functions can be ex-
pressed in terms of the Fourier transform of the commutator of two
electromagnetic current operators. The high energy behavior of the
structure functions is therefore also correlated with the nature of
this commutator at small space-time intervals. It is to this aspect
of electroproduction that these lectures are addressed.

We shall describe the subject matter of these lectures with
an annotated list. Sec. II reviews the kinematical description of the
total inelastic electroproduction cross section and the relationship
of the structure functions to a matrix element of current operators.
The structure functions are the absorptive part of the forward, virtual

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.
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photon scattering amplitude. Sec. III is devoted to the kinematics
involved in the Regge pole analysis of this Compton amplitude, and
it is shown that the Regge residue function must be singular if the
vacuum trajectory is to contribute to the amplitude that describes
real photon scattering. This must occur if the photoabsorption cross
section is to approach a constant high energy limit. Such a singu-
larity is obtained if the amplitude has a fixed pole in the angular
momentum plane. Sec. IV reviews the experimental situation. The
high energy limit of the photoabsorption cross section is seen to
indeed be constant and, what is more striking, the high energy elec-
troproduction cross section appears to be well described by a scaling
limit of the structure functions, a limit in which v = = with k¥® /v
fixed that involves a dimensionless function of the dimensionless
parameter k¥* /v. The remainder of the lectures is devoted to inves-
tigating what applications causality, the condition that two current
operators commute at space-like separation, may have in the under-
standing of these results.

The nature of causal representations is discussed in Sec. V
without pretense to mathematical rigor but hope fully in a way that
makes the structure of these representations clear. A causal repre-
sentation, the Jost-Lehmann representation, is used to discuss the
high energy behavior of the electroproduction structure functions in
Sec. VI. With the assumption that the Jost-Lehmann weight func-
tions are uniformly convergent, it is shown that the kK*~ » limit of
the Regge asymptotic form is related to the small k% /v behavior of
the scaling limit and, moreover, that this relation is in excellent
accord with experiment. The Jost-Lehmann representation also pro-
vides a connection between the scaling limit and the behavior of
current matrix elements on the light cone which suggests that the
conformal group may have some role in the description of this limit.
The relationship between equal-time commutators and the scaling
limit is considered in Sec. VII. The validity of the scaling limit is
shown to require that the spin-averaged nucleon matrix element of
the commutator of two spatial current components at equal time must
vanish. Finally, it is proven that if the corresponding commutator
with one time derivative has a transverse structure then so does the
scaling limit and, conversely, if the commutator has a longitudinal
structure then so does the scaling limit.

The work described in Secs. VI and VII was carried out in
collaboration with D. G. Boulware. I have also enjoyed conversa-
tions on some of this material with S. B. Treiman. These notes were
written at the Aspen Center for Physics.
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II. General Kinematics

The electromagnetic process e + N = e + (hadrons) is illus-
trated in Fig. 1. We denote the initial and final four momenta of the
electron by q and q’, the initial momentum of the nucleon by p, and
the total four momentum of the final hadronic state by P’. The four-
momentum balance reads

PP+qg’'=p+gq. (T.1)

We label the initial and final spins of the electron by k and k', res-
pectively, the spin of the initial nucleon by )\, and we use the sym-
bol ¢’ to represent all the varlables of the final hadronic state other
than its total form-momentum P’ .

(q

(p,A)

(P‘,C')\

Fig. 1. Pictorial representation of the inelastic
electron-proton scattering process.

Since electromagnetism is relatively weak, its effect can be
treated in lowest order, and we need compute only the single photon
exchange contributionls depicted in Fig. 2. In effect, the scatter-
ing of the electron serves only to produce a virtual photon of four
momentum

k=q-q
=P’ -p . (I1.2)
which then probes the nucleon and excites it to some final hadronic
state. The effective mass carried by the virtual photon (which is

also the square of the four-momentum transfer imparted by the elec-
tron) is space-like
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{k,p)

Fig. 2. Single photon exchange approximation graph.
¥ =K-k2>0, (11.3)
The space-like character of ¥® follows from its relativistic invariance
and the remark that the process may be viewed in the Breit frame
where the electron appears to strike an infinitely massive object. In
this special frame
M=, 9.
at=(, g,
and
=0, 29
is manifestly space-like. In addition to the effective mass of the
virtual photon, we shall use a relativistically invariant energy
parameter
v=-pk . (11.4)

In the laboratory frame in which the initial nucleon is at rest

M=, 0,
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this parameter is essentially the energy of the virtual photon
v=mk® ,
or, equivalently, it gives the energy loss of the scattered electron,
v=m(® - q').

In terms of these variables, the squared total mass of the
final hadronic state is given by

s=-P?=-+q-q'pP
=m? +2v -k . (II.5)

If s = m® we have elastic electron-proton scattering which is, of
course, a special case of the general inelastic process. For s = (m +
un)z we have electropion production, and so forth. Thus

2v-kK =20 (I1.6)

with the equality holding only for elastic scattering while for inelas-
tic scattering 2v - K exceeds 2mpu, + .

The transition matrix element in the single photon exchange
approximation can be easily derived with the aild of the usual reduc-
tion technique. If an electron field is used to create one of the elec-
tron states and the reduction method applied to it, a matrix element
involving the electron and photon fields is obtained. After express-
ing the photon field in terms of its hadronic current source jM one
arrives at

{p’C’, q’%’ out|pr, gt in)
=1(2n)* 6(P' +q’ - p - QT, (11.7)
with
T=eG, (@) ¥ u (@ k2 (Pt outl )|y (1z.8)
Here we use an invariant normalization of states so that, forexample,

(3)

(a’e’|aey = (2n)°2¢° 6@’ - a) 8, (1I1.9)

and



206 LOWELL S. BROWN

= V) o W
u,s @)y uK(q) 2q Sery (11.10)

The differential scattering cross section in the laboratory frame can
now be calculated by the usual mnemonic method. The rate at which
scattering occurs on a single target is the absolute square of th
transition matrix element divided by the total elapsed time 2116(1?(0)
and by the number of target particl?s which, according to the normali-
zation convention (II.9), is (2n)%5 3)(O)Zm. This rate divided by the
flux of incident electrons 1s the differential cross section. Since
@nPs (3}(0} is associated with the volume of space, our normaliza-
tion corresponds to an electron flux of 2¢° (electron ve}ocity) =2|g].
We shall calgulate only the unpolarized cross section®’/ so we aver-
age over initial helicities and sum over final helicities. Furthermore,
we shall assume that only the final electron is detected, and so we
sum over all final hadronic states. Accordingly, the cross section
for scattering into some interval A of final electron momenta is given
by
dg’) @)
AC —%EKK' j; @n) 2q°° %‘Z)\Zgl fw op’0

(2n)* (P’ +q’ - p - @)|T|? Z_m;—lgf 1 (I1.11)

The strong interaction part of the transition amplitude (I1.8)
enters into the cross section in the form

!

My ~ 1
Aty _%ZXZC' IW 7p70 (2m)* (P’ - p -k)

(or |3 (0)|P7C” out)(P’C’ out]|1”(0)]|pA) . (I1.12)
Here we have used the Hermitian property of the current to write
(P'C’ out| | pay* = (pr || P/C’ out) . (I1.13)

We should note that the structure tensor A“V is the absorptive part of
the forward, virtual-photon Compton scattering amplitude. It can be
expressed as the Fourier transform of a current matrix element. To
this end, we make use of the representation

1P’ -p-k)x

(2m)* 8(F-p-k) = [ (ax)e (11.14)

and of the energy~-momentum operator P“1 in the form
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1P’ -p)x (o M) P7g’ out) = (p)\le_iiju(O)eiple'C’ out)

= (| )| Ple’ out) . (I1.15)

In this way all reference to the particular final state is removed and
the completeness of the final states

(dp’) 1
ZQ' IW WIP'Q' out){P’C’ out| =1

(I1.16)

may be employed to give the simple result:
' -ikx o v
A = P ae™ 3z, (o] e @) . m17)

This structure will be the basis for our later discussion of the theory
of electropreduction. We note, incidentally, that the energy-momen-
tum operator can be used to prove the translation invariance

(o | )30 phY = Con [ M)V (=) pA) . (I1.18)

Since we have used an invariant normalization of states, A“v
1s a Lorentz tensor and can be expanded in terms of gV, pHpY, pHkY,
k“p\’, and kMkY with scalar coefficients that depend upon the two -
invariants that one can construct, v and ¥ . Not all of these scalars

are independent however, for the current is conserved,
Al L
BMJ x)=0 . (I1.19)

It follows from Eqs. (II.17) and (II.18) by partial integration that -
this requires

M'\)= =] “V
kuA 0=2a""% . (11.20)

We can combine k“kv with ¥ guv to immediately obtain one covari-
ant that satisfies this constraint

@)y _ gV _ga v (I1.21b)

With kukv now eliminated from the list of tensor forms there remains
only one combination that obeys the gauge invariance constraint
(11.20):
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M = bVie — i + KoV )pkeg™ (ok)?
= p“p\)k’a + %k + V"V L (L2la)
Thus we have the decomposition
AW = Wuvy ey By ey | (I1.22)

Covariants obtained from combinations of (l)tuv and @) t*V with fac-
tors of v or ¥ appearing as denominators should not be used, for
they contain spurious kinematical singularities whose cancellation
requires constraints between the corresponding scalar amplitudes.
By construction, the covariants (II.21) are free of kinematical singu-
larities and the structure functions Al o are correspondingly free of
such kinematical constraint.3

Since the tensor AMHY was originally constructed in terms of a
sum of squares (II.12) it is real, and, moreover it is positive-definite
in the sense that :

au*ll\.“l\)a\J 2 Q (I1.23)

for an arbitrary complex four-vector ay . The full content of this posi-
tivity condition can be obtained most easily if the vector aM is ex-
panded as

aH =ap” +pkt + 2" +mH . (I1.24)

Since pLl is time-like, 2 and m" can be chosen to be two space-like
vectors which are orthogonal to each other and to pLl and ¥*, With
this expansion, the positivity condition (II.23) becomes

2] 0P+ ¥ m?) [mPAL +Ag]
+ (|22 + m]?) [VPA - kA0 2 0 (II.25)
and is therefore equivalent to the two constraints

mPA, +A, 20, (I1.26a)

and

Ve, - KA, 2 0 (I1.26b)

or,
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A, 20, (I1.27a)
and
-m?A; <A, < (/KA . (II.27Db)
To complete the cross section calculation, we need the elec-

tron tensor corresponding to the hadronic structure tensor BV 1t is
given by

a"v =45, (G, @) Ve @)%, @) v'u (@.  @1.28)

Since we are interested only in collisions whose energies are several
orders of magnitude larger than the electron mass, we incur essen-
tially no error with the neglect of this mass, and we can use the zero
mass projection

Zou (o) G (@) =-vq (11.29)
with @ =0 =q’? to get
a* =% tr ya''va’y¥
=2(q"a’Y +a'Mq” - ¢*Vq’q). (11.30)
The lifferential cross section for a given momentum transfer and

energy loss can now be written down. On using Egs. (II.11), (I1.8),
(II.12), and (II.28), we get

(dgq’)
dkgadqv = (2m)® 2ql’° 8(& -(a’-qF ) 8 (v+(a-a’)p)
e* v 1
@F %w® Tipg (11.31)

where, since the electron mass is taken to vanish, the laboratory
quantity m| ql can be expressed as the invariant -pq. The formula
(IT.31) for the differential cross section exhibits it as a manifestly
Lorentz invariant scalar. The phase space integral is easily done in
the laboratory frame and the result can readily be written in an invari-
ant form,
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@g”) s g X
[P g7 808~ -aP)sbor(a’ ~p) = Ty - (.32)

A little algebra now gives

s~ (o [a’p)ap) - 20P 1 + 371 A (v, 3)

-313A v, )}, (11.33)
where o = (e® /4mm) =~ 1/137 is the fine structure constant.

) It has become conventional to use a pair of structure func-

tions °’ defined by

AW = (1/m2 ) pH kM (0/2) 10 pV kY (v/18 )1 AW (v, k)

+ LV’ (142 )1 amw, (v, k@) (I1.34)

which are not free of kinematical constraint. They are related to the
kinematic singularity free amplitudes by

4rmW, =m®k3a, , (I1.35a)

and

4mmW, =+°A, - KA, . (I1.35b)
These structure functions do have the advantage of putting the differ-
ential cross section in a simple form. If we write the electron initial
and final laboratory energies as ¢ =q°, ¢’ =q’°, and use the labora-
tory angle defined by (remember that the electron mass is taken to
vanish)

k¥ =-2q'q=2¢’¢(l - cos 8) , (11.36)

and the corresponding solid angle

do =2r|d cos 8] = (r/c’c) di@ , (11.37)
we: have
d?c _(dg 8,
ey _(dQ) {W2 Vv, kB)+2tanf W (v,ka)}, (11.38)

MOTT
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in which

<?1ch> 2% (11.39)

MOTT

is the scattering cross section for a high energy electron on an infi-
nitely heavy, spin zero, structureless target.

We have already noted that, in the single photon exchange
approximation, the electroproduction process is equivalent to the
absorption of a virtual photon. In the limit k- 0 this exchanged
photon becomes real and hence the electroproduction cross section
must become proportional to the photoabsorption cross section. This
relationship can be made explicit if we compute the total cross
section

vy + N = (hadrons)

for the photon absorption process in terms of the structure tensor
AW | Since this tensor is gauge invariant, the average over the pho-
ton polarizations is tantamount to its contraction with %guv and thus,
in the same manner in which the eleciroproduction cross section was
calculated we get

=23 HV L Loy
%y El=te é‘gu\)A ] KB=0 -4pk
=mavh, (v,0) . (I1.40)

This limit leads to a third parameterizations) of the structure
functions which involves a decomposition of A" into spatially longi-
tudinal and transverse parts in the laboratory frame. Since the struc-
ture tensor is gauge invariant [ Eq. (II.20)], its longitudinal piece is
proportional to a time component and thus we may equally well speak
of a scalar part rather than a longitudinal part. Now, if ¢ is a trans-
verse vector,

£'k=0, (I1.41)

we have, in the laboratory frame,

e*kAk = |e|2 (VoA -12AY (1. 42a)

while

EkAkL k, ={Va + (P/m?)A ) . (IT. 42b)
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It is conventional to write Eq. (II.42a) as

000, 18) = (/AP (0,2 )-KAs (v, 1)] (1I.433)

where v is the energy that a real photon would have to produce the
same missing mass [cf. Eq. (I1.5)]

v=yv -2 (II.44)

This transverse cross section reduces to the photoabsorption cross
section when the virtual photon mass vanishes,

K- 0: GT(\),kz) - oY(\)) : (I1.45a)
It is also conventional to write Eq. (II.42b) as
o (v,K%) = (u/V) M BLA (v, %) + (1/nP)A, (v, k)], (I1.43b)
which obeys
K¥= 0: os(\),ks) -0, (I1.45Db)
Note that, according to Eq. (II.26), the transverse and scalar cross

sections, op and og are independent, positive quantities. They are
related to the structure functions W; and W, by

4TmwW, = (\7/11(1.)0,1., (II. 46a)
and
_v _mik?
aTmW, == 5 e Ogtog) (I1.46b)

III. Regge Kinematics

We shall outline the kinematics involved in obtaining the
Regge asymptotic behavior of the electroproduction structure func-
tions. We begin by very briefly reviewing the Regge analysis of the
scattering amplitude T(v,t) of spinless particles. We denote the
initial and final momenta of these particles by p,k and p’,k’ with

p'+k’ =p+k , (1I1. 1)

and use the variables
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v=-2(k"+k)(p’+p) , (111.2)

t=-(p'-pp . (111.3)
We shall assume that p® = p’2® and k¥® = k’? so that evenat t =0 the
cosine of the unphysical scattering angle in the t-channel obeys

Vv = ®: -Cos Gtav . (II1.4)

The basic idea in the Regge method is to make use of the angular
momentum decomposition of the scattering amplitude in the t-channel,
and to use the Watson-Sommerfeld transformation to replace the
partial wave sum by a contour integral in the angular momentum plane.
In order to achieve good convergence of this integral, it is necessary
to Introduce amplitudes of definite "signature" with

T(v,t) = T+1(coset,t) + T+1(-coset,t)

+ T_l(coset,t) - T_l(-coset,t) (II1.5)
and

| . nJ
T (coset,t) ZIt (t) PI(coset) ) (II1.6)

The Watson-Sommerfeld transformation gives

nJ
Tn(coset,t) =§ dy ﬁ}—l PI(-coset), (II1. 7)
and the integration contour, which originally encloses the positive
integers, is opened up and the Regge poles, the poles of | t)in7J
are encircled. The leading Regge pole, the pole at J =a(t) which

lies furthest to the right in the angular momentum plane, gives a con-
tribution of the form

na = B{t) m
T (coset,t) prres Pc,(t)( coset) (IT1. 8)
and, since
Z = o Pa(z) o zOL (I11.9)

this leading trajectory dominates the asymptotic behavior in v of the
scattering amplitude. [ The presence of branch cuts in the angular
momentum plane could invalidate this argument. However, we shall
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use the Regge analysis only at t = 0 where the leading pole should
dominate.] 1In terms of the original amplitude we have
aft) 1+ e-ﬂ'ri&{t}

v o Ty,t) =-B(t) v Py (I11.10)

in which 1 = £1 is the signature of the leading trajectory.

We must now extend this analysis to the nucleon spin aver-
aged, virtual-photon Compton amplitude Tu\) whose absorptive (ima-
ginary) part at t = 0 is the structure function 2*Y. We can write

L4 v B
(gud, k! pk >é(p +p) ( k]];)%(p""p)BTe 0.tk 1E)

Wy rV
+ <g“" . ]l‘k, )T1 (v,t, k2, 8) + ... , (1r1.11)
where the omitted terms vanish at t = 0, and where the absorptive
parts of T1 9 at t = 0 are the structure functions W1 9"

2(v.k2)=1m Tllz(v,O,ka,kz) . (II1.12)

We have chosen the covariants such that gauge invariance is gen-
erally obeyed

k' ™V=o=m™Vg ., (111, 13)
Tl v

They have kinematic singularities in k’?, ¥® and t, but these are

irrelevant to our present discussion.

The crucial aspect of the Regge analysis is an angular momen-
tum decomposition in the crossed t-channel. Such a decomposition
ig obtained by examining the behavior of the amplitude under rotations
of the photon variables while the (spin-averaged) nucleon variables
are held fixed or, since rotating all the particles leaves the ampli-
tude invariant, by examining the behavior of the amplitude under rota-
tions of the nucleon pair with the photon variables held fixed. In our
case, it is easier to consider the response of the amplitude to nucle~
on rotations in which the photon variables are kept fixed.

The behavior of Ty under nucleon rotations is trivial to obtain,
for its covariant involves only photon variables which are not altered
by such a rotation. Hence, we immediately obtain the angular mo-
mentum expansion of the signatured amplitude
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T, "(cos0, 1) =ZIt1nI(t)PI(coset) ) (I11.14)

and the asymptotic behavior given in Eq. (III.10). The vacuum tra-
jectory ap(t) which has positive signature, n = +1, should be the
leading trajectory here, and, with aP(O) =1, we find that the struc-
ture function W, behaves as

Voo W, b, K) =wy (@) . (I11.15)

Such a simple analysis cannot be applied to the other invari-
ant T, , for it is associated with a covariant that involves nucleon
momenta as well as photon variables and this covariant is not fixed
during the nucleon pair rotation. This difficulty can, however, be
circumvented by the ruseb

7 I B = ) —
2'+p), = -2537g V=235V (111. 16)

which enables one to write

sH & Y] B
(- S )36 o), (7= 555 )%(P"fP)BTa(v,t.k'z,kz)

T, (v,t,k2,) .
(111.17)
The transverse projections annihilate k'c‘ and kB so that the deriva-~

tives with respect to the masses k’? and k¥ do not contribute. We
have defined t= -(p’ -p)® and it is independent of k’ and k’. Hence

o v, B
(o kMo kk) 33
_(g TTkE )<g TR SK’% KB

Tp (v, t,k’?,K®) = 1(\; t, k’?,K3) . (111.18)

The covariant associated with Tg now involves photon quantities that
remain constant during the nucleon pair rotation and thus this new
invariant has a simple angular momentum decomposition and the Regge
asymptotic behavior given in Eq. (III.10). We take two derivatives
of this formula to get
=i (t)
v e Ty = -8 (Haft) [a(t)-llva(t) 2 04ms (I11.19)

sinma (t)

We now encounter another difficulty: the leading trajectory
should be the vacuum trajectory ap (t) with positive signature, n = +1,



216 LOWELL S. BROWN

but ap (0) =1, and the factor [a.P(t)-I] apparently uncouples this
trajectory att = 0. This decoupling is related to the impossibility

of coupling two photons of the same polarization to a vector particle
at zero momentum transfer. However, it is possible ) for the resi-
due function to be singular at t = 0 such that the vacuum trajectory
does contribute. This is permissible because we are considering the
Compton amplitude only to lowest order in electromagnetism, and thus
there is no bound on the partial wave amplitude. Such a singular
behavior of the residue is obtained if the partial wave amplitude tz,n:r
has a multiplicative fixed pole at J = 1 of the form

LT e BUL . oy

ty [I—U[I-ﬁ- {t)'l I (111.20)
The pole at T = 1 does not produce a pole in the partial wave
expansion

T, =z thI(t) “p (e0sty) (11, 21)

since the v-derivatives annhilate P, (coset) . Thus the Watson~
Sommerfeld transformation can be carried out with the result

-frria.P(t)
v oy Ty, = -E(t)ap(t)\)ap(t) -2 ]:SITT('C) B (II1.22)
and
v= oo Wy (v, k3) =w (B . (ITI.23)

In terms of the amplitudes that are free of kinematic singular-
ity, we have

-o: A (v, k) =B, (KR)v/m*) , (I11.24)

and, assuming that the [u.P(t) -1] zero is indeed cancelled by a singu-
lar residue,

voor A (v, RB) =8, (@)1/Am?) . (I11.25)

We have scaled these formulas with appropriate powers of the nucleon
mass to make the residue functions B; o dimensionless. It follows
from Eq. (II.40) that the total photoabsorption cross section has the
constant limit
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voeio (v) = mo/m?) g (0), (I11.26)

This cross section would vanish asymptotically if we had not chosen
a singular residue to enforce the vacuum trajectory contribution.

IV. Experiment
The experimental situation with regard to the high energy total

cross section for the &bsorption of photons on protons is relatively
clear. The measured”’ cross s_ectionig displayed.in Fig. 3 along
with a plot of the function [ 100 + 60v™2]. The v’é form of the cor-
rection to the constant asymptotic limit accounts approximately for
lower Regge trajectory contributions such as the P’ and A, which have
a(0) =% . Thus it appears that the photoabsorption cross section does
indeed become a constant in the high energy limit,

oY(v=°°) =100 x 10™2° cm® (~ 10%) , (v.1)
and that the vacuum Regge trajectory with aP(O) = 1 does contribute.

In terms of the parameterization (III.26), the experimental value of
the dimensionless residue is given by

B1(0) =10 (~ 10%) . (v.2)
200 | L e S T B . 1 LT . (T
150} "
e Y (] LT | t 4 }
c 100} I Y
b?\
50 ol
P | 1

_e? L e (= || T (S (IR R |
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LAB. PHOTON ENERGY (GeV)

Fig. 3. Slightly cavalier representation of the total
photoabsorption cross section at high energy.
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The experimental situation in high energy electroproduction
is not so transparent. We have found that this cross section can be
described as

d?o Jo! 0

=) {W. @)t T Wi 0,00} . (1.38)
‘MOTT

In principle, this cross section can be measured at a fixed energy

loss v and at a fixed momentum transfer k¥* but at various laboratory

scattering angles © and the ratio

() /(&)

MOTT
can be plotted as a function of 2tan2g. This ratio should appear as a
straight line with a slope given by W21 (v,k) and an intercept at 6 =0

given by W; (v,k). In practice, the experimental analysis 1s not so
simple because radiative corrections, the corrections due to photon
emission, can be substantial. Since the electron is very light, it
undergoes by far the greatest acceleration during the collision, and it
is the principal source of the radiation. If the cross section de-
creases rapidly with increasing energy loss and momentum transfer,
the radiative corrections of this type (Fig. 4) can become large, for
they can alter the observed energy loss and momentum transfer into
the region where the cross section is very small although the basic
cross section which they correct is large. Thus, the radiative cor-
rections destroy the precise correlation between the observed elec-
tron's energy loss and momentum transfer, and the virtual photon
energy and mass,and the observed cross section in a convolution of
the theoretical formula (II.38) and radiative correction factors. This
convolution must be undone before the data can be analysed in terms
of the structure functions, and this is a difficult task.

At the present time, radiatively cogrected experimental re-
sults at high energy have been presentedg only for one laboratory
scattering angle, a small angle 8 = 6° where the electron accelera-
tion is not too great and the radiative corrections are not large. Al-
though data at only one angle does not permit the separate determi-
nation of the two structure functions, the tan® 9 factor in Eq. (II.38)
is quite small at & = 6° and so is the contribufion of Wy . Thus this
data provides a moderately good determination of W, . In fact, it
follows from the definitions of the independently positive scalar and
transverse cross sections [ Eqs. (II.46)] that W, is bounded by W,
according to
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Fig. 4. Dominant photon emission graphs.
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Wa 0,12) = (1+ R (14 ) Wa .00 (v.3)
in which
0= R=os/0T<°° . (Iv.4)
Hence we can write
2]
2tan® —
d?g)\/do \™* 2 -1
vWa(v,k3)=v<de;5)(£°) {1+ = (1 +m3ﬁ) ;
MOTT (. 5)

The values of VW, (v,k?) that are obtained from the 6° data for the
two extreme values R = 0 and R = ® are presented in Fig. 5. As we
noted, since 8 is small these extreme values of R do not change W,
greatly. The remarkable aspect of this data is that at large v the
quantity vW, (v,k?) appears to be a universal function of the dimen-
sionless variable

04 . T T T T T T ! i

R
g 0 %) B0 5 YA 3 R:O
. 5 L3 LI Sl /
o3 b g ..I-_“, ___a:.v 5}4‘ “J‘l-‘-l—-'f—-—lwd— 7 g
& "' - g e -
2 ]
/d 2 Bl
Joz2 Flw) = d—{z _"‘—,d?f |1+2 |+R('+ )T"”
= o
w MOTT 206 @
R=0y/0 ¢ R 140 v v
) — .60 ¢ =
9:6° k2(BeVc)2 @ © g0 a
ol I 070 © 200 +
080 & * 220 x
l 100 o ¢ 230 =
L z i i L H 1 L 1 i L
© (o} 1 2 3 4 5 6 7

W y/k?

Fig. 5. Experimental results 9 on high energy electropro-
duction at 6 = 6° that motivate the scaling law.
The two curves follow the average of the data on
VvW; when the two extreme values R=0and R=«
are used in formula (IV.5).
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w=kK/ . (Iv.6)

That is, it appears that vW,{v,k®) takes on the same value for a
range of v and k? so long as the ratio k¥ /v is held fixed.

