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PREFACE 

Volume XII-B of the Lectures in Theoretical Physics contains 
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during the second part of the Twelfth Boulder Summer Institute for 
Theoretical Physics. It contains the text of all lectures and one 
seminar. The text of other seminars and discussions during the ses- 
sion have not been included . 
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Science Foundation and in part by the University of Colorado . 

The editors thank the lecturers for their cooperation in the 
preparation of this volume and Mrs . Marion I-Iiga for her expert typing 
of the manuscript . 
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DAUGHTERS, CONSPIRACIES, TOLLER POLES : 
SOME PROBLEMS IN THE REGGEIZATION 

OF RELATIVISTIC PROCESSES? 

E. Leader 
Westfield College 

London, N. W.  3 England 

1. 

has involved many new concept5sl 
II 

Introduction 
Regge poles first made their appearance in physics within the 

context of potential scatteringll in 1959. Soon afterwards a method 
was s u g g e s d  for incorporating these ideas into relativistic scatter- 
1ng theory, and this led to  some remarkable experimental predic- 
tions . 

In recent years , however, it has become clear that there are 
enormous difficulties involved in generalizing Regge poles from the 
realm of potential theory to that of the relativistic scattering of ele- 
mentary particles. Only in the case of the elastic scattering of spin- 
less particles is the generalization straightforward. In all other 
cases there arise subtle and intricate problems , the solution of which 

such as  "daughter poles, "3) "con- 
splracies , "4) "Lorentz poles, etc. Perhaps the most fascinating 
and challenging of all these difficulties is the question of what hap- 
pens at t = 0 .  

It wlll be the principal aim of these lectures to attempt to sum- 
marise , unify, and above all, simplify, the various attempts which 
have been made to deal with the problem of Regge behaviour at t = 0 . 

All these attempts fall basically into two classes , the analytic 
and the group theoretic, and it will become clear later that a full un- 
derstanding of the relationship between these is not yet at hand, des- 
p1te the vast effort that has gone into this problem during the past 
three or four years . 

For this reason great emphasis will be placed upon a pedagogi- 
cal approach to the problem. Whenever possible we shall try to look 
at the difficulties from several different angles , and we shall often 

+Presented at the INSTITUTE FOR THEORETICAL PHYSICS , 
University of Colorado, Summer 1969. 
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2 E . LEADER 

heliclly amplitude i(1)'ab 
amplitudes with halcfty flip c - a = (d - b) = IM do not vanish as 
t -° 0 . In old fashioned Regge Pole theory all amplitudes vanished at 
t = 0 except those with C = a and d = b--a very restrictive situation . 

The above mentioned formulae for residues and trajectories are 
all derived from a study of the analytic properties of the amplitudes 
for totally inelastic reactions of the type 

use rather heuristic methods to get a feeling for the essential aspects 
of the problem. The latter is absolutely necessary since the actual , 
realistic calculations are bogged down in a morass of technical nota- 
tion. However it does mean that the reader who is interested in seri- 
ous calculations in the field will have to refer to the original papers 
for the full details . 

Since even our valiant attempt at a heuristic presentation is , 
when one looks at it, still somewhat bogged down in technicalities , 
we shall try to summarise here the overall picture as it now stands . 

It is established beyond doubt that in order to ensure analyti- 
city at t = 0 in inelastic reactions a given Regge pole must be accom- 
panied by an infinite sequence of daughters . At t = 0 the daughter 
trajectories are separated from each other by one unit of angular mo- 
mentum, i .e .  0Ln(0) = a(0) - n for the nth daughter trajectory. The 
residue of each daughter is singular at t = 0 , but the whole sequence 
of daughters plus parent produces a nonsingular function at t = 0 .  The 
coefficients of the most singular part of the daughter residues can be 
calculated explicitly. Also the slope of the daughter trajectories at 
t = 0 is given explicitly in terms of the slope of the parent . 

Still within the framework of considerations of analyticity it is 
possible t o  characterize a Regge pole by a new "quantum" number M.  
Regge poles with M = 0 are the usual, old-fashioned type. Regge 
poles with M 75 0 consist of a pair of poles , wlth opposite parity , 
with trajectories ai(t) such that a_,_(0) = a_(0) . The pair of poles is 
said t o  conspire with each other. Each of the parents in the pair is 
accompanied by its own daughter sequence . Again explicit formulae 
for the singular part of the daughter residues are known. It can also 
be shown that the slopes and higher derivatives of the trajectories at 
t = 0 for the + and - families are equal, up to the (M - l)th derivative. 
And the Mth derivatives , while not equal, are related to each other by 
an explicit formula . The daughter trajectories need not be parallel to 
each other or to the trajectory of their parent . 

The quantum number M has a direct physical significance. If 
one considers the leading term (at high energies) of the s-channel 

then for a Regge pole of type M, only the 

A + B -0 C + D 
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and pseudo-elastic reactions of the type 

A + B -0 A + D u 

However the factorizability of Regge pole residues enables one t o  
calculate the contribution of a Regge pole t o  an elastic reaction 

A + B -» A + B 

from a knowledge of its contribution to the reactions 

A + B - C + D  

A + B * A + D  

A + B - » C + B  

author. 'al 
M. Toller,5 D. 
A.  Salam and I .  Strathdee . 

Thus one can calculate the slopes and residues for the Regge pole and 
its daughters for elastic reactions as  well . 

Now in elastic reactions there are no problems of analyticity at 
t = 0 and a single Regge pole gives an acceptable contribution. How- 
ever there is an additional symmetry at t = 0 which is not satisfied 
by a single Regge pole. A totally different approach, based on group 
theoretical techniques , shows that this additional symmetry is satis- 
fied by the contribution of one Toller pole , which is equivalent to an 
infinite sequence of Regge poles . It is a remarkable fact that the 
sequence of parent and daughter poles for elastic reactions | as  de- 
duced from inelastic reactions by factorisation, turns out to  be pre- 
cisely of the form of the infinite sequence which sums up to one Tol- 
ler pole. A deep understanding of thls extraordinary result is still 
lacking . 

The exposition which follows leans heavily on several sources . 
The general introduction t o  the difficulties at t r 0., and to cons pira- 
cies follows the work of th author and some unpublished work of 
R .  Omnes and the author.6 The method of obtaining a closed solu- 
tion for the daughter residues is taken from the brilliant Work of 
S . R.  Cosslott,7) and from a more recent, and more general discus- 
sion of I. M.  Wang and L. L. Wang.B The introduction of the quan- 
tum number M is based on unpublished notes of the author, and is a 
generali ation of the work of G .  C .  ?ox, T .  w. Rodgers and the 

9 e group theoretical development is based on the work of 
Z .  Fro-:edman)and I .  M .  Wang, and R. Delbourgo , 

11 

4) 

10) 



4 E.  LEADER 

In Sec. II we shall briefly review the canonical steps in the 
Reggei zation of scattering amplitudes , and the origins of the diffi- 
culties which arise at t = 0 .  

Sec. III deals with inelastic reactions without spin and uses 
analytic methods to derive the properties of the daughters . 

In Sec. IV spin is introduced, and the new phenomena asso- 
ciated with it are studied using analytic methods . Many properties 
of the daughters can be found by an extension of the methods used 
in Sec. III . 

Sec. v is devoted to the group theoretical approach to elastic 
scattering at t = 0 . Some mention is also made of attempts to general- 
ize this approach to inelastic reactions and to t if 0 .  

The author is very much indebted to W .  E .  Brittin and K. T.  Ma- 
hanthappa for their hospitality at the Boulder Summer Institute for 
Theoretical Physics . 
II. The Origin of the Trouble at t = 0 

Let us recapitulate very briefly the essential steps in the Reg- 
geization of a relativistic process . 

We are interested in the high energy behaviour of a process 

A + B -0 C + D (11.1) 

rude 

where the particles A, B ,  C,  D have masses mA, my . . . , spins SA, 
so. . . and four-momenta PA' PB- . . . The physical process (II.1) 
takes (place in the s-channel, and is descdbed by a helicity ampli~ 

f is;ab(s ,t) , where S and t are the Mandelstam variables 

S I 

t 

= + 2 (DA PB) 

_ + 2 e (QA p )  

Here s corresponds to the square of the center-Of-mass-energy of 
process (II. 1) , and t to the square of the momentum transfer. High 
energies in (II. 1) correspond to large values of s . 

The main steps in the Reggeization of process (II. 1) are the 

(11.2) 

following: 
a) Forget about process (II.l) . 
b) Instead study the crossed, t-channel process 

5 + B - c + A `  (11.3) 

where e .g .  5 means the anti-particle of D. This process is des- 
cribed by the t-channel helicity amplitude f(tL Hb 

ca: 
(t,s) in which t now 
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6 E .  LEADER 

plays the role of the square of the C . M .  energy for (II.3), and s is 
the square of the momentum 'transfer . 

c) Reggeize f(t) (considered as a function of t and z t ,  the t-  
channel C .M. scattering angle) as  though it were the scattering am- 
plitude of a nonrelativistic potential problem, i.e . 
wave expansion for f(t), perform the Sommerfeld-Watson transforma- 
tion, pick up the Regge pole , and end up with an expression of the 
form 

write a partial 

f(t)(t,zt) 
t P -z = e t  a(t)l t) 

sin 'IT a(t) 
valid for positive t and Zt -° °°. 

d) Put in the signature factor to account for the exchange 
potential in a relativistic process , getting 

-Ina (t) 
. t P -z sm ii u(t) e( ) or.(t)( to f(t)(tIz0) = 1 + e (11.4) 

e) Notice that Zt is a function of s and t such that s -- oo 

implies | zeal »-| °°1 so that (II.4) is now valid for positive t and for 
s --A ==. 

f) Analytically continue (IIA) to tow reg1oxt S 0 .  
g) Invoke crossing to calculate f(s from f(i and hence arrive 

at an expression for f(s) valid in the high energy physical region 
t S 0 ,  s - °°. 

Now we shall see that only in the case of the elastic scattering 
of spineless particles are the steps e) , f) ,  g) devoid of complications . 
To see this we have to look at the detailed kinematics . The t-channel 
C .M . scattering angle is related to  the Mandelstam variables by 

_ 2st + t2 - t 2  + (my - mB3)(mcI - mA) 
Z _ 

t _ _ "Ac SAD 
(11.5) 

where 
J, .2 

1] 
[ t  (m. + m . ) 2 ] [ t  

1 J (mi my )2 J (II. 6) 

and 

Z 2 2 2 =mAy + m B  +mc + m D  . 
Now in the case of elastic scattering mA = Mc and mB 
(II.5) simplifies to  

2s + t - 2(mA3 + mya) 

iv - 4 a t - 4m a - MA ) (  B J 
Z 

t Ut 

my, Eq. 

(II. 7) 
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Then we see that for elastic scattering s - so implies | Zt -4 to for any 
fixed t .  In particular, there is nothing special about the point t = 0 ,  
and step (e) is valid . 

However in the general case given by Eq. (II. 5),s -» oo implies 
| zeal -o m at fixed t ,  if and only if t 74 0 .  At t = 0,on the contrary, 

zeal = 1  (II. 8) 

independently of the value of s when 
If one pair of masses is equal , 

andre fem . 
m c , § h e n a Q t = 0  

m m 
sQ C: A 

z " O  
t 

(II. 9) 

Thus for inelastic processes, step (e) breaks down at t = 0 ,  and this 
discovery led to  the question of whether Regge behaviour holds at 
t = 0 in inelastic processes . This is the first of the major problems 
in the Reggeization of relativistic processes, and it arises for inelas- 

processes even when the particles are spineless . 
The second major problem arises for elastic processes when the 

particles have nonzero spin. Let us consider the consequences of 
step (g). If the particles have spin then f(S) is related to f(t) by the 
crossing matrix 

£(s) 
Cd;ab 

c ' d ' a ' b '  ( t)  
M fcIaI;dlfbI cda b (II. 10) 

We shall see later that £(s) has to behave like 

+ (d-b)l as t -» 0 (s) 
f Cd;ab 

oc tel (a-G) (11.11) 

in order to conserve angular momentum for forward 
(II. 11)and (II. 10) imply that certain linear 

scattering Then 
combinations of f t) have to 

vanish at t = 0 ,  i .e.  the f(t) are correlated near t = 0 . Since differ- 
ent Regge poles can contribute to the various f(t) , this is tantamount 
to  requiring correlations among sets of Regge poles . This is a most 
unexpected result, since one normally considers each Regge pole as 
an independent physical entity, and if these correlations exist they 
are of enormous physical significance . 

From the above, we see that the standard method of Reggeization 
runs into serious difficulty at t = 0 for inelastic reactions and when 
the particles have nonzero spin. In the following we shall study in 
detail the attempts to overcome these difficulties . 
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111. I last Rea to 5 with t Spi 

A .  Heuristic Introduction 
Since it is often cony orient to discuss a reaction as viewed 

from the t-channel,it wlll be useful to introduce the following nota- 
ti . I f  th p h y i  l r  t i n t s  ] s t 1 , 1 .  . m A = m Q a d m B = m D ,  
then in the t»-channel the initial and final states comprise pairs of 
equal mass particles and th reaction will be said to be of the BE 
type . Similarly for pseudo-elastic reactions , MA - mc, my of my 
we use the label UE and for totally inelastic reactions where "A if 
Mc and Me if my we use the J bel UU. 

To see heuristically what is happening at t = 0 let us consider 
a spineless UU reaction. 

We have seen from 11.5 that at t = 0 ,  l e t [  = l and hence | zeal 7" 
oo as s -~ w. The question ist Does Regge behavior hold at t = 0 ?  We 
shall show now that the result | Zeal = 1 at t = D is irrelevant to the 
above question . 

There are two rather different methods of seeing this : 
a) Since we are dealing with a spineless process, the scattering 

is described by one invariant amplitude A(s ,t) which has Mandelstam 
analyticity. The helicity amplitudes in the s and t channels are then 
essentially identical to  A ,  1.e . 

f(S)(s,zS) 5 f(t)(t,zt) E A(s,t) 

(zs is of course the cosine of the s-channel C . M .  scattering angle). 
Now 0 A(s ,t) clearly exists and is some function of s ,  say 

A(5,t) = L(s) 
t -0 0 

t -»  

(III. 1) 

(III. 2) 

From (III.1) then, also 

(t,zt) = L(s) 
t f (  ) 

t -v 0 

However, naively, using the fact that 

(I11.3) 

z 1 
t -  t 

we get 
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o (t ) (t f 
t 0 

) I ' = I = 1 
t (t 0 z 

(t ) f ) t Z 

constant u (III. 4) 

contradicting (III.3). 
The fallacy of course lies in assuming that if 

f(x) E 9(q>(x)) 

then 

o / f ( x ) = g  
x - ° 0  0 

C /<p(><)) 

a result which would only be true if the mapping x - q0(x) is nonsingu- 
lar and well behaved at x = 0 .  This is not the case for the mapping 

0 is here not essentially a problem of 

nothing to do with the physics at t 
at t - 

f(t) (t , Zt) 

(s . t )~  (t,zt) 

which is certainly singular at t = 0 where it maps the whole s-plane 
into one point . 

It should be noticed that the above does not depend on s being 
large, i .e .  the trouble at t = 
Reggeization. Any theory which insists on working with f(*)(t ,zt) will 
run into difficulty . 

In summary, the function f(t)(t,zt) evaluated at t : 0 ,  z ' l has _ = 0 .  If we wish to use 
to  see what happens - 0 we must first undo the transformation 
(s ,t) -» (t,zt) and wrlte in terms of nonsingular comblra)tlons 
of s and t before taking the limit t -° 0. The requirement that f r (t,zt) 
be expressible in terms of analytic fur c o n s  of s and t wlll constrain 
the possible functional dependence of f t on Zt, and these con- 
straints will lead to the necessity of daughters women we Reggeize . 

b) There is an alternate way to see that f(* at t = 0 , 2t = 1 has 
nothing to  do with physics . 

Consider the M-function 

f(l)(t,zt) 

M(Pc.PD: PAlPB) = (PcPDIS - 1lpA,pB) (III.5) 

By the Lorentz invariance of S , for the spineless case, we have 
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M A  , A  , , = M  , : ( DC aD APA APB) (Do aD pA.pB) (111 . 6) 

where A is the 4 x 4 matrix specifying any real Lorentz transforma- 
tion. Assuming, as usual, that M is an analytic function of the com- 
ponents of the vectors which are its arguments, one generalizes 
(III. 6) to hold also for complex matrices A which preserve the length 
of the 4-vectors Pi- In this way the analytic continuation which 
takes one from the t-channel C.M.  to the s-channel C.M.  can be 
effected by a complex Lorentz transformation. 

Let us define 

q =é'(pA * Pa) 
J 

q'=é(pB +pD) (III. 7) 

and note that 

l 
I I 

I 

. = 2 _ q K §(rnA rrfac) 

- q"K =%(m"D- mB) 

We write M a s  a function of K .  Q» q' . Then by (III.6) 

(III . 8) 

M(AK: Aq.  Aq') = M(K: q.q ' )  (III. 9) 
' I  l 

Now calculate K in the s-channel c.m. taking the Z axis along kg. 
One finds 

K(8) 
E 

K s channel 
C.M.  

(w .0 .0 .  J/K 21 - "  t ) (III. 10) 

where 

K 1 ( 2 2 a 2 m - + in - MB) Z's A mC D (III. 11) 

Hence,at t 0, 
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I K ( s ) - K ( l , 0 , 0 , l )  

i.e . K is a light-like 4-vector at t = 0 . , r 

However, if one calculates K in the t-ichannel C...M. 

E K = - t , 0 , 0 , 0  t channel ( f ) 
C.M.  

one* find S 

K HI . 13 

I 

(III. 12) 

so that at t = 0 

I I 

L 

K (t) = (0r01010) 6111 .- 14`) 

1.e. K t) is a null 4-vectoi* at t f 0 .  

1 I 

£(s) (s ms) E. M*K(=)'q(s)'q(s)l (III. L5) 

and 

£(t) (t,zt) E M("(t): q(t) I q(t)) 

. . I  

.".  

4 

I 

Hence in order to have the crossing relation (which in the spineless 
case is trivial) 

£(s) = £(t) - 1 1  

We require the existence of a A such that 

K(s) = "Km \ (III. 16) 

1ng on whether or net Regge behaviour holds at t 

' at i&) 

Clearly from (III;14) and (III.l2) at t = 0 ,  there is no A,which can 
satisfy (III. 16) . . ` 

Thus there is no Lorentz transformation, real or complex, which 
relates the t-channel C .M.  frame = 0 to'the physical s-channel 
C . M .  frame. So again we see that at t = 0 ,  zt = 1 is simply not 
related to the physics . - . 

In summary, the fact that lztl of co as s -» oo at t = 0 has no bear- 
= 0 . 

Let us turn now to the question of how to calculate the scatter- 
ing amplitude at t = 0 , and of what constraints are forced onto the 
.Regge poles by the demands of analyticity. 

| 1 1  

J 
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Suppose we have Regge behaviour for positive t ,  say t > to 
where to is the threshold for physical t-channel reactions . Since 
A(s .t) is analytic and satisfies dispersion relations we can calculate 
A(s ,t) for t < to from our knowledge of A(s ,t) for t > to by using a 
fixed-s dispersion relation. For simplicity we take a very simple 
example 

A(s , t )=  .]" 
1 on 

n t o 

lm A(sct ' )  
t '  - t dt' (III. 17) 

We are interested in the behaviour as s -\ °°. So we shall feed into 
the integrand the high s behaviour of lm A(s ,t) . Notice that we only 
need this behavior for t 2 to '  Hence we take 

lm A(s ,t) lm {e (t) (-iv)} 
S -o Pa (t) an 

(III. 18) 

In (III. 18) we have absorbed all 1nessent1a1 factors into B(t) . 
Since for t i* 0,  | zeal -° of as s -° m we can expand (III.18) in 

inverse powers of it; 

ImA(s,t) N lm {8(r) aoz [ ]} a 
t 

a-2 + a 2 z t  + 

lm 
S -4 m 

{s (t) [bolstf + b1 (st)°"1 +b2 (st)°°'2 

+ I . I ]} (III. 19) 

where we have used the fact (see Eq. (II.5)) that Zt ac st for large s 
and t 7* 0 .  The coefficients at or bi are irrelevant to the argument . 

Now one can show from the definition of the Froissart-Gr1bov 
partial wave amplitude that for small momenta 

a(t) 
(!UAc PDF) B (t) oc (111.20) 

where DAY: PEB are the t-channel C.M. relative momenta. However , 

i s  
1 

1 
4t 

38 
11 i j  =A'c or BE (IIL21) 

so from (II.6), in the UU case, 
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Plc oc etc . I 

and hence 

am oc to (III. 22) 

Thus one puts 
. 

B(t) = t-G §(t) (IIL23) 

where §(t)lis analytic at t T = 0 .  
Putting (III.23) into (III. 19) gives the final form of the integrand 

\ 

lm A ( s , t ' )  lm {é(t') [Bo 
5 - 4  as 

I _ Sa(t ) sa 1 
.b2 

+ V  Q.-2' 
S -  + ..l} 

(11I.24) 

Substituting into (III. 17) , opening up the contour, and using 
Cauchy's theorem to evaluate the integra1,we pick up the residues of 
the poles at t '  = t ,  and at t '  = 0 for the non-leading terms . Hence 
we get I 

A(s ,t) M Et) [bow sa (t) b 1 t(t) salt) '1 +b=(t) 
12 

$a(t)-2 ' n 

- l§(])b1 (0) 
t 

be (0) 
to 

sa(0)-1 - B-(0)ba (0) 
to 

Quo' (0) + OL' (0)§(0) log s) 

$a(0)-2 

Sa(0')-2 (111.25) 

where § '  and a '  are derivatives of 5 and a with respect to t .  
The result (III.25) is a remarkable one. First it is, of course , 

analytic at t = 0 despite the fact that individual terms blow up as 
t -o 0 .  Thls, of course, was guaranteed by the use of the dispersion 
relation (III. 17) , which is manifestly analytic at t = 0 .  

tActually it is incorrect to use (III.20) to deduce (III.22), since 
(III.20) is supposed to  hold for small PA-C and PUB, whereas both 
momenta -° oo as  t -» 0.  In fact, in the present approach one need not 
even have B(t) analytic at t = 0 since no matter what happens to B(t) 
at t = 0 the dispersion relation produces an A(s ,t) whlch is guaranteed 
to be analytic at t = 0 .  However, for the purposes of explicit calcu- 
lation (III.23) is most convenient . 

I 
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viour as  t 

characteristic sequence 

Secondly, the leading term at t = 0 goes like SaM), which is 
the usual leading order Regge behaviour. Thus this method of reach- 
ing the point t = 0 successfully produces a uniform asymptotic beha- 

-| 0 » 

However, one has in addition ended up with terms like 30,(0)-n 
which can be shown to correspond to the existence of fixed poles in 
the complex I plane at the infinite sequence of points I = a(0)-n.T 
Thus we have what looks like a normal Regge pole plus a sequence of 
fixed poles . Note that this does not contradict our assumption 
(III. 18) that lm A(s ,t) is given by a single Regge pole, since all the 
fixed poles that have appeared are real.,i.e. appear only in Re A(s ,t) . 
However it does show that it would have been inconsistent to assume 
that A(s ,t) itself was given by just one Regge pole. In other words 
in the UU case a single Regge pole is not compatible with the dis- 
persion relation (III . 18) . 

If one is prepared to tolerate this infinite sequence of fixed 
poles then the amplitude given by (III.25) is quite acceptable . How- 
ever fixed poles in the I-plane are generally considered taboo, since 
it can be shown that they contradict the partial wave unltarity condi- 
tion, * provided that the unltarity condition can be analytically con- 
tinued to the point in question. It is possible that the cut structure 
in the I-plane would prohibit this , thereby negating the argument 
against fixed poles , but this does not seem a very plausible assump- 
tion. Thus we must do something to get rid of the fixed poles. To 
remove them we invoke a sequence of Regge poles delicately chosen 

tA Regge pole is, of course,a pole of the analytically continued partial 
wave amplitude at J = a(t) i I' It gives rise to a 

t , , ' 2 . . .  0 ? s s - ¢ .  
aversely one can show that each term of the form s 0)-n corresponds 
to a fixed, t-indepaédent pole at I = o.(0)-n. In particular the se- 
quence of terms So -1 , 6c,(0)-2 , . . does not simply represent the 
power sequence which would correspond to one fixed pole at I=a (0)-l . 
#The unitarily condition which holds Initially for physical values of I, 
can be continued into the complex I-plane in the form of a disconti- 
nuity equation 

f ( t + 1 s ) -  f ( t -  i € ) ~ 2 1 p f ( t + 1 € ) f ( t -  ie) 
] I I I 

If f1-(t) has fixed (t-independent) poles in the I-plane, say f l 
for In-1 K then the left and right hand sides of the 
lion cannot balance as I-+ X . = 
if c,(t + 16) a4c(t - 
factors on the right hand side blows up as I-° a(t + je) . 

sa plfhggmgleg (tvla ne . 

(t)== I _ 
discontinuity elqua- 

However, 1{ the pole is at I a(t) and 
je) we have no contradiction since only one of the 

Con- 
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so as to cancel the fixed poles and at the same time to leave undis- 
turbed the analyticity of A(s ,t) at t = 0 .  

Suppose therefore that there exists a second Regge pole (called 
the "first daughter") with trajectory function dl (t) and residue B1 (t) . 
If we take 

81(t) t"a1 cc 
I 

its leading . 
the 1/t term in (III.25) , the first daughter must have a more singular 
residue. Thus, if we put 

- t term will look llke B1 (t) b (t) Sal ( ) However, to  cancel 

§1 (t) 

(III. 26) 
-a _ _ 

8100 = t  1 1 e1(t) 

then the contribution to  A(s ,t) will look 11keT 

b. (t) 51 lo) bow) 
.|. _ 

t2 
sal (1:) 

b 0 .(t) 
t 

§1 (0) b1 (0) 
t2 

(0)-1 s 1  - t 

sGIu. (t)-1 + Sal (0) 
r 

b (0) 
1 Ra, '(0) + 01 '(0) go (0) log s]s°'1l°l'1. 

(111.27) 
If we now take 

<11 (0) = cr,-(0) -1 (III. 28) 
and 

5(0) b1 (0) -E. (0) bow) »(III.29) 

then adding (III.25) and (111.27) eliminates the fixed pole at I 
a(0) - 1. The leading terms left give . 

A(s .to ¢ §(t) boa) say) +1 
t {§(t) bl (r) Sa(t)-1 

+ §1 (t) bo(t) s 1  (to + . . . 
which, using (III.29), is analytic as t -» 0 .  Note that the cancella- 
t1on is effected without any requirement on the slope (11 (t) . 
"tit is amusing to note that if we had given the parent a residue as 
singular as B1 (t) then if a '  (0) = 0 we would still recover the standard 
Regge leading term at t = 0 . Moreover we would end up not with a 
daughter sequence but simply wlth one fixed pole at I = cI(0). 

(III . 30) 
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Now we can repeat the process , introducing a second daughter 
with as (t) and 

a3(0) = a(0) - 2 

and a still more singular residue 
-2 _ 

BB(t) = t-°l'2 e,(t: 

Its leading terms w111 be 

b t D( ) Go (t) 
e s - 

g (al 52 (0) bow) 

to 
$62 (0) 

b ow) 
t II§2' (0) +a,a'(0) §2(0) log s] son (0) 

- (III.31) 

Putting together (III.31), (III.27), and (111.25), one sees that the 
cancellation requires 

® b ® + § J ® b J ® + § ® b J ® = 0  I 

i .e . ,  §,(0) bow) = - 

b2 (0) 5' (0) + bl (0) 51 '(0) + b (0) 52 ' (0) 

B-(0) b (0) - [ 2 o(0) ] 
0 f o 

which yields 52 I (0) in terms of E' (0) and §1 ' (0) and also 

+ bow) 012 ' (0) 52 (0) 

bf' (0) 
b 

b (0) 5(0) q'  (0) + bl (0) (11 ' (0) 61 (0) 

I (IIL32) 

(IIL33) 

0 (1II.34) 

which gives 012 ' (0) in terms of a' (0) and al ' (0) . 
Clearly we can, in principle , continue this process . The 

slopes of the residues and trajectory of the first daughter are arb1- 
trary, but thereafter the slopes for the second and higher daughters 
will be fixed. Indeed, the second derivatives for the third and higher 
daughters will be determined and s o on. Note that in an expansion 
about t = 0 ,  powers of log s will appear. 

The above approach gives a very clear idea of the role of the 
daughters . However, it is not sultable for going much further. Thus 
we now turn to a closed method of handling the problem . 
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B.  Formulation of the Daughter Prescription 
Let f(s ,t) be analytic as t - 0 and have an asymptotic expan- 

sion in 1/s, or 1/s times powers of log s .  We wish to represent 
f(s ,t) by functions of Zt in such a way that despite (II.8) or (II.9) the 
limit t - 0 taken in the functions of Zt should correctly reproduce 
f(s,t) as  t - 0.  

The precise s situation is sensitive to the masses . For the UU 
case let us fix Mc > mA and my mB. Then from (III.5), 

z t - 1  
2 = s t + 0 ( t a )  (1r1.3s) 

where 

g 1 
8 

(mC5- "1Aa)("'D - 
MB){S + 

3- 2+ 2-m 2 man 3-m am 
( m A m c  mn B B A  13 . 0  B )  

('"c3""A ) (mn -mBa ) 
} 

(III. 36) 
andS-°°°  a s s - v w .  

For the UE case with MA = Mc and Mn 

- 2 = S / - t + 0 ( t 3 /  ) z t 

> MB | 

(III . 37) 

where 
g 2s - ( 2 m A + m B + m D )  

2 a _  2 mA(mB my ) (III . $8) 

Let us focus attention on the UU case. Suppose that 

t N 
= Sal ) t 9(S.t) f(s,t)  (111 . 39) 

where 

g(s.t)~ Q UW 
u.v,o 

s`** iv (log s)O' (III. 40) 

Then if 

f(s .t) = ¥(t,><) 

where x =1(zt - 1), we have 
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¥(t,x)~®-& to) cpp(x: 

D=N 

x/t) (IIL41) 

where ¢p0(x; x/t) is a polynomial in 1/x of order p and a polynomial 
in log (x/t) . 

Conversely if 

Ht ,X) II 
.. Q 5° *§(t,x,x/t) x 

t 
(III.42) 

and we want f(t,x) = f ( s , t ) ,  we must ensure that: (1) §(t,u,v) has a 
Taylor series about t = 0 at fixed u and v .  whose first term is tN . 
(11) The coefficient of to in the Taylor expansion of §(t,u,v) at fixed 
u ,  v ,  should at worst be a polynomial in 1/u of order p and a poly- 
nomial in log v .  

These two points constitute a prescription for fixing the proper- 
ties of the daughters so  as to guarantee that the function 'f(t,x) is in 
fact an analytic function of t when considered as a function of s and t .  
However, it is unlikely that the above are necessary conditions . In 
what follows , §(t,x,x/t) will represent a sum over the parent and 
daughter amplitudes and the above conditions imposed on Q will 
enforce certaiN relationships between the residues and trajectories 
of daughters and their parents . 

In the UE case the result is modified as follows. If we put z E 

zt, and if 
A G 
f(t,z) = ( t )  §(t,z,z/ft) (III.43) 

then we must ensure that 

§(t,z,z/ft) = §1 (t,z,z/ft) +.»& QUO (t.z.z//t) (IIL 44) 

where 

@1,2(t.z.z//1) = 2 two 2 ( z , z / f t )  

0=N 

(III.45) 

where cp pl 3 is a polynomial in 1/za of order p and a polynomial in 

log (z/ft). 
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c .  Solution of the Daughter Froblem for the UU Case 
It is preferable to use the Mandelstam form for the Regge pole 

contribution. This is obtained by replacing 

P iI(-2) 
sin TT Cr. by 

-_1 
Tl' 

(2) Q -a-1 
cos IT G. 

in the usual formulae . 
Regge pole 

Hence we have for the contribution of a single 

f(t)(t,zt) 2a(t) + 1 
2 

1 + T  e-Ina 
..- cos n o  B(t) Q0_1( zt) (IIL46) 

where T = i t  is the signature . 
The complete contribution of parent plus daughters w11l look 

11ke 

f(t) (t,zt) I 
n-0 

-Ina 
2¢,n(t)+1 1 + T H  e 

2 COS TT an 

n 

Bn(t) Q-an -1 ('zt) 
(III.47) 

We already know from the heuristic discussion in Sec. III.A that we 
must have 

(1 n(0) =a(0) - n 

We also saw that we should take 

= ton(t)-I1 
enit) §n(t) 

(11I.48) 

(11I.49) 

where in is analytic near t : 0 .  
We now see that because of the signature factor the cancella- 

tions will fail unless all the terms have the same phase as t -° 0 .  
This requires choosing 

T n (-1)NT I (III. 50) 

1 .e . ,  odd daughters have opposite signature to their parent . 
We use 

Q _ _ 1  
_ p" (- ) (-2) -é' I ` (_2)  

on 2 
2 F(-a,-a.-Zen, 1_Z)  (1-2) (III.5l) 



20 E • LEADER 

and put 

Za (t)+1 n 
2c:,(t) + 1 

f(t)(t,zt) 

COSTTG. 
cos T a  n 1 

-1TTO n e .1+ Tn 
-1 G + T e  TT 

n .T(-Za) §n(t) b F' (-co. ) 

` I`*(-a) 1`(-Zan) ° Hit) = nm 
(111.52) 

The bn(t) thus relate the daughter's residue , where clearly bo(t) E 1 . 
etc. , to the parent's . 

Then (III.47) becomes 

= 2a(t)+1 . 1+'r 6-1n0 
2 cos or 

°° 1-zt. -n 
Z bmW( 2 D C D 

.row-an 
a P(-Za) 

2t 
1-zt 

_ a 

@<t) C 2: "u 
a(t1)0n(t)-n ( 

F -an | 
-1n1 -Za _ 2 

n '1-z 
n'0 

) . 
t 

(IIL53) 
We put 

x =é(1 - zt) 

v = x / t  

.I 

I 

and define 

(.»<) = ( )°' 2 ii 
t b nu) 

n=0 

a + -a -n n n x V l a l F (-an I 'and Zan, X) • 5 

SO that 
-irra t 2 t +1 l + f (  )(t,zt) = My) • 'r e c o s r r a  

pa (-£11 
l"(-2a) §(r) E(t,X) (III _..55) 

at" 

Now clearly (III.54) is in the form of (III.42), where we identify the 
sum in (III.54) as §(t,x,v). Thus the daughter properties will be 
determined by the requirement that 

an(t)+n-oL(t) Z bn(t) v -n x an 1=(- (al -Q (t)- -2 (to 1 ) N ' n ' n ' x t=0 n=0 
1 = polynomial in X of order p , and polynomial in log V for 

p = 0 ,  1, 21 (111 . 56) 
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It will be assumed that the derivative can be carried through the sum- 
mation sign. For p = 0 we get, using (III.48) , the condition 

-n x l 
X 

Q bn(0) F -a(0)+n, -a(0)+r1: -2q,(0)+2.n; constant. 

n=0 (III.57) 

A 11ttle thought shows that the only possible constant must be bo(0), 
which equals 1 . Hence the bn(0) are determined by (III.57) with 
constant put equal to one on the right-hand side. The solution isT 

bn(0) 
(-1)" (-ol.(0))n (-a(0))n 

n!  (-2a(0) + n - 1)n (111 . 58) 

where 

(y)n 
1`(y+n) 
l` (n) (111 . 59) 

Substituting bn(0) into (III.52) gives for the daughter residues 
in the UU case 

-a (t)-n 
= t N www -.UU 

Bn (t) (111 . 60) 

wlth 

§UU(0) = Zn ' Za (0) 
n I 

II 1 . F(-2a(0) + n 
T(-Za) 

(III.61) 

Thus the residue of the nth daughter at t = 0 is completely determined 
in terms of the parent's residue . 

For p = 1 the differentiation with respect to t yields three kinds 
of terms , of which the most interesting comes from 

a 
B t  

an (t)+n-a (t) 
v 

an+n-a 
|:anI(t) -c1.'(t)] log V - v r 

TFrom Eq. (11), Chapter 4 . 3 ,  of Reference 12, 

(a)r (b)r (c+1r-1)N(-r)N 
. + -1 r '  (c r )r(a)N( b )N I 

r=N 
(-1)r 

one can show that 

r 
Z F(a+r, b+r; c+2r; z) N 

Z 

Equations (III.57) and (III.62) are special cases of this . 
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Since this is the only term involving log v we must have 

b 0 ' 0 - ' - -n Q - - - H( ) [un ( ) a (on log X P( (in, an, 
1 
X) 

1 polynomial of order one in - and polynomial in log v .  
x (111 62) 

Since the term on the left wlth n = 0 vanishes , 
right-hand side of (III.62) can only be 

it is clear that the 

x be (0) Url' (0) - or/(0)] log v - 
From this it fol1owsT that 

= l2a(0} - n + 1)n 
2(s.(0J (»n'(0) - Q' (0) [a1'(0) - cx'(0)] (III. 63) 

It is interesting to note that for large enough n, an' (0) 

Thus the slope of the trajectory of the nth daughter, for n 2 2 ,  is 
given completely in terms of the slope of the parent and first daughter 
trajectories . 

- q.'(0) 
is of opposite sign to dl ' (0) - a '  (0) . This might have some bearing 
on large angle scattering. Also If the first daughter is parallel to its 
parent, then so are all the other daughters . 

Clearly, by looking at the other terms with p = 1 we will be 
able to solve for bn' (0) , i .e . , for the slopes of the residue functions . 
Further, by looking at terms with p > l we will get information on 
higher derivatives of o,n(t) and §n(t) at t = 0 .  

D. Solution of the Daughter Problem for the U_E _§3ase._ 
From Eq. (III.37) we see that it itself, rather than Zt - 1 , is in 

this case the most su1table variable to deal with. Hence we use 

Q -6-1('2) 
1 
1 (-2)°°t7 l`l-cr) a 

T'(-oz +éJ Z Fl -a. 21 I 'CI 
1 
Za +%; ) (III. 64) 

Since F depends only on z2 , we w111 require only even daughters . 
begin with the sequence (III.47) , summed over n even, and put 

We 

n -§(a (t)+n) _ 
en(tJ = t en(t) 

TSee footnote on previous page . 
(IIL 65) 
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a nd 

1 
e Fran 

.r(~(»n). + to 
Gina T(-G.) l"(-an + )  

-Ivan 
1 + T e  

-1.a 1 - I - T e  Tl' 

cos no 
cos rroL _ 

n 

/Enu) 

Et) 
za" 
25 • = bn(t) 

(III.66) 
with 

U
' 

o :L
 

III
 

l-
I 

The daughter. sequence.. is now 

f l t(r,zt) 
-Ilrr 1 + T e  a = 2q,(t)+1 . /n l-2)1 F(-a) 

2 COS or a T`(-a + Q) 
z ¢1n+n-a - 

t Z in(tl(,/t D F( 
0. -n t 

z t I 

n<=0,2, . . .  

0. 

B-(tl(ft) 

n . 1 . 
'T' -and, ) 

(11I.67) 

• 

We put I 

x * z t  

v-x / / t  

I 

I 

and define 

;(t'X) (-z)0' 2 
n = 0 , 2 , . .  

-n an+n-a 
b n(t)x V ' 

G r G 
n _ "T' . . 1  

-0n+é', pa) • 
(111.68) 

Analogously to (III.56) and the arguments that follow it, we require , 
for p = 0 ,  

n=0,2 I • I • 

b n(0)x-n l p(-m0)-n-1), -a((.(0)-n),- -a(0)+n+§; -Q) = 

(III_ 69) 

By putting n = Zm, this reduces to the same problem as (III.57) and 
the 'solution iS . 
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`b2m(0) 

(-nm ( 1 _ 
2 

m!  (-é 
m 

+m) 

Substituting into (III. 66) , 
UE case 

we have for the daughter residues in the 

a n 
2 t 

n 
UE 2 -UE an ( t )  an to) (III. 70) 

with 

é§TE(0) (-Urn 
m I 

(Zm -a(0) - i )  l"(m - a  -in) 
TQ - 0 )  5UE(0) (111.71) 

Now in Sec. III.C we derived a formula for the slope of the daughter 
trajectories . Since the trajectory is a property of the Regge pole 
itself, it must turn out that if we calculate the trajectory slopes in 
the UE case we should find the same result. If not, then the whole 
scheme is inconsistent. On the other hand, the universal property 
of a Regge pole comes from the unltarity condition, which links dif- 

.ferent processes together, and we have nowhere made use of this 
condition. Hence it is by no means obvious that the slopes calcu- 
lated in the UE case will be compatible with (III. 63) . 

Let us therefore take p = 1 and look at the equation governing 
the slopes. One has 

Q bn(0)[an'(0) - q,I(0)] log v x-n 

n=0,2 , . . .  

F(-*Ha-n-1), -é(<m-n)1 -a+n*%: ) _.L 
XI 

Ba (0) 
XI [¢¢,2'(0) -a ' (0 ) ]  log v 

whlch yields 

@2m' (0) - a' (0) (Za,-2m+1) m 
Za - 1 [a2 ' (0 )  - a'(0)] . (111.72) 

Iterating (III.63) once, and putting n 
(III.72). 

2m gives exact agreement with 
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Hence, for some non-obvious reasons , the UU and UE daughter 
sequences are consistent . 
E. Daughters in the EE Case 

Since in this case the mapping 

-o (s, t)  (t, zt) 

is nonsingular at t = 0 ,  there is no need at all for daughters . One 
single Regge pole gives a contribution to f(t)(t,zt) which is analytic 
at t = 0 .  However, if the daughters exist, then we must examine 
their role in the EE case . 

By the factorization theorem we can calculate the EE residues 
from the known UU and UE ones . We have for the 2m-th daughter 

EE UU UE 
s2m(0) s2m(t) = Ee2mttN2 

Using (III.60) and (III.70) gives 

t - a m  -2 m t-q2m-2m EE -UU -UE 

showing that BEE(t) is regular at t = 0 and given by 

-UE 
= [B2rn(0)1" 

-UU 
52m(0) 

BEE (0) 

(IIL73) 

(II1.74) 

Substituting (III.6l) and (III.71), we find eventually 

EE (0) 
82m = 

l2m -01 - t )1"0m+é)plm 
rn! T(m - a )  

a-Q)  T(--Q) 
4/lrrI'@ -a )  [5£E(0) . 

(111.75) 
Now we shall see later on, in the group theoretical approach to EE 
scattering , that a single Toller pole (which Toller insists on calling a 
Lorentz pole) gives rlse to an infinite sequence of Regge poles at 
t = 0 ,  spaced by integers , as in the above daughter sequences. It is 
a remarkable fact that the formula (III.75) for the residue of the 2m-th 
daughter agrees with the corresponding formula (see (V.56) and Ref . 
8) derived tom the Toller pole. Thus the requirement of analyticity 
in UU and UE reactions , plus factorization, leads to an EE sequence 
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of daughters which just sums to one Toller pole. A full understand- 
1ng of this phenomenon is not yet at hand . 

There are several points in the above which require further 
clarification . 

We have discussed only even daughters , 1.e. , trajectories at 
0(0) - 2m for the UE and EE cases, whereas the UU case had daugh- 
ters at a(0) - n. The reason is that odd and even daughters cannot 
both couple to an equal mass vertex, assuming that at the E vertex 
we have either A = C or A = C.  

For example , if A = C we have a coupling to a part1cle-ant1- 
particle pair. Suppose they are bosons. Then if the Regge pole has 
isospin T and signature T = (-1)], we must have T (_1)T = +1 to satisfy 
the Pauli principle. Now the whole family has the same T value , but 
the daughters have alternating values of T . Hence there are two 
possibilities: 

(1) If the parent couples to the E vertex, then its odd daughters 
will completely decouple at the E vertex. This is the situation which 
corresponds to the above analysis . 

(ii) If the parent, and hence the even daughters , cannot couple 
t o  the E vertex, then the sequence in the UE case will be 

-inan(t) 

BUE(t) 1 + T1 e 

n=1 ,3 ,6 , . . .  cos t 17 an( ) 
Q -an(t)-1 (-z ) t (111.76) 

and we must take 

UE - 
B1 (t) cc t 'Hal 

to get a finite result at t = 0 (of. (III.70)). Then by factorization we 
will have 

(III.77) 

HBE() EsUEcu1" 
t = . ePu(n 

oc 
'Um t oc t 

t"a1 -1 (111 . 78) 

Similarly I 

EE oc 

82n+1(t) t 

Thus , in this case we have only odd daughters coupled to the EE reac- 
tion and they all decouple as t * 0 . Hence the whole sequence 
decouples at t = 0 .  
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IV. The Effect of Spin 
When the external particles have nonzero spin the situation 

becomes very much more interesting. As mentioned in the Introduc- 
tion, even in the EE case , where there are no singularities at t = 0 ,  
the effect of spin, working via the conservation of angular momentum 
in the s-channel, forces certain linear combinations of t-channel 
helicity amplitudes to vanish as  t -0 0 at certain prescribed rates . 
This, in turn, requires the existence of correlated Regge poles and 
results in a rather unexpected spin dependence of the scattering am- 
plitudes as t -» 0 .  

Consider forward scattering 

u A + B  C + D  

in the C .M.  of the s-channel, and let the incoming particles have 
helicity a , b ,  and the outgoing ones c ,  d.  Since all particles are 
moving along in one direction, say the z-axis, the orbital angular 
momentum of each of them, being perpendicular to their direction of 
motion, has no OZ. Hence if we consider the con- 
servation of IZ, of the total angular momentum, we 
have:T 

In1t1a11y: 

Finally: 

-. b I Z = a  . 
I Z = c  d 

Inq- I 

So conservation of Iz at 6 s = 0 requires 

a _ b C - 
- |" .J-  1 d 

transltlon 
In other wozds, the s-channel helicity amplitude for an arbitrary 

f S s e 1 cc;ab( , S)  must sat s fy  

(s) f s , Cd;ab( s 6 = 0 ) = 0 u n 1 e s s a  Q b d (Iv.1) 

d)l the faster f(5d)_6b 
Now one can refine the above argument to show that the larger we 
r n a k e | ( a - b ) - ( c -  - » 0 a s 9 S - 0 .  

TRemember that according to the Jacob-Wick convention, B's helicity 
is its spin projection along its direction of motion, i .e . , in the minus 
z direction if A is moving in the plus Z direction. 
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The result is 

(s) . | (a-c)-(b-d) f cd;ab(s'9S) oc (s1n S3/2) I 
One (non-rigorous) way to see this is to note that in the Jacob-W1ok 
partial wave expansion of f(S): 

(s) s 
f Cd;ab( .SS s ) = 2(2I+1) I 

f Cd;ab (s) d ~ ( 6  ) 

I* as is 0 .  (n.2) 

(IV-3) 

I 

where X =a-b; Q 
l 

c-d; each d has in it a factor 

QM-11l 
2 ) -(sin Gs/2) 

z s In-pl (IV.4) 

where AL = a-c, p = b-d which immediately gives (IV.2) .T 
Now Ss is given by 

sin G = Z l s  cp(s ,t)ll 

s SAB SCD 
I e g g  so 

S 
(n.5) 

where cp(s ,t) is the usual function specifying the boundaries of the 
physical regions • 

op(s,t) = st.[,Z-s-t] - s(mB -mD )(mA -mcg) -t(mA -m8)(m02 -my ) 

(mA mD - mB mc2)(mA 'Mc + my -my ) (Iv.6) 

and 

g o  
ij = [ s - ( m 1 - m j ) 2 ] [ s -  (ml P ]  +mj  (re) 

Notl ce 

r c  
that in an EE reaction, and only in this case, 1.e . , if mA 

and MB = my, we have 

sin Bs oc 
ta 

I (Iv.8) 

tone can derive (IV.2) directly from the covariance conditions 
discussed in Sec. v. 
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Hence , from (Iv. 2) , for EE reactions , 
l 

EE 
(s) 

Cd;ab f (s ,6s)  °= 
0 t -o  

1:ill-ul 

Thls implies, via crossing, that 

c 'd 'a 'b '  (t) 
M f c l a l ; a l b I  (tlZt) cda b 

ibimii .I 
| I *idl- 
-: =w4 

till-ul 
1 

t -»  0 

(Iv.9) 

(IV.10) 

These are referred to as equations of constraint . 
It would appear from the above that the condition (IV.2) is only 

relevant to the behavior at t = 0 in the EE case, in the form of (IV.9) 
or (Iv. 10) . However, we are studying asymptotic behavior, and it is 
legitimate to ask about the behavior of the leading term in s as s -° °°. 

Provided we keep only the leading term in s at fixed nonzero t ,  
we have from (IV.4) that 

sin S S 2 /-t/s 

independently of the masses , i .e .  , to  leading order 

t-;» sin BS 
0 

oc 

t - 0  

(1v.11) 

Thus in leading Qrder in s , there is no distinction between the various 
mass s 1tuat1ons and in all cases 

till-ul 
0 

(s) 
Cd;ab f (s,9 ) s t - |  

oc (leading order in s) . (IV.12) 

A word of caution is needed in connection with (IV.4) and 
(IV. 12). The rate of vanishing as t -° 0 as given represents a mini- 
mum rate . Amplitudes can vanish faster, and indeed do so  in various 
models . However they may not vanish less rapidly without violating 
analyticity. The behavior (IV.4) and (IV.12) has been called the 
"kinematically normal behavior" or k.n .b .  

The problems we had earlier in the UU and UE splnless cases , 
concerning the analyticity of the nonleading terms in the asymptotic 
expansion, will again appear when spin is present; and we shall 
deal with this in Sec. IV.C . However there are entirely new features 
which emerge when spin is present and it is fortunate that they can 
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be understood in some 
s -o w .  
the contribution of a Regge. pole to f 

detail simply by looking at the leading term Qs 
Thus we shall begin by consdring only the leading term in 

S 

13) 

A .  Spin: Treatment to Leading Order in s 
When spin is present, the contribution of a single bosonic (or 

even Fermion number) Regge pole to the t-channel helicity amplitudes 
is given by 

( ) 
f ct5;Hb(t ' Zt) 

2a+1 
2 

I 

1 + T e  l *a-1 1rrG . 

COS no • (-1) 5 C5;5b 6-x' .u' (-2t) 
(Iv. 13) 

where I 

I a ; b I 
J 

u' C - 5  I 

and the functions e 
them, define 

-a-1 
_ r  /u' are analogous to the Q _G_1 . To specify 

mf =ma>6{ IK ' l ;  lu'l} 
al' =min {l)~'I : Iu'I} 
J = sign 0»' u') 

I 

I 

(IV.l4) 

Then 

(-1)*' egg, l ,  (-z) = §°1-'(;_§)) iron '-wr(-m'-a)r(h'-a)p'(-h' -an* 

x 
I 

1+z 
2 

( )&IV+14'l Q '-u' I 

(lai) hp(-a+m' , -a+4»'h' :-Za: ) 

I l . 

l 

2 
1J;a 

(n.15) 
where 

C0»'.u') if .I<uI 
al 

(-1) 
I a -(-1)'* if r > ul 

¢ 

(IV.16) 
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It is worth noting the trivial but useful formulae 

] x ' +u ' l  =m' +/n' 

\x'- u' l =m' -/h' 

Let us redefine the residue so  as to absorb several factors. We put 

B = t-a E 
-0/2 5 

I 

in the UU case , 

(Iv.17) 

in the UE case, 

B 8 in the EE case, (IV.18) 

and define 

Yc5:ab(t) 
2c1+1 

2 

i n  
1 + T B T T  
cosna {r(h~' -a)II(-hw' -a)1` Cn' -o)1"(-h ' 

x 1 - 21"(-Za) Bc5;Hb 

é 
-01)} 

(Iv.19) 

Note that Y is still factorizable if E is .  Then 

fl*;ab(t,zt) =ca' .u') L(t) Yc5;Hb" 
a . 

3 F(-a-I-ht' , 
1-zt 

2 -a+/h' :  -Za; 
2 

1-zt >(W..20) 

where 

- - 2 L(t) = t  G, t a/ , 1 for UU, UE. EE respectively. (IV.21) 

I 

Now the above refers to the contribution of one single Regge pole 
with definite signature T and parity P .  So strictly speaking, Y should 
be labelle We shall need the following very important 
symmetry I 

TTh1s symmetry which was derived in Ref. 4 can be seen as follows . 
Define helicity states which have a definite parity 

IJ I db . 0)  = Q {II I - + - db) o QDQB( 1) 
(continued on following page) 

S D+8B II; -E-b)} 
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S +S D B 
CDQ8('1) _a_b(T,p) = T P Yca;§b(T .P) (IV.22) 

where <35 QB are the intrinsic parities of 15 and B and Sr , SB their 
spins . 

Let us put 
S D + S B  

€5}3 = CD C.B('1) (IV.23) 

withal =:l:1_ Then under the operation of parity 6: 
= I u - • G(-1) IJ, db, it) € I: 8b: G) 

So these states have a definite parity (-1)I o .  
Then the partial wave amplitude 

] _ _ = 
can;db T (J: c5ITII: as) 

I 
T c5;5b 

can be written in terms of partial wave amplitudes 

LG - 
T _ = ' ca; T ; Hb; o ca;5b (J, II ) 

corresponding to  transitions of definite I and P ,  as follows : 

f L 'G = T T _ by é \ + ca;5 

o 

I ,o 
c5;5b 

Under Reggeization a Regge pole of parity P and signature T will 
appear only as a pole in the amplitude with O' = TP .  

Now since from its definition _ sD+s 
II: -d-b: o) =uCDCB(-1) B II: 5b:0) 

we have 

TI ,O` 
ca ; 

S +S 
_5_b=0€D€B( '1)  D B T Lo 

can;db 

and since 965.5b is the residue of T ,  we will have 

s S D+ B BT ,p_ 
can;db 

T,P _ 
5cE;-H-b ` or P €DQB(-1) 

and Y then has the same property. 
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It should be stressed that in any parity conserving theory we would 
have a relation of the type 

_ = ha - . Y-c-a;-Ei-b p s e x  Yea;EIb 

However, (IV.22) is much stronger, and is a direct consequence of 
the exchange of one P value in the t-channel. 

Note also that if we utilize factorization to write 

yea,-ab yea 'far (Iv.24) 

then also 

P T Y-3-b £5B Yéb (Iv.25) 

Let us now calculate the leading order term as S * m. We do this at 
fixed, nonzero t ,  so that s -» co corresponds to zt -o °°. Firstly, from 
(IV.20) and (Iv.24), to leading order 

( t)  
f ca,'db 

S 

.l'¢-r 

- ¢ m  

i 

ITT 
2 

ITT ?*' " a(t) Yea Ydbe e S (IV.26) 

Next, to calculate the leading term in £(s) we must use the 
crossing matrices keeping only their leading term. This is obtained 
by putting S = oo in the expression for the crossing angles and the 
resulting expressions are then independent of the external masses . 
Using (IV.26) and (IV.22), one can then show that t o  leading order 
in s 

(s)2 _ 
f c-d;a-b T P(-1)&-b (s) 

Ii 13B fc5;5b (1v.27) 

This is a fundamental result, for we shall see that (IV.27) is incom- 
patible with (Iv. 12) . 

Suppose at first that we are exchanging one Regge pole; so 
that the phase factor in (Iv.27) is fixed. Then from (IV.12) and 
(1v.4). . 

(s) 
fc-5;I -b 

oc t§l)\+1_1l 
t * 0  

(IV.28) 
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and therefore, using (IV.27) also, 

E-b £(5)_ _ 
c-d,a-b 0 

£(s) 
Cd;ab T P EDB(-1) oc 

t - »  
ti'l7\'!1ll (1v.29) 

But by (Iv. 12) directly 

oc (s) 
i ¢a,~5b t -o 

tel}\"l-ll 
0 

(IV.30) 

_| l:l1l 

which contradicts (IV.29) unless u or K or both happen to be zero . 
. ( _ (s) - kg f c z a b  and ac-H;a-b 

must take 

to make (IV.28) and (Iv. 12) consistent with each 
vanish at the faster of the 

111 l u )  + 
(Iv.31) 

Hence the spin dependence of £(s) , in a one pole model, is much more 
restricted than the most generally allowed type given in (Iv. 12) . 

A classic example of this phenomenon occurs in nucleon- 
nucleon scattering. There, the amplitude l 

I 

has (a-c) - (b-d) = 0 ,  so that up2 can go to a constant as t - 0 .  
ever, in a one pole model, by (IV.31) , we would get 

How- 

'Ps t oc 

The highly restricted spin behavior (IV.31) seems rather unrea- 
listic, and certainly at present day energies does not correspond to 
experiment. Thus we must try to get a less restrictive behavior by 
taking a model in which two Regge poles are exchanged. Let us call 
the poles (1) and (2) . Then, to leading order in s , we have 

(1) = (s ) 
d;ab c t - 0 

(s) 
Cd;ab f f + f  

(S)(2) 

Cd;ab 
oc till-ul (IV.32) 

and, using (IV.27), 
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(s) f c-d;a-b 
(_l)d-b 

EB oc 

1 - 0  
télwl 

"' (Iv.:a3) 

Clearly if (TP)1 = (TP)2 we are back where we started and (Iv.33) will 
contradict (IV.32). But if (TP)1 = -('rP)2 then (IV.33) is equivalent to  

Cd;ab 
- 

(S)(2) 
Cd;ab 

f cc 

t-v 0 
é lwl  (n.34) 

which does not contradict (IV.32) . 
Without loss of generality, let us take (TP)1 

and relabel the poles + and -. As s -° of, we have 

0+(t: + 
£(s) S I 

+l, ('uP)2 = -l 

Ill I (IV.35) 

where ad:(t) are the trajectories of the d: type poles. Since (IV.32) 
and (IV.34) have to remain compatible as s varies , we clearly need 

a+(0) = a _(0) (IV.36) 

Th.u_s. in order to break away from the restrictive behavior (Iv.31)I we 
require the ezdstence of a second Reqge pole, a conspirator, with 
opposite TP, and whose trajectory satisfies {N.35) . This is often 
called a "parity doublet" conspiracy . In might be hoped that now that we have introduced a conspira- 
tor, f($ can have the most general allowed behavior as t * 0 ,  a s  
given in (Iv. 12) . We shall see that on the contrary the behavior is 
still highly restrlcted,. though very different from (IV.3l) . 

Let os first note that the crossing matrix M completely 
factorizes : 

Mc'ETa'b' 
cdab 

I _ Et' I) 
G = U = M ; @ ¢ ) m ® @ J )  

Then if we define a kind of s-channel residue by 

ELT. 
2 e 

I I (C" an 
ylsl(t) =m§a5 (°°.t) ~c'a-,m (IV.37) 
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S and similarly vii then in leading order, from (IV.26) , 

(s) 
cdgab M 

(_1)d-b Sa (t) (5) (s) f t t yca( ) ydb( ) 

. 1 s I Thus the he11clty dependence of f( ) factorizes to leading order in s . 
We shall now see that Eqs . (IV.32) and (Iv.34) are incompatible with 
this factorizability . 

Adding and subtracting (IV.32) and (IV.34) yields 

(IV.38) 

(s) 
+ 

f Cd;ab OC 

t%l7\-ul +té~lm11l 
J 

télx-ul t*l*lx41Jl1 (s)_f  .. 
Cd;aboc 

.|. _ 
Thus both f and f will have the sam'e dominant behavior as t -* 0 and 
this w111 be given by that term in (IV.39) which has the smaller expo- 
nent. We can summarize the situation as  follows: Define 

m = max ~{l)»l¢ l~l} 
n =min {l)~l¢ l»1} 

r 

I 

(IV.39) 

I '=  sign (x u) (IV.40) 

Then 
+ 

£(s) 
Cd;ab 

(s)- 
cdgab 

o f  oc to(m-h) 
t * 0  

(Iv.41) 

Clearly thls behavior is not factorizable . So £($)+ and f($) cannot 
have the general behavior given by (IV.4l) , which would in turn have 
given f(s) in (IV.32) the most generally allowed behavior. ¢ 

We now wish to find the most general behavior for f(S) which 
will be compatible with (IV.32) and (IV.34) . We put for each of the 
poles 111 

+ (s) 
Cd;ab 

oc f té{ImI-ga) tut-g(u)} 
t - . 0  

UH Tl(IV.42) 

This is manifestly factorizable, and since g is unspecified, perfectly 
general. If Q()J = 0 we have the one-pole behavior (Iv.31) . So we 
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wish to try to choose 900 as large and positive as  possible , thereby 
getting away as far as possible from the restrictive one-pole behavior. 

From (IV.41) and (IV.42), QOJ must be such that 

In +lul - (J(>»)-Q(u)2In-n (IV.43) 

or 

900 + gnu) s 2n (IV.44) 

We now show that this equation plus the principle of making 9(>J as 
large and positive as possible allows us to specify Q00 uniquely . 
We shall construct Q00 step by step and the procedure is illustrated 
in Fig. 2 . 

(1) Put v = u- Then (Iv.44) implies 

S 900 l)~l foral lk . (IV.-45) 

Try to take 90) = l>.1 for some value of X , 
make g large; 1.e.  , 

say K = M, in order to 

Q(M) = IMI 
(ii) Puts = M, u = -M. Then by (Iv.44) and (Iv.46), 

. Q(-M) s- I Ml 
Thus we can take also QPM) = IMI . , . 

(111) Pun = m. u =~IMI + n (n> 0). Then (Iv.44) gives 

g(M) +g ( IM I  + n ) s  2 IMI 

(Iv.46) 

or, using (Iv.46) , 
g(IMI+n) s IMI 

Similarly, putting X ;= M, u = -I MI - n (n> 0) gives 

Q(-IMI-n)S IMI 
(iv) Put 1\ = M, LE = IMI - n o  0 (n> 0). Then from (IV.44), 

9(M) Q(IMI -rl) 2(IMI -n)  + S 

(IV.47~) 

(IV.48) 
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g(>~) 

'fl-l -1ll*-l Wil l 

H I 

I.'lll. . I I  

n L ll1d11'r11 IF lnl liuu-a..-mi dll' 
I.Hl'I"l-eww v 

'|-" "1.lll'I'J:li'!I!"l1l 

lllrhu-I .H 

mln. 

ill 

:mm-nur I N 1  IN' `11l["'l i l l  . I  

ll'l'lll'I 

Fig. 2 . Optimal solution for 90) . 
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or 

g(IMI - n )  IMI - Z n  S 

which we can rewrite as 

g(L1)s Zu- IMI for 0 1  
I 

L I hr 
(Iv.49) 

Similarly I 

g(L1)S -2u- IM] for -IMI S u s  0 (Iv.50) 

d I iiilii_ 

Hence we see that: 
(a) There exist at most two values of \ , K = IM at which go ) 

l)~l • 
(b) Once the value M is chosen* and this is arbitrary, then 

9(1) has to 11e in the shad l. 2 for all L. 
Clearly, the optimal _make is to take Q00 a's 

given by the boundary curve of the shaded region in Fig . 2 . This 
corresponds to choosing equality in Eqs . (IV.47-50) . 

Hence the optimal choice is 

g(k) = g ( l x l )  (IV.51) 

with 

QOJ = M for 11\1 > M, 

Q(M) 

2 II I 

QQ) 2lxl - m  for 11\1 < M ,  (Iv.52) 

where M is now a positive integer. This for any M is optimal in the 
sense that g(?~.) is as large as possible for all X . 

Thus the optimal behavior for f(S) is characterized by an integer 
M. This M is a klnd of quantum number attached to the pair of con- 
spirlng Regge poles . It will turn out in the group theoretical analysis 
of EE reactions at t = 0 ,  that M can be identified with one of the 
labels of a Toller pole in the O(3 , 1) expansion of the scattering ampli- 
tude. However, as introduced above, M appears to have a more 
general significance, and plays a role even in the UU and UE cases 
where the O(3 , 1) analysis is inapplicable . 

Substituting (W.52) into (IV.42) gives 
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oc 
cl: 

£i-s) 
Cd;ab t - •  0 tum-l>~ll .Mm-lull (IV.53) 

Th1s gives some physical insight into the meaning of M. Only those 
amplitudes wlth X = IM and L1 = d:M survive as t -¢ 0 .  In other words , 
when a Regge pole of type M couples to a vertex which has a spin 
flip K , as viewed from the s-channel C .M. r then as t - 0 only those 
vertices with X = IM can go to a nonzero constant . 

In the above, we constructed go)  to  ensure that (IV.41) is not 
violated. However, this is not yet sufficient to satisfy both (IV.39) 
and (IV.40). For we must also have 

(of 
Cd;ab f - 4 » f  (s)' 

Cd;ab 
oc 

t -0 0 

g;0n+h) (IV.54) 

Let us put, for the leading term in S , 
(t) _HIm- lwI I+ lm- lu l I l * t  ai 

f - t  Bed;ab(t) s 

i 
(s) 
Cd;ab (Iv.55) 

where §(t) is analytic, nonzero at t = 0 .  Then (IV.54) implies 

GI -(t) VM 
s oc t 

* +  
8cd;ab(t) 

0.+(t) 
s - Bed;ab(tl (IV.56) 

where 

»M=&{m+n  - I M -  |)~|I - IM- |»||}. 

Now in certain situations aM S 0 .  In these cases (1'V.5E) puts no 
restrictions on the B' . But if + lpl > 
"m :> 0 and in these cases B+ is related to  B" The maximum value of 
v 
Coosing helicities in this range, (IV.5.6] 1rnp11es that 

(t) ,..-|. G+ A . .  

t (Bcd;ab(t) s D (Bed:ab( ) D 

ill M then one can show that 

is M and this is attained whenever both Ill AM and Ill 2 M .  

a _(t) am 
m Bt 

am 
-I 

t O  a t  

s 

t=0 

(IV.57) 

I 

m = 0 ,  1, 2 ,  M-1 (IV.58) 
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lt 
» hold for arbitrary large s , 

hat also 
it follows , on differen- 

0 .  ,2 , . . .m-1 . ( I v .59)  
dM 
m oL_(t) m 1 

dt 
t=0 

r 

2 

M-1 derivatives 
Similar results hold for those 
In 

So for a conspiracy of the optimal type characterized by M, the first 
of the trajectgies a_,_(t), a-(t) must be equal at t = 0 .  

Bcd'ab whose helicity labels satisfy 
m. 11-11 2 m. r 

This completes the specification of the relationship between 
the conspiring poles. They are now guaranteed to give amplitudes 
f(s)* that satisfy both (Iv.39) and (Iv.40). ( )+ 

Let us now see how the complete amplitude f = f S 
behaves as t -» 0 .  Using (IV.53) and (IV.56), we get finally 

(s) + f($)- 

(s ) 
f Cd;ab t*x 

t 0 
oc 

191 

t%(ln ",4'N) (IV.60) 

where 
X = (l +¢)(rt - M) f o rh2  M 

II o f o r m s  MSII1 

(1 +¢)(M - M) 

2(m - m) + (4»- 1)h 

forlTls MSTT1+l'1 

f o r m + h s  M (1v.70) 

Note that the most generally allowed behavior is just (see (iv. 12)) 

t%(H\ ',4'h) 

so  X measures the deviations from this . Note that in general X 7' 0 ,  
so  we have failed to produce the most general behavior. The reason 
for this failure can be traced to  the property of factorizability. 