This result is consistent with the existence of a scaling
limit v - o

W, v, ) =u, @), (Iv.7a)
u, ()

Wg(\),kz)=% ; (V. 7b)

or, in terms of the structure functions free of kinematic singularity,
a, ()

Al(vlk2)= ];)5 1 (IV.Ba)
ag ()

A, (v, K®) =2v— . (Iv. 8b)

We shall discuss this limit in Sec. VI. If a, (w) vanishes so does
the high energy limit of the ratio R and u, (»), or equivalently wa, (w),
is seen from Fig. 5 to be very nearly a constant for w < # with the
value

w<dwa, @=4.0 (~15%) (v.9)

We shall show in Sec, VI that the behavior of the scaling limit func-
tions a, ,z(w) near w = 0 is controlled by the value of the leading
Regge trajectory &.(0) and, in particular, that wa, (w) becomes con-
stant for small w with ¢(0) = 1. We have just seen that the experi~
mental data supports this limit.

V. Causal Commutators
We have found that the structure tensor may be expressed as

AW =7 (ax)e "1 %2X<pXIj“(x)j‘.’(0)| p\) (11.17)

where ¥° or, equivalently, v is positive. Now, by repeating the dis-
cussion that led to this result, it is easy to verify that for v > 0:

-ikx AVt
fae™ gz, mli @ e =0, W.1)
for in this case one obtains &(P’+k-p) whose argument cannot vanish.

This follows from the stability of the nucleon, as is easily seen in
the laboratory frame where the nucleon is at rest. In this frame p°=m
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while', since the nucleon is stable’, an intermediate state energy P’°
must be at least as large as the nucleon mass m and P’° -p°+k® cannot

vanish. Accordingly, we may express the-structure tensor as the ..
Fourier transform of a current commutator v 0: % ! ‘

| PO f (dx) -l v (x) N W.2)
with: :
e =4z, (o |60, 17O [p1). v.3)

The ternsor decomposition (II.22) becomes : o

M) = [pMp¥(02) + (M4 M) g™ ()7 1 ()

“Ta%Y - a2, x)

=c™x (V.4)
and we have
v>0: A 2(\),1@) = -iC, 2(k) v.5s)
with
C, L = f(dx)e‘ "l’zeo“ .8

P~

Trangslation: invaria;lce 5
(on 3763”0 phY = Cpon ] 3(0)3” (=) pr (11.18)
and the symmetry inthe tensor indices exhibited in Eq. (V.4), give
<O ) = -GV (k) = -c*V(x) W.7)
Thus the invariant commutator 'functions are odd - ‘
- .cl Z( % =0y, I R '
We may now 1ncorporate the physical postulate of causality,

the requirement that two current operators commute -at space-like
coordinate separation: - : N
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¥ > 0: M),V =0, V.9

or
2 >0 V) =0 . (v.10)

This condition is clearly satisfied if the invariant functions are
causal,

¥ >0: C x)=0 . v.11)
1,2
If the various components of Eq. (V.4) are examined in the nucleon
rest frame, it can be shown,10 conversely, that the invariant func-
tions Cp,2 must be causal if the tensor CHY is to be causal. Hence,
the vanishing of C; ’z(x) at space-like separation (V.10) is a neces-
sary and sufficient condition for causality.

We turn now to outline in a very heuristic manner how repre-
sentations that exploit the causality information may be constructed.
An odd, causal function may be written as

[--]

C(x)=e:(x°)‘rdazé(x9+a2)c(a2 X)), v.12)

o
in which C({@® ,x) may be taken to be a function of a single invariant
formed from x® and (px)? . There are two natural choices for this in-
variant: (px)?/m?® which reduces to the square of the time {2 in the
nucleon rest frame, or, alternatively, x®+(px)? /m® which reduces to
the square of the spatial distance ° in the nucleon rest frame. The
former choice leads to the Deser-Gilbert-Sudarshan!?) representa-
tion while the latter gives the }ost—Lf—:}'llrlanlil2 representation.
These representations contain information about the mass spectrum
of the intermediate states as well as being causal. This information
can be incorporated if ¢ (x°)6 (x® +a?) is replaced by the vacuum com-
mutator function

p6e,m) = 2mi [S55 o 6 0€) 5 08 4m) (v.13)
which is causal
x> 0: Ax,m®)=0 . (v.14)

‘We shall also need the relation

ate,m?) =eb)n Vo2 me) . (v.15)
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Ir{ order to accomplish this replacement we note that since
A 1)(xz ,m?) is causal, the Fourier transform of the commutator
function
e (k) 5 (2 +mP) = 5[ (dx)e ™ 4 6e,m?) (v.16)

may be expressed as

2008 0@ ) = 51 [ e ™ [ are e 6o e 422) 4 W w2) . w.17)
o]

Now employing the Fourier transform (V.16) we get

(k)6 (@ ) = s [ (el ™™ [ ar? o [ lax')e ™
o]

s 1) 2P R me) (v.18)

and, upon interchanging integrals and replacing the variable k by x,
we arrive at the lemma:

e6°)s 6 +a2) = (2n [ab? A, 1) 8 M2 a7 (v.19)
[o]

Accordingly, égain interchanging integrals, we may write Eq. (V. 12)
in the form

Cl) =[ db® plx,b?) DEP %) , (v.20)
o]
with
DR %) = @nP [ de® s M2 ,22) cle2 ) . v.21)
)

The Deser-Gilbert-Sudarshan representation is obtained by
using the variable (px)?:

Clx) = [db? alx,b?) X(6°, (px)?) . (v.22)
(o]
We may write
X2, (px)?) = [ % TP 0u8?) (v.23)

in which o = ® - 8*m? to get
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Clx) = [do %x(c,sz)e_iﬁpx Aio+BZm?) , (v.24)

and, taking the Fourier transform we obtain
C(k) = if do [dBx (0,8 )e (v+Bm? )5 (K? -28v+0) . (v.25)

We have yet to impose the conditions implied by the mass spectrum
of the intermediate states. We have seen that if v> 0 only one order-
ing in the commutator contributes, and we obtain the structure func-
tions which have support only for 2v - ¥¥= 0 [Eq. (II.6)]. On the
other hand, if v < 0 only the other ordering contributes with -2v-k2®=0,
Hence, we must have génerally

2|v|-ke= 0, (v.26)

if C(k) is nonvanishing. It is easy to obtain conditions on the domain
of the parameters ¢ and B that are sufficient to ensure the spectral
condition (V.26). This domain is also necessary for the validity of
the spectral condition, but we will not prove that this is so. First
we note that if v = 0, the §-function in Eq. (V.25) becomes § (k®+0)
and we guarantee that C(k) is nonvanishing only for -k*> 0 by
demanding that

0 g< ™, v.27)

The spectral condition is now satisfied for arbitrary values of vif we
require that

-1<B=<1. (v.28)

The scalar invariant C(x) is equivalent to a matrix element of
a scalar field commutator,

C&x) = (p|ilel),(0)]]|p) . (v.29)

As we have remarked, the spectral conditions allow the two orderings
of the commutator to be separated: in the nucleon rest frame one
ordering contains only positive frequencies, the other only negative
frequencies. Since the representation (V.24) involves a vacuum com-
mutator function with masses larger than IB | m, its energy components
dominate in the rest frame, |k°| > [8]p° = |8|m, and the separation
into the two orderings is clear. We have
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Ax) = {(p|o x) »(0)|p)

'J'dOJ' x(o,82)e P e orgome) (v.30)
with
0 Wee,me) = L g0y sgeme) . s

The Fourier transform of this representation gives, of course, the
representation for the structure functions A; ’Z(\),kg). The time-
ordered product may now be constructed in terms of the separate

orderings

T(x) = {p|iTfp (x) ©(0))| p>
=00 ){p|ip ) p(0)|p) + 8(-x°){p|1p(0) olx)|p> (v.32)
and we obtain
T6) = [do [ x(0.,8%) e P 4 s o4ePmd) ,  (v.33)
with
b, beim?) = 06¢) iA(+)(X'm3) +0(=°) v P (yme)

(dk) 1
‘r (2m* © KB+mP-1e (v.34)

A similar representation holds for the scalar invariants associated
with the time-ordered product of the current operator. However, to
obtain such a representation for these scalar invariants, the step
functions 8(x°) and 6(-x°) must be commuted through the tensor co-
variants exhibited in Eq. (V.4), a process that generally leads to
noncovariant contact or “seagull” terms multiplying 6 (x-x’). These
noncovariant terms can be cancelled by a suitable definition13 ofa
covariant time-ordered product with the result that it-has the form of
Lorentz covariants operating on scalar functions with the representa-
tion (V.33). In terms of the Fourier transform

(v, 1) = (%) ¢ 10 , (v.35)

we have
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T0, ) = [do [FEED) v.36)

Despite the pleasant cast of the Deser-Gilbert-Sudarshan
representation and the fact that it has been shown to be true to all
orders in perturbation theory by Nakanishi, 14) we shall use instead
the Jost-Lehmann representation which, in addition to having been
established with abstract rigor, is more convenient for our purposes.
It is

«©

Ckx) =[ds ¥(s,(?) alxss) , (v.37)
o]
with
¢ =x® + (pxP/m® . (v.38)

We shall work almost entirely in the nucleon rest frame where (= r?
is the spatial coordinate separation. This entails no loss of general-
ity, however, for the result in an arbitrary frame 1s immediately ob-
tained with the replacement

r-g
where
T d
5=L+2[?n%ﬁ?n_)+r_n]' (v.39)
for
2 =x® + (px)2/m® . (v.40)

As before, the spectral condition allows a separation of the two order-
ings in the commutator. If we write

Y(S.F)=If(2%l}% ML y(s,w) (v.41)

then, in the nucleon rest frame, we get the structure function
representation

By e (dw) .
Ay b )_Iodsfﬁn-}"’“”l,z(s'“)

20 (v)8 (K -2u- k+u? +s) . (V.42)



228 LOWELL S, BROWN

The spectral conditions turn out to require that the weight functions
vanish if the parameter u exceeds the nucleon mass,

lul >m: §; ,(s,03)=0. (v.43)

We note, for completeness, that the time-ordered product has the
rest frame representation

) e (du) 2
T(v, k) = fods [GF _Zifi;‘flg)ﬂ_ie ; (v.44)

VI. Asymptotic Behavior
We consider first the behavior of the structure functions in the
limit v = ® with the ratio

w=k/N (VI.1)

held fixed. Note that since the structure functions are nonvanishing
only when 2y - ¥® 2 0 [Eq. (II.6)], the parameter.y lies in the range

0<w=2 . (VI.2)

We shall assume, following Bj orken,ls) that the complete structure
tensor (II.22} remains finite in this limit in which the covariants
hv and (2huv diverge as v? and v, respectively. Hence, we
require that, with w fixed,

Voo m ) =28 (V1.3a)
v = o As(v,k?) =azT(w) . (VI.3Db)

We have already remarked [ Sec. IV] that there is some experimental
evidence in support of the existence of the limit (VI.3a), but there is
yet none in support of the limit (VI.3b). The functions al,z(‘”) are
dimensionless functions of the dimensionless parameter w. Thus,
the existence of this limit implies in some sense that nature becomes
scale invariant at high energies. Note that the positivity condition
(II. 27) requires that these functions obey the inequalities

aa{w)=z0, (VI.4a)

and



ELECTROPRODUCTION AT HIGH ENERGY 229
0=<a,w=swla @ . (VI.4b)

These scaling limits can be related to the Jost-Lehmann
weights q’l,Z' If the angular integral in Eq. (V.42) is done, one gets

® M
1
A, 0v,K®) = [ds [ uduy, ,(s,u?)8(2uk|-K2-u2-s) ,
W2 ikl L (vI.5)
where, in the rest frame,
|kl = D e /m21E (V1. 6)

We shall make the basic assumption that the weights ¢, ,(s,u?)
decrease rapidly at large s, uniformly in u. Thus, since the variation
of u is bounded, we can neglect both u® and s in the 8~-function in

Eq. (VI.5), and obtain

oo m

N Al,z(\)'kz) =4—T_:Uj'dsf udu¢llz(s,u9)e(2u-wm) .
0 - o : (v1.7)

This gives the limit (VI.3b) with the identification
m

a, W) = -4% j‘ods ~gnm)ud\.uisz(s S . (V1.8)

On the other hand, the requirement that A; (v,k®) vanish more rapidly
than 1/v demands that the corresponding integral involving §, must
vanish for all @y or, on taking the derivative with respect to w, we
have that

cpl(s,ua)=j'sds'q;1(s',u3) (VI.é)
must obey °
s ® o, (s,u®)~ 0. (V1.10)
Hence, we can write
by(s2) = gy (5.,0°) (V1.11)

in the formula (VI.5) and integrate by parts to obtain the general

result
m

A, (v, k®) =—4F1,k_| j‘ds‘fuducpl (s,u?)3 (2u|k| -} -uv® -s). (VI.12)
=l'o o
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This gives the desired 1/0® limiting behavior with

w0 =(E)(4F) [, () . 0w

16)

It is interesting to compare this scaling limit with the v=<
limit in which k2 is held fixed, the "Regge" limit,

k? fixed, |k|=v/m=~e, (VI.14)

We consider first the limit of the structure function A, . It follows
from Eq. (VI.16) and our basic assumption that the Jost-Lehmann
welght decreases rapidly at large s uniformly in u, that this limit
probes the small u behavior of the welght o, (s,u®) and that A, will
vanish at least as rapidly as v=> unless this behavior is singular.
Since A, should approach Ve , with ¢ = 1 for the leading vacuum
trajectory, the weight o, (s,u?) must, in fact, be singular at u = 0.
We obtain the Regge limit if we write

®, (s,u3) = 0y (8) + @y (5,12) (V1.15)

1
1+a
u
with cEl (s,u) regulat at u = 0. Indeed the singular term gilves, in view
of the general formula (VI.12),
@) 1 M du
Q. — gau ) -
b, .(v,k"a) =T j(‘), o .fod501(5)5(zu|k| k2 ‘ s) , (VI.16)
where we have omitted the u® term in the §-function since it affects

neither the Regge nor the scaling limits. We can do the u-integral
to get

A, @, 12) =(El)|:k2 +\r;1_23f“-1 ~[':iasol (s)[]@is] ¢ ;
o

(V1.17)
and the Regge limit

Voo A (v, k) =m8, (&) o/m )2, (VI.18)

with

By x) =<'r8n;;'>f:d301 (S)[}@H_:_s:la s (Vi.19)
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On the other hand, the integral (VI.17) has a scaling limit
(assuming that ¢(s) vanishes sufficlently rapidly at {nfinity) and
glves a contribution

a {a}(w)
3] 2
v =, ufixed: A, (v,k®) == (VI.20)
with
2 a «®
a, (a')(w) =(I;—n)(miw) Idscl (s) . vI.21)
o

Note that this contribution behaves as w-cc' while the .regular part of
the weight, ¢, (s,u®), gives, according to Eq. (VI.13), a function
that vanishes as w near w = 0. We have thus found that the physical
condition of causality, as conveyed by the Jost-Lehmann representa-
tion, implies a connection between the Regge limit and the w - 0 be-
havior of the scaling limit. Indeed, if we compare Eqs. (VI.21) and
(VI.19), we find that

. 2 (¢3
a, (co)(w) =y k;1_r.nm(kz’/m ) B (3), (v1.22)
and, as we have just remarked,
w=0: a, (@) =a, M) . (v1.23)

The conclusion is that the Regge residue B, (k*) must have a large K
limit which is correlated with the value of the trajectory & such that
the Rqu%a asymptotic behavior (VI.18) is consistent with the scaling
Umit, and, moreover, it 1s the Regge limit which controls the
small w dependence of the scaling function a, (w). Thus, the limit
v = o with k® fixed gives the Regge form (VI.18), and then the limit
k%~ » may be taken to get the small w = ¥ /v behavior of the scaling
function.

For the nucleon structure function, the leading trajectory
should be the vacuum trajectory with onP(O} =1, which gives

w= 0: a, (w =a;] , (VvI.24)

with

a,F =2 0 /m) 8, 0. (V1. 25)
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This result is in beautiful accord with an experiment which indicates
that (@ssuming the A; contribution to be small) wa, (w) is very nearly
constant throughout the range w <% , with the value

w<E: wal(w)=4.0=a1P (VI.26)

within an error of 15% or so. Unfortunately, we only know the experi-
mental value of the Regge residue at k2 = 0 from the photoabsorption
experiments which give

B, (0) = 10 (vr.27)
within about a 10% error. If we make a very nalve approximation in

which the integral representation (VI.19) for the Regge residue is do-
minated at, say the p mass, s = m‘;, we have

mB
B, (KB¥) =8, (0) ]—@j;? ) (VI.28)
and
o’ =8, O)h/m?) = 6.6, (V1.29)

which is about twice the correct experimental value. This should
not be disturbing in the least, for the spectral weight in Eq. (VI.19)
need not be positive.

We turn now to the Regge asymptotic behavior of the other
structure function, A, ~ v, Tt follows from the Jost-Lehmann repre-
sentation (VI.5) that, if the weight ¥, (s,u®) decreases rapidly at
large s, uniformly in u, then this weight must behave as u~3-¢ near
u = 0. But the very existence of the representation requires that the
weight be integrable in u®du at u = 0 which is apparently violated if
U5~ u~3-%, This dilemma is circumvented by the realization that the
weights need not be ordinary functions but can be distributions.
Thus, we can write

1% m-ul)} + 5 (5.B) ., (v1.30)

Yz (5,u°) =, (s)vi{ Ju]
in which ‘Fz (s,v?®) is regular at u = 0, and the laplacian with respect
to u is to be treated in the usual distribution theory sense: it is to be
integrated by parts. If the singular contribution is inserted into the
Jost-Lehmann representation in its original form (V.42), several inte-
grations by parts performed, and the angular integral done, one gets:
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d? E
A Q) —41'r—|k[ fds {437 =) T2~
= 602(5)} 8 (2u| k| -2 -7 -s) . (vI.31)

The leading contribution to both limits comes from the term involving
v /m? , and integrating by parts puts this contribution in the form

@) ¥ oTdu o, (8)
2 ) =y [ uOL{-e(zulxl—ke-ua) 2 ]S=O
+J;ds ingsg 6(2u|5|-k9-u2-s)} (VI.32)

which shows that the Regge limit is obtained only if we require that

do, (s)

s =0 . (VI.33)
s=0
In this case we obtain;
@, e ~ |x|% [da dg"‘(s)[ ]a (VI.34)
B 0 ) ~ e I ° ersl - WL
In the Regge limit we have
1
Ve A0, 0R) == By 02 ) /m®) (VI.35)
with
oy 22 o dog(s)r_2mq®
SORNLE SIS
while ifi the scaling limit
(o)
v = o,  fixed: Ag(a)(v,kz) =§2~\'J——-@l- ; (VI.37)

with

4 e
2, M = (L) af dso, () (VI.38)
0.

2 w \wm
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This singular contribution to the scaling limit behaves as w 1o while
the regular contribution gives a constant term near w = 0 so we again
have

@) . (VI.39)

w~ 0: az )~ a,
And again we find that the large k¥® behavior of the Regge residue is
correlated with the value of the trajectory such that the Regge limit is
consistent with the scaling limit and gives the small w form of this
limit:

2, @) =0 M g e e 00).  w1.40)

We can gain some understanding of the nature of the scaling
limit if we write the Jost-Lehmann representation for the structure
functions in configuration space

A o) =£:s Yllz(s,an%’fsE) 2 ¥ :s) . (v1.41)
Near the light cone
2 01 8P iers) ~ o {E T mee) . (VI.42)
Hence
j':ds ¥ (_s, 1%;) =x131210 4?2 A, (%) (V1.43)

which expresses essentlally the Fourier transform of the scaling func-
tion ap (w) [Eqs. (V.41) and (VI.8)] in terms of the singular behavior
of the structure function A; (x) on the light cone. Since

¥, (s,6?) =ga; ®, (s.C%) . (VI.44)

we find that

fasa, (s, @E) o tm T 106 1
(o]

which expresses the Fourier transform of the scaling function a, (u)) in
terms of the light cone behavior of the structure function A, (x).

find that the scaling functions a, 2(w) are not only d1mensionless
functions of a dimensionless parameter but that they are determined
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by the behavior of the structure functions on the light cone. This
suggests that the conformal group may play some role here, for it
contains various transformations which change the scale of coordi-
nates but which leave the light cone invariant.

The scaling functions can also be related to "almost equal-
time commutators” at infinite momentum, as suggested by Bjorken.15)
We consider the infinite nucleon momentum limit of the spatial cur-
rent commutator

i 1Tjdt sinwp®t) [ (dr) ¢ )
_pli_.mm = ‘I'dt sinfwp°t) j‘(dr) WP p°?

{[p““ 6™ =p p}L] G, %) + 5" Cz(x)} ,  (VI.46)

where we have introduced the decomposition (V.4) and integrated the
time derivatives by parts using the Jost-Lehmann result that C; ’Z(x)
vanish at t = 0. The limit can be calculated if we use the Jost-

Lehmann representation
@™

Clx) = [ ds ¥(s,?) Alx:s), (v.37)
o]
with
q
¥(s,0%) = (; Y ye,u0) v.41)

and, in a general frame,

- _RE .t
S5 +2[m(p°+m} * m ] ' v.39)
It is also convenient to do the k° integral in (V.13) and use
(dk)  ik-r sin@@+ i
Mis) = [ s k'L sin sé) L v.13")
(12 +s)

The limit can then be performed and, bearing in mind the connection
between the scaling functions and the Jost-Lehmann weights, Egs.
(v1.8) and (VI.13), one finds
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lim 1
po-o @ 17

[ at sin@st) [ () ¢
o]
= [kao)b- GkL] 2, @) + 6 way () . (V1.47)

VII. Equal-Time Commutators and High Energy Behawvior

We have found that the scaling limit is related to the behavior
of a current function on the light cone. We turn now to investigate
what information can be obtained from the behavior of this function at
the tip of the light cone or, equivalently, from the nature of current
commutators at equal time. The relationship between the scaling
limit and equal-time current commutators is obtained 1if we recall that

Ve =35 (il 6, V0]

= [p"pV(%2) + (pY 2" ) - (3 )2 161 ()

+[d™Ve2 oVl ), (VII. 1)
with

[~

C),, &) =J'Ods‘l’l'2<s 2 +19—)-—)A(x is) . (vir. 2)

and if we use the relations

AGcis)] g =0, (ViI.3a)
o CI (x:s)] =0 = 8(r) , (VII.3Db)
3% (xis) = sAlxs) . (Vi1.3c)

The simplest case is the equal-time limit
el vV
22, (oA 07 ), 37001l o0
= {[puy_vty_upv—Z&uV(g'v)] PO
- [pMnY+*p"] o+ v)}é(_) j' ds ¥, (s,0)

+[¢Mnv+nMy¥] 6(__)J'ds ‘rz (5,00 . (VI.4)
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Here, in order to achieve a compact form, we use the notation

=09 .

=0 L)

= (1,0,
"V = g"VantnV | (VII.5)

The first combination, with a coefficient

3 duy *®
[ds v:(6,00 = [ £ [ as va(s?) (VIL.6)
o (o]

giﬁes&a contribution both to the commutator of the spatial currents,
[i*,i ] and to an operator "Schwinger term, " the time-space commu-
tator [° ,i®]. This "Schwinger term" has a rather complicated vector
structure [ it is not simply v¥6 ()] and its ckue:i,flcient is, of course,
related to that of the spatial commutator [j™,i"]. The second com-
bination, with a coefficient

[ds ¥5(s,0) ,

produces OEly a "Schwinger term" [{°, jk] with the simple vector
structure v°8(r).

In view of the discussion of the previous section [c.f. Eq.
(VI.8)], we may do the angular integral and write the coefficient of

the first combination as

-] -]

m m
' J‘ds ¥, (s,0) =§11-_r3'f duj' u’du’ j‘ ds ¥, (s,u’®)
[ c u

o
m
w2 1
=(Tm)j du 0 Dva 0,081, (VIL.7)
o
in which
B =uwy ,
with

Fmw=u. (VII.8)
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The scaling law asserts that A, (v,k®) behave as 1A in this limit
and hence that this contribution to the equal-time commutator vanish.
That is, the validity of the scaling law requires that the nucleon
(spin-averaged) matrix element of the equal-time, space-space cur-
rent commutator vanish and that the related “Schwinger term" with the
complicated vector structure also vanish. The converse statement is
true as well, for A, is positive semi~definite. Thus, if either the
equal-time, space-space commutator vanishes or if the related "com-
plicated Schwinger term" vanishes, then the limit of vA; (v,k®) must
vanish and the scaling law for A; must hold.

There now remains only the "simple Schwinger term"” of the
form vké {r) with a coefficient, following the previous discussion that
led to Eq. (VII.7), given by

@

) m
[ ds va(s,0) =(2) [ duas (w) , (vir.9)
(e} o}

in which #mw = u. The function a, (w) is also positive semi-definite,
and it thus appears that the vanishing of this "Schwinger term" re-
quires that a, (w) vanish identically and vice versa. This is wrong
because Eq. (VII.9) is wrong. The error lies in a formula used in the
derivation of Eq. (VII,7)

du
I(J 1

m m
Wq:(s,uz) =53 Jduf u'du’ ¥(s,u’®) (VII.10)
o} u

which does not hold if {(s ,u?) is a singular distribution at u = 0.

This is the case with ¥, (s,u®) where we have seen [Eq. (VI.30)] that
it has such a singularity 73) of the form vﬁu'l"’*. This fact, unfor-
tunately, casts some aspersion on the character of Eq. (VII.7). How-
ever, if we assume that A,(v,k?) has a well-behaved Regge behavior,
then the weight §; (s,u?) does not have such a bad singularity at u =0
and Eq. (VII.7) does hold as well as the discussion of the preceding
paragraph.

The commutator involving a time derivative of the cwrent is
also directly related to the scaling limit. Because of current conser-
vation and the translation invariance of the diagonﬁl Tatrix element,
the only independent equal-time commutator is [aoj d7]. Itis
straightforward to express this commutator in terms of integrals over
the weights \];1 , and one obtains, assuming that A, satisfies the
scaling law so't%at Eq. (VII.7) vanishes, an expression of the form
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82, (103 350, £ @1, o0

Ko ma +v5% 6 ()8

£ £ £
+80 0" - 8o s e, . v
in which the coefficients A, B, CT and C, are numbers that are inde-
pendent of the nucleon momentum p. The weights |4 ,g ocour in the
coefficients Ct and CS in a way that is directly related to the scaling

limits (VI.8) and (VI.13) and these coefficlents can be written as

20
e =1%f dwlway (0)-w?a; )] , (VII.12a)
(o]
and
p 2
o j‘odwwz as () . (VII.12b)

Here there is no difficulty with the small u singularities of the Jost-
Lehmann weights.