Now in the above , we were working to leading order in s . How- 
ever, in the Regge pole model, the residue function multiplies the 
function of S (or zt) which has the asymptotic expansion in powers of 
1/s and therefore the coefficient of the leading term in S is the true 
residue function (aside from trivial factors) . Thus we can use the 
leading order treatment to determine the behavior of the residue 
function. 
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B .  

We can now invert the crossing matrix 
0 of the leading term for large S 

Behavior of the Residue Functions as t -o 0 
We have above the behavior as t - 0 of the leading term for 

large s of f(S)_ al; 
the behavior as t -| of f(t considered 
as a function of s and t .  However, the crossing matrices are sensi- 
tive to the external masses , s o  the calculation has to be done sepa- 
rately for U and E vertices . 

Consider first the case 
angles X behave as follows : 

d calculate 

mc 74 MA' Noting that the crossing 

a s t - # 0  
(Iv.71) 

we get that 

oc 
I ' l  MZ; (°°.t) 

t -0 0 

al l 5 ' - a l ]  t*lr{|c'- + (Iv.72) 

Then, inverting (IV.37) and using (IV.53), we get 

U :E 
yC,5. (t) 0 oc 

t - I  
tum I0'-5'll (1v.73) 

A similar result holds for 
Also from (w.54) it follows 

for the factorized piece of the t-channel residue for a U vertex (see 
(Iv.19) and (Iv.24.)). 

ygb if m 9* m . 
that 9% a USU reaction 

+ I I 
Ycf5r ;a rb I  + I' Ycf5l;albI oc 

+ t ` ( l 7 \ ' l  lp ' l )  

f o r l K ' l  l p , ' l z M  + (IV.74) 

Otherwise, if the helicities are outside this range, there is no special 
relationship between the d: residues . 
about because dBl°°,t) and xD(=*.t) 

Consider now the case 
Inverting (IV.37), one can then 

for ' ¢¢ ,5 /  , which is the term This would then give 
d: 

Ycf a-I ' i  

(The plus sign in (IV.74) comes 
* 'IT as t -| 0.) 

mA = mc. Then §(Aand XC -» rr/2 as t -  0.  
pick out the dominant term in the sum 

* with lo-al = M. 

constant a s  t - 0.  However there is a complication owing to 
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both So and ¥(s)_ 
of he1i¢1r1e%a(¢f. , (37.57) 

the fact that the sum runs over 
of Y(S) under this reversal 
leads to certain cancellations in the sum . 

The overall result is 

43 

and the symmetry 
and (IV.3B)) then 

.constant 
-5 I I 

if Tp(-1)M+c 1 

oc ft M+c' if TP(-1) -1 

or , 

oc 
E M+c'-5 Y (¢p)(t) 'Ei-{1 - TP(-1) } 
c a t -o 0 (Iv.75) 

tar 

Notice that this 1mp11es that only one of the members of the conspir- 
ing pair can couple at t = 0 to an E-type vertex . 

Unfortunately there are two complications which modify the 
range of validity of (IV.75): 

(1) Let us call the common spin at the E vertex sE = = 
t lo-al can ever achieve is ZSE. Hence 
nt above fails and we cannot pick up a 

f sum. The best we can do is to pick up 
which then give an additional factor 

lllll II 

SA So. 

E 
Y (TP) cc 

l ' l  c a  t - 0  

trI M-2sEI 2s +C' 
{1-TP(-1) E 

-go 
} if M >  sE . 

(1v.76) 

(11) When M = 0 ,  (IV.75) holds only for Regge poles with 
PG(-1)T = +1 or PC = +1 , whichever is applicable in the given reac- 
tion. For poles with PG(-l)T = -1 or PC = -1 and M = 0 ,  one has 
instead of (IV.75) 

E 
Y c I a I  (TP) (t) oc /t 

oc t 

if 

if 

I l - -1 CI _a-I 
TP('-1) = -1 

c'-a' 
TP(-1) = +1 (Iv. 77) 

The readen for the latter behavior is that there is an additional sym- 
metry at an E vertex 
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y(Sa) 
kG(-UT 

(0 or (-1)a-c 
PC ( ) Y (SC)(t) (Iv.78) 

gives an even more important role to M than before . 

which "plus the dominant terms in the sum, which for M = 0 are the 
terms Y s (t) , identically zero when PG(-l)T or PC equal -1 . The 
above gives a complete specification of the behavior of all residue 
functions as t -° 0 .  To get this, we used an optimal behavior for g()») . 
It is amusing to note that if we had chosen a less than optimal solu- 
tion for go) , but one which nevertheless retained the property that 
there exists a value X = M at which g(M) = IMI , then we would have 
got the same behavior as above for the t-channel residues . This 

Once there 
exists a number M such that the contribution of the Regge pole to fly) 
does not vanish as t - 0 when l)_l = lu = M,  then the entire behavior 
of the residues as t * 0 is determined . 

Working to leading order in s , we have succeeded in obtaining 
the behavior of the residues for small t .  We can now go on to study 
the question of the analyticity of the non-leading terms and to see 
how the daughter properties must be modified due to the presence of 
spin . 
c .  Spin: Treatment to All Orders fn s 

1.  The UU Case. 
From (IV.20) we see that every term in the Regge expansion of 

f(t) will have in it a factor 

( ) 
1 + z  tm'+/hw 

t 
l - z t  

1 + z t  

Thus we prefer to work wlth the amplitude 
-é0.n1+»d'IhI ) 

A = (t) 
f ¢a;ab(t'zt) - 1 - Zt f 

The contribution of a single Regge pole to his then 

( ) ca,-abl*'ztl (IV.79) 
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G. 

i` u,1 I (trZt) 
' l  - Zt~ 

€03 f11I) Y u , , ( t )  I-.(t) I 
(-a +m' 

2 

x F , -a +¢'h' I 

2 -Za, 1 _ Z  
t 
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(IV.80) 

I 

where we have written 

Yc5;5b Y*J.I)\I 

The procedure for fixing the properties of the daughters will be as 
follows . First we consider f as a function of the variables (s ,t) and 
establish its behavior near t = 0 .  Then we write a daughter sequence 
for E and arrange the daughter residues , etc. , so as to ensure that the 
Regge model for t does not vlolate the specified behavior near t = 0 . 

From (III.35) , (Iv. 79) , and the fact that the UU crossing matrix 
is neither singular nor vanishing as t -° 0 at fixed s , one can establish 
that the most general allowed behavior of f near t = 0 is 

oc s 
l / r  t - 0  

(IV.81) 

It can, of course, vanish faster as t -» 0 in practice , but it may not 
vanish more slowly . 

We shall treat the case of one parent (M = 0) separately from 
the case where there are two conspiring parents (M 2 1) . 

(a) One Parent: - M  = 0 .  The parent pole gives a contribution 
to f which has an overall t-dependent factor which behaves like 
(see (IV.73)) 

'+ té'(m N ' ) a s t * 0 .  

If we choose X '  , u' So that 1-' = +l,  then this behavior is as singu- 
lar as is allowed, and the daughter sequence must sum to a function 
which is at worst constant as t - 0 .  

Let us introduce daughters with residues 

(n) __ '°°n'" -(n) 
I f (t) t Be B u / / ( t )  (IV.82) 

in analogy with (III.60) for the spineless case. 
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If we define ¥(r}). I (t) in terms of al'}) , (t) 
gous to (Iv. 19) in w i n  d is replaced by law,  then the 
the nth daughter to  f is 

by a formula analo- 
contribution of 

(Q) I f , , ( t . z t )  = €(l ',u') Yu AU Ln(t) 

x F(-an+tn', -an+,4»'h'; 

l an 

2 
-Za nr 1 - z t )(IV_83) 

where in the UU case 

L nm 
"CI.n'I1 

= t (Iv. 84) 

It is clear that the daughter residues will have to  have the same over- 
all hel1c1t5r dependent t-factor as the parent. Thus we put 

(r) + » | )  _(n) ,(t)» 
lu Yu'l\ 

- i x '  I YU ndlt) - t  

where ¥(n) 
Lastly, defining 

is analytic at t = 0 .  

N = 0 I 1 | 2 I • » a (IV.85) 

-(n) 
y f  I (12) ) b ( n , ,  (15) Yu I)L[ (t) (Iv.86) 

the full daughter sequence w111 be 

if( 1' + u' ) - f u , , < t , z t )  = QQ'  »u') t | ! I 1 Yul1f(t) (§)°' 

X 

n-0 

on (n) -n Z b u 1 1  (t) x 
a +n-a n v 1 - + ',- +/h',-2 , -  F( n m °h an x )  

(Iv.87) 

where as earlier 

x=Q'(1 - z t )  

v = x / t  

I 

(Iv. 88) 

Taking then X '  , I-I' such that 4/ = +l, the series in (IV.87) will 
have to  satisfy the same conditions as the series in (III.56); 1.e. , its 
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p-th partial derivative with respect to t must yield at worst a polyno- 
mial of order p in 1/x and a polynomial in log v .  

For p = 0 ,  we now find 

b(n) 
u I ]  (0) 

(-u" (-a(0)+In')n (<»(0)-n')n 
n! (-2a(0)+n-l)n (IV.89) 

from which the Bulk can be calculated via (IV.86), (IV.82), and 
(111.60). . 

Now the above was derived for the situation I' = +1 . In the 
case I' = -1 , the t-dependence of the Regge term vanishes more 
quickly than generally required, i .e .  , as 

to(mCI-n') 
Co roared W 

it 
to GH' - n')  

(IV.86) thls will be ach 
SY merry under ' 

1 d if b( l * -0 
eve U b( Thus our result 

Thus the daughter sequence can sum to a function which diverges at 
most like t'h as t -° 0 .  In other words , its p-th derivative can sum 
to a polynomial in l/x of order o + h' . 

Now in order that a cancellation which is effective for certain 
u' , X '  remain effective when say X '  -° -XI it is necessary that the 
parent and all daughters have the same -1\'. By 

= _ I . 
cannot depend on the sign of of' Uand (IV .*§9)Xmust hold also for AP' = 
-l . To check this , let us choose f '  = -1 , take p = 0 ,  substitute 
(IV.89) Into our sequence and see what emerges . One has then a 
series 

as (n) Q b|J.1)\I(0) F(-d +n+h1I I 

n=0 

which can be shown to sum tot 

-n x -a+n-h', -Zq.-1-2n; 1) 
X 

tFrom Eq. (11) ,  Chapter 4 .3  of Ref. 12, and using Eq. (3) of Chapter 
4 . 4 ,  one can show that 

F(A.b: A+c-a;z) 
°°(-) '  
2,1 

(b)(a-A)(c-a) 

r=0 (c+r-l)r(c-a+A)r2r 

F(a+r, b+r; c+2r; z) 

from which the result needed follows . 
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F(-h' , -a + to' , 

which is a polynomial of order h' in 1/x. So everything is consistent 
between the case A '  = i t  for p = 0 .  We have not checked this con- 
sistency for p > l ,  but there is 11tt1e doubt that it will hold . 

(b) Conspiring Parents- M 2 1 . Now f is given, to start with, 
by the sum of the contributions of the two parents . Moreover, to 
leading order in s , we will have 

E u'7k"x 
+ v 

c++ _ a4-L 
I s 'Yul;xl s 

and the relationship (IV.74) and (IV.59) between the d: poles will gua- 
rantee that f I . I  does not have a more singular behavior than (I\7.80). 

When lie' daughters are introduced , each daughter sequence w111 
be designed to cancel unwanted singularities in the non-leading terms 
coming from its own parent. However, tAhe two sequences will have 
to cooperate term by term to ensure that f is not too singular. To en- 
sure this, we take analogously to (IV.74) and (IV.59), 

a n+&) 
s +I1 Y (n) I (t) an-(t) 

S oc 

(n)* 

+ 
Y(n)*7l to) 

U- . t -o 0 _ :t 
where Y are defined in terms of Blew) 
where we have taken 

i 

et, A' (t) = t (n) -(n) 
:iz -an -n :|: 

. B e / ¢ ( t )  

té'(M' +n')  (IV.90) 

analogously to  (IV. 19) and 

(IV.91) 

in analogy with (III . 60) . 
(IV.73), is to put 

The analogue of (IV.85) in this case, using 

where Y 

dm 

atrn 

(n) té'{ l m-tn' | I :t 
IM-n H v`("> At) (1'V.92) 

:I: _ + Yu: ; ) '  (t) " 

_ i 
(n) is analytic at t = 

Then (Iv.74) implies that 

Y-(n)+ 
u l /  

0 .  

+ ,4'I '(I11- Yu/x/ 0 for m = 0 ,  l ,  2 ,  (vM'-1) 
(IV.93) 
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where 

I = I + I _ _ I _ _ I VM é{m n IM ml lm a l } .  

Now it follows from (Iv.74) and (Iv.s9) that 1fgpg, (Mt): x) is 
any function analytic as a function of a as t -° 0 ,  then 

+ . 
{Yp.'X' (t) Qui: (a (t): x )  + I" (n) (n) + v ( " ,  (t) ml" / (@'(t),- x)} 

(Iv.94) 

lM 
t%(m'+h') ( ) C un,( t ;x)  (1:v.95) 

n where c ,  (t;x) is analytic and nonzero at t 
t = 0 by 

0 and is given at 

I 

1 
(n) 0. = I I > -  . I I * .  

C u ' ' (  ,x) Léon'+n')J Q 

a§(m'+h') 
at§(M'M') 

t=0 

(IV.96) 

Carrying out the differentiation and using (IV. 74) and (IV.59), one 
gets 

(n) C I 
be ful 

V r 

a Ml-(n)+ (n) i<vu,x,(@(0);-) v . yv.x,(t)+A.§(",(t) 
M m t a 1h 

+ 
.|. -(n) (0) 

Y u I I  M 

Bt 
r (as r (a*(0) ,x) ( )  - _q0un7,(a . ac) 

Let us now construct the daughter sequences . We have, ig- 
noring the irrelevant factor Q O ' .u' ) , 

+ 
a (n) f \1,:X,( t ,  zt) = -- 2 t Q) y ( )  

+ + + a +n-a 
X V 

+ F - I ( an +m 

n=0 
+ 

I +4»'h': -Zan -a n 

a' 

+ . - i )+ (§ )  2 ((+) 
n=0 

-0 (-)) (Iv. 98) 
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:iz For each n value we can identify the factors multiplying V(n) as 
functions q)(I1)(q,*) of the type discussed above. Hence (Iv. 95) will 
hold for each pair of terms in the series . Thus (W.98) becomes 

? , , ( t , z t )  = (1 - 4 / )  

X 

n"0 

) Z b ( " , ( t )  

+ 
G (5) t1»{lM-1n'I+l m-n'l} 

t 

-n ++n-a+ + + 
x F(-an +tn' ,-an +,4f'T\';-Zan ) 

--+ 'YuIx I (t) 

a n v 
+ 1 

' x  

+t%(tn'+41') C(N),(t.rx) 

n=0 

(Iv.100) 

where we have 
+ .- 

b(N \ I  (t) = y ' " ' ,  (t)/ Y u / l  (t) (1v.101) 

and Can,)x, (0;x) is given by(IV.97) wlth 

cp (n) ,(a:x .v) V 

a + n  _ - n  n - x  - ' 'G + ' f .  -2 ' l F(o.n+m f n , o h ,  an ,x )  . 
(Iv.102) 

We now choose p' , X '  so  that-4' = -1 . We then further res- 
trict p '  , K '  to the region iN' 2 M 2 Tl' so  as to make the t factor in 
(Iv. 100) as singular as possible. In this region, the factor looks 11ke 

t%(to' - n ' )  

-n x F(-@+n+1n' 
1 -q+n-hI; -Za + 2n; x ) = 1 I 

which from (IV.81) is already as singular as E can be. Thus by s1mi- 
lar arguments to those used previously, we choose the b(n) (0) so that 

(n) b u ,(0) 
n=0 

yielding 

(n) _ b u , / ( 0 )  - 
(-1)"w(0)#m')n (0(0) - 

n! (-2a(0) + n - l)n 

for No' 2 M 2 n' 

of 
)n 

(Iv.10a) 
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since. 

E *l,),(0;x) = polynomial in 1/x of order h' . 

Also we shall have to require that 

0(n) 

n=0 (w. 104) 

The latter re?Lirement- lfere with our deternira- 
tion of the b n , :derivatives of the b n . 
We shall not analyze | stage . 

Once we have t 1 and the range of uI , ) '  

as indicated in (Iv . 10§), we can invoke factorization to find all the 
other ball , . Firstly, as discussed earlier, bin) 

r . Thus (Iv.103) holds f r both I; = i t .  
Secondly, to find be" I 

zation in the form u 

u cannot depend on 

when In' , TI' > M, we can use factori- 

Y\ 'u '  'YMM *l\'M YMu' (Iv.105) 

since MM, MM. and My' all fall in the range where (Iv.103) holds . 
Hence one finds 

(n) b u I , ( 0 )  
(-1)" (-u.(0) + D1I)n (-a(0) - M)n (-a(0) +n ' )  

n l  (-2a(0)+n-1)n (-a(0)+M)n 
n 

form' of 2 M  I (Iv.106) 

(n) b u I (0) 

Finally, in an analogous fashion, if in' , h' < M, we get 

n 
c-1) (-11(0) -m ' )n  (-a(0) + m)n I-a(0) - n')n 

n (-11(0) 

m' n' s M (Iv.107) 

n l  c-mn + n -  1) nun 

This completes the specification of the b(n) , *iI . How- 

ever, we found the b(n) by using (W. 100) in a special region of he11- 
cities and using factolilzation. So we have to go back to  (Iv. 100) , 
insert our values of b YI as given by (IV.103), (IV.106), and (IV.107) 
and check that in all cases we do not violate (IV.81). 

For the case If' = -1 , one finds 

*JI}\.1(0) for all ' 
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b g , (0) 

n=0 

-n x 1 
F ( - a + n + t n ' ,  - c , + n - h ' ; - 2 a + 2 n ; X )  

1. 
- a + M ' ; - a + M ; x )  fo r ' f1 '2M 

1 : - a - M ; x )  f o r m ' s M  

{p(M-n', 
F c m ' - M ,  - a -T l '  (IV.108) 

which are polynomials in 1/x of order h' - M and M 
Then we shall have from (Iv.100) and (IV. 108), 

M ,  re So ectiv el Y 

f I oc 

+ h '  thOn' - 2M) 

té(2m -m' - h ' )  

_ I 
TM n for h '  2 M 

for mI S M 
I _ TM M 

In both cases , 

A é(m' - h )  
f u/xI o<t 

a h '  

cléfh 
) 

contribute to E 

,s 

does not violate (Iv. 81) . Of course, one still has to adjust the , , but this will not interfere with the determination of the 

• n For the case f = +1 , the series involving b( , ,  (t) does not 
, at all, and the non-violation of* 

IJ 
ensured by suitably adjusting the when IN' 2 M n C( ,;, . 

u ,  must be no more singular than 

t%(m'+n') 

(IV.81) can be 

For example r 

implying that 

y C(N,(0:x)  constant in X and polynomial in log v ,  

n-0 ( ~ ' = + 1 ;  m ' 2 M 2 n ' )  (Iv.109) 

It turns out that this equation contains an interesting new piece of 
information on the slopes of the trajectories, as we shall see later . 

(c) The Slopes of the Daughter Trade ctqries . Taking p = 1 , 
i .e . , considering the first partial derivative of (IV. 100) with respect 
to t ,  and isolating the terms proportional to log v (as was done in 
(III.62)), we find for the (+) family: 
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Mio 

+ 11 I 
n .  (0) - l  a" 

l 

'IM' It 

llllliil |. url; we = : _  2 

x-n F(-ct + n + III' 

giving. the slope at t #IU ¢gq,n H! 4 H 
tical with the spineless result (III. 63) . 

` To find the slopes for the (-) family, remember that we have 
from (Iv. 90) 

' (t) 
t=0 

Thus provided M 2 2, (IV.'l10) will hold also for the (-) family and 
an"I-(0) = an' '(0) . To find the slopes of the (-) family when M = 1 ,' 
let us return to Eq. (IV. 109) . In detail, it reads 

I m 

, - a + n + h ' ; - 2 a +  

l=*lllh 

1 2n; -)  X x 

+ + 
II (0) - aI (0)] 

(IV.110) 

This formula is 1den- 

0 , , 1 ,  2 ,  . . . (m-1)- .  

i l  II lin- 
:ui 

'hmmm 

x dh I 
dt" 

I CL--+11 n 
V 

+ -a n F(-an++M' , +n' 
+ 

: -Zan 7 _1 
x 1:=0 

constant in x and polynomial in log v.  (IV.111) 

In carrying out the differentiation there is only one term proportional 
to log v. Isolating this term and choosing h' = M' = M,  one has to 
have 

M d 2 b§jI'lM(0) [Gm -on n ' (r)] M +(t) _ dt t=0 n-0 
1 F(-a + n + M, -on + n + M; -2a+n; x) 

-n x 

+'t) - a`(t)l 
t=0 

(Iv. 112) 

which yields 
I - l l  
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M d 
M dt [°n*(t) - °°nl(t)] t=0 

(-a(0)+M)n aM 
(*G(0)'Mln dim 

l a+'t)-al(t)l t=0 . 
(Iv. 113) 

Thus the difference between the M-th derivatives of the d: daughters 
is determined by the difference between the M-th derivatives of the 
d: parents, at t = 0 .  This result holds for all M. 

However, we can also use it when M = l in conjunction with 
(IV'. 110) to determine the slope of the (-) type daughters. Clearly 
if we had done everything In terms of the (~») rather than (+) family 
we would have found that (Iv. 10) holds also for the (-) family. 

Thus for M 2 2 all slopes are determined in terms of a(0) and 
a' (0), whereas for M = 1 the slopes depend on c,(0) , a"*l(0), and 
a"(0)  . 

cos XB 

COS XD: 

1 
ii - 

TAB BD 

complicated, and 
We 

and ask how singular fft) can be as 

2 .  The UE Case 
The situation in this case is very much "mis * 

it turns out to be more convenient to work with f t rather than f . 
put mB = mD = m; S B = 6 D = S E  
t -o 0 . The situation here is very different from the previous cases 
since in this case the crossing angles XB: blow up as  t - 0 .  So if 
the s-channel amplitudes are assumed anal 1c at t = 0 , by crossing 
the f(t) will be quite singular. We have 

_ 2 a _ 2 
2m (MC MA )} ' 

l - mcg) - 2m2 lmc2 - mA" )} ' 
(iv. 114) 

{t(s + m2 mAa ) 

B15 

1 s 3 -t(s + m2 
CD 

where , in this case , 
:r 

BD 
{t(t 

*B 
4m2 )} (IV.115) 

so that 

oc C O S X  M C O S X  B D t - 0  
t~s (IV.l16) 

we shall have, using 

S Since the crossing matrices involve rotation functions like 

d E (X ) bI b B 
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sB dblb(xB) oc (cos 
s E 

xi) for cos XB - co 

that 
-s E (IV.117) 

independently 
behavior allowed for 

of the héicities lt' , u' . This is then the most singular 
f C ' 4 

Let us now look at the Ragga model for f(t) . We shall only treat 
the case M*> = 0 follows trivially from it . 

Let us write the contribution of each Regge pole to f(t) as 
_.Q 

t 2 

0 ,  since M 

( )  
f t ;db(t,zr) (-u" . -a-l e _ f  ,u' (-Zt) (IV.118) 

where l 

Nata;db 
2q,+1 

2 

Ina 1 + T e 
cos TTY. 

u 
2 t B¢a;db 

Using the factorlzability of B , and remembering that particles A 
and C are at the U vertex, B and D at the E vertex, we write 

UE = U .. E 
@ can;db(t) uaca(t) "3db(t) (IV.119)` 

. Now from the leading order treatment, (IV.73), we know how 
YU behaves as t -» 0 ,  from which it follows that 

oc 
U , 

IN,(t) .. 
ii t - v 0  

telm-l»'ll (Iv.120) 

and that for Mc mA , > 

.|. . _ I 

BU, (r) - sign (LU) nu, (t) oc t*I M+l.u I I u 
p, 

which can be derived from (IV.56) . 
Also from (IV.75) we know the behavior of YE from which follows 

(Iv.121) 

0 % )  oc t { 1  ¥ ('1)M+`X,* for M <  2sE . (IV.122) 
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Combining (IV.122) and (IV.l20), we get 

UE=l= 
B I 1(t)0c u h  

t%IM-ll~1'll {14= (-1)M+ l 
(1v.123) 

and (IV. 121) does not give any relation between 03+ and 43-. 
The daughter sequences are set up as usual. We take 

(n)i nu '.x / (t) 

J: Zan +1 

2 

1 
Ina ¢ + :iz 

T e n 
n 

J: 
cos lT 0L n 

:iz 

a n n + _  
2 2 t Be");*,(r) (Iv.124) 

and define 

03 
1 

. t o  (n) (TO)n(t) = ; I M-I uI I I  1-(¢p)n 1J/n 
(_ 1) M+x ' +n} (n) (TP)n 

(t) 

(Iv. 125) 

where B(n) is analytic and nonzero at t = 0 .  The justification for 
(IV. 125) is as follows . Firstly we know that To = (-1)Nt . Secondly, 
from a study of the UU case one can show that one must have Pu = 
(-1)I1 P which then makes (TP)n = TP. That the latter was necessary 
was seen from the fact that ('rP)n controls the effect on the daughter 
residues of A -° -II . Thus if a daughter sequence is effecting a certain 
cancellation of the singular terms of its parent for some value of X , 
then the sequence must transform in the same way as the parent under 
X * -A in order to continue to effect the cancellation . 

Once we have (TP)n = 'rP it Is then necessary to have the factor 
(-1)" in (IV. 125) but the reason is subtle and will only emerge after 
Eq. (IV. 147). In the meantime, let us take (I\!.l25) as correct and 
study its consequences . 

We see that odd daughters of a given parent M11 differ from it by 
a factor ft, but will have the same factor as the other parent and its 
even daughters. Thus the cancellation of the singular nonleading 
terms of a given parent is achieved by a collaboration between its own 
even daughters and the odd daughters of its conspirator parent. The 
sequence will then look llke 
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t 
f 1.1('):x ' t%lm-lu'll t.;(1-(-1)M**') 2 

-n=0,2,4,.  

B (n)+ 
U r :  

+ >i 
n=1,3 ,5 

+ t%(1+(-1)M**')1 

/ • I . 
B (H)- 

' J u l - l  

(n)- 
U r /  B . , . +  

n'=0 ,2 ,4 , . . .  n = 1 , 3 , 5 , . . .  

B (n)+ 
u')~' 

(Iv.126) 

Let us write (IV.l26) in the form 

(t) few, : I 

I )~' télwr-lu I I  t<%;(1-(-1)M+ ) 2 (t;z,v) 
(1) 

l 

M+x ' 
+_%(1+(-1) ) (2)(t:2.v) I 2 (IV.127) 

Zt I where z E v = z/ft. 
Since for any L '  one of the t factors 

constant, the overa11 t factor in (Iv. 12-7)~ ;is just hIM"lI-l 
always less singular than the allowed behavior (IV.l17) . 
example that lx' is such that 

multiplying 2(1) ) will be a 

which is 
Take as an 

('1)M+ I 
-1 

Z:(1)(t;z .v) 

aft 2(2)(t:z,v) 

or IN 

t 0 

polynomial in 1/z of order 2s£-'HM-ll_1' ll+p 
(Iv. 128) 

Then we require 

5 D 

5/'t9 t=0 

and 

AP = polynomial in 1/z of order 2sE-*H M-|p.IH +p+l. 

(Iv. 129) 

when p = 0 the sums are allowed to be polynomials , 
all previous cases when we looked at p = 0 the sums had 
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t1 
d 
p 

t we cannot find the Bgrlfflo) 

(0) we have to 
f(d(t,z), which 

get much more 
in turn de- 

used in obtaining (IV.2), 
one can write 

(s) 
Cd;ab 

In which f`(5) 
function of (t 

(s,25) z s) l7\" l l l  (1-}-ZS) 

i 

é in! -(s) 1 f (1 f cd;ablsIt) (Iv. 30) 

lc at t = 0 .  We shall write f(3)(s IZS) as a *= ing the additional information about the struc- 
ture of f(S) as- by (Iv. 130). We take the expression (II.5) for 
Zt and solve for s getting, when mB = my = m, 

S = m(mA2 

f-t 
my2) 

Zt +/2t Z + 0(t3/2V I . (IV.131) 

Then substitute for s in the formula for zs: 

1 - - [ 52  
S SAY CD 

Z s so: + 2st] (IV.132) 

I 

where g1j is given by (IV.7) One has 
I _ I 

SAB (IV.133) 

and similarly for ScD. Thus 

Z s 

II l + 0(ti) (Iv. 134) 

Putting this into (Iv . 130) we thus see that working at fixed Zt and 
expanding in powers of t yields a behavior for f s as t -o 0 which is 
identical wlth the behavior deduced in the leading order in s treat- 
ment (of. (IV.l2)). 

Next we take the expressions for the crossing angles (Iv. 114) 
and substitute for s using (Iv. 131). We get 

COS XB 
sign (mc 

Zt 

- ) 
MA + 0 ( t )  (Iv.135) 
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and a similar expression for cos XD. 
For the other crossing angles we get 

cos XA sign (mc - mA) + 0 ( t )  (Iv.136) 

and similarly for cos XC. Using (Iv. 135), (IV. 136), (IV.55) and the 
inverse crossing relations , we get for f(t) : 

f l t ,  (t.2t) SMG) 
as" CC 

6 6 mr sE 

a , b  
c,d 

X to M-Ia-cl l+1 m-1 b-dlv »+ 
Bed;ab (0)+§ cd'ab(0)] 

a- - b-d . + to I ( c) ( ) |  0(1/s)} + hlgher order terms in t 
(IV.137) 

where we have used our knowledge (of. (IV.55)) of the specific form 
of the leading term of f ( s ) .  Thus 

f(*) .7 (t.2t) s - s - Q( - - ' ) I dbEblztl)d'§Ed(zt])!t lm lull+lm lu II 5(1(0) 

b,d 

x 

x [§+c'd;§'b + El-¢'d;5'b] 
+ t%lu'*11l 0(ft/z)$ + 

(IV.138) 

The leading terms in the sums, as t -0 0 ,  will have behavior 

t-HM-lu'll +0(/t/z) + 

1.3 

_ r . 
Since f(t) has a factor oil M lu l I in it and since we do not know the 
structure of the other terms on the right-hand s d f (N. 138), we 
can Nine the polynomials to whlcll Bum, if lu' l if 
M.  _ _ _ . if *lr =d:M then the only term t-hand side of 
(Iv I whiCh goes as a constant is the use structure we 
know. Thus for say u' = M we must require 

I a n  
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dSE b'b 
oc -1 Zu) or 2(2) Q (z 

b - d m  
)du +A- _ 

' +  for (-1)` M l o r - 1  (Iv.139) 

since we do not know how 
the case p' 

But again the right-hand side of (IV.139) is an arbitrary polynomial , 
B l d , " ' f  depends on b and d.  So even in 

= IM the BW* fro igmdteterntined . 
We shall see that the best we can do is to determine certain 

linear combinations of the ]3(3) . Firstly we decompose the product of 
d functions into irreducible components. We take 

S sE -1 E 
dh/b(z )da,d(z'1) 

-1  SE b'-b s 
(-1) E 

-l  
d _b,I_b(z )dard(z ) 

(-1)b"b 
s 

Now define for s '  2 K '  

C(s , s  ,s;d' , -b')  C(s , s  ,s'd,-b)ds, ) . 2 E E E E mu (1v.140) (z'1 

I 

b'-sE I 

(-1) C(SEISE1S :6' ,-b')  §'(t) = *II zs 'x I 
d'I .b' (al _bl =} I ) 

Substituting (Iv. 140) into (IV.138) and then computing §(t)I we get 

fm 
* J I ; a 1 b I  . 

(IV.141) 

fc*).s, , = 2 d'1u(z ) (-1) 
b,d 

C(s£.sE.s':d,-P) X 

X 'HIm-lull+lm-lu'lll ~+ A.. 

t l8c'd;a'b + Bc'd;a'b; 

+ t%lu'+ul 0(ft/z) + 

2 2 Writing 

b , d 

t 
- I  2 and defining 

d-b=1-1 

(IV.l42) 
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g = 
u'u 

d-b=l.l 

b- 
(-1) SE " -d  -b " l C(SEI'SEIS I I )Bcfd;a'lb (Iv. 43) 

we get finally 

§(t) 
*J .123/11 

SMU); d o z  1) lt%llm-lulI+lm-lu'II) 

u 
x 

x 1 + g- u'u ]+té'lu'+ul 0(/'t/z) + . 
, t . 

The Regge pole expression for f ( ) will be obtalned by 
by 

~(n):b B u / ; s ' I  
at Ib' 

(<'i'-b'=x') 

Br 

(-1) -$E C s  ,s , s ' , 6 ' , - b '  

(Iv. 144) 

I 
I I .  

L--. 
I 

and Z: in 'd E . 
$1 e (1) (2) 

We now choose II' 
(Iv. 139), we require 

We label these new sequences Fu) and §(g)° 

= M and repeating the argument which led to 

4-J 

2 for ' -1 "+ "- M+)' 2 = ds + -1 = -1 . (1) or (2) Z ,*J1(2 ) [BrIg Bm ( ) l or 
u.=iM (Iv.146) 

Using (Iv.56) and (Iv.143) we have that 

w+ 
BMiM 

7:- 
i 

3M:tM 

so (IV.l46) becomes finally 

s '  - l  
or 2(2)o=d).»M(z ) fo r l l '  = M a s  

5(1) 
M+7' 

(-1) . = 1 or -1  
(Iv.147) 

More explicitly, e . g .  I 

'+  if (-1)7' M +1 , then (Iv. 147) reads 
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5 N = 0 l 2 l 4 /  n=1,3,5,  

G. 1-z 
2z 

~(  )_ 
BM;s'X'(0) )( ) (  2 

1 - Z }  

n 
X 

2 s '  - l  -a+n+4»'h'; -2a+2n; 1_z)  oc dl,m(z ) (Iv. 

Let us now see why the factor (-1)1'n is necessary in (Iv. 125). 
+1 If we now look at the case 

in 1/z which can be obtained from the case p' 
sign of the odd powers of 1/z 

X F(-0r.+n+T11', 148) 

which determines the B(n)+ for n even and the -JB(n)- for n odd. A simi- 
lar expression holds for (_1)1'+M = -1 . 

The explicit solution of (IV. 148) is much more difficult than 
previous cases and has been given in Ref. 8 .  

Consider, e.g.  , the case (-l))\'*'M = . 
I-1' = -M then the right-hand side of (Iv. 147) will involve a sequence 

S 1 = M by =3il51i*'i¥the 
. in d)Im(z ) .  On the of 

changing *lI from M to -M on the left-hand side of (IV. 147) causes 
the odd powers of l/z in the even family members, but the even 
powers of l/z in the odd daughters , to change =1"'=- Thus to attain 
an overall change of sign of _Ag odd powers I left-hand 
side the odd daughters must change, in addition . _ overall minus 
sign relative to the + parent and its even daughters . Hence the odd 
daughters involved in the cancellation must have opposite TP to the 
parent whose singularities they are cancelling. The factor (-1)n 
precisely guarantees this . - 

Notice that in contrast to all previous cases, we will not be 
able to use factorization to flnd the UE residues for u' 7* IM from 
those with u' = IM. For we would n_eed to use, e.g.  , 

gsh 

e 

B p ' ; s ' ) I  BM;s"M = B1,1I;s"M BM;sI7\I 
I 

which would be of no help . 
However, factorization does give information about EE 

processes . 
3 . The EE Case 
To fit in with the.above notation, we write the contribution of 

each Regge pole to  f(t) as . 

(t) f _ t , z  = 
can;(Hb( t) (-u" 1 UP -0.-1 __ c5;5b(t) €_)\I ui( Zeal (w. 149) 

where 
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B ca ;Bb 
Za-I-1 

2 8 c5;5b 

and then put 

1 IB('rP) =tz{1+»rp(-1)M+*']' • t%{1+TP(-1)M`l"*]' B ('rP) *If . M (1V.150) 

Finally we define 

t) 
so/ul :s'7»' 

(H 
18J Tb 
'b,-' 

'K I ) 
5 

2 
(Cr 

1r0 
'51 I 

=u, ) 

bI-s 
(-1) B 

5'-s 
(-1) A 

I . a I  _bl 5 / / .  f _  C(SB.SB,S, r )C(SAlSAl , c .  

L u  

. = c~ imam fsor JE? s = S . B D 
is given by replacing B ¥ J , I  by 

B l /  
S lJL':s'1»' 

d ' , b '  a ' , c '  
(d-I_.bI=.')l) ( 0 - - 5 . J f )  

5/ b'-s -s 
(-1) 8 ( -1 )  A 

C(SB,SB,S';a' ,-b') C(sA,sA,s";c' . - a ' )  Bola-l;arbI 
(Iv.1s2) 

in (Iv.150) and (Iv.149). 
If we now define a modified UU residue UU 

B ,  by 

UU 
ta B ,  telm-l»'l1. t%lm-l»'ll Bw, I 

u x 
(IV.153) 

then the fa motorization theorem gives 

~EE 
B s" u I I S I K r 

BUU 
v D 

*'UE B V ; S  1_)\I 
~ BEU 

S 
(IV.154) 
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Hence, from our knowledge of BUU and EBUI we can calculate sEE . 
The actual calculation is very complicated and can be found in Ref. 8 . 
It is also shown there that the EE residues thus evaluated are con- 
sistent with the EE residues of the Regge poles contained in the ex- 
pansion of a Toller pole (of. Sec. v.) . 

V .  The Group Theoretical Approach 

A .  Introduction 
Consider first the spineless case. Let us examine the role of 

group theory in giving us the usual partial wave expansion which is 
the basis of the standard Reggeization procedure . 

Let M(p , p-; p- ,  p ) be the scatterihg amplitude for the t-  C A D B channel process 

§ + B # C + §  

The invariance of the scattering operator under Lorentz trans- 
formations tells us that if the scattering is viewed in a Lorentz trans- 
formed frame where the momenta have the values 

1 . - A p I 

1 
p 

then, for the spineless case, we have the covariance condition 

M(A1=)0. APA-: App.  APB) = M(PG, DA-: PA' p8) (V- l )  

I-Ienqzg can evaluate M in any frame we choose, provided it can be 
reacll by a Lorentz transformation Bom the frame in which we wish 
to knee the scattering amplitude. Because of energy-momentum 
conservation, we can take M to depend on the three vectors: 

P = p 5 = p B = p c + p A -  

/=%(p5- pB) 

/ ' = % ( p C  - PA) 

. 
r P 3 = t 2 0  I 

| 

(v.2) 

BY (V- 1) we have 

M(AP: A / ' .  f y )  = M ( P g '  kg) (V_3) 
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Now P is time-like . Hence we can always find a A such that 

t A p = p ( ) =  (ft, 0,  0 ,  0) (v.4) 

In this reference frame , 
frame, we have 

which is, of course, the t-channel C.M.  

Pn: (ET. Q) 

Pc = (EC. £') 

E ,  ( B  

E'l ( A  

pa = -B) 

PA = 112' ) 

where the E1 are known functions of t and the particle masses only. 
We have now 

'EE I I .  E B ( ) _  / t `  2 ' B  I 

/ '  (t) l I (V.4a) 

and we can write 

M(P 
f(t)(t; .Bl 2 

) = (1) (t) r (t) ./. »,o 
Now note that for any rotation R ,  

t t R Pu = P(  ) 

(V-5) 

(V-6) 

So the covariance condition (V.3) gives 

M(P(t). R (t) R ,(t) = (t) 
. f /o  . ,o ) M(P . ( )  f ( )  

, / t , / 0  t )  

or by (V.5), 

f(t)(t: RQ. Rf) =f(t)(t: 2, 2') (v.7) 

since 

) (t 
R/ 

'E B 
zED . R E )  etc . 

I . . . t An immediate conclusion is that at faxed t ,  fl ) is a function 
only of the scalar product B - RI . Since | .QI and | Q' l are calculable 
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in terms of t ,  we can say that f(t) is a function only of t and the 
angle between B and RI . 

An alternative way of looking at this is to put 

2 = RQ iz 
= R RI Ry 

I 

.r (V-8) 

where, e , g . ,  
A 

BZ = (0, 0 .  III) 
is along the z-axis,  and to use (V.7) to write 

(11) . I = to) , " " f f (t, Bl B ) f (t, BZ RED Hz) (V.9) 

where 
I 

I 

I 

R I R B  
R-1 
B 

RB, 

I is the rotation which take S 
QZ are functions of t ,  we T 

direction of 2.I 

£(t) (t: 2. 2') = £(5' ) 
t RED 

( : r 

Since _,AZ and 

(v.10) 

1.e. , fit) is defined at fixed t as a function on the rotation group . 
It may therefore be expanded in terms of the representations functions 
of the rotation group and this leads in the usual way to the Iacob- 
Wick partial wave expansion . 

All the above is very well known. We have repeated it just in 
order to emphasize: (a) the group theoretical aspects of the steps 
involved, and (b) that a functional approach is possible without need 
of talking about intermediate states which are eigenstates of J (this 
will be a g r e a t ! i ' " i h *  on) . (t) 

Let us no in fact f is also a function of the masses; 
in the sense that all momenta satisfy PI3 = mi2 . From (V.2) it fol- 
lows that 

' 

P . _%(mD2 m a  B )  f 

and 
f A P =%(my8 - mA" ) (V.11) 
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IyD 

Thus at fixed P the range of variat 
(V. 11). In particular, since 

t t t -1 t t t ( )  . ? ( ) 7 ° ( )  .R P ( ) 7 ° ( ) .  P ( )  

. to) . (t) consistent to rotate/o at fixed P 

End/=' is restricted by 

it is permissible and 
needed in (V.7), while always satisfying (v. I I ) .  

Now notice that at t = 0 ,  

, a s i s  

(v.12) 

P(t) ( t =  0) = (0, 0 ,  0 ,  0) 

is a null vector. In thls case, for any A € O(3 , 1) we will have 

'IZ t A P ( )  ( t = 0 ) = p ( )  ( t = 0 )  

and therefore by (V.3), 

( ) ( )  ,(t) t : A/Dt , A/> M(P ) = M(P(t)/D(t)/D, (t)) . 
t=0 t=0 

By the same arguments a s  above, we can now conclude that at t = 0 ,  
M is a function only of the Lorentz scalar product /o7°' . 

or m 
components of/oand /°' are infinite, which gldicates that something 
peculiar is happening, as was discussed in Sec. III.A(b). Since for 
the UU and UE cases at t = 0 ,  P is actually light-llke and not null , 
we concluded that covariance does not permit us to find M by evalu- 
ating it in the t-channel C . M .  frame. Thus the additional symmetry 
at t = 0 is only relevant for EE processes . 

In this case one can restate (V. 13) in a form analogous to 
(V. 10) , 1.e . , 

However, from (V. I I ) ,  if my 3* 'Na 75 mA, we see that the 

(v.13) 

where A f is t e 
dlr€¢ri¢§; léz 
homogeneé 
sentation * 

I-' Qhus f(t} 
Lorentz transformation that takes/DM into the 

at t = 0 is defined as a function on the 
group and can be expanded in terms of repre- 

f O(3 , l ) ,  giving rise to the Toller expansion . 
Note that since 

i 

(v.14) 

/"7=>' =-I-2'2' 
we do not expect any serious difference between using the Toller 
expansion or the usual partial wave expansion for the spineless case . 
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B.  The EE Case at t = 0 with Spin 
Let IW be the usual generators of the homogeneous Lorentz 

group O(3, 1) , and define 

= Mk 
Ti Q eoljk I I 

`i 101 (V.15) 

The states of a particle of momentum H, spin s .  and helicity K are 
defined by 

-19] 
e ea 2 

-1<¢>I3 
I p . s ,M 

where 

1 
e e 

-1aK3 A 

,M =u(Lp)lp.s,x) Vp (v.16) 

p= ( rn .  0 .  0,  0) I 

p = m(cosh a ,  sink on s1n 9 cos up, sink Or. sin B sincp, slnh Fx cos 9 ) ,  

and 
___| 

A 

p p = L 
p 

The state 1g,,S ,M represents a particle at rest with spin pro- 
jection A along some fixed z-ax1s . 

Under a Lorentz transformation, the se states have the compli- 
cated Transformation law: 

1 

U(A)lp,s,>») 
s 

Dx'x 
l 

(LA1 
P A L  ) IA p I S I S  

p 
i 

(V.17) 

where L A L is the A p notation, and where LAp p = Ap. 

The M function as the matrix elements of the S 
operator in a basis designed to  obviate the complicated transforma- 
t1on law (V. 17). We thus define "states" 

lp.s.u} II os -1 
(L ) p ,  ,M 2 Do p I S 

1k 
OS where D is a finite-dimensional representation function of O(3 , 1) . 

These states have a simple transformation law: 

(v.18) 
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U(1\) lI2>.s,u] 

II 

up Dos 
'u(") 

in Pa s o }  
I (v.19) 

1.e . , they transform according to the (o,s) representation of O(3 , 1) . 
Note r however, that the states \ p , s  ,p} are still eigenstates of the 
momentum operators Pa, and hence th 
eigenstates of the casimir operators 

We similarly define14) 
I 

at the same time be 

EP.S,lJLI = ZDIJlXIL 

ex 
Then we define an M function by 

P) (p.s,)»l (v.20) 

M¢a;db(Pc'*°A' PDlPB) E [pG.s5.<=: pA,sf,alTlpD.s1.d: pB.si.b} 

OSi 

C 2 D 
S 

czar Cc.(L ) D O f ( L  

d 

a I 

bf 
a a l  

A "in 
-1 

PB 

I I 

(pc.sf .c ' :pA.sf .a ' IT l  pD.si,d' :pB,si ,b')  (v.21) 

where we have put s = s = sf,  s = SD = $ 1  and where the T-matrix 
element on the r i g h t s  i n h e  heliclty representation, but does not 
have the additional phase used by ]`acob and Wick. Then M satisfies 
the covariance condition 

- 'I A ' I  M ca;5b(APC' APA PD APB) 
IY' 

OS os - OS OS f f 1 -1 1 -1 
D CC' (A) Baa' (A) D5,5(A ) Db,b(A ) 

c' ,5'  
&',b' 

M cr5I;aIb(PC: DA? PA'  PB) (v.22) 

We can now couple the spins of C ,  A' and 15, B .  We also 
change to the variables P»,°»/u' (see Eq. (V.2)). Thus we define 
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Sf ,  MI'm':Im@P°7°) = Z C(sf, I ' :  0 ,  a .  m') 
c ,a ,d ,b  

C(S1l Si, I: dl bl m) (v.23) 

The covariance col DW reads 
:I | -  

ITS]-Im: ;]'m (AP: A/' ,A/o) = 2 F .n' (A)Dnm 
' m 

r n ,n  
lh If n/:I-nl P: ' . /> a) 

(V . 24) 

Note that In can be thought of formally as  the matrix element of a P- 
dependent T operator: 

m = 1,:"'. V .  m'IT(p)l/>, I, ml 

with the requirement, to satisfy (V.24),  that 

U(A) T(p) u-1 (A) = frm) 

(v.25) 

(v.26) 

Now we saw earlier that at t = 0 f in the t-channel C.M.  

,(t) = (0, 0 ,  0 .  0) 

I 

Hence , in any Lore. We 

, 0 .  0) 

Thus 

C I = • I 
MI'm';]m(?7D ?°)t=0 MI'm';Im(07V to) 

By going to the t-channel C .M.  we see that at t = 0 , 

/,(t) = ( 0 ,  0 ,  0 ,  i mi) 

(t)  /¢>' = (0, 2') 

where Bra = -mfg and where we have put mA = mc = mf, my = my = Mi . 
Thus In any frame, at t = 0 ,  

I 

I 

(v.27) 

(v 2 el 
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I 
a = m 2 /° 1 

/ 2  = B /° 'mf 

We now wish to write /".,=" in terms of some standard vectors , 
thereby defining IN as a function of the transformation which takes 
the standard vectors into /CV"' . The choice of standard vectors 
seems to be fairly arbitrary. A slmple choice is 

(v.29) 

* 
P (Mi I 

I 

0 .  0 .  0) 

/°' = (mf. 0 .  0 ,  0) 

in which case we will have 

I 

| (V.30) 

II 

I 

I = 6 I /D />' P 
where ¢L,,..A., I are clearly not real Lorentz transformations . 
example, in to; téchannel C.M. frame, where I>./°' 
(V.28) , we w111 have 

I (V.3l) 

For 
are given by 

I 

r 

LZ (-1 7T/2) I (v.32) it /Dw 
a boost in the z-direction through an 
a real rotation in the zt plane . 

The covariance condition (V.24) holds also for complex Lorentz 
transformations , so we have 

-1Tr/2 r 

Ml-/m/7Im(07/QI 70) 
I n,n 

D O J ,  m7 ,,» OJ _ 
D (JL/gf) n,m 

MI'n':In (0,-,81(./,,, /8) (v.33) 

where 

U1 
/° 

Finally, we define the function 

_ O1 ` 1 ( A ) - 0; , A  DnmlAlMI'm';In( / 9 )  

/' 

3 
Tm'  :lm 

(V.34) 

n 
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This function has simple properties and can be interpreted formally a s  

3I,m,:Im(A) = is' . p=0, J' .m ' IT  u(A)l/5,p=0,1,m}. (v.35) 

Note that ;@(A) is defined for all A in the complex Lorentz group. Note 
also that the interpretation (V.35) is formal in the sense that the 
states involved have to be considered as analytic continuations of 
the actual physical states. To do this rigorously is difficult and it 
is therefore more convenient to consider 3 simply as  a function of its 
arguments , and not to emphasize its interpretations in terms of matrix 
elements of operators . 

From (V.33) and (V.34) we have the right and left covariance 
properties of 31: 

= ] g m ,  2lm(AR) 2Dnm(R) a m ,  n(/n 
n 

I 

WI,m,;Im(RA) =§ DI / n f  (R) 3I'n':Im(A) 
al 

I (v.36) 

cups of transformations which leave both P and ,a 
where R is any rotation. The transformations which constitute the 
"hand left covariance groups are, respectively, the intersection 

and both 
Finvariant . 

It is the satisfaction of these covariance cond1tlons which 
distinguishes the Toller expansion from the Regge expansion. It can 
be shown that these covariance conditions ensure that the constraint 
equations (Iv. 10) are satisfied at t = 0 ,  and we shall see later that . 
each term in the Toller expansion separately satisfies them. Thus a 
model or an approximation involving one or a few terms in the Toller 
expansion will preserve the vital property (V.36). 

The choice of expansion for ZF(A) is dictated by the desire that 
each term in its expansion should possess the essential symmetry 
properties of 3. _Clonslder, for example , what happens for t > 0.  

We could define the analogue of s(A). It would be, in the t -  
channel C .M . I _ = I (t) (t) r 1 (t) (t) 5I,m,Im(t,R) 9° , P . I . m IT U(R)l/» . P . J. ml 
where 1>(t), etc. , are given by (V.4) and (V.4a). The covariance 
groups of Z3=(t;R) are now limited to rotations about the Z ax is ,  and 
one has, e . g .  , 
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3]-:m1n-m(tF R RzW) _ rpm - e 'J 
I'rn' :lm 

The standard partial wave expansion for ZN(t;R) would be 

(t;R) 

e = j j 3',rn,]m(t,R) Q 3I,.I(t) dm'm(R) 

1 
and since in 

Di ,m(R RZlw) : e "  djm,m(R) 

we see that each term in the expansion satisfies the covariance 
property of 3(t:R) . 

If we now go to t = 0 in this expansion, it is impossible to 
satisfy the covariance conditions of :MAJ since DJ 'm  is not even 
defined for the transformations of the covariance group, which at 
t = 0 becomes o(2,1) . 

We thus need an expansion based on a group which is large 
enough to accommodate the full symmetry properties of SKA) . The 
precise choice of group depends upon the choice of standard vector 
used in defining 3(A) . With our choice and working in the t-channel 
C.M. , the covariance groups are the rotations 0(3) , and 3 is a func- 
tion of 

»(t (1) = (7,»(t).»f(t) 

where 

= L Z(-in/2) r ~/i70 (ii) 
JL/°/(t) ' (t) L Z(-i1T/2) 

t) 

= R  
/'* -~/,tt) 

where R is the rotation from the direction of to that 
Thus 

I (v.37) 

of/',(t). 

./L 
/of ( ) ,  to) 

L 2(iTr/2) R-1 (t) 

P (t) L z(-iff/2) (v.38) 
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r 

simplest choices 
isomorphic to al!! _ 
with the boosts corresponding to imaginary velocities . 

Hence, is the group 0(4) which is 
composed of the elements ofO(3) together 

Now, in general, if one has a group G with elements { g }  and 
representation functions BC , ( g ) ,  then if certain conditions are 
satisfied, one can expands}nLnotions f(9) by 

C C f (Q) = 2 f s do ' m,m' m,m' (Q) 
m,m' 

(v.39) 

and the inversion is given by 
G* 

f = I AS m m , ( Q )  f (Q) d 9 C 
I m,rn (v.40) 

a nuunumu 
I I  -l I- l l l l l l l h  i 

up .-. nu |. 1'-nl.-. nu 1 .n 'I 
Bio 

m.. lJIMI(R) - ̀  a 
m Ml  (R

) 

Ill 

(v.41) 

where DJ is the usual representation function of O(3) . 
(a) . tz R 

If A L Z (in) 

100 
L ' = 6  » m j , m , (  Zum) mm' 

jov 
d. . ~ )  JmJ,(1a (v.42) 

j cr 
where the d are known functions . 

Tln Toller's work (Ref. 5) the group O(3 ,1) is used. This is a more 
natural group to use than 0(4) but it has the complication of being 
noncompact, and this enormously increases the mathematical diffi- 
culties involved . The use of 0(4) corresponds to the treatment of 
Freedman and Wang (Ref. 10) . 
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T The parameters j o ,  G run over the range: 

j o  = 0 ,  :al I i 2  J a U • I 

75 

1 2 U I I 3 1 I 

no' = ljOl, ljol + 1, (o-1) (v.43) 

To include parity, one must extend the representations . The 
parity operator P has the following commutation relations with the 
group generators : 

. |  

P T  63 = - I  

A-1  = 
is Irs 

" -1  
or or 

As a result, the parity operator changes the sign of jo when operating 
on the basis states | jo  0 :  j m] which furnish the representations £l0 . 
There will then be two situations- 

If jO = 0 ,  we can take 

K * ' = 0  o , l m =  - 1 ] ' = 0 c 5 " m  with = | J 0 , ] } c ] > ( ) | J 0 f , J ]  P i t  

(v. 44) 

and hence we 'can represent the space inversion element As 
by* 

for j O = 0  

.po = _ J Bjm;jlml(A4,) Jo( 1) 6ii' 6 I mm (v.45) 

I f j o  7* 0 ,  we can take 

65 l j o c r ;  j m] =Jp(-1)j+m I-J O o :  jrn} 

= qM, q = .r 

erect of changing q 

where M = l jol . 
A If we put j i t  

then 6:J has, the 
sentation functions for j o  7 0 ,  

and label the states IM.o'.q: j ml , 
-o -q. Hence we will have repre- 

work (Ref. 5) . 

. correspond to  the group O(-4) . To get half-integer 
" one must consider the group sU(2) ® SU(2) . 
I here and in (V.46) are chosen to agree with To].]er's 

u I 
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l Mo 19. I ]mk 1mIqI ( A )  2M 6 6 q 6 
j+M _ 1  . ( ) q,-qI ii '  mm' (v.46) 

For group elements A not involving any space inversion, we have 
OO' = 8. . Jm:J'm' (A) 

,is 
Njm;j'm' (A) I 

QMU 6 M 05 
I I A sq . A J m q ; J f m / q / ( )  qq' 1m:1,m,( ) 

We can now apply the general expansion formula (V.39) and 
(V.40) to our case. Initially, we have 

(v.47) 

5 I'm':Im (AJ =2 2, Z 
f 

as ( I  
:mI lM'  . I HIM) 8.7-I70 

J NI7jn(A) 

+ 3M,0 
i 'n'Q' Jnq 

I : .  &M,o (J TTI Jrn) 1'n'q': jnq 

3 

M> 0 o jIn'q' 
inq 

and the inversion formula , e .g.  , 
M,o I I 3. . m , m = A d .49 J'n,q,Jnqu I ) .t I,mI:Im(A) j 'n 'q ' ;  i n (  ) A (v ) 

O(-4) 
where the symbol f dA means integration over the group using an 
invariant measure . 

Fortunately, many of the plethora of labels in (V.48) and 
(V.49) are redundant. One can show that the integrals (V.49) vanish 
Unless j '  = I' , m' = n' , I == n, and m = n. Moreover, one can show 
that =."1Yfn?q, 'Inq is independent of n and n' . A11 these results follow 

from the use of the covariance conditions (V.36) which s(A) satisfies T 
n . . 

[every A 1nO(4) can be written as A : :  R1 Azt where 
I ordinary rotations and Act is a rotation Io the zt plane . 
use (V.36) to write 

= A 
J-I 

D m'n' (Re) nm(R2) ]'n' ;In(Azt) 

Substituting this Into (V.49) and performing the integrations over the 
ordinary rotations then yle1ds the results quoted . 

Mo * n 

D] 3 
I n,n 

(A) (v.48) 
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Thus the final expansion is much simpler: 

3 I' . (A = ' - \  

°'J> / 
I ' m / m )  

+ Z 2 M U 

3I'q':Iq 
M > 0  0.q.q'  

9M,0 
Tm'q '  :Iraq (A) (v.s0) 

Note , as mentioned earlier, that each term in the expansion satisfies 
the covariance conditions of IF(/\). For example , 

»g2 :o 
""=ImlAR) h e  2 

J" ,m I I  

no.P70 I .Pro ]"m';]" in (A) 81.1/m ;]'m (R) 

u> 
in-D 

= ,pzcr D] Q 10Ifmf;]n(A) nm(R) 
n 

which is in accord wlth (V.36) . 
Up to now we have not considered the consequences of the 
-= * * -  H matrix under space inversion. This leads to  fur- 

perties for 3(A) under the transformation A * A4- A 
-, as earlier, A# is the group element corresponding 
n. 

For example, one has 

= - 3 

where the Q's are the intrinsic parities of 5 and B .  
If we consider a term in the expansion (V.50) wlth jo = 0 ,  then 

since by (V.45) ,  

.pso = -1 I .Fw n1,m,7Im(A A )  y (  )~0l-1mI IIm(A) 

(V-51) 

we see that we must have 

5 7 o  = 0 I :I ML 1.e .  I 

if JD (-1)I#€5 QB I 

l only if (_1)I £5 GB (v.52) 
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Similarly, one requires f=  (-1); QA- Cc- 
For the terms in (V.50) with Jo 7* 0,  we have from (V.46) , 

_ I+M M,o 2M - -1 8 A ( ) ]'m'q';]m-q( ) - q M,o 0 A A 

and therefore we must have 

M 0 
ZF I = Q - S  (-1) I'q':I-q D B 

and similarly, 

M I o = _ _ 1  

2M 
q 

]+M 5MIO' 
I'q' :Iq 

]'+M ,2M M,o q 3 I'q':Iq 

(v.53) 

C . Toller Poles 
The expansion (V.50) is Tollerized in a manner analogous to 

the usual Reggeization procedure. The sum over o is written as a 
contour integral, the contour is opened at la Sommerfeld-watson, and 
th Po] s f 3.970 a d AM 1!5 1 th mp1 pl at picked up. 

Th representation functions appearing in (V.50) are of the 
form 

M , o 
1) I/m1:Im(~/L Iv,(t)/D(t)) 

cr-1 _ M Ill 

' Z d]'Om'I" (1n/2)Dm» m 
I f /=M 

(R 
l'-h znlln.-In I 

1] 
'-am 

M o s I 

I'm':Im 

where we have used "(v.38) and (V.43) and have written R for 

R f(t) to) - /° /° 
When o becomes complex, the sum in (V.54) is meaningless . 

Hence we first write (V.54) as 

= Q d M O' . 2 O" 1 N _ -1 
) Q ]-I'm1I0_1_N(3U7/ ) Dm'm (R ) 

I 

I 

M' ( )  ( )  p * / > t  n=0 

dMo 
0-1-n,m,I(ll"/2) (v.55) 

and this expre_ss1on can be 
to a choice 
assume that 

complex Cr plane whose post 
This assumption ensures that 

it! cl The use of 

q!l1ll,1:ll1t1on 

r---.-- _..._ ».*= ~: 
5 poles in the 

I' . 
Eclfpole 

q. qI . 
individually 
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into both 2¥M'0' and AM'G 

satisfies the covariance requirements of Za~'(A). Note in particular that 
the covariance under space inversion, (V.53) , forces the same pole 

I r J I . Thus for M 7* 0 there are effec- 
I q :Iq I q :I-q 

lively two coincident poles playing a role together. This is the ana- 
logue of the parity-doubling which was found necessary for Regge 
poles characterized by M if 0 (of. Sec. IV.A, in particular Eq. (TV.35), 
(IV.36) and discussion thereafter) . . 

If we consider a pole at c =cl. + 1 , say in Ed ,o 
then we w1l1 have BI: ;]' I 

. oc .P 0,q,+1 
"1'm'=1ml* ,(t) (t)' 812] I do' 

P /° n 
,m' .an 

If I , with residue 

a n 
(1w/2) mm' (Zt) 

0 q,+1 d ' -1rr 2 on ,m, I (  / ) 
n 

o where a n = a - n. If the pole is in 3-'q,;Iq we would have 

(V.56) 

3 J-lml;]-m I* (t) (t))°'2 /° /*' q 

M 
BI'q;Iq 

a 
qM,a+l 2 n 2 dl, ,m' an(11./ ) mm' (zt) 

n 

t-channel he11c:1ty 

M q.+l do ' -in 2 an.m.I ( / ) 

(U) is essentially the irreducible 

(v.57) 

t 
.v , ..-V 

N W 

amplitude f ) 
l! 

at t = 0 
of Reuse to 
the Reg The 

the ¢oem'@1=°at-fi@'r;f*"@ft*~§*'¥,=~=t*2Q in 

rent that the Regge residues factorize forces the Toller residues to 
be factorizable . 
*one has 

*gi§u. iv_ 151)) evaluated 
_ of a sequence 
:q 
Fighter sequence in 
in be identified as 

§§that the require- 

311 ml =( -1)  

where §(t) is defined in (Iv. 151). I. 

S +S 1 f '§(t) 
I'm':Im 



80 E . LEADER 

i n - I  

The contributions of a slng1e Toller pol 
infinite sum over Reg 
form in which Toller 1 

.57) using an 1dent1t;1 

III _ 
Q-.I 
I 

1M'aI1(6) =§ dlmuv) dgm, w')dM'q+1(y) 

n Ll (v.60) 
lm' 

where 

s1n it: 

"I 
_. ! 

l I 

i li- 
gre 
~-L ii 

sin \|;'= 

.r 

I 

cos 11' cash 6 sink 6 '  cos B + sin_h 6 gosh 6 '  
sink Y l 

COS ' l  cash 6 '  sink 6 cos Q + sink 6 '  cash 6 
sink Y I 

and 
cash Y =  cash 6 '  cash 6 + sink 6 ' sink 6 cos 9 

In our case , 

e - et I 6 -i1T/2 I 5.r =i°rT/2 

and hence , 

Zt cash Y 

UI =rr/2 

11" = -T1/2 

I 

0 

-L 
4 

Hence , for example I for a Toller pole with M 7* 0 we get- - 
I 

5]-ImI ) oc Z dl *i(1T/2) dggm, (-11/2) . (J. ,lm /=>"&5=9 (t) u 

d \J+1lZ9 + g  d -M,a+1 
Jul' (it) (v.61) 
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I 

where C = Q-,5 QB QC €5. (-1)I+I . 
+1 The asymptotic behavior of the dM,a functions is 

N ' Z  1°"l M-11 I 
2t 2: no t . d M a+1 I 

M' (zt) 

81 

<v.62) 

Hence | independently of I, I' , m, m' , the t-channel helicity ampli- 
tude at t = 0 has leading behavior 12tIa. 

Let us finally calculate the s-channel C.M.  hellcity ampli: 
rude. It is simplest to calculate H s ) ,  the s-channel analogue of £(t) , 
defined by 

§(s) = ]-I al :In 
b_ 

(-1) SB 
(-Da-sA 

C(SB so I ' :  d, -b. n') 

a , b  
c,d  

s s s, c .  -a,  n f c ( A  A ) (s) 
Cd;ab (V.63) 

The crossing relations then give 

s f (  ) Z II I ~( ) d m,n, (rr/2) dmn(17/2) fIrm, :lm I'n' :In . (v.64) 
I m,m 

The constraint condition Q t = 0 (of. (IV.9)) requires that 

§(S) 
I'n':In 

oc 6 I n n 

Substituting (V.61) into (V.64), we get 

§(s) 
I'n':In n'n 

or: 6 d}i°.+1 (z ) + g -M,a+1 
t dlnr' (it) 

Hence the constraint at t = 0 is automatically satisfied by the Toller 
pole expression . 

Moreover, from (V.62) , we see that for a Toller pole charac- 
terized by M, 

6 £(s) 
I'n':In N n'n 

_ M -  | 1ztl°'l lnl (v.65) 

and only the amplitudes with n = n' = IM have the asymptotic behavior 
Iz 1a . This is in agreement with the results obtained to leading order 
1n'Bec. l'V.A. 
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Thus the group theoretic treatment, using O(4), which is only 
valid i t  = 0 ,  in EE cases , gives results which are consistent with 
those obtained from a study of the UU and UE cases. This is a re- 
markable result and it would be very interesting to have a deeper 
understanding of this fact . 
D . Group Theoretic Methods in the UU and UE Cases 

` Several attempts have been made to utilize expansions based 
on O(3 ,1) or 0(4) for UU and UE cases where there is no genuine 
additional symmetry at t = 0 .  We shall give a brief resume of these 
ideas and to be specific we shall restrict ourselves to UU reactions . 

One can work with a function analogous to 3' , f . 
will have two additional labels: I m ,lm 

(A) which 

I 

A = m §  

A I: m02 

m 2 
B 

mA2 

I 

I 

;z»(A;A, A ' )  

II 

to remind us that the masses are not equal. Let us simply write this 
function as 3(A; A , A ' ) ,  

Now 3(A: A , A ' )  is defined only for those transformations 
which leave P invariant. In this case , at t = 0 , P is no longer a null 
vector, as it was the EE case, but is now a 11ght-like vector. Thus 
we can only give a meaning to ZF when A is an element of E2, the group 
which leaves the vector (1, 0 ,  0 ,  1) invariant. Thus if we proceed to 
expand 5 in terms of O(3 , 1) or O(4) representation functions 

E =¥M"'(A. A ' )  nMO'(A) 
I _ _ I 

it will not be possible to determine the coefficients sMU (A , A '), since 
the inversion formula, (V.40), involves integrating A over the whole 
group O(3 ,l) or O(4) . 