The structure of the commutator (VII.11) can be comparedle)
with that arising from simple models of the current operator. If the
current 1s composed of a bilinear combination of spin# fields as in
a quark model with a neutral vector fleld interaction, then it follows
from simply the structure of the commutator that it %ontains the nu~
cleon momentum in the transverse combination (p p =p° 6 ) or that

CS =0 (quark model) . (VII.13Db)
On the other hand, if the current is constructed in terms of a spin one
field, as in the algebra of flelds model, then the nucleon momentum
enters only in the longitudinal form pKpt and

CT =( (field algebra) . (VII.13a)

Now, the integrands that enter into the definition of Crp and Cg: (Egs.
(VII.12)), are proportional to the scaling limit of the transverse and
gscalar cross sections defined in Eqgs. (II.42) and are positive semi~
definite. Therefore, the vanishing of the integral requires the vanish-
ing of the integrand, and we reach the important conclusion that if

the current operator is composed of fundamental spin % fields, then
the scaling limit of the structure function A, (v,k?) vanishes, or
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az (W) = 0 {(quark model) . (VII.14b)

Conversely, if the current operator is constructed from a spin one
field, then the scaling limit of the transverse cross section OT(\) JE)
mush vanish, or

a, (®) - wag (w) =0 (field algebra) . (VII.l4a)

Unfortunately, the calculation of the model commutators depends upon
the naive manipulation of bilinear operator products at a common
space-time point, products that are not well defined. Therefore, the
validity of these resulis is open to question. It has been shown!d
that they do not, in fact, hold in perturbation calculations in some
models. However, since the perturbation calculations diverge at high
energy and require renormalization to make them finite, it is not clear
that they are a reliable guide to high energy behavior. There is also
difficultyzo in obtaining the scaling law itself in perturbation calcu-
lations; here additional logarithmic terms appear.,

The electromagnetic mass of the nucleon can be expressed in
terms of the Jost-Lehmann weights and its parts that may be divergent
can be related to the nonvanishing of certain equal-time commutators.
This problem has been discussed at some length in the. literature . 21
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ELECTRON-POSITRON ANNIHILATION INTO HADRONS+Y

M. Gourdin
laboratoire de Physique Théorique et Hautes Energiles
Orsay, France#

This paper is a revised and enlarged version of notes pre-
viously prepared for the lectures delivered, last winter, at:

1, VIII Internationale Universitdtswochen fiir Kernphysik der Univer-
sitdt Graz, Schladming, Austria -- February 24-March 8, 1969,

2. IVe Rencontre de Moriond sur les Interactions Electromagnétiques,
Verbier, Switzerland ~- March 11-March 21, 1969.

Special stress has been laid on some theoretical problems
like the T-meson electromagnetic form factor and the data reviewed
correspond to the latest experimental information available tous. A
detailed study of electromagnetic mixing problems as those occwrring
between the p° and w has also been added.

SECTION A: The One-Photon Exchange Approximation

I. Structure of the Cross Section

10) We are interested in the annihilation process

+ =
e +te =1

where f is an arbitrary final state compatible with the usual conserva-
tion laws of electric, baryonie, leptonic charges (Q =0; B =0; Le=
0; Iy = 0). Using the kinematics as indicated on Fig. 1

tPresented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.

tLaboratolre associé au C.N.R.S. Postal Qddress: Iaboratoire de
Physique Théorique et Hautes Energies, Batiment 211, Faculté des
Sclences, 91-ORSAY (France).
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the differential cross section is given by

v - 2
dole’e™ 1) —— |z Z

[(6,p_Frm*1® i

Y (an)eslp, +p_ - p)lEln]ee [? do,
pol.f

where m is the electron mass.
The final state density is written as

(@ E :

dpe ‘
acft a

f

The normalizatign factor Ny is # for bosons and the mass my for fer-
mions; E, and p are the energy and momentum of the particle a.

2°) Let us now assume ,that the electron—positrc;i annihilation pro- .
ceeds via the one-photon exchange. The transition matrix element is
then factorized into the product of two matrix elements of the elec-
tromagnetic current

lrle’e) =S GO0 T, ) ¥y ) w)

where u;_(p_) is the free Dirac spinor for the electron and Vg +(p +)
the free Dirac spinocr for the positron. =
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The electric charge e is normalized so that o = e® /47 = 1/137 and
the invariant quantity s is' defined in owr metric by

s=-(p, +p_f=-r}

e.g. s 1s the square of the total energy of the centre-of-mass system.
It is straightforward to perform the summation over the electron-
positron polarizations

ry Z[V (p YU (P)][V (p M (p)] =%( po+ oyt + 5 g )
0,0_ (a.2)

and the differential cross section takes the form

dole’e =) = —éz—:%(p“p +p p“+ g ){f} (A.3)

(b p_)?*-m

where the final-state tensor {f}uv is defined by

{f}uv = z (2)*84 (o, +p_-P) <f|]Sm(0)|O)(O|]'\e)m(0)1f) do, - (A.4)

pol.f

30) Let us now work in the electron-positron centre-of-mass system.
We define

- -

p, =, p) p_=(-p, p,)
S5_.2 =72 2
4T rm.

The electron-positron tensor (A.2) has only space components be-
cause of the conservation of the electromagnetic current

PP
u . M, 8 MV S __mn
el v PPl 42925 on v

and Eq. (A.3) becomes

+ - 4r® o PmPn
dole’'e =1) = <a -] {f} (a.s)
CM s3/2(s - am?) mn p mn

o}
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The electron mass m can be neglected compared to the electron energy
in almost all the applications and Eq. (A.5) reduces to

an?o?

p_DB
o <5mn-—m?ﬂ>{f}mn. (a.6)

+ -
The total cross section giptle e = f) is obtained integrating over all
the angular varlables

<6mn -

+ -
and the final expression for ctot(e e = f)is simply

+ -
dole e =f)CM—

“> (g} =& i)

+ - _8rfa® 1
otot(e e =f)= I {1 . @a.7)

Going back to the definition (A.4) of the final-state tensor [f}
trace Tr {f} is given in an invariant way by

Tr(£} = sy2m*ss (o, +p_-py) (£I15T @] 0) <015 |0 oMY 8.8)

where the symbol S, means
a) a summaftlon over the polarization of the final-state
particles
b) a phase-spaceé integration

II. The Final State MM Where M Is a Spinless Meson

1 ) We restrict ourselves to a final two- body state f= MM where M
is a spin zero meson. For instance M = TT . K K° etc.

Let us first study the structure of the M meson electromagnetic
vertex M(k+)

Fig. 2 M(k)
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Using the Lorentz covariance and the electromagnetic current con-
servation we simply have

- . em, L
(-MMIILl (@)0y = (k+—k-)u Frpls) - (.9

The invariant function Fp.(s) is, by definition, the M meson eleciro~
magnetic form factor and the normalization has been chosen so that
FM(O) is the electric charge of the M meson in unit e.
2°) The tensor {MM}uv is simply defined by Eqs. (A.4) and (A.9)

da ke da

{MM}U (411)3 IF (S)'B
X 8, (p++p_-k+-k_)}

In the centre-of-mass system, the energy momentum variables are
the following

where my is the M meson mass.
The phase-space density is simply written as

da k+ dak_ VA
X Y 84 (p +TP_ k k)=7-;dﬂk
+0 -0
from which we deduce
dﬂk

{MM}mn=% —/—k-|1= (s)|2k k.

The differential cross section for the ahnihilation e+e— = MM takes
the form

4+ - -
dofe e = MM) 4m?\ 4
c - (-2 | Ir o)1

where Z is the cosine of the CM angle (p.%k = Ip|lx]2).
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Neglecting the electron mass m we obtain

do(ee ™= MMm) 2 4m?3 \3/2
" om g2 l(l _M) (1-20)|E,,(6)]2. (. 10)

S

3°) The total cross section is computed by integrating the differential
cross section (A.10)

am? \ 3/2

*oTs T _ma? 1 - M 2
0, ople e @ MM) === < (1 . ) |P.M(s)l . (a.11)
An equivalent way to obtain the equality (A.11) is to calculate Tr{MM]}
and to use Eq. (A.7). We simply have

4m3 \3/2
Tr{ MM} =§1 s(l . SM) |1-"M(s)|3 )

III. The Final State NN Where N Is a Spin J Particle

lo) We now study a more general final two-body state f = NN where
N is a spin J particle.

The tensor { NN} y s consiructed from the matrix elements of
the electromagnetic current between the vacuum and the NN state.
After summation over the N and N polarizations, the only possible
structure of {NN}uv giving a nonvanishing contribution to the differ-
ential cross section is

_2p+1 5 )B(s)g
(NN}, =(irye (A6) (k=K ), # (s-4m2)B(e)g )
il

Using the centre-of-mass variables introduced in the previous section

dsk, dak_
K ba (p++p_-k+-k_)} .

k+O

dQ .
(iN) =1 £ A{a)k_k +3BE)NEs L) |

The differential cross section for the annihilation e+e_=> NN takes
the form

o5 2
do(e e = NN)CM 1 (27+1)a® %(1 1 4mM

3/2
- 5 - ) [A(s)(l-z2)+3(s)],(A.1z)
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As a consequence of the one~-photon exchange approximation the dif-
ferential cross section for the electron-positron annihilation into a
NN system is a linear function of Z2 in the centre-of-mass system.

20) Using the Lorentz covariance, the parity conservation and the
time-reversal invariance, the electromagnetic vertex of the N particle
depends on 2J+1 invariant functions called form factors

1=27
em . L A
(nv|E" ) 0) = f T Fys)
=0

where the If’l span a basis of covariants.

In & convenient basis the (2J+1) form factors FN(s) can be
normalized at s = 0 to the (2J+1) static moments of the N particle.
We then define the physical form factors and they are alternatively of
the electric and magnetic type.

It is now a simple matter of algebra to relate the invariant
functions A(s) and B(s) to the physical form factors I-'{I;I(s) . The result
can be written in the form

A(s) = E(s) -

e B(s) - =% M(s)  (A.13)
m’

N
where E(s) and M(s) are sums of terms II-‘)(l'\T(s)I2 of the electric type

for E(s) (¢ even) and of the magnetic type for M(s) (£ odd).
The normalization of E(s) and M(s) at s = 0 is simply

EQ) = &, M(0) —ITl i,

where qy is the electric charge in unit e and uy the dipole magnetic
moment in unit e/2m,, of the particle N.

Inserting the decomposition (A.13) into Eq. (A.12) we obtain
the general expression for the differential cross section

AR 2
dofe e = NN)GM _(2+1)e? 1 . 4mN>3/2
d? 8 s s

x[ @ -ze)E(s)+(1+zz)4'n% M(s) | .
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By measuring the angular distribution we can only separate the elec-
tric and magnetic contributions. The knowledge of the N and N
polarizations is needed in order to obtain information about the indi-
vidual form factors.

The total cross section is then given by

i 3 3/2
o (e+e = NN) = L l(1 )
tot 3 s

(A.15)

30) The case J = 0 has been considered in part II and we have only
one electromagnetic form factor normalized to the electric charge.
The case J = 1 will be interesting when the available incident ener-
gies will allow the production of vector meson pairs VV (like p P,
K*K*) or axial vector meson pairs.

We have two electric form factors, the charge form factor I-‘V(s)
and the quadrupole form factor F%,(s) and one magnetic form factor
1=‘1 (s). The corresponding expressmns for E(s) and M(s) are simply

o o 2 2 _3 2
E(s) = |F(e)]? + IF6)1° M(s) = SIF{,(SH .

18m3

+ - -
The differential cross section for the reaction e e = VV is given by

do(ete™ W) 3 4m2 \3/2
——— -2 ) el
2
+ lgmzle,(s)Pana )sinﬁlu;,(sna} . .16

and for the total cross section we obtain
2

4m? \3/2
e ) 2o ¥
otot(e e 2VV) = 3 (1 ) {

(S)Iz

S

+ 1;;% 172 (s)[°} @a.17)

40) Let us now consider the case J =% corresponding for instance to
nucleons and h'yperons . We have one electric form factor and one
magnetic form factor easily related to the form factors F, (s) and F, (s)
defined in the usual Dirac basis by
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= em -y = i : 13V
(AN 0 = 1tk )y, Fu (8) * g YY1 0k ) v -
The normalization of F, and F, at s =0 is given by
P1(0)=qN F2(0)=KN

where q., is the electric charge in unit e and %, the anomalous mag-
netic moment in unit e/2m. . of the particle N.
The differential crn’.s\és sectlon is given by

o=, 3.3 . 2
do(ee#NN]CM_amN( 4mN
= 1

di . g

%
1 - — ){(1-z8)|1=1(s)[2
+ g Fa (924 0142°) 755 | Fa (s)14F, )]}
! il (a.18)
and for the total cross section we obtain
Bire® m? 4me (3
N N\ s
3 ( ) {In e g el
: N

+ - T —
otot(e:e = NN) =
oad ' 2
+ ome IFI (s) + Fg (S)I } . (a.19)
N

1V. The Final State Pcv Where PD 1s a Pseudoscalar Meson

10) .We now study the final state f E'POY where PPisa pseudoscalar
meson of mass m_ as for instance P_ =m0, 7, n’.

p°(k)

AT NGNS

Y(kY,e\)

Fig. 3
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From Lorentz covariance and parity conservation the matrix element of
the electromagnetic current between the vacuum and the P°Y state has
the general structure

o ,.em Ggs) V.p O
P 0)|10) = € k'k
( Y”u (0)]0) =eg m uveo  [o

where ¢ Voo 1S the completely skew symmetric Rici tensor. The form
factor Gp(sf) has been normalized to unity at s = 0. In the centre-of-
mass system we have

(Poy|]em'(0)| 0) =e gg(glfs € kP eq .
m ' m. mpq %
After summation over the two transverse polarization states of the
photon we obtain the space components of the tensor {P®y} in the
centre-of-mass sytem

{Po} =& a 13 /Sl ls lG(S)IQI—é _kmkn]
Yimn = 4m ma0 g ! U'mn K

and the trace of the tensor { POy}

k®/s

ma
(o]

Tr {P°%} = 20 lgl2lats)? . @a.21)

20) Combining Eqs. (A.6) and (A.20) we compute the differential cross
section in the centre-of-mass system

do(e+e_= Poy) a = m® 43
= Ll "g —Ln%-(l . ?9) (1422) |Gls)|®  (a.22)

where Z is the cosine of the centre-oi-mass angle.
The total cross section is simply calculated from Egs. (A.7)
and (A.21)

2.3

N m
0, lete = 20 = 2 Laf <1 -—-52) laE)lF.  @.23)
(o]

30) The form factor G(s) being normalized to unity at s = 0, the coup-
ling constant g describes the 2y decay mode of the P° meson. With
the kinematics as indicated on Fig. 4
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vk, eq)

Fig. 4 vika s €2)

the transition matrix element for the P° = 2y is written as

o] 1 v
(2y|T|P™) =€ 97 ¢ oo K ey kb ef
(o]

It is then straightforward to compute the radiative decay width for the
P° meson, taking into account by a factor % the Bose statistics satis-
fled by the two photons in the final state

g2 ' ‘
T (% 2y) =—f1"— lgl® m_ . (a.24)

Taking into account this expression of the coupling constant g we can
write the differential cross section (A 22) and the total cross section
(A.23) in the equivalent form

+ - 0o .
dole e 2P Yoy o £ 2y) Mo . .
= =3 - 1--s— (1+Z)|G(S)|
m2 \>2
+ 8ma I'(P =2 ‘
oyt®® =P Y)_ _(PTrF—Yl (1 'TO) laE)N® .

(o]

40) The previous calculation is easily extended to a final state f = PV
where P is a pseudoscalar meson of mass mp and V a vector meson of
mass Myy.

Let us first define the various matrix elements entering the
calculation P (kP)

Y’V\A’w@

L i

Flg. §
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em = H(s) VPO
<PV|I|.1 (0)|0> gVPY mp, ep\)po kPk\leV

The form factor H(s) is normalized to unity at s = 0 and the coupling
constant g describes the radiative decay of the vector meson V
into a pseudoscalar meson P and a real photon

P (kP)

k
v( o
k , e
yv( o Y)
= 1 TV, p O
Y| TIV) = gy m, “uvpo Ky ey ey

+ -
The differential cross section for the process e e = PV is given, in
the centre-of-mass system, by,

Sk

do(e e = PV) 2 g, 17 [k i , ;

CM _o? VE;\[ CcM (1+Z2)lH(~S)|3
dn 4 mg /s

and for the total cross section we obtain

+ _ 4ma® IQVP\(V1 koM |
. ¥ 2
otot(e e = PV) 3 5 7s | IH(S)I )

3 mP

is related to masses by

vThe ‘centre-_-of—mass momenj:um kCM

| _Ls = PTGy P
CM , 2/s

The radiative decay width I'(V = Py) is given in terms of the coupling
constant gVPY by

- 3 3
o v "p
Tv="Py) =57 loyp |° m3 (1 -—mg) :
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V. Three Pseudoscalar Meson Final State

10) Let us now consider a final state with three pseudoscalar mesons
f= P,P,P, as for instance 7™ %, KKm

Py (k)

P (k)

\ Pg (ks)

Due to Lorentz covariance and to parity conservation the matrix ele-
ment of the electromagnetic current between the vacuum and the
P, P, P, state has the simple structure

p.\)pc(%)v(gj)p(g_:-)cp(‘sl'smsa) . (A.25)

Y TV

Fig. 7

(PyP4Ps |I§m(o)l 0y =¢

The invariants s, , s, s, are defined by
B 5, ==k, P P =k, + ko + Kq
with the relation

Syt 8,155, =8 .

In the centre-of-mass system the invariants s
the energy of the meson Pj

s =/s E, /s =E,+ E,+ Eg

are simply related to

i

and the three particle form factor F(s, , s, sz) can be .equivaléntly
considered as a function of the variables s, E; and E,

F(s, ,8,,83) = F(s; E, ,Ep)

Zo) In the centre-of-mass system the space components of the tensor
{P,P,P;] are given by
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{P,P,P,} - }3|F(s: E, 'Ea)[a&x)&z)m(ﬂﬂ&a)n

mn  {(m, mym,

1
X @y dE, dE; d cos 6 (a.26)
where 0 is the azimuthal angle of the vector k X k2 . +
The differential cross section for the annihilatlon ee =
P, P,P, is obtained combining Eqs. (A.6) and (A.26). The integration
with respect to the angle 6 is trivial and the result is simply

4+ - - -
Fole'e 2 PiPoPa) oy o2 | ks % kg )2
= - ———— |F(s; E, ,E;)|.(a.27)
dE; dE, 127 5 (mym,my)

For the total cross section we have to integrate the expression (A.27)
in a domain D(s) defined by the condition that k; , k; and k; are sides
of a triangle

EXAL

O1orle 0 PaPaPe) =i ([ 9B OB T 7G5 ol

VI. Discussion

10) From the beginning of this chapter we have assumed that the anni-
hilation of the electron-positron pair into hadrons proceeds via the
exchange of a virtual time-like photon. What are the physical argu-
ments to justify such an approximation?

First the two-photon exchange amplitude is expected to be
reduced with respect to the one-photon exchange amplitude by a factor
o. Secondly, the one-photon exchange approximation has been tested
for space-like photons in various experiments.

a) angular distribution in elastic electron-proton and electron-
nucleus scattering

b) angular distribution in inelastic électron-proton and elec-
tron-nucleus scattering

c¢) comparison of the elastic electron~proton and positron-
proton cross sections

d) polarization of the recoil proton in elastic electron-proton
scattering.

No evidence has been found for the presence of a measurable two-
photon amplitude.
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20) Let us consider now the actual case of time-like photons. In the
one-photon exchange approximation the angular distribution for the
ete” annihilation into an arbitrary two-body final state is a linear
function of Z® where Z is the cosine of the centre-of-mass system.

Moreover, in some particular cases » the angular distribution is
predicted to be pure 1 - Zz) as for the wim~ , KK systems or pure
(1 +7?) as for the n°y, n°w systems.

It is certainly difficult to check carefully such a prediction.
Nevertheless, one can, for instance, look for an asymmetry in the
angular distribution with respect to a plane orthogonal to the incident
direction., Such an asymmetry is obviously related to terms odd in Z.

30) Another way to detect the presence of a two-photon exchange con-~
tribution is to observe a final state which is an eigenstate of the
charge conjugation operator with a positive eigenvalue

a) a 2y state in pure electrodynamics

b) a N°N° state where N° is an eigenstate of the particle-
antiparticle conjugation operator C like n°, m, p°, w or . Because of
the TCP invariance, the N° N° state cannot be connected to one pho-
ton only and as an example the observation of the reaction eTe ™ nom
1s an unambiguous proof of the presence of a two-photon exchange
amplitude .

Such a production can be enhanced by a strong final-state
interaction as occwring for instance in the m°n® system around the f°
resonance.

c) a N°MPC state where N° # M° are both eigenstates of C with
the same eigenvalue m°n, p°w, p°0, wp...). If Cyo = -1 the particle
M° can be a photon (p°v, wy, ov...). If Cis conserved in the elec~
tromagnetic interactions, the N° MP final state can be reached only via
a two-photon exchange. But if C is not conserved the observation of
a N°M° system can be interpreted as a violation of C in the one-
photon exchange amplitude.

SECTION B: The m~Meson Electromagnetic Form Factor

I. Measurement of the m-Meson Electromagnetic Form Factor

10) The m-meson electromagnetic vertex can be represented by the
diagram of Fig. 1
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WaVAYS

(k,)" (ko)
Fig T
The index o =+, 0, -, 1nd1oates the charge state of the n ;meson,
Using the Lorentz covariance and the electromagnetic current conser-
vation, we obtain the following structure for the matrix element of the
electromagnetic cirrent between two one-m meson states

a).em o : y : 3
|30 m) = (a+ k) F () . (B.1)
M VR ,
™
where s = -(ky -k,)?. - :
For m mesons on the mass shell, s 15 negative in Eq. (B.1).
Using the hermiticity property of the electromagnetic current we easily
check that the electromagnetic form factor F (s) is real in the space-
like region s < 0, c % ] :

P*a(s” O (8.2)
mw m

Applying now the TCP invariance we obtain

F _(s)=q"F (s)
o m
bl
where qOL is the electric charge of the meson rro’ in unit e.
For a real photon, s =0, the vertex function with the three
particles on the mass shell reduces to the coupling constant which,
in the present case 1s simply the electric charge q“‘. It follows

Fn(O) =1, (B.3)
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The matrix element (B.1) is the analytic continuation of the matrix
element of the electromagnetic current between the vacuum and a nhn-
state previously introduced in Section A. With the notation of Fig. 2

(k)
Y
Fig. 2 k)
we simply have
+_-;.em =
(m'm IIu (0){ 0 —(k_'_-k_)u F () (B.4)

where s = =(k, + k_)?.
For m mesons on the mass shell, s is positive in Eq. (B.4).

20) There exist, at least in principle, several ways to measure the
n-meson electromagnetic form factor in the spacelike region s < 0.
The avallable experimental information is an evaluation of the slope
of Fp (s) at s = 0. The convenient parameter used is the so-called
root mean square radius defined by

3 =
r’ 6 PT_r (0)
where the derivative is taken with respect to s.

a) Elastic scattering of charged m mesons on atomic electrong
The lowest order diagraim is represented on Fig. 3;

Fig. 3
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and the experiment givesl)
r <3 fermi,
™
b) Coulomb scattering of charged m mesons on nucleus

The experiment has been performed with a He® target by comparing m
and - scat'ceringr.2 The diagram of interest is drawn on Fig. 4.

+ +
™ - e
) F
k)
F
He4
He4 He4
Fig. 4

The He4 élecirbmagnetic form factor is kﬁown from, electr'on—He‘1 elas-
tic scattering experiments. The main difficulty in extracting Fr(s) is
an accurate determination of the nuclear effects. The result 1s

r <0.9 fermi.
™
¢) Electroproduction ofn meson on proton . ..
The electroproduction experiment must be performed: in a kinematical
situation where the so~called photoelectric term, represented on Fig.
5 plays an important role e”

Fig. 5

b= ===s




ELECTRON-POSITRON ANNIHITIATION 263

Unfortunately the background is always important and for a large
part, model dependent,
The result of two experiments is the following

r = (0.80 + 0.10) fer-mi3)

=(0.86 % 0.14) fermi4.)

30) In the timelike region the form factor Fy(s) becomes complex
above the r'm™ threshold By = 4mn ‘'The storage ring experiments
as those recently performed in Novosibirsk and Orsay allow a direct
measurement of _!_E‘n(s)l by looking at the elasctron-positron pair anni-
hilation intoa m'nt~ system. The corresponding lowesi~order diagram
is represented on Fig. 6. ) +

s // m
e ;

Fig. 6

II. Dispersion Relation

1 ) We introduce the complex Z plane with a cut on the réal positive
axis starting from 55 4m2 to +» (s = ' Re Z)

Fig. 7
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We denote by F(Z) an analytic function of Z in the complex cut plane
and which coincides, on the real axis, with the m-meson electromag-
netic form factor F11 (s) following

Pn(s) = F(s) for s < s,
F {(s) = lim P(s +1€) fors>s_ . (B.5)
i e=07 <

The reality condition (B.2) satisfied by Fy(s) on the real negative axis
becomes the Schwartz reflexion principle

F(z*) =F@)* . (8.6)

Using Eqgs. (B.5) and (B.6) we find it is now straightforward to com-
pute the discontinuity of the function F(Z) across the cut

o (s)= lim [F(s +ie) -F(s -1e)] =ImF (s) (B.7)
m e=0t

20) It is reasonable to assume that the function F(Z) is bounded for
large |Z| by a power of |Z| . Let us define as n a non-negative inte-
ger such that

Z
2] ] -0 (6.8)
Z

‘We now apply the Cauchy theorem to the function I-‘(Z)/Zn which is
meromorphic in the cut plane.

The contour C is shown in Fig. 8 and it can be divided into
three parts

a) the big circle I whose radius tends to infinity

b) the small circle vy around So Whose radius tends to zero

c) the straight lines I, and L_ above and below the cut.
The Cauchy theorem gives

o)

T I, el —*"*—=——[P (s) - le" 0] @9

n Z -8 -ie
i=0

()
where F (s) is the j derivative of F.(s) taken with respect to s. On
the other hand the contour C is the sum of three contours

C=I‘+Y+(L++L_)
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Fig. 8

and an equivalent expression can be obtained as the sum of three
integrals along I', v and (L, +L_)

a) the contribution coming from T’ vanishes because of the
condition

b) the confribution coming from y vanishes if P(Z) is regular
atZ = 5 if not, we extract the singularity and we apply the same
technique to the regular part

¢) the contribution coming from Ly + L_ gives the dispersion
integral after the use of equality (B.7), provided the integral
converges

© o (t)
_2_1_ _P_(EL __QZ__ =.l Ll dt . (B'-.].O)
Sl 2os-ie T s - te)

The dispersion relation with n subtractions is finally obtained com-
bining the equalities (B.9) and (B.10)

j=n-1 ; n ® a_(t) ; :

j . 0) s b :

F(s)= ) s FV(O)+— dat . (B.11)
g zo ! s 'l;o Pt - s - ic) '
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If the function F(Z) tends to zero at infinity in all the directions of
the Z plane, we can write an unsubtracted dispersion relation

JL %W
F (s)== js T (8.12)
(o}

and the normalization condition (B.3) becomes a sum rule

© o ()
£

1=

dat .

A |~

S
(o]

If one subtraction is needed the subtraction constant is determined
by the normalization condition and we write®

@ g (t)

=1+8 et s
Fs)=1+ j‘s s (8.13)
(o]

30) In order to make useful the dispersion relation (B.11l) we compute
the spectral function oy (s) using the unitarity property of the S matrix,

The spectral function o (s) is conveniently written as a sum of
contributionsg due to intermediate states m

o6 =Y o)

m
and a straightforward calculation gives

(k, -k J"1°™ 0)
ek 1

X (1T+1TIT|m)*. (B.14)

0™ e) = 5_(2m* 64 (i, +k_-k )% (m|

The intermediate states Im) are restricted by the energy momentum,
Dirac distribution and some other conservation laws. For instance
all the possible intermediate states must have zero electric charge,
zero baryonic charge and zero leptonic charges.

In the lowest~order approximation with respect to electromag-
netic interactions the states m are strongly coupled to the nTn~ final
state and have therefore strangeness S = 0 and total isotopic spin
I=1 (as a consequence of the generalized Pauli principle). It follows,
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in particular, that the G parity is conserved and there can be only

even numbers of T mesons.

+ " 4 .
In the region 4m < s < 16mﬂ2 onlyam m state can contri-

bute and the so-called elasticity unitarity relation is diagramatically
represented on Fig. 9.

e

Fig.

Formula (B.14) reduces to

o PMis)=6(s -5 ) F (s)fdQ |zl e (.15)
- =S o=y 4m 8TrfS o

when Z is the cosine of the centre-of-mass angle.
The amplitude for elastic m™m™ scattering in the total isotopic
spin I =1 can be expanded in Legendre polynomials of Z

Tl =EEE ey s 1) () pite)

From the elastic unitarity we have the constraint (4m13_r <5< 16 mrzr')
- _ x
Im fl](s) IflI(s)l

or equivalently using the m-m phase shift

i lI(s)
fi](s) =e sin 61](5) .

The angular integration in Eq. (B.15) extracts the P-wave term of the
partial-wave expansion and the final result is simply

q“(?")(s) =F_(s) £),(5) (B.16)

or, using the phase-shift representation of f 1( s):
a (2”}(5) =F (s)e 1511(5 sin §_,(s) (B.17)
m ™ 117 *
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Equation (B.17) tells us that, in the region 4m|.3[S s £ 16m? , the phase
of F(s) is 611(5) modulo .

4°) For s 2 16 mZ other contributions can occur in the spectral func-
tion oﬂ(s) . A list of thresholds is given in Fig. 10 for s below 1 GeV?

a'm 4 o 6T W KK
J J Y i} l
L L I5 r I L N
L L | | ™ L Ry, T
; )
elastic region P meson 1
GeV?
Fig. 10

Experimentally the p meson is a resonance inthe J=1, I =1 partial
wave of the m-m system which seems to be essentially elastic. The
decay of the p meson into a 4 system is experimentally less than 1%.

It follows that, at least in the p-meson region, the 4r channel
is not appreciably coupled to the 2m channel. Moreover, in the same
region the phase shift 611(5) is always real. For these reasons the
elastic unitarity relation

o (s) = 0152”) (s)

is certainly valid for values of s above the 4rr threshold and probably
also in the p-meson region. We denote by sjpa1, the effective inelas-
tic threshold and for sy < 5 < sy5,,7, the phase of Fn(s) is 611(5)
modulo 7.

III. The Phase Representation

10) Let us recall the properties of the function F(Z) introduced in
part II

a) F(Z) is analytic in the complex Z cut plane

b) F(z*) =F(z)*

¢) F(2) is bounded by a power of |Z| as |Z]| = @ inall

direction.

We now assume a new condition on the function o, (s) which is the
discontinuity of F(Z) across the cut

d) o (s) is continuous and has only a finite number of zeros.

As a first consequence of th?se assumptions the function F(Z)
has only a finite number of zeros.6 From condition b) these zeros
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are distributed on the real axis, s =a, @; < so) ors =b, (b = s )
or in pair of complex conjugate numbels in the Z plane: Z = ¢ and
Z = ¢, * as indicated on Fig. 11.

Il
3 { fod
0
a‘I so bk
* *
)
Fig. 11

Let us define the polynomial P(Z) by

o= g -E) -2 -2

3.k, ] o wad %

Of course P(s) is real on the real axis and P(0) = 1.
The function G(Z) defined by

_F@)
Z) = .1
@) =) (.18)
satisfies obviously the set of properties a), b), ¢), d) and has no
zero in the complex Z plane. Moreover G(0) = 1.
Therefore, the function log G(Z) is also analytic in the cut
plane and its discontinuity across the cut is given by

Im F_(s)

) {B.19)

=L = By = b
ch(s) T lim+ [Log G(s+He) - Log G(s-1e)] = arc tan o Fﬁ(s

e=>0

From condition d), ¢(s) is continuous and bounded. By convention
we choose qJG(BO} = 6;1n what follows.
On the other hand, condition ¢) implies

lim Log G(Z) =0

|Z|=oo VA
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By applying the Cauchy theorem to the function Log G(Z)/Z with the
contour C drawn in Fig. 8 we obtain the equality

@ o (t)
Log G(2) =TZT-L ?ﬁ% dt (B.20)
o]

where we have used the normalization condition G(0) = 1.
The integral in the right-hand side of Eq. (B.20) obviously
converges, pg(t) being continuous and bounded.

We finally write for F(Z) and G(Z) a phase representation7)
= o (t)
= Zpo G

G(2) = exp j‘s ez O (8.21)
o
z Sog

F(z) fP(z) exp;£ Tz 9t (B.22)

o

20) Let us now study the asymptotic behaviour of G(Z) as a conse-
quence of the phase representation (B.21).
By convention ¢ (s) = 0 and from assumption d), ch(w) exists

and is finite. Let us pu
pg®) =7 N, .
It is convenient to introduce an auxiliary function ¢ G(s) which
vanishes at infinity
ch(S) = c;G(S) + ch(w)
and to define the integral
© - t)
J% p _9g
ug@ =3 [ -7 - (8.23)
s
o
A straightforward calculation gives
-N

so -2 G
Log G(Z) = Log 5, + uG(Z) : (B.24)
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The asymptotic behaviour of u.(Z) and therefore of G(Z) obviously
depends on the precise high energy behaviour of the phase an(s) 3
Let us assume for the moment that the integral

= g (t)
I bl
-] = (B.25)
50
converges and let us call its value Pe.
It is straightforward to show that under reasonable conditions

on the derivative of ¢ G(s) for large s

lim _
1Z| = e uG(Z)—pen . (B.26)
Using now Eq. (B.24) we obtain the asymptotic expression of G(Z)
for large Z

-N
G(z)meq' (1 -S—Z-) - (B.27)
(o]

Such a situation occurs for instance when cEG(s) behaves at infinity
like 1/s% with € > 0 or 1/Log &)* with o > 1. ’

If now the integral (B.25) diverges, Eq. (B.26) is no longer
true and u~(Z) tends to infinity for large Z.

The more critical behaviour occurs when Z is in the cut be-
cause of the presence of principal value integral. Let us define

s ® tEG{t)
pG(S) = Re uG(S + i¢) i PVJ;; Wdt .
(o)
It is straightforward to prove that
Pels)
lim G =9.

s=®+% Logs

Moreover, QEG(S) having a finite number of zeros possesses asymp-
totically a definite sign, €ae ‘We deduce

if €q = +1 exp pG(s) = 0 less rapidly than any power of 1/s

if eG =-1 exp pG(s) = » less rapidly than any power of s,
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Let us consider, as an example, the case where $(s) behaves for
large pUSJ)tive s like m a/Log s. Using a theorem g ue to Frye and

Warnock on the asymptotic limit of principal value integrals, we
have
o, ()
G
pg(s) =--—f dt+o]:LOg s] .
o
Therefore, for large positive s
2 1
pG(s) -a Log(Log 8) exp pG(s) e (B.28)

(Log s)

30) From Eq. (B.24) the function F(Z) can be written in the form
-N
j 2z
F(Z) = P(2) (1 - )

(o}

G exp u, @ (B.29)

and we denote by R the degree of P(Z).

Using the results of the previous paragraph on the asymptotic
behaviour of u. (Z) we easily check that F(Z) satisfies a dispersion
relation of typé (B.11) with n subtractions where the non-negative
integer n is restricted by

>R -
nRNG

The equality n =R - N, can occur in the following particular situation

G

o ()
a) J' G
b)

dt diverges

eG =+1, e.g. there exists a T > s, such that for t> T,

@G(t) z0. (8.30)
The solution depends obviously of R arbitrary parameters one can
choose as the zeros of P(Z).

Conversely, let us look for solutions of the dispersion rela-
tion (B.11) having the form (B.29). Now, nand N, are fixed. In the
general case, Eq. (B.11) has solutions if and only if n + N_, > 0 and
the number of linearly independent solutions is then R + 1 %vhere R
is the maximum non-negative integer less thann + N

In the particular case where the conditions (B, 30) are fulfilled,
even if n + NG = 0, there exists a unique solution to Eq. (B.11).
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As an illustration of the previous results, we consider the un-
subtracted dispersion relation (B.12). In general, this equation has
no solution if N < 0. However, if Ng = 0, the only possible solu-
tion must satisfy the particular conditions (B.30) as occurs, for in-
stance, when the high-energy behaviour of q‘pG (s) is given by

oulE) = am
e Log s

witha> 0 .

40) From the unitarity relation (B.17), in the elasticregions < s <
4s0 the phase rpF(sO) of the form factor is equal modulom to the
phase &, (s) of the elastic -1 scattering amplitude I=1, T=1.
Assuming 83, (so) = 0 we identify ch(s) and §,, (s} in this region.

As discussed in Section II, such an identification can be ex-
tended to a larger domain including in particular the p-meson region

ch(s) =8, (s) for g <s< Sinel.

More generally, we define a phase m(s) which represents the contri-
butions of states other than 2m to the unitarity relation

ch(S) =584 (s) +n(s). (B.31)

This phase n(s) appe?rs only for s 2 s, and we choose n(s, ¥=0.
The Omnés functiong associated to the n-m scattering ElmplitulcileEﬂI'= 1,
T =1 is defined by

11 (1

= Zp
C;;l;l(Z)--expTT‘fO T = 2) dt .

+ .
As a consequence of equation (B.31) the contributions of the m m
intermediate state are explicitly exhibited following

G(2Z) = Gy, (@) expTZ—T f th{ﬂz_} dt .

inel.

Models can be used to construct G, (Z) and therefore to obtain
approximate expressions for G(Z) and F(Z).

IV. The Modulus Representation

10) We consider an analytic function F(Z) with properties a), b), and
¢). In this section, condition d) is replaced by a weaker one d’).
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The function F(Z) has only a finite number ogzeros and its phase
increases less rapidly, in modulus than |Z|® inall directions.

We can define a polynomial P(Z), of finite degree, having the
same zeros as F(Z) and normalized so that P(0) = 1.

It follows that the function G(Z) = P! (Z) F(Z) satisfies con~
ditions a), b) and c¢). Moreover, it is normalized to unity at Z = 0
and has no zeros in the complex Z plane.

2°) Equation (B.21) gives an expression of G(Z) in the cut plane in
terms of the phase r.pG(t) . An equivalent expression of G(Z) can be
obtained inlE?rT?JOf the modulus |GH(t)| assumed to be known on the
cut t = s,. 4 It is the object of this section. Let us consider
the function

Log G(Z)
-5

It is an analytic function of Z in the cut plane which tends to zero as
|Z] = = in all directions. We apply the Cauchy theorem to that func-
tion with the contour C of Fig. 8. The result is simply
*
(@ SOJ 1 Log |C—11_r )]
i

Log G(Z) = dt . (B.33)

=
S, (t so) t-2)
The normalization condition G(0) = 1 gives a sum rule

2m_ © Log|G (8|
| —”% at=0. (B.34)
So t - sc} t

Combining Eqs. (B.33) and (B.34) we can write @ more convergent
expression
3
z(z -5 )° = Log|G ()
im

Log G(Z) = dt. (B.35)

s, & - so)%t(t - 2)

3°) In particular the phase 9 (s) is deduced from Eq. (B.35) to be
glven by a principal value integral (s = so)

%

s(s - s ) @ Log |G {t)]

Pgls) = - Tr — v/ ’kn
sot(t— so) t-s)

dt . (B.36)
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For s, S 8 < 4s, the phase ch(s) can be identified with the phase

6,4 (s? of the. P wave scattering amplitude for vy m scattering., There-
fore, ¢ _(s) must behave like (s - s )3/2 around the threshold point.
Using t‘ﬁe identity

w-sp g t-st-w-s

T — Log
dt (t - so)%,+ (Z il So)%

(t-s )t -2

we perform an integration by parts in Eq. (B.33) and obtain an equiva-
lent expression

@ PRy et - et e @]
Log G({Z) =Log G(s ) - — Log Loth dt
2l B sy t-s )% +(Z -5 )% dk (8.37)

provided that Log |Gr(t)| is differentiable.
Let us make an expansion around Z = s of the logarithmic
term in the previous integral

t-st-ms P o @eoagh -
~-2 + OL(Z -
&-s?+wz-sﬁ (t—sﬁ

Log 50)3/2]

Putting this in Eq. (B.37) we deduce an expansion of Log G(Z) around
Z = s

2
Log G{(Z) = Log G(s )+ (Z -8 ) ¢ Log lG_@®] +
f (t-s g T

+0ol@Z - 50)3/2]

and the behaviour of ch(s) around the threshold point implies the sum
rule

-]

 —2 — 4 ogg m]=o0. (B.38)
; £ dt T

s (t-5)

o o

The scattering length for the P-wave scattering amplitude is com-

puted with an analogous method of integration by parts and the result

is
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614 (s) = 2
lim 4 dt d
I Log | G_(t)]. (B.39)
37185 g o 50)3/2 3 J;O e SO)E dar T

40) The form factor in the spacelike region s £ 0 is related to the
modulus |Gn(t)| in the timelike region by

s(so - s}% ®  Log lGn(t)|

dt| . (B.40)
sot(t - so)% it -s) ]

As an application of the previous expression the root mean square
radius associated to the form factor Gﬂ(s) is represented by the highly
convergent integral

1Zm = log @ ()]
r? = L dt. (B.41)
G w0 J.s Pl -s
(o] o

50) Let us now study the high-energy behaviour for the phase ch(s)
in the timelike region (s ® + =) and for the form factor G'T(s) in the
spacelike region (s = - =),

As a first remark, Eqs. (B.33) and (B.35) are equivalent if
and only if the condition (B.34) is fulfilled. If not we define

= Log |G_(t)]
=
s (t—so} t

(o}

and Eq. (B.35) is equivalently written as

z
(2 - so}a ©  Log |Gn(t)|

im

Log G(Z) = dt + ix(Z - so)é "

Sq t - so)%(t - 7)

It is convenient to introduce a new function é(Z) by

N ix(@ - so)%
G(Z) = G(@2) e

On the cut s 2 S, we have the equality
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Log |Gn(t)| = Log |G"(t)|
and it follows that G(Z)is a solution of an equation of the type (B.33)

Z - so)’l‘ = Log |c"=‘“(t)l

Log G(z) = dt

im &
Sy t - so} t - 2)
. xm
with the normalization condition G(0) =e T,

We can therefore restrict our study to Eq. (B.33). The first
proposition is the following: if there exists a finite number v such
that

lm s VEE
—_— =4 @
s = +® Log { (so> IG'1'r(s)l} (B.42)
for all € > 0 then
lim - N
= ch(s) v . (B.43)

Of course, from the existence of a polynomial bound for |G(z)| in the
complex Z plane for large |Z| (Eq. (B.8))
G@)

Zl’l

lim

|z|=e =0

it follows
vV>-n .

The quantity v being defined by the condition (B.42) it is convenient
to introduce a new analytic function g(z)

vV
9@ = (1-2) G@ . (8.44)
(o]

Using the Cauchy theorem it is easy to prove the equality

L_v

( Z) (Z—SO)%“’ X o '1 d

Log (1 -— )= t
5o im S 5 (t-so)%(t-z)
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from which it follows, for g(Z), an equation analogous to (B.32)

(z - sO)ir ©  Log Igﬂ(t)l

Log g(Z) = dt (B.45)

e G - so)%(t - 7)

with the normalization condition g(0) = exp (2x mn) )
We then are brought back to the case v = 0 in the previous
proposition: if foralle > 0

lim S =€
ase 19 () gy} = ®.4)
then
Iim _
gmto Pgls) =0 (B.47)

The phase ¢_(s) is normalized as usual toeg_(s ) = 0. From Eq.
(B.45) we déduce its integral representation

-4

o (s)=- — PV
9 m Iso - so)%(t - s)

® Log |g_(t)]

at’. (B.48)

From the restriction (B.46) on the high~energy behaviour of [gn(s)l in
the timelike region it is straightforward to prove the result (B.47) as
the limit, at infinite energy, of the principal value integral (B.48).

A more refined information about the high-energy behaviour of
the phase cpg{S]' is given by a second proposition

g o ()
At
Lim fo = (B.49)
85 = 4 o
Log lgﬁ{S)l

The proof of Eq. (B.49) is obtained using the technique of the phase
representation as explained in Sec. III.

Finally, as a consequence of the Phragmen~LindelSf theorem,
the high~energy behaviour of the form factor g (s) in the spacelike
region and in the timelike region are identical

5= = | 5_T8) ' :
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6°) We now consider the actual function F(Z) = P(Z) G(Z) and more
specifically its logarithm.
Let us first apply the Cauchy theorem to the function

_Log P(Z)

i
L
@-s)

using an integration contour CP excluding
g) the normal cut on the positive real axis (so, + @) due to

(Z - 54

b) the cuts assoclated to the zeros 24 of P(Z) not located

on the normal cut, e.g. of type aj or gL, cz.

The discontinuity of Log P(Z)/(Z - 8)° across the normal cut is given

by

'{——l—)E el:%Jr #[Log P(s +ie) + Log P(s ~ ie)] =
E -8
o

1
——— [Log|P(s)| +ip_ (s )] .
(S = Eo}é P o

Choosing cpP{D} =0, the phase ¢,(s.) is TN _, where N_, is the
o !
number of positive real zeros of%{s? betweén 0 and e
After a straightforward calculation of the contributions due to
the other cuts of type b) we obtain the final result

&
Z-s ) =
Log P(Z) = =2 Log| P(t)] dt + ip_(s )
s {t—s} (t-2) R
(2= )t - s )t
+ ) Log é * ¥ (B.51)
j' (zj-s )+ (2 8,

Combining Eqs. (B.33) and (B.51) we obtain a representation of F(2)
in the cut plane in terms of the moedulus |F1T {t)] 1in the timelike region
as measured in electron-positron annihilation experiments
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@-s? = Log|r 0]

i

Log F(Z) = dt + iCPP(S:o)-

S5 (t—so)é (t-Z)

(z-s }é-(Zs}%

. (B.52)

ZLog

It 1s convenient to parametrize the zeros zj in the following way

(z—s }i‘+(ZS)th

& _
(so-aj) = onj>0
(c -s%=B + iy B,>0 vy, >0
£ c) £ £ A £
* * _
(c, -8 =-8 +1y,

Equation (B.52) becomes

Z-s)f = Loglr @]
Log F(Z) = e — 3 dt + jj:pP(so)
N t - so) ¢t -2)

t‘.ra+i(Z—s]'ri B +Y£+5 Z+21yL(Z-s)%

+ZLog _J_E ZLog

-1(2—5) j Ba+y”+s —Z—2ivL{Z-sD)§

Fromthe normalization condition F(0) = 1 we deduce a sum rule

2m @ LogIF ©)] n-% o, + 2m
RN 1 . o A S I
TT ‘r (1: s }i dt wP(So) +2 Log o, - Zmﬁ

i
B + by, +2m_ ?
ZLOQ L o i o {1
Byt by - Zm )

The first two terms in the right-hand side of the previous equality
can be combined to give the simple result!
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2m_ @ Log|E_(t)] Z o +2m g + v, +2m P
dt =) Log ZLOQ-*__? 4
™ s (¢ - é ; %" 2m By + by, - 2m )

(B.53)

7 ) The phase wn(s) of the form factor Fr (s) in the timelike region
s=sis deduceg from Eq. (B.52) to be

(s - so)% ® LDgiFﬂ )]

o) =@(s ) - PV =
F F o T So { = Se)%(t - 8)
(s -s }é 2\‘{'(3 - Solé
ZZArctan ——:‘.j—+22Arctansi+Yi my = '50} :

J j (B.54)

Observing that, in Eq. (B.54) the angular contribution from each zero
z; is an increasing function of s starting from zero at s = s4 and
reachinc,; 11/2 when s ® + ®, we can obtaina lower bound for the phase

F(EJ

%
(s -s) ] Log|F_(t)]
o (s) -~ (s )= - S~ pv | v
F B I J‘so (t - so)é(t - 8)

dt
(B.55)

From the unitarity relation (B.16) the phase difference q:r_.{s} Pp (s)
is simply the phase shift 6, {s} in the region S,5 8% 430 and there—
fore must behave like (s - so) 3/2 around the threshold point s =5 .
Assuming that F (s) does not have zeros on the cut, it.[ﬁ straightf%r—
ward to generalize Eq. (B.38) and the result is simply

lp _ at d A Y,
nj; -5 )E dt (LoglF"(t)]) —z o, + zz —_—Bi i (B.56)
o] o) j )

The right-hand side of this equation is obviously positive and we
obtain the following inequality

1 dt d
= LoglI—‘ | =o0 (B.57)
w J‘so(t _ SO}E dt
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and the equal sign holds when and only when the form factor does
not have zeros,

The value of the integral (B.57) gives a measure of the impor~
tance of the zeros in the region around the threshold.

Finally, the scattering length for the P wave nm scattering
amplitude is computed from Eqs. (B.39) and (B.54)

611{5] 4 j'm dt Fe I {]1
lim ——— =it —S e S taglE
s=5 (8—5}3/2 % @-s) ar 3
(o] (o] [o] [0}
= a
20 1 4o Yol —38Y)
LRI @y o B
7% iy BTN

8 ) In the spacelike region s < 0 the form factor P (s) has the follow~-
ing representation

(&, ot = Log|F_(t)|

F (s) =exp dt
¥ Ty ks
* ¥
N (s -s) [Y - (s -s)*]®
x (1) a* ﬂ 3 n Q I
i % +(s ,~5) By * Ly + s, - 8)1?

(B.59)

The condition Fy(0) = 1 implies the relation (B.53). It can be ob-
served that all the logarithm terms in Eq. (B.53) are positive and it
follows immediately a second inequality

2m @ Log|F_(t)]

J
B S, t - so)* .

z0, (B.60)

Again the equal sign holds when and only when the form factor does
not have zeros.

The value of the integral (B.60) glves a measure of the impor-
tance of the zeros in the region around the origin.

Using similar arguments we can obtain, in the region s < s

o
an inéquality which generalizes (B.60)!



ELECTRON-POSITRON ANNIHILATION 283

J

(s, -8 =  Log|F ()]

IFTT(S)I < exp dt . (B.61)

il S, t - so)i {t - s]-

in other words, Eq. (B.61) gives an upper bound of the form factor
T3 (s) in the spacelike region in terms of the modulus of the form
factor as measured in the timelike region.

V. Form Factors with an Exponential Decreasing in the Spacelike
Region

10) Let us be%yi with the following theorem of the theory of
distributions.

The function F(2) has the properties a), b) and ¢) if and only
if there exists a real valued tempered distribution S whose support
is contained in {x|x = 0} such that for all Z in the complex cut
plane, we have the representation

+o0 ix(Z-s )i /
FE) =] s&e ® ax (B.62)

where
_al &
0<arg (2 so) <.

In particular on the real axis, the form factor Frr (s) 1s a tempered
distribution given by

o ix(e-s P

Pﬁ(‘s) =‘L Sx) e dx ifszs (B.63)
+o -x('so-s)%

FE)=] ske dx fsss (B.64)

We easily check that for spacelike values of s, F_(s) is real.
The normalization of S is obtained from the condition F(0) = 1

+e -2m x
1= S&e T oax . (B.65)
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Conversely if the form factor Fy(s) is the boundary value of an analy-
tic function F(Z) with properties a), b) and c¢), then Fﬁ{s) is a tem-
pered distribution and using the theory of Fourier transform, we obtain

ix(s-s )%
S(x)=—1f R ° F (s) (8. 66)
= o )% e e (&) h
(o]

20} ‘We restrict ourselves, in the following, to form factors which
decrease like exp(—a] sl&) when s = -» in the spacelike region. Such
a behaviour has been suggested by Wu and Yang!l 4) in the framework
of a model for large angle scattering at high energy in strong inter-
actions. 15)

It can be proved that the two following statements
o) lim sup }sl_% Log|1’-‘ﬂ(s)| < -a witha> 0

5= -
B) the support of S is contained in {x|x = a}

are equivalent,
Therefore, if

i |s|-% Logan(s)I = -

5= =%

the support of S is empty. Thus S is zero and also F(Z) assumed to
fulfill conditions a), b) and ¢).

A lower bound for the decreasing of F;(s) in the spacelike
region is precisely that considered above ina).

30) The high-energy behaviour a) of F(s) in the spacelike region
implies some interesting properties of the discontinuity q_r(s) of F(Z)
across the cut.
The discontinuity O (s) cannot decrease as fast as
exp(-B s¥) as s = + =, )
b) The function F(Z) and the derivatives of F satisfy general-
ized dispersion relations without subtractions
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m 1 -t n )
F@)= ot o J's et
o
(J) 11m .L_ -et c"{t)
@) = e @ —0—dt . (B.67)
-'r (t - z)_‘|+1

In other words, the function F(Z) is ur}iq,uelaf determined by its dis-
continuity ¢ _(s) when a) is satisfied. )

¢) The discontinuity Uﬂ{s} satisfies convergence sum rulesls)
1 ¥ et N
im -c -
emg*d &t o (dt=0 (B.68)

s
o
for all non-negative integers N.
d) The discontinuity I (s) must have an infinite number of

changes of signs. More precisely, let us denote by n(s) the number
of zeros of ow(s) in the interval T - 8 where T is fixed, then

lim sup % a
ot S n(s)21_r . (B.69)

40) From the unitarity relation (B.16) the phase difference cpP(S) -
(s ) is simply the phase shift 611 (s) in the low-energy region and
therefore must behave like (s - so) 3/2 around the threshold point

s =s,. Using the representation (B.63) this last condition is simply
written as

[ xstax=0. (B.70)

The scattering length for the P-wave 1 scattering amplitude is then
deduced from Eq. (B.63) to be

4+

6., (=) 3 J"_w x° S(x) dx -

lim A" = (B.71)
s=>so(s—so) J‘ Sx) dx
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50) The root mean square radius is determined using an expansion
of Eq. (B.64) around the origin s = 0. With the normalization condi-
tion (B.65) we obtain
3t —Zmﬂx
(IfT>=-—4m:T‘I' X e S(x) dx

-0

VI. Models '

10) The partial wave amplitude

h;, (s) =‘Lksg em“(s)sin 8,,(s) s= S, (B.72)

is the limiting value of an analytic function H(Z) in the complex Z
plane with two cuts
a) a right-hand cut on the positive real axis from s _ to +®
b) a left-hand cut on the negative real axis from ~ ® to 0
Because of the threshold behaviour of the P-wave phase shift 6, (s)
the expression (B.72) is regular at the point s = S,

ZO) Let us now write the function H(Z) as the ratio of two functions

_N@
H(Z) )
where
N(Z) is an analytic function of Z except on the left-hand cut
D(Z) is an analytic function of Z except on the right-hand cut
The discontinuity of D(Z) on the right-hand cut is given by

s o (s -50)3/2
Im D(s) = N(s) =-3 —rN(s) ;
g

The number of subtractions needed to write a dispersion relation for
D(s) depends obviously on the high-energy behaviour of the left-hand
cut contributions represented by the function N(s). For instance, if
lim
s = 4
tion point can be chosen at s = 0.