However, when A = A '  = 0 ,  the coefficients are determinable 
and one can make models in which the A ,  A '  dependence is either 
ignored or put in explicitly, but arbitrarily . 

Alternatively, one can hope that given the function 5(A: A ,  A ' )  
defined for A 6 £2 there exist well-behaved analytic continuations of 
3 in the variable A onto the whole complex Lorentz group . 

In the same spirit one can consider t if 0 in the EE, UE, or UU 
cases, where again there is no O(3, 1) symmetry, and nevertheless try 
to make an expansion based on the O(3 , 1) representation functions . 
One has now a function 3(t; A: A , A' )  and expansion coefficients 
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I§Mo(t; A , A ' )  determinable only at t = A = A '  = 0 . Again, the beha- 
vior away from this point can be put in in some model dependent 
fashion. It should be stressed that the use of this type of expansion 
involves very strong assumptions , far beyond those needed in the EE 
case at t = 0 . 

In any event, ignoring the dubious nature of the assumptions 
involved, one will have an expansion of the schematic form: 

EFL, ml :Im(t M o  U 
I , A f  i n '  t ,  I I l l  I (  I u 

I A A i 2 311' ( A A l m  1m)»1£m,Jm(A) 

01Mi,i' (V.66) 

One can now proceed to Tollerize or Reggeize (V.66) . 

shalne lv'-*slul!e 

Notice that here we have a sum over j ,  j '  . This is because the 
covariance group is not large enough to force j = I, j '  = I' , as it did 
in the EE case at t = 0 .  

R One 
assumes that the position of the poles in :¥M,'°(t: A ,  A ' :  Tm '  ,]`m), 
considered as a function in the complex 0 Alana, depends only on M 
and t .  The contribution of one of these generalized Toller poles then 
looks very much like (V.56) or (V. 57) for arbitrary t ,  ..l..... -'="' ..... 
residues are functions of t .  It can be seen that this | s 
to daughters which are separated from each other by i 
for all t .  ** u w -  ""*' 1f the parent trajectory is c 
linear, then l trajectories are parallel to it. Since this is 
a much more sequence of daughters than required in the 
analytic solution of the daughter problem, we have to conclude that 
the assumptions used in this approach are much too strong . 

Nevertheless , the above approach is useful in that it provides 
a daughter sequence with good analytic properties and in that it sheds 

Structure of the singular daughter residues . To see 
physical scattering is given when A ;=> . 
that independently of the choice of stand vectors 

is decomposed Into rotations and a real boost 
hen the boost angle is always given by 

Alan 
- l - . lu  

=Jed/" 

cash a 

Thu s 

posh a u 
3 Q 1[2mD= + 2mB 

- s 

t] [2mC3 + 2mAa - ]+ (v.67) 
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five . 

and this is well behaved in the region t -° 0 ,  so  there should be no 
problems of analyticity for a generalized Toller pole contribution . 

As an example , consider a UU reaction with t small and posi- 
We work in the t-channel C .M.  and define the standard vectors 

( / ° l .  0 ,  0 .  0) 

0 , 0 )  

I 

I 

where 1/01 and l/9'l 
We now have l\ 

s where the L 

,e = 

;>'= (/'|. 0 ,  

are finite as t -v 0 .  
= ,A_, =./LE1 t h /°» (Ty (t) /,»(t) /,(t) w ere 

= L /' (r) 

/° = R/9/(t) ~/° it) • /' 
are boosts in the zt plane such that 

E _ 
r 01 Of 0) D 

t I,tW 

L aha) 

f 

L »(t) f 

L 
/D (t) 

E B 2 ~0.0»lnl I 

l 

(v.68) 

(V.69) 

and 
lu. 

EA 

,D 

I EC 0 I L | 0 0 0 0 I I r ) 2 I I I I 
where [al , 121 | are given by (III.21) and (II.6). 

Hence we can again decompose 

M,o _1 m., , . (L R L ) 
J m :Jm (t) f(t) ._ (t) (t) 

/D" /v P /D  

I (v.70) 

M G 
d.,  I I .II 

II/ J m J 
J 

( -1 

L ID'(t) 
) Do", m m do'G (R) 1 MJ(/D (t)) (v.71) 

and defining f 

fj/I 

I'rf1':Im 

Alf 

t 

M,o 
( t )= Z 31,5 (is 

M,o 
no' 

.II 

as  the coefficient of DJ (R) in (V.66), i . e .  , 

' : aM,C7 ,, L-1 do"IO` L I m' lm) J ' m ' j  ( / ' )  J mJ ( low 
(v.72) 
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we end up with (v. 66) in the form 

31/ ml (t7~./ )=2 :IH1 f ( t)  (t) . /" /° i 
f } , m ' m ( t )  DJ ,m,(iv) (v.73) 

is singular a s  t 
tic as  t 
since 

(v.70)'§ 

which is the form of the usual partial wave expansion in the t-channel 
C . M • 

al? 

We can now see clearly that each partial wave amplitude in t) 
-° 0 in order to ensure that the sum (V. 73) is analy- - 0 .  The precise form of the singularity is shown in (V.72), 
Ii= smJ- become singular as t -» 0 in order to satisfy 

n -  -==> when t -u , )  . Ions approach to t 7' 0 
in which one nds form and then applies the 
group theore . . m _ -  sis to each C ».-.w.r.z~.w..ar.csa-a of t in the expansion.1ll 
This seems to be a more realistic approach than the generalized 
expansions used above , but unfortunately there seem to be ambigui- 
ties in its formulation which may, in principle, be unavoidable . 
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I .  
K. 
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M. 

Positivity condition 
The V .  M. and complex Regge trajectories 
Duality in the V .  M.  
Angular momentum properties of the V.  M. 
Miscellaneous properties 
Remarks on the applications of the V .  M .  
Generalizations of the V .  M.  

I Introduction 
The interest of' I of elementary par- 

ticle physicists has I on the Veneziano 
model. The reason for that this model , 
although admittedly 5 points of view r 
already contains man_ _ _ llelieves to be true 
in general and is at the same time sufficiently simple to allow expli- 
cit calculations . 

Although it is certainly premature to say whether or not a new 
chapter of physics has begun, in the hope that this may be so,  it is 
probably useful to present a panorama as  complete a s  possible of the 
main developments that have lately occurred in the field of high energy 
can; ls1¢sulss -*==-==1==-- Hopefully, the present lectures should 

Bn outsider to  be able to follow further 

lectures, we shall review some of the 
ve taken place starting from the work on 

§ -lllsl e second part, we will mostly be inter- 
ested in discussing the various physical and mathematical properties 
of the Veneziano model and only very briefly comment on its many ap- 
plications and various generalizations . 
I. E'inltel Energy Sum Rules and Further Developments 

A .  Finite energy sum rules 1) 
The finite energy sum rules (FESR) of Dolen, Horn and Sch rid 

are an almost immediat generalization of the super convergence sum 
rules of de Alfaro et a12 and are, therefore , a consequence of analy- 
ticity. Their advantage is that they allow one to study nonsupercon- 
vergent amplitudes much in the same way as one would study super- 
convergent amplitudes since they put on equal footing all Regge poles 

One of the major de- 

35 . 
irrespective of whether their intercept is Z - l  (which is the critical 
value for writings superconvergence sum rule) . 
velopments of FESR is the idea of duality (which was proposed in 
slightly different form and with different motivations by otherauthors 
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An indirect consequence of FESR can also be considered the Veneziano 
models) and a new form of the bootstrap idea (see Sec. I.B) . 

The basic assumptions in writing a FESR are that the amplitude 
a) satisfies a dispersion relation and b) can be expanded as  a sum of 
Regge poles at  high energies and a s  a sum of resonances at  low ener- 
gies. We parametrize an individual Regge pole as  

Re B (t) 
11 -&-1na(t) a(t) 

sin na(t) re +a(t)) v (I.1) 

where i characterizes the signature and 
symmetry, the variable 

I because of its crossing 

V = 5 - U  
2M (I.2) 

is used. For the sake of completeness , we briefly review next the 
usual derivation of a FESR. This will allow us to  discuss the basic 
assumptions that one uses as a starting point for further develop- 
ments . 

The assertion is now that if an amplitude F(s ,t) is well repre- 
sented by Regge poles for a certain v 2 N then within the same approx- 
imation we have the FESR 

s n(n) 
N 

I, 
n 

V 
IM F(sIt) 

nn+l dv 'M t-SN" 
+ n + 1 ) l " ( a + 1 )  (1.3) 

where Q E  a(t) and the sum is over Regge poles . The integration is 
over the right hand cut in s and includes the Born term . 

We can begin by noticing in the above formula one ambiguity 
which will play a major role in future developments, namely, where 
can we safely cut off the integral in (I.3) ? In other words , what 
criterion (if any) can be used to determine the value of N for which 
the above approximation holds ? 

To show how (1.3) comes about, let us start from an amplitude 
F(v) which is antisymmetric and satisfies an unsubtracted dispersion 
relation. By using crossing symmetry we can then write 

F(v) Zv ¢ ImF(v') 
TT o W 2 - v 3  

dv' . (1.4) 

If the leading Regge pole in the asymptotic expansion of F(v) has 
Re a < -1 , then we have a superconvergence relation 
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/"" lm F(v) dv 
o 

0 . (1.5) 

However, if the leading Regge pole is above -1 (but below 1), we can 
write (I.1) as 

2v §°° CT. v' dv'  
5 

R v = + ( )  TT r (u+1)  Wa-va  

and subtract it off the complete amplitude. This process can be re- 
peated as many times as needed to  arrive at a superconvergent ampli- 
tude after sufficiently many Regge poles have been subtracted out so 
that, without any loss of generality, we can write 

oo 

[ ` d v I m [ F - R ]  = 0  
o 

Let us now label with i all Regge poles such that c:.1(0) > - l  , with j 
those such that as (0) < -1 and, finally, with _k those corresponding to 
ak(0) = - l  . Therefore , (I.7) can be written explicitly as  

m a i 1 lm F -2 ]d = I [ F(11 + 1) Bk 
i 

B 
v 

((1< 1) 

o 

(1.6) 

(1.7) 

(I.8) 

of the integrand to the Regge poles with a- < - l  

Notice that each integral in the l .h.s . diverges if taken separately . 
We are now going to assume that we can cut off the integral at some 
suitable value vmax = N and attribute the (vanishing) high energy tall 

(This essentially 
amounts to assuming that, for a sufficiently large v ,  the amplitude 
can be approximated by a sum of pure Regge poles wlthout back- 
ground.) Thus 

N 
j [ I m F  
o . 

1 

a 1 Be v 
Phi + 1) 

81 
l"(aj 

oo "j 
do .[` NZ + l )  v 

j 

d o = B k  (I-9) 

.r N lm F 
N 

a 1 81N 
Pa. + 

i 1 

A11 integrals are now separately convergent and we get the FESR 

°'1 am 
S(N) d V = Z T ( a 1 + 2 ) + X  

1 

ma 
Na + 2) 

21+ 
Be 
N o 

a 
(1.10) 



DEVELOPMENTS IN HIGH ENERGY PHYSICS 91 

'TT 

1 

N lm PM 
m+1 

EnG.-M 
+ 

F (0) 
ml 

The general FESR of an arbitrary moment n can be established 
in a completely analogous way. Notice that in (I.3) or (I. 10) there 
is no further reference to  any special role played by the value do = -1 
which appears critically in the derivation of superconvergence sum 
rules. Also, the latter are obtained from (I. 10) by letting N * °=> if 
all on < - However, whereas for N -+ oo (a < -1) we recover again 
the exact expression (I-5) , Eq. (I. 10) or (1.3) are not exact in that 
we have already supposed that N is s o  large that for v > N we can 
approximate F with a (finite) sum of Regge poles . 

One can similarly derive (formally) FESR for negative n to get 

,_. (m) 

J` " i n s  1 ) ( a - m ) -  (m 2 0 )  o v 
= 0 m < 0 (I. II) 

The above formula makes sense s o  lon lm F = g aS aM )V=0 
0 ,  in particular, if a 2 0 , we used a subtraction constant) (scattering 
length) . This is , essentially, the argument used by lgi5 to estab- 
lish the existence of the P '  trajectory. 

The literature concerning FESR in their various aspects has 
boomed tremendously in the last years and it is practically impossible 
to  give a complete list of references. We can distinguish not less 
than five major developments that have occurred as  more or less 
direct consequences of FESR: 

i) Use of low energy data on ruN and KN to study P ,  P '  , 0 , Na 
and AQ contributions together with an analysis of NN data t o  deter- 
mine intercepts of p', w,p and AS trajectories together with the study 
of the relative 1mportan§)e of the Porneranchukon and other trajectories 
in Compton scattering . 

11) Use of photoproductlon data to study n and "6 
111) Derivation of continuous moment sum rules .8 These are ob- 

tained considering dispersion integrals for either (v2 - u2 )Ya'1T1YF'(v)nr° 

eye ]_2"YF(v) in which Y is considered as a continuous parameter. The 
use of these new sum rules allows one to get a continuous curve S 
instead of the discrete points Sn' Furthermore , one can now intro- 
duce both the real and imaginary part of the amplitude into the game . 

iv) Veneziano model. This is not, strictly speaking, a direct 
consequence of FESR but it is hard to see how this model could have 
been devised without all the background represented by the results on 
FESR • 

v) FESR allow a revival of bootstrap ideas . This possibility 
was already mentioned in Ref. l and gave rise to many different appli- 
cations.3) ,9)-16) The applicationlll .12) of these new bootstrap 

is zero. For m 

contributions?) 

Y 
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require indefinitely rising trajectories 
troversial how these trajectories should be 
Clalfrés 
root as 

why a NRA cannot, strictly 
First, notice that a NRA re- 

corrzalatior f this phenomenon with 

techniques which we will briefly consider here does not make use of 
the full content of FESR, but rather of that particular aspect of it 
which is presently called "duality" and which we shall discuss at 
length later on . 

The original bootstrap scheme suggested in Ref.  l was to use 
FESR to  bootstrap trajectories in the crossed channel and to  calculate 
resonance widths by saturating FESR with resonant states . Mandel- 
stam9) was , however, the first to  suggest the viability of the narrow 
resonance approximation (NRA) bootstrap procedure by showing how 
the p can bootstrap itself in a frame in which FESR are used with a 
finite number of Regge poles. FreundlO showed that one can boot- 
strap p and P '  from the 11N spectrum while this cannot be done for the 
Pomeranchuk. A other effects 
was later noticed by I-larari and will be discussed later on (Sec. 
LG.) . 

Of a somewhat different nature is the bootstrap mechanism pro- 
posed by Chew and Pignotti. 15) These authors , in fact, argue that 
since there exists a connection between a peripheral (crossed chan- 
nel) and a resonance (direct channel) effect, the explanation of the A1 
as  a peripheral reaction (Deck effect) or as a true resonance, would 
amount to the same, and one should not count both these effects as 
independent ones . 

Another intere sting liTs)of attack to the bootstrap problem has 
been proposed by Chu et al in which some of the prevfous simpli- 
fying assumptions (zero width, linear trajectories) are relaxed. The 
numerical results are perhaps not very conclusive . 

In the present lectures we will only discuss briefly the boot- 
strap of Ref. I I  and 12,  both because this seems to be the most natu- 
ral development of FESR and also because it leads in a very straight- 
forward way to the Veneziano model. We will, however, not discuss 
the preliminary point of why Regge behavior and crossing symmetry 

, also because it is still con- 
asymptlotically rising . 

have been made both in favor of a lixaear18 and of a square 
behavior (to within logarithmic tors in both cases). 

We will now very briefly discuss 
speaking, be consistent with a FESR . 
quires that we can write 

lm F(s,t) m 
4, v 

+ + 1 ) e ( m , ) p ( 1  m e t  2 )  
2, 

601, - a($)) (1.12) 

S O  that Eq.  (1.3) (with one Regge pole) becomes 
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(21, + 

t,=0 

2 " p  1 +  
' 25- B(F) Nutt) + n + 1  a(N) 

-. 2t 1 2 m C Z ) B ( m )  L ft, m52 (a(t)+11+ 1)r((1(0)+1) 

(I. 13) 
Taken literally, the above equality is impossible since the 

r . h . s  . is a smooth function of N whereas the l .h .s .  increases dis- 
continuously with N.  We may, however, assume that Eq. (I. 13) must 
be valid only at those N values for which a(N) is integer with a 
smooth interpolating function in between. Then, we want to  solve for 
B(t) once f3(Mg,8 ) are given for discrete values of L as L - ==>. Taking 
the difference in (1. 13) 

(ZX, 

G,(t)+I1+1 

B (t) 

2n 2 2 
+ 3) mf, +1) ?&+1(1 + m°t- 2)Mx;+1 

(M!,2+1)& (t)+n+l _ (m ) 

[a(t) + n + 1]1l(1 + a(t)) 

i v  

& ®  

Ur 
(1.14) 

Using the asymptotic form (t 7* 0) 

P1l,+1 + ) ( 2t -L 2 ___ i v  

Mm 2 x,-»=» 4Tr&ltl 
9% ex 2 t 

3 
mx, 

we find 

8(m '£a+1) 

eh) 
HU 

t ,L-\ Q (Mt) + n + 

é a (t)+n+l a (t)+n+l t a _ za ] I 1 m )  (m ) 
é n mm m e  1 P t l e x  [Q ( ) ( »z,+1) ) (G»()+ ) p "UL 

(I. 15) 

which shows that the 1.h.s. is in the form of a product of a function 
oil, times a function of t whereas the r . h . s .  is not . 

Finally, the validity of a NRA can also be questioned on an em- 
pirical ground since most o f  the baryon resonances do not have a neg- 
ligibly narrow width. What is more important, however, is that 
the widths of baryon resonances on given Regge families seem to grow 
as/'s (see Fig. 1)- 

3 
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Fig. .l . Plot of the w*idths bi the No and AA resonances (1 .a) 
and of the Yo and Y1 resoneneee lying en the exehenge 
degenerate M11 15) and EI*(l385) Regge trajectories . 
A / s  growth is well exhibited . 

B .  The New Bootstrap 
The novelty in the bootstrap approach represented by FESR is 

that low energy effects can be used to predict Regge parameters . 
The question now becomes very drastically dependent on what 

value one should use for the cut off N.  The point is that we want to 
saturate the low energy integral in (1.3) by a small number of reso- 
nances in order to introduce a number of parameters not so large as to 
make the result doubtful. So N cannot be too large, typically l or 2 
GeV. This, however, means that we are going to use the Regge 
approximation in a region which H0b§>(i1y dared before to consider 
accessible to a Regge pole analysis since there stlll are many 
resonances. However, if we forget the approximations needed in 
deriving (1.3) and take the latter literally, then we would conclude 
that the Regge pole fit extrapolated to intermediate energies should 
reproduce the amplitude integrated from 0 to  N (this is what is usually 
called the "averaged" amplitude) . The only blemish in thls argument 
is that this will be true so long a s  the approximation used in deriving 
(I_3) is good and this explicitly assumed that we already were in the 
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Regge regime. Conversely, if the approximation is good we are al- 
ready in the Regge)dr.1'§aln and the above conclusions must hold. A 
clear cut example ' in which the conditions required above seem 
to be met is the difference of total cross sections [0t(w+*) - cxt(rr'p)] 
(see Fig. 2). The charge exchange reaction K"D -o Kon has been 
analyzed in the same spirit by T .  lasins ki. The preliminary conclu- 
sion is that the fit is qualitatively good (although statistically rather 
poor). We shall return to this point in Sec. I .G .  (see also Ref. 56) . 
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Fig. 2 . Plot of the difference ofr r -p and n+p total cross 
sections . Curve I represents the low energy 
nonresonant amplitude as obtained from phase shifts 
and curve II is the extrapolation of the p Regge 
trajectory contribution (from Ref. 23) . 

1?§*a1§5 a 

The above startling hypothesis that the Regge pole fit extrapo- 
lated from the high energy down to the intermediate energy region 
equals some local average of the scattering amplitude is nowadays 
referred to as  the "Dolen-Horn-Schmid duality. " We shall return to 
it in Sec. I .F.  

Let us now look in the analysis of Tm -o mu which was 
made by Ademollo et al. The choice is due to the fact that 
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one single invariant amplitude T crossing symmetric in s , u,  t des- 
cribes the process in which only I = 1 , G = +, odd I normal parity 
resonances are allowed. We define the invariant amplitude A(s ,t,u) 
in terms of the T-matrix as 

T=(- :  e 
IJ.VDC' u P Iv P P s , t , u  2p 30 A( ) (1.16) 

where P~ are the pion four momenta , et iS the w polarization vector. 
A s , t , u )  has only dynamical singularities and is free of 

kinematical ones . Also, it is completely symmetric in s ,  t ,  u .  
The only known resonances with the correct quantum numbers 

for the present problem are the p meson and the g(l650) meson lying 
on the p trajectory. Also, there is only one possible Regge pole (the 
p trajectory) and the FESR becomes 

N n 
\) 

o 
I §(t) 

0.(t)+n 
lm A(v,t) dv =a(t) + al vo n+1 (1.17) 

where Q, is a scale factor and 

BW Q.; B 
I`(a(t)) I"(a.(t)) §(t)= a 

I (B = const) . 
The trajectory is taken to  be linear 

a( t )=ao  + a ' t  (1.18) 

In the first saturation step one chooses (I. 17) to be saturated by the 
p only (N is thus taken below the g-meson mass) whose contribution 
is calculated in the NRA. It empirically turns out that the optimum 
choice for N is half-way between the p and g mass . Evaluating Eq . 
(I. 17) one gets (with n = 0) 

2ma 
p 

8 3m 
'IT 

m 2  + t  w 
0(t) 
G /  

1 a-1 

Zvoa' Q1 (@)[ (1.19) 

where 
Q.-1-1 

@1(@)=[ ] lm 2)] 
a + 2  

2 + (1.20) 

The 1 .h .s .  of (I.l9) vanishes at  t = mu? - :a + 3m 2 and so 
a(t) must have a zero at t * - . 53  (GeV/c)2 which is Just what one 
finds in iN charge exchange . Imposing the above condition in the 
linear approximation for a(t) , one finds the consistency equation 

2m9. 
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§1 (q) = (2vo0/)G-1 (1.21) 

which for 

Zvoa' == 1 

is very well satisfied for -1 . 5  S t S . 5  (GeV/c)2 . 
One can then go one step further and saturate (I. 17) with both 

p and g mesons . It is found that the position of the dip does not 
change very much (it is now at t =" - .58 (Gov/c)a) and that the equa- 
tion Is satisfied (at least approximately) for a larger Interval of negs - 
t1ve t .  . 

In general, if r resonances lying on a Regge trajectory are used , 
the self consistency condition becomes 

§ r(a) 1 I (I.22) 

with 

®r(a) 
=I"(2r - 1) 

I`(2r + a) 

a 2 owl + 4r 
2 (I.23) 

The case r = 3 is given in Fig. 3 which shows how well (I.22) 
is satisfied for a rather large t interval. Furthermore, from (1.23) it 
is manifest that for any fixed a 
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Fig. 3 .  Plot of QUO (a) as defined by Eq- (1.23) (from Ref. 11). 
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trajectory . 
proposedl2) 

The very successful picture described above is , however , 
partly spoiled by the conclusions reached in Ref.  I I  when trying to 
saturate the bootstrap equations with more and more resonances . It 
is found, in fact, that with increasing | t one cannot saturate the 
resonance side to the Regge term since the latter becomes increas- 
ingly large compared to  the former . In other words , the bootstrap 
cannot self sustain with one single 

A possible way out was after the observation of 
Schmidt ) that the partial wave projection of a Regge pole gives rise 
to loops that look very much similar to those obtained in the phase 
shift analysis of resonances . 
(Sec. I . E . )  but, following this observation, it was suggestedlZ) that 
the bootstrap program previously outlined could be accomplished by 
taking into account parallel daughter trajectories . 

Although the results are not as conclusive as  one would like 
and many points still need clarification, the above example is cer- 
tainly a very successful example of the new bootstrap ideas previ- 
ously discussed . 

We shall return to this point later on 

C . FESR vs . the Interference Model 
We can now discuss the advantages of the FESR as compared to  

the so-called interference modelMl which we shall refer to a s  the 
RIM (for Regge interference model) but not to confuse it with the DIM 
(diffraction interference model) of Ref. 22 . 

The general argument brought against the RIM1) ,23) ,25) is that 
if we use a formula of the form 

F = F Regge F + Res.  (I.24) 

the tail of FRee . superimposes to the Regge term (which is already 
supposed to give the asymptotic form) t o  yield double counting. Con- 
versely, the Regge term continued to low energies gives again a con- 
tribution superimposed t o  the resonance term and thus double counting. 

Occasionally, the above criticism is rephrased trying to give it 
a more stringent meaning on a theoretical basis but, in our opinion , 
it really only confuses the issues. In one way of saying it, one 
would argue that whereas FR is suited to  describe s-channel ampli- 
tudes (because of its s-chaneiisel poles), FR is suited to describe 
t-channel amplitudes. Thus (1.24) is like es8gtn1ng up s-channel and 
t-channel amplitudes which is wrong . This argument is , however , 
fallacious because FRes _ does not, in general, provide a complete 
description of the s-channel amplitude and so FRegge does not, in 
general, give a full representation of t-channel amplitudes . In either 
case there ought to be a background term for the above argument to 
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hold through and in fact it was just the presence of such a back- 
ground term that motivated the authors of Ref. 25 to use parametri- 
zations of the form (1.24). 

In another way of arguing, one would start from the observation 
that the partial wave expansion on the one hand and the Regge expan- 
sion on the other hand are two complete descriptions of the same am- 
plitude and conclude that one should not use (1.24) . Again the same 
kind of fallacy as before is met here since one should first prove that 
there is no background in either one of the two representations since 
neither a Regge expansion nor a resonance expansion is , in general, 
complete from a mathematical point of view . 

The poiht, however, remains that the first objection we men- 
tioned , about double counting, is certainly valid when using (I. 24) 
(unless further specification is given concerning the behavior of each 
term) . This can be given a better qualitative r if not quantitative 
meaning, If we retain the basic assumption already made in Sec. I .B .  
that we can neglect background contribution in the Regge pole fit al- 
ready in the region of l , 2 GeV. If this assumption is made , then 
FESR tell us that the sum of Regge terms alone gives a fit to  the 
smoothed out experimental curve . Under these conditions , Eq . (I.24) 
would count essentially twice the contribution of a resonance, once 
in the explicit term FRee . and another time in FRegge which "knows" 
already of the averaged value of the resonance (or at least of part' of 
it). Notice, however, how the argument in its prediction of double 
counting depends on having completely neglected any background 
(this was assumed to derive Eq. ( I .3)) .  I f ,  however, this background 
is not completely negligible (or, rather, if the Regge and the reso- 
nant background do not cancel exactly) , then we can say,  at best , 
that there is a "larger than one" counting in writing down Eq . (I. 24) 
but also a "less than double" counting . 

To avoid the above double counting problem, the authors of 
Ref. 1 suggest that instead of (1.24) one should write 

F F Regge F + Res ( F S )  (1.25) 

where the last term is supposed to  remove the discrepancy that arises 
from adding the asymptotic tail of the resonances together with the 
Regge term. At the same time this term serves the purpose of remov- 
ing the contribution of the Regge pole fit extrapolated at low and in- 
termediate energies where r according to FESR this term already repre- 
sented some sort of "averaged amplitude" (see Fig. 1)- 

It is now clear that if all resonances enter with the same sign, 
then the inclusion of the term (FRes) is rather important whereas if 
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they alternate in sign and have comparable strength, then (FRee) : 

Finally, if it were true that the resonant background was totally neg- 
ligible in writing a partial wave expansion, then we would have 

0 .  

F Re s 

PRegge (PREs) 
and conversely if the Regge background was totally negligible, then 

(FRes) 

The theoretical implications of (1.25) (which constitutes what is 
called Dolen-Horn-Schmid duality) and of (I.26) , (I.27) will be dis - 
cussed in Sec. I . F .  

We want now to examine briefly the evidence in favor of (I. 25) 
as compared to ( I .24).  Crucial tests to check whether (I.25) is a 
good substitute for (I.24) are cases in which resonances occur with 
the same sign; we next discuss a few of the examples given in Ref. 1. 

i) lm A '  (+)(k,0)/k. This is the average of rr*p total cross sec- 
tions. Extrapolating the Regge fits down t o  k ~  l GoV/c one gets 
somewhere in between 35 to40  mb whereas the experimental average 
is (37 5: 7) mb in which the error gives the size of the resonance en- 
hancements over the background. Thus the extrapolated Regge fit 
already saturates the averaged amplitude and there is no room left for 
the resonances to contribute whereas around this energy value there 
are at least four resonances amounting to over 25 mb. 

ii) lm v B(l)(k,0}. In Fig. 4 the amplitude is given a s  recon- 
structed from phase shifts data and the Regge pole fit is also shown . 
It appears that the reconstructed amplitude is smaller than the one 
obtained from resonances only and thus the Regge contribution cannot 
represent the background term slnce they would be of opposite sign. 
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iii) n+p backward differential cross section . 
well known argument of Barger and Cline ,Q backw 
is largely saturated by the direct channel resonance . 
On the other hand it has also been shown26l that the 
extrapolated down to the same energy interval accounts for most of 
the data. In this case, therefore, not only is (1.24) ruled out be- 
cause it would lead t o  a very severe double counting, but (I. 26) and 
(I.27) seem to hold . Due t o  the absence of diffraction (which should 
be negligibly small in the backward direction) this example is also 
particularly crucial to check whether resonances alone can describe 
entirely the angular cistribution in the backward scattering region . 
Preliminary resu1ts27 seem to provide a positive answer to such a 
question provided resonances on several A trajectories are taken 
Into account . 

The previous are examples in which the predictions of the FESR 
quite sharply contrast those) of the RIM. Other less unambiguous 
tests have been suggested where the inherent ambiguity stems from 
the fact that not all resonances contribute with the same sign and 
large cancellations occur. Such is the 585% of n'p backward sceggfr- 
ing which was fitted both with the RIM, with Regge poles only 
and with a pure resonances model.28) 

In conclusion, we can say that the inadequacy of the conven- 
tional RIM model seems fairly well established. Its possible modifi- 
cations to avoid double counting will be discussed in Sec. I.I. 

In Sec. I . G .  we will also shortly review the way in which the 
DIM221 would differ from the RIM with respect to the previous prob- 
lem of double counting . 

a-gg-lr 

D. Sch rid Loops 
Recently, Schmidl3l showed that the partial wave projection 

(in the direct channel) of a Regge amplitude of the form ii a(t)-1 -ilTcr(t) 

2 1  
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Fig. 5 .  Argand diagram for L = 3 for the reaction TTrr - no (from 
Ref. 12); dots along the curve denote masses in GeV. 

circle being the elasticity of the resonance) and if one further 
assumes that the converse is true, i .e .  
ii) Every loop in the Argand diagram is a resonance; then Schmid's 
conclusion that the loops of Rei. 13 are associated with resonances 
is an inescapable consequence . This would be so in spite of the fact 
that the (traditionally) more familiar property of a resonance, i .e  . a 
pole in the second energy sheet, is completely absent from (1.28) . 
The explanation for the absence of such a pole-aspect would be that 
Eq. (I. 28) is already an asymptotic expansion which does not have 
entire recollection of all the properties of a resonance but only of 
some. From this point of view, it may be interesting to recall that it 
has been shown recently29) that the slope of the small angle angular 
distributions is a rather sensitive indicator of resonances . Here also, 
the pole aspect is totally absent. 

It may be , however, that conditions 1) , ii) are not really enough 
to guarantee that a resonance is being seen. For one thing, for ex- 
ample , Sch rid loops do not give rise to any even minimal bump in 
either angular distribution or cross section (since the various partial 
waves compensate each other) . Also, by unitarily true resonances 
must occur in all processes with the same direct (s) channel quantum 
numbers whereas Sch rid loops are due to t-chahnel exchanges . 
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A 

The question, therefore, arises of how can two different Regge poles 
give rise to the same set of resonances (example , TT77 -» m7 and 'ITTT -» 
NN have the same s-channel but different-channel quantum numbers). 
The above objections30) are of a different relevance and the first is , 
really, the very crucial obstacle to believing that these loops are really 
resonances . The second objection could be met by actually assuming 
that this situation 1 ) a n  ideal key to the new bootstrap. Furthermore , 
a specific example has shown that the partial wave analysis of 
run - Tfw, TT1T-o r'H1\0 and TTTT - 1rI-11\1 (x being the helicity of the 
I-I(990) meson) shows the same loop structure in all three channels in 
spite of the difference in their spin structure. However, the same 
trajectory contributes here so  that the argument is not conclusive . 
Another objection31) is that in partial wave projecting (1.28) one not 
only finds the loop for LO So discussed in Ref. 13 but one finds 
(infinitely) many more for L > so . This means that even if we identify 
a given loop at a given energy with an experimentally observed reso- 
nance occurring at a given angular momentum, we would in addition 
have infinitely many other resonances at higher value of angular 
momentum (ancestors). Whereas the appearance of these ancestors 
does not, strictly speaking, conflict with any theoretical principle , 
their existence would, certainly, lead to a drastic modification of 
what one intuitively believes to  be a resonance . It is , however, to 
be noticed that the phenomenon of resonances occurring at the same 
energy but different angular momenta is not ruled out on experimental 
basis . 

It has been suggested32) that ancestors should be included in 
the error bars since one may argue that their effect becomes negligibly 
small and that they appear as the effect of the (small) violation of 
unitarily occurring in a Regge pole treatment. However, although it 
is true that each sin je ancestor gives a small contribution, this may 
not be the sse=»32r;gs am has infinitely many ancestors . 

Other objections 4 to the interpretation of Schmid's loops as  
resonances have been raised by various authors . For instance, not 
only should there be resonances of low mass and very high spin, but 
also it is easy to obtain loops that rotate clockwise by combining 
two or more Regge poles. Also, Kreps and Logan have analyzed 
'rrlp -» non and concluded that there is a lack of correspondence be- 
tween Schmid's loops and experimental resonances contrary to Lip- 
shutz's claim35) that most resonances and loops can be identified . 

Probably the best way to exhibit the ambiguity associated wlth 
Schmid's interpretation of his analysis is seen if one replaces the 
energy dependent formula (I.28) with the purely t-dependent factor 

= eITM(0): d(t) = a + b t .  
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In this case (see Fig. 6) we still have the same kind of loops as 
before.36) We must therefore conclude that the entire "loop" struc- 
ture associated with a Regge pole can be traced back to, essentially, 
the signature factor. Since the latter was originally introduced be- 
cause of crossing symmetry arguments r it is hard to  see its possible 
connection with resonances. On the other hand, as w1l1 be dis- 
cussed below (Sec. LI.) it is just the fact that these loops are 
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, ii) as  defining a resonance 
(which is now dissociated from bump effects37)) has very interesting 
consequences which will be discussed in the next sections and which 
give rise to the new dynamical mechanism of duality . 

connected to  the signature factor that allows one13) to give an in- 
direct support to the idea of duality through the mechanism of ex- 
change degeneracy. 

A final word of caution seems, finally, necessary in taking a s  
absolute truth the result of a phase shift analysis since it is well 
known that, for instance , several resonances could be very close 
together without one being able to resolve them through a partial wave 
decomposition. Evidence for a resonance coming from partial wave 
analysis should, in general, be taken with some care unless if de - 
pendent supporting evidence can be obtained . 

In conclusion, as we have seen, almost every argument dis- 
cussed before can be seen in a light either supporting or casting 
doubts on the validity of Schmid's conjecture. The least one can say 
is that the subject is , certainly, very controversial, and although 
Schmid's conjecture opens an entirely new field, it must be realized 
that the acceptance of it is close to being an act of faith. Possibly , 
one could rephrase St .  Augustine by saying that,"He who believes 
will understand. " 

The acceptance of conditions i) 

E .  Classical Interpretation of Regge 8 _les 
In order to appreciate better what is s o  new about the Sch rid 

conjecture , we recall here the usual interpretation that was given of a 
Regge pole. Because of the nonrelativistic origin of a Regge pole , 
and of its subsequent interpretation in relativistic terms , traditionally, 
a Regge pole which determines the leading asymptotic behavior in the 
direct channel, has been associated to the exchanges that occur in 
th r s s d h  l . T h i s i t r p r i t i  h s b < l z s 1 d r b l y  
strengthened by the work of Fubini and c:oworkers58 on the so called 
multiperipheral model where it was shown that the selves of ladder 
diagrams in the crossed t-channel has the typical So t 
S -» on . 

behavior a s  

of sin? 
an So t) behavior at  large energies , reinforcing the 
previously ¢ 

More recently, it has been shown by Van Hove39) that a tower 
je particles exchanges in the crossed channel can, again, give 

conclusions drawn 
This is , also, the motivation for an interference model. 

It should be stressed that in the "old fashioned" interpretation 
of Regge poles discussed above, the C reclusion is that a Regge pole 
is a manifestation of the crossed channel exchanges , which is , there- 
fore, free of direct channel resonances but not of direct channel 
branch points . This point is important to  make because soon we will 
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F'(s,t) 

particularly be interested in cases in which the only singularities are 
poles . 
Definition: 
if its asymptotic behavior as  | sl - ='» is B(t) s°'(t) uniform15r40) in the 
entire complex S plane except, possibly, for an (arbitrary) direction 

sa (t) 

To see the relevance of the above point we first give a 
We shall say that an amplitude F(s ,t) is Regge behaved 

ls1 -> 

larg(sei9)l 2 e > 0 .  

as B (t) 

0 S 9 S  21T; Gfixed. (1.29) 

We can then state the following:41) 
Theorem I: No entire function of finite order can have an asymp- 

totic power-like behavior along every direction except possibly one . 
If this one direction is not excluded then, as  an immediate conse- 
quence of Picard's theorem on essential singularities, we have: 

Theorem II: The only entire function that has a uniform power- 
like asymptotic behavior is a polynomial . 

We do not know of any comparable theorem for functions of in- 
finite order.42l 

Using Theorem I we can say that given an amplitude A(s ,t) 
which is purely meromorphic as a function of both 0(s) and 0.(t)43) and 
is Regge behaved in both s and t ,  the part which contains only crossed 
crossed (t) channel poles (and is thus entire in u(s)) cannot be Regge 
behaved in s except, possibly, if it is infinite order.44) '45) This , 
however, does not apply when there are cuts. Therefore , the above 
argument simply means that, according to the traditional interpreta- 
tion of Regge poles we would not have said anything like "the crossed 
channel poles build up the direct channel asymptotic Regge behavior" 
but rather that the Regge pole term corresponds to crossed channel ex- 
changes and knows nothing about direct channel exchanges (but must 
certainly have direct channel cuts). 

The revolutionary idea contained in Schmid's conjecture (Sec . 
I.D.) can now be seen to be a modification of the above picture in 
which one would say that a Regge pole knows not only about the 
crossed channel , but also about the direct channel exchanges . 
F.  Duality 

In the very recent times an extraordinarily large literature has 
grown centered about the new concept of "duality" in spite of the 
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fact that this concept seems very difficult to  define unambiguously. 
As a consequence , the range of definitions of duality is extremely 
broad going from the requirement of cyclic symmetry between the ex~ 
ternal identical particles (which guarantees crossing symmetry but it 
is not demanded by it) to the requirement that the sum of resonances 
in the direct channel is the one that gives rise to the Regge poles . 
A whole spectrum of definitions .exist in between but the most Gom- 
monly used definition seems to  be46) that the direct channel T850- 

nances "build Up" to  the asymptotic Regge behavior. This is a local 
generalization of the original "averaged" statement contained in 
Ref. l .  

We first attempt a classification of the definitions that seem 
more commonly used . 
A) The amplitude i) obeys crossing symmetry requirements, ii) results 
from the sum of infinitely many poles in each channel, iii) is Regge 
behaved in each channel. This can be rephrased by saying that we 
can indifferently sum the spectrum of resonances in either the direct 
or the crossed channel. Each expansion is complete and Regge 
behaved. 
B) At intermediate energies the sum of direct channel resonances 
smoothed out coincides with the extrapolated Regge behavior. Alter- 
natively, the latter gives in a sense a semilocal average of the reso- 
nance pea ks . 
C) The sum of direct channel resonances asymptotically builds up 
(at least in part) to the asymptotic Regge behavior . 

It is clear that there is a considerable overlapping between the 
above definitions . We will now briefly discuss them to point out 
some of their inherent ambiguities . Also, for reasons to be discussed 
below, we will assume that the Pomeranchuk term is excluded from 
our present considerations . 

First, we notice that definition A) is , probably, the broadest 
Not only does it leave 

mgd@147),4/U 
compatible with van Hove's and Durand's model39) and it may u1t1- 
mately reduce to the usual mechanism by which Regge poles were dis- 
covered in potential scattering. In the second formulation of A) it is 
understood that the sum of resonances in different channels may con- 
verge in different domains s o  that such formulation can be given a 
well defined meaning only if we can sum the series of resonances in 
closed form and analytically continue it . 

We would like to emphasize that in definition A) the essentially 
new ingredient a s  compared to the pre-duality models is the require - 
rent that there are infinitely many poles and that Regge behavior (as 
defined by (I.29)) holds with respect to  each variable. It is the latter 

among the various definitions given above . 
.room for some generalized interference but it may be 
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condition that makes the difference with a phenomenological inter- 
ference model but, for any practical purpose, a "duality model" can 
then be disguised as  a "generalized interference m(>de1"47) ,48) even 
in the case of meromorphic am litudes as the specific example of the 
Veneziana model will show.44) Notice that it is condition (11) in the 
definition A) that provides the new dynamical assumption (see, how- 
ever, Ref.  22) because no set of poles forms, mathematically speak- 
ing, a complete basis. This dynamical assumption becomes then, 
most naturally, the foundation of the new bootstrap outlined in Sec. 
I .B • 

Definition B) which we shall refer to as "weak duality"44l is 
the same definition which arises from the context of FESR a s  men- 
tioned already in Sec. I .C .  It is an inescapable consequence of the 
same hypotheses that led us to (I. 3) (that is , neglect of the high 
energy background contribution to the asymptotic Regge expansion) 
plus the further assumption that the low energy contribution (the 
l .h .  s . in (I.3)) can be well approximated by pure resonant effects . 
The latter is still another assumption since mathematically speaking , 
no set of poles represents a complete basis as already mentioned . 
Therefore, weak (or Dolen-Horn-Schmid) duality can be mathematically 
stated by Eq. (I. 25) . The only visible trouble in the above definition 
lies in its ambiguity concerning the "sernilocal average" represented 
by (FRes} . It is also worth noticing explicitly that nothing in either 
definition B) or Eq- (1.25) distinguishes the situation in which the 
asymptotic behavior is originated by crossed channel poles from the 
one in which neither cross nor direct channel poles are responsible 
for the high energy behavior) . As in the case of definition A) , there - 
fore , weak duality could still be reconciled with the familiar mecha- 
nism of potential scattering. Furthermore, its distinction from A) is 
that it does not explicitly require an infinity of poles nor does it en- 
force crossing symmetry. The latter is a consequence of the way 
FESR were derived starting from a one -dimensional dispersion relation. 

Definition C) which we shall refer to as  strong duality,44) rules 
out the old fashioned potential scattering mechanism and requires that 
the sum of direct channel resonances builds up locally to the crossed 
t-channel Regge pole. Suggestions that this could be a possible 
mechanism are found in Refs. 3 ,  4 ,  13, and 46 . 

It is quite clear that strong duality contains weak duality as  the 
particular case in which Eqs. (I.26) , (1.27) simultaneously hold and 
this explains the adopted terminology. 

In Refs . 49 and 50 collective sets of references are given in 
which definitions of weak and strong duality, respectively, are either 
given or implied (these are certainly not complete references) . 
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It is easy to convince oneself that definition C) is a most de- 
ceptive one and that if one takes it at face value it essentially can- 
not be given a definite and unambiguous meaning.44 This is so un- 
less it is interpreted in the sense of def. A) (in which case , however , 
the statement that direct s-channel poles "build Up" to the s-Regge 
behavior cannot be distinguished from the equally meaningless state- 
ment that crossed t-channel poles build up t o  the s-Regge behavior) . 

The first problem opened by def. C) is that mathematically 
speaking the concept that the poles of a function should determine its 
asymptotic behavior does not hold (for instance , for a purely mero- 
morphic function the role of its zeros is equally important) . If we 
want, however, to insist on def. c) a s  a new dynamical request and 
we want it not to coincide with A) , the only way is to assume that the 
s-Regge behavior comes uniquely from that part of the amplitude that 
contains only s-channel poles . This implies that one can write 

(t) (s ,t) F(s, t )  =F(S) (s , t )  + F (1.30) 

where F(s) contains only s-channel poles and is Regge behaved ac- 
cording to our definition (I.29) . For purely meromorphic amplitudes , 
this model would require P(5)($ ,t) to be entire in t .  Also F(tl(s,t) 
would have to  be entire in S and bounded by Regge behavior as  [ S l - ==. Theorem I of Sec.  I .E .  above, however, guarantees that the 
latter requirement is excluded for functions of finite order and type . 
Unless the latter case holds we can conclude that def. c) makes no 
sense in mathematical terms for amplitudes meromorphic in o1.(s) and 
d(t) . If Regge cuts are allowed, theorem I does not hold any more but 
in this case there is no way to give a meaning to def. c) .  

It should be noticed that the 
goes essentially back to Mitts g-Leffler theorem on functions with 
infinite isolated singularities. This theorem states that such func- 
tions are determined by their poles and residues only to  within an en- 
tire function. In physical terms , this problem reflects itself in the 
ambiguities inherent in the use of the word "resonance. " The only 
information (coupling constant or residue) that we have about a reso- 
nance is in the neighborhood of the pole which is , in fact, in a region 
inaccessible to experiment. The latter point adds still more ambi- 
guity (to the determination of the width of the resonanCe) but, even if 
we could measure the residue just at the pole , this would essentially 
give no information on the structure of the resonance away from it . 
In other words, we could modify the form of a resonance in an arbitrary 
way provided we would not alter the residue and the position of the 
pole. This fact is ,  actually, more or less consciously used by every 
phenomenologist when he adjusts the energy dependence or the 

difficulty ask?l:iated with def. C) 
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centrifugal barrier or the tail of the resonance to get a better fit . 
However, what Mittag-Leffler theorem means is that this freedom in 
changing the form of a resonance away from the pole is a mathematical 
and not a physical ambiguity. The only principle that could help in 
reducing the above ambiguity would be inelastic unitarily which is , 
unfortunately , intractable . 

In the following, when using the word duality, unless other- 
wise stated, we will always refer to def. A) . 

It should, finally , be emphasized that if this property of duality 
holds , the ultimate consequence of it would be that the forces (i .e. 
the crossed channel exchanges) be determined once the dlrect 
channel singularities are , the content of 
bootstrap. 

old 
givem5vj this is ,  of course 

G .  The Pomeranchukon Diffraction Interference Model 
It has been pointed out by Freundlul and Harari17) that the 

Pomeranchukon seems to play a rather special role and should in fact 
be absent from all considerations made above. The reason for this 
is that whereas "ordinary" Regge trajectories canbe bootstrapped using 
the resonance approximation to FESR, this seems not to be the case 
for the Pomeranchukon so  that it has been suggested that it should be 
built from the nonresonating background. 

Among the arguments brought against considering the Pomeran- 
chukon as an ordinary Regge trajectory are: 
a) there is no conclusive evidence of particles lying on such 
trajectory; 
b) the slope would be essentially different from that of Regge tra- 
jectories ( i .e.  much flatter and not inconsistent with zero); 
c) the only "simple" dynamical origin that one can conceive for the 
Pomeranchuk is in terms of diffraction . 

Other strange properties of the world of high energy physics 
which are not, probably, distinct from the above uncertainty on P are : 
A) K+p, K"ln, pp and pn total cross sections are essentially constant 

. K'n. Et,  in. from 2 to 20 GoV/c contrary to  what happens for K`p 
w*p.63) 
B) K`*p and pp angular distributions are essentially structureless and 
do not show secondary maxima ; 
C) the above channels are, exactly, those for which well established 
resonances do not exist in the s-channel at low energies whereas 
other channels (K`p, pp, 1'r*p) appear filled with "low" energy s- 
channel resonances . 

The suggestion that the Pomeranchukon is made of the nonreso- 
nating background (contrary to the program outlined in the previous 
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sections for all other Regge poles), is meant to  be the way out to  
both sets of phenomena a) L c) and A) - ° C) . 

First, one notices that P dominates at large s and small t irres- 
pective of whether there are resonances or not so that it is hard to 
correlate P to the presence of s-channel resonances . Assuming that 
it is related to nonresonating (diffractive) effects, this implies that 
if we start from a FESR (I.3) 

O 

.N 
N n q.i+n+1 

.f v I m F d v = z B i ( t ) m  + n + 1  
i 

and we split F into a "resonant" and a "background" part, we can 
write 

N n v J' lm F do 
o bg 
N n v 

o 
lm F do res 

O,P(t)+1'1+l 

B (to) N P (t) + + 1 
"p (t)+n+l 

2 Sift) 

#p 

a. N 1 

U,ilt)+l"l°*'1 

(1.31) 

(I.32) 

large N (say 8_ 2 GeV) 
0 for -°°< v <  w, we are led, 
, to 

for sufficiently 

u. (t)+n+1 1 - N Z 51 ai(t) 
#p 

to) + n + 1  
as 0 (1.33) 

Furthermore, if we choose a reaction such that the t-channel 
quantum numbers prevent P from contributing, then we expect the 
amplitude F to  be real. 

Under these conditions , and assuming the validity of Sch rid 
conjecture , we would have the following picture : 
1) all total cross sections of reactions for which no important reso- 
nances are known should be essentially constant; this accounts for 
point A) above. Conversely, total cross sections for processes with 
many resonances should still decrease with energy eventually to reach 
the Pomeranchuk limit . 
11) In view of the absence of I = 2 resonances , should be 
constant and if the am amplitude is parametrized wlth P ,  P '  , p ,  this 
leads to 

+ + 
o'"qt(1T TT ) 

p 
a I P G. (L 34) 
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(y )2 
p07T+rT' 

l 

(YP'rr+rr-)2 (1.35) 

Whereas (1.34) is well satisf ied, there seem to be no data inconsis- 
tent with (1.35) . Similar analysis for rrK, KK and KN gives 

Q
 

`O
 

II 
$5

9 

I P CI. w a 

AK* = AK** (1.36) 

(with corresponding relations between residues) . 
iii) All high energy KN, NN reactions in which P cannot be exchanged 
must have a real amplitude . This is , of course, a prediction very 
hard to test and agrees with the absorptive model prediction (although 
it is less restrictive) . 
iv) If one parametrizes pp and K+p in terms of Regge poles 

AS 

AS 

= - T 

= - - T  

+ 
w 

UJ 
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p 
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+ T 
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+ 
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T 

T 
p p 

F 

p 
+ K F 

/ 

(1.37) 

and makes use of the exchange degeneracy (I.34) and (1.36) 
kinds that, aside from To. the amplitude for pp -| pp and K"p 
using the parametrization (I. 1) is proportional to 

| 

-9 

OI'1 +G 
K D 

structureless _5-4) 

a o 
sin no 

p 

and therefore there is no zero at "al = 0 .  This in turn means that F 
I l I pp and FK+p angular distributions have no dlps and are essentially 
On the other hand, for K"p, for instance, we have 

F _ = T K p P 
+ To, + T + T  + 

p w TA 
(I.38) 

Aside from To, the amplitude is therefore proportional to 

e-1Trap 
a . p s1n nap 
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57) 

care of by 

whose imaginary part vanishes at do = 0 where there is therefore a 
dip (similar conclusions hold for 1T*r>) . 

This accounts for point B) above and 
construction. 

The picture proposed above, while explaining A) r B) , C) , is 
consistent with the interpretation of the Pomeranchukon as  a diffrac- 
tive effect and models to construct it along this line have been 
proposed.55) 

If the above discussion is correct, we should be able to use a 
modified interference model 7) in which P is added to resonance con- 
tributions without incurring any double counting. It is ' 
this modified 1nterle2rence Model is nothing more than the 
interference model (DIM) which should, accordingly, '\=--e: 

double counting troubles . Whether or not this is actually so,  clearly 
depends on the specific parametrization chosen but it should be 
stressed that the problem of double counting is certainl 
one uses the procedure of Ref. 22 of fitting the data by 
the resonance parameters through the fit itself rather th _ 
from the tables . It is comforting that ese two sets of values for the 
resonance parameters are very close . The model has been success- 
fully applied to reproduce K'p elastic data in the intermediate energy 
region (see Fig. 7 ) .  
cessful fit56) t o  K'p * 
gether with K'p -0 

for the K` lab momentum . 
fit rrp data . 
ing good agreement with the data . 
questioned by Dance and Shaw5 9) who found that, in the same case 
considered in Ref. 5 8 ,  the DIM fails badly and the data can reason- 
ably well be reproduced by a simple isobar model (although the dis- 
crepancy increases with increasing energy) . Much to  the same con- 
clusion come the authors of Ref. 60 who conclude that at much higher 
energies than those considered in Ref. 5 8 ,  the DIM fails unless a 
large number of (as yet undiscovered) resonances is found . 

The seemingly paradoxical conclusion that one can draw from 
the above discussion is that the result depends largely on the authors . 
This is perhaps not so  surprising if we keep in mind the discussion of 
Sec. I .F . on the ambiguities inherently associated wit 
resonance . For instance, the discrepancy between the J 
58 and 59 is , essentially, due to the differences in the r 
of the resonances . 

Recently it has been used to give a fairly suc- 
K`p and K'p -| Io n angular distributions to- 

K'p polarization data from 1 GeV/c to  about 3 Gov/c 
the model has been used 

forward TrN58 
, however, been 

Furthermore I 
The model has also been tested in 

This result has 

I . l 
- -  

* . 1  I 

I 
an 

to  
find - 

In n l . . - . I  -r 

The conjecture that P is solely due t o  nonresonating background 
has been analyzed by Rosner61) who has shown that the system that 
arises is inconsistent. He showed that if one assumes of to be flat 
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GeV/C. The broken llne curves are fits to the data 
using a Legendre expansion up to sixth order and the 
continuous llne is the result of the fit with the diffrac- 
tive interference model (from Ref. 22). 
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VGTYBz) 

in all meson-meson, meson-baryon and baryon-baryon channels that 
are thought to lack resonances ( i .e.  channels outside _}_ and § for MM, 
_ l ,  _8 and for MB and all BB) and one makes .| besides factorizabi- 
lity, the additional assumptions that channels with direct channel 
resonances have a monotonically decreasing cross section, and f '  
andcp decouple from S = 0 particles, then a s  a consequence, for 1n- 
stance, of (E1+p) is energy dependent whereas (Jt(5+p) is flat. The con- 
clusion reached in Ref. 61 is that there must exist enhancements in 
channels with unusual quantum numbers (exotic resonances). These 
exotic resonances should manifest themselves in BB systems . 

The fact that not even pp does show any prominent resonance 
structure may, however, mean that these exotic resonances may be 

hard to discover. Furthermore, it has been pointed out by Pin- 
sky that another way out of the difficulty mentioned before is to 
assume that there exist Regge cuts together with Regge poles . The 
larger number of  parameters thus introduced does , essentially, leave 
freedom enough to solve the problem without the need for exotic 
resonances . 
H. Graphical Duality 

It has been recently su3ggested63) that one can use a graphical 
version of the quark model64 t o  give a visualization of duality. Dua- 
lity here is taken according to definition A) of Sec. I .F .  Since there 
is no way of putting this graphical form Into an analytic structure , 
there is , however, no way of checking that Regge asymptotic behavior 
holds . 

We assume that all incoming and outgoing particles as well as  
the poles in all channels are not exotic so that they can be reprer- 
sented by a three-quark or a quark-antiquark system. We will say, 
following I-Iarar1's deflnit1on*53 that duality appears if the process is 
given in terms of "legal diagrams . " The rules for drawing a legal 
diagram are , in turn, extremely simple : 
i) There are three types of quarks p ,  n, X that do not change iden- 
tity; every external baryon is made with three quark l ines running in 
the same direction and every meson is made with two quark lines run~ 
ring in opposite directions; 
ii) in any baryonic channel we can cut the diagram into two by cutting 
only three quark lines (and not, 4q + q' etc.); in any mesonic channel 
we can cut the diagram in two by intersecting only two lines . 

In Fig. 8 the first three examples represent "legal diagrams" 
whereas the fourth is "illegal" since the B15 channel requires inter- 
secting four lines . 

The physical assumptions t o  give meaning to those diagrams are 
that all baryons lie in the l , 8 ,  10 SU(3) multiplets and all mesons 
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Fig . 8 .  "Legal" quark diagrams for (a) meson-meson scattering, 
(b ,c )  meson-baryon scattering; (d) is an "illegal" dia- 
gram for baryon-antibaryon scattering . 

in the 1 and 8 multiplets. Furthermore it is assumed again that, aside 
possibly for the Pomeranchukon contribution, the scattering amplitude 
is the sum of single-particles states . 

Duality is supposed to manifest itself if one can assume that 
one can describe the entire scattering as  sum of either one-particles 
states in the direct channel or the crossed channel (in agreement with 
definition A) of Sec. I . F . ) .  

One immediate consequence of the above discussion is found in 
the confirmation of the prediction of exotic resonances in the BB sys- 
tem. As seen in fact from Fig. 8d, in at least one of the s and t chan- 
nels we must cut Zq + 2q lines contrary to the previous rules . 
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Assuming now that the complete duality program can be accom- 
plished , one would approximate the imaginary part of the amplitude 
by resonances (the real part may receive contribution from far away 
resonances and is scarcely affected by the nearby resonances be- 
cause it vanishes just at resonance) . Therefore, if a process does 
not exhibit direct channel resonances , its amplitude (aside from the 
Pomeranchukon) will be real . The real part will in turn vanish only 
if both the s and u channels lack resonances . 

For detailed predictions following from this graphical method , 
we refer to the original papers . 63) 

of pa -4 pp- teaches us , it may be very difficult (if at all 
r h this rt f affirm ii 

I. Experimental Support for the Principle of Duality 
The most interesting theoretical consequence of duality is , 

perhaps, the possibility of a completely self-consistent bootstrap 
calculation in which the knowledge of either the direct or the crossed 
channel poles provides all the needed information. Due to the large 
arbitrariness in the parametrization of a resonance, this program 
needs a large number of confirmations before it can be taken as a 
practical dynamical scheme. Therefore , a less ambitious approach 
is probably needed to find some support for the idea of duality. Re- 
calling the previous developments , we see that the necessity of ex- 
cluding the Pomeranchuk from the duality game was a most important 
(and still rather mysterious) step. This has led also very naturally to 
the prediction of exotic res finances whose dis covers would be a strong 
(although indirect) support for the idea of duality. Unfortunately, as 
the exampl 
p ssibl ) t  . 

However, the very general exchange degeneraoy65) previously 
noted (I.34) , (1.36) may also be taken to within the llmits of its ex- 
perimental validity, as an indirect support for duality. The argument 
is, essentially, the same already given by schmidl ) that if odd sig- 
nature mes n trajectories (Lu, Q , p etc.) and even signature trajec- 
tories (Ag , P ,  P'etc.) are exchange degenerate, then the signature 
factor in K+! is real (and so is in pp) whereas is complex in K"p (and 
pp). According to the discussion of Sec. I .D. , therefore, the former 
channels cannot give rise to any loop in the Argand diagram while the 
latter can. The Regge trajectories that are known t o  be exchange de- 
generate are Y*. A a 

Ny trajectories are only partially degenerate.32)'B6) These trajec- 
tories will have , in general, different residue functions but their 
slopes are ssentially the same. Thus, there is a large economy of 
parameters which would be surprising if considered as a mere acci- 
dent whereas it can simply be a reflection of the validity of the boot- 
strap program. As pointed out before, in fact, it provides an 

and the meson trajectories (see Fig. 9) .  Na and 

et )  
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explanation for the absence of structure in both total cross section13) 
and angular distributions for pp and K*lp and in pp -» Tll*'d .66) At the 
same time it also gives an indication that the I = 2 ,  mr pha se shifts 
are negative. The implication of e x c h a r s  degeneracy on the 
hadron spectrum has also been discussed . 

Direct, although not conclusive, confirmations of the duality 
idea can, on the other hand+ be considered the fits with resonances _ an - otDt(r7 p) (see Fig. 1 and Ref. 1, 23); b) K`p -| 

Kon (Ref. 24); c) backward u p  -' ii*lp (Ref. 25 ,  26): d) backward 
angular distribution or-I-p - n+p (Ref. 27); elbackward 1Tlp -» trip (Ref. 
28) . Also, in the same category, we have the fits with the DIM (Ref. 
22,  5 6 ,  5 7 ,  58) .  As mentioned, these fits are not free of ambigui- 
t1es59).60) essentially due to the large number of parameters and 
freedom in parametrlzatlon of resonances . 

More confirmations either direct or indirect are needed (along 
the above lines and also in the frame of multiperipheral Regge models) 
before definite conclusions on the validity of the principle of duality 
can be drawn . 
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indeed results from a superposition of direct channel resonances 
$1)-1 that gives 

I. Generalized Interference Model (GIM) 
Alessandrini, Amati, and Squ1res47) have argued that the duality 

program as  outlined in Sec. I .F .  (according to definition C) and the 
interpretation of Schmid's loops as  resonances (Sec. I .D.)  run 
against a few conceptual difficulties in that if the Regge amplitude 

Z ii P,¥,i(z8) (s 
1 

R A t 1 B t t )  
J 

G. 
s J to) -Ina . 

e J i 1 
1"(aj (t)) sin Maj (t) (1.39) 

then: 
a) The partial wave amplitudes arising from the r . h . s .  of (I.39) do 
not have the poles in the second sheet that one would associate with 
a genuine resonance I 
b) The amplitude AS represented by the r . h . s .  of (I.39) does not have 
the experimentally observed peaks . 
c) The partial wave projection of the r . h . s .  of (I.39) leads to  ances- 
tors in positions unlikely to correspond to resonances . 

These objections have been considered in Sec. I .D.  when dis- 
cussing Schmid's loops. The point here is that in Ref. 47 it is sug- 
gested that Schmid's loops have essentially nothing to do with reso- 
nances and their occasional coincidence with the actual position of 
resonances is a dynamical coincidence that can be attributed to the 
universality of all Regge trajectories (except the Pomeranchukon) , and 
which can be traced back to  the fact that all Regge trajectories have 
the same slope and that it is the signature factor which is the one 
responsible for the appearance of Sch rid loops . a consequence , 
they suggest adding the direct channel poles to At and writing 

'- '| Pti (z 7 
+1 s 

1 

s 

ii s 
A = A Regge - Sl (I.40) 

In order to avoid double counting, it is assumed that the para- 
meters in (I. 40) should not be taken from the tables but used as free 
parameters to  determine the resonance parameters . Thus , since 
ARe ge has partial waves which are rapidly varying functions of 
energy, if it happens that a Sch rid loop is in phase with a resonance, 
then the parameter go will c; be simply related to the elasticity of the 
resonance and may even be complex or negative. By construction , 
there would therefore be no double counting . 
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The bootstrap program that was one of the main features of the 
duality program would still be possible . In fact, the last term on the 
r . h . s  . of (1.40) can be continued a la Van I-Iovea9) to the physical 
region of the t-channel writing 

AR 
S 

LJ.. 

-i7Ta.(s) 
e J d: 1 

1`(aj(s)) sin Had (s) 
rxj(s) 

B.(s) t 
J 

j 

Alternatively one could write 

P go i(2S) 

A~2 s 
i 

an 

91 P L 

+ 'E -It 1 

(it) 

s1 j 

go P*LklZ 

+ u 
k 

ul 

"k 

(1.41) 

(1.42) 

where the g 's  are sufficiently well behaved so  that 
i) the sum over Legendre polynomials of physical argument (I 21 S 1) 
converges in such a way that a limited number of resonances is 
needed; 
ii) the sum over Legendre polynomials outside the physical Z domain 
can be summed with a Sommerfeld-Watson transform to give a Regge 
pole . 

In this case a finite number or even one Regge trajectory could 
reproduce itself whereas if a Regge pole in the s-channel must be 
generated by t and/or u Regge poles , this can necessarily happen 
only if there are infinitely many poles (so that the corresponding 
series can diverge) . It should also be noticed that, as proved in Ref. 
70 (see also Sec. and Ref. 20),  for a sum of narrow resonances 
t o  reproduce an so. t behavior, an infinite number of Regge trajec- 
tories is needed. Even when the narrow resonance approximation is 
removed, it appears very difficult to saturate a Regge pole behavior 
with bona fide resonances . 71) 

The model discussed in thls section is, really, only a simple 
minded model for a background. The major shortcoming of the model 
is that this background appears as a fairly rapidly varying function 
and this implies , as already discussed, that the parameters do not 
directly reflect the residues and positions of the poles which come 
out only after the dynamical analysis outlined before has been 
performed I 

Several examples of GIM have been explicitly constructed . 
It has been recently shown by  Iengo48) that an amplitude can, 

under very general assumptions , be decomposed in the form of a GIM 
in which double counting is avoided by making sure that the direct 
channel resonances do not contribute to the high energy part of an 

72) 
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FESR in the sense that they are contained in a term which is strictly 
superconvergent in the sum rules of any moment. Furthermore, as 
will be discussed later (part II) , it has been shown44 that even the 
Veneziano model (i.e . a purely meromorphic amplitude exhibiting 
duality according to def. A of Sec.  I .F.)  can be cast into the form of 
a GIM. Thus , it is not unreasonable to conjecture that GIM and dual 
models are actually the same thing. In fact, Def. A of Sec. I .F.  is 
in no way contradictory t o  the definition of the GIM or to Eq. (I.42) . 
The only difference would be that in a dual model one would not ex- 
plicitly decompose the amplitude as one would do in a GIM. Should 
this conjecture turn out to be generally true | one would conclude that 
a lot of very heated controversial statements between partisans of 
dual and GIM models have been rather fruitless . 

In partial support of our conjecture, we notice that the GIM has 
the same kind of ambiguities encountered when discussing the duality 
program. These ambiguities are most 
and are , once again, implicit in Mlttag-Leffler's theorem. They 
can, as we already discussed, be summarized by saying that one 
could add or subtract entire functions to the pole terms of Eq. (1.42) . 
A different wa of stating this ambiguity is found in the result of At- 
kinson et a173 that if a saturation of super convergence is given with 
a tower of infinitely many resonances , other infinite saturations of 
this superconvergence problem are also possible . 