N(s) =0 one subtraction can be sufficient and the subtrac-
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" . 13/2
D(s) = D(0) —% J"S : ;"jz : _Ns(tz = dt (®.73)
o
but if Sli=m R N(s) = const. two subtractions are necessary and
choosing always s = 0 as the subtraction point
2 ® (t=8 }3/2
D(s) = D(0) + s D’ (0) - gsj"s 1:3;2 ; _I;I(i) .(8.74)

o

Conversely the discontinuity of N(Z) across the left-hand cut (s <0)
is the product of D(s) by the discontinuity of H(Z) across the same
left-hand cut.

30) The N/D formalism will be used in the following to construct
partial-wave amplitudes like (B.72) from specific assumptions con-
cerning the left-hand cut contributions. Models for &,, (s) are built
in this way corresponding to particular forms of N(g).

a) Frazer and Pulcols) replace the left-hand cut by a pole
on the real negative axis at s = -s; . The function N(s) is approxi-
mated on the right-hand cut by

Sy

N(S) =s + 5,

It is possible to write for D(s) a dispersion integral in the form (B.73)
and to compute explicitly the dispersion integral. The result is for
D(8), an expression with two ?rbitrary parameters D(0) and s, .

b) vaughn and walil? approximate the left-hand cut by a
double pole using, as numerator function

N6 = (7757

In their paper, the dispersion integral is written in the form (B.74)
with two subtractions at s = 0 in order to have a more rapid conver-
gence of the dispersion integral, Choosing arbitrarily D’ (0) =1,
Vaughn and Wali deduce an expression for D{s) with two adjustable
parameters D(0) and s, .

c) Gounaris and SakuraiZO) make the crudest but simplest
assumption of @ constant numerator function. The dispersion relation
for D(s) is used in the form (B.74) and again the result is, for D(s),
an explicit expression with two arbitrary parameters D(0) and D’ (0}.
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In all the three models the two free constants are determined
by the requirements to have, in the partial-wave amplitude, the p-
meson resonance, at the mass mp with the width Fp 5
40) In the Frazer-Fulco model the function H(Z) is found to be
H @) =(= - s.) £(2) +a + bz (B.75)
where the function £(Z) is defined by

. Z—soé (Z-so)%+Z%
i) =g \—72) o —5—
(Z—so) -z2

o (B.76)

The constants a and b are related to the parameters D(0) and s; by

mB

_ _m
a =D(0) + -

b =Sl—1[a - (s,#81) £(-51)] . (B.77)

By construction H™! (-s, )= 0.

The Gounaris-Sakurai model gives, for H(Z), an expression
identical to Eq. (B.75). The constant a is unchanged and the constant
b is given by

1

= ST |

b =D’(0) 3

‘We now consider more specifically the scattering amplitude h,, (s) in
the physical region s = s,. Using Eqs. (B.72) and (B.75) we obtain

for the phase shift 8, (s) a so-called generalized effective range
formula

3
‘/l.(—scot 8,,(s) =¥ h(s) +a + bs (B.78)
where the function h(s) is deduced, from Eq. (B.76), to be

/s + 2k
°g 2m
™

=RIN

=2k
h(s) = 7s L
With the convention 8,4 (so) = (0 the P-wave phase shift as given by the

model (B.78) tends to zero at infinite energy with the following
behaviour
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813 ()= —— (B.79)
Log7,@

™

The existence of an elastic m-m resonance, the p meson, intheI=1,
J =1 channel, determines the constants a and b by the two constraints
on the phase shift 8, , (s)

cot 8,1 (mpz) =0

d a 1
811(m °) =—=

T
ds o mp 0

The result is s

k
=m 2 3 2l __P 3 ! 2
a=m h(mp)+mp 1 +kp h(mp)
p P
e »

B
m 2T

b=-Zhm 2) -
P b p

+k ? h'(m ?
o m ")
where
T 3 _ 4y 2\E
kp ﬁ‘(mp 4mTr )
The value of s, for which H™ (-s,) = 0, 1is found to be very large

s, >~ 9.6 10° m;

5°) We now construct the Omnés function Gy (2) defined in Eq. (B.32)

514 (1)

= Z —
Gy, (Z) = exp _ ‘['S -2 dt

o
From the considerations of the second paragraph of this section we
easily deduce that the function Q(Z) defined by

Q(2) = Gy, (2) D(2)
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is an entire function of Z in the complex Z plane. The function G,; (Z)
is then related to the scattering amplitude H(Z) by

H@) Q@) (8.80)

_H

We assume H(Z) and N(Z) to be known; the function Q(Z) is then res-
tricted by the following properties of G; 1 (Z) previousiy discussed
a) no zeros in the complex Z plane

b) Gi1 (0)=1

¢) correct asymptotic behaviour as studied in Sec. III.
In the actual case where the phase shift 813 (s) 1s described by the
effective range formula (B.78) the only singularity of H(Z) we have
to cancel is the pole Z = -s; so that

N@Z) s

The corresponding Omnés function is found to be
3
m

i}
a-—
]/
G @ =+ g 5.) £2) e (B.81)

On the real axis in the timelike region above the cut s > So the Omnes

function is given by

MM+ Guals o) = (1 +2) X
1

e=o0f
T
m® (1 + d-—a)
p m
¢]
oL , Ky Do
2_ i 2 3 _ 231 _ k
mete T (K [h(s) - hn?)] + (2 -s)k2h’ (m3)} impI‘p(kp) b
(B.82)
where the constant d is given by
m? m+2k  m m? m
—-£_0,_08 _ 1.0 (B.83)

d=l u Lo
nk? %97 2m 2k Tk
P b1l p p
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Equation (B.82) exhibits the following properties

a) Near the p-meson mass s = my the term in brackets in the
denominator of Eq. (B.82) behaves like (s - m_?)? and therefore it can
be ignored in this region. For practical computations Gy (s) reduces

to the usual P-wave form
i
me(l +d—2
p mp

G11(S)k .
m2-s+0[m?-sf] -imr(—k)3 iy
p Mo ppkp /s

b) A correct normalization of G;1 (s) at s = 0 implies the pres-
ence in the numerator of G,, (s) of the constant d giving a measure of
nonzero width corrections. For instance at s = m? the value of Gy, (s)
is given by e

o 5
2y o
Gas (m?) 1Fp (1+dmp>

The numerical value of d for the actual p-meson mass is close to d =
0.48 and we obtain a 14% effect for |Gy1 (m®)[?.

c) As a common property of all the width energy dependent
Breit-Wigner expressions the actual maximum of |Gy, (s)]® is not at
s =m _? but is somewhat shifted towards the left.

d) Because of the very high value of s, the factor (1 + s/s,)
in Eq. (B.82) can be disregarded in the domain of validity of the effec~
tive range expansion (B.78) e.g. for values of s between the threshold
and 1 or 2 GeV?.

VII. Experiments

10) The modulus of the m-meson electromagnetic form factor has been
measured in the p® resonance region by observing the reaction

+ - + . -
e +te =>m +m

A systematic analysis of the experiments performed in Novosihlrskm)
and in (‘)r.a‘.::\y22 has been made by Roos and pimut23 using different
parametrizations of the m-meson electromagnetic form factor.

The possibility of zeros of Fy(s) has been disregarded and the
form factor has been identified with the Omnés function G, (s) corres-
ponding to the elastic unitarity relation.
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The problem is then reduced to the construction of a phase
shift 8., (s) reproducing correctly the main features of the actual P-
wave phase shift and in particular the resonance property of the scat-
tering amplitude in the p-meson region. Some of these models have
been discussed in detail in Sec. VI but the Roos and Pisut analysis
covers a larger domain of possibilities for the energy dependence of
the width.

As expected, the resonance parametersdepend strongly on the
differences in the formulae used for the fits but it seems difficult to
choose clearly the best phenomenological form for Fr;(s), all the ex-
perimental data being concentrated in the p°—meson region. Never-
theless an energy-dependent width as suggested by the P~wave cha-
racter of the final-state interaction gives better results especially
for the Orsay data.

20) Let us now consider the data more quantitatively. The measure-
ments cover a range of total energy /s from 580 MeV to 1030 MeV
approximatively by 30 MeV steps, with nine values for the Novosibirsk
experiments and seven values for the Orsay experiments.

We first use a simple Breit~Wigner formula ignoring the nor-
malization condition at s =0

m4

IFW(S)I:a - (m 2~ 5)3Q+m3f‘a (FTT(O)B '
p pp

The result of this three-parameter fit is given in the following table

3 Mass | Width
Degree of freedom| ¥’ (MeV) | (MeV) F1_r (0)
Novosibirsk 6 2,3|754+ 9 |[105+ 20 0.9 £0.11
Orsay 4 8.6|762x6 (117 £ 11 0.12+ 0,08
Table 1

A second fit is made, using now the model proposed by Frazer and
Fulco in 1959 and by Gounaris and Sakurai in 1968. Such a model
based on the effective range expansion of the m-m phase shift 6, ,(s)
has been extensively discussed in Sec. VI and the explicit expression
of the associated Omnés function is given in Eq. (B.82) with the prac-
tical form (B.83) in the p®-meson region.
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The results of this two-parameter fit are given in Table 2,

Degree of freedom | ¥° [Mass{(MeV) | Width(MeV)

Novosibirsk 7 4.5/ 768 £ 10 140 + 14

Orsay 5 8.6| 772 £ 6 113+ 8

Table 2
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SECTION C. Currents and Spectral Representations

I. Conserved Currents

lo) We first consider a conserved current ]ﬁ{x} where 0. 1s the weight
of the adjoint representation of an internal symmetry group like SU(2)
or SU(3). It is always possible to choose & such that the current
component ]:L(x) is an hermitian operator

a
x)* = .
1, 69% = 1 60
By assumption the current is divergenceless
ok ]“u(x) =0 €.1)

where 3" is a short notation for dox .
The space integral of the time component of the current is
associated to a conserved quantity

Q
Q¥ = &) dex
and Qa' is generally called a charge.

20) A KEllen-Lehmannl) '2) representation can be written for the
vacuum expectation value of the product of two current-components.
The structure of such a representation is determined by the Lorentz
covariance and the divergence condition (C.1)

(-]
P =P 282 - AT e Y
<o|1§(x) 1, (0)] 0) Io o ( )[gw 20,2, | 147 e )an? L (C.2)
The invariant distribution A+(x,m3) is defined by its four dimensional
Fourier transform

i) = i [ 4V im?) aux

2 om?) =F 2im 96k ) 6 (2 + m?)

where 6 is the usual step function and & (k¥ + m?) the invariant Dirac
distribution on the mass hyperboloid.

If the vacuum belongs to the scalar representation of the sym-
metry group the spectral function o% (m®) can be written as
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B2 = 5% 7% (2)

Because of the hermitian character of the current the spectral function
0%B(m?) satisfies

a a
p Bme)x = 0P m2) .
In partiéular the diagonal elements pa.oc (m®) are real functions.

30) Analogous Kallen~Lehmann representations can be written for the
product of the two current-components in the reversed order

<ol o Feal 0 -J o o= m93,2,] 1+ 8 6cm®) am?

and for the commutator of two such current components

olte, foo =f P P g, - 23 2,1 1A Gn?) dn(C.3)

The causal invariant distribution A= A+ + A~ is defined by
AkimP) == 2imw e(ko) 5(2+ m®)
where e(ko) is the discontinuous function sign of k.
40) It 1s now convenient to take the Fourier transform of both sides of

the Kdllen-Lehmann representation (C.2) in order to study some proper-
ties of the spectral function p%F (m?)

j- -ik'X< ]KI B - ku._k\) B
e 013, &) T, @[ O dex =2m 8k ) g, ==z | o (K). (C.4)

We introduce a complete set of intermediate states In)
o B . a 8
(0] 36 1,010 =)'s, <0| ) m) (n|5(0)] 0} .

Let us recall that the symbol 8, defined in Sec. A implies a summation
over the polarization of the particles of the intermediate state |n) and
a phase-space integration.
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From space-time translation invariance
ipn-x
el =e ™ (ol 0)n) -

The x integration in the left-hand side of Eq. (C.4) is now easily
performed

). 8,54 (o, k) (0] 1)) (a] £ )] 0) =
. , Kk o
2m 6 (k) [gw- —“—kg ] p-K) .

[y

Contracting this with the metric tensor g~ ~ we finally obtain

o (s) = g 0ky) Y 8, (2* 54 (o~ <O @) m) (nl P 0] 0) o

- (C.5)

where s = -k®. =

It is now straightforward to prove that p~  (s) is a definite
positive function using for instance the property for the matrix ele-
ments of a conserved current, to have only space components in the
centre-of-mass system & =0)

£=3
o2 @) =5 8k )Y S,m* sao, - Y [KolF@IDIZ,  (C.6)
n =1

II. Non-Conserved Current

10) The current density ]a(x) is always an hermitian operator but its
four divergence is different from zero. Therefore two spectral func-
tions are needed to write Kdllen-Lehmann representations like (C.2)
and (C.3)

m® v

B = o B, 5 L
01,6 OO =] Loy [5, - 72,2

A, o + 3 2
- o (MR 3 }iA (m?P) dm
(0) TRV ©.7)
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o = 2
ClIeOF 110 —fo {p(l) (m )[g

=<9 3
m? v
- o‘;‘g‘)mﬂ 2,2} thbeim?) dn . (C.8)

Of course when the current is conserved the spectral function p%g) (m®)
vanishes identically.

2 ) We usc the same method as in Sec. I to study the spectral func-~
tions p }(m ) and p%8 (m?). The four-dimensional Fourier transform
of the Kallen- Le‘m[nejmn representation (C.7) is simply

k k
-1kex g = _HF—
j\e (0”(;(,() I\)(O)l 0)dyx — 21 e(ko) {[gl-l\) . Y p(l)( -k3)

+k k p(o)( ke)” (C.9)

We introduce again a complete set of intermediate states |n) in the
left~-hand side of Eq. (C.9). We perform the x integration and obtain
the general relation

k k
2m e(ko); [gw +—H;\’- p?lg(S) + k k p{O)(S)]E

=Y 8, (m* e (o= ) 012 ) (nl 1 0)] 0)

where as previously s = -k,

In the centre-of-mass system X = 0 the tensor Ghis k)
has only nonvanishing space-space components (4 #0, v # 0) whereas
the tensor i\, has only one non-vanishing time-time component
w=20,v kEB We are then able- to compute independently the two
-:pactzal functions pCE'f‘}(s) and p{Ol (s)

1=3
& =3 e(k)ZS (m*ea o, - k) ) [T @n]* (.10
=1
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po(cg)(s) _Znse(k )2 s, (am* 8. o - k)|<0|f~)(;(0)|n>|a (C.11)

n

From Eq. (C.10) and (C.11) we conclude that the two spectral func-~
tions Q% (s) and p%g’) (s) are non-negative

(1)
oo ao
p(l)(s) 20 p(o)(s) 20

Of course, if one of the spectral functions is identically zero, the
second one is definite positive.

ITI. Equal-Time Commutators

10) The distribution A (x;m?®) satisfies the integral representation

-'-‘ sinw t
i
A(rt m)_-WIek i

Wy
where x = (r,t) and wg SV-K2+m? .
Equation (C.12) is used to prove the following properties of

the distribution A and its derivatives at time t = 0

da k (C.12)

A(?,O; m)=0 aja(?,o; m)=0
o)
3 AF. 0 mP) = -2 aF,0: mP) =82 )
o . 2) = e q 3Y =
ajBkA(r,O, m3) =0 Boao Alr,0; m®) =0 (C.13)

20) Let us go back to the Kdllen-Lehmann representation of the vacuum
expectation value of the commutator of two components of a conserved
current (C.3)

o060, £o1l0) =], o ) E

2 =]
T uv]iA(x,m)dm .

As a consequence of relations (C.13), we easilg obtain the vacuum
expectation value of equal time commutators®

O|LF@.0), 1201 0) =0 =<0l (1*F,0), £(01]0) (C.14)
0 0 k £
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OG0, FOTl0 =3 %F)I —‘a—l (C.15)

30) If now ]‘1 is a nonconserved current, using the sa'me method, we
easily check that Eq. (C.14) remains true and Eq. (C.15) is simply
replaced by®)

{oed
«© ; (3}

o - _1 P(1 .

COILTE.0), T (01]0) =2, 8 of o 4 % ) e

40) The equal-time commutator of the time component with a space
component of a current density has the minimal structure

(€0, RO1 = 170 6 ©) +5% 1o, 5.0
of

where ¢
group.
. The Schwinger term 1s defined as SOK’B . The vacuum expecta-~
tion value of the Schwinger term--or the Schwinger term itself if it is
a c-number--is given by

are the skew symmetric structure constants of the symmetry

(0|s**]0y =

where the quantity c® is computed from Eq. (C.15) for a conserved
current

® Qo .
=] —p—é;ﬂ—l dm? (c.17)
0

and from Eq. (C.16) for a nonconserved current
o= |:—U—+ P oy )] dm® ., (C.18)
0

In both cases, the positivity properties of the spectral functions
force away C*to be positive and therefore nonzero,

IV. Time Ordered Products

1°) The time ordered product of two current components 1s defined by
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T 60 1,00 = 86 ) 260 15(0) + 8(x) 15 0) 1 6o

and we have to construct a Kdllen-Lehmann representation for the
vacuum expectation value of the T product starting from the represen-
tation (C.7). We are then led to consider two distributions

a)

+ 2y - Tt em2 Y = -]
Olx ) A Gom®) - 8(=x ) A (xim?) = AF(x,m ) g
It can be easily checked that the Feynman distribution A.(x;m?) is
solution of the Green equation associated to the Klein- oydon equa-
tion and its four-dimensional Fourier transform is simply given by

lim -1

ol = e
bplkim™) = ot P 1o (C.19)
b)

o m2) - = -]
G(XO)aHB\)A (x;m3) - 8( xo) BuaVA G;m®) .

A straightforward calculation, using in particular the relations (C.13),
gives the following equality between distributions

F @ )=0 (= Tlem@) = ‘@) 5
e(xo)auav A m?)=6( xo)auav A Gxim?) auav AP(x,m) 9,090 4 (x).

We are now in a position to write the K&8llen-Lehmann representations)

a _ P (se4 1 oo
(o] T( 6 0N 0) = F ) @8, 7s0,2 0~ o) ) 2,2

o o
@lp7 i (m?)
1 (1) aa
: ma 2 et} 2 2
X idpbeim®) dm? + 39 g by (x) Io [ ot P )] dm?.
{C.20)

20) The time-ordered product of two current components is covariant
except at the point x = 0 where the product of distributions introduces
singularities.

The second term in the right-hand side of Eq. (C.20) exhibits
clearly such a feature. Moreover, the noncovariant part of the time-
ordered product is proportional to the Schwinger term previously com-
puted in Eq. {C.18).

30) The Fourier transform of the time-ordered product is usually
defined by
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a -ikx
= ) 0 2 0 .
b, =1 [ e Col T o) 15(0)] 0) dx

From Eqs. (C.19) and (C.20) the expression of A,a (k) 1s

-)

@ d 5 o E
S0 =) TR 9 P ) [‘LL—+ "(0)(“‘2)]

(m?)
95 gvoj'o [—L—+p(0)(m2)] dm®. (C.21)

V. Electromagnetic Current

10) The electromagnetic current is a conserved vector current. The
spectral function p€M(s) is defined by an equation analogous to (C.5)

0*™6) =5 ) 8, (2" 8, (o - K)(0| 7 @l (al R0 ¢ (c.22

n

Comparing with Eq. (A.8) we obtain

0°"le) =) oy (s

() Tr{n}

em

The spectral function p, (s) is then related to the total cross section
for eTe™ annihilation into a final state n by using formula (A.7) in the
one-photon exchange approximation

em, | _ g° + -
e, (s) o o,tlee =0 . (C.23)

20) The electromagnetic current can be decomposed into an isovector
component and an isoscalar component disregarding other possibilities

em Y
.2
" " +3 I (C.24)
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]ff is the third component of the isotopic spin current

I:f is the hypercharge current.

The equality (C.24) implies obviously the Gell-Mann-Nishijima
relation for the charges: Q =13 + £Y but the reverse is not true. In
the framework of SU(3) symmetry it is convenient to use the welghts
associated to particles of the adjoint representation. The U-spin
scalar electromagnetic current is written as

em -3 1 .8

corresponds to an isovector particle (po meson)

J

o T w

J° comresponds to an isoscalar particle '(CPS meson) .

3

In the lowest order approximation with respect to electromagnetic
interactions isospin invariance can be used and the corresponding
relations for the spectral functions are

33 1 88
*(s) = 0" (s) +5 0 (s) (c.25)
with
33, __ & + - -
Pe) = TgE g Oytle @ 2 I=1)
88, ., __ 3¢ + -
P (s) = TpBaE Cyor® €2 1=0) . (C.26)

The first correction to Eq. (C.25) is given by interference terms
83
Ms) = 2 (s) +g 028 (s) 73 [p 8y + p ().

30) "The Schwinger terms 03 and 08 or more precisely the vacuum
expectation value of the Schwinger terms are immediately expressed
as integrals over the total cross sections for ete™ annihilation into
hadrons
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(-]
3 g g
o) —WI zsctot(ee s1=1)ds (c.27)
4m
T
8__ 3 . e
(© —161_[3&2‘]' sctot(e e =21=0) ds . (c.28)
Im®
m
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SECTION D, Vacuum Polarization

1. Modification of the Photon Propagator

10) The photon propagator is the vacuum expectation value of the
time-ordered product of two coniponents of the electromagnetic field
A“{x) . In the energy momentum space the distribution D (k) is
defined by Hy

Duv(k) =1 o ~tkx (0|T(Au(x) AV(O))|0) dax . (D.1)

In order to write a Killen-Lehmann representation for DH (k) it is con-
venient to first consider the vacuum expectation value o¥ the commuta-
tor of two components of Au x)

COTA, (0, & 0]0) =I0{cl ()g,, + o mm®R D I 18 6em?) dl(n;.'z)

The two functions g, (m®) and co(mz) can be related to the spectral
function p®™(m?) defined in Eq. (C.22) using a Yang-Feldman equa-
tion for the interpolating field AH(X)

A G) =A°6) + e [ Dpbey) JT ) da
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where A®(x) is the free photon field and D, the retarded Green distri-
bution d5sociated to the Klein-Gorzfsm equation with mass zero. The
result has been obtained by Kdllen

em
o, m?) = -6(m?) - & .L__gﬁl

m
em © em
o (m?) =@ WL 5P 2 f—F-’—Udt (D.3)

We then use the techniques of Part IV of Sec. C. to deduce from Egs.
(D.2) and (D.3) the Kdllen-Lehmann representation for the photon
propagator D (k) ]

g k
SV
DW= %9 Pk ezf _p__é_) &+

- ie ") ma e’

(D 4)

The first term in the right-hand side of Eq. (D.4) is the free field
propagator and the second term is a gauge invariant correction.

20) The modification of the photon propagator is measured by the
function m(s) defined by
© em

=yio p__(t) dt
il -[;J ?  t-s-ie ere)
Equation (D.4) is equivalently written as
k
) k
D, 0 =gl - s @] -7 on)  (0.6)

where s = -

The hadronic contributions to 1(s) are associated to the total
cross section for the electron-positron annihilation into hadrons.
From Eq. (C.23) we obtain

+ -
(e e = hadrons)

g
1_r(hadrons) s o tot

me? "[‘0 t-s -ie gt WBa)

30) One of the cleanest ways to measure the hadronic modification to
the photon propagator is to look at the reaction
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+ - + -
e +e =p +p
The total cross section of the previous reaction is simply the product

of the usual uncorrected cross section as calculated in electrodyna-
mics by a vacuum polarization factor

o=ty N s
otot(e e Su ) oelect.(s)l 1-sm(s)] (D.8)
where 3
2 4‘m3 2m2
o () =2 (1 - ) 1+
elect. 3s s

II. Charge Rencormalization

10) The photon propagator has been written in Sec. I in the general
form

D“v(k) =y F(s) + kukv G(s) .

The ratio of the ;:are electric charge e to the observed electric chérge
3 0
e is defined by

e m s F(s)
o
2 lim

520 8 F(s)

The function F(s) is related tom(s) by the Eq. (D.6) and using the
integral representation (D.5) we obtain

se? © am
K ) - e
e 0 P

where by definition
2 =a2 4 2
eO e 8 eo .
20) The hadronic contributions to the charge renormalization are

written as integrals involving the total cross section for electron-
positron annihilation into hadrons
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be @
o

e?r

iy ) =
(hadrons) _"?Io ot-ot(e e = hadronsg) dt.(D.9)

11I. Hadronic Contribution to the Muon Anomalous Magnetic Moment

lo) " The general method to obtain the hadronic contributions to the
muon anomalous magnetic moment a =%‘(gLl - 2) due to vacuum polari-
zation corrections 1s well known.3)7 S The resulting expression
corresponding to the class of Feynman diagrams shown on Fig. 1

?
.
:é

bl s
Fig. 1

has the following structure
o«

j'o ctot(e+e_ = hadrons) K(:)(t) dat (D.10)

au(hadrons) =1'r pe

2
where the weight function ( )(1;) is the second-order vertex function
given by the integral representation

1
H 0 X +—3 (1-%
mu

where m, is the muon mass.

2)

2°) The explicit form of ]ﬁi 6),7)

t) 1s known. Obviously

) gy =2
L © ==
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and fort = 4m:’1 a convenient parametrization is the following

Log(l +vy) - y+-‘2’i
=

K90 =2 180 -2+ @ yP )

+%—'_L§y2LogyE

where
4m? &
1'(1— t )
y= am? \&
1+(1-'—t-L)

2
For large t, K‘S ](t) goes to zero as 1/t. It then appears that the }& h

energy contributions to a, (hadrons) are depressed by the factor Kb (t)
and the integral (D.10) is dominated by the low values of t, in parti-

cular those values of t where the electron-positron annihilation cross
sections have been recently measured.
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SECTION E, High~Energy Behaviour of Electron-Positron Annihilation
Cross Sections

1. Spectral Representations

10) We have written, in Secs. C and D, integrals involving the total
cross section for electron-positron annihilation into hadrons.
a) The Schwinger term in Eq. (C.17)

oy

em _ 1
C~ " (hadrons) T ‘j‘o s ctot(s) ds . (E.1)
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b) The charge renormalization in Eq. (D.9)

f\93

(hadrons) = (s) ds (E.2)

<
0 tot
c) p meson anomalous magnetic moment in Eq. (D.10)

a (hadrons) = j 0y ) K(Z)(s) ds (E.3)

where Iqﬁz)(s) behaves like 1/s for large s.
We must now examine the important problem of the conver-
gence of these integrals.

20) The quark model offers a possibility to evaluate the Schwinger
terms and to study the high energy behaviour of the total cross sec-
tion otot{e+ + e~ = hadrons). 1)

It has been shown by Gribov, Ioffe and Pomerantchuk ™’ that
the Schwinger terms are infinite and that the expected high energy
behaviour of the total cross section is

sli=mm s Gtot(s) = const. (E.4)
+ - + -

e.g. the same type of behaviour as forthee +e =p +u total
cross section in pure electrodynamics with only one photon exchanged.

Therefore

(E.1) diverges linearly

(E.2) diverges logarithmically

(E.3) converges.

30) Nevertheless it is possible to construct models where the result

(E.4) is incorrect. 2)
In a simplified version of the gluon model, Hayot and Nieh

conclude that the constant in Eq. (E.4) must be zero. 3)

In the algebra of field model of Kroll, Lee and Zumino™’ where
the electromagnetic current is identified to a sum of massive vector
meson fields
Iem I Z maL2 va

f 2 H‘
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the Schwinger term is simply given by

em m;
c®™ = 7 <5
a=p,w,o -

and its finiteness implies, for the total cross sections, a very strin-
gent high-energy behaviour

lim '
goe S ctot(s) 0 . (E.5)
40) Recently, Sakurai4) speculating about the possibility of a free
field behaviour of the current suggests the highly convergent limit

lim

gow S 0, (8)=0. (E.6)

II. Form Factors

10) Let us discuss now the asymptotic form of the cross section in a
particular channel, for instance the n¥m~ channel. From the results
of Sec. A., we have, in the one-photon exchange approximation, the
following high-energy behaviour

+ - + - const 2
= =
Otot(e +e =m +m) S lPTr(S)l ”

Nothing is known about the behaviour of the m-meson electromagnetic
form factor in the timelike region lut we can imagine two possible
situations

a) The Phragmeén-Lindeldf theorem works and the high-energy
behaviour is the same in the timelike region and in the spacelike
region. For instance such a situation can occur if a phase represen-
tation can be used for Fy (see Sec. B, partsIland III).

b) The Phragmén-Lindeldf theocrem does not work and the two
high-energy behaviours are not related. For instance the i{oxi% factor,
in the spacelike region, decreases exponentially like P , the
spectral function in the timelike region has a very complicated oscil-
lating structure and we retain only polynomial bounds for the form
factor in the timelike region (see Sec. B-IV).

20) Of course, we do not know the high-energy behaviour of the m
meson electromagnetic form factor in the spacelike region. Let us
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look, as a guide, at the nucleon electromagnetic form factors. From
high-energy experiments, they decrease rapidly for large |s| at least
like | s|™ , probably like || ™ and perhaps more rapidly like |s|=®.
Assuming analogous behaviour in the timelike region for the
m-meson electromagnetic form factor we easily check that the m™ ™
contributions to integrals like (E.1), (E.2) and (E.3) will be finite.
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SECTION F: Decay of Vector Mesong Into A Lepton-Antilepton Pair

I. One Level Vector Meson Dominance Model

lo) We consider the annihilation process e+ +e = F with a threshold
sp- Let us try to formulate in a naive way the general consequences
of the vector mesondominance model in this specific case.

If a vector meson V(p,w,p) is physically realizable as an inter-
mediate unstable state {mva > sF) and if V can decay strongly in the
state T, then the reaction ete™ = F is dominated in the neighbourhood
of s = mV2 by the V meson contribution according to the chain

+ -
e +e >2V=>F

and described by the diagram

Fig. 1
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29) At the V meson mass the total cross section is factorized as

Yo -
+ - _12n T"(V=e e ) T'(V=F)
. il g RN 2T T . °

My v v

(F.1)

Formula (F.1) is used to extract from experiment the partial decay
widths T(vV = e+e') .

30) The w meson and the ¢ meson can be strongly coupled to the
same state, for instance the m'mm® state. But all interfersnces
between the w-meson and the p-meson contributions are always
extremely small and can be neglected. More generally the V-meson
contribution is important only in a range of energy approximately
defined by |/s - m\f] < Ty and it is clear in particular that the two
domains

|fs—mw|5Fw and Vs—mcp}s_l"cp

do not overlap.

40) The situation is a priori different for the p meson and the w meson
where the mass m, belongs to the range |/s - m | < T,. If the final
state is a pure hadronic state like n+ﬂ', 7T w0 the total isotopic
spin is well defined--using the additional information JPC = 1=~ -~
and therefore also the G parity. The p meson and the w meson having
opposite values of the G parity, the p-w interference will occur only via
electromagnetic interactions and formula (F.1) holds at the lowest
order with respect to electromagnetic interactions.

50) If however the final state contains in addition to hadrons, photons

or leptons, for instance a % or a Ny state, the G parity of the final

state is no more defined, the p-meson and the w-meson contributions

occur on the same footing and the p-w interference can be important.
The mixing effects are disregarded in what follows and will

be studied in the next part.

o 4+ -
II. The p = e e Decay

+ -
10) The final state Fisam ™ pair. At the total energy s =m ?
formula (F.1) is simply P
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I‘!Q==e+e-r! mgz + - + -
T N 12nm 01:o‘c(e el R )sm s - (F.2)

P

20) In the Orsay experiment the measured cross section at s = mpg

isl)

Ly + - =
. + 30 2
Utot(e e 2nmn )s=mp3 (1.57+£0.21) 10 cm?®,

The best fit o; the m~meson electromagnetic form factor has given
(see Sec. B)

mp = (772 £ 6) MeV Pp = (113 £ 8) MeV
from which we deduce, using Eq. (F.2)
— s T = )
. re €1 - (6.37 + 0.85) 107®
P
and
+ -
T{p~e e ) =(7.20 £ 0.92) keV, (F.3)

k + -
.HI. The w= e e Decay

T .
10) The final state Fism m 1T0. At the total energy s = mw’a formula
(F.1) becomes

= T m ?
Tw=2ee ) _ @ + o N .
s i + o+ }
I‘u‘1 Ty = mm o) 12x otot(e e e )s=m 2

w
(r.4)

Zo) In the Orsay experiment the w mass is fixed to my = 783 MeV and
the w total width is found to el

r, = (16.2£3.2) Mev
2)

e.g. larger than the world data average value of

I"w = (12.2 + 1.3) MeV
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Including the possiblity of non-resonating background the Orsay
people choose the width as given by the averrﬁ;e of the world data
and the measured cross sectionat s = mwa is

+.- = -30 2
ctot(e e = 3n)s=mw2 (1.65+ 0.31) 10 cm?

30) T%ue branching ratio T'( = 3m) /f‘w is given by the world average
value

T=3m _ 4 907+ 0.010 .

I
W
Using Eq. (F.4) we obtain

I‘! =e+e_}
&L = (7.7 + 1.4) 10°5

r
w

and

Tw=e'e ) =(0.94+0.18) kev . (F.5)

+ -
IV, Thegp=e e Decay

10) The final state F can be K+K-, KOI_<° or rr+1'r_rr°. At the total
energy s = mcp’3 , formula (F.1) becomes

Tlp= e+e—) I‘co mgga + -
T, “TH=1 Tzr tot® T 7 F)s=m(p?J - (F.6)

20) In the Orsay experiment the k%K and the 11+11 ° modes of the ¢
meson were detected and identified by looking at a i pair in
various kinematical situations. An experiment for the KtK™ mode is
in progress.

The p-meson mass has been taken at its world data average
value m_=1019.3 MeV and the p-meson width has been measured by
this experiment1

Ty ™ (4.2 £ 0.9) MeV .
1)

The cross section at s = mcp3 for the Kol_(o final state is

+ - 0=0," = -30 3
otot(e e =KK )s=m 2=1(.71+0.28) 10 cm? |
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3°) The comparison of the total cross sections for B ot
and for e+ + e ﬁﬂ"'" +n” +nPats = f' gives, in the vector meson
dominance model, the ratio of the partial decay widths of the ¢ meson
into K°K® and ' ™n®. The branching ratio obtained in the Orsay

experiment igl

I‘j@ ==rr+TT”Tr01
l‘&paKDKC’) =0,.667 £ 0.157 (F.7)

in disagreement with the value 0.354 deduced from other experimentsz.)

40) On the other hand, assuming isotopic spin invariance for the
decay amplitudes ¢ = KX and m = k'K~ and taking info account
the phase-space corrections due to the K° - K" mass difference and
the electromagnetic corrections we find a theoretical prediction for
the ratio of the partial-decay widths for ¢ = K°K° and p = K"k~ 3)

e

Cp=KK).

T(p = KoK )th 1.60 (F.8)
again in disagreement with the average value 1.21 deduced from
actual experiments.

50) Assuming that the other decay modes of the ¢ meson are small,
one can deduce from Egs. (F.7) and (F.8) the three branching ratios
for the main decay modes

p=KK  (49+2.5)%

p=Kk° (30.6% 1.5)%

=m0 (20.4 % 4.0)%

Using Eq. (F.6) we obtain

+ —
ﬂ"’;e—e) =(3.98 4 0.62) 10~*
P
and
Tl =e'e) = (1.67 % 0.25) keV . (F.9)
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SECTION G. Formalism for the Vector Meson Dominance Model
Including Mixing

. Mixing Problem

10) The precise problem of interest is the p—w mixing due to electro-
magnetic interactions but such a problem can be formulated in quite
a more general way, as follows.

We use a Hamiltonian language and we divide the total Hamil-
tonian H into two parts

H=H0+HI .

Let us first consider the Hamiltonian H0 as the dominant part. We
assume that there exists, in some sense, discrete states ]m) stable
or unstable, related to H0 and having the same quantum numbers as
far as the total Hamiltonian H is concerned. These states |m) are
distinguished, in H,, by a conservation law associated to a particular
invariance property, L, of Ho as for instance:

SU(3) invariance isotopic spin invariance I
hypercharge Y PC conservation

Therefore, in H_, the states |m) are mutually orthogonal and in parti-
cular their relat?ve phases are not observable. The states |m) span
a subspace € of the Hilbert space of the physical states associated
toH .

o}

20) Now what happens when the perturbation Hy is introduced? First
the conservation law L is no more valid and we have a violation of the
previous invariance. It follows that the states |m) can now mix and
the physical states correspond to well defined superpositions of the
m)'s.
l However the mixing effects will be important only for those
states such that their mass differences are small compared to thelr
masses, We glve some examples of mixing in Table I.
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II. General Method

10) There exist essentially two approaches of the mixing of almost
degenerate particles. The first one is based on the Wigner-
Weisskc)pfl perturbation theory and is essentially a time-dependent
treatment of unstable particles. It has been for instance success-
fully applied to the K°K® problem by Lee, Oehme and Yang.2) Analo-
gous techniques have been used by Bernstein and FeinbergS) for the
w-p electromagnetic mixing but some difficulties are due to the
unstable character of the states before mixing and to a possible varia-
tion of the p width with the energy.

20) The secord method is based on the properties 3f the propagator
matrix and has been proposed by Jacob and Sachs.4 The unstable
particles are now considered as resonances in a scattering problem.
An application of this method has been made by sachs®) to the K°K°
mixing and by Harte and Sachs®) to the problem of the neutral vector
meson mixing.

30) ‘We use the propagator method because we are first interested in
the scattering aspect. Moreover, the time-dependent formalism has
no direct relation with experiment for particles decaying strongly with
a lifetime of the order 10 - 1023 and clearly the time distribution
of the decay products cannot be reached with the actual experimental
techniques.

40) The formalism is presented here for vector mesons but it can be
obviously adapted to particles having different spins.
Let us write the vector meson propagator in the form

A“\,(p) 9,9 F(s) + P,
where p®+ s=0. 1In all the applications, we consider the vector meson
is coupled to a conserved vector current so that only the part F(s) will
contribute. .

The function F(s) is the boundary value OS an analytic function
F(Z); it is convenient to represent it in the form?

P, G(s)

F@Z)=[w@) -z1]7* . (G.1)

In the space €, the function W(Z) is a matrix and I is the unit operator.
The physical particles are associated to the poles of the propa-
gator located in the second sheet near the physical region. The real
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part and the imaginary one of such a pole Zy are related to the mass
and the width of the physical particle and the Za's are solutions of
the equation

det [W(Za) -2, =0 . (G.2)

We assume the existence of £ such poles if £ is the dimension of the
space €.

50) The practical way to resolve Eq. (G.2) is to diagonalize the
matrix W(Z) defining eigenstates |a(Z) >, |b(@) >, ... which are
assoclated to the physical particles at the points Z;, Zb, vee o Of
course, such a mixing is energy dependent but we have a control
about such a dependence.

6°) The precise form of W(Z) is arbitrary at the beginning. The uni-
tarity of the S matrix will impose restrictions in a vector meson domi-

nance model.

III. Normal Form of the Propagator

10) We start with an orthonormal basis lm) defined by the unper-
turbed Hamiltonian H in the finite dimensional subspace & (in prac-
tice the dimension of € will be 2 or 3). The characteristic relations
are

(m|n) = 5 b I= z | m) {m| (G.3)

m

where I is the projector on the subspace €, e.g. the unit operator in
€. Inthe absence of the perturbation H; the matrix function W(Z) has
a diagonal representation in the previous basis.

Introducing now the perturbation H; we first have a slight
modification of the diagonal matrix elements (m|W(Z)|m) and secondly
the appearance of nondiagonal matrix elements {m|W(2)|n) propor-
tional to HI'

Zo) Let us now assume that for any given Z, at least in the neigh-
bourhood of the physical region, W(Z) can be brought in a diagonal
form by a linear transformation in € represented by a complex regular
matrix C(Z).

The right eigenvectors |a(z)) are defined by the homogeneous
equation
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(W@ -w,_@) 1] |a(z)y =0 (G.4)

where Wy (Z) is the corresponding eigenvalue function. The linear
transformation is then written

la@) = ¢, @m) . (G.5)
m
The hermitian conjugate vectors (a(Z)| are not in general left eigen-
vectors of W(Z) because the matrix C(Z) is not unitary. These left
eigenvectors (a(Z)| defined by the homogeneous equation

(@@)|w@ -w, (@)1 =0 (G.6)

are related to the original basis (m| by the inverse linear transforma-
tion ¢t (2)

@@ =) (mlc?_@ G.7)

m V.

whereas the vectors {a(z)| are related to the original basis by the
transformation C*(Z).

30) The bases |a(Z)) and |§(Z)) are not orthogonal bases and we can
briefly sketch some of the most useful properties. Using the matrix
D(Z) defined by

D(Z) = C(Z) C*(2)

we easily obtain from the definitions (G.5) and (G.7) the following
relations: ‘ ‘

(b(@)|a@) =D_, @) (b@)a@) =D} @

(b@la@) =85, =(b@)]a@) . (G.8)

In this way the operator I can be decomposed into
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I= z D} (2)]a(2)) (b ()] 1= z D, @)13(2))(b(@)|
a,b a,b

1=) lalnGa) 1=) 3@y @)l . @.9)
a a
Let us remark that the operators |a(Z)){a(z)| are idempotent, ortho-

gonal two by two but not self-adjoint and therefore they are not
projectors.

40) Let us consider the interesting case of two dimensions. In order
to simplify the notation we forget for the moment the Z dependence.

p -q
C =
r S

We are free to use the normalization conditions {a|a) = (b|b) =1 or
Ipl? +{al® =1 |r|? +]s|? =1 (G.10)
so that the matrix D 1s simply written as
1 p? - qE
Er - &s 1
We are also free to make a choice of phases: p and s real, the rela-
tive phase between vectors of the original basis being arbitrary before
mixing. Therefore we have two independent complex mixing

parameters

er G.11)

€q =

=1
p

w =

In the orthonormal basis W(Z) is represented by a 2 x 2 matrix

Wi Wi
Wo =
Wa, Was

The diagonal form
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is obtained after applying the linear transformation C

=5 -1
WD CWo C

We can then compute the two mixing parameters ¢, , ¢, and the two
elgenvalues Wa , W, in terms of the Wij's

b
Wig 2
e, =- — =
4W, W
Wip ~Waa ) o 1+__13._21__£
- {Wllnwaa)a_
Wz, 2
€1 T - R AW, . W
Wiy -Wan L[, WaeWer TF
L M]_:_"WQE)E_
AW, Way 3
Wa=’l‘(W11+sz)+%(W11'sz) 1+(W11-sz)2

aW,,W,, 1%
Wb=%(vv11+wzs)‘%(\'v11'waa) I}-"‘(W_n:m‘] . (G.12)

50) If time-reversal invariance holds, the matrix W(Z) is symmetric in
the original basiss)

(m|W(@)|n) = (n|W(@)|m)

and we obtain interesting constraints on the linear transformation
C(Z). For instance, in the two dimensional case we have the two
relationsr =q s =p (see Egs. (G.12))

p -q
q p
and the mixing is described by only one mixing parameter

c= (G.13)

€, Teg=¢ (G.14)
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As a second consequence, the hermitian product (b| a) becomes
purely imaginary

(bla) =qp - pg =-21(1 + |e|?®) Ime . (G.15)

IV. T Matrix Amplitude and Vector Meson Dominance Model

1°) Decay Amplitude

We consider the decay amplitude for a vector meson V of
energy momentum p and polarization )\ into a final state F. From
Lorentz covariance we have

(Pl T|v, 00 =al®) (o) (G.16)

where the index m refers to the type of vector meson.
The polarization four vector e (p,\) is submitted to the sup-
plementary condition H

(S
e A)Y=0.
p pl(10 )

The four vector am{I-‘] is then orthogonal to Py and can be expanded on
the basis of the polarization vectors

m m %* J
a (F)=) a_ |(F .17
u( ) z X( ) Culp.) S i
A
and the amplitude aT(F) is just the amplitude we start with
_.m
(FlT]Vm(x) —a)\(I-‘) . (G.18)

The amplitudes a™(F) can be considered as the components of a vector
in the three dimensional space of the polarizations.

20) Decay width

Vip,A) = ¢

Fig. 1
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We denote by Po, the energy momentum four vector of a particle o of
the final state'F. The total energy momentum is defined as

Pp = z Pa
o €EF

The summation operation SF introduced in Sec. A has the explicit form

S, = ___NG z i Ge Py
£ (2m)® TT E
@ EF polF a€F &
where the Na's are the normalization constants.

The partial width for the decay Vm = F is easily computed to be

J 1 1 ¢ b . % i
T == = )+ - 2 .
V= B) =25 =) 8 (2n)*6, (o, - p)|a(F))] (G.19)
v
b

30) Scattering Amplitude

‘We now study the scattering amplitude from a state I to a state
F, in the vector meson dominance model, when both I and F are possi-
ble decayling states of the vector meson V.

The T matrix amplitude corresponding to the diagram of Fig. 2

Fig. 2
is given by

(FIT|D = Z a‘S(F) (m| 8" (o) | n) a:)‘(x)* )

m,n

We assume the off-mass-shell decay amplitudes a, to be orthogonal

to p, at least for one of the two states I or F. Sucﬁ a property is true
if the currents associated to vector mesons are conserved. Therefore
only the g®V part of the propagator contributes
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Y
(FlT|D) = z aﬁ(l“) <m‘"w_(§)-_51 I alm* . (G.20)

m,n

We then can expand the decay amplitudes a(F) and a(I) following

equations (G.17) and using the orthonormality property of the polari-
zation vectors

* lJ- 7y =
e“(p,x) e (p,\’) 8557

we write the transition matrix element in the form

Flrjn =Y Yalm (m]m Iny 2’ . (G.21)
m,n X\

Let us now introduce the eigenvectors of W and use the completeness
relation (G.9)

1=z la) (a|
a

1 1 =
(mlm[m =z {(m|a) W_a(-s)_: (a|m) .
a

We then define two new decay amplitudes by

a_g.m
ay Za)\ {m]|a)
m

a_vo.m, =~
a, —z a, (m|a)
m

We finally obtain a third expression for the transition matrix element

i =y Y a;‘(r)@l)fs S0, (G.22)
a A
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4%) Resonant cross section

‘We consider the process A + B = F dominated by the vector
mesons V in the direct channel. We identify the transition amplitude
with its resonant part as given in Eq. (G.22) by the vector meson
dominance model.

pA
) v — F
pB

Fig. 3

The square of the total energy in the centre-of-mass system is called
as usual s

= - + ¥ = .3
s = =(py +pp) Pr
The centre-of-mass momentum in the initial state is given by

e tny ]l - -

s

Kypls) =% !
and the invarlant effective phase space is defined by

n da by, q
'_'__—Ed4p L
a€EF Ea FOF

The differential cross section for the process A + B= (V) = F is then
computed to be

ds(A+B=V=F) 1 _ 1 NaNg
dLl‘-‘ /s KhB(s) {25A+1)(ZBB+1)

N aa{F}aE(AB}*
e . OO A XN " =
Zl{zw i Ty Eliz e 7. e
P o po a, a
F F

€F
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V. Unitarity Constraints

10) The unitarity property of the S matrix implies for the transition
matrix element the following relation

(FIT - T*|D) =1 ZSn(ZTr)* 64 oy, = p) CEIT*[n) (| T]1) . (G.24)

n

We apply this general unitarity relation to the particular case where
the transition matrix element is given by its vector meson dominance
model expression (G.21)

(FlT|1) = Z 2 a’;‘(P) a;’(x)* {m|

m,n A

1
Wi(s) - sI [ m)

* = m n * .._.-_1—
FlT*[D = ) ) al () al@* (mlym—gr )
m,n A
20) Let us first compute the left-hand side of the unitarity relation
1

(FlT-T*|D = ) za’;‘(l-") al <m‘w(s)l— ST WAR) Sl 1™ -
m,n A

Consider the matrix identity
[W(s)-sT] ™ - [W*(s)-s1] " = [W*(s)~-sI] ~* [W*(s)-W(s)][W(s)-sI] ™2

and use the two equivalent decompositions of the identity (G.9)

1=) |E)(p| =) |ay (|
b a

Taking into account the eigenvalue equations (G.4) and (G.6) we
obtain

3 L (bla) [W,(s) - W_(s)]
[W(s)-sI]™ -[W*(s)-s17* = ) |[b){a] W, (s) - s1LW_ () - 5]
b

a,

and finally after summation over the indices m and n
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= (bla) [W (s) ~W_(s)]

Flr-m|n =y zal{P)a (n)* D) _S][W 5 —5-©-29
a,b

30) Let us now compute the right-hand side of the unitarity relation
retaining only, by consistency, intermediate states n of the type I
or F.

RHS =1) 8, () 6aGpp) ) ) ay () @) aimatm*
n m,n X
p,q K

{m n)

1 1
Iw*{s) el b <q|W(s) el

Agaln we use the two forms of the relation (G.9)
ol VL i B a i b -}
RHS =1) 8, Gm)* 8,(p,-p) ) ) a’(F)a (0% a’m*ai) X
n a,bxp

1
[Wb(S) - s1[w_(s) - s]

(G.26)

4?) The two expressions (G.25)and (G.26) must be equal for all
initial states I and all final states F. It follows immediately the
unitarity constraints on the vector meson propagator W(s)

Zii [Wb(S)-Wa(S)] (b(s)|a(s)) = % z Sn(ZTr)*% P Za)k:(n)* ai(n) .

& . (@.27)

For the diagonal elements where the normalization (ala) =1 has been
chosen, formula (G.27) reduces to
= _\.n
- Im Wa(s) —oa(s) ZGa(s) (G.28)

n
with

o) =g S m* 8.l -P) ) JaS P
A
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Comparing this with the expression (G.19) for the partial decay width
T'(@ = n) we deduce

T(v, =)= mi o:(m:) ) (G.29)
a

For the nondiagonal elements a # b we obtain a Bell-Steinberger7)

type relation.

50) Equivalent constraints can be obtained proceeding in the original
orthogonal. They are simply written as

Y B =1 " - Py vy -

51 (Pl WHE)-Ws) @) =5 ) 8, ()6, (0 D)) &’ alm) . (G.30)
n A

It is then convenient to decompose the matrix W(s) into its hermitian

and skew hermitian parts W= R ~ { ¥ where both R and ¥ are hermitian
matrices. The unitarity constraints (G.30) determine the matrix &

G|zl =g Vs et sk -p)) alwralm) .
n A

Vi, Mass and Width Parameters

10) Let us split the function Wg(s) for s real in the physical region,
into its real and imaginary parts

w,(s) = pa(S) =1 ca(S)

The imaginary part g (s) is determined by the unitarity condition
(G.28) but the real part pa(s) is free up to now.

2°) In order to obtain information about pa(s) we have to express the

exlstence of a pole for the propagator located in the second sheet at

a point Zy defined by the condition (G.2) which reduces here to
Wa(za) = Za . (G.31)

We define Z, =%x5 -1y, both X, and y_ being real and in order to be
physically acceptance the pole Za must satisfy the two conditions
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Ya
X_,yY_.>0 — << 1
a’' “a X

The physical interpretation of Za in terms of mass and width of the
resonance 1s naturally given by

or

T 2
= i & =
Xy = m [ 4(ma)] Yy =m I‘a 4 (G.32)

30) On the other hand, the mass and the width of the resonance are
usually computed from the relations

2 — 3 = 2
my pa(ma) m, T, oa(ma) (G.33)

and we want to relate the two definitions of m and T' calculating Z
from the conditions (G.33).

We first expand W (Z ) around the point m retaining only
first-order terms

Wa (Za) N Wa(mza) i (Za — :) Wé(mz.)

Using the equality (G.31) for A (Z ) and the conditions (G.33) for
W (m ) we obtain the approximate expression

= 2 p—
Za m 1maI‘a m“é—{ra? . (G.34)

The function Pa (s) - s 1s then expanded around the point s = m:

following
2

pa(s) -s=m -s+ (m’; - s)? 'r'a(s)

where 7_ (s) and its first derivative T/ (s) are assumed to be regular

at the point s = m2 . The first derivative of pa(s) vanishes at s = mg

and formula (G.34 becomes
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1

-1 2
= - X
Za m 1maI‘a “"'—r-—g-'l+10 (m) (G.35)
so that
T ! (m?
x =m? |1 -2 _*—Ha{ma)g y. =m_T . T
ra i ra 2
a a m, 1+o] {ma) a a“a 1+<ra (ma)

. ]
.4 ) Let us evaluate the correctlon factor in the case of the p meson.
Using
mp =770 MeV I‘p >~ 110 MeV

we obtain

x >~m® x 0.965 y =m T %x0.969 .
p p p PP

VII. Factorization

1 ) For the final states F = 1T+'ITH, TT+‘FI_TT°, ﬁoy, ny etc.., the matrix
element (F|T|V) has only one Lorentz covariant because of the con-
servation of parity. Therefore the amplitude ay V(F) can be factorized
into the product of a dynamical function ak(F) by a coupling constant
f}ll . In practice f, P is assumed to be energy independent at least in
the neighbourhood of the vector meson region.

v ‘
) = f° a R

a, " for )\(P) ; (G.36)
The same property holds for a lepton-antilepton state in the one-
photon exchange model.
2 ) However, such a property is not genera and there exist some
rare decay modes like, for instance, *r Ty where the factorization
is not possible.

3 ) Let us now define the function

(s)——S (2m)* 84 (o -p)z|a (F)|3 =, & 1005 (&.37)
A
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For those states where the factorization relation (G.36) is true the
partial decay width is simply given by

I‘(Va=1'-')=m—1a|fAF|2 YP(m;) . (G.38)

On the other hand, the unitarity relation (G.27) is strongly dominated
by factorizable states and we can write

YF(S) (G.39)

21 [V () - W ()] (b(s)| s(e)) =Y £, %0
F

? .
the sumz being extended to factorizable states only.