Finally, it must be mentioned that the form of GIM~ derived by 
Okubo et al48) has been obtained using dis pension relations as  a 
starting point (just like FESR) and does in fact display certain duality 
properties . This makes the parallelism between dual models and GIM 
even more stringent . 

evidently displayed (I.42) 

II. The Veneziano Model and Its Properties 

A.  Preliminaries to the Veneziano Model 
Recently, an extraordinary interest has arisen in connection wlth 

wlth the veneziano model.4 This interest is due to many combined 
factors . First of all the Veneziano model (V.M. hereafter) displays in a 
beautifully simple fashion most properties that one would like to attri- 
bute to anamplitude according to  the discussion of part I. Second, the 
model is at the same time sufficiently simple for practical computa- 
tional purposes and for a complete it/estigation of its mathematical 
properties but is already sufficiently corHplicat€d to provide examples 
of the ambiguities we have discussed before and -13- clarify many phy- 
sical aspects of the program outlined in part I .  Third, the Model c&1Yi» 
be generalized in many respects . Last, and more important, the 
model seems to have the unprecedented virtue that it also works . 
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By this we do not mean to say that there are no problems (just the 
contrary) , but that the general picture that emerges from it agrees 
substantially with our present experimental knowledge. However , 
not only is there some confusion about what its merits are (on a purely 
theoretical ground) but there are also quite a few points on which one 
would like to  improve it. For instance, its most noticeable and seem- 
ingly incurable defect is its intrinsic violation of unitarily; also, its 
analytic properties are not exactly what one would like them to be . 
In spite (and partly because) of the above points , it is easy to pre- 
dict that the V . M  . will be the natural arena for theoretical physics in 
the near future although it is at  present impossible to foresee whether 
it will represent a fundamental first step toward a new chapter in the 
understanding of strong interaction physics . 

In the following (Secs . II.B. to II.K.) we will discuss the V.M. 
in its various aspects both from a physical and from a mathematical 
point of view trying to point out both its positive as  well a s  its un- 
satisfactory properties . Sec. II.L. will be devoted t o  a very brief 
qualitative discussion of the successes met in applying the V . M .  to- 
gether with a few words of caution against excessive optimism in the 
interpretation of these successes . In Sec. II.M. we will then list 
and briefly discuss the many generalizations that have been proposed 
in the literature . 

It will appear that there is a large disproportion between the 
time devoted to the discussion of the properties of the V.M. on the 
one hand and of its applications and generalizations on the other 
hand. The point, however, is that the subjects covered in both Secs . 
II.L. and II.M. would in themselves warrant a new entire chapter and 
this would make the present notes excessively lengthy. Furthermore 
the arguments of Secs . II.L. and II.M. are at the same time the most 
controversial and the ones in which things are moving particularly 
fast, so  that any conclusion drawn now may be subjected to a drastic 
revision very soon. The properties of the V . M .  , on the contrary , 
seem by now sufficiently well established (although, admittedly, not 
yet in every respect) s o  that the disproportion mentioned,-above is 
somewhat justified . 
B .  Derivation of the V . M  . 

The original derivation of the \r.M .4) 
extrapolation from the work ofA*iTemol1o et al, 11) devised to give a 
crossing symmetric c0ntentéaO the bootstrap model discussed in Sec . 
I.B - We remembgq t'Ii§f'it was suggested that a good parametrization 
*in A(s ,t`,Ti)"for m1 -» no is 

was actually a brilliant 
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A(s,t,u) s T it - @(t))(-o(s))°'(tll1 + (s Hu) (11.1) 

with ; 
by 

E 
TT 

( V N2 
r1(s)) r'(1 .. a(t)) 
- MS) - c1(t)) 

const. Veneziano suggested that (II. 1) should be replaced 

|=- I 
A(s .t.u) ] 

(II.2) :n to) and 
t channels . 

which reduces to (II. 1) as s -» at fixed t (provided a(s 
treats in a completely crossing symmetric way the s an 
In the following we shall use the notation 

symmetric: + 
permutations 

V(s , t )  E 
- 0(s)) I'(1 - a(t)) - a(s) - a(t)) 

(11.3) 

Since the Veneziano amplitude is a beta function 

V(s,t) = B(1 - M s ) .  1 -a(t)) (II. 4) 

from the well known properties of beta functions , we see that (II.3) 
exhibits an infinite set of simple poles in both S and t channels at 
every value for whlch 

.1 I U . a ( s ) = n  or a ( t ) = m ( n = 1  2 . )  
m 

(11.5) 

Double poles , however, never appear since if both conditions (II.5) 
are satisfied, then 

a(s) +a(t) = n +  m 

and the gamma function at the denominator gives a zero . 
Before discussing the various properties of (II.3) , we want to 

exhibit a "derivation" of it. Actually, a more appropriate wording 
would be that we want to  give some plausibility arguments to show 
how (II.3) can be introduced . 

Suppose we want to write an amplitude which possesses an 
infinite number of poles in the s-channel in an integral form. One 
possible way74l is to  write 

1 
A(s ,t) = .f 

0 
dv v-Q (s) f (v,s ,t) (II. 6) 

I n  
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where f(v,s ,t) is regular at v = 0 . Eq. (II.6) is well defined for any 
Re o,(s) < 1 . When 0 < Re a(s) < 1,  we can perform an integration by 
part and get 

A(s ,t) 

I 

l 

V 1 

1 v = 0  

1 
all) 

1 

I 
0 

v1-oz,(s) f v(V,S ,t)dv 

1 " " G.(s) 
0 v f _(1Is!t} l 1 

1 -  ifs) 1 -a(s)  f V(v;§,t) dv . (11.7) 

uh! 
I 
a l  

h.sl. uf4II.i] Now the integral at r .  H in Re d(s) < 2 
and we have explici y prevented us 
from using (II.6) be a (simple) pole at 
that point. Therefore t G.(s) = 1 , we can 
use (II.7) . Clearly I - l i i t y  of (II.7) arbi- 
trarily to the rlght in the complex cr.(s) plane provided that f(v,s ,t) is 
differentiable an arbitrary number of times and its derivatives are reg- 
u l a r a t v = 0 a n d v =  1. 

If we now want to crossing symmetrize between the t and the s 
channel, one possible way to do it (but certainly not the only one) is 
to write 

hnugluhru 

f(v,s,t) = (1 - V)'¢1(t) g(v: s,t) (II. 8) 

where , by requiring 

g(v; s, t )  = g(1 - v; t ,s)  (11.9) 

we make A(s,t) =A(t ,s)  . Eq. (II.6) becomes then 

l 
A(s,t) = I . t ) .  

0 
dv v-<I(5) (1 - v)-°(t)9(v: s (II. 10) 

We can then repeat the above argument to show that A(s ,t) as 
defined in (II.l0) has an infinity of (crossing symmetric) simple poles 
in the s and t channels at the points (II.5) provided that g(v; S ,t) 
satisfies (II.9) and is regular (together with all its derivatives) at 
v = 0 and v = l . 

In particular, if we choose 

9(v: s, t )  E 1 (11.11) 
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we get, a s  a special case, exactly the Veneziano amplitude since 
(II. 10) appears now to be the integral form of the Euler B-function 

B(x,v) l`(x) l"(y) 
I`(x + y) 

l 
- .v 

0 

x dv v 1(1 - v ) Y  - 
Re(x,y)> 0 

1 (11.12) 

Another "derivation" of (II.3) has, again, been given by Vene- 
ziano75l by using the Khuri expansion . 

It should also be mentioned that Schm1d32l has shown that for- 
mulating super convergence at infinitely many discrete t-values one 
can construct an amplitude which coincides with (II.3) . By construc- 
tion, however, this solution depends crucially on the various assump- 
tions that are made so  that, although very elaborate and ingenious , 
we do not think that this method sheds very much light on the ques- 
tion of how fundamental or unique Eq. (II.3) may be . This conclusion 
is reinforced by the analysis of Wes1:76) who has considered the same 
problem discussed by Schmidt) under somewhat different assump- 
tions . 

Clearly, the example represented by (11.3) can be adapted to 
describe essentially any invariant amplitude in which the quantum 
numbers of the channels are given. This can be seen by suitably 
modifying (II.3) as follows 

p V nmis ,t) "¢@DTW~¢©)  
- U W ) - u M )  

= T`(n 
VIP 

(11.13) 

where, for what was said previously (to avoid the appearance of 
double poles and of ancestors) one must assume 

S max(m,n) p s r n + n  ( rn ,n20) .  (II. 14) 

In Eq. (II. 13), m, n and p are integer or half-integer positive num- 
bers (according to whether the corresponding Regge trajectory will be 
a meson or a fermion trajectory) . The particular example of Eq. (II.2) 
provides a crossing symmetric amplitude , but one can similarly con- 
struct amplitudes that satisfy general crossing symmetr requirements. 
This has been done for a number of physical processes. 7) 

Crossing is actually one of the most appealing features of 
(II.3) since this is the first time that an expllc1t, very slmple, com- 
pletely crossing symmetric amplitude has been written down without 
having to crossing symmetrize a posteriori. Because of this explicit 
crossing symmetry we can concentrate on the properties of (II.2) in 
one given channel and they wlll be valid in every channel . 
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C .  Asymptotic Behavior 
If we assume that I I  

-| an 

- t o o  
l0°(s)l 

IsI 
then, at fixed t ,  and for any s such that 

| arg a(s) | 

we have, using Stirling formula 

2 e e > 0 

(11.15) 

(11.16) 

-u 

- v a n  
V(s,t) I`(l 

IsI 
- <»(r))[(S)]a(&)-1 (11.17) 

We therefore come to the conclusion that the V.M. is asymp- 
totically Regge behaved (according to the definition of Sec. LE . )  
provided only that the Regge trajectory o.(s) is , asymptotically, linear 
in s 

a(s) 
IsI 

-O 

co 
0(s) (II.18) 

Due to the combined properties discussed so far: 1) crossing 
symmetry, ii) poles in all channels, iii) Regge behavior, we imme- 
d1ately conclude that Venez1ano's amplitude has duality according to 
definition A) of Sec. LF .  We shall discuss later whether or not 
duality according to definitions B) and C) is also a property of (II.2). 

If one next considers what happens when both G.(s) and q,(t) tend 
t o  infinity (asymptotic behavior | sl - oo at fixed angle) , assuming 
(II. 18) to hold and applying Stirling formula again (with the same limi- 
tation (II. 16)) one finds 

lim 
S-Q-l-Q 
t -u -up 

V(s,t) II 0(e-S const) (11.19) 

The above behavior (which is a strict consequence of the linear 
growth of the Regge trajectory) is a somewhat unsatisfactory predic- 
t1on of the model . 
bound of Cerulus and Martin78) prediction that an amplitude cannot 
decrease faster than an exponential in/'s 9) (up to logarithmic fac- 
tors) since this bound is derived under the assumption of analyticity 
conditions that are not satisfied by the V . M .  Rather, a more com- 
pelling reason is that Eq. (II.19) shows a too fast rate of decrease 

This is not so  much so because of the fixed angle 
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1e-11- .u 
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plot of c:.(s) given in Fig. 10 (see 
angular distribution at high energy 
m a straight line is definitely evi- 

on the other hand, simply the effect 
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Fig. 1 0 .  Plot of u(s) in the negative s region is derived from 
high energy p-p elastic data (from Ref. 80) . 

Whereas one could argue that the evidence mentioned above 
comes from elastic scattering data and the V.M. cannot contribute to 
the Pomeranchukon (see Sec. LG. )  so  that a direct comparison is not 
fair, the point is that the diffractive contribution is expected to be 
negligible in the large angle region. Furthermore, it appears that the 
large angle behavior of the v.M. would be the correct one should the 
"effective" Regge trajectory a(s) deviate asymptotically from a 
straight line toward a is behavior as suggested by many authors . 19) 

D. Analyticity 
Here and in the following the word analytlclty will never be used 

in the conventional sense in which it has often been used for scatter=- 
ing amplitude sin physics , i . e  . referring to the property of satisfying 
a dispersion relation or a Mandelstam representation. The amplitude 
(II. 2) cannot, strictly speaking , satisfy any dispersion relation or 
Mandelstam representation because it is a purely meromorphic func- 
tion of a(s) , a(t) and co,(u); furthermore, it is badly behaved in the 
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unphysical domain of the s - u - t Mandelstam plane for s -»+o° and 
t/s -» positive constant. However, the fact that an amplitude does 
not satisfy Mandelstam representation does not mean that it cannot 
have good analytic properties . 

With the above clarification, the V . M .  has a priori rather nice 
analytic properties since the following structure holds : 
i) we have an infinite number of resonances in every channel cor- 
responding t o  the values (II. 5) 

cx(s) n n 1 , 2 , 3  ; 1 • • (11.5) 

provided a(s)3*oc, w, 
ii) (II.3) may have, in principle, a very complicated cuts structure 
provided this structure is due to the properties of q,(s)_ This is quite 
clear since a gamma function is a meromorphic function of its argument 
and therefore it is only if d(s) possesses cuts that this will be true 
for the amplitude in the V.M. v 

We now want to  explore the possibility that Cr,(s) satisfies the 
analyticity properties that we would expect on physical grounds. If 
2 is the physical threshold we will suppose that 

lm 0(s) = 0 S S  E (II. 20a) 

lm a(s) > 0 s > Z  (1I.20b) 

'Re o,(s) -» in 
S*i°° 

I c1.(0) S 1 (II.20c) 

Condition (II.20b) is the requirement that the total width of a 
resonance be positive. Condition (II.20c) guarantees that infinitely 
many "true" resonances are found (whenever Re a(s) crosses a post-' 
five integer) and that in the negative s region Re a(s) does not oscil- 
late to infinity. In fact we can as well suppose that Re a(s) has no 
zeros on the negative s axis . Under these conditions o:(s) is propor- 
tional t o  a Herglotz function and can therefore be written as  

Ms) = R(s) H(s) (11.21) 

where R(s) is a polynomial and H is a Herglotz function 
m 

H(s) = H(0) + s {A + j  
2 

lm a(s') 
s ' ( s '  - s )  ds '  (11.22) 
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with H(0) and A real (A 2 0) . 
choice 

Therefore, if one takes the slmple:st 

R(s) = const (11.23) 

one would be led to the conclusion that, unless A = 0 

lim Is-=° a(s) = A s  (II. 24) 

in agreement with that required by (II.20) which was needed to obtain 
Regge behavior. notice , however, that the above argument is only a 
plausibility argument in favor of an asymptotically linear behavior 
since nothing prevents A from being zero. In this case, whereas d,(s) 
would still be linear around s = 0 ,  
a s  | sl -» <», but it can be shown82) that the deviation from linearity is 
very small . 

it would increase less than linearly 

E.  Unitarity and the Structure of Resonances 
Unitarity is the most troublesome aspect of the V .M  . to the ex- 

tent that in order to avoid its violation either one has to give up the 
analytic properties that one would expect an amplitude to display, or 
else one must allow ancestors to appear . 

To see how this comes about, we have to give a closer look to 
the resonance structure and to the ensuing analytic properties of the 
V • M » 

Let us consider the resonance at c1.(s)=n+1 . Remembering that at 
z = -n one has 

1"(z) :¢ 

-zQ'n 

(-1)" 
n l  n 

1 
Z + (II.25) 

the residue of V(s,t) at a(s) = (n 1) is + 

Rn (t) Vu (in) (-1)" 
I`(1 - n - a(t)) n (11.26) 

Using 

I`(z) 
1"(z - n) (-1)" 

I`(n+ 1 - z) 
I ` (1-z)  (11.27) 

one finally finds 

Rn(t) 
= T`(n + u.(t)) 

T(a(t)) 
(II.28) 
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Notice that if we interpret a(s) as the Regge trajectory, we 
would like to require that the residue at the resonance d(s) = n + 1 be 
a polynomial in t at most of the same order. A look at (II.28) shows 
that Rn(t) is indeed a polynomial in t of order n if and only if 0,(t) is 
strictly linear. Whereas thls is compatible with (II. 18) whlch was 
needed to  get Regge asymptotics , it is incompatible with the analy- 
ticity requirement discussed in Sec. II.E. since no strlctly 11near 
amplitude can satisfy a dispersion re lotion of the form (II.22) . One 
could get away by giving up the dispersion integral for the Regge tra- 
jectory and therefore assume that the latter is indeed strictly linear 

q ( s ) = a + a ' s = a + b s  . (11.29) 

Under these circumstances , however, we cannot but violate unltarlty 
a priori. Unitarity, in fact, requires the residue Rn(t) to  be a real 
polynomial in t .  This is possible only if both 0. and Q' are both real . 
But, if this is so,  the condition 

I 

cL(s) n (11.30) 

means that the whole spectrum of the v.M.  does not consist of bona 
fide resonances but is made of poles on the real s axis . As discussed 
in part I, this. situation is referred to  as "narrow resonance approxima- 
tion"9) (NRA) . From the point of vlew of unltarity, the trouble is that 
this corresponds to having a situation in which the imaginary part of 
the resonance , i .e .  the total wldth of the res onance is zero, whereas 
the residue at the pole, i .e  . the partial width is nonzero. This is r 

clearly, a violation of unitarily and in fac t ,  for what was said before , 
this violation inherently occurs in every NRA. 

Essentially we can summarize things as follows: 
a) we can let d(s) obey (II.22) so as not to spoil analyticity; this 
turns out not to be a straightfonuard point at a1183) and we shall dis- 
cuss how one can do this in the following. In this case, c,(s) cannot 
be purely linear and as a consequence , ancestors must appear . 
b) we can assume c,(s) not to satisfy (II.22) and to be linear with 
complex coefficients . In this case, the total wldth is nonzero but the 
partial width is complex (ghosts) and 1in1tar1ty is 'violated . 
c) we can assume c,(s) to be strictly linear with real coefficients (in 
this case if the residues of the Legendre polynomials are positive , 
there are no ghosts) . The total width of the resonance is,  however , 
zero (narrow resonance approximation) , and unitarily is , again , 
violated . 
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In either case b) or c) , both unitarily and analyticity are lost 
(the latter in the sense that there are no cuts and the amplitude is , 
strictly speaking, a purely meromorphic function of s r t ,  u) . 

Normally, in discussing or applying the V .M.  , possibility c) 
above is the one considered and we now want to discuss it a bit more 
in detail. In this case, not only the V.M. is ,  a s  mentioned above , 
a meromorphic function but there also follows a fairly unpleasant con- 
sequence concerning the region of validity in which the Regge asymp- 
totic behavior takes place . To apply Stirling formula , in fact, limita- 
tion (II.l6) must be imposed. However, ifoL(s) is real, (II.l6) 1m- 

-| - 

we take s to be positive, then the prescription would require that 

oo 

lm V S(s,t) =ii N{1 + Mil) 
1"((r.(t)) n! 

n=0 

6 ( n +  1 -a(s))  

P _ l"(n + c1(t)) 
Re v s(s. t )  r(a(t)) n !  n + 1 - CL(S) - 

n=0 

The modified amplitude Vs('s ,t) defined in (II.3l) would now , 
formally, satisfy a dispersion relation . 

From the point of view taken above r therefore , one would say 
that the exclusion of the real axis from the asymptotic behavior cor- 
responds to the recollection of a cut in the amplitude . The point , 
however, remains that the above procedure does indeed give rise to a 
somewhat different model than represented by (II. 2) which is purely 
meromorphic function of a(s) . 

(11.31) 
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#suit 

Yet another aspect of the vlolation of unitarily in the V.M.  will 
be discussed in Sec. II.]. in connection with the appearance of fixed 

l.l'* I l I - l  l 

the other hand, may cast doubts on the 
s of such a program. It should also be 

able program(the one of unitarizing the V.M.  in its partial wave ex- 
pansion) I 
thermore I 
be preserved . 

the rlsk is that in thls way crossing symmetry is lost; fur- 
ther§9 s no guarantee that the asymptotic Regge behavior will 

F .  Daughters. Decoupling of the Odd Daughters . 
As noticed in Sec. II.E. , the residue Rn(t) as given by (II.28) r 

together with (II.29), is a polynomial in t of order n which is just 
what we would expect from the identification of a(s) as the Regge tra- 
jectory. The fact that all powers of t from n to  zero are present means 
that beside the leading Regge trajectory (parent) there are (parallel) 
daughters spaced of one unit of angular momentum. The usual analy- 
t1c1ty arguments or 0(4) symmetry arguments would in the present case 
require the daughters to be spaced of two units of angular momentum . 
It should be remarked that there is in principle nothing against these 
odd trajectories . In fact, according to the general decomposition of 
Tm -» nw, the only condition that must be satisfied is that the invariant 
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amplitude A(s,t,u) be crossing symmetric which is the case for (II.2). 
More explicitly, one notices that if a(s) = n + 1, the two resonant 
terms in (II.2) [that is V(s ,t) and V(s,u)] have the overall residue 

R n(t) + Rn(u) r (  (2) ( ( J )  I`((1(t))t + F n + ¢ u  ] 
1` (a (u)) (11.32) 

mum order to 
Eq. (II.39) is a polynomial of order n in both t and u which, if we 
write t and u in terms of cos BS (Gs scattering angle in the channel in 
which s is nh en kg variable) is a polynomial M cos" is of maxi- 

n/2). This Is, o 2-ourse, just what we expect for a crossing symmet- 
ric amplitude and there is a priori nothing wrong in the presence of 
odd daughters . 

It has been, however, shown by \ 
vlce can altogether get rid of these odd | 
0(s) linear and let us consider the first _ en inta- 
ger a 's ,  i . e .  d(s) = 2 .  According to (II.32) the residue in this case is 

denotes the largest entire number contained in 

MW I 

RE _Get) +O.(u) (for a(s) = 2) (11.33) 

and the pole is absent if we demand that this residue is zero. 
can be satisfied by imposing that 

This 

a,(s) + 0,(t) + a(s) = 2 .  (II. 34=) 

The very remarkable thing happens that condition (II.34) not 
only takes care of eliminating the pole at a,(s) = 2 but removes also 

subsequent even resonances MS) = Zn and thus completely de- 
couples the odd daughter trajectories. An interesting consequence of 
(11.34) in the specific case of in -» Trw is that it leads to the predic- 
tion that 

2 a l : - 2 m 3 + m  + 3 m 3 ]  
p up n =a(-.53(Gev/¢)2) = 0 . 

(11.35) 

This condition was already derived 1) 
of FESR and already commented upon . 

Applying the same technique and the same constraint (II.34) to 
the case of am * up (in which the only trajectory in either s or u is the 
As and the only in the t channel is the p) we get 

in Sec. I .B. as a consequence 

0A2(s) + aA (u) + onp(t) 2 (11.36) 
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r = I _ 
at) GAS 

Furthermore using m .6(GeV/c)8 in 
0 . 

0 = AA2( ) a __ 
2 

1 -é' 
3m 2 

(II.36) one gets 

mTr3+ m 2 

n =- 36 Sm a ' w TT 

_ m  2 _  
D Lu 
31T12"'TN. 

p 

(II.37) 

(II.38) 

which predicts 

mA2 ==' 1350 MeV . 
Similar applications of constraints of the form (II.34) have been 

considered by other authors . 90) . 
An important byproduct of constraints of the form (II.34) arises 

now if we consider the entire amplitude in the V.M. According to 
(II.2) this reads 

(11.39) 

A(s,t,u) = V(s,t) + V(u,t) + V(s,u). (11.40) 
l.ll 

Let us consider the limits s - oo at fixed t .  In this case , slnce 

s + t + u  E 

it is seen that u - -oo and therefore if V(s ,t) is Regge behaved (with 
the restriction (II. 16)), so is V(u,t). The question remains, however, 
of what is the behavior of V(s ,u) . This depends crucially on the rela- 
tive growth of a,(u) and a(s) . However, if (II.34) holds , we can 
rewrite 

V(s .u) sin no (t) 
sin no (u) 

V(s,t) (II.41) 

so  that V(s ,u) is r in this case , Regge behaved to the same extent of 
V(s ,t) . 91) 

It iS also easily checked that for the Regge behavior of the . -  | 

entire amplitude (II.40) not to be spoiled, it is actually sufficient to 
replace (II.34) with the less restrictive condition 

a(s) +c.(t) +a(u) = c 2 2 (11.42) 

and, strictly speaking, it is enough that 
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EMs) + a(u)] = const lim 
is l~=» 

l a g  sl > e 
t fixed 

(11.43) 

!s!ns!lIln cs!np!!1!l!l!1s§I!l!e\l.!l!. 1!1v|IlI|!s!!!e|nl||!1slt|i|sI!s!- 

The above argument implies that a constraint on the trajectories 
of the form (IL34), (II.42) can be necessary to give a well defined 
meaning to the asymptotic behavior of the entire amplitude . 

As it will turn out, the validity of constraints between the 
Regge trajectories in the various channels will be crucial in the prob- 

1 1 

G. positivity Condition 
For an elastic scattering , unitarily requires the residues at the 

resonances t o  be positive. Such a positivi ' 
restrictive than the unitarily requirement w 
positive total widths etc. r should neverthe 
sically satisfactory model. That this is not 
been show§17 Jy Oehme in trying to saturate : 
relations D 

The analysis of the positivity condition in the V.M . has been 
carried out by several authors and here we will only state the results . 
First, a numerical analysis98) has shown that for the leading term of 
the V.M.  in rrrr scattering 

11 . 
!!!!'1'!»s 

11.11 

V 
TT1T 

I n  r(1 
I`(1 

o:(s}) FU - a(s) - 
- uLt)) 

(»(t)) 
(11.44) 

there are no ghost states among all daughters up to the 50th recur- 
rence (for linear t raetor ies whose intercept is oL(0) 2 é) . 

Other authors 9 have analyzed the positivity condition within 
the general context of the properties of the V.M. in the complex 
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angel in with results similar to those of Ref. 99.  Oehme 
has |_....,....... _. that, with the exception of the lowest term (II.44) 
individual higher Veneziano terms of the general form (II. 14) have 
infinitely ma negative 
been provedl ) 
asymptotically positive provided only that 

residues. Finally, the general result has 
for the leading term (II.44) that all residues are 

0(0) > .L 
B (11.45) 

This means that, at most, (II.44) will have a finite number of ghosts . 
H. The V.M. and Gomplex Regge Trajectories 

The problem of whether or not one can modify the structure of 
the V.M. to have at the same time analyticity and nonautorlatic vio- 
lation of unitarlty has been considered by a few authors .83 ,95) ' 102) 
In particular in this section we want to discuss what would happen if 
we retained the v.M. and allowed Cr,(s) to become complex and satisfy 
a dlsperslon relation (II.22) . This has been the attitude taken by 
Roskies _83) (See also Ref. 103 .) Because of what was said in Sec. 
ILE. it is quite obvious that even If we succeed in removing the v1o- 
lation of analyticity, and having finite total widths r there still would 
be the problem that ancestors should appear. One may, however , 
argue that this is preferable to the appearance of resonances having 
zero total widths but flnlte partial wldths . 

The trouble with letting a(s) satisfy a dispersion integral is 
that, clearly, one cannot have a relation of the form (II.34) any more . 
As a consequence, it may happen that the third term V(s ,u) in (II.40) 
becomes unbounded as s -» an In fact, it turns out that 
lm 0(s) is very strongly that V(s ,u) will 
diverge . The following theorem 
Theorem. Suppose 

at fixed t .  
constraineden order to avoid 

h01d5:83 

(a) 

(b) 

l- a(s) = a + b s + S  
'IT 

lm 0(s) 

Ima(s') 
s ' ( s '  - 5) 

to 

I ds ' 
2 
-» + Q . 

S-0-l-Q 

(11.46) 

(11.47) 

(c) For some u. 0 < p <  1 

(d) 

lm q,(s) 
so - u 

I(s) 

-0 0 a s s - » = » ;  

Ima(s) 
1 -  s u 

(11.48) 

(11.49) 
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S 

satisfies a smoothness condition of the form 

II($1) ' I($2)l C ls l  ' 5a lY  

for some C ,  y >  Owhen 131 - 521 S 1. 
If we now denote 

(11.50) 

9(3) = G(s) + a(u) . (11.51) 

< s 

then the following is true 

l 1 - (A) IRe g(s)l c !"1r,n s 

(B) There exists a k > 0 and a sequence s for which n 

as s-ow (11.52) 

- 
Re g(sn) 

lm Msn) 
M k  (11.53) 

1m3a pa! We refer for the 
gina paper83) and slnply n 
finds that the V .M . is !t11l, 

s theorem to the ori- 
quence of it is that one 
if 

lim Ima(s) 
Q 81-u S - »  = +=» for all positive u (11.54) 

but 

ds < Q 

m l* lm a(s) 
So 

Under the above conditions , the poles move away from the first 
sheet and the amplitude is still Regge behaved in every direction of 
the s-plane outside the cone (II.16) . 

An example of a,(s) for which the conditions discussed before 
hold is 

(II.55) 

-» 
s 

lm a(s) 
5-*m (Ln s)v V >  1 (11.56) 

0(s) 1 1 -  l ( L n s )  V +  

Inserting (II.56) into (II.46) one gets 

s =-= bs + T1 _ 
5-ooo V 

and the amplitude behaves as 

(11.57) 
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A(s,t,u) °' {a(s)]0(t) =* (b3)a(t) [1 +nb(v(tl 1) (in s)1 V + . . . ] 
(II.58) 

i .e.  consists of powers of s with logarithmic corrections. As shown 
long ago by Freund and Oehme104) the term with logarithms arises 
from cuts in the complex angular momentum whereas the first term is 
due to Regge poles. Thus, when lm a if 0 ,  besides Regge poles at 

»L=a(s)  - n  n = 0 ,  1 , 2 ,  .. 
the model has cuts which end at each of the Regge poles . 

As already noticed, we also have ancestors because now the 
residue Rn(t) (II.28) is not a polynomial of t any more. It is argued 
in Ref. 83 that although these ancestors lie on the Regge trajectories 
L = cr.(s) + n. they are not really Regge poles in the usual sense since 
they will not contribute t o  the leading behavior . 

More specifically, the argument goes that at a given energy Sn 
not all the infinite partial waves that resonate do couple strongly . 
In the expansion of the residue Rn(t) in Legendre polynomials 

Rn(t) : , 2 CLD P ( Z )  (11.59) 

the coefficients decrease very rapidly (with an exponential law) wlth 
increasing L at fixed n.  Furthermore, one has that Ctn is maximum 
for L °= n . This observation could also, incidentally, reconcile the 
present trend of linear growth of Regge trajectories with the previously 
noted deflection to a square root asymptotic behavior in the sense that 
the latter would be exhibited by some sort of "effective " Regge 
trajectory . 

If we retain the usual definition of the width of the resonances 
in terms of the trajectories on which they 11e 

I`(s) = 
/s 

lm Ms) 
d Re Ct 

ds 

(11.60) 

we see that in the present case this implies 

S 
1" a: 

(Z,n s)v 
(11.61) 

It is amusing to note that the behavior (II. 61) is extremely close 
to the empirical one suggested by the plot of Fig. 1 . 
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Other examples have been suggested95) ' 102) in which the same 
qualitative situation as in (II.6l) arises in the sense that the "width" 
of the resonances , far from being zero, increases rapidly with energy. 
This may actually represent an indication that as the energy increases, 
the effect of a resonance becomes less and less pronounced so  that , 
for every practical purpose, their effect washes out to  some smooth 
background . 

so 
I 

m=ur1. 

I. Duality and the Interference Model in the V .M.  
As previously noted, the V . M .  does certainly possess duality 

if def. A of Sec. I.F. is used. This is ,  however, not so surprising 
since , in fact, this definition has been given with an eye on the V.M. 
As remarked before, the key dynamical ingredient in this definition of 
duality is the assumption that infinitely many resonances appear and 
act as if they could represent a complete set in some way. Without 
this , duality would be indistinguishable from crossing symmetry and 
Regge behavior. With the above qualification, one should perhaps 
be explicitly cautioned that def. A of Sec. I . F .  of duality may reveal 
still too limited when trying to construct an amplitude that also saris - 
fies unitarily and normal analyticity requirements . In these condi- 
tions , probably, a somewhat je on of duality may 
be needed. However, special | definition of 
duality was given to avoid any I as to whether the 
asymptotic behavior should aria One may therefore 
hope that such a definition cou also for amplitudes 
which are not purely meromorphic . 

We now want to  briefly discuss whether the stronger definition 
C) of duality can be applied namely, whether it is true or not in the 
v.M . that it is the direct channel poles that build up to  the asymp- 
totic Regge behavior. That this sentence cannot be given any well 
defined meaning was the content of Ref. 44 and was already discussed 
in Sec.  I .F .  Summarizing very briefly, the argument was that so long 
as direct and crossed channel poles coexist together one has equal 
rights to attribute the asymptotic behavior to  either set or to  a com- 
bination of them or, more probably, to the effect of very many proper- 
ties of the function under consideration (poles, zeros, etc. ) .  The 
stronger statement was, however, proved in Ref. 44 (see also Ref. 45) 
that one could not give a meaningful content to def. C of Sec. I .E.  
unless one could prove the existence of an entire function (of s) of 
infinite order which was also Regge behaved (according to 
the definition of Sec. I .E.)  as | sl -' w .  Even if such a function would 
exist, however, def. C would still be ambiguous . 

euiqn-ul 
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In Ref. 44 the above results are proved by showing that the 
V.M. can generally be cast in the form of a generalized interference 
mode1.47) AB) To show this , consider for instance 

V(s,t) 
= re - a(s)) r(1 a(t)) 

I'(2 - a(s) - a(t)) 
(II.62) 

(the same considerations .apply to V(t,u) and V(u,s)) and let us use 
the integral representation 

-a(s) x) 'Ct lt) 
1 

V(s ,t) = .l` dx x (1 

0 
valid for Re[a(s), a,(t)] < 1. As noted previously, the s-channel poles 
(direct channel poles) are associated wlth the lower limit of integra- 
tion whereas the t-channel poles (crossed channel poles) come from 
the upper limit of integration. Therefore , if we split 

I (II.63) 

V(s ,t) ==V§(s ,t) + Vt(s ,t) (II. 64) 

with 

Vs(s,t) = .to dx X-0L(s) 
0 

al - a(s) 
1 - d s )  2F1(a(t), 1 

(1 - X)-a(s) 

a(S): 2 -- a(5): a) (II.65) 

and 
1 

V (s,t) 
t 0 

a 
dx x -a(t) (1 _ x)-a(s) 

E 

(1 _ a)1 - a(t) 

1 - a(t) 2F1(a(s), 1 0(t): 2-(1(t); l - a )  
(II.66) 

(2F1 being the usual Gauss hypergeometrio series), we see that 
Vs(S ,t) contains only direct-channel poles and V-t(S ,t)~contalns only 
crossed -channel poles . The parameter a is completely at our dis- 
posal provided we do not choose it real and negative or real positive 
2 1 where the hypergeometric functions in (II.65) , (II.66) have cuts . 
If we can choose a such that for la(s)l -0  w. Re r1(s) > 0 ,  Vi(s,t) gives 
the entire asymptotic behavior (II. 17) whereas Vs(S ,t) goes there ex~ 
ponentlally to zero, the decomposition (II.64) makes the V.M. indis- 
tinguishable from a generalized interference model. 



DEVELOPMENTS IN HIGH ENERGY PHYSICS 

Recalling that105) 
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?_.n;F(cf..B: y: z) 1"(v) 
l"(y - a) 

;:;z 
( - 8 z ) " * l 1 + 0  

[ H O C  D] 
(IB1I 

16121 (11.67) 

we see that provided 

R e [ ( 1  a) a(s)] < 0 I (11.68) 

the asymptotic behavior of (II. 66) is exactly given by (II. 17). In the 
same case (and with the further lirnitatégp given by (II. 16)) one can 
also check that Vs (s ,t) goes to zero. Notice that if *F E arg(l - a), 
condition (II. 68) ensures that Vt(s ,t) gives the asymptotic behavior 
in the open half plane 

2 'Y 2 \y < arg CL(S) < 

In particular, if Y is chosen close to 71, we find that (II.64) pro- 
v1des a decomposition of the V.M.  in the form of an interference 
model in the open half plane Re d(s) > 0 with the wedge IRe a(s)l < € 
(e arbitrarily small) excluded . 

This result clarifies the close connection between models show- 
ing duality (according to def. A of Sec. I.I-`.) and generated inter- 
ference models and, combined with the findings of ergo and of 
Hsu, Mohapatra and Okubo,48) gives also a very strong support to 
the conjecture of Sec.  I.I. of an equivalence of the form "duality" 
;> generalized interference models . " It is not, however, obvious 
that the arrow in the above equivalence statement can be reverted . 

It should explicitly be noticed also that Coulter, Ma and shave) 
use the V . M .  as a guide to suggest an interference model which is 
slightly different from the one discussed here. Taking the limit Isl-»=» 
at fixed t , they essentially replace the term V(s ,t) (containing s -  
channel resonances) with resonant terms but retain the asymptotic 
contribution coming from V(u,t) slnce this is essentially real (as s -o 

+==) and cannot give rise to  any loops in the Argand diagram. This 
procedure not only very heavily relies on the validity of Schmld's 
conjecture (Sec. I .E . )  but appears also rather arbitrary. The appli- 
cat1on of the above prescription to the fit of Tr'p - T'r'p backward scat- 
tering seems , on the other hand, rather encouraging . 

We flnally want to see whether the V . M .  can be said to satisfy 
duality at least according to def. B of Sec. I .F . , 1.e.  in the sense of 

(II. 69) 
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satisfying FESR. Clearly, strictly speaking this is not possible if we 
consider the amplitude of the V.M.  as a meromorphic function. Vene- 
ziano,4) however, has shown that (II.2) can be made to  satisfy super- 
convergency relations if interpreted in the sense of a NRA according to 
the discussion at the end of Sec. II.E. (see (II.l3)). To see this the 
following steps are needed: first one takes a smoothed Regge form for 
lm A(s ,t) 

1`la(s) + a[t) - 1) 
s-ooo I`(a(t)) I`(1(s)) 

ImA Reggel s , t  ) B (11.70) 

and one verifies that 

8 
lm ARegge I"(t1('Q.) l a ( s )  

+a(t)2- 2 a (t) _ u  l 
(11.71) 

coincides with (II.70) up to the second leading term . 
The first moment sum rule reads (v = S 4 U ) 

l`(a(t)) a(t) + 1 

N 5 do v lm A(v,t) 
0 

Na (11.72) 

The last step needed is to assume that (according to (II.31)), for 
for s positive V(s,t) + V(u,s) give 

n T`(1 -a(t}] 6(s -sn)  
a'II(n) 1"(2 - n - c¢.(t)) 

on 

lm A(v,t) = -B (-1) (t 

n=1 

Setting N midway between the nth and the (n + 1)-th resonance we now 
get 

+ Hu) 

_L+ 4.n] flu. + 2n} 
1) I`(2n + 1) 

m v 
L T`(a + 

n=0 

l`(a + 2 + Zm) 
T(2 + U.) I`(2m + 1) @ m + 1(6) 

(11.73) 

(II.74) 

a + 1  
dl m + 1  

u , + 2 + 4 m  
2 

where am is the same function already encountered in Sec. I .B. 

= l"(.2m +1) Q 
1"(a + 2 + Zm) 

As in Sec. I .B. the consistency condition requires 

Q m = 1 + 1(a) 

(11.75) 

(11.76) 
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which is rather well satisfied for a(t) < 2m and becomes a strict equal- 
ity a s  m -» w at fixed fx(t)- Also, if a(t) < -1, from (II.74) we obtain 
the usual superconvergence sum rule . 

We therefore conclude that, to the extent to which the modifica- 
tions of the V.M. leading t o  (II.70), (II.7l) and t o  (II.73) are ac- 
cepted, the V .M .  satisfies FESR and therefore also duality according 
to def. B of Sec. I .F .  is in a way a property of the model. Remember- 
1ng , however, the remarks made in Sec. II.E. on the NRA interpreta- 
tion of the V.M.  we see also that def. B of duality (Sec. I . F . )  is 
literally not applicable to the V .M . Notice also that in the previous 
argument the term V(u,t) has been completely ignored; furthermore , 
the disagreement between (II. 71) and (11.70) rapidly increases as we 
move away from the asymptotic region . 

I 
be 

_n l *lr "-r".l1- 

II 
'II 

K. Angular Momentum Properties of the V .M . 
The properties of the V.M . in the complex angular momentum 

plane and in the Lorentz lane have been studied by a number of 
authOI'S.99),107),108),l()9),ll0),1ll),ll2),ll3) 

We shall in the following consider the specific example of linear 
trajectories (II.29) and concentrate on the case of on elastic scatter- 
ing for which the building block is given in Eq. (II.44) . The results 
can be stated as follows : 
i) the partial waves have , for physical /L, the correct threshold 
behavior; 
11) the positivity .c.) holds if c,(0) 2 ii 
iii) there are in t Htfinitely many Regge poles with 
parallel trajectori f of angular momentum; 
iv) there also are I _._. _ .  . _  at the negative integers (non- 
sense wrong signature integers , according to a somewhat accepted 
terminology) ; 
v) partial waves do exhibit some sort of duality in the sense that 
the contribution iron the Regge amplitude in the crossed channel is 
roughly the same as  that of the direct channel pole in calculating low 
energy quantities; 
vi) in the Lorentz plane there also is an infinite sequence of Lorentz 
poles and, again, fixed poles at negative integers . 

We now turn to the analysis of points iii) and iv) above for 
which we use107) the expansion 

110) 

V(s , t)  
1 

t`((1(5)) 2 
n=0 

F(n + 1 +m(s)) 
T(n + 1) 

1 
D + 1 - G ( t )  (11.77) 

which , together with 
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a(t) = a + a t  

s = 4(k2 + u2 ) 
(q.I> 0) 

t I 

z I 
1 l l -  ""?|. 

(11.78) 

can be rewritten as  

V(s,t) = 1 
I'(o.(s)) 

l 
Zu' k2 

The partial wave projection of (II -| 

= . 1 Z 
2K1 k3r{a(s)) f ( s )  

up 

5 . . . |  

I`(n + 1 + a(s)) 
l"(n + 1) 

(11.80) 
n"0 

which is the Froissart-Gribov expression for the continued partial 
wave I 

continuation to f 
we set 

Therefore, (II.80) , wherever it converges , provides a unique 
(s)  . To find the region of convergence of (II.80) , 

f *{(s) I f »E,n(5) 
n=0 

(II.81) 

and note that for n -» m 

f Ln 

Bo (s) 
(s) 

(n + 1)* + 1 MS) + 
51(5) 

+ 
(n + M* + 2 a(s) (II.82) 

where the first coefficients are given by 

Bo (5) :to T`{-L 
2 T'(x. + 

+ 1) 
3/2) (a' ks )L 1 

I`(q.(3)) 

B. (s) = so (s)[ a(s)(0(s) 
2 (L + 1) - 1)(2a'k2 - ] 

(11.83) 
Eq.(II.80) shows that if;(s) satisfies the usual threshold conditions 
wherever lt converges and (II.83) shows that f,L(s) is a holomorphic 
function of X, for 
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Re L > Re a(s) 

145 

(II. 84) 

and provided 

L 74-m (m = 1, 2 ,  . . . ) (11.85) 

ex (s) 9/¢n(s) +I [ i n  1 

The continuation below (II. 84) can be performed by wr1tlng 

II . 86 

n=0 m=0 

Bm(s) 
U* + m + 1 + 

wlth 

N-1 m 

g n ( s )  =§ Bm(s)2 + 
m=0 n=0 (n 

1 
1 ) L + m + 1  MS) 

n:1 
=- Bm(S) Qu, + m + 1 - 0n(s)) 

m=0 
1 In (II.87) , C(x) is the Riemann zeta function. 14) 

the series at the r . h . s .  of (II.86) is now for 

(IL87) 

The convergence of 

R e » r , > R e a ( s ) - N  (II.88) 

s o  that ex; (s) is now the sum of a regular function (the series) plus a 
finite sum of zeta-functions . Due to the analytic properties of the 
zeta function whose only singularity is a first order pole with unit 
residue at unit argument, we conclude that the only singularities of 
9&N(5) are poles at 

L Cf , (s)-m ( m = 0 ,  1 , 2 ,  . . . )  (II.89) 

107) with residue Bm(S) . These residues have been computed 
expression is rather involved analytically 

l m 
Bm(s) =*l* cos n a(s) e WAS); 

H p(S) 

p l  
p=0 

1"(p - Ms) -é )  Co - (0) 0t.(s) -é  
p 

2 p - 0 ( s )  -Q 

and their 

(II. 90) 
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where 

a 
p ( 

- - ( a  G.(S)(2ak2 a( 
) S) DP 

dup 

• : 
1 z0(s)y{,1 _ ey/I2cx.'k2 -a(s) _ 

Y/Za k2 y=0 

z0(s) was defined in (II. 78) and c*k(0) are Gegenbauer polynomials of 
zero argument . 

In Ref. 109 the problem of fixed point singularities is specifi- 
cally considered and it is shown that there are infinitely many fixed 
poles at negative integers arising solely from the V(s ,u) term in the 
complete Veneziano amplitude. This is at first sight very surprising 
si th s n ns ns wr fig signature pol s r is fly r 1 t d t the 
presence of the third double spectral funct1on115 (p(s ,u) in the spe- 
cific case we are discussing) which is by construction absent from 
the Veneziano model. One therefore must conclude that the third 
spectral function is not a necessary but only a sufficient condition 
for fixed poles to appear . 

In Ref. 109 it is also shown that it is possible to modify the 
V . M .  in such a way as to kill QQ the fixed point singularities by add- 
ing nonleading satellite terms to (11.44) only at the price of removing 
completely V(s ,u) . 

As it is known, fixed poles conflict with unitarily so that their 
presence implies a further violation of unltar1ty besides the ones dis- 
cussed in Sec. II.E. 

As a final comment, we notice that an analysis of the same 
kind as  the one briefly discussed before leads to very sim1lfflg0ytlg- 
s1ons in analyzing the V ; M .  in its Lorentz plane properties ' 
and we refer to the original papers for a complete discussion of this 
problem • 

K. Miscellaneous P1"Qp_<=&1es 
In the previous sections we have dis cussed most of the better 

understood properties of the V . M .  Many are still, HOwever, left out 
and we shall just mention a few here without entering too much into 
details . 
a) Exchange degeneracy. It is rather easy to convince oneself that 
the condition that certain channels are free of resonances demands 
an exchange degeneracy in the V . M .  (the argument i s ,  essentially , 
the same already given in Part I) . 
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First notice that, for linear trajectories , the slopes must be the 
same or else there would be physical regions in the fixed angle limit 
where the Veneziano amplitude 

v*:J m(<»i(s) , (1i(t)) l`[n - (1i(s)J l"{rn - cq{t)} 
F(p - (1i(5) - O.j(t)) 

(11.92) 

would tend to  infinity. The intercepts , however r 
Next, if we consider the I = 2 s-channel TT77 

2 
A (s ,t,u) = 

may be different . 
-o in amplitude 

v (s), a (un 
1 

o 0 - v 1 ( C 9 ( S )  - 
V11((1o(5), a£(f.)) + V 1((10(s). 

1 -.. 
Vl1(ap(u),q,f(t)) - 

Cl-(lJ.)) 

a g (t)) 
l.J 

IN ' u p  *II 
it is clear that we must have 

a (s) 
0 

on (s) (II. 94) 

in order to  guarantee that there are no s-channel poles . 
Similar considerations .can be made for the other cases where 

no direct-chanxel resonances are known. It has, however, been 
pointed 0ut116 that such a strict exchange degeneracy would, for 
instance, imply the impossibility of 112 scattering. Furthermore ex- 

-1-nl.r»,.- ! 

III! 

gnupg- 

' - s i ! - m  _ I I  

|. Ill I Ill l l -  1 l " * l I -1 '  II 
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This explosive proliferation of states is attributed to  the many body 
nature of the problem. A further complication of the problem is repre - 
sented by the appearance of ghost states connected with the difficulty 
discussed in Sec. II.G. 

The factorization procedure dis cussed in Ref. 85 appears as  a 
necessary preliminary step to the unitarization program attempted in 
Ref. 84 . 

In a somewhat less sophisticated approach to the problem , 
Freund118) has shown that higher and higher order terms in the V .M.  
are needed t o  ensure factorization of the parent Regge trajectory and 
of the first few daughters . 
d) Uniqueness . From the discussion of the previous sections it is 
quite obvious that there can be no answer to the question of to what 
extent the V . M .  can provide a unique parametrization to a scattering 
amplitude unless one makes very definite assumptions on what prop- 
erties one wants to attribute to such an amplitude. For instance , 
one may want to  allow a superposition of infinitely many terms of a 
Veneziano type but in such a way that there are no ghosts , no parity 
doubling, no fixed poles and factorization is obeyed together with 
crossing and Regge behavior. No such program, to the best of our 
knowledge , has been shown to be feasible although many authors 
have variously commented on the uniqueness of the Veneziano repre - 
sentat1on.32)'119)f 120)# 121) A fortiori, the conclusion122) that the 
V.M.  must be considered more fundamental than a model should be 
taken with some reservation . 
L.  Remarks on the Applications of the V .M.  

It seems essentially impossible to report in any simple and co- 
herent form on all the a)§>lications that have been given of the V .M .  
These appl1cations77) 1 ) . 90 )  I l l 0 ) ,  116) ' 122) ,123 mainly deal with 
i) predictions of coupling constants and comparison with experiment , 
11) low energy effects and connections with chiral symmetry, iii) ana - 
lysine of scattering problems and high energy predictions . 

The general panorama that .emerges from the analysis of the 
various applications of the V . M  . is that an overwhelming majority 
of results seem to lend support to  the validity of the simple V . M .  a s  
a lowest order approximation t o  nature in describing both low as well 
as high energy effects (the former better than the latter) . Words of 
caution are, however, not absent110) r 116) and these appear espe- 
cially relevant110) in relation to the exciting possibility of connec- 
tions between the V .M.  and chiral symmetry. 22) Furthermore, a s  
mentioned above, the largest number of successes obtain in the low 
energy domain. Whereas thls is not so  surprising since violations of 
unitarily are expected to play a major role especially at high 
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energies , it also opens the question of which among the aspects of the 
the v.M. is likely to be mostly responsible for the agreement that one 
obtains with experiment. It would, clearly, be desirable that the 
"dynamical" aspects of the v.M.  should be the ones that are at work 
and by dynamical we mean the duality aspect (according to def. A of 
Sec. I .F . ) .  Some doubts on this possibility are, however, cast by 
the results of Ref. 124 where it is shown that all the predictions ob- 
tained by Lovelace122l from the V .M.  can essentially be reproduced 
with a simple isobaric model which is crossing symmetric and, to  
some extent, remodeled on the low energy expression that one de- 
rives from the V .M.  

We conclude this section with an explicit example which is 
very much instructive on how one can be deceived when drawing gen- 
eral conclusions from a specific model. 

It has been recently shown by Martin starting from a dis - 
pension relation approach, using some unitarily (positivity of the 
spectral function) and applying crossing symmetry in a very smart 
way, that the following inequalities hold for the s-wave of Tb71o -° 7To7To 

126) 

125) 

Q _ fo (3.205) > fO (.213l4) >"iJ(2.98633 (11.95) 

(the values in parenthesis are squared c .m.  energies in units of rnn"= 1). 
Furthermore , Martin's procedure also shows that the last inequality in 
(II.95) is a very tight one . 

We can now ask ourselves what result we would get using the 
V.M.  since everything is now fixed . 

If A° and A2 are the I = 0 ,  2 isospin amplitudes in the s-chan- 
nel, one has 

A 
1`b To (s,t,u) =pAa +%A° oc 

1 
p p 

oc -v1(<» (al. Q (un -%[V11(a (s), a (to + V 1 ( a  (so ( ( ] 9 6 )  p p p p 

Taking linear Regge trajectories and performing an expansion of (II. 96) 
up to terms of the order (S/Mp2 )e and partial wave projecting the /L = 0 
contribution in the s-channel, one obtains 

to (s) : 01 + 02 (5s2 16s) (II.97) 

where 01 and CO are given in terms of a0(0) and a'p(0) (Co > 0).  
(II.97) we find 

From 

FO (so) fo(s2) 5c2(-s1 + s2)(-(s1 + s2) + 3 .2 )  (11.98) 
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Using 51 = .2134 and S2 = 2 .9863 we see that t-he last factor at the 
r . h . s  . of (IL 98) reduces to .0003 which means that the rightmost 
inequality derived by Martin (II. 95) is actually satisfied with the 
equality sign. This agreement between the prediction of the V . M .  
and the results derived by Martin in a completely different context is 
certainly striking and one may therefore wonder whether this agree- 
ment is not the result of something more basic than the specific 
model . 

To show that this is so ,  let us write the most general crossing 
symmetric amplitude that one can write in the second order of (s/m92) . 
This is seen to. be 

A(s,t,u) = a + b(s2 + t2 + u2) + c(st + su + ut) 

a + ( 2 b - c ) [ s 2  + t 2 + s t - 4 ( s + t ) ]  (II.99) 

where the second line follows from s + t + u 
wave projection of (II. 99) gives 

4 .  The JL = 0 partial 

to (s) 
1 a - § ( 2 b  - C) -l--(2b c)(5s2 - 165) (II.100) 

The above formula shows that the striking agreement of (II. 98) with 
(II. 95) holds for every model in which 2b - C > 0 independent of any 
specific detailed dynamical property of the model such as poles , 
Regge behavior and so on and is a mere consequence of the assumed 
crossing symmetry . 
M. Generalizations ci-the V . M .  

Very many generalizations of the v.M . have been proposed and 
we can distinguish several different kinds of generalizations . 

Aside from the modiicalions which are in the form of a general- 
ized interference model70 , 7 2  and from the work of Khuri,3) the sim- 
plest kind of generalizations of the V .M.  have usually been motivated 
by the desire to improve the V .M.  in some of its aspects . 

The work of Ros k1es83) has been largely discussed already as  
an attempt (see also Ref. 103) to incorporate analyticity and unitarily 
in the V . M .  without altering its structure . 

In Ref. 92 (see also Ref. 127),  it is shown that one can use a 
superposition of the form 

A( S ' t )  -Z VF; ( 
S ' t )  a 

I' 
(1I.101) 

r 
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(where Vim(s,t) is as defined in (II. I3)) in order t o  achieve decoup- 
ling of daughters without having t o  use constraint conditions of the 
form (II.34) . The coefficients at in (II. 101) are chosen as t o  eli- 
minate alternate trajectories and not to spoil the asymptotic Regge 
behavior. This leads to the closed form 

A(s,t) = B(-<x(s). 

-%(oc(s)+ 

*1-cn(t). -6: 

H l ) :  in (11,102) 

where B is the Euler beta function and 
geometric series . The parameter 6 is given by 

3P2 is the generalized hyper- 

6 =é(4a';.12 + 3oz + 1) 

*HE 

\7(oc(s), 1(t)) 

(where 
A analogous attitude is taken in Ref.  128 in 

order to  modify the large angle behavior of the V.M.  which, as  dis - 
cussed in Sec. II.C, does not agree with experimental findings . The 
form used in Ref. 128 is ,  however, very much different, in practice , 
from the one of Ref. 92 . 

In order to remove the poles of the V .  M.  from the first to the 
second sheet, MartinlZg) suggested treating (II.2), (II.3) as a dis- 
tribution (see (II.31)). Accordingly, he wrote 

1 
.f qo(x) V(xa(s) . xa(t)) dx 

X m 

(IL 103) 

is traded for the loss of Regge behavior . 

where cp(x) is an arbitrary meromorphic function of x ,  positive in the 
interval xmas l which vanishes at both ends of integration. In this 
way, the positivity is retained (if present in the original Veneziano 
amplitude) and the poles move t o  the second sheet. Regge behavior 
i s ,  however, lost. The form (II. 103) represents thus an alternative 
to Ros kies' proposal (Sec. II.H) in which the appearance of ancestors 

A somewhat similar attitude 
is taken by Huang. 130) 

In the context of a more radical modification, it has been 
shown95) that a (crossing symmetrized) sum of terms proportional to 

i'§a(t) 
A(s , t )  oc e 2.F1 

a ( )  i t a  bs; 1 a(t). 2 . S 

Z: (11.104) 

has i) the correct analytic properties (cuts); ii) the poles at integer 
values of U. spaced of two units (no need for killing of unwanted 
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102) 

daughters); iii) positive residues at resonance provided only the para- 
parameters a , b are positive; iv) Regge -like asymptotic behavior . 
Also, cL(t) can be assumed: v) to satisfy a dispersion relation such 
that vi) the total width of the resonance is positive and vii) a(t) has 
an asymptotic square root type behaviorl9) s o  that the large angle 
behavior is of the correct form. However, (II. 104) has also cuts in 
the angular momentum plane and its low energy behavior is very hard 
to  reconcile with Adler's self consistency condition contrary to what 
happens for the V_M_122) 

Another modification, in the form of an infinite product, leading 
to  nonlinear trajectories with Regge behavior and poles with polyno- 
mial residues has been given by Coon. 131) Also a more ambitious 
program with the Mandelstam representation a s  a goal has been 
suggested . 

A triple product of gamma functions representation has been 
suggested by Virasoro93) (see also Ref. 94). For the case of Tm - no , 
this reads 

B A(s,t,u) 2 
or Jr (  "(t))r( `"(*'*) 

2 2 
2 2 

1 - a s )  l - 1 
= 2 2 2 

of ' MS) -.cI.(tJ )1~( " d(t) ' @U))T( " a[u) - 0(s) ) 
(II. 105) 

In this representation the decoupling of odd daughters is auto- 
matic, complete s , t ,u  crossing symmetry is displayed by one single 
term, no fixed poles seem to appear, and furthermore, Eq. (II.105) 
reduces to the Veneziano amplitude (II.2), (II.3) if the supplementary 
condition (II.34) is imposed. Comparatively little attention has been 
devoted t o  the Virasoro amplitude (see , however, Ref. 132) and, pro- 
bably more work is needed because of its very appealing features . 

It should, however, be noticed that the explicit asymptotic be- 
havior of (II. 105) has not been investigated in detail in the case of 
nonlinear trajectories and does not seem easy to reconcile with Regge 
behavior. Also, the form (II. 105) cannot be written in the form of an 
infinite product (contrary to what happens in the case of the V.M.) . 
Finally, one can notice that if 0c(s) and/or c,(t) are positive odd inte- 
gers, (II;. 105) has a simple pole but no pole is present if all c,(s), <1(t) 
and a(u) are positive Integers . This is , again, in contrast t6 what 
happens in the V .M.  However, if (II. 105) is multiplied by US -q,(s)/ 
2-oL(t)/2-d(u)/2) all the previous troubles disappear and furthermore 
the original formula is essentially unmodified if the trajectory is 
linear. A new set °1f3%?1€5 is, however, introduced . 

Mandelstam, finally, has given a generalization which em- 
bodies both the Veneziano and the Virasoro forms as special cases . 
This is in the form of a double integral 

2 
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A(s,t,u) =.V dx dy 

.{x + o r  _ 

X y  

where the range of integration is 
I 

y(2 

l]*V3 
1 - x V1 
- X - ,,,} {x(2 y) 

x-2-a(s) 

Lf lHh1k l S 

(2-x-y) 

1 - y Va • _ x _ 
Y-2-a(t) -2 -<1 (u) 

(11.106) 

lun. -am ul M ...on _ lil! llll. h 

r)  

where ala = a + a '  512 etc. (the indices labeling the corresponding 
particles) and indices 1, j denote any two nonsuccessive integers 
(counting 6 and 1 as equivalent) . The variables "1 satisfy the con- 
straints 

u, 
1 

1-u u i-1 i+1 I . . . 5  

U-6 U1 (11,109) 

It can be checked that only three of the five equations (II. 109) 
are linearly independent so that there are only two effective integra- 
tion variables in (II. 108) . The latter can then be rewritten as  

1 1 
V6(s.t.u)=.]` y du1 du* U1 

0 l _ -1-an 

(1 - U1 H) 
0 

UP 

1 "1'a1a U*-1-a 5 C 1 

-2-0 U1 u4.) is 

- 

1 

1-(123 _ 1.11 

u U1 
4 

(11,110) 

to 
137) 

This formula has simple poles in all channels and reggeizes 
both in the single and double Regge limits in all channels. The appli- 
cation of this model to determine coupling constants has proved 
rather successful.136) The results of Ref. 134, 135 have been further 
extended the general case of N point functions by various authors . 
authors . Much work seems, however, to be still needed on this 
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subject both in a detailed analysis of the asymptotic behavior and t o  
extend these results to the case of particles with spin. The only 
partial result SO far reported in the latter direction refers to  the case 

-o We should also of in TTS where S has arbitrary spin and parity. 138) 
mention that a generalization of the N point function to incorporate 
isospin has also been discussed. 139) 

A very ambitious program has been started by Kikkawa , 
and Virasoro84) I 140) in which the v.M.  is used as an Input to be 
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1. 
1n=1!n 1~l 

amplitudes r in both cases pure imaginary 
Experimentally, of course ctions seem clearly 
to be required, and the rea litudes are certain 
ly much smaller than the 1 _ _ energies , and may 
well disappear altogether in the truly asymptotic region. Hence both 
of these facets of the two models are consistent with present data . 

The fundamental difference between the two models lies in the 
"shrinkage" of the dif&act1on peak~ In the Regge case , the high- 
energy elastic scattering amplitude T(s ,t) has the form1) 

3 
.in 

lll.IL_ll - I I I - I I - l l  nr. 
.ll-.nn lm!!! 

i i  

a (t) -iTr P 
\ 1+e 

2 T(s,t)  = E!(tJ 
sin TT a(t) 

up (t) 
_ s ! 
s 

i o 

and hence the elastic differential cross section approaches 

+Presented at the INSTITUTE FOR THEORETICAL PHYSICS r 
University of Colorado, Summer 1969. 
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under Contract AT(11-1)-68 of the San Francisco Operations Office , 
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do 
dt ) 

1 
s - v a :  161T 

(Go (t)-1) log s/s 
f(t) e 

2 

o (1.1) 

where 

f(t) B (to 
sin TT a(t] 

-in i*p (t) . 1 + e 
2 S o 

ap(t) is called the Pomeranchuk trajectory (we assume ap(0) = 1); s is , 
as usual, the total center-of-mass energy squared and t is the invari- 
ant momentum transfer. f(t) is some function of t and s is some (ar- 
bitrary) constant . 

For small t ,  GP (t) 

o 

do 
dt 

Rx.: 
l ' \ J  

1 

lfl0)I2 

J 
I 

r t "p (0) , so  that near forward directions 

I 

e2ap (0) t log s /so 
(1.2) 

The cross section thus has an exponential forward peak in momentum 
transfer, but the peak shrinks logarithmically with increasing energy . 

The "classical" model, on the other hand, has simply the form 
T(s,t) -» -is f(t) and hence 

Q 
dt In 

1 
16rr lf(v)l2 (I-3) 

S -| w 

At present, both of these models are phenomenological, in that 
neither can be derived from any "fundamental" theory. One does not 
know whether conventional field theory, or "S-matrix theory, " or the 
bootstrap theory, or anything else, leads to either (I. 1) , or to (1.3) , 
or to  something else. 

Experiment also does not, as yet, clearly distinguish between 
the two models ,2) It seems that 7T+p and Tt'p elastic scattering deve- 
lop a saturated non-shrinking forward peak at high energies , and that 
the size in momentum transfer of this saturated peak grows as the en- 
ergy increases . The experimental differential cross section for 1'flp is 
shown in Figure 2 .  In the case of pp scattering, for energies between 
10 and 30 BeV (s = 20 to 60 BeVa?) the same situation seems to prevail , 
as is shown in Figure 1 . At higher energies , however, from 30 up to 
70 BeV (s = 60 to 140 BeV2) the forward peak in pp elastic scattering 
seems to shrink again, and in fact if one fits the cross section wlth 
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Fig. l . Differential cross section for pp elastic scattering 
as .a function of t for various values of P1ab° From 
I. V .  Allaby et al., Physics Letters 28B, 67 (1968) . 



166 F. ZACHARIASBN 

CORNELL- BNL 
-up _-"up 

U salsa GoV/c 
o 931 Gov/c 
x lil GoV/G 

l l ii: e-  -l-ng . 
the form (1.2) in the range 0.008 < -t < 0.12 (BeV)"" 
as' (0) 

. one finds a slope 
= 0.40 3: 0 .  09/(Bev)=' .9) For pp elastic scattering, again a 

non-shrinking peak appears , at energies s = 16 and 32 (BeV)a . (In 
fact, here the peak may even ant1-shrink a bit.) The cross section 
is shown in Fig. 3 . Elastic K'llp and K'p scattering has also been 
measured at energies up to s = 27 (BeV)8: the cross K'p is 
shown in Fig. 4 .  Here again, the forward peak anti Some- 
what . 

The experimental evidence, therefore , on the face of it would 
seem to favor the form (I.3). However, the data is st111 all at finite 
energy, and it may still be possible to fit lt with the Regge model, if 

|... in 
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innulauia The _ . ction 
scattering on the same footing as non-elastic (e.g. , charge exchange) 
two body processes , which do seem to be well described by forms 
like (1) (but, of course, with different 1|- 

The "rules" of Regge theory, briefs 
Each Regge trajectory is associate 

a given set of quantum numbers such as " 
and in addition each trajectory is associated with a given signature 

l ( 1 - e . .  
etc.), 
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(even or odd) . In any two body process in which some channel can be 
exchanged , each trajectory associated with that channel contributes , 
at high energy, a term 

act) 
sin or a(t) (s/so) 

_. \ 
q,(t)[ 1 i e NT a(t) 

2 (1.4) 

d -  1 1  it 
T(s,t) 

to  the amplitude. (Here the 5: is chosen according to whether the tra - 
-l>.¢|lnu.1- . a a n a  Anna Q I  .J i l § l § = . . . u ¢ ¢ . _ l  

11- 

L I up .-FI1 . _ I I .  

!1 * I - I  
= - 1 8(0)/2 (s/so) 

1 r  

catterincr am 

(1.5) 

that is ,  pure imaginary and proportional to S . This insures that, by 
the optical theorem, ctT(s) -» 6(0)/2s0 = const. at large s . Even s1g- 
nature is required to avoid the existence of a massless spin one par- 
ticle . 

The existence of the trajectory c,?(t) then leads directly to (1) . 
We may next ask what particles lie on Gp(tl . These will be 

particles with no quantum numbers and spins of 0+, 2+, 4+, . . . etc . 
The 0+ particle would occur at t < 0 ,  1.e. , would have imaginary 
mass , since d(0) = 1; hence, it is presumably absent. Candidates for 
the 2+ particles might be f0(1260), or fo' (1515). 

Other Regge trajectories seem 
straight lines with slopes near ons per (BeV)"` . If dp(t) is also naar- 
ly straight, its slope would be 0 .63 if fo were on it, or~ 0 .43  if 
fO' were on it . 

Now if "p (t) really has a slope of this order, then the form (I. l) 
cannot by itself fit the high-energy elastic scattering data. It is be- 
lieved , however, that there is at least one other trajectory, called the 
P '  , in the vacuum channel, and at the energies available it will also 
contribute to the elastic amplitude . In addition, other trajectories , 

experimenteglly to be very closely 
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such as  p , can have effects too. The form (1) , then, while valid at 
every large s ,  is too simple at presently available energies , and 
should be replaced by 

T(s,t) 

-iT 
BpM 

sin 11 ap(t) 

+ (same with P -° P' )  

ap(t) 1 + e  o'P(t) 
(s/sO) 2 

+ (same with P -» p ,  + opposite signature) . 
With this amplitude, and appropriate choices of the functions B{t), it 
is possible to fit all elastic scattering data.4) However, in order to 
fit the lack of observed shrinkage a small slope for P is required, m 
the vicinity of "p 
to the situation where to' Iles on P than where fo lies on P .  Presu- 
mably, then, to lies on P'  , and if this is the case, and if Qp' (0) -5  
the slope of the P '  is 0.95/(neW2 which is close to the slopes of 
other Regge trajectories . There is a minor difficulty with this assign- 
ment, however. At t = 0 ,  the P must be a pure SU(3) singlet, since 
it is associated with the vacuum channel. The fo' , however, seems 
to be a mixture of singlet and octet with a considerable amount of 
octet in it. This requires the mixing angle to vary considerably be- 
tween t = 0 and t = (1515 BeV)2 , which is certainly not impossible , 
but not wholly plea sent either . 