40) We compute the total cross section for the process
A+B=> (V) = F
where AB and F are two factorizable states.
The starting expression is the equation (G.23) and we sketch
only the main points of the calculation:

a) It is convenient to introduce, as an intermediate step, the
density matrices for vector meson decay

z a, (n) a,, (n)*

G

It is trivial to chedk the two characteristic properties

(G.40)

p_=p ‘ Ir P 1

and for vector meson the average value over angles giveé
=1

(Tr Upy ppld =3

b) The dynamical functions y(s) for the states F and AB are
given from Eq. (G.37) by the explicit expressions
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N
1
Vel =g em* 1] (ETTFI‘*LPZ ), I3, @1
QA ETF pol F A
K _(s)
YAB(S)=%NANB ?E L) layeel
pol AB 1/

Combining now all these results we obtain the final form

12 Yag® Vel Lp Bap E
s, #1)(2Zs #1) ~ K _(s) - W_(s) - 5

.

otot(A+B=V= F) =
(G.41)

VII. Eleciron-Positron Annihilation

10) Let the initial state be an electron-positron pair. The matrix
element for the vector meson decay into a lepton~antilepton pair

// 'f/— (p_O'_)

V) = D)

+
Fig. 4 2 (po)

has the general structure due to Lorentz covariance and parity
conservation

@WHTITv0D = €3, GGy, + 1616, )1, 6 ) e

where h; and h, are two arbitrary form factors.
It is usual to compute h; and h, in the one-photon exchange

approximation (algebra of field model) L-
/
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and the result is

mB

v
f
\Y

hy(s) = -~ < hy (s) = 0

In such @ model only one invariant function hY(s) occurs and we can
apply the factorization procedure. The reduced amplitude 1s written
as

a)\(f,+&_)=-:_2u (p )Y A (p )e (o)

and the function Yt ~(s) 1s easily calculated after summation over
the lepton, antilepton and vector meson polarizations

o) =G L (1 202, gt

where m is the lepton mass. We always have m® /s < 1 and up to
terms m?* /s, Yoty -(s) turns out to be independent of the lepton mass

s) = 41'r a2

1
Yoty s - (G.42)

+, -
The radiative decay width I‘(Va =4 4 ) is immediately computed to be

+ - _4na® Ma
I‘(Va={, )= 3 ITF (G.43)
a

Using now the experimental result quoted in Section F for these radia-
tive decays, we deduce from formula (G.43) the corresponding values
for the coupling constants

£, 17 £, 12 |£ 2

—L_ -1.90+0.25 Y -14.8+2.8 —2-=11.0%1.6 .
4m an Ay

Finally, we compute the total cross section for electron-positron
annihilation into a final state F in the vector meson dominance VMD
model. We have Sy = sp =% and, neglecting again the electron mass,
the C.M. momentum is simply K (s) =/s/2. Combining Eqs. (G.41)
and (G.42) the result is
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4rror.

Opple’ +e o vap) = el (s)|z a~f-—w o 6.4

3% Final state '~ ' .
The matrix élement for the detay of a vector meson V {n'a m 'nm
pair
/ +
oo ()

'l
i

Vb)) e —2)

om(p))
+Fig. 6 *

has the general structure due to Lorentz covariance and parity
conservation

o = ) '_ u
Tl v e @470, € 02)
The dynamical amplitude al(ﬂ"—ﬂ_} is simply written
e By 8 2 SRR
ax('i ™) =(p, p_)ue P .
'The summation over the \{ector meson polarizations 1s straightforward
Ve = N 2 =g - AR = |
it wa oy DRI =, R P 8 - g = 4L}
; et A

The function Yorrr (s) 1s given by

K (s)

@) _E ";E (G.45)

and the expression of the decay width is simply
| £

* vl K @)

I‘(V=1'r1'r—)=% i = (G. 46)

Combining equations (G.44) and (G.45) we obtain the total cross sec-
tion for the process e,++ e~=n¥+n~ in the VMD model approximation
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: ‘ . 4m9 3/2
+, - +, - _ma® 1, H Farmn 1 s
c’tot(e 8 SIS T 3 s (1 ) zma f—- W(s) -8 I®.

(G.47)

It is interesting to compare Eq. (G.47) with the general structure of
the et +e” = 0T +m total cross section due to the one-photon ex~
change approximation and given in Eq. (A.11) of Section A. We then
obtain the VMD model of the m form factor including electromagnetic
mixing effects

v

f
=\ m? anm 1
FLS) =) ] = W) -5 (G.48)
a

Of course the sumz is restricted here toa =p and w.
a

+ -
40) Final state 71 m°
. The matrix element for the decay of a vector meson V into
nom o’ ~ py (mass m)
s

-~
-
rd

Vip,A) ; @:— et -pz (mass my)

~
~

Fig. 7 &S

T~ ps (mass my)

has the general structure due to Lorentz covariance and parity
conservation

P1 P2 P Pa u
O TV = 3 Suvpo © Ho.) < 1) (ﬁ;) <IE> #(s; E, Ep)

where the C.M. energy variables are defined by By == p.//8.
The dynamical amplitude a, (3r7) is simply writi.en ajs

M P\ /Pa P Pa ) )
al[?m):ELNDU (PJ\}( )(ma) (Eg) (s; Ey Eg)

and the calculation of the function y 31_r(s) is straightforward

(S)

3 (41'r) (m1mgm3}"” | 8(s; By E5 )| [py X Bol® dE, dE,
(G.49)

where the domain of integration D(s) is defined by the condition that
Py : Pz, Ps are sides of a triangle.
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The 3mw decay width of a vector meson V takes then the form
a2
_1 | fVBTT[ 2
TV=3m =3~y (mlmzma} j‘j )|@(m E B X
V
|3, xI.!gl2 dE, dE, . (G.50)

Combining now Eqs. (G.44) and (G.49) we compute the total cross
section for the process e” +e~ =1 + 1~ +1° in the VMD model
approximation

+ . - +, =, 0 __0« . B
ctot(e +e 2VamT +m +1w) Toms “‘D(S)M(s, E E )|
B % B |2 dEy dES] ) m? fagm 1 |2 (G.51)
1o e 1773 a fx Wa(s) -3 . '

If we compare this equation (G.51) with the general structure of the
et +e = nt +n” +n° total cross section due to the one-photon
exchange approximation and given in Eq. (B.28) of Section A, we
obtain the VMD model for the 3m form factor including electromag-
netic mixing effects

f
Fan(si E1E3)=§(S;E1F.,3)|:Z m:if-s-j‘ Wa(sl) —s] )
a

a

In the w-p region, the sumy has two terms, the w term and the p term
4 —_

a
with the electromagnetic mixing.

In the p region, the dominant contribution is due to the ¢ but
we can have a small contribution due to the p.

50) Final state KK

The calculations are identical to those made in paragraph 3
for the '~ system. We have here two possible states depending
on the charge of the K mesons, K"K~ and KXK° , noted as X K with
r =+ or 0. In particular, the dynamical function YKR(S) is rgwen by

"%K

YKK(S) = fs (G.52)
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and the partial decay width for the decay V = KK is simply

“vx K. I” K?(rﬁr("@)

2
4Tr mV

g)=2
= KrKr) =3 (G.53)

Let us remark the magnitude of the phase space corrections due to
the k- K° mass difference

1§(+K— (m?)

Beozos)

~1.54

and the electromagnetic corrections to the SU(2) invariance of the
coupling constants have been estimated

£ - 2
e |
ot 1.04
tpKOKP

Combining Egs. (G. 44) and (G.52) we obtain the total cross section
for the process et + e~ = K + K in the VMD model approximation
4am3 \3/2 £ _ -
o (e++e_=V=K +I-{)=1-T——1-1— % | ) m? rl-—l-|"a
ot r T 3 s z f'g Wa(s)-s :

s

Comparing Eq. (G.54) with the general structure of the e++ e =2K+K
total cross section due to the one-photon exchange approximation

and given in Eq. (A.11) of Section A, we obtain the VMD model for
the K meson form factors

f 20
ak K

1
F, (s) =) m? ———= . (G.55)
Kr z a fﬁ Wa(s) -5

Of course in the ¢ region the sumz is strongly dominated by the ¢-

a
meson contribution but nevertheless we can have a small contamina-
tion of the p because of the relatively large p-meson width.

6°) Final state Trog,g
The matrix element for the decay of a vector meson V into a

n% state
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[o]
¢m (mass mg)
/

V(pl)\) f =
v(p.€,)
Fig. 8 Yy

has the general structure due to Lorentz covariance and parity
conservation

fo) __ U
(my|T|ve)) fv"oY uvpcp e (DJJDY -

The amplitude a)\(rroy) is simply written

oy .. € (VY p O
a)\(rr Y) m_ € ipo p‘ e (p.) Py SY .

The summation over the photon and the vector meson polarizations is
straightforward . '

3
Z* ZM)L(WOYHB. ﬁmizc') SKQ (S)=ﬁ(5-m‘z)3
pol y X ‘

:The function YTTOY (s) is then given by

(s - m?)® ‘
(s) =,— —ma;—jj-— (G.?G)

and the expression of the decay width V= noy is simply deduced from
(G..56) to be

3

rn:/ 2
T2V =54 150 l® 2 |2 ‘?n'v:g : (G.57)
s ‘ : : 0 | ol

We combine Eqs. (G.44) and (G.57) to obtain the total cross section
for the process e¥'+ e~ =1° +y in the VMD model approximation

AL 3 fanoy 1 2
tot(e *e =vantry) = 3 ( ) ‘z t'a Wa(s} -8 |
(G.58)
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The comparison of Eqs. (G.58) and (A.23) gives the VMD model
expression of the mOy form factor

f
= 5 _anQy 1
9 G0, (6) DI o i (G.59)
a a
a
The previous sumy is extended to the three vector mesons p, w and
a

+ -
. As a last remark, the results corresponding to the process e +e
= n +y are immediately obtained if mg is the 1 mass and if the coup-
ling constant £ _, is replaced by f .
amOy any
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SECTION H: The w-p Mixing

I. Experiments
10) Let us begin with the Orsay experimentl) on e+ +e = 1T+ + T|'+
where six points in the energy range of the w meson have been mea-
sured for the total cross section in addition to the seven points
already quoted in Table 2 of Section B.

The theoretical formula needed to analyze the experimental
data has been given in Eq. (G.47) of the previous section

4 f
toaT - =1-r__a,al _ g am __ 1 5
cytot(e te sV=m 4+ ) 3 s<1 > |zma fg |
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where the sum z in Eq. (H.1) is extended to the p-meson and w-meson

a
contributions.

The diagonal terms of the W(x) matrix can be reasonably
approximated in this range of energy by

Kﬂﬂ(s} ° m

W()=m? -im T |——=
P P P p| Ky () /s

W)=m® -im T .
W ) W w

Each contribution depends on the mass my, on the width Iy and on
the ratio of coupling constants farm/E .

The p contribution has been represented by a m-meson elec-
tromagnetic form factor as suggested by Gounaris and Sakurai.z) The
equivalent formulation here is simply to correct the universality for
the p coupling by a width dependent factor3) 4

£ T
- ~1+d—L  withd=0.48
P

For the w contribution, the mass m and the width T have been taken
to their world average values and we have only an unknown complex
parameter fwﬂrr/f&')' Its modulus, combined with the value of [f{,}l as
deduced from a previous measurement on et +e ant +n- +nowill
give the decay width for the mode w =771 +1~ using formula {(G.46).
Its phase and more precisely the phase difference between fw,-m/f&
and fpm‘r/f" is called %9,
We now consider the three following fits of the Orsay data;
(I) 7 points excluding the w region
Fit with the p contribution: 2 free parameters m_and "
(I1) 13 points: assuming no w-p interference
Fit with the p contribution: 2 free parameters
(IT1) 13 points: assuming no w-p interference
Fit with the p and w contributions: 4 free parameters
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Degree I‘% (w=rr+1'r )

Fit| of X3 m_ (MeV) T (MeV) 3
freedom P P (Mevi) 2m

I 5 8.6 | 772 6 113 +8 - -
I 11 18,29| 768 %5 119.5+3.3 0 -
II1 9 8.66| 773.5+5,4| 110.7+5.3| 0.63+0.23| (196+28)°
Table 1

o)
27) For comparison we quote now four series of results concerning
the w = ™+ + 1~ mode

a) Compilation made by Walker et al

Tw=2m) _

T=3n)

(1.8

+ 1.2
- 0.6

5)

)10'2

b) Compilation made by Liitjens and Steinberger

M< 0.8 X102

'y = 3m)

6)

+ + o+ -
c) Experiment onm p=m pm m by Alff-Steinberger et a17)

d) Experiment on K p= Amm_ by Flattd et al

Tl = 21T::<
Ty = 3m)~

2 x10™

8)

After subtraction of the dominant process K_p = Yr(13 85) 1, there
remained 3887 events which were analyzed with two extreme

assumptions
a)-complete cohrence in the p and w production:

Fit made with m

' =9 MeV
w

B)-complete incoherence in the p and w production:

=750 MeV, T =100 MeV, m_ =782 MeV,
3
L 0=221)_4.17+0.03 .
= (= 3m)
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Fit made with m free and found to be Bet= (740 = 7)MeV

Tw= 3m)

II. Model
io) The natural order of magnitude expected for an slectromagneﬁc
amplitude w = nt+n-as compared with the amplitude pe nt +n s
obviously the fine structure constant a.

For instance, consider the one-photon exchange model for
such a decay

! s o
A 1 §
f{‘
/
/
) B P ;
Fig. 1 % 7
A strajghtforward calculation gives
f(1)211 ; fwz
7| =1l.3a pha'se(?-ﬂ)a-75°
p2m p2m
leading to a dedéy width forw ="+ of
| Tle=n +1)=10kv . 7 (@2
The Orsay measurement -
L +340\ T )
Tlo=n %) (400 2a0) KeV ‘ (&.3)

looks considerably larger and perhaps"t'-h'e dominant effect is concen-
trated in the nondiagonal elements of the propagator matrix W,, and
W,, or, equivalently, in the mixing parameters e; and ¢, which can
be larger than 0. because. of the’ sgsall w=p mass difference; a point.
already emphasized by Glashow. ’
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20) As a first consequence of the model, the direct transitions

W, = 2m Po = 3
can be neglected with respect to the ones induced by thé mixing.
Fortunately the experimental data like (H.3) are small enough to
justify a first order calculation with respect to the mixing parameters

€, and ¢;. We make such an approximation from now

a) Final state f1'm~ £ =0

f >=pf f =~rf
prT P WITT poTT‘lT

Therefore for the 2m decay mode of p'and w we have

I 3
F((“’:’_Tf_'j‘_lml_l |€a!a 3 - (H.4)

p=21Tm

From the Orsay result

leg] =0.06+0.02 . (H.5)
b) Final state 't ® f .. =0
po.31T
fp31'r — fw 3 f11)311 s fw 3m
o) o

Therefore, for'the _3'i'r.decay' mode of pand w we .fﬁave

o281 |Gje - e, |2 . (H.6)

Tl = 3m)
If time reversal invariance holds, ¢, =€, and we have the r{elation

T=2m) _ T =31
T(p=2m) T= 3w

(H.7)

3°) The unitarity constraints are written as (Eq. (G.26))
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~ImW_(s) =) |5, 1° v (e) a=p,u
F

wF or V&) -

2 W6 - W @] el =) £
F

The 2m and 3m contributions are easily calculated to be in the model

q a 2

for 2m: pr proznl an(S)
. = 2

for 3m: q s lfu) 31'r| Y31-r(s)

‘What can we do for the other contributions? Let us examine in some
detail the w0y contribution. The model cannot make predictions be-
cause both amplitudes p, = % and wy = n% are of electromagnetic

nature. We simply have

2 o | 2
fymoy Tomoy 2 +pr|f |

= =q §|f o +p§f f o
Oy p01'r°Y w, Ty

—q;f_ f [s) . (H.e)
o]

Experimentally, the partial decay width T'(y = 1'|‘0Y) is of the order 1.2
MeV and for the partial decay width T'(p = rroy) we only know an upper
limit of 0.4 MeV. It follows that the % contributions to the unitarity
relation are only small corrections and it is sufficient to retain only
the first two terms in Eq. (H.8).

We then obtain

= - - = -
= - _ ~ +
o [Ww Wp](p r-qs) pr Im Wpo qgs Im Wwo (H.9)

and using the trace condition
Ww +W =W +W
P Yo Po

Eq. (H.9) is equivalently written in the more convenient form
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= ImW -ImW
€z — €, Po wo

ReW =-Re W
w p

ez t ey

(H.10)

1°]

E

i
wifo

=1
i

The right-hand side of Eq. (H.10) being purely imaginary, we imme~
diately deduce the relation

les] =lea] . (H.11)

In particular the equality (H.7) holds in the model independently of
the time reversal invariance.
On the other hand putting

€, =|e| expiep, €; = |e| exp 1o,

the two phases ¢, and @, are related by Eq. (H.10)

ImW -ImW
Py topp o W,

2  ReW -ImW
w p

tan

pr Mw
make the numerical calculation with

At lowest order, Wp =Wy, Wy, =W, (see Egs. (G.12)) and we
o
W =m® ~im T (s)
p P p P

W =m® ~im T
w w w w

The result is
@, T, = (202 £ 12)° H.12)
where the error is essentially due to the uncertainty on the p-meson
mass taken as (772 + 6) MeV. The variation with the energy of the
phase in the range mg < /s S myis less than 1°.
The additional prediction of time reversal invariance is simply
91 =y = (101 = 6)° (modulusm) .  (H.13)
40) Let us emphasize the close analogy between such a model for the

w=p Interference and the superweak model for neutral K-meson decay.
A correspondence can be made in the following way
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o o
Do”Kl ‘”o"'Ke
p “KS w u]&
u)o?'ZTr Kg;‘ZTr
P, % 3m kY # 3

111. Lepton-Antilepton Decay Mode

10) The quantities measured in electron-positron annihilation experi-
ments are the coupling constants f5 and f~ The problem is now to
extract information about the decay couplmg constants fp and f, and
the bare coupling constant fp and fu)

2 ) Decay coupling constants

Using Eqs. (G.5) and (G.7) we express the coupling constants
f~, f~, £ and f in terms of the bare coupling constants f, and fUU
p’ w’ P w Po

B _49_ P .5
f_~ fp fwo f(f) fpo fLU0
—L=(ps+qr) - —={ps+qr)— (H.14)
£ s L £ g B
I f f I
Po % Po Yo

If time reversal invariance holds we have
r=q s=p

and the two coupling constants f and f can be chosen both real.
It follows from Eq. (H.14) the triv‘ial relatQOn

=p® + =1+0(3) (H.15)

o Lhont
1
e e?

in terms of partial widths, time reversal invariance implies
4

If 1 —
I‘a=ae e ala =
F(a=e+e") f~| aia 2 S -19
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If time-reversal invariance is not valid, we have for the ratlo of the
coupling constants f'g/fa a first order correction in € proportional to
a time-reversal violation parameter.

o
37) Bare coupling constants

The relations between the decay coupling constants f,, £
and the bare coupling constants fp D fw are given by Egs. (é.s)

o] (o]
£ £ £ £
0., _g—05 o _ -]
T =P-dj o s +r7 . (H.17)
P w, w Py

We define the deviation from unity of these ratios in the following
way

£ f
o itpp Y Py
—=(14+68)e —=(1+8)e (H.18)
f p f w
p w
In the lowest order with respect to the mixing parameters, we simply
have
f f
o Yo
Gp -Reelf Gw Ree:zf
w p
o] o)
f f
o Yy
cppm-Imelf—w— cpwslmezf— ’ (H.19)
° o

The mixing effects are always very small for the p meson but they
are an order of magnitude larger for the w meson.

If time-reversal invariance holds, ¢, =e5 = |¢| exp ip and
we can always define the o and U states so that £, and £, are both

real and positive, From the experimental data we have o
f f
p W
f—2=o.36i0.o4 f—°=z.79¢0.33 .
Y Po

Let us now make a numerical estimate using |e| = 0.06 and ¢ as pre-
dicted by the model of Part II: ¢ = 101° or -79°. The results of com-
putations including second order terms in |e| are given in Table 2
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P =101° | =-79°

& +0.003 -0.006

p
9, -1.2° +1.2°
8, | =0.022 | +0.045
®, | +9.7° -9°

Table 2
For the radiative widths we simply have
- + -
T(p se'e ) Tw_ =ee)
o =1 -28 2 =1 - 28
YT S ¥ S e Ly ‘
Tl =ee”) p T =e"e) w

The corrections due to mixing are far below the experimental uncer-
tainties.

IV, Hadronic Decay Modes

1°) An interference effect between the p-meson and the w-meson con-
tributions has been observed in the process e” + e~ =0t +1~. The
experiment has been reported in Part I and we only comment about the
interpretation of the phase & = experimentally measured and defined

by 2
f fo
- war _p
@211 phase F o .
p2m Tw

Using time-reversal invariance and the notations of Part III we have

& =¢p - + phase
VAL Py Cppps

In the framework of the model proposed in Part II we simply have

wan/fp o =¢ so that

=p -o +
QZTT 9, "@ to . (H.20)

P
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Using now |e| = 0.06 to estimate v, and @ _ the theoretical predic-
tions are i

= S e ©
@2" 1127 or QZTr 89

with errors of order 6° to 10° because of the uncertainties on the p
mass, The value found in the Orsay experiment & P= (-164 +28)°
disagrees with both predictions., Nevertheless, wé think that experi-
ment can Eé?commodate the thecretical value &5 = -89° (associated
togp =-797).

Zo] It will be very interesting to detect the interference between the
p-meson and the w-meson coniributions in the process et +e™ =
nt+ 77 +7°. Crudely speaking the roles of the w and the p mesons
are exchanged and the magnitude of the interference effects into
+ = + - - + =
e +e =2 +n and e++e sm +n +Tr°

are related by a factor of the order

f E
U T‘m 2

T T =0,11 .
P )

Therefore the measurement of the w-p interference in the 3m case will
be an order of magnitude harder than in the 21 case assuming com-
parable statistics.

Let us recall the predictions of the model. First for the decay
rates (Eq. (H.7))

Plo=3m) _ Tlw= 2m)
Tw=3nm) Tlp=2m)

Secondly for the phases (Eq. (H.12))
+ = +12)° .
@211 §31'r (22 £ 12) (H.21)
where the phase §31'r is defined as

f £~

= _od3n W
) 3 phase £ F- ‘
w3 p
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Both relations are independent of the validity of time-reversal
invariance.

30) We now assume to be measured, in magnitude and phase, the
two electromagnetic coupling constants f w021 and fp 37 * A straight-
forward application of Eqs. (G.5) using time—reversal invariance
gives

f i
i w2 f p 3
2 [s] o3 o
S ai AR
p 2 p02n' w _3m w 3m
Eliminating q, we obtain
£ f
f f w2 p_3m
2 3 0 [o]
T e - 3 p . (H.22)
p021'r w031'r 00211 wDSﬂ

In the model of Part II, the right-hand side has been neglected.
A priori it must be of order &, e.g. small with respect to the mixing
parameter €. Experiment will test such an assumption via Eq. (H.22).

V. The rrO*{ Decay Mode

10) At lowest order in € and assuming time-reversal invariance, the
decay coupling constants f w0 and f 7O are related to the bare
coupling constant by Y e

fwrroy = fUJ Oy 2 w0y (H.23)
() o
The two transitions ¢ = n° + v and w = n° + v are both of electromag-
netic nature and they can be, a priori, of the same order of magnitude.
Experimentally the radlative decay mode w = ™ + y has been
measured and the result 1510

Tw=1"+y) =(1.16 + 0,20) MeV .

Using the relation (G 57) between the coupling constant f O and the
partial width T'@ = w°y) we find Wiy
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lfmoY| =0.40+ 0.04 . (H.24)

For the radiative decay mode p = mo + y we only have an upper
bound!

T(p=n" +y)< 0.4 MeV
We then deduce an inequality

fO
LY+ .6

wCy

2°) ‘We have proposed, with Cremmer, 12) a model where f,_o,, turns
out to be small. This model is based on an extrapolation at zero
energy s = 0 of the VMD model approximation of the electromagnetic
form factor G‘TTOY (s) computed in Eq. (G.59)

- 2 EI.TIDY 1
g Grroy(s) Z Ma fg Wa(s) -5
a

Time-reversal invariance being assumed, we obtain the two basic
relations

f
o
2g= ?M for the isovector part (H.25)
pmIT
fwﬂo f o
&g =-f——l+f'u for the isoscalar part .(H.26)
w ¢

The constant g characterizes the n’ = 2y decay (see Eq. (A.24))
2
o =19 2
T =2y) =7 =m_|g|
and using now the expérimental result
T = 2y) = (7.2 1.2) eV
we obtain

%]g| =(1.79%0.15) 107 .
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30) Let us first study the isovector transition. From the p-meson
width as measured in the Orsay experiment, I', = (111 £ 6) MeV we
deduce the value of the coupling constant fmm (Eq. (G.46))

&M =9 13+0.13 £ _ =5,17+0.15
4mr prTTr

From Eq. (H.25) we compute the coupling constant fPTon

[f o | =(9.25+ 0.85) 1072

pITY
The corresponding radiative decay width I'(p = TTO’Y) is then predicted
to be (Eq. (G.57))

T = n%) = (59 £ 10) keV (H.28)
and the ratio of the two radiative coupling constants is

f o
I < 5
wrOy

=0.23+£0.03 ., (H.29)

40) The photan-vector meson coupling constants are computed from
the Orsay experiments and we have

|fw| =13.63 + 1.30 [fcpl =11.8+ 0.9 . (H.30)

Combining now the two experimental results (H.24) and (H.30) we
obtain

f

0.
fﬂll =(2.92 + 0.42) 1072 ,
w

Such a value has to be compared with the experimental value of | g]
as given in Eq. (H.27). In order to satisfy the condition (H.26) we
need a small p-meson contribution in the nl = 2y decay amplitude.

Of course, the w-meson contribution is the dominant one but the
smallness of the n° = 2y width is due, in this model, to a partial can-
cellation between the w-meson and the p-meson contributions of oppo-
site signs. As an estimate for the ¢ contribution we find

£ (o}
my
3

o

=(1.1x0.6) 10™
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We then compute a range of possible values for the radiative decay
width of the ¢ meson

Tl =n° +y)> (50 - 700) keV .
3)

The most recent experiment made in DESY1 gives the upper limit

Tl = m%) < 18 keV
but more experimental information is needed to confirm such a value.