One then ends up with a situation in which all Regge poles have 
similar slopes ( ~  1/(BeV)2) except P ,  which has a much smaller slope 
( <  0.3/(Bev)2; perhaps 0.1/(Bev)2). 

To summarize , it is possible to fit the elastic cross sections 
with the Regge pole model, at the price (which violates the original 
purpose of the Regge model) of making the P rather peculiar--namely 
a lot flatter--than all other known trajectories . 

Finally, it is also important to keep in mind the fact that all 
these fits are quite fuzzy. There are so many parameters available 
that none of them are very precisely fixed by the data, and by the 
same token, it is unlikely that enough data w1l1 ever exist to eliminate 
the Regge model with 100% certainty. This is reflected in the fact 
that a large range of slopes for the Pomeranchuk trajectory have been 
used in different fits t o  the same data , varying all the way from 0 to 
0 . 7/(Bev)B . 

r (0) : 0.3  or 1ess.4) This corresponds more closely 

The motivation for the classical model is entirely the opposite 
from that of the Regge model. Whereas one may well accept the Regge 
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description of non-diffraotive processes , one abandons the Pomeran- 
chuk trajectory and ascribes elastic scattering, and diffraction disso- 
ciation reactions , to an entirely different mechanism . 

Let us outline the arguments used to derive the form (3); as w111 
be seen, these are very much based on a simple physical picture of 
elementgy particles, and have as a result a considerable intuitive 
a'ppea1.~ 1 

. We Write , at large s ,  
\ 

' , ' 
f .  I . 

1 
161TS2 l.T(S,ltH3 (1.6) 

The amplitude T(s* t) has a partial wave expansion 
l 

where, for large s , 
n ( s )  

T(s,»L) = - 16ii ' 

T(s,t) (2»t,+1) P ( c o s  e) T(s,!,) 

216 ( ) 
e 1, S - 1 

21 

It is convenient eremite Eq..~.(I. 7) in the impact parameter form . 6) 

(I.7) 

(I-8) 

J I 

I I L Q  

s 
r - ~ 2 o 

T(s ,t) Jt bob Ioibf-t) T(3,x,) (1.9) 

where (2Jl,+1) ='/`s b. 
Now what happens physically at large s ? l:ntultlvely, we might 

expect the pha'se shift 6 to vanish, and the abs orptlon 're to depend 
only on b ,  the impact parameter. and not explicitly on the energy. 
Thus we have 

I 

T(s,»L) 'n(b) - 1 167T 21 (1.10) 

and hence 
m 

T(s,t) 4n1s .l'bdb 1O(b /-r) ('n(b) . o 

1 s f(t) 

1) 

(1.11) 

where 

f(t) 4n 3D bob Io(b f-t) (1 - n(b)) 
o 

(1.12) 
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Hence we have, at large s , the form 

dt 
-a 

1 
1617 lfltl12 (1.13) 

..- manual. .412 -nl... M 

This form really depends only on the belief that 'fl is a function 
just of b.  Physically, this follows if one thinks of the scattering as 
if it were from a particle made up of material which absorbs a constant 
amount per unit volume , and has some well-defined geometrical shape 
which is independent of .tiering particle . 

A further hint that' asymptotic form is pro- 
vided by studies of the 1 Quantum electrodynamics 
(quantum electrodynamlti lource of of our beliefs 
about everything), when -is f(t) is indeed found no - v  - - r  . _ _ 
to hold. (However, something must alter this form in quantum elec- 
trodynamics if t is positive, as is explained in detail in the following 
section of these lectures .) 

Now, the question arises , how different are the Regge and 
"classical" models really? Are they compatible with each other ? 

Superficially, the answer is certainly yes . The Porneranchuk 
Regge pole term in the scattering amplitude looks like 

T(s,t) 
Hp(t) 

a1n or ap(t) 

(t) 
(s/s o)GP 

-17T G. (t)\ P . 
l+e 

2 r (I. 14) 

and this is supposed to dominate the amplitude at large s .  
q,?(t) -» 1 , for all t ,  we have 

Now if 

T(s,t) -» - i BP (t)/2 (s/so) (1.15) 

so that if we identify 

f(t) = BP(t)/2So (1.16) 

we have precisely the "classical" form. Thus it seems that the clas- 
sical model is simply a special case of the Regge theory, one in which 
the pomeranehuk trajectory is precisely flat. This would also mean 
that no particles lie on ap(t) , so that the embarrassment of trying to 
decide whether fo, or fo' , or whatever, is on the Pomeranchuk trajec- 
tory disappears . 
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This would appear to be a happy resolution of the conflict be- 
tween the two models , but unfortunately it 's too easy. It turns out , 
as we'll see in the following section, that the "classical" result 
T(s ,t) -o -is f(t) is very hard to reconcile with the general principles of 
f1e1d theory (or S-matrix theory if you prefer), so that a flat Pomeran- 
chon is not allowed . 

One is thus faced with a conflict: The "classical" model fits 
the data better, and is intuitively very appealing, but (almost) con- 
tradicts general principle, while the Regge model satisfies all general 
principles , but isn't anywhere near as  good a phenomenological des- 
criptlon of the experimental situation, unless rather peculiar behavior 
is assigned to the Pomeranchon . 

In conclusion, and for the sake of completeness, we should at 

min 
- |  

u-1-11l1-n1!f1n»un1!'¢!1gI'1'!,-nnq 

1'l111'I 

+ (possibly other Regge poles) 

Clearly, such models still abandon the truly high-energy behavior 
to the simple form (I.1l) . The additional Regge terms are only present 
as finite energy corrections . 

On a more sophisticated level, the hybrid models attempt to 
unitarize the expression (I. 17). In effect, this amounts to allowing 
repeated Regge "exchanges" in the scattering amplitude. As is well 

-- '-"l!l l |¢l=.' lb¢l' l1!ll='-"- 

u 1_u.";ql 
llltl 

(1.17) 
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experiment is much less impressive -- in other words, the addition 
of Regge cuts to the "normal" Regge model is not enough to save the 
experimental situation. 

To conclude this introductory section, we shall henceforth ac- 
cept the experimental preference for something like the simple -is f(t) 
form as convincing, and therefore we shall next concern ourselves 
wlth its theoretical implications . 
II. Compatibility With Unltarity and Analyticity 

As we have seen, in many ways, both experimental and theoret- 
ical, an appealing model is that an elastic amplitude approaches 

T(s,t) - -is f(t) (II.1) 

at large S and fixed (negative) t .  Now on rather general grounds we 
expect T(s ,t) to have very restrictive analyt1clty properties , which 
suggest that the form (II. 1) should apply outside the physical (t < 0) 
region for the scattering as well, and in fact should continue to hold 
for positive t .  
net (presumably at t 
was first noticed by Gribov . 

If (II. 1) holds beyond the first threshold in the t-chan- 
= 4mn2)i)then t-channel unitarily is violated, as 

To understand Gribov's argument, and to incorporate what we be - 
believe to be -the analyticity properties of T(s ,t) , let us write the am- 
plitude at large s in the form 

T(s ,to = T+(xt,t) + T+(-xt,t) (11.2) 

where xt = 1 + s/2qt2 , and where 

T+(x , t )  - a + b + - x 
t t n 

3 
xt I 

(t) x o 

Alz,t) 
za (z - xt) dz . (11.3) 

+ x  

Here , a and b are arbitrary functions of t .  We choose to use Xt and t 
as variables instead of s and t; we believe that T(s,t) is , at large s , 
symmetric in the interchange of s and u and hence even in Xt (recall 
s = - Zqta (l - it), u = - Zqt2 (l )); we make the assumption that 
T(s ,t) is an analytic function of s for Xt) for fixed t ,  with the usual 
cuts , and we subtract the dispersion relation (II.3) twice to allow for 
asymptotic behavior in s llke that given by (II. 1) . 

Now let us suppose A(z,t) -» z F(t) as z -» =°. Then we have, as 
xt-» co, 
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Xt F(t) 
-» a + b x - 

t or 
. l _ l  i"_ 
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(II . 4) 

and hence , a s s - » = = ,  

T(s .t)- l1/x0) 
x F(t) + t 

TT 
log (xi/xo) 

= 1 xt F(t) = 1 s/Zqt2 F(t) = - is f(t) 

Thus the required asymptotic form is obtained, and obtained, we note , 
for t .  

In particular, it applies for 4mTr2 < t < first inelastic threshold . 
In this region, unltarlty requires 

(II.5) 

. £9 
3 1 1 

p(t) l" d l  l" dxg 
9 ( 1 - x 3 - x  - x a - Z x x l x )  

lm T(s,t) 1 2 2 

-1 _1 2 -x22 - 2x X1 X2 1 - x i  " X 1  

T*(=r>1. t) T(sa I t) I (II. 6) 

where p(t) = = 1/32rr2 let - 4mT1" /t, and where X1 2 = 1+51 2/Zqt2. 
This relation is valid in the physical region for the t-channel; that is , 
for -1  < x .  XI , 5:2 < 1.  It may, however, be continued out of this re- 
gion in to the region where x > 1, and thus Into the region where s is 
large . To carry out the continuation, note the identity 

I Q  e(1 

\/1 _ X é -  

3 _ 2 _ x XI  

3 _ 
XI 

x2a+2xx1  xg) TT 

x23+2xx1 X 2  - Z  to Z (2/l,+1) P ( x )  p(x1) P (Xg ) .  

(11.7) 

With this relatlQn, with Eqs . (II.2) and (II.3) , and with the well- 
known fact that 

1 
H 

-1 
zdxx P ( X )  = Q ( Z )  f (11.8) 

TT 

it is easy to show that the unitarily relation (II.6) may be rewritten 

_ 4 °° °° lm T(s,t) = a(t) + -  p(t) I dz1 l" dzg A(z1 t) A(z.3 t) 
1 1 

L (2»f,+l)(P&(x) P + 1, (-x)) Q(z1)  Q ,(22 ) 1+ (II.9) 
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The function a(t) appears due to the fact that the dispersion relation 
for T(s ,t) was twlce subtracted, and can easily be expressed in terms 
of a(t). Since a(t) was arbitrary, so is a(t). 

Finally, we note another identity, namely: 

.§ (2£,+l) PYX) Q ( z 1 }  Q ( 2 2 )  
ao j dz 
1 or z - X 

z >) B(z 

~/22 +z12 +z23 -1-221 22 

(II. 10) 

Z 

Here Z > is the largest root of the denominator: 

=ZN Za + z 1 2 - 1 \ / z 2  l a _ z > 
Making use of this , we have 

1 m 

lm T(s ,t) = - 
l TT 

0(z.t) 
Z - x  

1 d z + -  
TT .F 

1 
0(z.t) 
z + x  dz (II.11) 

where 

4 
TT 

6(z - z>) 

z3+ z.°+ 2 2 2 -  1 - 22 21 Za o(z.t) 0(t) of dz1 dz2 A(z1 t) A(z2 r) . 
(II. 12) 

Now, if the asymptotic form (II. 1) is to hold, we should expect 

p(2.t) -» z lm F(t) (II. 13) 

as Z -» w. On the other hand, we know 

A(z,t) -o z F(t) (II. 14) 

p(z.t) ) 

z-ow TT 

so we can also calculate how p(z,t) in fact behaves.from (II. 12). At 
large z ,  the dominant contribution to the integral in (II. 12) comes from 
large 21 and Zn , so the asymptotic form (II. 14) can be used. We then 
have z/Zz 

z 2 

p (t)(F(t))3 .[` dzg t d l  
1 1 

21 Za 

2z Za ( -2) Z 
2z2 

_.4 
ii 

dz2 
f)(t) (F (Alf z 

Z 
3 T 

0(t) (F(t))2 z log z (II.15) 
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+ + 

We are thus led to a contradiction; hence the assumed asymptotic be- 
havior is inconsistent wlth t-channel unitarily . 

The same argument may be rephrased , in what is perhaps a more 
transparent way, in terms of t-channel partial waves . From (II.3) we 
find that the partial wave amplitude is 

1 
T (r,/J =% J` dot T (it/f) P (x ) 

- l  JL t 

II 

1 Lu. 
-11111144 

Now, form 
near 4; = 

a(t) - l  5 
xo(t) 

TT 

A(z,t) 
z 

dzl  6 
Lo 

||-u|..- 

nm 

Tl' 

w1*=iu!'- =|l';~!'=|!~u' ||-H"-m= Dun up-I-I :Mann n r 
T+(t,L) = 1 

X[.(0) A(z,t) Q ( z )  dz . 
_Q 

u1¢1.:ulllaH 
LA(z,t) -» z F(t) as z -» ==>. Then 

l 
/L - 1 

(II. 17) 

(11.18) 

Exactly at Jt, = 1, on the other hand, T is flnlte: 

T+(t, 1) b(t) : L  
3 

Now let's impose t-channel elastic unitarily. 
< t < inelastic threshold , 

(II. 19) 

This says that for 4m17B 
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+ + + + 

T (m) - T (t,1>*)w * 21 0(t) T (we) T (t.»c*) (11.20) 

for any complex JL . Near L = 1, the left-hand side is 1/Jr,-1 , but the 
right-hand side is (1/L-l)2 . Even though this form for T is not valid 
exactly g JZ, = 1,  it is valid arbitrarily close to i t ,  so there is a con- 
tradiction . 

The physics here is exactly the same as that in Gribov's argu- 
ment, and in words, is expressed by saying that fixed poles in L 
(viz. , 1/L-1) are incompatible with un1tarity.2) The fact that the pole 
is not strictly present (because of (II. 19)) is not really relevant to the 
argument . 

In any event, we are faced with a paradox. The form (II. 1) is 
incompatible with general principles -- Q it holds not only for t < 0 
but also for t > 4m 2 .  How can one escape the difficulty ? 
is to say that somehow the form (II. 1) fails at t = , 
a Regge cut could pass through 1 at t = 
totlc behavior for this and larger values of t.2) The difficulty wlth 
this is that any sign of this cut is not present experimentally; fur- 
thermore, such cuts would have to conveniently appear at each t -  
channel threshold . 

Another possibility is that in the limit S -o oo the analyticity prop- 
erties of T(s ,t) fail, so that, for example, f(t) is replaced by 
f(t) B(4mn2 - t ) .  Here the dlfflculty is that no model with this feature 
has been constructed, and it may in fact be impossible to do so .  

An altogether more pleasant way out of Gribov's difficulty is the 
following . 3) 

It is well known that a Regge trajectory a(t) has branch points in 

One way 
4mTTB . For example 

4mra and take over the asymp- 

t at physical thr 
It may be , howe 
as well, and that 
lowest available | 

In potentia 
collide (that is, 
then both trajectg 
Let us suppose tll 
jectory a(t) collis 
(that is r ) 
each to I 

if on(t1 =l 

so that Q 

w~~w¢w_- 1 | - - L | | | § | ¢ . i n n . | . - - P - l e .  

out m-(I 
I i i - i n  

I n t u t -  
* .|. - l n -  

(t) has a set of singularities like 
1 

A Regge cut is just a continuous superposition of Regge poles; hence 
if a trajectory a(t) collides wlth a Regge cut we may plausibly ant1c1- 
pate that a(t) has a continuous set of singularities of the form 

2 0 1  . \ / t - t i  
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where to is the value of t at which a(t) collides with, the leading edge 
of the cut . 

Now any Regge trajectory, when coupled with the Pomera archon 
aP(t). generates a Regge cut, and if cl,>(0) = 1 the trajectory crosses 
the leading edge of this cut at t = 0 .5  
Regge trajectory to develop a singularity at t 

Therefore I. we expect any 
= 0 of the form 

n 

6 

If C(t') behaves like any integer power (t')n near t '  = 0 ,  then the 
singularity in (x,(t) is like /'t tn+1 , i . e .  , a square root branch point . 

It is interesting to note that attempts to calculate a Regge tra- 
jectory dynamically, using methods which are sufficiently sophisti- 
cated to generate Regge cuts , al)so seem to yield the result that the 
trajectory is complex for t < 0 . 

For the understanding of elastic scattering the left-hand cut in 
a trajectory can have great signlfimnce. For suppose the Pomeran- 
chuk trajectory QP (t) has a square root branch point at t = 0 ,  so that 

I 

oLP(t )=1+/ t  g(t) I 

and suppose g(t) is analytic wlth only the usual right-hand cut in t .  
Then g(t) is real for t < 4ml'T2r and hence Re op (t) = 1 precisely for 
t < 0 ,  1.e • y 

aP(t-) = 1 + 1 lm ap(t) 

for t < 0. Then the usual Regge pole theory tells us that, at large S 
and negative t ,  the contribution of the Pomeranchon itself approaches 

T(s,t) 
1 Bp(t) 

-4 sink Tr lm up (t) (s/s0) 

e 1 lm °"p t o ( )  1 g 
is f(t) 

1 lm "p (t) log s/s 
e 

s s / o 

Q 
'rTImd. 

(11.21) 

where 
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Bp(t) 
f ( t ) =  S 

o 
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7T lm ap(t) 
e 

TT lm 0LP(t) ~rr lm ap(t) 
e - e 

(II. 22) 

To this, of course , must be added the contribution of the cut with 
which the pole collided. This is not precisely of the form (II. 1); 
however, the resulting differential cross section is still given by 

Q 
dt 

1 
l 61'r l f ( t ) l2  

so  that no shrinkage of diffraction peaks exists . On the other hand , 
since lm up-(t) 74 0 for t > 4 2 , Gribov's paradox is resolved . 

Incidentally, if lm Cap t) Ct (C > 0) , then from (II.22) we have 

-» 
Bp('f) 

f(t) s 
o 

2TrCt e 

for large negative t .  Thus we find that an exponential behavior for f(t) 
is consistent with only a slow variation of Bp(t) . 

One further constraint follows from t-channel un1tar1t5r, and that 
is the following. The partial wave unitarily relation, for complex L , 
and in the t-channel elastic region, appears in Eq. (II.20) . This uni- 
tarity equation has a pole on both sides , at L = "p (t) . If we equate the 
residues of this pole , we obtain 

1 21 0(t) T*(t, 
* 

"p (t)) (11.23) 

Now one part of T(s ,t) is given by (II.21), and this contributes to 
T(t,L) a term 

§P(tJ 
( I ) T t L _ ccpftl z. (11.24) 

F 
where 

B-P(t) 

0»P(t) 
1 r(t1P(t)+1) 

or r(¢P(t)+%) o 

2 

s 

BF (t) 
2 c?.P'(t) + 

For small lm aP(t), this term will dominate T*(t, AP*(t)). Thus we ob- 
taln the result that 

1 (II.25) 
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= 21 o(t) * 
°.p ( t ) "p - (t) 
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or 

lm ap(t) p(t) §P(t) I (11.26) 

b) 

and thls is valid if lm ap(t) is small, in particular near threshold . 7) 
Unfortunately, we learn nothing from t-channel unitarily about lm d.P(t), 
or f(t) , for t < 0 , which is the region of primary interest for us . 

This pretty much exhausts what we can get from t-channel un1- 
tarity, and we must turn to s-channel unltarlty for further information . 

The first question which arlses is whether the form (II.2l) is 
compatible with s-channel unitarily. It is not easy to answer this 
question clearly, since at large s , s-channel unltarlty is highly 1n- 
elastic and hence is quite complicated. It is necessary to assume a 
model for high energy n-particle production amplitudes in order to test 
(II.21) The most natural such model to take is the multi-Regge pole 
model, in which the amplitude for n particle production is written 

01 (t1) l o ) s o 

512 as (to) 
T = B1 (t1 l R(t1) 82 (t1 r to) R(t2) 2 -o n 

0 n-1(t -1) 
n-l!n\ n 

s o R(tn-ll Bn-l(tn-1) (II.27) 

where 

ii _ 

1 

where 

ti (qi - oF I 

where 

si,1+1 
+ 2 (qi q1+1) I 

and where the momenta for the process 2 - n are labeled p + p' -» 
q1 + is + .. . + in' as shown in Figure 5 .  The form (II.27) is , 
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$12 

I1.nr 
»¢=IJ:1l 
1n-1m 

I' 

QUO 

) 

P 
l 

or 
QUO 

$23 
l 

is 
r 

qn-1 

s n-1, n 
I 

in 

\ 
pl 

I 

s 

F1g. 5 . Mu1t1-Regge graph describing the process p + p' -» 
quo + . . . -I-'qn . 

he 

according to the mult1-Regge modelllI 
pair energies 3i,1+1 are large . 

The multi-Regge form, assure ____ over of 
phase space, and with certain assumptions about the behavior of the 
31(t1__1 , to) , has been used to test s-channel unltarity; and wlthin 
these assumptions the form given in (II.2l) 1 1ncon81stent when all 
51021) are chosen to be QP (to) with °1P (0) = 1 . 

However, the authors of Ref. 9 point out that several things 
might invalidate their result. Among these is the possibility that the 
Pomeranchuk trajectory cannot be dealt with by itself, without also 
1nclud1ng the effects of its associated L-plane cut. Our Pomeranchuk 
trajectory has a non-zero imaginary part for negative t only because of 
the existence of its associated cut. = 1 for all 
t ,  which violates t-channel unitarily as welllas s-channel unitarily . 
Thus in our Case the L-plane cut is inseparable from the trajectory 
Itself, and we may hope that everything will in fact turn out to be 
cohsistent with s-channel unltarlty, when the cut is included 
too . 

93 

Without the cut, "p (t) 

are small and all 

'II II. 

An additional possibility is that for some as yet entirely un- 
. 1 ' Here is a rule that the Pomeranchuk trajectory 

ore than once in the mult1~Regge model. If this 
culatlon in Ref. 9 is clearly irrelevant. It is 

11 
I 
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interesting that the existing experimental evidence seems to support 
such a rule. 10) 

We therefore conclude that a Pomeranchuk Regge trajectory , 
whose real part is identically one for t < 0 ( but whose imaginary part 
varies) can be consistent with all known requirements . 

The next question is , how do we calculate the functions 
lm ap(t) and f(t) appearing in Eq. (II.21)? At present, there is no 
clean way to do this , but certain approximate methods do exist which 
at least beg into answer part of this question, and we shall turn to 
I n ;  I --»-_. 

_ _ _ last section that the asymptotioform 
T - - is f(t) was not allowed, but that the modified form given in Eq . 
(II.2l) was.  Evidently, if lm a is small, the first form will be a good 
approximation in the t < 0 region . 

If we assume , then, this asymptotic behavior, can we calculate 
f(t) and/or lm cx(t) from anything? The first source of information on 
these functions is s-channel unitarily, and we shall begin with a dis - 
cusslon of this . 

Let us recapitulate our choice of normalization. The scattering 
amplitude T(s,t) is chosen so that,  at large s ,  

dt 
1 

16n 
I T (S I t )  la 

S 
(III. 1) 

and s-channel unitarily then reads , at large s and negaflve t ,  

lm T(s,t) s , t  (lm T( ))1ne1ast1c 

-.\ 
1 

161rl8 S 

of e(2t  t1+2t t2+ 2t1 t 2 '  t2 

Jzt t1+2t t2+ 2t1 t 2 - r 2 -  

* 
T(s,t1) T (s.t2) 

t12 - t22  

dt1 dt2 
t12 -. to 

(III. 2) 

Here, (lm T)1n 1 Sti refers to the contribution to lm T of all inelastic 
intermediate s?a?es in the unltarity sum. The optical theorem relates 
lm T(s,o) to the total cross section: Again for large s , 

lm T(s,o) - s 0T($) (III. 3) 

Finally let us write the partial wave expansion 
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T(s,.t) =2 (2»t,+1) P ( c o s  9) T(s,&)' 
L 

(111 . 4) 

where the partial wave amplitude is 

. . l . E. 16rr - 
» p 

21 6&(s) . 
T(s,x,) (T1(s) e - 1)/21 

So much for norrnallzations . Now let us assume that 

1 lm o.(t) log s/so - is f(t) e + out contribution . 
as s -» °°, t fixed and negative. Thus 

T(s ,t) -| 

. (III. 5) 

(III . 6) 

do 
dt 

-I 
1. 

16n l f(t l l" (1.1I. 7) 

and, since 

lm T(s ,t) = - s f ( t )  cos (lm a(t) log s/so) (III . 8) 

we have 

oT(s) -o f(0) (111. 9) 

Now let us Insert our ansatz into s-channel unitarily, Eq. (III.2). 
We have , ignoring for the moment the cut contribution , 

+ 

s f(t) cos (lm a(t) log s/so) (lm T(s 't))1nelastic 

1(Im 0(t1 ) 
f(t1) f(t2) 

lm 0(t2)) log s/so 
H 

s dt, dt2 
16 B U e n 

TT ~/ (III. 10) 

If we furthermore assume that lm 0z(t) is small for t < 0 ,  and that 

(lm T(s 't))inelastlc 

then we get, approximately , 
t it, dt, 

I J u 
f(t) fo(t) 

1 
+ 16rr2 

-» - + S fo(t) 0(Im a(t)) (III_ 11) 

f(t1) f(t2) + 0(Im a(t)) . (III.12) 

1 This equation has , of course, been wrltten down many times before ) 
(apart from the +0(Im a(t))). But while it looks attractive, it obviously 
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does not solve anything but merely moves the difficulties into for) , 
or, rather, into Gm T)1nelast1c' Some theoretical models for to will 
be discussed later, but before doing that, it may be of interest to use 
Eq. (HI. 12) and experimental knowledge of f(t) to flnd what experiment 
says for) looks like . 

The best available high energy elastic data is for pp scattering; 
the experimental results are shown in Fig. 1 ,2 )  In principle, one can 
use Eq. (III.7) and this data to extract f(t); however, this is possible 
only if the experimental data are truly from the asymptotic region . 
From the figure, it is clear that at larger values of t ,  do/dt is stlll 
s-dependent, so  if our assumptions are at all valid, at these larger 
t 's one is not yet asymptotic. For small t ,  on the other hand, no s- 
dependence is evident, so  here one may hope Eq. (III. 7) applies. Out 
to t ~  - 2 (BeV)2 , then, we can (hopefully) get f(t) from the data, and 
hence for) from Eq. (III. 12) . These two functions are displayed in 
Fig. 6 .  The crucial thing to notice is that fD(t) changes sign near t=e - 0 . 7  (BeV)2: this feature is a consequence of the rapid falloff of f(t) , 
and results from the fact that the integral in Eq. (III. 12) cannot fall 
as fast as f itself, so that it eventually overtakes f ,  thereby making fo 
negative. The behavior of fo for larger (negative) t is , as mentioned 
earlier, unreliable because the data are not yet asymptotic. (A method 
of extracting the truly asymptotic do/dt from measured do/dt for large 
but not asymptotic s would obviously be of great value .) 

An additional way of comparing Eq. (III. 12) with experiment is 
worth mentioning at this point. We had found 0T = f(0). Equation 
(III. 12) allows us to break up UT into the elastic and inelastic total 
cross sections , by writing 

GT = oT(e1astlc) + oT(lnelastlc) (III. 13) 

and we have 

cT(1nelastlc) f o(0) (III. 14) 

while 

OT(elastic) IJ" 

permits the prediction not only of do/dt but also 

1 dt. dt., f(t1) f(t2 ) 

16n2 ,. 
J t=0 

Any theoretical model for to, together with a solution of (III. 12), then 
of oT(elast1c)/u . 

This ratio is well measured in both pp and up scattering; the res i t s  
are 0 .24  4: 0.01  for pp and 0.16 a: 0 .01 for up. 

(In. 15) 
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it may be of interest to describe . 
arbitrarily, that to 

There is a model due to Van Hove based on Eq. (III. 12) , which 
3) This model assumes, somewhat 

is simply an exponential: 

B1 eAt t fo(t) = 

Since this to has no slgn change, we know already that it cannot fit 
the experimental data; nevertheless, it is amusing to carry out the 
solution of Eq. (III. 12) for this case . 

Let's try a solution for f(t) of the form 

(III. I6) 

up 

f'(t) - B 
n 1 n 
E 

A t  n e (III . 17) 

We substitute this in Eq. (III.12) , and note that 

or, on2 
If / n 

A t A t e n 1+ m e  n' 

A + A  n in 

( A A  /A+A )t 
e n m  n m .(111.18) 

Thus we have 

Ant 
B e n 

co 

n'1 
B1 

eA1 t 1 
l 6rT 

+ t + i n m e(AnAm/An Am) 

n,m=1 m 

B B  

A+IA n 
.(III.19) 

Evidently this is solved by 

E 
=r g 'F 

c: 
nz: 

-=n ' -5 E 
<1 

II ¢g 4; 

In 

'6 c: 
\ 

H
 

<1 
II s: 
-=: (IIL20) 

and 

B n 
l 

l6n 

n-l 
2 

B B m n-m 
A +A n in 

1 n-1 

16rr A1 m=1 Z m(n-m) B B 
n m n-m .(I1I.21) 

Let us now define 

B n (l6n A1/n) Cn . (III.22) 

Then 
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C n 

n- 1 
): 

m=l 
c c m n-m (III. 23) 

and 
m C t f(t) = 16rr AS n eAt /n 

n=l 
2 n (III. 24) 

Define 
A1. t n i n C x 

G(x) = n e 
n=1 

(I1I.2s) 

so that f(t) 

L(s) =l" e-sx G(x) do = E 
o n=1 

16T1 'Al G(1) . Now Laplace transform G(x): 
so GD C 

n 
s(n.A1t/s) (III . 26) 

Next define | 

L ( s . y )  = £8 
n=1 

C N 
3(n-Alt/s) 

vn-A1 t/s (111 . 27) 

Then L(s) = L(s,1) and 

s I-(s,y) = i 
n=1 

8_ 
ay 

C n 
in - Alt/s -1 V-1 - A1t/s 

F (y). (III. 24) 

Now F(y) is easy to evaluate; we have F(y) 
(III.23), we see that 

as >: 
n- 1 

C n 
n 

y and, using 

(F'(y))a - F(y) + 01 Y = 0 (III.25) 

or 

F ( y ) = * } i ' } ~ / 1 - 4 0 1  y (III. 26) 

Since F(0) = 0 ,  we must take the negative root . 
the differential equation (III.24), and we find 

We can now integrate 
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1 1 -l-At/ 
L(s) =L(s , l )  = §  I dy' (y') s (1 ... 

o 

Finally, we must invert the Laplace transform to get G(x): 

c+1°° .f L(x) dx : 
c-111° 

1 
G(x) .- 21T1 

sx e 

'l/1-4 C1 y')- (HL27) 

(111 . 28) 

the n 

f(t) G(1) 
1 

81TA1 I' 
o 

dy' 
YI  ( 1 - J 1  4 C1 y') I0(2 'N/Alt log yI) . 

(IIL 29) 

This solves our problem. We have evaluated f(t) , and hence do/dt , 
for all t .  In particular, at t = 0 , Eq. (III.29) yields the result that 

UT = f(0) = 16rT A1 

UT( elastic ) 1 

GT 

1 + / 1  - 4 €1 
1 -,/1 - 4 01 + §  log 01 

1-J1 - 4 c, 
(III.30) 

Hence I We also have, of course, oT(1nelastlc) = B1 = l 61-r A1 01 . 
oT(1nelastlc) 

"T 

1 

- 1  

/ 1  

01 
1 + / I  

4 0 1  + % 1 0 9 c 1 1 _ . / I  
- 4  C1 

4 c1 - 

(III.31) 

The right-hand side takes on its maximum value at 01 =.} (note, in 
fact, that the entire solution fails if C1 > Jo., we shall see the physical 
reasons for this later) , and this value is 0 .2 .  
suit that OT(elastic)/uT S 0.2.5)  This is contradicted by the pp data; 
however, we already know that this model cannot explain the experi- 
ments because it has no sign change in for) . 

Another way to see the disagreement with experiment is to note 
that the data suggests , at the very smallest t ,  a falloff in do/dt like 
exp (I. Of). Thus we expect A1 5/(BeV)2 . However, because of our 
restriction that C,1 < i., we then get too small a value of f(0) , and 
hence of (do/dt)t=0, to fit the experimental value of 90 Mb/(Bev)"* (or , 
in more sensible units, of 225/(BeV)'"') . 

Thus we have the re- 
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A final remark of interest in the Van Hove model is that the 
asymptotic form of f(t) for large t comes out, from (III.29), to be 

*i/109 J; C1 -2 I-A1 f log §» cl 
> e 

t -o oo (~tJ 
f (t) 16TT (IIL32) 

This behavior f(t)~ 1/t e-Ft is a faster falloff than seems indicated 
by the data, winch looks more like f(t) t"" . (In fact, a model due to 
Chou and Yang4 suggests that f(t) (1:'(t))2 where F(t) is the proton 
electromagnetic form factor. We will return to this in more detail 
later.) However, as we have already indicated, at large it is unlikely 
that the experiment is as yet in the asymptotic region, so just what 
f(t) is for large t is not really known . 

To summarize , the Van Hove model, while it does not fit the 
data , is a useful illustration of how Eq. (III. 12) could be used, pro- 
v1ded that one is given an input fo(t) from someplace else. Our next 
task, then, should be to actually calculate an accurate for) from ln- 
elastic intermediate states . 
IV. Partial Waves 

For many purposes , it is more convenient to look at the partial 
wave amplitude rather than the entire T(s ,t) . We had, we recall, de- 
fined the partial wave amplitude by 

T(s,&) 1-1  1611 E 
p 

n{.(s) 
2 161I(5) 

e 

21 

1 
(Iv.1) 

Unitarity for partial waves reads 

lm T(s,/L) 
1 

1611 
.E 
E 

I I  - n 3 ( s ) \  
T(s,»¥,)3 - l 67T D 

E (Iv.2) 

Hence I 

(lm T(s "r'l)inelastlc) 

1 
-16rr E p 

U "  (s) 
4 . (Iv.3) 

s fQ(t) + 0(Im a(t)). The; 

E • l 61T 
p 

Let us now invoke our assumption that lm T(s ,t) f(t) + 0(Im a(t)) 

and (lm T(s 't))1nelastlc = - 
1 1 .f d(cos 9) P(cos  6) for) . 

-1 

'n (s) 
4 

= s  
2 (1v.4) 
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Equation (IV.4) permits us to calculate the inelasticity for any 
fo(t)° explicitly , 

= __ 1 
4fr 'n (s) l E' dt to (t) p&(1+2t/s) 

I 

Note -~ an for fixed JL, we must have 
o I dt fo(t) 0 

(1v.s) 

which demonstrates , among other things , that for) would have to 
change sign. Experimentally, it is unclear if this equation holds or 
not, since to (t) is not known for large (negative) t .  Thus we do not 
know what experiment suggests for M(") . 

In the Van Hove model, we had fo = B1 e , which yields, for 
A1 t 

large s , 

n&(s) .-Be TTS e 

4n A1 
-A /2 

1 5  I S / 2 )  I (Iv. 6) 

and if we let s -° °°, we have 

-0 J1 n ( s )  - B1 /4nA1 II J 1 4 c1 (Iv.7) 

°°, so that 

Thus , in order that 'r1(s) remain real (which is obviously necessary 
physically) we must have 01 < g. in the Van Hove model. This is the 
physical origin of the restriction we found earlier. If the restriction 
is satisfied, the it approaches some constant between O and lasymp- 
totically. 

The principal value of the partial wave approach may 11e in the 
fact that it permits us to make finite s corrections to the asymptotic 
differential cross sections . In the models we are discussing, we ex- 
pect 6 ( s )  -. 0 as s - 

T(s,&)-» - 
11 (s) - 1 1 1, 

6n 21 (Iv.8) 

Thus 

2 T(s,t) - 1611 1 (2!,+1) P ( c o s  @)('rl(s)-1) 
. 

is f(t) 
(Iv. 9) 

and therefore for large s 
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S) 1 .V dt p&(1 2t/s) f(t) . 
-s 

+ (IV.l0) 

6&($) 

(This equation is r of course , exactly the same as (IV.5), in view of 
the relation (III. 12) between f(t) and f0(t).) Thus , if we knew the 
true asymptotic do/dt, and hence f(t}, we could calculate 'r1&(s). 

Now the phase shift itself satisfies a dispersion relation . 
Again, (for s much bigger than masses) we have 

/'s °° log TU (s') 

- 2'1T t (g' -3) s 
inelastic: 

ds' + / S  
TT 

lm 6,.(3') ds 

Is '-s) 
LHC (IV.11) 

It is plausible to believe that the Ieadlng behavior of 64, (s) can be 
calculated from this relation, using the (known) asymptotic UL' s .  
These phase shifts, together with 'rl , can then be inserted into Eq . 
(Iv. 1) , and the partial wave expansion summed, to get a corrected 
T(s,t). This T(s , t ) ,  of course, approaches -is f(t) as s -» w, but for 
finite s deviates from it, and the deviation is larger, for larger t .  
Thus we may be able to compare the corrected T to experiment at f1- 
nite s , and thereby check that a guessed asymptotic f(t) is correct . 

To make this idea more specific, let us write, for finite but 
large s , 

1(s.t) = T(s.t) + AT(S.t) (Iv.12) 

where 'i'(s,t) = - is f(t) is the purely imaginary and truly asymptotic 
amplitude. Corresponding to this , let us wrlte 

T(s,&) T(s ,4r,)+.aT($ JJ (Iv.13) 

a nd 

11&(s) = ' n ( s )  + A'n(s)  (1v.14) 

where 

i(s,L) 16 Tl' "1(s)  21 

1 
(IV.15) 

Next, from (Iv. 1) , we evidently can deduce that 
1 

n ( s )  cos 2 6 ( s )  = 1 + j dx P ( x )  lm T(s,t) 

-1 

1 
16rT (IV.16) 
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and that 

' r I (s )  sin 2 6&(s) l 
l 6rr 

lr-.'1ll'll 

II .~17)/ 

Now, for large but finite S , we expect the phase shift 6/; to be 
small. Thus (Iv. 16) and (Iv. 17) become, to first order in 6 , 

11*,(s) 5 dt p&(1+2t/e.) lm T(s,t) 
1 l + 8rrs 

- s  

Tl _ (w 18) 

and 

'iI%(s) 6L(5) 
1 

161/s 

o 
. . [ d P &  ( 1 + Zt/s) Re 'AT(s.t). (Iv. 19) 

But lm T(s,t) lm ( s , t )  = - s f ( t ) ,  so  that 

1 
8n Y "L (s) "Na (s) = 1 dt p&(1+21;/s) f(t) 

-s 

(IV.20) 

and An/n~ lm AT/Im T << 1 . _ We may next invoke Eq. (.IV.11) . 
6 ( s )  + A6/,(s) , where 

Let us write 5 ( $ )  

€ ( $ )  = _./'s 
to 

2Tr s P 
inelastic 

1 0 g n ( s ' )  
» ds '  ' s ' ( s ' - s )  

J 

(1v.21) 

I I! 

Then 

A 6 ( s )  = _ &  
2TT 

on 

S 
inelastic 

ds' 
I/(5'-s) 

A N ( S ' )  

T1(5v) 

I I  

Fl l  

+'/5 
'IT I 

LHC 

lm 6 - ( 5 r )  

I?(s'-sJ ds'  q.1_ 

Certainly the first term in (IV.22») is much less than the integral in 
(IV. 21); if this were the full story, we would conclude directly that 
A5/6 An/11 << 1. However, the leftehand cut contribution to  the 
phase shift muddies the story somewhat. We may hope that, since s 
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is so  large and positive, while s '  in the LHC integral is always nega- 
t1ve , _ 
hope that A6/6 1, 
hand 
us an expression for Re T(s ,t): 

that the LHC integral is relatively unimportant. Thus we may _ << __ so that in Eq. (Iv. 19) we may replace the left- 
side by 'r l (s) 61 (s). Then Eq. (IV. 19) may be inverted, to give 

2 R AT(S,t) = - 16 (2x,+l) P (x) - (s) 5 (s) 
e To x, L "x, L (IV.23) 

Hopefully, ,and provided that the LHC contribution may be neglected , 
this formula gives a reasonable approximation the real part of the 
amplitude, in the region of large s but not s o  large s that it has gone 
away entirely. We may remark, in closing, that for computational 
purposes , it may be convenient to replace (IV.23) by the impact para- 
meter form 

no 

Re AT(S,t) = - 87Ts b db I0(b/-t) n(b) 6(s,b) £ (IV.24) 

where, as usual, (2x,+1) =/'s b.  In any event, whether (IV.23) or _ 
(IV.24) is more convenient, the expression (IV.2l) is to be used for 6 . 
V .  Models for t`0(t) 

We left the basic problem r 
of Section III. In pictures , fo(t) is displayed in Fig . 7 . 

the calculation of f0(t), at the end 
Explicitly I 

(lm T(s 't))1nelastlc _ n-3 

* 
2 4 4 P -p T T (or)  6 ( n  ) i n  f n  (v.1) 

_ nelastic 
iN lm r1(tJ "inelastic 
in principle , 

where the sum is over all states of three or more particles , and T1-0n 
is the amplitude for the lntial two particles to go to an n-particle 
state, and likewise for Tf_,n. P is the total four-momentum of the 
scattering, so that PA = S _ Pn is the four-momentum of the n-particle 
state . 

Our fundamental assumption is that T1_. is such that for large 
s I (lm T) becomes proportional to s Pm to higher order terms 

, and (lm -» --is fo(t). Equation (V.1) can then, 
be used to calculate for) . 

What is needed is a model for T1_, nl that is | for the amplitude 
for two particles to become n particles . Various such models can be 
thought of ,  some of which are suggestive, but none which have, so 
far at least, led to a really convincing understanding of the experi- 
ments . A partial 11st, wlth a brief explanation, of various models 
follows . 
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ill r 1. 

- | | . - l -  1|'11. Hlli 
I t  

le.s_lg1 

I. *1-:u11-vol 

\ill - 1 1 - 1  

Fig. 7 .  Diagram representing contributions to (lm T(s ,t))ine1aSt1C 

(1) Suppose that the scattering particles are composite, and for sim- 
plicity, suppose they are made of two constituent particles. (An 11- 
lustration, if the scattering particles were mesons , might be quark- 
antiquark for the two constituents . )  Then a simple picture for 
(lm T)1nelastlc is given in Fig. 8 .  Now suppose that the constituent- 
constituent scattering amplitude, at high energies , also has the cha- 
racteristic form 

T(S,t)cc -» - is fc(t) (v.2) 

:sill l 

I=1',l, -II up- - l | " ! * l I I | | | . I , $  mr 

|_ 

II '.II 

i p -  

l' I" 
. | l  

Ink llll 

I I  u 1ull- 
- l  no!! 'lllu mud I i i  l'll 11-11 I 

Fig. 8 .  Model for (lm T)1ne1ast1C in terms of some elementary 
constituent particles . 

JI 
.Lu 

: in  l'.li 
M I 
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with some function fc (t) . Then it is very easy to see that the drag-ram 
of Fig. 8 yields , for (lm T)1ne1ast1c' the result 

lm T s , t  -» ( ( ))inelastic s (1=(t))2 fc(t) (v.3) 

Equation (V.3) is derived assuming that off shell effects in the con- 
stituent-constituent amplitude (V.2) are negligible , so that the off 
shell amplitude which actually appears in the center of Fig. 8 can be 
replaced by the on shell amplitudes . In that event, F(t) in Eq. (V.3) 
is precisely the electromagnetic form factor of the scattering particle , 
normalized to F(0) = l , and calculated in the approximation illustrated 
in Fig. 9 . (This approximation, incidentally, yields a form factor 
falling off at least as  t-2 for large t .  l)) Thus . 

f o (t) f0(t) (F(t))2 | (V-4) 

. • . 
1 

I 

I 

J 

Fig. 9 .  Bethe-Salpeter model for (lm T)1ne1ast1c' 

I 

Note that one vers lon of this model is that the composite particle (if 
it is a meson, say) is made up of itself and itself, so that the con- 
stituent particles and the scattering particles are the same. Then we 
would have fc (t) = f(t). But then Eq. (V.4) is manifestly inconsistent 
since it would require f0{0) = f(0) , which clearly contradicts Eq . 
(III. 12) . Presumably, this inconsistency is a result of the neglect of 
off mass shell effects at small t (in particular, at t = 0) . For large t ,  
it is plausible that off mass shell effects are unimportant, so that 
(V.4) with fc (t) = f(t) might hold, but for small t it is a priori unlikely 
to be true , and in fact turns out to be false . 
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const. E C as t -  -==, and if F(t)»- t'l'1 for large t (n 
mentally) r then f (t) t'2fI for large t .  But then the solution to Eq . 

tlona 1 to apanrt from higher order terms in lm of. (t' }) at large s .  

In the absence of a theory from which ac (t) can be calculated , 
Eq. (V.4) and this entire composite model, is essentially useless. 
Perhaps only one remark is worth making, namely the following: If 
fc(t) - = 2 exper1~ 

(III. 12) yields f(3 t'2N at large t as well, since the integral in 
(III. 12) , with an input of f( t)~ t'2n, itself behaves asymptotically 
like t'2N. Thus we have f(t) ! 

gested by Chou and yang,2) and later elaborated on by Abarbanel, 
Drell, and GLlman,3) among others . 
(if) A second type of model consists of guessing a form for T2 _, n 
and making use of Eq. (V. 1) directly. Evidently, in order to be con- 
s1stent with Eq. (III. 12), and, indeed, with our entire outlook, our 
guess for T must be such as to yield an (lm T)1nelastlc propor- 

s 
Various models suggest themselves. For example, the multi-Regge 
model provides a form for T2 -» a l  
II. However, various difficulties (which have yet to be cleared up) 
were mentioned there, which make its use.1n this context somewhat 
ambiguous. Perhaps a less deep, and more phenomenological, choice 
is to assume 

{F'(t))2 for large t ,  a result first sug- 

as described at the end of Section 

T 2-»n 

n 
c U 

1=1 

'G 2 ( p ) i  
e (v.5) 

where ( p )  is the transverse momentum of the i-th produced particle . 
Such a model is , roughly, consistent with present data . 
(111) A somewhat simplified version of model (11) is simply to say 
(lm T)1nelastlc can be approximated by a sideways ladder, as shown 
in Fig. 9 , and to calculate the ladder using the Bethe-Salpeter equa- 
t1on . 

However, with regard to both models (11) and (111) , (and indeed , 
) ,  one may say 

If n is linear in s . No easonable) such model has 

for any models which try to calculate, or guess T2 n 
that the Crucial ingredient is a form for T which can give an 
(lm Mlnelastic wl'lic:h 
yet been made. In particular, (v. s) will certainly not give a linear 
behavior wlthout dependence on (Pulp and, as was indicated earlier , 
the multi-Regge model for ,T2 _, n with a flat Pomeranchon input does 
not yield a linear dependence for (lm T)1nelastic unless one adopts the 
ad hoc (but possibly true) rule that the Pomeranchon is exchanged 
only once . 

We must therefore end on a somewhat inconclusive note: there 
exists , as yet, no plausible theory of diffraction scattering which 
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starts with the basic assumptions of particle physics (that is 
unitarily, crossing .| 
section . 
pinpoint the production amplitude T2 _. 
puzzle . Until a reliable theory of T2 
space , is constructed , 
cesses will be very limited . 

r with 
analyticity) and proceeds to a differential cross 

All that one can do is to use these general principles to 
11 as  the missing piece in the 

-4 n ,  valid over most of phase 
progress in understanding diffraction prof 
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CAUSALITY IN ELECTROPRODUCTION 
AT HIGH ENERGYT 

Lowell s. Brown 
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University of Washington 
Seattle , Washington 

I. Introduction 
Electron scattering serves to produce a virtual photon of 

space-like four momentum which probes nucleon structure in a very 
clean way. Elastic scattering experiments have been carried out ex- 
tensively, and we now have a fairly detailed knowledge of the 
nucleon form factors as functions of the virtual photon mass . In 
these experiments r the nucleon recolls elastically, the photon inter- 
acts wlth the nucleon material in a coherent manner, and these form 
factors are related, roughly, to the average shape of a nucleon. 
High energy inelastic electron-proton scattering experiments are now 
being performed although as yet we have only preliminary results . 
The inelastic total scattering cross section is described by two 
structure functions that depend on both the photon energy (v) and the 
photon mass (k3). In the inelastic process the photon interacts in 
an incoherent manner and it probes , roughly, the instantaneous con- 
struction of the proton rather than the average shape found in the 
elastic scattering experiments . The structure functions can be ex- 
pressed in terms of the Fourier transform of the commutator of two 
electromagnetic current operators . The high energy behavior of the 
structure functions is therefore also correlated with the nature of 
this commutator at small space-time intervals . It is to this aspect 
of electroproduction that these lectures are addressed . 

We shall describe the subject matter of these lectures with 
an annotated list. Sec. II reviews the kinematical description of the 
total inelastic electroproduction cross section and the relationship 
of the structure fuhctions to  a matrix element of current operators . 
The structure functions are the absorptive part of the fonnrard, virtual 

Presented at the INSTITUTE FOR TI-IEORETICAL PHYSICS , 
University of Colorado, Summer 1969 . 
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photon scattering amplitude. Sec.  III is devoted to the kinematics 
involved in the Regge pole analysis of this Compton amplitude, and 
it is shown that the Regge residue function must be singular if the 
vacuum trajectory is to contribute to the amplitude that describes 
real photon scattering. This must occur if the photoabsorption cross 
section is to approach a constant high energy limit. Such a singu- 
larity is obtained if the amplitude has a fixed pole in the angular 
momentum plane. Sec. IV reviews the experimental situation. The 
high energy limit of the photoabsorption cross section is seen to 
indeed be constant and, what is more striking, the high energy elec- 
troproduction cross section appears to be well described by a scaling 
limit of the structure functions , a limit in which v -> °° with k2 /v 
fixed that involves a dimensionless function of the dimensionless 
parameter kg/v . The remainder of the lectures is devoted to inves - 
ligating what applications causality, the condition that two current 
operators commute at space-like separation, may have in the under- 
standing of these results . 

The nature of causal representations is discussed in Sec. V 
without pretense to mathematical rigor but hope fully in a way that 
makes the structure of these representations clear. A causal repre- 
sentation, the lost-Lehmann representation, is used to discuss the 
high energy behavior of the electroproduction structure functions in 
Sec. VI. With the assumption that the lost-Lehmann weight func- 
tions are uniformly convergent, it is shown that the k2-* °° limit of 
the Regge asymptotic form is related to the small kg /v behavior of 
the scaling limit and, moreover, that thls relation is in excellent 
accord with experiment. The lost-Lehmann representation also pro- 
vides a connection between the scaling limit and the behavior of 
Current matrix elements on the light cone which suggests that the 
conformal group may have some role in the description of this limit . 
The relationship between equal-time commutators and the scaling 
limit is considered in Sec. VII. The validity of the scaling limit is 
shown to require that the spin-averaged nucleon matrix element of 
the commutator of two spatial current components at equal time must 
vanish. Finally, it is proven that if the corresponding commutator 
with one time derivative has a transverse structure then so does the 
scaling limit and, conversely, if the commutator has a longitudinal 
structure then so does the scaling limit . 

The work described in Secs . VI and VII was carried out in 
collaboration with D .  G .  Boulware . I have also enjoyed conversa- 
tions on some of this material with S . B .  Treiman. These notes were 
written at the As pen Center for Physics . 
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II. General Kinematics 
The electromagnetic process e + N -» e + (hadrons) is illus- 

trated in Fig. 1 . We denote the initial and final four momenta of the 
electron by q and q' , the initial momentum of the nucleon by p ,  and 
the total four momentum of the final hadronic state by P '  . The four- 
momentum balance reads 

P ' + q ' = D + q ~  (II-l) 

We label the 1nit1a 1 and final spins of the electron by K and K ' ,  res- 
pectively, the spin of the Initial nucleon by v , and we use the sym- 
bol Q ' to  represent all the variables of the final hadronic state other 
than its total form-momentum P '  . . 

(q',t<'} (q,K) 

L L  
/_,_ (PVC) 

h 
/' 

(M) 

Fig. 1 . Pictorial representation of the inelastic 
electron-proton scattering process . 

treated in lowest order 
Since electromagnetism is relatively weak, its effect can be 

and we need compute only the single photon 
exchange contributions depicted in Fig. 2 . In effect, the scatter- 
ing of the electron serves only to produce a virtual photon of four 
momentum 

k = q - q '  

P ' - p  (II . 2) 
I 

which then probes the nucleon and excites it to  some final hadronic 
state. The effective mass carried by the virtual photon (which is 
also the square of the four-momentum transfer imparted by the elec- 
tron) is space-11ke 
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< (. 

{k,p. ) 

b w I 'E' 

Fig. 2 .  Single photon exchange approximation graph . 
Le .L2-ko=*>0. (II. 3) 

The space-11ke character of k2 follows from its relativistic invariance 
and the remark that the process may be viewed in the Brett frame 
where the electron appears to strike an infinitely massive object. In 
this special frame 

nu = (qO . 2) . 
q,u = (q°. in). 

and 

Ku = (0, 2anq) 

is manifestly space-11ke . In addition to the effective mass of the 
virtual photon, we shall use a relativistically invariant energy 
parameter 

v -pk (II . 4) 

In the laboratory frame in which the initial nucleon is at rest 

pa = (m.alQ) . 
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this parameter is essentially the energy of the virtual photon 

v = m k o  I 

or, equivalently, it gives the energy loss of the scattered electron , 

v = m(qo - q ' ° ) -  

In terms of these variables , the squared total mass of the 
final hadronic state is given by 

s = - P 1 2  = - ( p + q - q ' ) 2  

= m 2 + 2 v - k 3  (11.5) 

If s = m2 we have elastic electron-proton scattering which is, of 
course , a special case of the general 1ne1ast1c process . For s 2 (m + 
u )2 we have electropion production, and so  forth. 

TT 
Thus 

Zn - kg 2 0 (II . 6) 

with the equality holding only for elastic scattering while for inelas- 
t1o scattering Zn - kg exceeds 2m;J.l1 + Nan. 

The transition matrix element in the single photon exchange 
approximation can be easily derived with the aid of the usual reduc- 
tion technique. If an electron field is used to  create one of the elec- 
tron states and the reduction method applied to it, a matrix element 
involving the electron and photon fields is obtained. After express- 
lng the photon field in terms of its hadronic current source Lu one 
arrives at 

(pig, 
I q[KI  

= i(2'II 4 
O"tl P). 

i i  - p - q)T (II. 7) 

with 

T = e21T1K, (q') YUK(q) k-2 (p ' ; '  out 1*'(0)lp7~) 

Here we use an invariant normalization of states so that, for example , 
o f  = 2 a 2 o 6 ( 3 ) ' -  6 ( q w  lqK) (Tr)  q (q q) K'¥c r 

(II. 8) 

(II. 9) 

and 
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- p, ._ L1K,(q) Y uK(q) - 2q*16K»K (11.10) 

The differential scattering cross section in the laboratory frame can 
now be calculated by the usual mnemonic method. The rate at which 
scattering occurs on a single target is the absolute square of th 
transition matrix element divided by the total elapsed time 2n6(§(0) 
and by the number of target particles which, according to the normali- 
zation convention (II.9) , is (27036 3)(0)2m. This rate divided by the 
flux of incident electrons is the differential cross section. Since 
(2n)3 6 (31(0} is associated with the volume of space , our normaliza- 
tion corresponds to an electron flux of 2qo (electron velocity) = 2lg. . 
We shall calculate only the unpolarized cross section so  we aver- 
age over initial helicities and sum over final helicities . Furthermore , 
we shall assume that only the final electron is detected, and so we 
sum over all final hadronic states . Accordingly, the cross section 
for scattering into some interval A of final electron momenta is given 
by 

= z  
lcK' 

1 l 

AW = £2 t 

(211)4 6(p' + q '  - -ODITP 

(d_g'} cdgrm 
Ao l; co 2q'° U J` (m 2pfo 

1 
P 2m2 .go . 

The strong interaction part of the transition amplitude (II.8) 
enters into the cross section in the form 

<d.1.;') 

125' (2rf)a 

(pm*'(0)lp'c,' out)(P'Q' <>utl1"(0)lp») . 

1 
2pIO (2n)4' 6(P' - p -k) 

(11.11) 

(11.12) 

Here we have used the I-Iermitian property of the current to write 

(p 'g '  outlet**lp>>* = (p)lj**lp'€' out) . 
v I We should note that the structure tensor Au is the absorptive part of 

the forward, virtual-photon Compton scattering amplitude . It can be 
expressed as the Fourier transform of a current matrix element. To 
this end, we make use of the representation 

i P '  - -k X 

and of the energy-momentum operator Pa in the form 

(21T)4' 6(P'-p-k) 

(11.13) 

(II. 14) 
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i PI - -'PX lP 6.(  ")"(px\1**(0)lp'c' out) = (pale 1 j*'1(0)e XlP'c' out) 

= (pxli**(x)1 p ' Q '  out) . 

207 

(11.15) 

In this way all reference to the particular final state is removed and 
the completeness of the final states 

(dg.12.') 
2 

Q' I (2"P 
l ZpIO IP'Q' out)(P'Q' outl = 1 

.(II.l6) 
may be employed to give the simple result: 

v'  -1kx . Au = .f (dx)e é2(p)~l1**(x)JV(0)l pM (II. 17) 

This structure will be the basls for our later discussion of the theory 
of electroproduction. We note, incidentally, that the energy-momen- 
tum operator p" can be used to prove the translation invariance 

I U- I 

( p I  1**(x)1"(0)lpx) - ( p x l j  (0)J"(-x)l PK) _ (11.18) 

Since we have used an invariant normalization of states , AW 
is a Lorentz tens or and can be expanded in terms of QW, p*Jpv, pUke, 
k*'p". and k**kv wlth scalar coefficients that depend upon the two . 
invariants that one can construct, v and k . Not all of these scalars 
are independent however, for the current is conserved , 

-u B ]  (x) - 0 . 
It follows from Eqs . (II. 17) and (II. 18) by partial integration that 
this requires 

(11.19) 

v v k A*J. = 0 = Au k . u v 
v . We can combine k**k" with k2 go to immediately obtain one covari- 

ant that satisfies this constraint 

2 v ( M# =1<**k*' - k"g*'V . 

(11.20) 

(II.2lb) 

With kl*k" now eliminated from the list of tensor forms there remains 
only one combination that obeys the gauge invariance constraint 
(IL20): 
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(1 l t v  = pupvlf - ( p k g  + k*pv)pk+9'"W(pk)2 

v v v v 
= pup kB + (pub + kup )v+glu v3 . (II. 2la) 

Thus we have the decomposition 

v 1 2 v A** = ( lt**"A1(v,1el + ( )to A'2(v.k2) (11.22) 

Covariants obtained from combinations of (l)tuv and (2)tuv with fac- 
tors of v or ka appearing as denominators should not be used, for 
they contain spurious kinematical slngularltles whose cancellation 
requires constraints between the corresponding scalar amplitudes . 
By construction, the covariants (II.21) are free of kinematical singu- 
larities and the structure functions A1 2 are correspondingly free of 
such kinematical constra1nt.3) I 

Since the tensor AW was originally constructed in terms of a 
sum of squares (II. 12) it is real, and, moreover it is positive-definite 
in the sense that . 

a *AUvav Z 0 u (II.23) 

for an arbitrary complex four-vector au' The full content of this posi- 
tivity condition can be obtained most easily if the vector au is ex- 
panded as 

\ 

(II.24) aLJ. =app +Bku +»LI-1+mU . 
Since pl-1 is time-11ke, L L  and mu 
vectors which are orthogonal to each other and to VU and 
this expansion, the positivity condition (II.23) becomes 

III" (VB-I' Kama) [m2A;|. +A2 ]  

+ (I/LI2 + lrnl2) Ev2A1 - k2A2J 2 0 

can be chosen to be two space-l1ke 
k*J.. With 

(II.25) 

and is therefore equivalent to the two constraints \ 

(II.26a) 

and 

VG A1 k a A 2 2 0  (II.26b) 

or , 
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A 1 2 0  I (II.27a) 

and 

- m2A1 s A2 s (v2/k2)A1 (II.27b) 

To complete the cross section calculation, we need the elec- 
tron tens or corresponding to the hadronic structure tensor Al~i*' . It is 
given by 

aW =%2x,K[aK, ( q ' )  Y*'UK(q)J*UK, (q') YvuK(q). (11.28) 

Since we are interested only in collisions whose energies are several 
orders of magnitude larger than the electron mass, we 1ncu.r essen- 
tially no error with the neglect of this mass , and we can use the zero 
mass projection 

ETHK (q) U-K (q) = - yq (11.29) 

with qa 0 q 1 2  to  get 

- lJ- v aM) -é  tr YqY Yq'Y 

= 2(q*1q,v + q' l"qv- guvq'q)- (11.30) 

The differential cross section for a glven momentum transfer and 
energy loss can now be written down. On using Eqs . (II. 11) , (II.8), 
(IL 12), and (IL28), we get 

d3cf 
do" do .r (dg'} 1 

(210 2qIO 
e4 

(ka)2 

6 (F -(q'-QF) 6 (v+(q-q')p) 

a AW 
INV 

1 
-4pq .r (11.31) 

where, since the electron mass is taken to vanish, the laboratory 
quantity m ql can be expressed as the invariant -pq. The formula 
(II.31) for the differential cross section exhibits it as  a manifestly 
Lorentz invariant scalar. The phase space integral is easily done in 
the laboratory frame and the re suit can readily be written in an 1nvar1- 
ant form , 
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1 (d_q') 
I (2,,)= 2q.o 6 of -(q' -q)2 )@<v+(q' -q)p) 

l . 1 
(41-T)2 (-qp) 

(11.32) 

A little algebra now gives 

d2 Q 
dk:adv 

Et 
ks (quo )2 {[(q'p)(qp) -émaka +%vB] A. (».k") 

-£1<BA2(v,k2)} I (11.33) 

t1ons4) 

where 'G = (ea I4rr) =' 1/137 is the fine structure constant . 
It has become conventional to use a pair of structure func- 
defined by 

A*"' = (1/rn2 )[ p'*+kV (v/k2 )] E p"+k" (v/ka )J 41TMW2 (v, kg) 

+ Lg*"'-k**k" (1/ka )]4TIMW1 (v . 1<@ ) (11.34) 

which are not free of kinematical constraint . 
kinematic singularity free amplitudes by 

They are related to the 

47TmW2 = m2 kg A1 I (II. 35a) 
and 

41TmW1 = v"A1 k@A2 . (II. 35b) 

These structure functions do have the advantage of putting the differ- 
ential cross section in a simple form. If we write the electron Initial 
and final laboratory energies as e = q° , e '  = qIo , and use the labora- 
tory angle defined by (remember that the electron mass is taken to 
vanish) 

k2 = -2q'q = 2e'e(1 - cos 9) 

and the corresponding solid angle 

do = 27Tld cos 81 = (7T/e:'e) dka , 

I (II.36) 

(II.37) 

we; have 

dau 
dude' 

= do 
( do IM0TT 

{we (v ,kg )+2tan2%W1 (v ,Je )} , (11.38) 
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in which 

MOTT 

= a2 cos" B/2 
463 s1n4 B/2 (11.39) 

is the scattering cross section for a high energy electron on an infi- 
nitely heavy, spin zero, structureless target. 

We have already noted that, in the single photon exchange 
approximation, the electroproduction process is equivalent to  the 
absorption of a virtual photon. In the limit k2-° 0 this exchanged 
photon becomes real and hence the electroproduction cross section 
must become proportional to the photoabs orption cross sectioh. This 
relationship can be made explicit if we compute the total cross 
section 

Y + N -n (hadrons) 

for the photon absorption process in terms of the structure tensor 
AW . Since this tensor is gauge invariant, the average over the pho- 
ton .polarizations is tantamount to its contraction with éguv and thus , 
in the so .me manner in which the electro production cross section was 
calculated, we get 

0 Y(v) = e2§'QI_NA#V]]@=0 
1 

-4pk 

=7TavA1 (v,0)  . (11.40) 

This limit leads to a third parameterizations) of the structure 
functions which involves a decomposition of AW into spatially longi- 
tudinal and transverse parts in the laboratory frame . Since the struc- 
ture tensor is gauge invariant [Eq. (II.20)] , its longitudinal piece is 
proportional to a time component and thus we may equally well speak 
of a scalar part rather than a longitudinal part. Now, if.g. is a trans- 
verse vector I 

II lm
 

17%
 

II o In
 (II.41) 

we have, in the laboratory frame , 
k& e * k A  51, = | e | 2 { v 2 A 1  -k2AQ} I (II . 42a) 

while 

kayAk* -2 =1*<'°`{v"A1 + (va/m2)A21 (II.42b) 
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It is conventional to write Eq. (II.42a) as 

oT(v,k2) = IW/v)[v2A1 (v,k2)-k2A2 (v,k2)] 

where v is the energy that a real photon would have to produce the 
same missing mass [of. Eq. (II.5)] 

(II.43a) 

v v - é? (II. 44) 
This transverse cross section reduces to the photoabsorption cross 
section when the virtual photon mass vamlshes , 

k2-° 0: o T(v ,ka ) * GY (v) . 
It is also conventional to write Eq. (II.42b) as 

cr5(v,k2) = (my/v) m2k2[A1(v.k2) + (1/mB)A2(v,l?)] I 

which obeys 

(I1.45a) 

(11 . 43b) 

ka-° 0- 05(v,k2)-° 0 . (I1.45b) 

Note that, according to Eq. (IL26), the transverse and scalar cross 
sections, UT and o s ,  are independent, positive quantities . They are 
related to the structure functions W1 and We by 

411 mw1 (v/1Ta )0T . (II.46a) 

and 

4Tr mw2 
I n  

l l _ -  
m2 ka + 

no v2 +m2k=*(°8 UT). (II.46b) 

III. Regge Kinematics 
We shall outline the kinematics involved in obtaining the 

Regge asymptotic behavior of the electroproduction structure func- 
tions . We begin by very briefly reviewing the Regge analysis of the 
scattering amplitude T(v,t) of spineless particles . We denote the 
initial and final momenta of these particles by p ,k  and p' ,k '  with 

p'+k' = p + k  I (111. 1) 

and use the variables 
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_ 1 I I v - "z(k +k)(p +p) , 
t = - (p' - p)2 . 
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(III n 2) 

(III . 3) 
I I 

We shall assume that pf? = pro and kg = kIt SO that even at t = 0 the 
cosine of the unphysical scattering angle in the t-channel obeys 

v-°°w: °'COS 9 t C I . V  (III . 4) 

The basic Idea in the Regge method is to make use of the angular 
momentum decomposition of the scattering amplitude in the t-channel, 
and to use the Watson-Sommerfeld transformation to replace the 
partial wave sum by a contour integral in the angular momentum plane. 
In order to achieve good convergence of this integral, it is necessary 
to introduce amplitudes of definite "signature " with 

T(v,t) = T+]l(cos6t,t) + TH(-cos8t,t) 

-1 + T  (cos9t,t) 1-1 (-cos9t,t) (III. s) 

and 

TT](cos8t,t) = EI tTu(t) PI(cos6t) (III. 6) 

The Watson-Sommerfeld Transformation gives 

to] (1:) 
21 sinful Tr(cos9t,t) =§ dl PI(-cos6t) , (III . 7) 

and the integration contour, which originally encloses the positive 
integers, is opened up and the Regge poles , the poles of tel (t) in I 
are encircled. The leading Regge pole, the pole at I = 0-(t) which 
lies furtive st to the right in the angular momehtum plane , gives a con- 
tribution of the form 

_ -5(1) - TTM(cos9t,t) e ) _ 51nTTG(t) Pg, COS t (III. 8) 

and, since 

Z -° =°° P a(z) G. a z  (III . 9) 

this leading trajectory dominates the asymptotic behavior in v of the 
scattering amplitude. [The presence of branch cuts in the angular 
momentum plane could invalidate this argument. However, we shall 
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use the Regge analysis only at t = 0 where the leading pole should 
dominate.] In terms of the original amplitude we have 

a 1 v to) v -» T(v,t) = -Be Q 
1 

+ 'be -'ma (t) 
sirma (t) (III. 10) 

in which H = i t  is the signature of the leading trajectory . 
We must now extend this analysis to the nucleon spin aver- 

aged, virtual-photon Compton amplitude Tuv whose absorptive (ima- 
ginary) part at t = 0 is the structure function AW . We can write 

TW 
kl*J]<Ia 

olé (w ) é (p' +p)a(g 
dB _ kvkB) 

k? %(P'+P)BT2 (Vr trkI2 ,kg) 

+ g T1 (\J,t,k'2 ,kg) + 
a • • I 

*J-V _ k1-1k1v 
kk' 

where the omitted terms vanish at t = 
parts of T1 2 at t = 0 are the structure functions WE 2: 

v,k2 = ,0,k3 W1,2( ) lm T1,2(V ,k2) . 
0 ,  and where the absorptive 

(III.11) 

(III. 2) I 

We have chosen the covariants such that gauge invariance is gen- 
erally obeyed 

k'  r!""'=0=r.1"k . u v 
They have kinematic singularities in k13 , k2 and t ,  but these are 
irrelevant to our present discussion . 