50) Tet us go back to the w-p interference problem. If the order of
magnitude (H,29) obtained for the ratio prTOY/fuIITOY is correct we can
replace Eqs. (H.23) by

i =f -ef
o o o,
POy o oY w Ty

f

wrOy d

o)

w Ty

and the contribution due toe in { Oy remains a correction and cannot
explain, by itself, the complete p = @ + v transition. We then have,
for the process e” + e~ =1 + v, in the w-p region a dominant con-
tribution due to the w-meson amplitude and a w-p interference which
looks to be constructive from Egs. (H.25) and (H.26) and which is
dominated by the term fponOY fwonoy'
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SECTION I: Vector Meson Dominance Model and Spectral Represen-
tations

I. Sum Rules

1°) The spectral representation of the Fourier transform of the vacuum
expectation value of the time ordered product of two components of a
conserved current ]S(x) has been obtained in Eq. (C.21) of Section C

LT A @ o, o
o4 = g !‘m ! 2 Q (_)_m =]
Auv(k) gpv\r K +m” -ie Chigs kpk\)‘r m? (& +n -ic) e
o o
® 0, 4
vg g [ ) g I.1)

‘We consider more specifically the electromagnetic current I ™ and its
isovector and isoscalar parts

em_ .3 1 8

= L
Rt R
and we want to derive consequences of an asymptotic SU(3) symmetry.
2 ) The assumption made by Das, Mathur and Okubo Dy is the follow-
ing: the SU(3) symmetry becomes exact for the distribution ALI\J (k) in

the limit k = ©, We then derive
a) Y convergence relation

lim [A (k) - (k)] =0

k>

The spectral function integral associated to the k k term in Eq. (I.1)
must vanish and we obtain a first sum rule

®w 33, 4 88,

I[u {m]j!n )] 42 = W,
m°

which is a first Welnberg type sum rulez) one can also interpret as the

equality of two Schwinger terms (see Eq. (C.17))
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B -ct=o (I.2)

b) a superconvergence relation.
Moreover, we can also impose the vanishing of the spectral function
integral associated to the g term in Eq. (I.1) and we obtain a second
second sum rule i

J10%% @) - p%8 )] ame= 0 W,
o]

which is a second Weinberg type sum rulez) requiring to be conver-
gent a more rapid decreasing of the spectral function at high energy
than in the previous case. Therefore, Wy is highly questionable.

30) A different form of the SU(3) asymptbtic symmetry can be assumed
fixing k¥® to be zero.®/ We then deduce
a) a convergence relation

lim 3 8 -
o e (a0 =8, (] g =0 .

The spectral function integral associated to the k k,, term in Eq. (I.1)
written at k¥* = 0 must vanish and we obtain a new sum rule

m=0 Wo

[+
[ Le2we) 0P
m

o
which can be interpreted as the equality of the isoscalar 3nd isovec-
tor hadronic contributions to the charge renormalization.4

b) a superconvergence relation.

We obviously obtain the sum rule W, .

II. Vector Meson Dominance Model

1°) The spectral functions pem' p33 and p88 have been related in
Section C to total cross sections for electron-positron annihilation
into hadrons (Eqs. (C.23) and (C.26))
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em, , _ g° + -
P8 =157 e o,.t(e *+e = hadrons)
g3 L
(s) W o 0_‘:(e +e =I=1)
88, ., __ 387 +, - _
P (8) =T EF Tyl te =1=0) . (1.3)

20) The total cross section for the process e+ +e =T is written in
the vector meson dominance model as (Eq. (G.44))

(e++e_=V=F)"{£T-;gJ— L |a. (I.4)

%ot YP‘S”Z ma f~ W_(s) -

In this section we neglect all the interferences between vector meson
contributions (p38 = p83 = 0) and Eq. (I.4) is replaced by

P__l_lz

(e++e_=>V=1=‘) 4”“ Y (s)z| f_ Wa(s)—s . (@.5)

%ot

We sum over all possible final states F

+ -
+ - 12m e e 1
ctot(e + e = V= hadrons) = an (s) ua(s) Wa SEDE
g (I.6)

where the functions o:(s)

on(6) = 2,517 ve) ‘o 6) =Y olle)

F

£l

have been previously introduced in Sec. G.

30) The total cross sections play the role of spectral functions in the
integral representations we are considering. It is then convenient,
in a first calculation, to make a narrow width approximation.

The basic formula will be a definition of the Dirac distribution
as a limit of a sequence of functions
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lim [

c= 0t m=1‘r6(}{) 5 (1.7)

Subpstituting
=md - = = 2
X m - s e=m_ I‘a oa(ma)
we obtain
+ I'a = e+e“
» o ] ..._i_._..._._.._l - me
ctot(e + e = V= hadrons) = 121 z = 8(s ma) . (I.8)

a
a

40) In the narrow-width approximation of the vecSor meson dominance
model, the sum rules Wy, , W, and W, becomel)"1

mglI‘(p=e+e_) - 3[m;11"(m=e+e_) +ml;1I‘(¢p=>e+e-)] =0 Vo
+ - + - + -
mpl‘(p=>ee)-3[mwf(m=ee)+mcpr‘(:p=ee)]=0 \'A
3 R~ 3 + - 3 oty =
mpI‘(p=°ee)—3[mw1"(w=ee)+mcp1“(cp=>ee)]—0 Vs

Inserting the experimental data from Orsay we obtain

+0.51%0.75=0 Vo
-0.75+0.80=0 v,
-1.58+0.70=0 Vo

o : A
5°) From the mass inequalities between vector mesons
m <m <m
p w

it follows that the three sum rules V, ¢ V, , V; are not compatible. If
one of them turns out to be exact, we must introduce in the two
other ones a correction factor associated to a particular breaking of
the SU(3) symmetry.

For instance, consider V, to be correct. Such a correction
factor has been proposed by Sugawara5) who replaces the Das-
Mathur-Okubo sum rule V; by
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+ - + - + - 3m:;
mIT{p=2ee)~-3[mTw=2ee)+mTlp=2eec )l——— =0 S
p w [\ 4mK*—m

With the Orsay data we obtain
+0.28+0.65=0 S

Let us also remark that if the electromagnetic current is only a U spin
scalar and contains a component belonging to the scalar representa-
tion of SU(3), the sum rules V, , V1, V, become inequalities only

() - 3L+ @I=0.

60) For the p-meson comntribution the narrow-width approximation
must be corrected and we proceed in the following way. We assume
the total cross section Gtot(e"' + e~ =T = 1) to be dominated by the
mm™ contribution given by

17, n? 3/2
+ - + oo 1, T 2
Gtot(e +e =>m +1mw) T s < > |Fﬁ(s)| (1.9)

S

and for Fy (s) we take the model proposed by Gounaris and Sakuraiﬁ)
(see Eq. (B,82)). We have used such a form in the entire range of "
integration whereas it has been tested only in the p-meson region.
‘We must keep in mind that such an approximation is very doubtful
especially in a calculation where the high-energy region plays an
important role (Schwinger terms).

1II. Schwinger Terms

10) The hadronic contributions to the Schwinger term associated to
the electromagnetic current are given, in the narrow-width approxima-
tion of the VMD model by

mﬂ
em _ 3 Rt a
C~  (hadrons) i ZmaI‘(a=o ee) ZT—fEJ . (1.10)
a a

20) The p-meson contribution to Eq. (I.10) is identified with the iso-
vector Schwinger term C°. From experiment

c3 = (2.49 £ 0.32)10° GeV® (1.11)
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A more sophisticated calculation of C3 , using a humerical integration
glves a -7% effect

3 - (2.31%0.17) 10 GeV® . (1.12)

30) The isoscalar part of Cem is the sum of the w and W) contributions.
. From experiment

w contribution = (0.33 £ 0,.06) 107 GeV?

"o contribution = (0,75 £ 0.10) 107 GeV? .

The Schwinger term 08 is three times the 1sosca1ar contribution so
that .

081'= (3.24 £ 0.48) 10™ GeV® . (r.13)
40) The electromagnetic Schwinger term C°" (hadrons) is given, in

that model, by the sum of the three vector meson contr1butions . We
obtain

™(hadrons) = (3,57 + 0,48) 107 GeV®  with (I.11)
c® M hadrons) = (3.39 = 0. 39) 102 GeV? with . (1,12)
5 ) The Das—Mathur—Okubo sum rule,V;: gives .
03 -c8 —( 0.75 % 0. 80) 107 GeVz 5 with (.11)
c® - c®=(-0.93+0.75) 10" gev® with - . (1.12)

6°) The Sugawara sum rule S gives

3 3m’ 8
C” - g=—F— C" = (+0.28 4 0.65) 10 GeV® with (1.11)
mK*
8 3m?
C = (+0.10 + 0.50) 10™ GeV® with (1.12)

Tim? -
K# p
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IV. Charge Renormalization

lo) The hadronic contributions to the charge renormalization are
given in the narrow-width approximation of the VMD model combining
Egs. (D.9) and (I.8)

63

ZL@%—eL Z (1.14)

20) The p, w and ¢ contributions are computed using the experimental
Orsay data

p contribution (0.526 + 0.062) a
@ contribution (0.067 + 0.012) a
¢ contribution (0.091 £ 0.013) «

so that we find

& e%
— = (3.65 + 0.52) 10 , {I.15)

3% For the sum rule Vo , we obtain

4 [ 4t 4 ] iy
= =| =0.051+0.075 .
5,7 2T, T Te]

L}

V. Muon Anomalous Magnetic I\fllr:)ment7J|

10) The hadronic¢ contributions to the muon anomalous magnetic
moment are given, in the narrow width approximation of the VMD model
combining Eq. (D.10) and (I.8)

k(). (1.16)

+ =y
_3vTa=2ee) (2), o _
au(hadrons) ol z m KH (ma) —az 'E'Tz

a
0 N :
27) For the p-meson contribution, experiments give

au(p) =(5.0+ 0.3) 107° (T.17)
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We also have evaluated the integral (D.10) using the TT+'|T_ Cross
section as given in Eq. (I.9). The numerical integration leads to
the result

au(n”n") =(5.4+0,3) 107 (1.18)
which is 8% larger than the narrow-width estimate (I.17). |
3o)ﬁ For the isoscalar contributions we have
au(w) = (0.61+ 0,11) 107®
au(cp) =(0.50 £ 0.07) 10™° .,
40) Combining now isoscalar and isovector contributions we obtain
au(hadrons) = (6.5 + 0.5) 107°,

The theoretical ggediction including 2nd, 4th, 6th order calculations
is now given by .

au = (116587 + 2) 107%,
9)

the last experimental value is
a, = (116616 + 31) 10™°
Therefore
a (th) -a (exp) = (-29 £ 34) 107° .,
u( ) lul( p) = ( )
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SPECTRAL FUNCTION SUM RULES
FROM IDENTITIES OF THE JACOBI TYPEH

H. Genz
Lawrence Radiation Laboratory
University of California
Berkeley, California

I. Introduction

During the past two years there has been much interest in appli-
cations, extc-:nsisms and derivations of the Weinberg™’ spectral func-
tion sum rule,'ss.2 -8) It has been notedzl soon after Welnberg's origi-
nal derivation of the SU(2) x SU(2) .sum rules, that the Jacobi identity
may be used to derive the first sum rule for any Lie algebra from the
assumption that the Schwinger terms in the commutators (ko = v,)
[]'oﬂ“(x}, IkB(y)] are ¢ numbers. Here Iua(x} denotes the currents of
the Lie algebra considered. ]ackiws), has also used the Jacobl identity
to derive the second Weinberg sum rule for the SU(2) ® SU(2) currents.

Among the extensions of the Weinberg sum rules, Rothleitner?
has derived a sum rule for baryon spectral functions. The main
assumption of Ref. 4 concerns the commutator of the time component
of the axial current Aoa(x) éa =1,2,3) and the nucleon field ¥ (y) at
equal times. The assumed? commutator reads

[Aoa(x) 0 (y)] = -rAW(x)YsTa 6 (x-y) + (possible (AI=2)-terms). -

The absolute value of the constant rp may be determined from current
algebra. 13 From this commutator, using the techniques of Ref. 1,
Rothleitner derived a sum rule for baryon spectral functions. The same
sum rule (in the approximatiorigf one particle intermediate states) has
been derived by M. Sugawara ) from his set of self consistency con-
ditions, derived in Refs. 12 from the x~integrated Eq. (1),and addi-
tional assumptions. These conditions agree with experiment and thus
support Eq. (1).

t+Presented at the INSTITUTE FOR THEORETICAL PHYSICS,
University of Colorado, Summer 1969.
$Supported by the DAAD through a NATO grant.

363



364 H. GENZ

In the present note we first present (for SU(2) ® SU(2)) a sim-
plified version of the proof of the first Weinberg sum rule, described
in Ref. 2. Assuming charge-current commutators we will see that the
first Weinberg sum rule holds if and only if either (xO =Vo=2

(o 17, vo°<z)1]>o

<[o5'°‘(xo), v, ). AO°<z>J]>O

It turns out that these expressions are equa %d proportional to
dxb(y-z), i.e. only the Schwinger term in | T} (v), ]éc(z)j could

o

1]

0 (2)

or

I
o

@)

possibly contribute.

Next we assume in addition that the divergence of the axial
vector current commutes at equal times with the space components of
the currents. From this we derive conditions equivalent to the second
Weinberg sum rule. One of these conditions reads

(oo [temior 2o v -Zavswl)y -0 w

and is equivalent to one of the assumptions made in Ref. 3 to derive
the second sum rule. In Ref. 3, the consequences of current conser-
vation which we need here are also assumed. In our treatment, how-
ever, we need not make the additional assumptions of this reference.
‘We then do not gain the additional information on the commutator

(5,560 - 217,%09, 1]

obtained by Jackiw. The main result--that Eq. (4) implies the second
sum rule--remains however also under our weaker assumptions.,

These considerations serve as an introduction and illustration to
the main purpose of the present talk: to present a condition® for the
Rothleitner-Sugawara sum rule derived from the following identity of
the Jacobi type

[[a,b],c:|++[[b,c]+,a] =[[c,a]’bj|+. (5)

To this purpose we will have to assume that the diver%\nce of the axial
current and the nucleon field commute at equal timesl and that
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a - - a
(Qs (v), ¥ = s\ (¥)vsT
+ possible (AI = §)-terms. (6)

Our assumption, Eqg. (6), is more general than the assumption
of Eq. (1) and allows for arbitrary Schwinger terms. 16) rhis way we
obtain that the Rothleitner-Sugawara sum rule is equivalent to

b, =y, =2,)
<[Q5a o). [J@y i), ¥ (z)]]>o= 0. )

o) o

For additional sum rules similar conditions are derived, assum-
ing that the axial current is conserved.

To illustrate possible applications, we assume the first two sum
rules to hold. The relations obtained predict the existence of a
P,1 (m > 1470 MeV) nucleon resonance (the Py, (1750)?) from the exis-
tence of the four nucleon resonances P, (940), Py, (1470), S,, (1550)
and Sll (1710) .

II. The Weinberg Sum Rules
To fix notation, we explicitly write the spectral representation

a

S
" [I 269 1 b(y)]>= 52b dma[pI(])(m"a)g +DH(D(m2) 32 }A(k—y;mg)-
M M o Hy 3xax” ®)

Here, the spectral functions fulfill the conditions
050 V)< meo V) )
1 II
a

The second equality sign holds if and only if ], {(x) is a conserved
current. In this case, there is only one independent spectral function
o) (m?), which we define to be

D(I) (ma) = DI(]) (mz) - m2 pII(D (mg) . (1 0)

The original Weinberg sum rules for SU(2) ® SU(2) assume the
currents to be conserved. Then, the first sum rule reads

J‘m—zl:p(v)(mZ) - p(A)(mz )]dmz = 0 (11)

and the second one reads
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..r[p(v)(mz) - p(A)(mz)] dm? =0 . (12)

If zero mass states are absent, infinite many sum rules for
spectral functions of nonconserved currents reduce to Eq. (11) or (12)
in the limit of current conservation. These sum rules differ by the
scalar or pseudoscalar contributionsl?) and it is easy to see that
only

Wy = Jq["II(V)(mQ) n °II(A)(m2)] gm0 (13)

reduces to Weinberg's first sum rule, for which the plon is treated as
Goldstone boson.18) Due to the smallness of the mass of the only
spin zero state assumed to contribute (the pion) all the generalisa-
tions of the second sum rule are equivalent tol8

wy = o, V@) -0 P ame =0 . N o )

In our treatment, Eqs. (13) and (14) will show up. Note:that in our
notation Wy and Wy represent (in this order!) the first or second
Weilnberg sum rule, respectively.

In order to derive conditions for the first Weinberg sum rule,
we intreduce as our first assumption: d

Al. The commutators of the SU(Zg ® SU(2) charges Q;a(xnl and

Qs 2 (x,) with the currents V;” ) and A“a (%) are of standard
current algebra form.

Note that nothing is assumed about commutators of space com-
ponents with space components and that arbitrary Schwinger terms are
allowed in all the commutators.

We will sometimes make explicit the contributions from possible
violations of the Jacobi identity and define I{4,B,C) by

8,8,00= ) <[A,[B,c]]> . (15)
cycl.(d,B,C) ©

Under Assumption QWe now have (x, =y, = 2o, not summed
over i)
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1605 tc). ¥, ). 2% ([0 ) [, 200 “@]])

_ e3be {<[A (2) A (y):|> <|:v @)V (y)]>}

0 forpu=20

ieabc Wi % 6(2 ~-z) forp=k. (16)

az

To obtain the last line, we have used the spectral representation, Eq.
i (8), and have performed the equal time limit under the integral, using

-—aL 8. 6c; P ) =5@ . | (17
A .
3 o x =0 -
: 0‘ .
Now, ssuming I= Eq. (16) shows that
<[Qéa(#<o). vy, by, A,C(z) is proportional to 338 (y - z) and thus
o

at most the first order Schwinger term of [Aoc{z) ,ka(y):l may survive
in Eq. (16). The sum rule Eq. (13) is thus equivalent to

<|: Qsé(x‘o)' [vkE(Y)’ Aoc(z)]]>6 = 0 / (18)
or to s ]
s - e [ . Ay <o a9

If we had performed the above manipulations starting from
Io(Qsa(xo), Aub(y), Vo S(2)) the result would have been

1,005 ) 2, "0V, e -([0s% ). [A, vle]]y

0 forp =20

"W, == 8(y-z) foru=k . (20)

The conclusions which follow are analogous to the ones above,
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In order to deal with the second Weinberg sum rule we state two
additional assumptions which we will use alternatively. These are:1
A2, 1t is for X =Y,

[[eexaba 260, 2, %)) (21)

and
A3. Ttisforx =y
b o] o

[J&xa"a 26, vo0] =0 . (22)

There are two situations in which the above assumptions evi-
dently hold. If the pion is treated as a Goldstone boson and the axial
current is conserved, Eqs. (21)and (22) hold trivially. They are
canonical rules in a model for which PCAC holds with a canonical
pion field and with canonical vector or axial vector field proportional
to the vector or axial vector current, respectively (see also the
"Note added”).

We first derive from A2 and charge-current commutators the
following equal time commutator

(0%t )] =25 [P ay "] - [G6° ) 2 "]
SHe \'/kd(y) 5 [j'dax auAua(x),Akb(Y)] = 1304 \}kd(y) . (23)
From this, using charge— current commutators again, we get
1Qs°6cp) v () A @) -<[Qsa o) [ V") ,.ixk"(z)]]> )
= 12P° {<I:Aki(2) ’Aui(Y)]>o c <[\./ki(Z) ’Vui(Y)]>o }
1c2be Idm‘*{[pl“”ma) B, pI(A)(mz)J 9.5 *

+|:pH(V)(mz) B (A)(m )]

UB k}azo - zi m°)

0 foru=0

ie abc

[wgk&+w z, k] 5(y - foru=4 . (24)
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The coefficient of the second order Schwinger term vanishes if the
first Weinberg sum rule holds. We next use Eq. (20) to subtract this
term out. Specializing toy =4 in Eq. (24) and differentiating Eq. (16)
with respect to )/L we obtaln, after subtraction,

1Qs° &, ).V, (y) A °(2)) - 1(Qs° (x . oV (y),‘— A °(z))

<[Q5 &), [V (y) Ak (2) -— Al (z)]>

_ , abc
=i Wy gy, 8y -2) c (25)

Note that the above expression contains a non~Schwinger term only.
‘We next assume the Jacobi identities to hold and get, after in-
tegrating over y

-<|:Qsa(xo): [fds yVLb(y),Akc(Z) = Lk AOC(Z) ]]> S
dz 6}

_ abe
=i Wrg, . (26)

Obviously, if the assumption A2 were not made, the term
a b a._ vV, a c
([ v [Jexa’n @]y oo

would appear on the left hand side of Eq. (26).

If we had perfnrrned the same manipulations as above, starting
from I1(Qs® (cg) s Ay by, V1®(2)) and the assumption A3 instead of A2,
analogous results would have followed. Especially, we would have
gotten instead of Eq. (26)

(et L1y 2,0, %0 - v ) -
32z /0

= ieabc W.g

19k (29)

The following two sets of equations will summarize the results:
Pow gy, =@ 6c) [ J@y v,°(0 .4, °@) - 252 )]]
"kt & Yo't 4 mld azk (3 A
5 a 3 b "
—<[Qs (xo),[j'd YV, (y),Ak(Z)]]>o (30)
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and

%%, g, =<[Qsa(xo),[f & va, "), v, °) —a—a—k voc(z)]]>

b4
~([oste) [fevn, . AL eh
. &i1)

The Egs. (30) are derived under assumption Al and A2; the Egs.
(31) under assumptions Al and A3. Note again that the condition Eq.
(4) is included in Eqs. (31). Note that also the Egs., in which the y
integration is replaced by an z integration in Eqs. (30) and (31), hold.

1I1. The Baryon Spectral Function Sum Rules
We write the spectral representation for the vacuum expectation
value of the anticommutator of the baryon field as

Ch6), ¥, =ifdm{F? (mz)(ij“—ai +m) +
99X

+ P2 (m2) (G 2 - m)} fmy: m?). (32)
axM .

The F: (m?) are positive sgectral functions and represent the contribu-
tions from the I = % ) =% baryon spectrum respectively. We will
assume the commutator Eq. (6) throughout this section. It can be
seen that the (AI = 2)-terms would not contribute and thus we simplify
our dfgvation by assuming that they are absent. We assume in addi-
tion:

Ad4. TItis

[Jeexo¥a 26, vin] =0 (33)
Eq. (33) would evidently follow from current conservation and is one
of the canonical rules, if §(y) and the plon field, defined by PCAC,

are canonical fields. A derivation completely analogous to the one in
Eq. (23) now gives us from (6) and (33), as in Ref. 11,

[Qs%6) ¥ ] =~ve7r, i ). (34)

. We write next the Jacobi type ic‘l?e?tity, Eq. {5), fora = Qsa(xO)'
b=y(y), and ¢ = §(z). This givesa)“"l us
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(@), [1t0), ¥@)] ]
+
“[[este. 1], F@] +[[asbe). ¥@]. )]
-1, [, ¥ ] -r, [§0), T@ver®] . @9)
T+ +

We take vacuum expectation values and use the spectral representa-
tion. Because.of the presence of jg in Eq. (35) no term proportidnal
to ] can contribute. Thus we get

a . B
<[os ). [#). ¥()] ]>
+ /o
=2r i1 [anPm(F2 ) -F2 (@) 8y -2) . (36)
Before we discuss this result, we derive additional rules like
(36) from assuming that the axial current is conserved. This is, we

assume
A5. Ttis

Halw)=0 . (37)
L
Then we derive

[Qsa(?fo)r

n
Vo) ] ==verr, _a_ﬂ(y) (38)

¥, Yo

for any integer n gsi g this relation, the idantif)y Ecg (5) with a =
Qs xo), b= (53-) 207 tlt(y) and ¢ = §(z) reads?

<|:Qs ) [(ay )2“ Ty, j@) ]>
-, <[(ay DR wz)]> <[(ay s, «;(z)]>AvsT

2tryer [ 22 o) - 52 o )Gy -2 - o)

n

We discuss this relation for n =1,2 only. The generalisations
will be obvious. Forn =1, Eq. (39) is identical to Egs. (35)
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and (36)., For n =2, there is only a non-Schwinger term contained
in the Eq. (39). The Schwinger term is multiplied by the expression
Eq. (36) and the non-Schwinger term is multiplied by

So = [dm®m® (F 2 (m?) - F 2 (@?)). (40)

a -~
Thus, 1f AS holds, ([Qs (), [V (y).¥(2)]11), vanishes if and only if
S, vanishes. If A4 holds, the vanishing of ?[Qsa(xo) LV @) 421D
is equivalent with

8 =[dm® m(E2 m?) - F2m?) =0 . (41)

If A5 holds in addition, Eq. (41) is also equivalent with the vanishing
of the Schwinger term in Eq. (39).

In the one particle intermediate states approximation, Eq. (41)
and (40) read

R
Z m, ¢ Pie = (42)

and

i mia eiFf =0 , (43)

respectively. Here, we have enumerated the nucleon resonances by
i=1,...,Rand ¢y denotes the parity of the respective resonance.
Evidently, either of the Eqs. (42) or (43) can hold only if baryons of
opposite parities actually exist.

The sum rules Egs. (412 (42) have been derived by J. Roth-
leitner4 and M. Sugawara,1 )’respecuvely. The experimental suc-
cess of the considerations of Refs. 12 strongly supports Eq. (42) and
thus shows that to the approximation to which Eq. (33) holds, the
expression ([ Qz%&,).[{(v),¥(2)11), should vanish.

Finally, to illustrate possible applications, let us assume that
both Egs. {42) and (43) hold. Restrictions will follow from the posi-
tivity of the F,?'s. Enumerating the nucleon resonances N,=P,, (940),
N, = P;, (1466), Ns =S, (1548) and N =S, (1709) by N, ,...N, , we
write Eqs. (42) and (43) as

R
my Fy2 +my F,? + z emF? =mgFy® + m,F,? (45)

i=35
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and
R
m,%F,% + my?F,2 + Z eimiaFiz =my®F%2 + mPF2 . (46)
1=5

Multiplying (45) by m;® and subtracting the Eq. (46) from the result
we get

m, (my®- m,?)F,2% + i eimi(mg’3 - miz )Fi2
i=5
= mg (My® - my®)F,°% + my (my® - m2)F,% . 47)

The right hand side is not positive and the first term on the left hand
side is not negative. Thus, unless all the Fiz 's vanish, at least one
term in the sum is negative. Giving the number 5 to it, we have

es (Mm%~ ms?) < 0, (48)

As it seems unlikely that a still undiscovered nucleon resonance with
a mass smaller than m, exists, we have the prediction

g =+1, mg>m, . (49)
This agrees with the existence of the P;, (1750) nucleon resonance.
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Note added: It should be pointed out that the assumptions Egs. (21)
and (22) follow from the current-field identities

953,00 = £, 3 9°6) + 4 760
a -
9% Yy ) =\ ),
and

a,, .U, a
mﬂacp x) =3 AIJ. x)
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Here, VL {x) a,?(x), and ¢ 2(x) denote fields which are proportional
to canonical vector, axial vector, and pion fields. it can be seen
that-~unless the pion is free-~the interaction must contain in this
case derivatives of the pion fleld (H. Genz and J. Katz, On Current-
Fleld Identitles, Purdue University preprint). If the interaction Lagr
Lagranglan does not contain derivatives of the vector or axlal vector
fields, then also

V) -0, ) = v 2 ) -3, )
or

Aka x) -3 kAoa ®) = aka x®) -d kaoa x)

belong to the canonical variables (of course, if V“a (%) or Aua (x) are
themselves proportional to canonical fields, the same ‘conclusions
hold). Thus, the left hand side of Eq. (29) or Eq. (26}, respectively,
would vanish in this case and this would show the validity of the
second Weinberg sum rule. However, as recently shown, in case of
canonical realizations of current-field identities the interaction
Iagrangian L7 also contains derivatives of the spin one fields and
thus Eq. (29) [or Eg. (26)] provides a test for the validity of this
sum rule, namely

3L
1OCWI =_<|:Q‘5a(xo)' Uday ALb(Y)' 3V, (2) :H>o
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