. The crucial aspect of the Regge analysis is an angular momen- 
tum decomposition in the crossed t-channel. Such a decomposition 
is obtained by examining the behavior of the amplitude under rotations 
of the photon variables while the (spin-averaged) nucleon variables 
are held fixed or, since rotating all the particles leaves the ampli- 
tude invariant, by examining the behavior of the amplitude under rota- 
tions of the nucleon pair with the photon variables held fixed . In our 
case, it is easier to consider the response of the amplitude to nucle- 
on rotations in which the photon variables are kept fixed . 

The behavior of T1 under nucleon rotations is trivial to obtain, 
for its covariant involves only photon variables which are not altered 
by such a rotation. Hence , we immediately obtain the angular mo- 
mentum expansion of the signatured amplitude 

(III.13) 
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T1 Tl(cos9t,t) = Zlt1 TU(t)PJ(cos6t) , 
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(III. 14) 

and the asymptotic behavior given in Eq. (III. 10) . The vacuum tra- 
jectory ap(t) which has positive signature, 'am = +1 , should be the 
leading trajectory here, and, with 0zP(0) = 1, we find that the struc- 
ture function W1 behaves as 

-9 v °°: W1(V,k2) '1 (kg )v (III. 15) 

Such a simple analysis cannot be applied to the other invari- 
ant Ta , for it is associated with a covariant that involves nucleon 
momenta as well as photon variables and this covariant is not fixed 
during the nucleon pair rotation . 
circumvented by the ruses) 

This difficulty can, however, be 

%(p'+p) = -2 aka a v -2 a 
as'x' I (III. 16) 

which enables one to write 

1J- g a- 
k)u'kla 

kl2  I %(p'+p) (Q dB _ k"kB 
k3 )%(p'+p)5T2 (v l t r k "  ,kg ) 

u 
Q a- 

klux a 
162 )(g»1@- k keal a a I 4 , T2(v t k 3  kg) . 5 k G 5 k B  1 I I 

(11I.17) 
» . a The transverse proJectlons annlhllate k' and KB so that the deriva- 

tives wlth respect to  the masses k I B  and k3 do not contribute. We 
have defined t= -(p'-p)2 and it is~ independent of k '  and k '  . Hence 

1 

1'= 

TO (v,t,k'2 ,kg) =§;§i(».t.k'2 ,kg) (111 . 18) 

The covariant associated with TO now involves photon quantities that 
remain constant during the nucleon pair rotation and thus this new 
invariant has a simple angular momentum decomposition and the Regge 
asymptotic behavior given in Eq. (III. 10). We take two derivatives 
Of this formula to get 

v °°: T2 = -B(t)a(t) l:a(t)-l]v -o 1(t)-2 14"r€l"1°X(t) 
s1nrru.(t) (III . 19) 

We now encounter another difficulty: the leading trajectory 
should be the vacuum trajectory "p (t) with positive signature, n = +1 , 
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but aP{0) = 1 , and the factor [aP(t)-1] apparently uncouples this 
trajectory at t = 0 .  This decoupling is related to the impossibility 
of coupling two photons of the same polarization to a vector particle 
at zero momentum transfer. However, it is possible?) for the resi- 
due function to be singular at t = 0 such that the vacuum trajectory 
does contribute. This is permissible because we are considering the 
Compton amplitude only to  lowest order in electromagnetism, and thus 
there is no bound on the partial wave amplitude. Such a slngLllar... 
behavior of the residue is obtained if the partial wave amplitude t2 
has a multiplicative fixed pole at I = l of the form 

al 

+1I = §(t) 
EH] E I-ap{r)J 

+ (III. 20) 

The pole at I 
expansion 

1 does not produce a pole in the partial wave 

Ta" =);]¥2'nI(tl B; I P (cost )  (111.21) 

since the v-derivatives annihilate PI ( c o s t )  . Thus the Watson- 
Sommerfeld transformation can be carried out with the result 

-'ii 1ap (t) 
1+e v -° =°: T2 = -§(t)aP(t)v°Plt)-2 sinlTap (t) I (IIL 22) 

and 

Q .  . v *  W2lv,k2)=w3(k3)v'1 . 
In terms of the amplitudes that are free of kinematic singular- 

ity, we have 

(IIL 23) 

-o Q .  . v A2(v,k2)=B3(k'*)(v/rn'*) r 

and, assuming that the [aP(t)-1] zero is indeed cancelled by a singu- 
lar residue , 

(II1.24) 

v *°°= A1(v,k3) = B1(k")(1/vma) . (III.25) 

mass to make the residue functions B1 2 dimensionless . We have scaled these formulas with appropriate powers of the nucleon 
It follows 

from Eq. (II.40) that the total photoabsorption cross section has the 
constant limit 
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v -» °°: GY (v) (TT1/m2) 8. (0) , 
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(III.26) 

This cross section would vanish asymptotically if we had not chosen 
a singular residue to enforce the vacuum trajectory contribution . 
Iv. 

The cross s 

Experiment 
The experimental situation with regard to the high energy total 

cross section for the absorption of photons on protons is relatively 
clear. measured ,ection displayed in Fig. 3 along 
with a plot of the function E 100 + 60v ] . The v'é form of the cor- 
rect1on to the constant asymptotic limit accounts approximately for 
lower Regge trajectory contributions such as  the P '  and AQ whlch have 
q,(0) -*é* . Thus it appears that the photoabsorption cross section does 
indeed become a constant in the high energy limit , 

o ¥(v=°°) 100 x 10*° cm2 (~  10%) I (IV-1) 

and that the vacuum Regge trajectory with aP(0) = 1 does contribute . 
In terms of the parameterization (III.26) , the experimental value of 
the dimensionless residue is given by 

.-nl 
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d3r; ; 

dQd€ 1 

The experimental situation in high energy electroproduction 
is not S O  transparent. We have found that this cross section can be 
described as 

l l$ 
e (v,]<'aa)+2tana E w1(v,k2)} . (II.38) 

In principle r this cross section can be measured at a fixed energy 
loss v and at a fixed momentum transfer k8 but at various laboratory 
scattering angles e and the ratio 

(mg) I(-)MOTT 

do 
do 

can be plotted as a function of Ztang§. This ratio should appear as a 
straight line with a slope given by we (v,k2) and an intercept at 9 = 0 
given by W2 (v,k2 ) . In practice, the experimental analysis is not so 
simple because radiative corrections , the corrections due to photon 
emission, can be substantial. Since the electron is very light, it 
undergoes by far the greatest acceleration during the collision, and it 
is the principal source of the radiation. If the cross section de- 
creases rapidly with increasing energy loss and momentum transfer , 
the radlatlve corrections of this type (Fig. 4) can become large, for 
they can alter the observed energy loss and momentum transfer into 
the region where the cross section is very small although the basic 
cross section which they correct is large . Thus , the radiative cor- 
rections destroy the precise correlation between the observed elec- 
tron's energy loss and momentum transfer, and the virtual photon 
energy and mass, and the observed cross section in a convolution of 
the theoretical formula (II.38) and radiative correction factors . This 
convolution must be undone before the data can be analysed in terms 
of the structure functions , and this is a difficult task. 

At the present time , radiatively corected experimental re- 
sults at high energy have been presented only for one laboratory 
scattering angle, a small angle 9 = 6o where the electron accelera- 
tion is not too great and the radiative corrections are not large . Al- 
though data at only one angle does not permit the separate determi- 
nation of the two structure functions , the t a r f -  factor in Bq. (II.38) 
1B quite small at B = 5o and so is the contribution of W1 . Thus this 
data provides a moderately good determination of W2 . In fact, it 
follows from the definitions of the independently positive scalar and 
transverse cross sections [Eqs . (II.46)] that W1 is bounded by W2 
according to 
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w. (v,k2) = (1 + RV* (1 + mvaka) we (v.k2) I (Iv.3) 

in which 

0 s R = o s / c r T < o n  (Iv.4) 

Hence we can write 

VW2(V,ka) ( dau 
v dude' 

do 
an ~)(-);OTT ~1 +§ . (1'v.5) 

The values of vW (v,k") that are obtained from the 6o data for the 
two extreme values R = 0 and R = °° are presented in Fig. 5 . As we 
noted, slnce 9 is small these extreme values of R do not change We 
greatly. The remarkable aspect of this data is that at large v the 
quantity vw2 (v,k3)  appears to be a universal function of the dimen- 
sionless variable 
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Fig. 5 .  Experimental results 9) on high energy electropro- 
duction at 9 = 6o that motivate the scaling law . 
The two curves follow the average of the data on 
vw9 when the two extreme values R = 0 and R = °° 
are used in formula (W.5) . 
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00 = k2/v . 
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(1v.6) 

That is , it appears that VW2 (v,k2) takes on the same value for a 
range of v and k2 so  long as the ratio kg /v is held fixed . 

This result is consistent with the existence of a scaling 
limit v -a m g  

W1 (Vlka) :  11 (w) I 

Up (w) 
We (v,k2) - V I 

or, in terms of the structure functions free of kinematic singularity , 
_ 31 (w) - vs , (IV.8a) 

a ( ) A2 (wks) = k w  . 
A1(v,k2) 

(Iv. 7a) 

(1v.7b) 

(Iv. 8b) 

We shall discuss this limit in Sec. VI. If as (Lo) vanishes so  does 
the high energy limit o f  the ratio R and u2(w) , or equivalently was (up) , 
is seen from Fig. 5 to  be very nearly a constant for Lo < is with the 
value 

uJ<é:wa1(Lv) =~4.0 (~15%) (Iv.9) 

We shall show in Sec* 
sons al  I2(UJ) near w : 

Regge trajectory 0(0) I 
start for small w with 
mental data supports this limit. 

I 

V 

.1-B 

of the scaling limit func- 
value of the leading 

'-t wa1 (w) becomes con- 
t seen that the experi- 

V. Causal Commutators 
We have found that the structure tensor may be expressed as 

v -ilex . .v 
All = .[`(dx)e %2<p?»IJ*(x)J (0)lp)») . 

where ko or, equivalently, v is positive. Now, by repeating the dis- 
cussion that led to this result, it is easy to verify that for v > 0: 

..'kg . | 

J`(d><)e 1 ii <pXIJV(0)J(x)Ip)») = 

.for in this case one obtains 6(P'+k-p) whose argument cannot vanish . 
This follows from the stability of the nucleon, as is easily seen in 
the laboratory frame where the nucleon is at rest. In this frame po=m 

0 I 

(11.17) 

(v.1) 
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\ 1 

While, since the nucleon is stable", an intermediate state energy pro 
must be at least as  large as the nucleon mass m and P I O  -p° +ko cannot 
vanish. Accordingly,.we may 'express the»S11'ucture tensor as -the-.-1 
Fourier transform of a»Tcurrentl:bommutator, v~> 0: ' . | r 

1 .['(dx)e c*' (X) . AW I II (V-2) 

with 

c*"'(x) = s (PH '1H*~<>¢), 1""(0)] IDX) . (V-3) 

The tensor decomposition -(II.22) becomes I n  | I ,  

G'*V(x) = [p**p"(-aa) + 

- Ea*a" - g 

(p*JBI"1+ a "p")pa -9*"' (pe )3 J C. (x) 

*We 2 J CO (x) 
n u  (x) | : (v.4) 

and we have 

v > 0: A12(v ,F )  = -ic12(k) (V.5) 

With I 

. j g I 

01 , 2 (k) = ;V (dx)e-ikxC If , 2  (id f 
l 

Translation: invariance , 

(V-5) 

(p»|1*l(x)j"'(0)|p)») = (pxI1**<0l1"(-x)lpv~) (II. 18) 

and the symmetry 1n~the-Tensor indices exhib1`ted- -in Eq . (V .»4) , give 

r f Okla. (X 
, 

) 
: 

C\'1.1 

-(-~X).. = 'CMC . ('-X) 
(V-7) 

Thus the-invariant commutator -functions are bdd 
I 

I 

I l L~.. 

I 01,2(IX) = `01,2*) 
r 

I 
(v.8) 

We may now incorporate the physical postulate of causality , 
the requirement that two current- operators commute at space-like 
coordinate separation-: ' - ` 1 - - |  
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h .V 
pa > 0: [11*(x),1 (0)] = 0  . 

223 

<v.9) 

or 

x 2 > 0 :  clJ.V(x)=0 (v.10) 

This condition is clearly satisfied if the invariant functions are 
causal, 

> - - . x2 0. C1,2(X) 0 (v.11) 

*i 
el 

H . ii Ixanversely, that the invariant func- 
If the various components of Eq.  (V.4) are examined in the nucleon 
rest frame, it ca 
lions 01,2 must# tensor div is to be causal. Hence , 
the vanishing of -like separation (V.10) is a neces- 
sary and suffici causality . 

We turn 3 l a  very heuristic manner how repre- 
sentations that exploit the causality information may be constructed . 
An odd, causal function may be written as 

oo 

C(x) = e:(xo) .fdag 6(x9 +a2)C(a2 ,x) , 
o 

in which C(a2 ,x) may be taken to be a function of a single invariant 
formed from x2 and (px)2 . There are two natural choices for this in- 
variant: (px)2 /m2 which reduces to the square of the time t2 in the 
nucleon re st frame , or, alternatively, x2+(px)2 /m2 which reduces to 
the square of the spatial distance r2 in the nucleon rest frame. The 
former choice leads to the Deser-Gilbert-Sudarshan11) representa- 
tion while the latter gives the lost-LehmannlZ) representation . 
These representations contain information about the mass spectrum 
- "  ~ states as well as being causal. This information 

if e(xo)6 (x2 +a2) is replaced by the vacuum com- 

II u 
I 

(v.12) 

A(x,m2) 
ilex e 21Ti 1 e(kO) a5(k2 +m2 ) I (V.l3) 

w 

which is causal 

x2> 0: A(x ,m2)=0 (v. 14) 

We. shall also need the relation *E 
I 

A(x.m2) = €(xo)A(1)(x2 ,m2) (v.15) 
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I 
A11 ) Xa 
function 

order to accomplish this replacement we note that since 
,m2) is causal, the Fourier transform of the commutator 

e(ko) 6(k9+m2) 1 
21T i t(dx)e-1kx 

A(x.ma) (v.16) 

I. may be expressed as 

€(ko)6 (ka +HT12 ) = t ( x ) e ' i "  § Odb2@(x°)a(x=*+b==) A(1)(b2 |Ma) .  (v.17) 

Now employing the Fourier transform (II. 16) we get 

@(k°)a(k2++2) = / l d x ) e ' " *  .l`db° 2T11 I(dx')e'j°°*' 
o 

Al><'.b2)Al1l(b2,m2) , (v.18) 

and, upon interchanging integrals and replacing the variable k by x ,  
we arrive at the lemma : 

€(xO)6(}@-l-a2) (2n)2_|`db2 A(x,b2) A(1) 
o 

(ba ,aa) (v.19) 

Accordingly, again interchanging integrals, we may write Eq. (V . 12) 
in the form 

m 

C(x) =/ db2 A(x.b2) D(b2 ,x) , 
` o 

(v.z0) 
wlth 

co 

D(b2 ,x) = (271)2' da" A(1)(b2,a2) C(a2 ,x) . (V.2l) 
o I 

The Deser-Gilbert-Sudarshan representation is obtained by 
using the variable (px)2 : 

oo 

c(x) =jdb2 Amwxw .(px)a) 
o 

(V.22) 

We may write 

X(b3 . (ex)2) =l` -1BpX 2rr e X(0-.B2) . (v.28) 

in which O' = b2 - 82 m2 to get 
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C(x) =.fd0 \T§-X(062)e-1Bpx A(x;cr+B2 m2 ) I (v.24) 

and, taking the Fourier transform we obtain 

C(k) ifdo dex(@ .BB )e (v+Bm2)6(k2 -2Bv-HJ) _ (v.25) 

We have yet to impose the conditions implied by the mass spectrum 
of the intermediate states . We have seen that if v > 0 only one order- 
ing in the commutator contributes, and we obtain the structure func- 
tions which have support only for Zn - k22 0 [Eq. (II.6)] . On the 
other hand, if v < 0 only the other ordering contributes with -2v-k220. 
Hence, we must have generally 

2 l v  - k 2 2 0 ,  (v.26) 

if C(k) is nonvanishing. It is easy to obtain conditions on the domain 
of the parameters Cr and B that are sufficient to ensure the spectral 
condition (V.26) . This domain is also necessary for the validity of 
the spectral condition, but we will not prove that this is so .  First 
we note that if V = 0 ,  the 6-function in Eq. (V.25) becomes 6(k2 +o) 
and we guarantee that C(k) is nonvanishing only for -k2> 0 by 
demanding that 

0 S o <  oo • (V.27) 

The spectral condition is now satisfied for arbitrary values of v i f  we 
require that 

-1 S B S 1 (V.28) 

The scalar invariant C(x) is equivalent to a matrix element of 
a scalar field commutator , 

C(x) = (al i[Q0(x) .<p(0)] I D) (V.29) 

As we have remarked, the spectral conditions allow the two orderings 
of the commutator to be separated: in the nucleon rest frame one 
ordering contains only positive frequencies, the other only negative 
frequencies . Since the representation (v.24) involves a vacuum com- 
mutator function with masses larger than je g in. its energy components 
dominate in the rest frame, Iko | > IBlpo = I B m ,  and the separation 
into the two orderings is clear. We have 



226 LOWELL S . BROWN 

A(x) = <pl>p(x)(;0(0)lp> 

= . do  t%X(0»B")e-1ePX A (+)(x: 0+B2 m2 ) r (v.30) 

with 

A(+)lx,m2) =.V (dk) 
(211)@ 

elkx e(k°) 6(k3+m2) (v.31) 

The Fourier transform of this representation gives , of course, the 
representation for the structure functions A1 ,2(V,k2)-  The time- 
ordered product may now be constructed in terms of the separate 
orderings 

T(x) = (pliTkp(x) ¢9(0))l p) 

= 9(x°)<pl1cp(x) cp(0)lp) 9(-xo)(p|1rp(0) up(x)Ip) + (v.32) 

-i x 
12) e So A+(x: 0+52m2) r (v.33) 

wlth 

A+(x;m2) = 6(xo) IA(+)(x;m2) + S(-xO) JA(+)(-x;m2 ) 

(dk) 1kx 
(21T)'* 1e .V e 1 

k 3 + m 2 -  (v.34) 

A similar representation holds for the scalar invariants associated 
with the t1me-ordered product of the current operator. However, to 
obtain such a representation for these scalar invariants , the step 
functions 6(xo) and Q(-xo) must be commuted through the tensor co- 
varlants exhibited in Eq. (V.4), a process that generally leads to  

contact or "Seagull" terms multiplying 6(x-x"). 
noncovariant terms can be cancelled by a suitable c1ef1n1t1on13) of a 
covariant time-ordered product with the result that it- has the form of 
Lorentz covariants operating on scalar functions wlth the representa- 
tion (V.33). In terms of the Fourier transform 

nonoovariant These 

T(v,k2) 

II j'(dx) e*1kXT(x) I (v.35) 

we have 
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= X.(0.B2) T(v.,k2) .Ada /"2 _2Bv-I.o -je (v.36) 

In LE,,E,,,_-. 

o!1'lli-1:2-1 

Despite the pleasant cast of the Deser-Gilbert-Sudarshan 
representation and the fact that it has been shown to be true to all 
orders in perturbation theory by Nakanishl , 
the lost-Lehma 
established w1 
It is 

14) we shall use instead 
which, in addition to having been 
is more convenient for our purposes . 

C (x) i d s  Y(s.Q2) A(x:s) . 
o 

(V.37) 

with 

£2 = xi + (pX)2 /ma (v.38) 

We shall work almost entirely in the nucleon rest frame where £8 = 12 
is the spatial coordinate separation. This entails no loss of general- 
ity, however, for the result in an arb1trar5r frame is immediately ob- 
tained with the replacement 

where 

5 + 2  I. 
.E 'L 

in [in +m) 
+ t  

m I (V.3g)' 

for 

go =x~ + (PXF /ma (v.40) 

As before , the spectral condition allows a separation of the two order- 
1ngs in the commutator. If we write 

(du) Y r2 = * '4I(s.u2) I (v.41) 

then, in the nucleon rest frame, we get the structure function 
representation 

(soa) 
kg _ °° (do) 

A1,2(V' ) - 0 d s ( % ) § ¢ 1 2  

2n9(\;)6(k3-2u'k+u3+s) . (v.42) 
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The spectral conditions turn out to require that the weight functions 
vanish if the parameter u exceeds the nucleon mass , 

T(v,k2) 

lu] > m: *'1,2(5I"3) = 0 . 
We note, for completeness, that the time-ordered product has the 
rest frame representation 

m Ms u2 ) = ds ¢ I o t(2tr)3 ka-2g_.']g_+u2+s-16 ' 
(do) 

(v.4s) 

(v.44) 

YI. Asymptotic Behavior 
We consider first the behavior of the structure functions in the 

limit v -» m with the ratio 

w kg/v (v1.1) 

held fixed. Note that since the structure functions 
only when Zv - kg' 2 0 [Eq. (II.6)] , the parameters 

are nonvanishing 
11es in the range 

0 S w S 2 

15) that the complete structure 
(II.22; remains finite in this 11mit in which the covariants 

(2 Hence, we 

We shall assume, following Bjorken, 
tensor 
(1)1;l-W and t!-W diverge as pa and v ,  respectively, 
require that, with L0 fixed , 

(vI;2) 

-» v A.(».1<2) = a ' " )  

v °°: A2(v k2) =a2(uJ) ' v -| 

I (VI.3a) 

or . so) 

We have already remarked [Sec:. IV] that there is some experimental 
evidence in support of the existence of the limit (VI.3a), but there is 
yet none in support of the limit (VI.3b) . The functions a l  I2(UJ) are 
dimensionless functions of the dimensionless parameter ua- Thus , 
the existence of this 11m1t implies in some sense that nature becomes 
scale invariant at high energies . Note that the positivity condition 
(II. 27) requires that these functions obey the inequalities 

&1(w) 2 01 (VI . 4a) 

and 
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0 s as (Le) s 0.)-1 a1 (w) . (VI . 4b) 

o o 

These scaling limits can be related to the lost-Lehmann 
weights *1 2-  If the angular integral in Eq. (V.42) is done, one gets 

I oo m 
1 

A1,2(v,k2) = 4n[1_$l Ids udu1|r1,2(s,u2)9(2u|_L<|-k2-L12 W; s) 

where , in the rest frame , 
Lal : L1e+»2/m2J* (VI. 6) 

We shall make the basic assumption that the weights 1111 
decrease rapidly at large s , uniformly in u.  Thus , since Qhe variation 
of u is bounded, we can neglect both u2 and s in the 9-function in 
Eq. (VI.5), and obtain 

oo m 

(5,ua) 

v - °  °°: Al2(v .k " )  m 
4nv I.f ds f udul; 1 I 2(s ,up )9 (Zu-wm) 

o (vI. 7) 

This gives the limit (VI.3b) with the identification 
co m 

as (w) I 
4 

,u2) . (VI-8) 

On the other hand, the requirement that A1 (v,k2) vanish more rapidly 
than 1/v demands that the corresponding integral involving 1111 must 
vanish for all w or, on taking the derivative with respect to up. we 
have that 

CP1 (3,u2 ) 
s 

= tds I¢1  (s' ,up) 
o 

(v1.9) 

must obey 

s-»°° :  cp1(s,u3)-°0. (VI.10) 

Hence, we can write 

'I/1($,u2) = *  CP1 (3,u2) 

in the formula (vI.5) and integrate by parts to obtain the general 
result oo m 

l A1 (v,k2) = 41Tlk| . d s  uducpi (s ,u2)6(2u|la5| -k2 _u2 -s) .  (VI. 12) 
o 

a 
B s  

o 

(v1.11) 
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This gives the desired 1/va limiting behavior with 

3 wm 
2 

[Dm 

2 81(w) l.idS<p1(s,(-I ) (v1.13) 

16 It is interesting to  compare ) this scaling 11m1t with the v*°° 
limit in which ka is held fixed, the "Regge" limit , 

k2 fixed , IJ.<l -0 v/m M • (VI.l4) 

We consider first the limit of the structure function A1 . It follows 
from Eq. (VI. 16) and our basic assumption that the lost-Lehmann 
weight decreases rapidly at large s uniformly in u,  that this limit 
probes the small u behavior of the weight CP1 (s ,u3) and that A1 will 
vanish at least as rapidly as  v-a unless this behavior is singular . 
Since A1 should approach pa , with a = l for the leading vacuum 
trajectory, the weight CP1 (s ,u8) must, in fact, be singular at u = 0 .  
We obtain the Regge limit if we write 

CP1 (s .u2 ) 
1 
1+a u 

0 1  (s) +cp1 (s,u2 ) (VL 15) 

with <91 (s ,u) regular at u = 0 .  Indeed the singular term gives , in vlew 
of the general formula (vI. 12), 

A1 (a) 1 du 

u O 
(VIk2)=4nIk l  FM a.fdso1(s)6(2ulkl-k2-s) 

O , 

I (VI.16) 

where we have omitted the 1.12 term in the 6-function since it affects 
neither the Regge nor the scaling limits . We can do the u-integral 
to get 

A1 
1 

8IT 
(0)(vk2) =(_){be pa 

+ 3 m 

ia-1 G 

~dso1(s)]:lc32s ' 
(vI.17) 

and the Regge limit 

V-°°°:  A1(\),k2) = m-4, $1 (k3)(v/m9)a-2 f (VI.18) 

with 
m2)IdS°' (s)[k2+ 

B1 (kg) =( 
o 

a 
(VI-19) 
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On the other hand, the integral (VI. 17) has a scaling limit 
(assuming that cr(s) vanishes sufficiently rapidly at Infinity) and 
glves a contribution 

a (a) 

l°°)(» kg) = . J pa 

(Lu) 
on 

I v * LU fixed: A1 I (vI.20) 

wlth 
oo 

a1(0L) =D-a 

2 a 
al (0)(w) t odscl (s) . 

Note that this contribution behaves as w-G. while the .regular part of 
the weight, 'Pi (s ,u"), gives , according to Eq. (vI.13), a function 
that vanishes as w near w = 0 . We have thus found that the physical 
condition of causality, as conveyed by the lost=Lehmann representa- 
tion, implies a conne ction between the Regge limit and the Lu -» 0 be- 
havior of the scaling limit. Indeed, if we compare Eqs . (VI.2l) and 
(VI- 19), we find that 

(w) lim (kg /me )G.3. ( W ) .  
kg.. m 

(vL21) 

(vI.22) 

and, as we have just remarked , 

I' 
Lu-°0:  &1(00)=a; I (VI.24) 

with 

P 
a. =k;1m;. (la/m2)5.(k@)_ (VI-25) 
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This result is in beautiful accord with an experiment which indicates 
that (assuming the AQ contribution to be small) uJal (w) is very nearly 
constant throughout the range w <5 , with the value 

w s é z  wa1(oJ) = 4 . 0  P 
_ at  (vI.26) 

within an error of 15% or so .  Unfortunately, we only know the experi- 
mental value of the Regge residue at k2 = 0 from the photoabsorption 
experiments which give 

01 (0) = 10 (VI.27) 

s = m a ,  
p 

within about a 10% error. If we make a very naive approximation in 
which the integral representation (VI. 19) for the Regge residue is do- 
minated at, say the p mass , we have 

Blew?) =e1(0) 
ma 

p 
ka +m3 

p 
I (v1.28) 

and 

at P = B. (0)(m0/m2) 6 . 6  I (v1.29) 

which is about twice the correct experimental value . This should 
not be disturbing in the least, for the spectral weight in Eq. (vI. 19) 
need not be positive . 

We turn now to the Regge asymptotic behavior of the other 
structure function, AS vs. It follows from the Jost-Lehmann repre- 
sentation (VI.5) that, if the weight 1:2 (s ,u3) decreases rapidly at 
large s , uniformly in u,  then this weight must behave as u'°3`°¢ near 
u = 0 . But the very existence of the representation requires that the 
weight be integrable in u2du at u = 0 which is apparently violated if 
'V2 u-3-a. This dilemma is circumvented by the realization that the 
weights need not be ordinary functions but can be distributions . 
Thus , we can write 

we (s,u2) =@2<s)vu{ l i  ' m m - l u l ) 1  + 2 (s.u2) I (v1.30) 

in which 12 (s ,u2) is regular at u = 0,  and the Iaplacian with respect 
to u is to be treated in the usual distribution theory sense: it is to be 
integrated by parts . If the singular contribution is inserted Into the 
lost-Lehmann representation in its original form (V .42 ) ,  several inte- 
grations by parts performed, and the angular integral done , one gets : 
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AS 
m pa 

ma 
1 d °° 

(°")(v.k2)=4T7 I -.'leds {4( 
o u o 

- 6o2(s)} 9(2ul£l-k2 _u2 -s) . 
I 

.daUsa[5) 

. d'*5 

(vL31) 

The leading contribution to  both 'limits comes from the term 1nvolv1ng 
v2 /mB , and integrating bY parts puts this contribution in the form 

A.J°z)(»,k@)=-nm`§ 

to 

+ [ l d s  
o 

m du 
a o u  

do (S) 
ds J" {-@(2uIL<I-ka -uS) ] 

Wulhl-F -u2 -s)} 
dog (s) 

ds (v1.32) 

which shows that the Regge limit is obtained only if we require that 

do do{-q)] = 0  (v1.33) 

In this case we obtain: 

a) A (  (\;,k-2) 
8 

~ »  i; 21Tm 
2. 

on dog (S) 
ds l,L<l°' [dS lk3+s] o 

a 
(VI.34) 

In the Regge 11mit we have 

v A2(v,k2)=-Lp3u@)(»/m2)° , *D °°: (vI.35) 

with 

132(k3) 
me 
Zn 

m 

I.ids 
o 

dog (s ) 
ds lk22+ s] 

a 
| (VL36) 

while 16 the scaling 11mlt 

-» 
(on) 

v °°. fixed: A'2(°°)(v,k2) (HJ) = a ?  
\J H. (vI.37) 

with 

as (ex) (w) 
of - 1 .  1 

21T" w 
-(.. 2l°° a.[` odso2(s) . (VI.38) 
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This singular contribution to the scaling limit behaves as Lo'1'°1 while 
the regular contribution gives a constant term near (1) = 0 s o  we again 
have 

w -0 0° as (co) -0 aB (0')(w) (VI.39) 

And again we find that the large k2 behavior of the Regge residue is 
correlated with the value of the trajectory such that the Regge limit is 
consistent with the scaling limit and gives the small w form of this 
11m1t: 

(G) = w-1-q, lim Jk2 /m2)1+B2(k2 ) • as (um) (VI.40) 

We can gain some understanding of the nature of the scaling 
limit if we write the lost-Lehmann representation for the structure 
functions in configuration space 

°° a 
.ids Y (s.>=2J%L ) A(+) (x:s) . 
O 1 , 2 m 

x 
Al,2(X) 

II (VI.41) 

Near the 11ght cone 

x2-° 0: s + A(+)(x:s) . 4 1n(sx-2=)} 
l 

4na (v1.42) 

Hence 
Q 

j us  Y2 is, 
O . 

(?x)2 
me I - 4172 x'*A2 (x) _l im 

x2..0 I (VI.43) 

which expresses essentially the Fourier transform of the scaling func- 
t1on as (w) [Eqs - (v.41) and (VI. 8)] in terms of the singular behavior 
of the structure function As (x) on the 11ght cone . Since 

=_@_ 
Bs  Y1(s,C2) §1(s,€2) I (VI,44) 

we flnd that 
oo 

i ds  §1 is , 
o 

(px)8 
ma 

_ lim 
xi_, no I:1n(61T2 

abe )]A.l")I (v1.4s) 

which expres ses the Fourier transform of the scaling function at (m) in 
terms of the light cone behavior of the structure function A1(x) . We 
find that the scaling functions a l  I2(w) are not only dimensionless 
functions of a dimensionless parameter, but that they are determined 
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by the behavior of the structure functions on the light cone . This 
suggests that the conformal group may play some role here, for it 
contains various transformations which change the scale of coordi- 
nates but which leave the light cone invariant . 

The scaling functions can also be related to "almost equal- 
t1me commutators" at infinite momentum, as suggested by Bjorken.15) 
We consider the infinite nucleon momentum limit of the spatial cur- 
rent commutator 

p 
1' 1 on Kr, 
0 1  IT J`dt sin(Lup° t) j`(d;'.) C (x) 

o 
co 

lim _ l 
P0-0 oo TT .[`dt sin(uJpot) J`(d£) u?p02 

o 

{{ 61%-pkp C1 (x) + pkt, C2 (x)} p0 2 
I (vI.46) 

where we have introduced the decomposition (V.4) and integrated the 
time derivatives by parts using the ]'ost-Lehmann result that 01 2(X) 
vanish at t = 0 .  The limit can be calculated If we use the lost-' 
Lehmann representation 

as 

C (x) [ d s  Y(s,Q3) A(x;s), 
o 

(v.37) 

with 

'l'(s.C"') - ('I"'§' '1'(s,u2) r e (v.41) 

and, in a general frame , 

.Q 
.E 'L 

m(po +m] 
L + m (v.39) 

It is also convenient to do the ko integral in (v. 13) and use 

(dk) A I = ..""'.... (x s) _t (2w)3 
1k°!1 

e ~ '  (v.13') 

The limit can then be performed and, bearing in mind the connection 
between the scaling functions and the lost-Lehmann weights , Eqs . 
(VI.8) and (VI.l3), one flnds 
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lim 
p° -u m ii dt sin(wpo t) f(d;) aka (x) 

o 

»k»x,  kl, Kr, 
= [ p p - 6  la . (uJ )+6  0Ja2(0J) (VI.47) 

VII. Equal-Time Commutators and High Energy Behavior 
We have found that the scaling limit is related to the behavior 

of a current function on the light cone . We turn now to investigate 
what information can be obtalned from the behavior of this function at 
the tip of the light cone or, equivalently, from the nature of current 
commutators at equal time. The relationship between the scaling 
limit and equal-time current commutators is obtained if we recall that 

0**"(>0 = to (pa | i[i*L(><), i"(0)] | pa ) 

v v 
= n>**p"(e2) + (pub +a1*p )pa-9*"'(pa)2]c1 (x) 

v + [Q a2-auavl C2 (x) , (vII.1) 
with 

so 
(ex)3 me C 1 2 ( x )  =f 0ds'Y1I2(s,x2 + lA(x;s) I (VII. 2) 

and if we use the relations 

and 

0,  A(x;s)]t=0 

aoA(x:s)]t=0 = 6(I.) . 
(VII. 3a) 

(VII . ab) 

6aA(x;s) = SA(x;s) . (VII.3c) 

The simplest case is the equal-time limit 

.v 
(pxI1u"(x), J (on r=0l*'*) 

II y)] po 
I m 

l.tds Y1 (s ,0) 
- l ' - w  o 

+ [2UnV+n*'l.y_V] 6 (11) .f ds YQ (s , 0) . 
o 

(VII. 4) 
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Here, in order to achieve a compact form, we use the notation 

= w ® ,  

237 

2" = (0 Q) . 
nu = (1.0) . 

so" = g*'w+nUnv (v11.5) 

The first combination, with a coefficient 
. , in du . co .t 0ds 'Y1 (s .0) = l" ,u['0ds 'l11 (s .up) I (VII. 6? 

[ j k , j  ] and to an operator "Schwinger term , 
tater 
structure [it is not simply vké (;)] and its 
related to that of the spatial commutator 
bination, with a coefficient 

givesa contribution both to the commutator of the spatial currents , 
" the time-space commu- 

[ jo ,jkl . This "Schwinger term" has a rather complicated vector 
gmeicient is , of course , 

[ j  , j  ] . The second com- 

uids we (s.0) I 

. 
||lL11,| I-1l1 I-un 

Ills:IIIIl l - ' l . l -  

-iHI¢A*"=IIql!'Ln!..dH-iNn.. I 

'llll_ll l-1l#I 
' _ -  

| ' .1...J.- 
I I  _ 

v o 

in which 

kg we , 

wlth 

-émua u (VII. 8) 
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The scaling law asserts that A1 (v,k2) behave as 1/v2 in this limit 
and hence that this contribution to the equal-time commutator vanish . 
That is , the validity of the scaling law requires that the nucleon 
(spin~averaged) matrix element of the equal-time , space-space cur- 
rent commutator vanish and that the related "Schwinger term" with the 
complicated vector structure also vanish. The converse statement is 
true as well, for A1 is positive semi-definite. Thus, if either the 
equal-time, space-space commutator monishes or if the related "com- 
plicated Schwinger term" vanishes , then the llmit of vAn (v,k2) must 
vanish and the scaling law for A1 must hold . 

There now remains only the "simple Schwinger term" of the 
form vké L) with a coefficient, following the previous discussion that 
led to  Eq. (VII. 7). given by 

on 2m m i d s  is (s,0)  =(-)j duanw) . 
o o TT 

(VII. 9) 

in which g1mw = u. The function as (ul) is also positive semi-definite , 
and it thus appears that the vanishing of this "Schwinger term" re- 
quires that as (w) vanish identically and vice versa. This is wrong 
because Eq. (VII.9) is wrong. The error lies in a formula used in the 
derivation of Eq. (VII,7) 

(do) _ l 
(2-3 2TT2 I ¢(s,u2) 

m m 
/day u'du' ¢(s,u12 ) 
o u 

(VII. 10) 

the 

¢ 2 l 7 a )  

which does not hold if 1l1(s ,u2) is a singular distribution at u = 0 . 
This is the case with s,ua) where we have seen [Eq. (V'[.30)] that 
it has such a singularity of the form vauu-1-cL_ This fact, unfor- 
tunately, casts some aspersion on the character of Eq. (VII.7). How- 
ever, if we assume that A 1(\J ,kg) has a well-behaved Regge behavior , 
then the weight 11 (s ,up) does not have such a bad singularity at u = 0 
and Eq. (VII.7) does hold as well as the discussion of the preceding 
paragraph . 

The commutator involving a time derivative of the current is 
also directly related t o  the scaling limit. Because of current conser- 
vation and the translation invariance of the diagonal atrix element , 
the only independent equal-t1me commutator is [boj , j  ] . It is 
straightforward to express this commutator in terms of integrals over 

weights \"1 , 
scaling law so't sat Eq. (VII.7) vanishes, an expression of the form 

and one obtains, assuming that A1 satisfies the 
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/L 
%2x(px|iwO1k(x). 1 (0)Jt:=0 lm) 

k»L k L = 6  6(r)A + v  v 6(r)B 

k /L ki, k L 
+6(r)(p P - £ 2 6  )CT+6(r)p P CS 1 

in which the coefficients A,  B,  CT and CS are numbers that are inde- 
pendent of the nucleon momentum p.  The weights IN 1 I 2  occur in the 
coefficients CT and CS in a way that is directly related to the scaling 
limits WAS) and (VI.'13) and these coefficients can be written as 

O T = if dual a (Lo)-w2a (up)] 11 O 1 2 I 

2 

(VII.11) 

(VII . 1 Za) 

and 
2 

OS 'IT todww2 as (w) (VII. l2b) 

from simply the structure of the commutator that it contains the 

Here there is no difficulty with the small u singularities of the Iost- 
Lehmann weights . 

The structure of the commutator (VII. 11) can be compared18) 
with that arising from simple models of the current operator. If the 
current is composed of a bilinear combination of spins fields as in 
a quark model wlth a neutral vector fleld interaction, then it follows 

nu- 
cleon momentum in the transverse combination (pop -p" 61d') or that 

CS 1 0 (quark model) 

On the other hand, if the current is constructed in terms of a spin one 
field, as in the algebra of fields model, then the nucleon momentum 
enters only in the longitudinal form pop and 

(VII. 13b) 

CT 0 (field algebra) . (VII. l a )  

Now, the integrands that enter into the definition of CT and Cs, (Eqs . 
(VII. 12)) , are proportional to the scaling limit of the transverse and 
scalar cross sections defined in Eqs . (II.42) and are positive semi- 
definite . Therefore, the vanishing of the integral requires the vanish- 
1ng of the integrand, and we reach the important conclusion that if 
the current operator is composed of fundamental spin 5* fields , then 
the scaling limit of the structure function AS (v,k2) vanishes , or 
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) . del ( uark mn 
= 0 q 

aB (w) (VII. l4b) 

Conversely, if the current operator is constructed from a spin one 
field, then the scaling limit of the transverse cross section 0T(v ,kg) 
mush vanish, or 

61  (LD) - was (w) = 0 (field algebra) (VII. l4a) 

euenuusssl 

Unfortunately, the calculation of the model commutators depends upon 
the naive manipulation of bilinear operator products at a common 
space-time point, products that are not well defined. Therefore , the 
validity of these results is open to question. It has been shown19) 
that they do not, in fact, hold in perturbation calculations in some 
models. However, since the perturbation calculations diverge at high 
energy and require renormalization to make them finite, it is not clear 
that they are a reliable <**""= for. There is also 
difficulty20) in obtaining l perturbation calcu- 
lations; here additional I 

The electromagn _ _ _ Ban be expressed in 
terms of the lost-Lehmann weights and its parts that may be divergent 
can be related to  the nonvanishing of certain equal-time commutators . 
This problem has been discus sed at some length in the l1terature.21) 

su- Ill!!! 

2 
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Here , as the notation indicates , we have symmetrized the 
indices uv since only the symmetrical part survives the contrac- 
tion with the symmetrical nucleon structure tensor Al" . At high 
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detailed study of electromagnetic mixing problems as those occurring 
between the po and w has also been added . 
SECTION A- The One-Photon Exchange Approximation 

I. Structure of tlge Qross Section 

o U . . . 1 ) We are Interested in the annlhllatlon process 

e+ + e- => f 

where f is an' arbitrary final state compatible with the usual conserva- 
tion laws of electric, baryonic, leptonic charges (Q = 0; B = 0; L = 
0: Lu = 0) . Using the kinematics as indicated in Fig. 1 e 

Presented at the INSTITUTE FOR THEORETICAL PHYSICS I 

University of Colorado, Summer 1969. 
#Laboratoire associé au C.N.R.S . Postal address: Laboratoire de 
Physique Théorique et Hautes Energies , Batiment 211 , Faculty des 
Sciences, 91-ORSAY (France) . 

245 



246 M. GOURDIN 

+ 
e ) + Cr + ( p \ 

\ 
\ 

\ 

Y 
\ 

\ 

f (pf) 

e '(P _0 _) 

/ I [¢. l 

/ 
I 

/ 
I 

/ 

F i g y l  

+ do(e e 

the differential cross section 19, given by 

- =, 1 .L1'._°i 
~' é l 4 E (p+p )2 am4 J - r - . 0`+*_ 

f) 
\ 

I 

l c2t t ) *6(p++ p9\( f1Tle*@') l= dif 

pol . 
where m is the electron mass; . 

The final state density is wrltten as 

n dp = 
' f  a u f  

Na do Pa 
2T7 3 ( ) Ea 

The normalization factor Na is é for bos ons and the mass Ma for fer- 
m1ons; . Ea and % are the energy and momentum of the .parftlcle a . 
2°) Let us now as some that the electron-positron annihilation pro- 
ceeds via the one-photoN exchange . The transition matrix element is 
then factorized into the product of two matrix elements of the elec- 
tromagnetic current 

( f l  ile*@') 
3 e 

I 

( f I  J m  (0)I 0) 17' (P)Y*J' o _l_+ (p -) u 
Q . 

(A.1) 

where up (p_J is the free.Dira.c~ spinoza for the I 
the free .I51rac spinoza for the positroN . n i -  

ll .nhl- 
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The electric charge e is normalized so that a = et /47T 
the invariant quantity s is' defined in our metric by 

1/137 and 

me 

4 

s = -(p+ + p_)2= 'Pf 

e .g .  s is the square of the total energy of the centre-of-mass system. 
It is straightforward to perform the summation over the electron- 
positron polarizations 

* - p. Z [ v Cr (p+)y u 
+ o+o _ o (re I- +(p +) Y\) u o 

; 
4 (p_) I u V+ v I J - + 5  p+__ p+p_ 2 QW) 

(A-2) 

and the differential cross section takes the form 

1 
4 

1 v v 
+ do (e+e => f) = e 2 \J 

[(p+p_)a-m'] IN 

Where the final-state tensor { f } W  is defined by 

: 4 + _ em em in 2 (ZH) 6.,(p+ p_ of) ( f l l  (0)l 0 ) (0 l1  (0)lf) dpi. (A.4) 
pol.f 

-gl"W)[f} (A-3) 

o . 3 ) Let us now work in the electron-positron centre-of-mass system . 
We define 

-9 

p + -  (D. po) D _ = (-p. po) 

E. 
4 

a 
Po 

pa +m2 

The electron-positron tensor (A.2) has only space components be- 
cause of the conservation of the electromagnetic current 

u v + v p + s  
p+p_ p+p_ 2 _ -  6 s 

2 
Liv 1 

Q =° mn 
Pn 

2 
Po 

and Eq. (A.3) becomes 

do (e+e- f) = CM 33/2(s 
=) 

4TT2 a2 
_ 4m2 

6 mn 
p n 
a 
' o lf}mn (A.5) 
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The electron mass m can be neglected compared to the electron energy 
in almost all the applications and Eq. (A.5) reduces to 

+ _ 
do(e e Dim => air" a3 

52 
6 mn 

pmpn 
E" I i flmn (A.6) 

The total cross section otot(e+e 
the angular variables 

=) f) is obtained integrating over all 

' mn 
popn 

B2 =) { f lm T f ~t { } 

+ .. 
and the final expression for utot(e e => f) is simply 

2 
a 

=> 
+ ._ 

o f tot(e e ) 
Snag? 1 

3 32 
Tr {f} (A-7) 

Going 
trace Tr { f }  is given 

Tr{f} (211)*6,* (p+- Sf 

Ill'-Mq 
back to  the definition (A.4) of the final-State tensor I f ]  , its 

by LN 

em (0 l  Iv (0)lf) l u g \ )  

lu 'F' 
(A.8) 

Where the symbol S means 
a) a surnmacion over the polarization of the final-state 

particles 
b) a phase-spacé integration 

Sf E 

pol . f  

2 .[`dp£ . 

II. The Final State IQL4 Where M Is a Skinless Mason 

vertex 

o 1 ) We restrict ourselves 
is a spin zero meson . 

Y 

to a final two-body state f E Mm where M 
For instance M = TO, K+, KO etc . 

Let us first study the structure of-the M meson electromagnetic 
r k M( +) 

Fig. 2 m(k _) 
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Using the Lorentz covariance and the electromagnetic current con- 
servation we simply have 

(1QIM|]um(0)l 0) (k+-k_). Fm(S) (A.9) 

{M'M}" 

The invariant .function PM (s) is , by definition, the M meson electro- 
magnetic form factor and the normalization has been chosen s o  that 
FM(0) is the electric charge of the M meson in unlt e . 

o - 2 ) The tensor {1\/IM] up is simply defined by Eqs . (A.4) and (A.91) 

1 do kg do k_ 
= 2 *-k. a k -k . up (41712 lim(S)l (k+ J (  +~ k -I-O k -o 

I 

x 64 (p++p_ )} -k+-k_ 

In the centre-of-mass system, the energy momentum variables are 
the following ` 

I 

+ k ) o k k ( I PT
' II 'r :v
i 

iv
 

O
 s

.
;
 

I 

I 

I S up 
-» 
' . + m2. 

, M 

da k_ 

where mM is the M meson mass . 
The phase-space density is simply written as 

d k a + 
k +o 

from which We deduce 

-k+-k 
. k 1 

k -o 64 (p++p_ _) =°7; ink 

_ day 
{NIM}IT1I1 

1 k = -  s 2 k  k 
T1 4Tr /s F M ( ) l  m n  

.|- - - 
The differential cross section for the annihilation e e => MM takes 
the form 3/2 

+ - 
d0(e e = MM) on CM _Si 1 

8 s 

4m2 1 _ M 
s 

1 _ 4rr1'3 
s 

where Z is the cosine of the CM angle (p = Ipl \quIZ). 

2 [1-(1-' ;")21=m(»l 



250 M. GOURDIN 

Neglecting the electron mass m we obtain 

do (e+e-=> M-M) CM =9i 1 
do 8 s ~(» ) 

4mM 3/2 

s (1-ZB)lFM(S)|2,(A_10) 

O . I . . 3 ) The total cross sectlon is computed by integrating the differential 
cross section (A. 10) 

=> 
.|- _ _ 

O' tot(e e MM) 
Tree 

3 ( ) 
Alm2 3/2 

M l1=M(S)l2 1 _  
S s (A.11) 

and to use Eq. (A.7). 
An equivalent way to obtain the equality (A. 11) is to  calculate To{MIM} 

We simply have 

Tr[ n7xm} 1 
8Tr s 1 

am2 3/2 
sM IFS(s) l3  

up 

III. The Final State EIN Where N Is a Skin I Particle . 

1°) We now study a more general final two-body state f E RUN where 
N is a spin I particle . 

The tensor {on} is constructed from the matrix elements of 
the electromagnetic current between the vacuum and the SIN state . 
After summation over the N and N polarizations , the only pos sible 
structure of {Nn}nv giving a nonvanishing contribution to the differ- 
ential cross section is 

lNN1 =§;2 [A(s)(k+-k_)V+%(s-4mN)B(s)Q*N} 

da k+ 
X 

k+o k-o 

do k - 
64 (p++p--k+-k-)} 

{ RUN] mn 

Using the centre-of-mass variables introduced in the previous section 

k + 6 J 2 +1 A(s)km n %B(s)k2 m ( I ) . in 1 k k 
TT 41T is 

+ _ _ 
The differential cross section for the annihilation e e =° NN takes 
the form 

= do + (e e - NN)0m 

on 
(2I+l)(I.2 

8 
l 
a 

4 2 s/2 'QM [A(5)(1 - zrc*)+B(s)|.(A.12) 6- ) 
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As a consequence of the one-photon exchange approximation the dif- 
ferential cross section for the electron-positron annihilation Into a 
NN system is a linear function of Z2 in the centre-of-mass system . 

:E vu.llliil 

[4l*n! 

ii&imaa1.ri.IFI 
.IIN 

lallnll 

A(s) = E(s) M(s) 
S 

4mn 
- B(s) M(s) 

S 

2rnn (A.13) 

L where E(s) and M(s) are sums of terms IFN(s)l2 of the electric type 
for E(s) (L even) and of the magnetic type for M(s) (JL odd) . 

The normalization of E(s) and M(s) at s = 0 is simply 

E(0) Q2n M(0) = I + 1  
3] 

2 
"n 

where qN is the electric charge in unit e and Un the dipole magnetic 
moment in unit e/2mn of the particle N. 

Inserting the decomposition (A.l3) into Eq. (A. 12) we obtain 
the general expression for the differential cross section 

11 (2I+1)a2 _1 4mN\3/2 
8 s S 

[ ( 1  - za) E(s) + x u 
II 
i 
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+ - 
o e e 

tot( NN) 
=> 

By measuring the angular distribution we can only separate the elec- 
tr1c and magnetic contributions . The knowledge of the N and N 
polarizations is needed in order to obtain information about the indi- 
vidual form factors . 

The total cross section is then given by 

4m2 3/2 
N IE(s)+ So m(s)l . s 2mn 

(A. 15) 

(2I+1)Tra2 1 
3 s (» ) 

E(s) 

3°) The case I = 0 has been considered in part II and we have only 
one electromagnetic form factor normalized to  the electric charge . 
The case I = l will be interesting when the avallable _incident ener- 
gies will allow the production of vector meson pairs W (like p+p', 
K*K*) or axial vector meson pairs . 

We have two electric form factors r the charge form factor Fvo(s) 
and the quadrupole form factor FMS) and one magnetic form factor 
F1V(s). The corresponding expressions for E(s) and M(s) are simply 

_ o sa 
` Iv(sll2 + 18m=lFr(S)l8 v 

The differential cross section for the reaction e+e-=> Yv is given by 

M(s) =-§IFV(5)l2 

do (e+e-=> W)€M 

in 
So" 
8s G- ) 

4 3 3/2 iv {(1-z2)[|FV(s)la 

I V ( S ) I B }  
ii 
I 

32 
+ 18mV V IF=-' (s)l2]+(1+z2 )6m2 

v 
(A.16) 

and for the total cross section we obtain 

am2 3/2 
V *U Fv(S) + 

( +  
o e e tot 

* ; _c1.27T 
S (1- ) S 

2 S 
3 | 1 

My }v($)l2 

+ lF2V(s)|a 
$3 

18m§/ (A.17) 

4°) Let us now consider the case I = é* corresponding for instance to 
nucleons and h'yperons . We have one electric form factor and one 
magnetic form factor easily related to  the form factors F1 (s) and F2 (s) 
defined in the usual Dirac basis by 
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(n'nl Im(0)10)  1 G(k+)lyF. (s) 
1 . 

.|. _ 4m [yu.yv] (k+ k_) 
N 

The normalization of P1 and F2 at S = 0 is given by 

F2 (0) = "n F1 (0) = oN 

VF2 (s)]v(k_) 

+ _  
dcr(ee=¢ 

where qN is the electric charge in unit e and "n the anomalous mag- 
netic moment in unit e/2m of the particle N. 

The differential ¢t$!ss section is given by 
_ . 4 2 
NN)cm = l _ mN % 

d£7 . S 

a2 mB N 

32 

+ S 

4mn 

{(1-Z2)l1='.(S)l2 

S 

4mn ?2 (s)l2+(1+Z9) M (s)+F2 (s) la} 
(A.18) 

and for the total cross section we obtain 

o (e+e-=) 
tot 

a Boa m°n 
3s3 

- 
4mn é 

s 1Trn)= ) {l;-1 (s)+ F2(s)l2 

l1=1(s) +F2(s)I2} _ 
S 

4mn 

+ 
so 

2mn (A.19) 

IV. The Final State P°v Where Po Is a Pseudoscalar Mason 

o v o 0 1 ) .We now study the f1na1 state f = P Y where P is a pseudoscalar 
meson of mass M0 as for instance P0=170, n, n' . 

4 Po(k) 

L II 

y(k ,e 
Y 

Fig. 3 
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From Lorentz covariance and parity conservation the matrix element of 
the electromagnetic current between the vacuum and the Poy state ha s 
the general structure 

(PoY I I.1"'(0)| 0) 

where e v O' 
factor dis? has been normalized to unity at s 
mass system we have 

g e e pippo kvk° 
Y 

G(s) O' rn e 
o 

is the completely skew symmetric Rici tensor. The form 
= 0.  In the centre-of- 

Y 

(poy|1;""(0)| 0) e g  G(s)fs e 
Mc mpg 

KP et 
Y 

After summation over the two transverse polarization states of the 
photon we obtain the space components of the tensor {P0Y} in the 
centre-of-mass system 

in 
u>ov} = k - mn 47T mg mn .kg 

and the trace of the tensor { P°Y l 

k k 
a ka/slgl3 I G ( s ) I 2 6  m n 

o Tr { p  y} = Za lQI9IG(s)l2 kg/s 
ma 

o 
(A.21) 

o I . 2 ) Combining Eqs . (A.6) and (A.20) we compute the differential cross 
section in the centre-of-mass system 

a 
12 \ do(e+e =° P°Y)cm _na gIa 

an ' 8 ma o 

where Z is the cosine of the centre-of-mass angle . 
The total cross section is simply calculated from Eqs . (A.7) 

and (A.21) 

(1+Z2) IG(s) l2 (A.22) 

- o otot(e+e => P y )  21T8 C1.3 [QP 
3 m2 o 

2 1 \ 3  

lG(s) l2  . (A.23) 

o 3 ) The form factor G(s) being normalized to unity at s = 0,  the coup- 
ling constant g describes the 2y decay mode of the Po meson. With 
the kinematics as indicated On Fig. 4 
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o P 

Fig. 4 

the transition matrix element for the Po 

o 
(2YITIP ) = 

1 e2 e 
g m  o 

r »r 
.1 r f 

Y(k1l e l )  

Yokel 52) 

=> 2y is written as 

p 
LWD0 I# GV be QU 

It is then straightforward to compute the radiative decay width for the 
Po meson, taking into account by a factor é the Bose statistics satis- 
fied by the two photons in the final state 

= Tf08 
4 r(po=> 2v) laI 8 m  o (A.24) 

Taking* 
write t 
(A.23) i 

dG(e+e-=> P 7 ' o ̀  ` 
Y CM r(p 2y) 1 

dN 2 s 
(1 => 

a m 

- + o 
o e = tot(e P y) 

=> 

Y 

i 

nu -1""up of the coupling constant g we Can 
| (A.22) and the total cross section 
I 

m2 a 
o (1 + Za) IG(s)IB 

ma _a 
o 

S 
|G(5)~I2 . 

4°) The previous calculation is easily extended to a final state f E PV 
where P is a pseudoscalar mestm of mass Mp and V a vector meson of 
mass Mv' 

Let us first define the various matrix elements entering the 
calculation P(kp) 

Y 

Fig . 5 V(kv, et) 
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constant 
into a 

(pvl I" '(0)l 0) 
= 9 I-I(s) 

VPY ._ Mp 

The form factor H(s) is normalliz 
describes the E 

meson " 
iv 

pseuc§JoYscalar 

V k , e  l v  V) 

Fig. 6 

iv pea e pippo PkV V 

at Is 

) P k ( P 

(k . Y Y 

0 and the coupling 
vector meson V 

S y) 

Ku 
Y 

e (p T v) = , -L v I) al I e gupPY Mp euvnc Y 
+ _ 

The differential cross section for the process e e => 
the centre--of-mass system, by , 

kv . e v  
PV is given, in 

?V)cm _ Q  IQvpyI3 /kcm 
4 up 

+ _ 
do(e e => , ; 

in a fs  (1+z2)|H(S)|a 
\ 

and for the total cross section we obtain 

a 

( + 
o e e. tot 

- 
=a Rv) 4n"Q.2 

3 11H(S)l2 

The centre-of-mass momentum k0M is related to masses by 
' 

(mV+mP)a] [ s  

2./s l 

[ s  -.1 

k CM 
(mv-mP)a J 

The radiative decay w1dth I`(V =° PY) is given in terms of the coupling 
constant gupPY by 

a _ a 

l`(V=>Py) =§°€;lgVPYI2 ,To l 
1 mp 

m\?1 
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v. Three pseudoscalar Meson Final State 
o I 

l ) Let us now consider a final state with 
f 5 PI Pa P3 as for instance 1r+ or' 1T°, K K IT 

three pseudoscalar mesons 

P1 (k1 ) 

Y \ i » 1 Pe (kg) 

Pa (kg ) 
Fig. 7 

Due to Lorentz covariance and to parity conservation the matrix ele- 
ment of the electromagnetic current between the vacuum and the 
P1P2 P3 state has the simple structure 

(p1~p9p; I I " ' (0) l  0) 
k1 

S 
pvpc M1 (-)"(1<)p(-)°<.s.> Ma 

(A~25) 

The invariants $1 , 32 , So are defined by 
1 

wlth the relation 

S . 
J 

-k 'P  
j 

P k1+ k2+ka 

| . 
I 

| s 1 + $ 2 +  So = s  

In the centre-of-mass system the invariants SJ are simply related to 
the energy ~of the meson PI 

=is ET sJ i s =  E1+E2+Ea 

and the three particle form factor F(s1 , $ 2  , so) can be equivalently 
considered as a function of the variables S , E1 and ET 

F(s1 . 5 2  ,$3) => F(s; E1 .ET) 
Q . : . 

2 ) In the centre-of-mass system the space components of the tensor 
{P1 p2p3} are glven by 
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iplp2p3}mn = (m1 g II'(s: E1 .E2>l3(?1 X)m(*k1 xi,a)n 

l 
x (4n)a 

dE dEs d cos 6 (A.26) 

where 9 is the azimuthal angle of the vector Tel x 122 . + _ 
The differential cross section for the annihilation e e =° 

P1P2P3 is obtained combining Eqs. (A.6) and (A.26). The integration 
with respect to the angle 9 is trivial and the result is simply 

d2o(e+e-=> PI P2 PSICM 

dE1 dE2 = 
a3 l 

l 21T 

ii. x T22 13 
(m.m2m,)3 IF(S: E,,E2)l2,(A.27) 

For the total cross section we have to integrate the expression (A.27) 
in a domain D(s) defined by the condition that Ki , kg and kg are sldes 
of a triangle 

( + e e Otot 
=a 

li.xlk2l" 2 

p1p2p3) = 12Trs ~t~tD(s) del Isa (mlfllamala IF(s: E1 'E(23'2@» 

VI. Discussion 

1°) From the beginning of this chapter we have assumed that the anni- 
hilation of the electron-positron pair into hadrons proceeds via the 
exchange of a virtual time-11ke photon. What are the physical argu- 
ments to  justify such an approximation? 

First the two-photon exchange amplitude is expected to be 
reduced with respect to the one-photon exchange amplitude by a factor 
d .  Secondly, the one-photon exchange approximation has been tested 
for space-like photons in various experiments. . 

a) angular distribution in elastic electron-proton and electron- 
nucleus scattering 

b) angular distribution in inelastic electron-proton and elec- 
tron-nucleus scattering 

o) comparison of the elastic electron-proton and positron- 
proton cross sections 

d) polarization of the recoil proton in elastic electron-proton 
scattering . 
No evidence has been found for the presence of a measurable two- 
photon amplitude . 
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20) Let us consider now the actual case of time-like photons . In the 
one-photon exchange approximation the angular distribution for the 
e"le' annihilation into an arbitrary two-body final state is a linear 
function of ZN where Z is the cosine of the centre-of-mass system . 

Moreover, in some particular cases , the _angular distribution is 
predicted to  be pure (1 - Za) as for the 1T+T'r' , KJ( systems or pure 
(1 + ZZ) as for the n Y ,  17oLv systems . 

It is certainly difficult to check carefully such a prediction . 
Nevertheless , one can, for instance , look for an asymmetry in the 
angular distribution with respect to a plane orthogonal to the incident 
direction. Such an asymmetry is obviously related to  terms odd in Z . 
30) Another way to detect the presence of a two-photon exchange con- 
tribution is to observe a final state which is an eigenstate of the 
charge conjugation operator with a positive eigenvalue 

a) a 2y state in pure electrodynamics 
b) a NoNo state where No is an eigenstate of the particle- 

antiparticle conjugation operator C like rr° , "rl, po , Lu or cp . Because of 
the TCP invariance r the N° No state cannot be connected to one pho- 
ton only and as an example the observation of the reaction e+e'== rrOno 
is an unambiguous proof of the presence of a two-photon exchange 
amplitude . 

Such a production can be enhanced by a strong final-state 
interaction as occurring for instance in the 1'ro TTo system around the f° 
resonance • 

c) a NoMo state where No if Mo are both eigenstates of c with 
the same eigenvalue (rr0 T] , pow, pocp, uxp. . . ) .  = -1 the particle 
Mo can be a photon (poY , up , cpy. . . )  . If c is conserved in the elec- 
tromagnetic interactions, the nomO final state can be reached only via 
a two-photon exchange . But if C is not conserved the observation of 
a N° Mo system can be interpreted as a violation of C in the one- 
photon exchange amplitude . 

If CnO 

SECTION B: The 77-Meson Electromagnetic Form Factor 

1. Measurement of the Tm-Meson Electromagnetic Form Factor 

o » 1 ) The or-meson electromagnetic vertex can be represented by the 
diagram of Fig. 1 
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Y 

Tea (kl ) 
. * F1g. 1 . 

The index a = + ,  0 ,  - ,  indicates the charge state of the jameson. 
Using the Lorentz covariance and the electromagnetic current conser- 
vation, we obtain the following structure for the matrix element of the 
electromagnetic current between two one-17 meson states . 

\ 17a (kg ) 

('ITalJ*_LM(0)ITTa) II 

: 

(k1+ k,a) F TTa(S) 
\ 

; 
(B.1) 

where s = -(k1 -ke )2 . ' . 

For TT mesons on the mass shell, s is negative in Eq. (B.1). 
Using the hermiticlty property of the electromagnetic current we easily 
check that the electromagnetic form factor F is real in the space- 
like region s S 0 .  , . . 

a(5) 11 . 

F * ( s ) ' =  F a(s) 
Tl' TT 

(B.2) 

Applying now the TCP invariance we obtain I 

q FTn(3) F a(s) = a 
'IT 

where ac is the electric charge of the meson Troy in unit e .  
For a real photon, s = 0 ,  the vertex function with the three 

particles on the mass shell reduces to the coupling constant which , 
in the present case is simply the electric charge pa. It follows 

F 11'(0) = 1 (B-3) 
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The matrix element (B. 1) is the analytic continuation of the matrix 
element of the electromagnetic current between the vacuum and a TT+TT - 
state previously introduced in Section A.  With the notation of Fig. 2 

Y 

n+(k+) 

Fig. 2 1'r+(k _I) 
we simply have 

(T1*17'l I " ' (0) l  0) (k+ ) s F ( To u ) k (B.4) 

where S = -(k_,_ + k-)2 . 
For TI' mesons on the mass shell, S is positive in Eq. (B.4). 

2°) There exist, at least in principle, several ways to measure the 
71-meson electromagnetic form factor in the spacelike region S < 0 .  
The available experimental information is an evaluation of the slope 
of F1T(s) at s = 0 .  The convenient parameter used is the so-called 
root mean square radius defined by 

R a  
Tf 

6 P 7T (0) 

where the derivative is taken with respect to s . 
a) Elastic scattering of charged or mesons on atomic electrons 

The lowest order diagram is represented on Fig. 3 
:E :E 

TT 

\ \ ` 
TT 

I 
I 

I 
I 

v 
1 

e e 
Fig. 3 



262 M. GOURDIN 

and the experiment g ives)  

and 71- scattering. 2) 

4 He 

r < 3 fermi . 
17 

b) Coulomb scattering of charged TT mesons on nucleus + 
The experiment has been performed with a Her target by comparing n 

The diagram of interest is drawn on Fig. 4 .  
:1: :l: 

'IT ` v r TT 

4 He 

4 
Fig. 4 

. . > 4 The He electromagnetic form factor is known from electron-I-Ie elas- 
tic scattering experiments . The main difficulty. in extracting PTT (s). is 
an accurate determination of the nuclear effects . The result is 

e 

r < 0 .9  fermi . 
'IT 

. c) Electroproduction of n+ meson on proton , . 
The electroproduction experiment must be performed;1n a' 'lginematical 
situation where the so-called photoelectric term, represented on Fig . 
5 plays an important role e' 

/ 

/ 
.1 

/ 
/ 

/ 
/ 

f 
I 

II 
1 -  

r 
FT1 

»p r 
/ 

I 
1 

d 
r 

/p 
/ 

+ 
'IT 

p 

I 
I 
I 
I 
L n 

Fig. 5 
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Unfortunately ,the ,background is always important and for a large 
part, model dependent. . 

The result of two experiments is the following 

measurement of -LF"(s)l 

e 

e 

3 r 'F\' = (0.80 i 0.10) fermi ) 

r n = (0.86 :h 0. 14) fer1T114) 

o I , 3 ) In the t1me11ke region the form factor Fn(5) becomes complex 
above the ii"-n" threshold so = 4mn2 . The storage ringexperiments 
as those recently performed in Novosibirsk and Or say allow a direct 

by looking at the electron-positron pair anni- 
hilation into a To t1` system. The corresponding lowest-order diagram 
is represented on Fig. 6 . 

Fig. '6 

/ 

' + 
r Tl' 

/ 

/ 
I 

I 

F 
Tr 

\ 
\ 

\ 
\ 

\ ~. 
\ ` \ _ 

~Tr 

II. Dispersion Relation 

o - . » , . . 1 ) We introduce the complex Z plane with a out on the real posltlv.e 
=4m2 to +°° (s=Re Z) ' axis starting from So 

0 
[IN.// f (  / I  al; fllhfflf if [1 up/ / I  al/ S 
s o 

F1g. 7 
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We denote by F(Z) an analytic function of Z in the complex cut plane 
and which coincides , on the real axis , with the TT-meson electromag- 
netic form factor ?11 (s) following 

F '|'|' (s) F(s) f o r s < s  o 

F rT (s) lim F(s + je) for s > s 
€=0+ o 

(B.5) 

The reality condition (B.2) satisfied by FTT(S) on the real negative axis 
becomes the Schwartz reflexion principle 

p(z*) = F(z)* (13.6) 

Using Eqs . (B.5) and (B. 6) we find it is now straightforward to com- 
pute the discontinuity of the function F(Z) across the cut 

0 17(s) lim [F(s + je) 
6*0+ 

F(s - 1<-:)] = lm FTT(S) . (B_7) 

o a 2 ) It 1S reasonable to assume that the function F(Z) is bounded for 
large IZI by a power of IZI . Let us define as n a non-negative inte- 
ger such that 

11m Ill=>cn plz) 
Zn II Q

 (B.8) 

We now apply the Cauchy theorem to the function F(Z)/Zn which is 
meromorphic in the cut plane . 

The contour C is shown in Fig. 8 and lt can be divided into 
three parts 

a) the big circle l` whose radius tends to infinity 
b) the small circle Y around so whose radius tends to zero 
c) the straight lines L+ and L_ above and below the out . 

The Cauchy theorem gives 

1 
2111 

pcz) 
C Zn 

l j='1 so FTr(J)(0)l 
Z in 

dZ 
S sri FT1($) 

j=0 

(13.9) 

U) where Pa (s) is the j derivative of I-',T(s) taken with respect to s .  On 
the other hand the contour C is the sum of three contours 

C 1 " + Y + ( L + + L _ )  
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v!ni!lvvn 

Fig. 8 

alinl'-ul In -ulluru 1ll1!'III* H" "id"""="""'_'.!'""""' 
uul..u1 

'he' I' 1-¢.,f--f~i""'* 
1 

21n 
F Z  
Zn 

5 dZ 
Z - s - je L++Lin 

1 _ 
=-J" 

'Fr s otn(t 
-ii dt - s - j e )  

(B=. 10) 

The dispersion relation with n subtractions is finally obtained com- 
bining the equalities (B.9) and (B. 10) 

F Tr(S) sj- 
1-0 

r:11'(t) U) F 11 IT 

n Q 

(0)+il` n dt 
s t ( t - s - i s )  o 

(B.11) 
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m 

P T(s) _ 1 

If the junction F(Z) tends to zero at infinity in all the directions of 
the Z plane, we can write an unsubtracted dispersion relation 

G T( t ) 
TT t - s - 1€ 

S o 

and the normalization condition (B.3) becomes a sum rule 

dt (B.12) 

1 f  
no 0 (t) 

1 = - t dt . 
U s o 

Onstant 
normalization condition and we wrlte5 

If one subtraction is needed the subtraction 
by the 

is determined 

F 7T(s) 
s 1 + -  
'IT 

m 

S o 

0 (t) n 
t(t - s - je) dt (13.13) 

3°) In order to make useful the dispersion relation (B. 11) we compute 
the spectral function UTT (s) using the unitarily property of the S matrix . 

The spectral function Un (s) is conveniently written as a sum of 
contributions due to intermediate states m 

@ T ( s ) = 2  (s) ct (m) 
'IT 

m 

and a straightforward calculation 1 
11 

IIIEP' 'in 

ct (m) (s) 4 Sn(2T1) 64 (k+ +k --km) é* 
x (1T+rrl Tl m) * 

- 
l 0 )  

(B.14) 

The intermediate states lm) are restricted by the energy momentum , 
Dirac distribution and some other conservation laws . For instance 
all the possible intermediate states must have zero electric charge , 
zero baryonic charge and zero leptonic charges . 

In the lowest-order approximation with respect to electromag- 
netic interactions the states m are strongly coupled to the T1+1T' final 
state and have therefore strangeness S = 0 and total isotopic spin 
I = 1 (as a consequence of the generalized Pauli principle). It follows, 
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in particular, that the G parity is conserved and there can be only 
even numbers O:ETT masons . + _ . 

In the region 4mn'* S s S 16m172 only a 'IT IT state can contri- 
bute and the so-called elasticity unltarlty relation is diagrammatically 
represented on Fig . 9 . 

T O 

Y . U \ ! ~ * ' \  

+ \= 

Tr- 

Fig. 9 Tl' 

Formula (B . 14) reduces to  

O' (21T) 
Tl' 

. dry _ _ (s) = 9(s it so) F.IT(s).t 4nn Z (w+u ITI1T+1T ) *  k 
So/s (B.1.5) 

8n/s 
k 

when Z is the cosine of the centre=of-MasS angle . . . 
The amplitude for elastic n+" scattering in the' total isotopic 

spin I = 1 can be expanded in Legendre polynomials of Z . ' 

+ - + - 
(TT n ITln IT ) = EQ] + 1) fU(5) PI(S) . 

J 

I n f  (s) 

From the elastic unitarily we have the constraint (4mTs s s 16 

» 1] = I f II( s )| 2 

or equivalently using the 17-"rr phase shift 
16 (s) 11 s1o 61I(s) . f1l.(S) = e 

mg) 

The angular integration in Eq. (B. 15) extracts the P-wave term of the 
partial-wave expansion and the final result is simply 

(Zn) _ * (s) - F1T(s) f11(Sl q. . 
"IT 

(B.16) 

or, using the phase-shift representation of f 

. I 2 U ( IT) 
'lT 

. (s): 
-16 ( ,Ll 

. 11 S s1n (s) = FIT(S`) e 611(5). (B. 17) 



268 M. GOURDIN 

Equation (B. 17) tells us that, in the region 417113 S 
of FfT(s) is 611(s) modulo 'IT- 

o I . 4 ) For S 2 16 mg other contrlbutlons can occur in the spectral func- 
tion o r ( s )  . A list of thresholds is given in Fig. 10 for s below 1 GeVB 

S l6mr? , the phase 

.|. _ 
TT IT 

J 

elastic region 

4Tr 
J r 

L ; p meson 

"rll'm 6 'IT 
I 

r E 
1 
L 

o 
UJ1 
i' 
L 

TI' Ki 
1 
E # I n  

1 
GeV2 

Fig. 10 

Experimentally the p meson is a resonance in the I = 1, I = l partial 
wave of the rr-11 system which seems to be essentially elastic. The 
decay of the p meson into a 41T system is experimentally less than 1%. 

It follows that, at least in the p-meson region, the 41T channel 
is not appreciably coupled to the Zn channel. Moreover, in the same 
region the phase shift 611(s) is always real. For these reasons the 
elastic unitarily relation 

is certainly valid for values of S above the 41T threshold and probably 
also in the p-meson region. We denote by 5inel. the effective inelas- 
tic threshold and for so S S S 5inel. the phase of F (s) is 611(s) 
modulo 'IT . 'IT 

III. The Phase Beprqsentation 

1°) Let us recall the properties of the function lF'(Z) introduced in 
part II 

a) F(Z) is analytic in the complex Z cut plane _ 
b) F(Z*) = 1=(z)* -'-'wr-I 1' 
c) F(Z) is bounded by a power of IZ] as IZI =» oo in a11"13U-2 

direction. 
We now assume a new condition on the function Un (s) which is the 
discontinuity of F(Z) across the cut 

d) 011 (s) is continuous and has only a finite number of zeros . 
As a first consequence of these assumptions the function I-l{Z) 

has only a finite number of zeros _6 From condition b) these zeros 
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' a j  (as so) or s : :  be (be 
c o s are distributed on the real axis , s < 

or in pair of complex conjugate numbers in the Z plane: Z 
Z = C *  as indicated on Fig. II . 

) 
an% 

C x ,L 

j 

Jo 
a 

:n H 

0 I 
S o 

If 

bk 
* 
L 

C >( 

Fig. 11 

Let us define the polynomial p(z) by 

p(z )=  Ty 'II 
j . k . v  

Of course P(s) is real on the re 
The function G(Z) defined by 

_ 
I 
I 

it till. 

satisfies obviously the set if), d) and has no 
zero in the complex Z plane. 

Therefore , the function log G(Z) is also analytic in the cut 
plane and its discontinuity across the cut is given by 

(13.18) 

(;°G(s) 
1 
21 = -  lim [Log G(s+ie) - Log G(s-ie)] 

€=>0+ 

lm Fu (s) 
= arc tan Re P n' (SJ ~(B. 19) 

From condition d) | up (s) is continuous and bounded . 
we choose q1G(so) = am what follows . 

On the other hand , condition G) implies 

By convention 

Q
 II 
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By applying the Cauchy theorem to the function Log G(Z)/Z with the 
coNtour C drawn in Fig. 8 we obtain the equality 

Log . Q °° "l'GIt) 
G(z) . 1,J` t(t - 

o 

dt 
Z) 

(B.20) 

where we have used the normalization condition G(0) = 1 . 
The integral in the r1ght-hand side of Eq. (B.20) obviously 

converges, ¢pG(t) being continuous and bounded . 
We finally write for F(Z) and G(Z) a pha se representation 7) 

G(Z) = exp Q j q)G[t) 

s t(t- z) 
o 

dt (B.21) 

z 8w (to 
p(z) =p(z) expTT.l` G Dr . 

2°) Let us now study the asymptotic behaviour of G(Z) as a conse- 
quence of the phase representation (B.21). 

convention cp (s) = 0 and from assumption d), cG(°°) exists 
Let us put% . 

t(t-z) 

By 
and is finite . 

(B.22) 

It is convenient to 
varnishes at infinity 

"PG - TT NG • 

introduce an auxiliary function q)G(s) which 

cpG(s) E cpG(s) + cps(°°) 

and to define the integral 

m 
Z. 
'IT 

(Z) . ¢oG(t) 

"G s t(t - z) 
o 

A straightforward calculation gives 

.r dt (13.23) 

Log G(z) 

-n so - Z G 
Log + u (Z) s o G ( ) (13.24) 
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The asymptotic behaviour of UG(Z) and therefore of G(Z) obviously 
depends on the precise high energy behaviour of the phase q:G(s) . 

Let us assume for the moment that the integral 

11_1 _t 
1T S o 

¢G(t) 

t dt (B.25) 

converges and let us call its value of .  
It is straightforward to show that under reasonable conditions 

on the derivative of cpG(s) for large s 

lim _ 121 =>m UG(Z) - Pa • (13.26) 

Using now Eq. (B.24) we obtain the asymptotic expression of G(Z) 
for large Z , y  

Q, Z l 
"NG 

G(Z) °' e - S ) 
o 

Such a situation occurs for instance when q`l5G(s) behaves at infinity 
like 1/s6 wlth e > 0 or 1/Log s)0. with or. > 1. 

If now the integral (B.25) diverges, Eq. (B.26) is no longer 
true and UG(Z) tends to infinity for large z. 

The more critical behaviour occurs when Z is in the cut be- 
cause of the presence of principal value integral. Let us define 

(B.27) 

q)G(t) 
pG(s) = Re uG(s + je) TT S t(t 

o 

pvt - s )  dt 

It is straightforward to prove that 

11m 
S => -l-W 

F>G(s) 
Log s - 0 ' 

Moreover, (pG(s) having a finite number of zeros possesses asymp- 
totically a definite sign, e t .  We deduce 

exp pG(s) = 0 less rapidly than any power of 1/s 

exp pG(s) = less rapidly than any power of s .  m 
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Let us consider, as an example , 
large posi)t1ve 
Warnocka 
have 

the case where 5 (s) behaves for 
s 11ke n a/Log s . Using a theorem Sue to Frye and 

on the asymptotic 11mit of principal value integrals, we 

_1 
TT pG(s) I S cpG(t) 

t 
] d t + 0  I s Log S 

o 

Therefore, for large positive s 

) s of Log (L 
_a 

) el: (s pG exp pG.(s)°' 1 a 
(Log s) 

(B.28) 

o 3 ) From Eq. (B .24) the function F(Z) can be written in the form 

-N ) G F(z) = p(z) (1 ll_z exp s o 
UG(Z) (B.29) 

and we denote by R the degree of P(Z) . 
Using the results of the previous paragraph on the asymptotic 

behaviour of up(Z)we easily check that F(Z) satisfies a dispersion 
relation of type (B. 11) with n subtractions where the non-negative 
integer n is restricted by 

n > R - N G  

The equality n : R 

a) 

b) 

uV dt diverge s 

NG can occur in the following particular situation 

cT>G(t) 
t 

= +I ,  e . g .  there exists a T > So such that for t > T ,  
t5G(t) 2 0 . (13.30) eG 

The solution depends obviously of R arbitrary parameters one can 
choose as the zeros of p(z) . 

Conversely, let us look for solutions of the dispersion rela- 
t1on (B.11) having the form (B.29). Now, In the 
g r l c a s , E q . ( B . 1 l ) h a s s l u t 1  s if d fly + N  > 0  nd 
the number of linearly independent solutions is then R + 1 ,Q/vhere R 
is the maximum non-negative integer less than n + NG . 

In the particular case where the conditions (B .30) are fulfilled , 
even if n + No = 0 ,  there exists a unique solution to Eq. (B.ll) . 

n and NG are fixed . 
if 
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As an illustration of the previous results , 
subtracted dispersion relation (B. 12) . 
no solution if NG S 

lion must satisfy the 
stance ,. when the high-energy behaviour of c5G(s) is given by 

we consider the un- 
In general, this equation has 

0 .  However, if NG = 0 ,  the only possible solu- 
particular conditions (B.30) as occurs, for in- 

cpG(s ) =¢ 
aTT 

Log s w i t h a > 0  . 
4°) From the unltarity relation (B. 17), in the elastic region s S s S 
45 0 the phase cps(so) of the form factor is equal modulo 'IT to t?xe 
phase 611 (s) of the elastic or-Tr scattering amplitude I = l , J = l . 
Assuming 611  (so) = 0 we identify CDG(S) and 611 (s) in this region. 

As dis cussed in Section II, such an identification can be ex- 
tended to a larger domain including in particular the p-meson region 

CPG(5) = 611 (s) f o r s  S 
O 

S S  s ,  m e .  

More generally, we define a phase n(s) which represents the contri- 
butions of states other than 27T to the unitarily relation . ) (s) +"W(S 

)=_ 6. 
cpG(s 

(13.31) 

This phase 'q(s) 
The Omnes 
I = 1 is defined by 

a e is on for S s nd we choose s .  =0 . 
.pps Y 2 incl. a H( w'_ function associated to the Tr-Tf scattering amplitu e - 1 r 

as 6 p 
G1 1 (Z) --n&-v 

.:."mn1;; As a consequence of equal | 

intermediate state are explicitly exhibited following 
oo 

G Z = G Z ex - nit) < )  H ( )  p 7 T  l"s t { t - z )  

incl . 
Z 

dt 

.|. _ 
buttons of the or Tr 

dt . 

Models can be used to  construct G11 (z) and therefore to  obtain 
approximate expressions for G(Z) and F(z). 

IV, _The Modu_lus Representation 

o . . . . . 1 ) We cons 1der an analytic function F(Z) wlth propertles a),  b). and 
c).  In this section, condition d) is replaced by a weaker one d ' )  . 
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The function F(Z) has only a finite number 
increases less rapidly, in modulus than IZI °§ 

We can define a polynomial P(Z) , of finite degree , 
1 . 

that the function G(Z) = p-1 (Z) F(Z) 
same zeros as 1=(z) and normalized so that P(0) = 

It follows satisfies con- 
ditions a),  b) and c) . Moreover, it is normalized to unity at Z = 0 
and has no zeros in the complex Z plane . 

zeros and its phase 
in all directions . 

having the 

2°) Equation (B.21) gives an expression of G(Z) in the cut plane in 
terms 
obtained of the modulus |G`|T(t)| assumed to be known on the 
cut t IN So'  It is the object of this section. Let us consider 
the function 

of the pha se cpG(t) . An equivaleNt expression of G(Z) can be 

i"1E'i"Yl) 

(Z 

Log G(Z) 

Loq Gaza 
% - s O) 

It is an analytic function of z in the cut plane which tends to zero as 
12] => m in all directions . We apply the Cauchy theorem to that func- 
tion with the contour C of Fig. 8 .  The result is simply 

(Z - s 1% . 
i 11' JS s o 

The normalization condition G(0) = 1 gives a sum rule 

O °=> Log GET(t)l 

0)% (t - z) 
dt 

(t 
(8.33) 

Combining Eqs . 
expression 

2m 7T so 

IT t 
s - s  o 

dt 0 (B.34) 
(t 

Loll GTT(t) I 
% 

D) t 

(B.33) and (B.34) we can write a more convergent 

Z(2. - s 
Log G(Z) = 111 

if on cz: 

S o 

L G (t)l 
of ,J -- dt . 

s o) t(t - it Z) 
(B.35) 

given by a principal value integral (s 

,é 
O 

<pG(s) TT 

3O) In particular the phase cpG(s) is deduced from Eq. (B.35) to be 
2 s o) 

s [ s - s  on Log G ( t ) l  

pv I S t(t - s )5(t - s) o O 

or d t .  (13.36) 
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For s 

fore I 

S s S 4s0 the phase cpG(s) can be identified width the phase 
61 1 (53 of the. P wave scattering amplitude for or TF scattering. There- 

cp (s) must behave like (s o)3/2 threshold point. 
Using t e  identity 

(z 

S around the 

S 

(t - 8o) 

it D) 

Z) 

i 
it 

)i 
o 

Log g. 
- s o)" + 

(t - s - (Z 

(t (z 

s O) 

s o) 

we perform an integration by parts in Eq. (B.33) and obtain an equiva- 
lent expression : 

Log G(z) Log G(So) 
to S é 

l 0) 

1TI' S ( t - s  + o 

(t S 
Log 

o 

'E O) 

s ol 
(z d 

' L o g l  G'IT(t)|dt 

(B.37) (z 

provided that Log | G1(t)l is differentiable . 
Let us make an expansion around Z 

in .  s - ( Z - s  é on 
( t -sa  4 - ( Z - s  

é 
- _  2 O) 

i D) 

( Z - s  
+O[ (Z  

( t - » s  

= s o of the logarithmic 
term in the previous integral 

[t 3 2 Log . 3 

/ 

D) 

Putting this in Eq. (B.37) we deduce an expansion of Log G(Z) around 
Z - s o 

- s O) ] . 

Log G(Z) = Log G(so) +2 - (Z  - s0)%.l` dt 
IT s o S 

_ s o) 

(t i n  

d . Log 
or 

3/2] + O[ (Z 

|G'IT(tl| + 

and the behaviour of ¢pG(s) around the threshold point implies the sum 
rule 

oo 

I 
S o (t 

d 
dt 

it _ Log 
S ) '  

O 

I G ( t ) l  : 0 (B.38) 

The scattering length for the p-wave scattering amplitude is com- 
puted with an analogous method of integration by parts and the result 
is 
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11m 611lS) 
o _ s )3/2 

o 
S => s (s 

JL 
31T 

m 

.r at d2 
d s o [t - S 

é Log 
O) 

GTT(t) I (13.39) 

the timelike region by 

_ S,  

o . . . . 4 ) The form factor 11'1 the spacellke region s S 0 is related to the 
modulus lG17(t)| I", 

G Tr(S) 
5 (s o exp r 

l 

poo Log |GTl'(t)| 

s t(t - s 0 ) ( t  - s) 
dt 

o 
(B.40) 

As an application of the previous expression the root mean square 
radius associated to the form factor G (s) is represented by the highly 
convergent integral 

TI' 

T G = /  12m oo 
Tr 

S 
O 

Log \~GTr(t) | 
.. Sy 1"(t 

dt I (13.41) 

in the timelike region (s 
spacelike region (s 

o 
5 ) Let us now study the high-energy behaviour for the phase ¢pG(s) 

=> + °°) and for the form factor G,,(s) in the 
:o - in) . 

As a first remark, Eqs. (B.33) and (B.35) are equivalent if 
and only if the condition (B. 34) is fulfilled. If not we define 

oo 

Q IT (t 

L og 1 G11 (t)1 

x a - S ) t o o 

and Eq. (B.35) is equivalently written as 
_1 - s o}2 I & + m @  

s (t 

kg so Log IGT1('f)l 
Log G(Z) = i n  _ s ) (t _ Z)' 

o O 

dt 

- s o) 

It is convenient to introduce a new function 53(2) by 

iX(Z - s 0) 
G(z) = G(z) e . 

On the out S 2 So we have the equality 
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7T Log lG1T(t)\ 

and it follows that CT,(z) is a solution of an equation of the type (B.33) 

Log lG (t)l 

277 

_. (Z - sO, 
Log G(Z) = i IT ! 

with the normalization condition €';(0) = e . 
We can therefore restrict our study to Eq. (B.33) . The first 

proposition is the following: if there exists a finite number v such 
that 

To I l l  -I II 

11m 
s=>+<=° 

L o g { l i l " €  

S o lén(S)l} i o n  (13.42) 

for all € > 0 then 

11m 
8=> +G' cps"(s) = v n (B.43) 

Of course, from 1. 
complex z plane E 

it follows 
nu.: - . 
i.=¢l1.ll-I 

1..-.,-10. 
I lllll 

| for 15.(2>l in the 

v > - n  

5. 

The quantity v being defined by the condition (B.42) it is convenient 
to introduce a new analytic function g(Z) 

v 
g(z) = (1 - s ) G(z) . 

o 

Using the Cauchy theorem it is eas 

(z - m 

y-in 

Log l 
s o)é 

1 'IT s 
o £t - so)i(t - I 

(B.44) 
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in s o) co 

Log 9(2) 

from which it follows , for g(Z) , an equation analogous to  (B.32) 

IZ Log 
dt 1 I 

TT s (t - s o 
with the normalization condition g(0) = exp (ZX mn) . 

We then are brought back to the case v = 0 in the previous 
proposition: if for all e > 0 

IQ'IT(t)[ 

o)*(t - z) 
(B.45) 

lim 
s=> +°== 

in 

Le { ( )  l g n ( s ) I } = . ° °  (8.46) 

then 
lim 

5=9-l-co (rpm ( s ) = 0  (B.47) 

phase 'PQ 
deduce 

The 
(B.45) we 

(s 

(s) is normalized as usual to mpg(so) 
its integral representation 

_ so 
( ) = - CPU S 

on 

IT 

Lo | (t)l 
pvt Q gTT 

S ( t -  o s 0 ) ( t  - s) 

0 .  From Eq.  

dt If (B.48) 

l re 
7T t dt 

From the restriction (B.46) on the high-energy behaviour of lgTl(s)l in 
the timelike region it is straightforward to prove the result (B .47) as 
the limit, at infinite energy, of the principal value integral (B.48) . 

A more refined information about the high-energy behaviour of 
the phase cpgis) is given by a second proposition 

s up .t 9 
So 

L s DQ \Q( )| 
The proof of Eq. (B.49) is obtained using the technique of the phase 
representation as explained in Sec. III. 

Finally, as a consequence of the Phragmen-LindeN-5f theorem , 
the high-energy behaviour of the form factor gfr(s) in the spacelike 
region and in the timelike region are identical 

lim 
5 => + on 

l-
I 

II (13.49) 

lim 
s => -co 

QT1(5) 

QT1(-5) 

II |
-
' (B.50) 
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6°) We now consider the actual function F(Z) '= P(Z) G(Z) and more 
specifically its logarithm . 

Let us first apply the Cauchy theorem to the function 

(Z - 

(z 
_Log p(z) 

é - s 0) 

using an integration contour CP excluding S) the normal cut on the positive real axis (so, + °°) due to 
so) 

b) the cuts associated to the zeros 21 of P(Z} not located 
of type as o r g ,  °r, . - so) across the normal cut is given 

on the normal cut, e . g .  
The discontinuity of Log P(Z)/(Z 
by 

(s - 
1 

s o) € 

1 1 0+ HLOQ P(s + 1e) + Log P(s - je)] II 

Log p(z) 

Choosing nu? (0) : : 0 ,  the 
number of positive real zeros 

oo 

(s 
+ icpp(so)] 

1 
[LOCI p(s)l _ s ,if 

o 

phase cp (s ) is TN + is the 
of 'i'>{£f 

After a straightforward calculation of the contdbutions due to 
the other cuts of type b) we obtain the final result 

(Z-goj 
in dt + 1npp(so) 

where N 
betwegh 0 and so . 

S o 

I LoqlP(.t)l 

(t-5o) (f~2) 

B+ 

+2 Logl;EEII."ET"l . . 

j aI . »' . 
1 - I- 

ij'[hlII.-! 
1 I 

Combining Eqs. (B.33) and (B.51) . 
in the cut plane in terms of the mod 
as measured in electron-positron annihilation experiments 

51) 

~(Z)- 
fegion 
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(Z-s O 
Log 1=(z) = ITT 

m 

.r 
s o 

Logs Fw (t) | 
é + *°p (t-5O) (t-Z) 

dt (s O) 

+ Log 

j 

l 
1 

hiflmrlh 
|» (B.52) 

(so 

(C 

(<= 

= a .  
J 

a . > 0  
J 

It is convenient to parametrize the zeros z j  in the following way 

_ .j,% 

_ $3% 
_ .Je 

=8&+1`{& B.v>0 y % > 0  

'BAL + We; 

( Z - s  

Equation (B.52) becomes 

é 
1 °' I 'IT s o (t 

et 

Log F(Z) 
L°Q|1'n,(t)| 
. dt + lcpp(so) 
s o)* (t - z) 

614-112 
+ 

- i (Z - s  
Log 

.1 "J 

a - I . a +  - Z + 2 i  s + Br, Yr, s 

a"+yj} 
YLIZ' 

o - Z - 2 i ' Y ( Z - S  

s o)" 

é O) 
ZLoQ 

j 

o 

+ 8  -L 

From the normalization condition F(0) = 1 we deduce a sum rule 

2M TT °° 
To s 

O 

Logl PT(t) | _ so,»1» (t 
dt + Log 

J 

a 1 
a. 

.I 

+ 2m TT 

= -i1=pP(s0) - 2m t 
TY 

+ (Y 

+ (y L JL 

The first two terms in the right-hand s 1de of the previous equality 
can be combined to give the simple result12) 

+ Log Bi 
a 

Ex, 

+ 2m )2 
TT 

2m )2 
TT 



ELECTRON-POSITRON ANNIHILATION 281 

I LoglFT(t)l 

TT s ( t - s  
"Z 
of. 

2m °° 
rT é Log 

) t o o 

u. +2m 
dt I TT + 

"J j 

+ 
-2m Log + 

17 J 

(y + 2m )B 

(Y 
17 

2 M TT)2 

(B.53) 

o 7 )  The 
$ 2  s o b s  

phase m 
deduces 

(s) of the form factor FTT (s) in the timelike region 
from Eq. (13.52) to be 

cpF(s) =cpF(so) N i  

(s _ S  o,% m 

TT pvt" 
s o 

I..oglF (UI 
)gtt Dr 

o ( t - s  - s )  

2 
Q O) 

"J 

O) ZY (s 

L L o 

(s - s - s 'iv 
Arc tan + 2 Z A r c t a n B a _ | _ Y 2 1 _ ( S _ s ) .  

J J (B.54) 

Observing that, in Eq. (B .54) the angular contribution from each zero 
21 is an = 
reachin?17/2 
¢"F(5)12 

increasing function of s starting Hom zero at S so and 
when s = + °°, we can obtain a lower bound for the phase 

1 oo 

of 
s o 

é O) 
CPF(S) -(;0F(s0) 2 - 

( s - s  
or pvt 

°° Logl FTT(t) | 

s (t - so)é(t - s) 

(r 

o 

dt . 
(13.55) 

difference npF(s) -- cps(so) 
4so and there- 

= 5 . 
155 straightt1:énr- 

From the unitarily relation (B. 16) the phase 
is simply the phase shift 611 (s) in the region So S s S 
fore must behave Like (s - s0)3/2 around the threshold point S 
Assuming that Fu (s) does not have zeros on the out , 
ward to generalize Eq. (B.38) and the result is simply 

-(LoglpTl,(v)|)=Z Z 
x; 

dt 

s o) 

d 
dt 

1 a + 2 
i I 

Y/r, 
B + Y  (B.56) 

The r1ght-hand side of this equation is obviously positive and we 
obtain the following inequality 

m _ 1 dt _ S o,t 'ET 
s O( t 

d go L0g|FT(t) l  2 0  (13.57) 
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lim 
5-  s o 

and the equal sign holds when and only when the form factor does 
not have zeros . 

The value of the integral (B.57) gives a measure of the impor- 
tance of the zeros in the region around the threshold . 

Finally, the scattering length for the P wave in scattering 
amplitude is computed from Eqs . (B.39) and (B.54) 

611 (s) it 

é O) (s 

do 
E '  Log I F'IT (al I 

(t 

4 m 

s )3/2 3T1 s _ S 
o o 

Y , ( Y - S B )  2 ( g - l - Y 2 ) a  
5 L 

(B.58) 

o I 8 ) In the spacellke region s S 0 the form factor ¥71 (s) has the follow- 
ing representation 

F 17 (s) 
m 

N 
x (-1) a+ 

dt 

TI 

o 

(so - s) Log lFTT (t) I 
ex 

p " s (1 -so ) * ( t - s )  

-(s0-s)§ Ag. + [ Y  - (5.0 - s ) ] 2  

é Br, + [ + 5)%]a . 
(B.59) 

U.. 
1 
. s -s i n ] + ( o  ) L 

Tf 
(So 

The condition F"IT(0) = l implies the relation (B.53). It can be ob- 
served that all the logarithm terms in Eq. (B.53) are positive and it 
follows immediately a second inequality 

2m °° 
Tr 

'IT 
dt 

é o (t - s o )  S 

Logl FTIn I 
t 2 0  (B.60) 

Again the equal sign holds when and only when the form factor does 
not have zeros . 

The value of the integral (B.60) gives a measure of the impor- 
tance of the zeros in the region around the origin. 

Using similar arguments we can obtain, in the region s s So 
an inequality which generalizes (B. 60)12) 



In n(s)l exp 
(so 

S 
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- s) °° Log l FTr(t)l 
I e . 
so - so) (t - s) IT (t 

dt . 

283 

(B.e1) 

In other words , Eq. (B.6l) gives an upper bound of the form factor 
F1T (s) in the spacelike region in terms of the modulus of the form 
factor as measured in the tlmelike region . 
V.  Form Factors with an Exponential Decreasing 111 the Spacelike 

Region 

1o) 
distributions . Let us belg with the following theorem of the theory of 

The function F(Z) has the properties a) , b) and c) if and only 

in l x l x  2 0] such that for all Z in the complex cut 
if there exists a real valued tempered distribution S whose support 
is contained 
plane, we have the representation 

+-o 
p(z)=l` S(x) 

a ix(Z- ) 
e So dx (B.62)' 

where 

0 < a r g  (Z 

-I-Q 

Q O) < To _ s . 
In particular on the real axis , the form factor PTT (s) is a tempered 
distribution given by 

ix(s-sO) 
F e 

TT (s)=.t s(x) dx 

Q -c - , + e X S o  s dx F TT (s) ' S (x) 

i f s  i s  o 

i f s s s  o 

(B.63) 

(B . 64) 
-oo 

(s) Tl' 
from the 

We easily check that for spacelike values of s , F 
The normalization of S is obtained 

is real . 
condition F(0) 1 

l 
-2m X 

Tl' 
-I-Q 

=ln S(x)e dx (B.65) 
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Conversely if the form factor FTT(S) is the boundary value of an analy- 
tic function F(Z) with properties a) , b) and c) , then 1'U,(s) is a tem- 
pered distribution and using the theory of Fourier transform, we obtain 

S(x) 
oo 

1 
2 

T T S  ( s - s  o 

ds R 

)é e 
o 

ix (s -s o) 
e F'IT (s ) (B.66) 

decrease like exp(-al 51%) 
2o) We restrict ourselves, in the following, to  form factors which 

when s => -co in the spacelike region. Such 
a behaviour has been suggested by Wu and Yang14) in the framework 
of a model for large angle scattering at high energy in strong inter- 
actions . 15) 

It can be proved 

a,) 11m sup \al'% Log|:F'Tr(s)| 
s =a -°° 

that the two following statements 

S -a w1tha> 0 

B) the support of S is contained in f x l x  2 a]  

are equivalent . 
Therefore, if 

lim 
s => -°° \$1 LOglFTT(S)l -m 

the support of S is empty. Thus S is zero and also F(Z) assumed to 
fulfill conditions a),  b) and c) . 

A lower bound for the decreasing of Pa (s) in the spacelike 
region is precisely that considered above in a) . 
30) The high-energy behaviour a) of Fw (s) in the spacelike region 
implies some interesting properties of the discontinuity q.,(s) of F(Z) 
across the cut . 

The 
exp(-[3 s ) a s  s = ) + ° °  

discontir uity PTT (s) cannot decrease as fast as 
16 

b) The function F(Z) and the derivatives of F satisfy general- 
ized dispersion relations wlthout subtractions 



m 
lim 

F(Z) = €=b 0+ .l` _ 1 
7T 

GTIT d 
t t - z  
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-et (r) e 

S o 

oo qrr(t) y e 
so  (t - 

FG)(2) lim 
e: =) 0+ 

Jo 
n 

-at j+1 dt 
Z) 
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(13.67) 

In other words, the function F(Z) is uriq)ue1 determined by its dis- 
continuity o (s) when a) is satisfied. 5 ,1 ) 

c) THe discontinuity CITT(S) satisfies convergence sum rules 

m -et N e t O' (t)dt = 0 s 71 
o 

lim 
ez = 0+ 

15) 

(B.68) 

for all non-negative integers N . 
d) The discontinuity On (s) must have an infinite number of 

changes of signs. More precisely, let up denote 
of zeros of o'Ur(s) in the interval T -- S where T is fixed, thenl5) 

-é a 5 n(s) 2 - . TT 
11m sup 
s => + co 

by n(s) the number 

(13.69) 

4°) From the unitarily relation (B. 16) the phase difference up;-(s) - 
f:pF(so) is simply the phase shift 611 (s) in the low-energy region and 
therefore must behave like (s - so)3/2 around the threshold point 
s = So '  Using the representation (B. 63) this last condition is simply 
written as 

S(x)dx 0 .  
+m 

x 
-m 

(13.70) 

The scattering length for the P-wave in scattering amplitude is then 
deduced from Eq. (B.63) to be 

11m 
S * S  (s o 

-l-oo 

xa S(x) dx- 
-on 

+°° 
5 0)% 

611 (s) 1 I 
n--E l` s(x) dx 

(B.71) 
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5°) The root mean square radius is determined using an expansion 
of Eq. (B. 64) around the origin s = 0 .  Wlth the normalization condi- 
tion (B.65) we obtain 

(¢T) 
3 -{-on 

4m2 x e TT -oo 

-2m x 
11 S(x) dx 

vI Models \ 

O '  . 1 ) The partla1 wave amplltude 

the expression (B. 72) is regular at the point s 

s ` s h11(s) J 91611( )s1n 611(s) s 2 SO 

is the limiting value of an analytic function H(Z) in the complex Z 
plane with two cuts 

a) a r1ght-hand cut on the positive real ands from ;so to +eo 

b) a left-hand cut on the negative real axis from - °° to 0 
Because of the threshold behavior of the P-wave phase shift 611 (s) 

= S o .  

o • s 2 ) Let us now write the function H(Z) as the ratlo of two functions 

= N(Z) 
D(z) H (Z) 

(B.72) 

lm D(s) 

where 
N(Z) is an analytic function of Z except on the left-hand cut 
D(Z) is an analytic function of Z except on the right-hand cut 

The discontinuity of D(z) on the right-hand cut is given by 

_ s o)3/2 

5 N(s) . 
S 

( % N(s) s _ 1 
8 

The number of subtractions needed to write a dispersion relation for 
D(s) depends obviously on the high-energy behaviour of the left-hand 
cut contributions represented by the function N(s) . For instance, if 

lim = 0 
s => +°° 

lion point can be chosen at s = 0 .  

N(s) one subtraction can be sufficient and the subtrac- 



D(s) = D(0) 
m 
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t _ 3/2 
s ( So) 

81T s t3/2 
o 

n(t) dt t - s -. in: 
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(13.73) 

_ 11m but if S = +0=> 

choosing always s 

N(s) = const. two subtractions are necessary and 

= 0 as the subtraction point l 

D(s) n(0) + s  I)'(0) - l "  
S O 

(t - 6o)3/2 

t3/2 
N 

t - s(tl1e .(B.74) 

Gonversely the discontinuity of N(Z) across the left-hand cut (s < 0) 
is the product of D(s) by the discontinuity of H(Z) across the same 
left-hand cut . 
3o) The N/D formalism will be used in the following to construct 
partial-wave amplitudes like (13.72) from specific assumptions con- 
cerning the left-hand out contributions. Models for 611 (s) are built 
in this way corresponding to particular forms of N(s) . 

a) Frazer and Fulco18) replace the left-hand out by a pole 
on the real negative axis at s = '51 . The function N(s) is approxi- 
mated on the right-hand cut by 

51 

N(s) = s + 31 

. mrbitrary 
wan" approximate 

It is possible to wrlte for D(s) a dispersion integral in the form (B. 73) 
and to compute explicitly the dispersion integral. The result is for 
D(S) , an expression with two parameters D(0) and 51 . 

b) Vaughn and the left-hand cut by a 
double pole using, as numerator function 

$1 

N(s) = (s + S. 
2 

In their paper, the dispersion integral is written in the form (B. 74) 
with two subtractions at s = 0 in order to have a more rapid conVer- 
gence of the dispersion integral. Choosing arbitrarily D' (0) = 1, 
Vaughn and Wa11 deduce an expression for D(s) with two adjustable 
parameters D(0) and 31 . 

c) Gounaris and Sakurai20) make the crudest but simplest 
assumption of a constant numerator function. The dispersion relation 
for D(s) is used in the form (B.74) and again the result is , for D(s), 
an explicit expression with two arbitrary parameters D(0) and D' (0) . 
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In all the three models the two free constants are determined 
by the requirements to have, in the partial-wave amplitude , the p- 
meson resonance , at the mass My with the width To . 

o . . 4 ) In the Frazer-Fulco model the function H(Z) is found to be 

H-1 (Z) 

II (Z s o) f(z) + a + bz (8.75) 

f(Z) =-8-T: 
where the function f(Z) is defined by 

é* (Z - so) + ii* 
é % c (Z - so) - Z 

The constants a and b are related to the parameters D(0) and $1 by 

Log (B.76) 

a 
m a  

D(0)+ TO 
'IT 

b 1 _ [ a  
81 

(sO+s.) f(-sm (B.77) 

By construction H-l l"51)= 0 .  
The Gounaris-Sakurai model gives , for H(Z) , an expression 

identical to  Eq. (B.75) . The constant a is unchanged and the constant 
b is given by 

b = D ' ( 0 )  1 
31T 

We now consider more specifically the scattering amplitude he (a) in 
the physical region s 2 So'  Using Eqs. (B.72) and (B.75) we obtain 
for the phase shift 611 (s) a so-called generalized effective range 
formula 

kg 7;'cOt 611(S) ==kg h(s) + a  + b s  

where the function h(s) is deduced, from Eq. (B.76) , to be 

(B.78) 

h(s) 
2 k 

TT /s Log / s + 2 k  
2m 

'fl' 

With the convention 611 (so) = 0 the P-wave phase shift as given by the 
model (B.78) tends tolzero at infinite energy with the following 
behaviour 
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611 (S) °" 
TT 

s 
L og ma 

TI' 

(13.79) 

The existence of an elastidrr-'rr resonance, the p meson, in the I = 1, 
I = 1 channel, determines the constants a and b by the two constraints 
on the phase shift 611 (s) 

cot 611 (mpg) = 0 

d a -- 6 1 
m 

p 

The re suit is 

a = m a  
'IT 

b = - i  

k :  
p 

m2I` 
p 

h ( M 2 ) + m 2  + l 2  
p p p 

h ' (  2 )  p Mp 

h(mp2 ) 
k 3  
_P k 2  hl 2 _ + p (up ) 

where 

- k =%( a P Mp 

The value of $1 for which H-1 (-$1) = 0 ,  is found to be very large 

$1 9 .6  108 my" 

AM TTY )% 

on z . ; _ 
o 

)=exp 
T 

(Z G11 

5°) We now construct the Omnlés function G11 (Z) defined in Eq. (B.32) 

61 1 lt) 
dt . 

t(t - Z) 

From the considerations of the second paragraph of this section we 
easily deduce that the function Q(Z) defined by 

Q(Z) = G11 (z) D(Z) 
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is an entire function of Z in the complex Z plane . The function G11 (Z) 
is then related to the scattering amplitude H(Z) by 

G1 1 (Z) H(Z) 
H(0) 

QUIZ.) 
N(Z) (B.80) 

We assume I-I(Z) and N(Z) to be known; the function Q(Z) is then res- 
tricted by the following properties of G1 1 (Z) previously discussed 

a) no zeros in the complex Z plane 
b) G11 (0) = 1 
c) correct asymptotic behaviour as studied in Sec. III . 

In the actual case where the phase shift 611 (s) is described by the 
effective range formula (8.78) the only singularity of H(Z) we have 
to cancel is the pole Z = '51 so that 

F 

Q(Z) 
n(z) l + £  

$1 

The corresponding Omnés function is found to be 
8 

M n a -. 

'IT 
(Z - so) f Hz) + a  +bz G1 1 (Z) _A (1 + so) (B.8l) 

On the real axis in the timelike region above the out s > so the Omnés 
function is given by 

1' 
6 ;aM0+ Go (s + je) 

M 2 ' S +  
p 

m pI"p 
w p {k9l:h(s) 

X 

- 

G ) ma 
p 

1 s 1 ( +S . )  
1" 

+d--2 m 
P . . 

+ (up -s)k2h'(ma)}-1mpl" ( )  a 
h(1'I1p )] 

p p 

m 
_.E 

9 p /s 

(B.82) 

where the constant d is given by 

ma m +2k rn 
TT D p p 

k2 2m DTI' k 
p TI' p 

d IT Log + - 
m ' I T m y  

T ' T k 8  . 
p 

(B_83) 
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Equation (B.82) exhibits the following properties 
a) Near the p-meson mass s * my" the term in brackets in the 

denominator of Eq. (13.82) behaves like (s - and therefore it can 
be ignored in this region. For practical computations G11 (s) reduces 
to the usual p-wave form 

a My )a 

G11 (s) °' 
m 2 -  

p 

F 
m2 1 + d - 1  

p Mp ( ) 
s + O[(m9- s)3] - i n  1" 

p 

a 

p()  
b) A correct normalization of G11 (s) at s = 0 1mp11es the pres- 

ence in the numerator of G11 (s) of the constant d giving a measure of 
nonzero width corrections . For instance at S = me the value of G11 (s) 
is given by D 

m 
G11(m3)*iI-7-9 1 

P o ( ) 
I" 

+ d  0 m 
p 

mp 

The numerical value of d for the actual p-meson mass is close to d =-= 
0.48 and we obtain a 14% effect for IG11 (m02)l2 . 

c) As a common property of all the width energy dependent 
Breit-Wigner expressions the actual maximum of IG11 (s)l3 is not at 
s = 2 but is somewhat shifted towards the left . 

d) Because of the very high value of $1 the factor (l + s/s1 ) 
in Eq. (B.82) can be disregarded in the domain of validity of the effec- 
tive range expansion (B. 78) e .g .  for values of s between the threshold 
and 1 or 2 GeVG . 
VH. Experiments 

o 1 ) The modulus of the Tm-meson electromagnetic form factor has been 
measured in the Po resonance region by observing the reaction 

+ - + - e + e =°1rT +1T 

A systematic analysis of the experiments performed in Novosibirsk 21) 
and in OrsayZZ) has been made by Roos and pialut23) using different 
parametrizations of the 1T-meson electromagnetic form fa ctor . 

The possibility of zeros of Fn(S) has been disregarded and the 
form factor has been identified with the Omnes function G11 (s) corres- 
ponding to the elastic unitarily relation . 
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The problem is then reduced to the construction of a phase 
shift 511 (s) reproducing correctly the main features of the actual P- 
wave phase shift and in particular the resonance property of the scat- 
tering amplitude in the p-meson region. Some of these models have 
been discussed in detail in Sec. V'l but the Roos and Pisut analysis 
covers a larger domain of possibilities for the energy dependence of 
the width . 

As expected, the resonance parameters depend strongly on the 
differences in the formulae used for the fits but it seems difficult to 
choose clearly the best phenomenological form for F77 (s) , all the ex- 
perimental data being concentrated in the po-meson region. Never- 
theless an energy-dependent width as suggested by the P-wave cha- 
racter of the final-state interaction gives better results especially 
for the Or say data . 
2°) Let us now consider the data more quantitatively. The measure- 
ments cover a range of total energy /s from 580 MeV to 1030 MeV 
approximatively by 30 MeV steps , with nine values for the Novosibirsk 
experiments and seven values for the Or say experiments . 

We first use a simple Breit-Wigner formula ignoring the nor- 
malization condition at S = 0 

lp,1(s)l2 = ( m  2 _  
p 

m 4 

saD + gyp (F'IT(0P 

The result of this three-parameter fit is glven in the following table 

Degree of freedom X2 Mas s 
(MeV) 

Width 
(mev) 0 P TT() 

Novosibirsk 

Or say 

6 

4 

2 . 3  

8 . 6  

7 5 4 i  9 

762:t 6 

l 05 : l :20  

1l7:I:11 

0 . 9  :t 0.1 l  

0.12:1: 0 .08 

Table 1 

A second fit is made, using now the model proposed by Frazer and 
Fulco in 1959 and by Gounaris and Sakurai in 1968. Such a model 
based on the effective range expansion of the 7T-TT phase shift 611(s) 
has been extensively discussed in Sec. VI and the explicit expression 
of the associated Omnes function is given in Eq. (B. 82) with the prac- 
tlcal form (B. 83) in the po-meson region. 
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The results of this two-parameter fit are given in Table 2 . 
Degree of freedom X2 Mass(MeV) Width(Mev) 

Novosibirsk 

Or say 

7 

5 

4 .5  

8 . 6  

768 :t 10 

772 :h 6 

140 :t 14 

113 d: 8 

Table 2 

23 .  
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SECTION C.  Currents and Spectral Representations 

I. Conserved Currents 

o I 1 ) We flrst conslder a conserved current /8c><) where CI. is the weight 
of the adjoint representation of an internal symmetry group like SU(2) 
or SU(3). It is always possible to  choose on such that the current 
component 1§'(><) is an hermitian operator 

G. 
I ( w = m ) .  u X u 

By assumption the current is divergenceless 

Be 1" (x) = 0 u 
where BU is a short notation for E5/bxu . 

The space integral of the time component of the current is 
associated to a conserved quantity 

Q" =I 1%(x) dax 

(0.1) 

on and Q is generally called a charge . 
O.  1 2 

2°) A Kallen-Lehmann ) ,  ) representation can be written for the 
vacuum expectation value of the product of two current-components . 
The structure of such a representation is determined by the Lorentz 
covariance and the divergence condition (c . 1) 

B oo s 1 ( 0  0 0) = a 2 [ l1§(><) ( ) I  I ( m )  - -a QW me u v  v 
I + I p B ]1A (x;rna)dm2 . 

0 

The invariant distribution A+(x,m2) is defined by its four dimensional 
Fourier transform 

Ik~x A( )(x:m2) = .Fe A()(k;m2) d4,k 1 
(27T)4= 

(c.2) 

As (kzm2) =4: 217T 9(ik0) 6(k'*l+m2) 

merry group the spectral function GB (mg) can be written as 

where 6 is the usual step function and 6 (k2+ m3) the invariant Dirac 
distribution on the mass hyperboloid . 

If the vacuum belongs to the scalar representation of the sym- 
p 
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9a5(m2) = taB paa(m2 ) 

Because of the hermitian character of the current the spectral function 
p°l'5(m8) satisfies 

IN 

v 

p8(m"')* = 96a(rna) - 
a 

In particular the diagonal elements pa (m2) are real functions . 
3°) Analogous Kellen-Lehmann representations can be written for the 
product of the two current-components in the reversed order 

m a _ 
( 0 l ( 0 )  I°°(><)l 0) =.[` is (m2)[g A (xzm2) dm2 

0 

and for the commutator of two such current components 

oo 
as 

(0lf1':(><), 1°'(0)J | 0) =.|" P (m")[q 
0 

1 - - a  up m2 1 a 
u p  I 

IJ.V 
1 

me - - - a s  v] 1 A(x;m2) dm2.(c.3) 

, + _ 
The causal invariant distribution A 5 A + A is defined by 

A(k;m2) = - 21 Tl' e:(k0) 6(k2+I *) 

where s(ko) is the discontinuous function sign of ko . 
o 4 ) It is now convenient to take the Fourier transform of both sides of 

the Kéillen-Lehmann representation (C .2) in order to study some proper- 
t1es of the spectral function pal; (ma ) 

&' ik " ' (0 l (x )  I8(0)l 0)d'-4x = 2n g v 

k k V 
9 k - LE ( 0) kw k2 

We introduce a complete set of intermediate states In 
0°a8(-k2). (C-4) 

(OI lien I8(0)l 0) =§ Sn (0 l  I (x) I  n) (nl16(0)l o) 
n 

over the polarization of the particles of the intermediate state in) 
a phase-space integration . 
Let us recall that the symbol Sn defined in Sec. A implies a summation 

and 
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( 0 I J ( x ) l n )  

From space-time translation invariance 

- x  
(0 l  ] ( 0 ) l  n) 

1 Pn e 

The x integration in the left-hand side of Eq. (C.4) is now easily 
performed 

2 e k )  o r (  QW 

Contracting this with the metric tensor g 

2sn(211)"@»,(pn-k) (0l§(0)ln> (nII8(0)l 0) = 

n k up 
o - k2 

uv we finally obtain 

@(kO)'Zsn(2T0* 64(Pn" k)(0l1§(0)ln)(nl;B(0)l0) gun 
n 

i s  (-kg ) 

PW (s) 
(C.5) 

where S = -kg . as 
It is now straightforward to prove that p (s) is a definite 

positive function using for instance the property for the matrix ele - 
merits of a conserved current, to have only space components in the 
centre-of-mass system G< = 0) 

paa(s) _ l  
Sn 

l .  

e (ko)2 S n 
n 

»z,=3 

(2104 64(pn - k) Z l(0l1',§(0lln>l2 
x;=1 

(c.6) 

II. Non-Conserved Current 

lo) The current density Jie) is always an hermitian operator but its 
four divergence is different from zero o Therefore two spectral func- 
tions are needed to write Kéillen-Lehmann representations like (C.2) 
and (C .3) 

13 _ co 2 ( 0 l ( x )  %(0)l0> -/0 u p ( l ( m  ) l u v  a av _L ' ma 

Ol-B 
9(0) 

u I 
(m2)B a l1A+(x;m3) dra2 

u v (0.7) 
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(0lu°'(><), J°'(0)]l0) =/ 0 ip§§(m2) [g - -  1 a a u p  I p V uv 

297 

°°°°(m2)a a } 1A(x:m'°`) dm2 . (0.8) p v °(0) 
I as Of course when the current 1S conserved the spectral function (ma ) 

vanishes identically . °(0) 

po'? 0 
the ( )KEi11en-»Leh1(n on representation 

o 2 ) We use the same method as in Sec. I to study the spectral func- 
tions (ma) and IPO (m2) . The four-dimensional Fourier transform 
of (C.7) is simply 

Ie '1k 'X(0l(x)  I8(0)I 0}d4.x = 271 e(k ) v H k ukv 
1? 

8 
O 

+ k k  

g _ 
INV 

as be - ) u v 0(0)( 
We introduce again a complete set of intermediate states in) in the 
left-hand side of Bq. (C.9) . We perform the X integration and obtain 
the general relation 

]1 (0.9) 

2T1 9(k0) II g + 
up 

0'8(s) + k  k (up 

(s) 

_ . 

k k u v QB 
s 9(1) EJ. v "col 

= s  (2wfmp - k) (0l1°'(0)ln)(nl1B(0)l0) n n u v 
n 

where as previously s = . -» 
In the centre-of-mass system k = 0 the tensor 

has only nonvanlshing space-space components (Ll 74 0 ,  
the tensor 
(u = 0 , v We 
spectral functions p (1)(5) and (s) 

as _ 1 4 _ .__ 9 , - P (1) 611 (k0li n(21'l') 64. (in 
n 

-ka 
gov ' (k!1}vk2 ) 

v 7* 0) whereas 
has only one non-vanishing time-time component 

355 then ab-ato compute independently the two 

"un 
S 

%=3 

*)Z l<0I1§(0)1n>l2 
/L=1 

(0.10) 
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as 
F) (0) (s) = Z 's  o); sn(2w)* mon -k)l(0l1"},(0)ln)l='° 

n 

(0.11) 

From Eq. (C. 10) and (C . 11) we conclude that the two spectral func- 
tions p (1)(s) and p(0)(s) ar.e non-negative 

p(1)(s) 2 0 P(0)(S) 2 0 

Of course , if one of the spectral functions is identically zero, the 
second one is definite positive . 
III. Equal-Time Commutators 

O . 1 ) The distribution A (x;m3) satisfies the integral representation 

1 
(2wf .Le 

-o - sin w t 
-° 1k°r k 

A (r.t:  ma) = ' LU 
k 

where x = (?,t) and wk =/-522+ m2 . 
Equation (C . 12) is used to prove the following properties of 

= 0 

da k 

the distribution A and its derivatives at time t 

(0.12) 

A(1r.0:m2)=0 

* a .,0, 3 = - - -  a0A(r in ) a t  
-| l 2 : BjBkA(r ,0,  m )  0 

25jA(r.0: m2) 

AG,0= ma) = 636) 

Baba A(I,0; ma) 

0 

0 (C.13) 

v 

2°) Let us go back to the Kéillen-Lehmann representation of the vacuum 
expectation value of the commutator of two components of a conserved 
current (C.3) 

<0l[1§ex), 1°"(0)]I 0> =I p (m2) [Q - B  ]IA(x;m2) dm" . 
0 UV 

a u v  

As a consequence of relations (C. 13) , 
expectation value of equal time 

we easily obtain the vacuum 
commutators3)' ) 

(0|u0$(?,0), ]0(0)] l0) 0 (0 | [1K< ' ,0 ) ] (0 ) ] |0>  (0.14) 
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<0|u0(?,0). 1',§(0)JI0) =%,,@i?>t0 
co, 

D (g J 
m dm" (0.15) 

o 3 ) If now la is a nonconsen/ed current, using the same method, we 
easily check that Eq. (c. 14) remains true and Eq. (C. 15) is simply 
replaced by5) 

(0l [ I0(r .0) .  1§(0)J l 0 )  =§51, ©@(?) 
lm 
0 

pau 
(1) ma + 

Imam m s )  
p 

(0) (0.16) 
dm2 . 

u"(?.0), ]I(0)] 

o . 4 ) The equal-time commutator of the time component wlth a space 
component of a current density has the minimal structure 

be v 0 6 r s°°8 L 6 r 0 J ( )  a ( ) +  1611, 30 C 
Y 

where co are the skew symmetric structure constants of the symmetry 
group I 

- The Schwinger term is defined as s°.5 . The vacuum expecta- 
tion value of the Schwinger term--or the Schwinger term itself if it is 
a c-number--is given by 

(1 (0lsao'|0) = C  

where the quantity Ca is computed from Eq. (C.15) for a conserved 
current 

m G 11 "InF I 
ma dmB (0.17) 

and from Eq. (C . 16) for a nonconserved current 

m as 
a z 9(1) 

c t o 
(1113) a 

l9(0)(M )] ma + 
dm2 (C.l8) 

In both cases , the positivity properties of the spectral functions 
force away CU' to be positive and therefore nonzero . 
IV. Time Ordered products 

o l ) The time ordered product of two current components is defined by 

I '  
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Tu':(><) JB (on e (XO u ) M) IB (0) + 9(-x ) In (0) I1(x) o v 

and we have to construct a Kéillen-Lehmann representation for the 
vacuum expectation value of the T product starting from the represen- 
tation (C .7) . We are then led to consider two distributions 

a) 
6(x0) A+(x:m2) - G(-x0) A-(x:m2) E AF(x;m2 ) 

It can be easily checked that the Feynman distribution A (am3) is 
solution of the Green equation associated to  the Klein-GrOrdon equa- 
tion and its four-dimensional Fourier transform is simply given by 

AF(k;m2 ) 
lim -1 

e:=>0+ k2+m2- ie  (0.19) 

b) 
9(x0) a A+(x;m2 ) a 

I J . V  S(-x ) auv A-(x:rn2 ) O 

A straightforward calculation, using in particular the relations (C. 13), 
gives the following equality between distributions 

e(xo)B a u p  A+(x:rn2 )=e (-xO)B a u v  A-(x: m 2 ) E a  1-1 a v x,m2 6 x . AF( )+9u09v0 4,( ) 

V 

We are now in a position to write the Kéillen-Lehmann representations) 
m 

_v 1 ( 0 I T a 0 0 = uc 2 -- - (](,<)]a( ))|  ) l 00 Q(1)(m ) [Q mea a ] 
GIG 

D (0) (m2 ) a no]  up u v  

m 

X iAF(x;rn2) dm2 + - Q  to  
1 
i log 64(X) 'r o PT1 ( 

M12 
my 

J 
+ p(0)(m2) dm2, 

(C.20) 

2°) The time-ordered product of two current components is covariant 
except at the point X = 0 where the product of distributions introduces 
singularities . 

The second term in the right-hand side of Eq . (c . 20) exhibits 
clearly such a feature . Moreover, the nor covariant part of the time- 
ordered product is proportional to the Schwinger term previously com- 
puted in Eq. (c.18). 

o . . . 3 ) The Fourier transform of the t1me-ordered product is usually 
defined by 
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A 1J` (0II(1':o<) 1'§(0»l0) d4x a -1k°x (k) e uv 

From Eqs . (C . 19) and (C .20) the expression of Al~N(k) is 

as . (1 
g pa uv uv (1) 

AG (k) =l° °° ii Ina 

0 k°+m2- ie 
p 

(m2) + kuku | (1) m 
f 

+ p(0)(m9 >I 
+ gpo gvo I0 

(ma ) P (1) + pQ'0l(m2)| dm2. (0.21) mE 

v. Electromagnetic Current 

O I 1 ) The electromagnetic current is a conserved vector cwrrent. The 
spectral function pem(s) is defined by an equation analogous to (C . 5 )  

oem(s) = _  1 
6lT QW Qsnw 64(Pn' k)(0l1 M(0)In)(nII§"(0)l0) .(c.2z) 

n . 

Comparing with Eq. (A.8) we obtain 
I 

pem(s) X p§M(s) 
n 

p§'"(s) Tr{n]  . 
The spectral function Pn (s) is than related to the total cross section 

em 

for e`*e" annihilation Into a final state n by using formula (A.7) in the 
one-photon exchange approximation 

em S2 + - s = e e n . Pn ( ) 16w3a2 Utot( ) 
=) (0.23) 

2°) The electromagnetic current can be decomposed into an isovector 
component and an isoscalar component disregarding other possibilities 

Is 
T u 

e in I u 
Y I u é + (0.24) 
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IE is the third component of the isotopic spin current 

I; is the hypercharge current . 
The equality (C.24) implies obviously the Gell-Mann-Nishijima 
relation for the charges: Q = la + QY but the reverse is not true. In 
the framework of SU(3) symmetry it is convenient to use the weights 
associated to particles of the adjoint representation. The U-spin 
scalar electromagnetic current is written as 

3 In, +1p.+»/3] em 1 8 
u 

3 I u 
8 In corresponds to an isoscalar particle (cp 8 meson) 

corresponds to an isovector particle (Po meson) 

In the lowest order approximation with respect to electromagnetic 
interactions isospln' invariance Can be used and the corresponding 
relations for the spectral functions are 

3 
pem(s) = pa (s) +§088(s)  (C.25) 

with 

= 33 _ sa + - = 
F) (s) - .  16waaa Otot(e e 1 1) 

88 _ SS" + - _ *' (s) ` 16rr%= °or(e e = I ' 0) (C.26) 

The first correction to Eq. (C .25) is given by interference terms 

Qem(s) = P (s) 988 L 
3 as + ( s ) + £ > 3 8 ( s ) +  (in 

83 
p 

3°) The Schwinger terms 03 and C8 or more precisely the vacuum 
expectation value of the Schwinger terms are immediately expressed 
as integrals over the total cross sections for e+e' annihilation into 
hadrons ` 
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1 
lfsnaaa 

oo 

I 2 
4m 

TT 

+ _ 
s 0tot(e e I = 1) ds => (0.27) 

oo 
8 c 3 

16H3G3 
=> 

+ _ t sotot(e e I =  0) ds 

9m2 
'IT 

(C.28) 

References 
1. G. Kéillen, I-Ielv. Phys. Acta Q, 417 (1952-). 
2 .  H. Lehmann, Nuovo Cimento , 342 (1954). 
3 .  T .  Goto and T .  Imamura, Prog.. Theor. Phys. _1UQ, 396 (1955). 
4 .  I. Schwinger, Phys. Rev. Letters Q, 296 (1959) . 
5 .  K .  Johnson, Nucl. Phys. L, 431 (1961). 
6 .  S .  Okubo, Nuovo Cirnento 44.A, 1015 (1966). 

SECTION D.  Vacuum Polarization 

I. Modification of the Photon Propagator 

( )_ 
fined 

o 1 ) The photon propagator is the vacuum expectation value of the 
time-ordered product of two components of the electromagnetic field 

In the energy momentum space the distribution DW (k) is 
by 

i f  D up (k) e -1k'x (0IT(A*(x) A ( 0 ) ) l  0) dux (D.1) 

In order to write a K§11en-Lehmann representation for Du (k) it is con- 
venient to first consider the vacuum expectation value of' the commuter - 
tor of two components of As (x) 

m 

( 0 I E A ( x ) ,  A (0)]I 0> 
V ==J` {u1(rn3)g 

0 uv +o0(M2)B a } 1 A(x;m3) alma - 
(D.2) I-l\) 

The two functions O' (mg) and o (rag) can be related to the spectral 
1 o 

function pem(m2) defined in Eq . (C .22) using a Yang-Feldman equa- 
tion for the interpolating field Au(x) 

A u(X) = Au(X) + e DR(X-Y) IM (y )  do y 
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where A0(x) is the free photon field and DR the retarded Green distri- 
bution éJss ociated to the Klein-Goriilnn equation with mass zero. The 
result has been obtained by Kellen 

01 (m2 ) -6 (ma) - e2 Demmgn2 ) 

O' 

em 
o w )  o mlé5'*)-uma) et 

no 

e2 " 
0 

em 
0 to (t) dt l (D.3) 

2) 

We then use the techniques of Part IV of Sec. C . to deduce from Eqs . 
(D. 2) and (D.3) the K§1len-Lehmann representation for the photon 
propagator DW (k) , 

g D (k) Liv 
UV k2 - i€  g iv 

- 
k k  u v  

k2*1€ 

oo 

ea 

0 

pem(mB ) dm" 
m4 KB + m3 - in ' 

(11.4) 

The first term in the right-hand side of Eq. (D.4) is the free field 
propagator and the second term is a gauge invariant correction . 

o . . . . 2 ) The modlflcatlon of the photon propagator is measured by the 
function 1T(s) defined by 

m 

| 1r(s) = e2 .f I) 
0 

emctl dt 
1" t - s - in: (D.5) 

Equation (D .4) is equivalently written as 
g 

D = 4 lJ.\J 
up s + je (k) El - STr(S)] 

k k  
u p  

s + i e  n(s) (D.6) 

where s = -kB . 
The hadronic contributions to 1T(s) are ass ociated to the total 

cross section for the electron-positron annihilation Into hadrons . 
From Eq. (0.23) we obtain 

m 
'IT(hadrons)(s) = _  .V 

0 

1 
1Te2 

=> 
.|. _ 

o (e e hadrons) tot . dt t - S - 1e 
(D.7) 

3O) One of the cleanest ways to measure the hadronic modification to 
the photon propagator is to look at the reaction 
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+ _ + _ 
e + e =» 1-1 + IJ, 

305 

The total cross section of the previous reaction is simply the product 
of the usual uncorrected cross section as calculated in electrodyna- 
mics by a vacuum polarization factor 

.|. ._ 
O tOt( e e 1 - S s 2 => TT( )| + 

Li ly = o  elect.(s) I (13.8) 

where 

Oelect . (s) 
farra2 

3 s 1 - 
2m2 u 

4m2 é ** l + s S 

II. Charge Renormalization 

o . 1 ) The photon propagator has been written in Sec. I in the general 
form 

up D ( k ) = g  1= ' (s )+kk G(s) . 
lJ.V U- 

The ratio of the name electric charge e to the observed electric charge 3 o e is defined by 

V 

a 
e o 

lim s g=am 
e 11111 s 

s=> 0 

The function F(s) is related to Tr(s) 
integral representation (D.5) we obtains) 

F(s) 

F(s) 
* 

by the Eq. (D.6) and using the 

6e 3 o 
oo 

= et ea I 
0 

9e%) 
t3 dt 

where by definition 

e 2 = € 2  + 6 e 2 o o 

o I . 2 ) The hadronic contributions to the charge renormalization are 
written as integrals involving the total cross section for electron- 
positron annihilation into hadrons 
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-5e 3 
D 

ea ( h a dr on s ) = 'IT + hadrons) dt .(D. 9) 
w 1 _ 

ea I0 01f0t(€ G => 

III. Hadronic: Contribution to the Muon Anomalous Magnetic Moment 

1°) 1 The general method to obtain the hadronic contributions to the 
muon anomalous magnetic moment au ='l`(gu - 2) due to vacuum polari- 
zation corrections is well known.4)' 5) The resulting expression 
corresponding to the class of Feynman diagrams shown on Fig. 1 

u p, 
Fig. 1 

+ 
=) hadrons) K a(hadrons) 

TT 

has the following structure 
m 1 _ 

G e e e2 10 tot( 

(2) the weight function I (t) is the second-order vertex function 

(2)(t) dt 

where 
given by the integral representation 

(13.10) 

( )  
K 2  (11) TT 

l 
j dx 

0~ 
X 3 ( 1 - X )  

x2 +7 ( l - x )  
p, 

(2) 

where Mu is the muon mass . 
2°) The explicit form of K (t) is known . 

(2) K (0) 
lJ- Tl' 

6),7) obvlously 
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( ) K 2  (t) 

and for t 2 4m a convenient parametrization is the following 

Log(1 + y) - Y +, 
Y3 

a 
TT 12 - y e )  + (1+y)2(1 + v 2 )  

+ 1 + y  
1 - y  y a L o g  Y 

where 

Y 

'B 

Q 

B (_ u 

( u 

n 

t 
m 

t 

4 
11 + 11 

2 
For large t ,  % )(t) goes to zero as 1/t. It then appears that the 
energy contributions to a*(hadrons) are depressed by the factor (t) 
and the integral (D.10) is dominated by the low values of t ,  in parti- 
cular those values of t where the electron-positron annihilation cross 
sections have been recently measured . 

wh 

References 
1. G.  Kellen, Helv. Phys. Acta Q, 417 (1952). 
2 .  L. M.  Brown and F .  Calogero, Phys. Rev. IQ, 653 (1960). 
3 .  N. Kroll, T .  D. Lee and B .  Zumino, Phys. Rev. 157, 1376 (1967). 
4 .  C .  Bouchiat and L. Michel, Inurn. Phys. Ra,d. L, 121 (1961). 
5 .  Loyal Durand III, Phys. Rev. , 441 (1962). 
6 .  S .  I. Brodsky and E.  de Rafael, Phys. Rev. 168, 1620 (1968). 
7 .  B. E.  Lautrup and E.  de Rafael, Phys. Rev. 174, 1835 (1968). 

SECTION E • High-Energy Behaviour of Electron-Positron Annihilation 
Cross Sections 

1 

I. Spectral Representations 

O . • 1 ) We have wrltten, in Secs. C and D, Integrals involving the total 
cross section for electron-positron annihilation into hadrons . 

a) The Schwinger term in Eq. (c. 17) 

m 

Gem (hadrons ) 1 
l 6na Ag .r 

0 
s crtot(s) ds (E.1) 
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b) The charge renormalization in Eq. (D.9) 

oo 6 eO" 
ea (hadrons) .l`00t0t(s) ds 

l 
N e 2  

(E-2) 

c) \-L meson anomalous magnetic moment in Eq. (D. 10) 

1 °° Km) 
Cr s ds e2 'to tot( ) (s) a (hadrons) u TT p, 

(3.3) 

2 where K )(s) behaves like 1/s for Jorge s .  
We must now examine the important problem of the conver- 

gence of the se integrals . 
2O) The quark model offers a possibility to oval rate the Schwinger 
terms and to study the high energy behaviour of the total cross sec- 
tion tot(e+ + e' = hadrons) . 

It has been shown by Gribov, Ioffe and Pomerantchuk that 
the Schwinger terms are infinite and that the expected high energy 
behaviour of the total cross section is 

1) 

lim s o (s) 
s => oo tot const . (E.4) 

e .g .  the same type of behaviour as for the 9+ + e- => 1-1+ + gi- total 
cross section in pure electrodynamics with only one photon exchanged. 

Therefore 
(E. 1) diverges linearly 
(E . 2) diverges logarithmically 
(E . 3) converges . 

30) Nevertheless it is possible to construct models where the result 
(E.4) is incorrect. 

In a simplified version of the gluon model, I-Iayot and Nieh 
conclude that the constant in Eq. (E.4) must be zero . 

In the algebra of field model of Kroll, Lee and Zumino where 
the electromagnetic current is identified to a sum of massive vector 
meson fields 

3) 

2) 

m 2  
a Jem = _ 

U f 2 
a=D»UJ»CP a 

pa 
u 
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the Schwinger term is simply given by 

Gem 
. . |  

me 
a 

f a 
a 

a=p,uJ,cp 

and its finiteness implies , for the total cross sections 
gent high-energy behaviour 

| a very strin- 

$2 lim U (5) 
s=>°° tot 0 (E.5) 

o .4  . . 4 ) Recently, Sakural ) speculating about the posslblllty of a free 
field behaviour of the current suggests the highly convergent limit 

lim a 
S = 0 s => oo otot(s) (12.6) 

II. Form Factors 

lo) Let us discuss now the asymptotic form of the cross section in a 
particular channel, for instance the 17+*1' channel. From the results 
of Sec. A .  , we have, in the one-photon exchange approximation, the 
following high-energy behaviour 

o tot 
- + - oust 

@ * + e  = n  + n ) = C S  l o n g  n 

Nothing is known about the behaviour of the 1T-meson electromagnetic 
form factor in the timehke region Int we can imagine two possible 
situations 

a) The Phragmen-LindelOf theorem works and the high-energy 
behaviour is the same in the timelike region and in the spacelike 
region. For instance such a situation can occur if a phase represen- 
tation can be used for Fu (see Sec. B, parts land III) . 

b) The Phragmen-LindelOf theorem does not work and the two 
high-energy behaviours are not related. For instance the l*°1'£ factor, 
in the spacelike region, decreases exponentially like e"a s , the 
spectral function in the tirnelike region has a very complicated oscil- 
lating structure and we retain only polynomial bounds for the form 
factor in the timelike region (see Sec. B-IV) . 

o . l 2 ) Of course, we do not know the h1gh-energy behavlour of the 'IT' 
meson electromagnetic form factor in the spacelike region. Let us 
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look, as a guide , at the nucleon electromagnetic form factors . From 
high-energy experiments, they decrease rapidly for large | s l  at least 
like | sl -1 , probably llke Isl -Q and perhaps more rapidly like [sl -e . 

Assuming analogous behaviour in the timelike region for the 
17-meson electromagnetic form factor we easily check that the rr+1r` 
contributions t o  integrals like (E. 1), (E. 2) and (E .3)  will be finite . 
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SECTION F: Decay of Vector Mesons Into A Lepton-Antilepton Palr 

I. One Level Vector Meson Dominance Model 

mediate unstable state (my 

1°) We consider the annihilation process 6+ + e- = F with a threshold 
SF- Let us try t o  formulate in a naive way the general consequences 
of the vector meson dominance model in this specific case. 

If a vector meson V(p.w.cp) is physically realizable as an inter- 
3 > SF) and if V can decay strongly in the 

state F ,  then the reaction e*le' =° F is dominated in the neighbourhood 
of s = my" by the v meson contribution according to the chain 

+ - 
e + e  =>V=>].!' 

and described by the diagram 

e 

+ 
e 

A 
\ 

/ 
/ 

\ 

/ 

\ 

/ 

» 
j@ 

v 

Fig. 1 

F 
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20) At the V meson mass the total cross section is factorized as 
.|. - _ l 2Tr 1"(v-6 e ) I'(v==1=) 

` Ra F r . mv v v 
( + +  - G e e tot 

=:~ v = p )  2 s m  V 
(F.1) 

Formula (F.l) is used to extract from experiment the partial decay 
widths l`(V = e+e`) . 

by I/S 

o 3 ) The w meson and the cp meson can be strongly coupled to the 
same state, for instance the 71+rr 'no state . But all interferences 
between the um-meson and the op-meson contributions are always 
extremely small and can be neglected. More generally the V-meson 
contribution is important only in a range of energy approzdmately 
defined - mol < 
domains 

FV and it is clear in particular that the two 

Ifs m 
(JJ IslH Ll) 

I I f s -  and m <I` 
up cp 

do not overlap . 
4°) The situation is a priori different for the p meson and the w meson 
where the mass inLU belongs to  the range l/'s - mol < To . If the f1na1 
state is a pure hadronic state like n-*ln", n+n'n0 the total isotopic 
spin is well defined--using the additional information IPC = 1"  -- 
and therefore also the G parity. The p meson and the Ll) meson having 
opposite values of the G parity, the p-Lu interference will occur only via 
electromagnetic interactions and formula (l__'.l) holds at the lowest 
order with respect to electromagnetic interactions . 
5°) If however the final state contains in addition to hadrons , photons 
or leptons, for instance a n°y or a to state , the G parity of the final 
state is no more defined, the p-meson and the uJ-meson contributions 
occur on the same footing and the p-w interference can be important . 

The mixing effects are disregarded in what follows and will 
be studied in the next part . 
II . o The o 

+ _  
= e e  Decay 

O _ 
1 ) The final state F is a 17+Tr palr. At the total energy s 
formula (F. 1) is simply 

m e  
p 
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1" 
p 
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m B 

0 
12TT 

+ _ - 
otot(e + e  +TT ) . (F.2) =>TI"+ 

s m  2 
p 

o 2 ) In the Or say experiment the measured cross section at s 
i s )  

m a  
p 

( + -  e e Gtot 
.|_ _ 

=a 7T TT ) s=m 2 =  (1.57e= 0.21) 10-ao 0m2. 

p 

The best 
(see Sec» 

fit (3 the n-meson electromagnetic form factor has given 
B) 

M o = (772 1 6) MeV 

from which we deduce , using Eq. (F. 2) 

-D + 
e e  F' ' F = (6.37 i 0.85) 10-6 
p 

l` = (113 :b 8) MeV 
p 

and 

I`(p=°e 
+ 6-) (7 .20¢  0.92) key (F.3) 

l 

III . 
+ _ 

The up => e e Decay 

o l -I o 1 ) The final state F i s  1T+rT IT . At the total energy s = mea formula 
(F. 1) becomes 

. | . _  
I'(m=>8 e ) 

1" w 

F H mm" + _ + _ O 

I`(us=>Tf*ff'w°) E71 Otot(e + e  =>71 +1T +II'l` )5=mw2 ' 

(F.4) 

783 MeV and o I . 2 ) In the Or say experiment the w mass is faxed to my 
the w total width is found to b e )  

F w = (16.2 :|: 3.2)  MeV 

2 e .g.  larger than the world data average value of ) 

l" w = ( l 2 . 2 d :  1.3) MeV 
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Including the possibility of non-resonating background the Or say 
people choose the world data 
and the measured cross section at s = is 

width as given by the averil of the 
my2 

+ - 
gtot(e e Sn) = 

s=m 2 
II.) 

(1 .65¢ 0.31) 10--aO cm8 

Ol I 
| 

1 

3 ) The branching ratlo I`(w 
value2) 

=> 311) /re is given by the world average 

LU F( l` 3 " ) = 0 . 9 0 7 i  0.010 
UJ 

Using Eq. (F.4) we obtain 

1"luJ => 
+ e 

e- 
r ) = ( 7 . 7 ¢ 1 . 4 ) 1 0 - 5  

U.l 

and 

I`(UJ => 
.|. _ 

e e ) (0.94 4 0.18) key (p.5) 

-I.._ 
IV. The¢9=>e@ Decay 

O + _ o-o l ) The final state F can be K K , K K 
energy s = m 2 , formula (F. 1) becomes 

(D 

.|. _ 
or or 'IT 'IT 0 1 At the total 

+ 
l ` {m=ee  _ _1* . 

up 

"2 
= 

- 1 1  
I 

II 

2°) In the Or say experiment the K°1E° and the 11+17 -no modes of the up 
meson were detected and identified by looking at a 7r+!" pair in 
various kinematical situations. An experiment for the K"K" mode is 
in progress . | u 

=> 9 -  F )S=ma. (F .6 )  
cp 

value m = 
this exéerimentl) 

The up-meson mass has been taken at its world data average 
1019.3 MeV and the r~-meson wldth has been measured by 

l` = (4 .2  i 0.9)  MeV . 
cp 

. o-o . 1) The cross section at K K final state is 

+ 
otot(e e' 

it new 
(1.71 :l: 0.28) 10*o cm" . 
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o + -» o -o 3 } The §*:14omparison of the total cross sections for e + e =:~ K + K 
5 = 

dominance model, the ratio of the m o l  decay widths of the q; meson 
into KOKO and H +Tr"rr0. The branching ratio obtained in the Or say 
experiment 181) 

M. GOURDIN 

1`(=¢ 
l`((r) 

) = 0 . 6 6 7 i 0 . 1 5 7  
+ 

=» Tl' TT = mo) (PJ) 

2 
in disagreement with the value 0.354 deduced from other experiments.) 

°) 11 
IQ the ,.'i*Fil@i 

E e his 
the !at1o 

'Ecp=° 

al 

I<°E° andean 
hand, assuming isotopic spin invariance for the 

=~ K+K' and taking into account 
corrections due to  the Ko - K+ mass difference and 
tic corrections we find a theoretical prediction for 
rtial-decay widths for up =o KoR" and up => K+K' 3) 

ram => 1<*+1<') 
Ffqp :r I(0R0) 

t h *  1.60 (F.8) 

again in disagreement with the average value 1 .21  deduced from 
actual experiments . 

_ .;- | O | '-»4 _ i -  

5 ) Assumlng that the other decay modes o f  the cp meson are small , 
one can deduce from Eqs . (F.7) and (F. 8) the three branching ratios 
for the main decay modes 

e 

.|. _ 
cp =>K K 
¢9=>K0K0 
cp=>1T+TT'TT -111. 

Using Eq. (F.6) we obtain 

I`(co => e+e 
1" 

cp 
(3 .98¢  0.62)  10-4 

and 

+ = e e r(¢ ') = (1 ,67¢ 0.25) key (F.9) 
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SECTION G. 
I 

Formalism for the Vector Meson Dominance Model 
Including Mixing 

Mixing Problem I. 

1o) The precise problem of interest is the p-w mixing due to electro- 
magnetic interactions but such a problem can be formulated in quite 
a more general way, as follows . 

We use a Hamiltonian language and we divide the total Hamil- 
tonian H into two parts 

m II Am
 + 

|
-
|
m

 

Let us first consider the Hamiltonian Ho as the dominant part. We 
assume that there exists , in some sense, discrete states lm) stable 
or unstable , related to Ho and having the same quantum numbers as 
far as the total Hamiltonian H is concerned. These states lm) are 
distinguished, in Ho, by a conservation law associated to a particular 
invariance property, L ,  of Ho as  for instance: 

SU(3) invariance 
hypercharge Y 

isotopic spin invariance I 
PC conservation 

Therefore, in H lm) are mutually orthogonal and in parti- , the states 
cular their relative phases are not observable. The states m) span 
a subspace e of the Hilbert space of the physical states associated 
to H . o 

2°) Now what happens when the perturbation HI is introduced? First 
the conservation law L is no more valid and we have a violation of the 
previous invariance . It follows that the states lm) can now mix and 
the physical states correspond to well defined superpositions of the 
I m) 's  . 

However the mixing effects will be important only for those 
states such that their mass differences are small compared to their 
masses . We give some examples of mixing in Table I. 
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II. General Method 

1°) There exist essentially two approaches of the mixing of almost 
degenerate articles. The first one is based on the Wigner- 
Weisskopfl perturbation theory and is essentially a time-dependent 
treatment of unstable particles. It has been for instance success- 
fully applied to the KoK'o problem by Lee , Oehme and Yang.2) Analo- 
gous techniques have been used by Bernstein and Feinberg3) for the 
ug-p electromagnetic mixing but some difficulties are due to the 
unstable character of the states before mixing and to a possible varia- 
tion of the p width with the energy . 
2o) 
matrix and has been proposed by Iacob and Sachs . The unstable 
particles are now considered as resonances in a scattering problem . 
An application of this method has been made by Sachs5} to the KoK-0 
mixing and by Harte and Sachse) to the problem of the neutral vector 
meson mixing . 

The second method is based on the properties43f the propagator 

3°) We use the propagator method because we are first interested in 
the scattering aspect. Moreover, the time-dependent formalism has 
no direct relation with experiment for particles decaying strongly with 
a lifetime of the order 10-Bl - 10*2s and clearly the time distribution 
of the decay products cannot be reached with the actual experimental 
techniques . 

o I I . 4 ) The formalism is presented here for vector mesons but it can be 
obviously adapted to  particles having different spins . 

Let us write the vector meson propagator in the form 

A N D )  = kw F(s) + p p v  G(s) 

where p2 + s=0. In all the applications, we consider the vector meson 
is coupled to a conserved vector current so that only the part F(s) will 
contribute . . 

The function F(s) is the boundary value of an analytic function 
F(Z): it is convenient to represent it in the forms 

F(z) = [w(z) - z I] (G-1) 

In the space S ,  the function W(Z) is a matrix and I is the unit operator . 
The physical particles are associated to the poles of the propa- 

gator located in the second sheet near the physical region. The real 
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part and the imaginary one of such a pole Za are related to the mass 
and the width of the physical particle and the Za's are solutions of 
the equation 

det [W(Za) .- I] Z 0 a (G-2) 

We assume the existence of /L such poles 1f'»f, is the dimension of the 
space e. 

5°) The practical way to resolve Eq. (G.2) is to  diagonalize the 
matrix W(Z) defining eigenstates a(Z) > , b(Z) > , . . . which are 
associated to the physical particles at the points Za, Zn, . . . . Of 
course, such a mixing is energy dependent but we have a control 
about such a dependence . 
6o) The precise form of W(Z) is arbitrary at the beginning. The uni- 
tar1ty of the S matrix will impose restrictions in a vector meson domi- 
nance model . 
III ! Normal Form of the Propagator 

o . . I 1 ) We start with an orthonormal basis | m) defined by the unper- 
turbed Hamiltonian Ho in the finite dimensional subspace 6 (in prac- 
tice the dimension of 8 will be 2 or 3) . The characteristic relations 
are 

(mln) = 6 Mb I =  Z ml{ml 

m 
(G.3) 

where I is the projector on the subspace S ,  e . g .  the unit operator in 
e . In the absence of the perturbation HI the matrix function W(Z) has 
a diagonal representation in the previous basis . 

Introducing now the perturbation HI we first have a slight 
modification of the diagonal matrix elements (mIW(Z)l in) and secondly 
the appearance of nondiagonal ma1:1x elements (InlW(2'.)1 n) propor- 
t1ona1 to HI . 

2°) Let us now assume that for any given Z ,  at least in the neigh- 
bourhood of the physical region, W(Z) can be brought in a diagonal 
form by a linear transformation in e represented by a complex regular 
matrix C(Z) . 

The right eigenvectors la(Z)) are defined by the homogeneous 
equation 
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Ewtzl w aHz) IJ Ia(z)) 0 (G.4) 

where Wa (Z) is the corresponding eigenvalue function. The 11near 
transformation is then written 

0 
la(z)) = 2 Cam(Z)lm) (G.5l 

m 

The hermitian conjugate vectors (a(Z)l are not in general left eigen- 
vectors of w(z because the matrix C(Z) is not unitary. These left 
eigenvectors (a(Z)l defined by the homogeneous equation 

(a"(2)l Ew(z) - watz) I] = 0 

are related to the original basis (ml by the inverse linear transforma- 
t1on 0-1 (z) 

(G.6) 

(5(z)l (ml C'ma(ZJ (G.7) 

m 

whereas the vectors (a(Z)l are related to the original basis by the 
transformation C*(Z) . 

O 
3 ) The bases \a(Z)) and la(Z)) are not orthogonal bases and we can 
briefly sketch some of the most useful properties . Using the matrix 
D(z) defined by 

D(z) = c(z) c*(z) 

we easily obtain from the definitions (G.5) and (G.7) the following 
relations: 

(b(z)la(z)) = Dab(Z) 

<"b(Z)l a(Z)) 6 

(b(z)la(z)) = D-ab(z) 

a b = ( b ® H 5 @ » .  (G.8) 

In this way the operator I can be decomposed into 
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I I b(7) l a ( Z <  

2 Db;'Z' 
I 2 nba(z)l§(z))(B(z)| 

a , b  a,b 
_l .  I 

I 2 la(z))(§(z)l I i 

ZIp(Z))(a(Z)l I (G.9) 
a a 

Let us remark that the operators la(Z)){a(Z)l are idempotent, ortho- 
gonal two by two but not self-adjoint and therefore they are not 
projectors . 

consider the interesting case of two dlmenslons'. In order 
the notation we forget for the moment the Z dependence . 

p -q 
C 

r S r 
We are free to use the normalization conditions (ala) = (blb) = 1 or 

lpl2 +lqI2 = 1  1,1a I I2  = l  (G.l0) 

so  that the matrix D is simply written as 

+ 

1 p e r - q s  

II 
D

 

p i - q s  1 

We are also free to make a choice of phases: p and S real, the rela- 
tive phase between ve ctors of the original basis being arbitrary before 
mixing. Therefore we have two independent complex mixing 
parameters 

2 e r 
S 

(G.11) 

In the orthonormal basis W(Z) is represented by a 2 x 2 matrix 

W1 2 

W22 

W1 1 
W o = 

W2 1 

The diagonal form 
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W a W = 
D 0 

0 

W D 

is obtained after applying the linear transformation C 
H 

WD C W  C-1 o 

We can then compute the two mixing parameters €1 , 62 and the two 
eigenvalues Wa, We in terms of the Wlj's 

e t  : _  

W11 

W 1 3  

-r We 2 

l 

as- -g-.., 

w- _ 
-l 1 

6 1  : _  

W11 

WE 1 

We 2 

2 
4W1=W21 

1 + I 1  
(V/11"Waa)2 

+ 

W a =é(N11'*IWaa)+?(N11"W22) + I 1 

I 

) II )'*(W. 

2 2  1+W 
=%<W" 

Wb (G.12) 

o I . 5 ) If time-reversal invariance holds , the matrix W(Z) IS symmetric in 
the original basis6) 

(mIW(Z)ln) = (nlw(zllm) 

and we obtal n interesting constraints on the linear transformation 
C(Z) . For instance, in the two dimensional case we have the two 
relations r = q s = p (see Eqs. (G. 12)) 

p -q 
C = 

q p 

and the mixing is described by only one mixing parameter 

(G.13) 

C 1 6 2  e (G.l4) 
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As a second consequence, the hermitian product (bl a) becomes 
purely imaginary 

( b a )  qp pq -21(l | e | 3 ) I m e  + (G.15) 

Iv. T matrix Amplitude and Vector Mason Dominance Model 

o 
1 ) 

june decay amplitude for a vector meson V of 
energy mlamentufh p and polarization \ into a final state F .  
Lorentz covariance we have II 

From 

(p|T|vm0»)) = a u (P) e"(p.m 
I 

(G.l6) 

The four vi 
the basis 

where the index m refers to the type of vector meson . 
The polarization four vec tor  e ( p A )  is submitted to the sup- 

plementary conditio II 

s lh en orthogonal to pa and can be expanded on 
on vectors 

am u(1=) a.)\.(].:') 

1k 

* 
e u(pA) 

(G.17) 

and the amplitude ax (F) is just the amplitude we start with 

F T = am F ( | Ivm0~) ( ) . (G.18) 

amplitudes a (F) 
I 

The can be coNsidered as the components of a vector 
in the three dimensional space of the polarizations . 
2o) Decay width 

lr 

v(p , ) )  

Fig. 1 

F 
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We denote by Pa the energy momentum four vector of a particle a of 
the final state'E; The total energy momentum is defined as 

II l*-I 
re 

PF 
U 

11- 

N a 
(21T)3 

. p . 
a I I '  

CL E F -_. 

The summation operation SF introduced in Sec. A has the explicit form 

p a 

a E 

do 

b e ?  po1 F ct € F 

where the Na's are the normalization constants . 
The partial width for the decay Vm => F is easily computed to be 

1 - _ I"(Vm p) 1 :Q _ 
my 6 ZS?(2Tf)4'64(P? - p)laI(F) l2 

X 

(G.19) 

rafairias liilni 

30) Scattering Amplitude 
We now :study the scattering amplitude from a state I to a state 

F , in the veoto! me:I" """nance model, when both I and F are possi- 
ble decaying' so vector meson V.  . 

The T tide corresponding to the diagram of Fig. 2 

I V 

Fig. 2 

F 

is given by 

(PI TI I) Q a w )  (vIA**"(p)ln) a§(n* 
m,n 

We assume the off-masS-shell decay amplitudes- a to be orthogonal 
to Pa 
if the currents associated to vector mesons are conserved. Therefore 
only the gm part of the propagator contributes 

at least for one of the two states I or F .  Such a property is true 
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(1=ITII) 

II . m  a vn(I)* . (G.20) 

m,n 

We then can expand the decay amplitudes a(F) and a(I) following 
equations (G . 17) and using the orthonormality property of the polari- 
zat1on vectors 

6 ( p . ) )  e t ( pA ' )  

( p I T  II) = can ('"!w(s) 

m,n \ 

= 6 la I 

we write the transition matrix element in the form 
n * 

n a I _ sI I ) ( ) (G.21) 

Let us now introduce the eigenvectors of W and use the completeness 
relation (G.9) | 

I =§ la> <51 
a 

I 

(MIW(s) - sI in) =Z ( m a )  
a 

1 
Wa(S) s ( a m )  . 

We then define two new decay amplitudes 

a _ ax -E (rasla) aM 
\ 

by 

m 

as 
\ 

m 

=§ ax ( m l )  

We finally obtain a third expression for the transition matrix element 

5 _ s ax (I)* . 1 
an (FJoa (s) 

L *  

(G.22) 
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40) Resonant cross section 
We consider the process A + B =° F dominated by the vector 

mesons V in the dlrect channel. We identify the transition amplitude 
with its resonant part as given in Eq. (G.22) by the vector meson 
dominance model. 

p A 
V F 

p B Fig. 3 

The square of the total energy in the centre-of-mass system is called 
as usual s 

s = -(pA + pa)2 _ a  
Pl' 

The centre-of-mass momentum in the initial state is given by 

- m - m 5\ ( A B). 
KAB(S) =é [= (mA + mi]1 

s 

S -Q 

and the invariant effective phase space is defined by 

co Pa 
E = 

a 
TT 

a 61=' 
do PF dLF 

The differential cross section for the process A + B = (V) =° F is then 
computed to be 

do (A+B=>v=-F) 
dL§F 

S 1 NANB 
Is KAB(S) (2sA+1)(25B+l) 

(217)"' TT 
r E F  

N a 
(21T)3 po"1 arm 

F 

ax (F) an IP-BJ* 
W a(s) B I a (G.23) 
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v. Unltarity Constraints 

o . • 1 ) The unitarity property of the S matrix implles for the transition 
matrix element the following relation 

(F IT  - T*II) = i Zsn(2n)* 64(DF - in) (pIT*ln) (nl Tl i )  . (G.24) 
n 

We apply this general unitarily rel; 
the transition matrix element is given by 1ts-G 
model expression (G.21) 

a,rtlcular case where 
For mes on dominance 

(Fl'III) 

II Z Z a\(F) aaM* <M1w(5)1 - sI In) 
m,n  K 

(1=IT*II) = E m a m *  ('*'kw*($ ln> SI 
m,n K 

O . I 2 ) Let us first compute the left-hand s de of the unitarlty relation 

(F IT  - T*II) =§ a x (  a}(I)* <mlW<S; _ sI - W s ;  in) 

m,n X 
- sI 

l-
l 

Consider the matrix identity 

[W(s)-sI] -1 - [W*(s)-sI] -1 =- NEW*(s)-sI] -1 [W*(s)-W(s)] EW(S)-SI] -1 

and use the two equivalent decompositions of the identity (G. 9) 

ZIP)(b l  Z l a ) ( § l  

b 

[I I-
I II 

Taking into account the eigenvU 
obtain 

nw(s)-s11-*-rw*(s)-sl-1~ = 2 [b ) (a l  
a ,b  

15
 

(G.4) and (G.6) we 

and finally after summation over the indices m and n 
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( F l ' r - T * l 1 )  
-- Wa(s)] 

S]l:Wa(S) - s] 

(bla) kw (s) 

2 "i lFla)(Il*Lwb(s)-b 
a,b 7~. 

.(G.25) 

o . . 3 ) Let us now compute the right-hand side of the unitarily relatlon 
retaining only, by consistency, intermediate states n of the. type I 
or F.  

RHS = 128n 

n 
co 64.(PF'Pn) Q 

" I . .  m,n 
p.q 

\ 
u 

(F) aP*(n) &8(n) sum* x x 

'.| .. 51 

("'kw*{s) - SI lp) (qIW($) - sI In) 

Again we use the two forms of the relation (G. 9) 

_ • 4 _ B 5 * b a 
RHS -.2sn(2Tn 64(PF in) Q Q a w )  au(1) on* al-1(n) 

n a ,b Lu 
x 

[Wb(s) 
1 

Si|[Wa(S) s] 
(G.26) 

o I 4 . )  The two expressions (G.25)and (G.26) must be equal for all 
initial states I and all final states F .  It follows immediately the 
unitarily constraints on the vector meson propagator W(s) 

iamb(S)-Wa(S)](b(S)la(s)> 
1 
6 Sn(2TT)"!'64 (pn-p) axbun* an (n) 

n X 

For the diagonal elements where the normalization ( a l  a) 
chosen, formula (G.27) reduces to 

(G.27) 
1 has been 

lm Wa(s) (s) =§0aN(s) 0 a (G.28) 

n 
with 

O' N a(s) = S (2n)464 (pn-p) la.(n)l2 n 
K 
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Comparing this with the expression (G. 19) for the partial decay width 
I`(a ==» n) we deduce 

1 11 2 
I`(Va =a n ) = M a cry(ma) (G.29) 

For the nondiagonal elements a if b we obtain a Bell-Steinberger7) 
type relation . 

o . 5 ) Equivalent constraints can be obtained proceeding in the original 
orthogonal. They are simply written as 

_1 
21 

=_1 
6 

n 
(p[W*(s)-W(s)lq) Z Sn(2rr)"'64 (pn-D) Q a ( n ) *  axq(n) . (G-30) 

x 

It is then convenient to decompose the matrix W(s) Into its hermitian 
and skew hermitian parts W E R - 1 E where both R and Z: are hermitian 
matrices . The unitarily constraints (G.30) determine the matrix E 

1 
6 (p_I2 |q)  Zsnwwm* 6».(pn-rv); aim* a§(n) 

n K 

VI. Mass and width Parameters 

o . 1 ) Let us split the functlon Wa (s) for s real in the physical region, 
Into its real and imaginary parts 

w a s )  = 06(5) = i oa(s) - 
The imaginary part ca (s) is determined by the unitarily condition 
(G.28) but the real part pa(s) is free up to  now. 
o 2 ) In order to obtain information about Pa (s) we have to express the 

existence of a pole for the propagator located in the second sheet at 
a point Za defined by the condition (G.2) which reduces here to 

Z a Wa(za) 

We define Za = Xa - 1 ya both xa ald 
physically acceptance the pole Za . I 

(G.31) 

and in order to be 
two conditions 
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x . "  0 a Ya>  
E << 1 
X a 

The physical interpretation of Za in terms of mass 
resonance is naturally given by 

Za 
Fa 2 

' .  2\ 

and width of the I 

or 

2 x - m  I 1 - i  a a H] F a = m  l` 
M a Ya a a (G.32) 

o 3 ) On the other hand, the mass and the width of the resonance are 
usually computed from the relations 

3 = my 
Ma Pa( a) m l` a a ca (ma ) (G.33) 

and we want to relate the two definitions of m and T calculating Z 
from the conditions (G.33). a 

We first expand Wa (Za) around the point ma retaining only 
first-order terms 

Wa(za) * We(ma) + (Za - ma) Wa(ma) . 

Using the equality (G . 
Wa (ma) we obtain the a 

Z a 

ii: FIG conditions (G.33) for 

m2 - i m  a a l` a 1 al.  

1 
Wa 'mi ) (G.34) 

Lpa (s) - S is then expanded around the polnt s 

a l  

a m a 

l)a(s) - s = my _ 
a s m2 + ( a  3)2 T"a(8) 

I 

s = m 2  The 
and its first derivative Ta(S) are assumed to be regular . first derivative of pa (s) vanishes at S = rn; 
(G.343 becomes 
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Z a = m 2 - i m  l` a a a 
1 

1 +i0 '5(M5)  
(G.3s) 

so that 

x a m 2 l l -  a 

:ru 

Ya l` a m a 1 
1 + I 3 

UP2 (ma) 
J o . 4 ) Let us evaluate the correctlon factor in the case of the p meson . 

Using ' 

m an 770 MeV 
p 

l` a-110 MeV 
p 

we obtain l l 1  T:1!l;ll 

X 
p 

in: m2 x 0.965 
p 

y ° " m 1 " X 0 . 9 6 9  
p p p  

VH. Factorization 

_ 
o 

2 ) 
rares 
is no 

I 

I 
I 

1°) For the final states F =TT+n', n+n -no, etc. . . the matrix 
element (FI TI V) has only one Lorentz covariant because of the con- 
servation of parity. Therefore the amplitude aly(F) can be factorized 
into the product of a dynamical function am (F) by a coupling constant LK; . In practice ftp is assumed to be energy independent at least in 
t neighbourhood of tFH"H""\ '""""` 

TToy, no 

I 
up 

1 1  

The same property holds for a lepton-antilepton state in the one- 
photon exchange model. 

a property is 
e , for instance, To' 'y 

riot genera land there 

o 1 3 ) Let us now deflne the function 
l ` 1 

'yF(S) =€ SF(27T)4 6 
L-u 

I 

(G.36) 

exist some 
where the factorization 

(G.37) 
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For those states where the factorization relation (G.36) is true the 
partial decay width is simply given by l,I 

I`(V =>F) a m a 
(G_38) 

On the other hand, the unitarily relation (G.27) is strongly dominated 
by factorizable states and we can write 

1 
21 lwb(s) - Wa (s)] (b(s)l s(s)) =§.'f'b? far YF(S) 

F 

(G.39) 

I 1 

the sum; being extended to factorizable states only . 
o F 

4 ) We compute the total cross section for the process 

II' 'al | -  

where 

only the 

density 

suing-lln 

I-ll1,ql1.1 . l l e l v  
nuns! 

(G.23) and we sketch 

intermediate step, the 

(0n)M . 
a (n) a ,  (n)* 

= pol n 

Z Z 'WI 
pol n u 

(G.40) 

It is trivial to check the two characteristic properties 
* 

Pn Pn T r p n = l  

I 

and for vector mes on the average value over angles gives 

( Tr [QI  OF] ) 
l 
3 

b) The dynamical functions y(s) for the states F and AB are 
given from Eq. (G.37) by the explicit expressions 
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n YF(S) = ( 2 w ) *  

a E F 

N or 
(27T )3 tdLF 2 2 

polF \ 
|a)\(F)|8 

(s) K 1 AB S = -  
YAB( ) Sn NA NB fs 

pol AB 

2 l a ) p B ) l a  
r 

Combining now all these results we obtaln the final form 

0'totlA-|-B=V=>t') 121rT 
(2SA+l)(2SB'l'1) 

\ /A8()  YF(S) 

K;B(5) 'Z 
f .. 
aF far 12 

a Wa(s) - s ' 

(G.41) 

VIII. Electron-Positron Annihilation 

o . 1 ) Let the 1mltla1 state be an electron-positron pair. The matrix 
element for the vector meson decay into a lepton-antilepton pair 

-(p-0-) / L 

I 

V(P,1) 1 I 
\ 

`r 
\ 

\ 

eau 
0 _ 

Fig. 4 L+(p+0+) 
has the general structure due to Lorentz covariance arid parity 
conservation 

+ _ 
(L L ITlva)) = (p _)[he(s)Y + i hV(s)(p+-p_)u]vo (p+)eU(p,)) 

+ 
where h1 and h2 are two arbitrary form factors . 

It is usual to compute h1 and h2 in the one-photon exchange 
approximation (algebra of field model) L- 

/ 

I 

v 
.r 

71 
l , | 4 

/ 
/ 

Y / 

\ l 
\ 

\ 

\ 
\ 

r- 
Fig. 5 + 

L 
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and the result is 
me 

= _ _V 
CV s hV(s) h 2 ( 5 ) = 0  

v In such a model only one invariant function 111 (s) occurs and we can 
apply the factorization procedure . The reduced amplitude is written 
as 

and the function 
the lepton, Yr, +L ' (s ) antilepton and 

Y + - ( s )  

2 _ e - - - u 
S 0' _ 

+ ' u a L JL ( ) (p_) V e YU C+(p+) (pA) 

is easily calculated after summation over 
vector meson polarizations 

2 s (1 + 2m 
s s 

4nq8 1 
3 s 

nB )(1- ) 
where m is the lepton mass. We always have m2 /s < 

terms my /$3 , + - ( S )  turns out to be independent dl£'ie 

al. Ill .in - I I  

Gptii :amass 

Y + - ( S )  
4TT G8 

3 
_ 1 
s (G.42) 

_,|.I- 

The radiative decay width I`(Va =) UL ̀) is immediately computed to be 

m a 
If I" a 

r(va => /L+/c,') 4Tr 62 
3 (G.43) 3.._ I 

1 ,I 
Using now the experimental result quoted in Section F for these radia- 
t1ve decays, we deduce from formula (G.43) the corresponding values 
for the coupling constants 

f a l , l  
4TT 

1.90 i 0 . 2 5  
lf,,,l2 
4u 14.8 :l: 2 . 8  

£ 3  I I  
nu 1l .0 d: 1.6 

Finally, we compute the total cross section for electron-positron 
annihilation into a final state F in the vector meson dominance VMD 
model. We have SA = so =% and, neglecting again the electron mass , 
the C.M. momentum is simply K Combining Eqs . (G.4l) 
and (G.42) the result is 

ee(3) =,/'5/2, 
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+ - 
°tot(e + e  =>V=>F) 

-|- - 
3°) Final state or n . _ 

The matfibe element fd' th'e delay bf a vector me bn V iriia' 11"n 
pair 

/ 
/ 

/ 
I 

T1+(D+) 

V(p,>~) l» 

Fig. 6 

- ( p )  

I 

* J  

I. 

1 

structure due to Lorentz covariance and parity 
| . . .. . N  ' I -  . 4 

The summation over I 

:air . 
§£V'ITrr(P+ 9U(Pr7l) -p Q)! 

The dynamical amplitude ax (or `11) is simply written 

1 07*w') = (p - .a* -_,_A 4- 
pblariZations is straightforward 

p ll)u e"(p.m 

1 

' I  

I 

Z la7»(rr+1T')l2 =.(P+ 
x 

.. p _)2 = _ s 4m2 
TT 4% (s) 

The function Yrm (s) is glven by 

I 1 

YTr77 (s) "§`71.'=*' 
/s (G.45) 

and' the expression of tHe déézay wldth is simply 
I . 

FW=q+n-0) 2 
3 

f l,m,l= 
am 

we) ma (G.-46) 

Combining equations (G.44) and (G.45) we obtain the total cross sec- 
tion for the process e++ e"=° n++7T` in the VMD model approximation 
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+ - + - 
otot(e +e =°V=)n +Tr ) 

3/2 

2 I ma 
a 

a 

f 
aTm 
g.. 
a 

la 1 
W a(s) - S 

(GJ47) 

It is interesting to compare Eq. (G.47) with the general structure of 
the e+ + e'  => 11+ + ii total cross section due t o  the one-photon ex- 
change approximation and given in Eq . (A. 11) of Section A .  We then 
obtain the VMD model pf the TT form factor including electromagnetic 
mixing effects ,, 

F TT(S) 
ma 

._J a 
a 

f 
a1TTr 
5- 
a 

1 
Wa(s) - s (G.48) 

o 

Of course the sum is restricted here to  a = p and w . 
a 

. + - O 4°) F1na1 state Tr n IT 
+ _ The matrix element for the decay of a vector meson V into 

'IT IT ii PI (mass Ml ) / 
/ 

I 
/' 

/ 

V(p,)L) l -PA (Mass ma) 

Fig. 7 
"*-. 

"._L 

'\ 
"-. Pa (mass ma) 

has the general structure due to Lorentz covariance and parity 
conservation 

+ 
(17 or 

P1 Pg 

¥3n($) 3 

o 
. Ps 

) 
= -p-- P Ifs - 

simply written £5 
p I CT 

u(p M( I 

\) p 
- o - u . Tl' T " f e ,K --- Q So E E I Iv(m> V3Tr euvpo (p ) J M2 ( 1 2) 

where the C .M .  energy variables are defined by E1 
The dynamical amplitude a (3Tf) is 

PI 'V .Pe 
Zin] = * 

al( 6l-W008 U11 Me 

and the calculation of the function y31T(s) is 

= 1 1 3 S . [i§(s: E E2)`|3lp Xp2la dE dE 

(G.49) 

where the domain of integration D(s) is defined by the condition that 
pl , p2 , Pa are sides of a triangle . 

u II _ 
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TIP an 

r(v= 31T) 

actor meson V takes then the form 

off 2 l¢(rn\,:E1B2)I2 
D(Mv) 

Ip1 X P 2 l 2  dEs dE2 , 

X 

(G.50) 

Combining Now Bqs . (G.44) and (G .+49) we compute the total cross 
section for the process e+ + e' =° 7T + n` + nO in the VMD model 
approximation 

( + 
O' e tot 

-v + + e  =9 V=1'T -I-T1 
- 

+no) 
us 

l2ns 

IBex PA I2 dEs dEll 2 me 
a 

a 

If I's: E1 E2)l2 
D(s) 

1 
Wa(s) - s 

f a31r .. 
ft, a 

I 2 

x 

(G.51) 

If we compare this equation (G.51) with the general structure of the 
6+ + e' => 71+ + n` + nO total cross section due to the one-photon 
exchange approximation and given in Eq. (A.28) of Section A,  we 
obtain the VMD model for the 31T form factor including electromag- 
netic mixing effects 

F3T(s: E1sa) = Ms: E1E2) me 
a 

f a3n 
g.. 
a 

1 
Wa(s) S 

a 

for 
on 
r 

In the uJ-p regioN, the sums has two terms , the L0 term and the p term 

a 
with the electromagnetic mixing . 

In the up region, the dominant conlrlbutlon is due to the up but 
we can have a small contribution due to the p . 

o 
5 ) 

..n l-.I 

p.-='l .'iII 

I l l  

new 
1 - - ' P N  I 
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and the partial decay width for the decay V => KE is simply 

f - 2 - I VK K l up; K (up) r r r r 
41T My 

I`(v= KI? 
i i )  

_ 2 
3 (G.s3) 

Let us remark the magnitude of the phase space corrections due to 
the K+- Ko mass difference 

an 1 .54 

and the electromagnetic corrections to  the SU(2) invariance of the 
coupling constants have been estimated 

f - 
fcoI<"`K =~ 1.04 
cps°Kt* 

a 

Combining Eqs . (G.44) and ((8--52) we obtain the total cross section 
for the process e+ + e' = K + K in the VMD model approximation 

( ++ o e e tot - =9V=Kr'l '  i r) =7Ta"_l 1 
3 s 

4mK\3/2 

S r  12 me 
a 

f _ 
3 XrKr l 

a fa We(s)-s 

(G.54) 

12 

+ _ _ 
Comparing Eq. (G.54) with the general structure of the e + e  => K + K  
total cross section due to the one-photon exchange approximation 
and given in Eq. (A.1l) of Section A,  we obtain the VMD model for 
the K meson form factors 

) ( s K r 
F 2 

a 
K r K r 

pa. 
a 

f a 1 
) S ( a W - s (G.55) 

a 

Of course in the cp region the sum is strongly dominated by the cp- 

a 
meson contribution but nevertheless we can have a small contamina- 
tion of the p because of the relatively large p-meson width . 

o o 6 ) Final state 11 y 
The matrix element for the decay of a vector meson V into a 

Troy state 
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V(p,x) l 

Fig. 8 

o 
AT (mass mo) 

r 
/ 

I 

( ,l 
(pY. ey)  

has the general structure due to Lorentz covariance and parity 
conservation 3 

(1'f°ylTIV.0~)) pu e v 
m o V n ° y e u v p o  e. (pJJ 

The amplitude a(1-r0¥) is simply written 

l1TOY) ax 

o e p p Y Y 

The summation over the photon and the vector meson polarizations is 
straightforward . - n 

Z~ Z it*Nf°~t)l 
pol- Y A 

The function YTTOy (s) is then given by 
£ 5 . 4  

vTToy(s)l (G.56) 

o and the expression of the decay width V => or Y is simply deduced from 
(G~.56) to be 

1"(V=° nov) __AL 
24 

f B 

I VUPY I 
a 

"` -31 m - o 
1 

3 me 
_.Q 

" 2 M y /  
. 

I 
2 

(G.s7) 

We combine Eqs. (G.44) and (G.57) .to obtain the total cross section 
for the process e`!"+ e' =- 1T° + Y in the VMI) model approximation 

la - s 
(G.58) 

+ - O utot(e +e =:~V=>n +Y) 
211l2 as _ 1 

3 m2 o 
h e  

m o a 
me 

s a 

f a7r°y 
f., 
a Wa (s) 

1 
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The comparison of Eqs. (G.58) and (A.23) gives the VMD model 
expression of the r o y  form factor 

G Q TTOY (s) =2 f 
a T  °y 
f~ a 

1 
Wa(S) 

me 
a - S 

a 

The previous sum is extended to the three vector mesons p , w and 

(G.59) 

is replaced by fa'rly . 

a 
cp. As a last remark, the results corresponding to  the process e+ + e- 
=> n + Y are immediately obtained if Mo is the n mass and if the coup- 
ling constant f o an Y 
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64) .  
Conf. on 

+ 
I. Experiments 

1°) Let us begin with the Or say experiment) on e + e- => 7T + n 
where six points in the energy range of the w meson have been mea- 
sured for the total cross section in addition to the seven points 
already quoted in Table 2 of Section B.  

The theoretical formula needed to analyze the experimental 

+ + 

+ - + - 
Gtotle + e  =°V=1T +71 ) 

data has been given in Eq. (G.47) of the previous section 

am2 3/2 _ IT 12 s Wa(s)-s 
(H. 1) 

r r a 2 l  
3 s 

l 

f arm 
in 
a 

ma 
a 

a 

1 2 I 
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where the sum Z in Eq. (H. 1) is extended to the p-meson and Lu-meson 

a 
contributions . 

The diagonal terms of the W(x) matrix can be reasonably 
approximated in this range of energy by 

W p(s) =m2 - i m  l` 
p p p 

K (s) 
TTTT 

K mT(mpl 

a 
m 
_.E 
/s 

2 
E 
3 II 

eg
o I 3 

E 
"'1

 
E 

Each contribution depends on the mass Ma I on the width Fa and on 
the ratio of coupling constants far/tg . 

The p contribution has been represented by a or-meson elec- 
tromagnetic form factor as suggested by Gounaris and Sakural.2) 
equivalent formulation here is simply to correct the universality for 
the p coupling by a width dependent factor)  .4) 

The 

f prrrr 
{- 
p 

:be 

I" 
1 + d - - 9  

M o 
with d-' 0.48 

(II) 

(111) 

un' -lllll'nll 

For the w contribution, the mass now and the width Fw have been taken 
to their world average values and we have only an wliiiim ` 
parameter fwm.r/FEB. Its modulus , combined with the 1 
deduced from a previous measurement on e+ + e' => TT 

give the decay width for the mode (D = 7T+ + n" using formula (G.46) . 
Its phase and more precisely the phase difference between form/fu, 
and foTTu/5 is called §2n . 

We now consider the three following fits of the Or say data : 
(I) 7 points excluding the up region 

Fit with the p contribution: 2 free parameters in 
13 points: assuming no w-p interference 
Fit wlth the p contribution: 2 free parameters 
13 points' assuming no w-p interference 
Fit with the p and LE contributions: 4 free parameters 

and 1" 
p p 

` 
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Fit 
Degree 

of 
freedom 

X2 M p (MeV) 1" p(1l/Iev) 

+ 
TT 

(Meal  

1'é(Lv=*rr -) 
Q Zn 

I 

II 

III 

5 

11 

9 

8 . 6  

18.29 

8.66 

772 i n  

768 :l:5 

773.5d:5 .4  

113 i 8 

119.5i 3 .3  

110.7i 5 . 3  

-s 

0 

0.63d:0.23 

_ 

(196d:28)o 

Table 1 

2°) For comparison we quote now four series of results concerning 
the w => Tr'l' + TT' mode 5) 

a) Compilation made by Walker et al 

Flu) => Zn) 
I`(UJ == 317) 11.8 ) 10 

l .  6 b) Compilation made by Lutjens and Steinberger ) 

%< 0 . 8  X10"2 

+ 
c) Experiment on 'IT p =:~ H+ 

+ _ 
p 7T TI' 

7 by Alff-Steinberger et al ) 

x 10 

d) Experiment on K-p == A 7T+7r- by Flatté et a18) 

After subtraction of the dominant process K p  => Y1*(1385) n ,  there 
remained 3887 events which were analyzed with two extreme 
assumptions 
of)-complete coherence in the p and U.) production: 
Fit made with m = 750 MeV, T = 100 MeV, m = 782 MeV, 
T w = 9 MeV D o 

r *Ill 
I _ 'l l! _u 

Id: 0.03 

L0 

B)-complete incoherence in the p and w production: 



342 M. GOURDIN 

Fit made with m9.~ free 

i 

and found to be Mp = (740 d: 7)MevT 

I`{UJ ==> Zn) 
T`(UJ = 31T) 

(8.2 et 2) Io I 

II. Model I 

I 
I 

-0  . . : ` 
1 ) The natural order of magnitude expected for an electromagnetic 
amplitude u) = TO + 1T'.as compared with the amplitude 9 F° 1r+ + 1T"~1s 
obviously the fine structure constant c . :.. 

r 

_ For instance, consider the lone-photon exchange model for 
such a decay 

w 

l:l.l l_LI'.1 

o r  \ .  T. Vrv'\ i 

p 

+ 
TT 

I 
I 

I 

r 
.r 

/ 
/ 

Fig. l 1-i 

x 
l. 

1 

\ 

*L 
-. '1- 

To 

A straightforward calculation gives 

Zn21T 

f 
U.) 

f 
p 

- ¢  1.3 m f fl.U 2']T phase f ==- 
p err 

75o 

leading t o a  decay w1d1£h for w=>n +n of 
I 

1 I 

I : 

I 
| NW => 11+ + W- '10'1¢eI/ 

I 

(H-2) 

The Or say measurement 
I . | l ; Hr 

4 

- ' '340 I`(W=°TT++1rT ) = ( 4 0 0  _ mol + 
key 

I I 

1 
, I '(H.3) 

looks considerably larger and perhapS flffe dominant effect is concen- 
trated in the nondiagonal elemerits of the propagator matrix W1a and 
W21 or, equivalently, in the mixing parameters Sl and 62 which can 
be larger than of. because. p difference; a point. 
already emphasized by Glashow. . 

of~the' sgal-1 up# mass 
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2°) As a first consequence of the model, the direct transitions 

w=°21T o Po= 3n 

can be neglected with respect to the ones induced by the mixing . 
Fortunately the experimental data like (H.3) are small enough to 
justify a first order calculation with respect to the mixing parameters 
61 and 6 2  . We make' such an approximation from now 

. r + - a) Final state Tr To f ~ = - 0  
LDTTIT o 

p f f e¢ f 
LUITIT r poTm 

f a-¢ 

pm DoT\'!T 

Therefore for the 21-r decay mode of p"and U.) we have 

+ 1T- r 
F(3=n+n ) 'al I 21 

B I'(_l_l ='l-f J 
I 

(H.~4) 

From the Or say result 

-l6,1 = 0 . 0 6 ¢  0.02 

o f 
pO3TT 

. + _ 
b) Final state IT 7T 'IT an 0 

* (H.5) 

p 37'r 31T LU 31T 
f * -q f f =' 

Wo 

Therefore, for the .311 decay mode of p and w we have 

s f  
UJ 3Tr o 

l`(p -. 3Trl 
rim =:» 3Tr) 

a Q.l512 I I s 
€ 1  (H.6) 

If time reversal invariance holds , 61 = e2 and we have the relation 

l`(w 
1`(F) 

Zn) = r(p = sn) 
21rT) 1`(w => 37T) 

=> 
=> I. (H.7) 

3°) The unitarily constraints are written as (Eq. (G.26)) 
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lm Wa (s) =§ lfAFI" YF(S) 
F 

a = p ,  In 

1 
21 [ww (s) W 9(s)] (Lu(s)l D(s)) = .§ f'wF fp? YF(S) 

F 

for Zrr: 

The 2TT and 3Tr contributions are easily calculated to be in the model _ 2 S 
p r  |f9021T\ YZ'IT( ) 

for 37T: 
I fs  3TI' o 

12 Y3.rr(S) 

What can we do for the other contributions ? Let us examine in some 
detail the Troy contribution. The model cannot make predictions be- 
cause both amplitudes Po => 'rT°Y and we => 1T0Y are of electromagnetic 
nature . We simply have 

f' f 
LU'lTOY pn0y 

- s f  q I L0 OIT 0-y 
2 + ' f  l p r | 9 0 T T o ¥  

_ q  f 

2 - f f` I + 1° s p01r°Y wo7r°y 

(H.8) ' f  
I' Po1T°Y w01T0Y 

Experimentally, the partial decay w1 o- is of the order 1.2 
MeV and for the partial decay width 1 'only know an upper 
limit of 0 . 4  MeV. It follows that the or""y contributions to the unitarily 
relation are only small corrections and it is sufficient to retain only 
the first two terms in Eq. (H.8) . 

We then obtain 

r(s»=>! 

1 
2 i [ww w p ] ( p F  q 5 ) * -  p r  ImW 

Po 
+ q s l m W w  

o 
(H.9) 

and using the trace condition 

W + W = W + W 
(1) P Wo Po 

Eq. (H . 9) is equivalently written in the more convenient form 
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p e r - q s  
p ? + q §  

62 ' 

€ 2 + € 1  

ImW - I m W  w o 
W 

p 

61 Po 
i R e W  - R e  

L0 

(H.10) 

The right-hand side of Eq. (H. 10) being purely imaginary, we imme- 
diately deduce the relation 

1611 1621 (H.11) 

In particular the equality (H. 7) holds in the model independently of 
the time reversal invariance . 

On the other hand putting 

€ 1  62  = ] e l e x p l c p l  =Ie\ exp 1cp2 

the two phases CPI and CO2 are related by Eq. (H.l0) 

lm W - lm W w o 
Re W - lm W 

w p 

Cpl +CP2 
tan 2 Po 

At lowest order, We = WD' WU.) = WUo make the numerical calculation with 

(see Eqs . (G. 12)) and we 

W 
p 

= m a - i  I ` ( s )  o mp p 

W = m2 - 1 in T w w w w 

The result is 

CPI +(p2 = (202 d: 12)o (H.12) 

where the error is essentially due to the uncertainty on the p-meson 
mass taken as  (772 1: 6) MeV. The variation with the energy of the 
phase in the range My S is S Mw is less than 1o . 

The additional prediction of time reversal invariance is simply 

CPI CP2 (101 d: 6)o (modulus Tr) _ (H.13) 

o I 4 ) Let us emphaslze the close analogy between such a model for the 
w-Q interference and the superweak model for neutral K-meson decay. 
A correspondence can be made in the following way 
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o 
D0"'K1 

~»K o s 

.,o~1<§ 
w -'KL 

UJo7f21T 

D o # 3 n  

Kg;°'2Tr 

K10743n 

f ~  
-_Q 
f 

p 

III. Lepton-Antilepton Decay Mode 

o I . I . l ) The quantities measured in electron-positron ann1h11atlon. experi- 
ments are the coupling constants fp and fw.  The problem is now to 
extract information about the decay coupling constants to and fw and 
the bare coupling constant fpo and Q" . o 

o 2 ) Decay coupling constants 
Using Eqs. (G.5) and (G.7) we express the coupling constants 

f p ,  fw~, fp and Fu) and fw0 
2._ _ H.- up f 

Wo - o .(H. 14) 
._s___ r 

Po 

in terms of the bare coupling constants up 
o 

+ s 
f 
W o @ s + q d  r 

- E' w o 

s"
"ls

'?
hi

 
II 

p 
£ P 

p s  r e  ( + q )  o 
f 
Po 

2... 
+ f  

Wo 

If time reversal invariance holds we have 

r q s p 

l l -  - 

and the two coupling constants up and am can be chosen both real . 
It follows from Eq. (H. 14) the trivial relation 

ex 
_.Q = _w 
f f p LU 

in terms of partial widths , 

p2 +qB = 1 + 0 ( € a )  

+ .. 
I"(a= e e ) 
[`(a = e+'") 

time reversal invariance implies 

2 an Ifal . i 
lf§[3 (a 

<5 a) 
a) 

1 

(H.15) 

a =p ,Lo .  (I-1.16) 
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If time-reversal invariance is not valid, we have for the ratio of the 
coupling constants E5/fa a first order correction in € proportional to 
a time-reversal violation parameter . 

o 3 ) Bare coupling constants 
The relations between the decay coupling constants f 

. f 
Wo 

I kw 
and the bare coupling constants up are given by Eqs. (§.s) 

o 

o p 

p 

f 

f p 

f 
Po (D o 

f f 
Wo 

' q f f = s + r f Loo II) po 

We define the deviation from unity of these ratios in the following 
way 

(H.17) 

O p 

p 

f 

f 
l ( p it? 

) e p + 6 

f w o 
f 

(1) 

(1 + su)) 51:0w e (H.18) 

Po 6 
p 

"Po 

6 
U.) 

Po 

In the lowest order with respect to the mixing parameters , we simply 
have f f 

Wo ° " 'R€€1  f - ' R e g a l  

wo Po 
f f 

Wo - I m e l d a  upU.] I m e z f  
w P o o 

The mixing effects are always very small for the p meson but they 
are an order of magnitude larger for the (D meson. 

If time-reversal invariance holds , 61 = es = l€l exp imp and 
we can always define the Po and to states so that f and fm are both 
real and positive. From the experimental data we have o 

f f 
Po LU 

f =0 .36: i :0 .04 f =2 .79= l :0 .33  

wo Po 

Let us now make a numerical estimate using [e\ * 0.06 and up as pre- 
dicted by the model of Part II: cp = 101o or -79o . The results of com- 
putations including second order terms in \e[ are given in Table 2 

O 

Po 

(H.19) 
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Q = 101o cp = -79° 

6 9 

o 

6 m 

Mw 

+0.003 

-1.2o 

-0.022 

+9.7o 

-0.006 

+1.2o 

+0.045 

_9O 

Table 2 

For the radiative widths we simply have 
+ ... 

=> e e ) 

= e'!le') 

r(9o 
r(o 1 26 

p 

1"(Lu0 => e+e-) 

T`(UJ => e+e') 1 26 w 

The corrections due to mixing are far below the experimental uncer- 
tainties . 
n. Hadronic Decay Modes 

2TT 

1°) An interference effect between the p~meson and the w-meson con- 
tributions has been observed in the process e+ + e' =>n+ + n`. The 
experiment has been reported in Part I and we only comment about the 
interpretation of the phase Q experimentally measured and defined 
by 

Q 2Tr 

I 
phase £UJ2TIT 

p 21'r 

Using time-reversal invariance and the notations of Part III we have 

l 

Q = CPU) - app + phase ILu217 

| p2Tr/ 
l .I Zn 

1 

In the framework of the model proposed in Part II we simply have 
f /f = e so that 
W2TT p 2Tr 

Q 2rr _¢w-wow • (H.20) 
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Using now la | 
tlons are 

0 .06 to estimate upw and app the theoretical predic- 

I =112o Q =-89o 
@21T OI' 27T 

mass 
with errors of order 6o to 10o because of the uncertainties on the p 

The value found in the Or say experhnent ,4 xp= (-154 1: 28)o 
disagrees with both predictions. Nevertheless , wenthink that experi- 
ment can accommodate the theoretical value 111217 = -89o (associated 
to cp = -79°).  

2o) It will be very interesting to detect the interference between the 
p-meson and the in-meson contributions in the process e+ + e' =° 
n+ + n' + n°. Crudely speaking the roles of the Lu and the p mesons 
are exchanged and the magnitude of the interference effects into 

+ - + _ 
e + e  => 7T + T T  and + - + - o e + e =a 11 + TT + Tr 

w 
1" 2 

F 
p 

are related by a factor of the order 
f 2 

We 
an 0 . 11 f 

Po 

Therefore the measurement of the w-p interference in the 3Tr case will 
be an order of magnitude harder than in the Zn case assuming com- 
parable statistics . 

Let us recall the predictions of the model. First for the decay 
rates (Eq. (H.7)) 

1"(0 = 3rr) = r(w = 211) 
I`(LU = 3TF) T`(P =" 2TT) 

Secondly for the phases (Eq. (I-I.l2)) 

Q Q = 22 12 o 2TT + Sn ( i ) 

where the phase Qs" is defined as 

(H.21) 

Q 3u 
I 3 p h a s e r  n 
uJ3rr 
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Both relations are independent of the validity of time -reversal 
invariance . 

o I . 3 ) We now assume to  be measured, in magnltude and phase, the 
two electromagnetic coupling constants fw2'Fr and f 
forward application of Eqs. (G.5) using t1me-reversal invariance 
gives 

p 37T - A straight- 

f 
II] Zn 

f n oMTV 

i w 21T o 
__'q+p f 

po212 

f 
i 0311 903TT 

= -q + p f 
Wo31T 

f w 3Tr o 

Eliminating q.  we obtain 

f w21T 
f 

00211 

f + 03n 
f up 31T o 

i w 2Tr 
o + 

f p 271 
D 

f po3Tr 
p 

w Sn o 

(H.22) 

In the model of Part II, the right-hand side has been neglected . 
A priori it must be of order a ,  e . g .  small wlth respect to the mixing 
parameter e . Experiment will test such an assumption via Eq. (H .22) . 
v. o The or Y Decay Mode 

1°) At lowest order in e: and assuming time-reversal invariance, the 
decay coupling constants f and f are related to the bare 
coupling constant by PTTOY UJTT0Y 

f 
F)Tf0Y 

= f 
oo1'f°y 

e f 
mow °y 

f uJrr°y 
\ + f 

e nowoy 
= f 

LOo7T°Y 

The two transitions p => n0 + Y and Lo =¢ T10 + Y are both of electromag- 
netic nature and they can be, a priori, of the same order of magnitude. 

Experimentally the radiative decay mode w = n° + Y has been 
measured and the result 1s10) 

(H.23) 

I`(w=Tro + y )  = (1.16 :b 0.20) MeV 

Using the relation (G.57) between the coupling constant f 
partial width l`(w =a TT0Y) we find 

wn°y and the 
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f I wrT°y I 0.40d:0.04 (H.24) 

For the radiative decay mode p = 1T° + 
boundll) 

we only have an upper 

1"(r) =» oro + y) < 0 .4  MeV 

We then deduce an inequality 

fpTI'o 
f wrrov 

< 0 . 6  • 

2°) We have proposed, with Cremmer , 
out to  be small . 
energy s = 
form factor G 

12) a model where f910¥ turns 
This model is based on an extrapolation at zero 

0 of the VMD model approximation of the electromagnetic 
Tr0Y (s) computed in Eq. (G.59) 

9 GTrOy (s) =2 f 
a anon 

m a 12. a a 

I 
W a(s) - S 

Time-reversal invariance being assumed, we obtain the two basic 
relations 

g 
é = fnrrov 

f purr 

f 
QUO f f , 

w cp 

for the isovector part (H.25) 

for the isoscalar part .(H.26) 

The constant g characterizes the no 

rMo=2W 
and using now the experimental result 

I"(1T0 2y) = (7.2 i 1.2) CV 

= we3 
4 

=> 

=> 2y decay (see Eq. (A.24)) 

M 0 I!JI2 

we obtain 

*EIQI = (1 ,791 0.15) 10-2 . 
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30) Let us first study the isovector transition. From the p-meson 
width as measured in the Or say experiment, To = (111 =|= 6) MeV we 
deduce the value of the coupling constant fplm 

£9 
o-ITrr = 
4n 2.13:i: 0.13 

(Eq- (G.46)) 

f = 5 . 1 7 i  0.15 
p1T1T 

From Eq. (H.25) we compute the coupling constant f9TT0¥ 

\f ( 9 . 2 5 ¢ 0 . 8 5 ) 1 0 - 2  . 
p11oyI 1 

The corresponding radiative decay width I`(p = TTOY) is then predicted 
to be (Bq- (G,57)) 

o 1"(p =) Tl' y) = (59 5: 10) key (I-1.28) 

and the ratio of the two radiative coupling constants is 

f nrfov = 0.23 :|: 0.03 
f o um Y 

(H.29) 

o . . 4 ) The photon-vector meson coupling constants are computed from 
the Or say experiments and we have 

f \,,| 13 .63 i  1.30 lfUp|= 1 1 . 8 ¢ 0 . 9  

Combining now the two experimental results (H.24) and (H.30) we 
obtain 

(H.30) 

f umov 
f w 

(2.92 :i: 0.42)  10-2 . 

Such a value has to  be compared with the experimental value of é | gl 
as given in Eq. (H.27) . In order to satisfy the condition (H.26) we 
need a small up-meson contribution in the T10 => 2y decay amplitude . 
Of course, the Lu-meson contribution is the dominant one but the 
smallness of the nO =° 2y width is due, in this model, to a partial can- 
cellation between the (D"M€SOl'1 and the co-meson contributions of oppo- 
s1te signs . As an estimate for the QUO contribution we find 

f umoy 
f -=(1.1a:0.6) 10 
cp 
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We then compute a range of possible values for the radiative decay 
width of the ( m e s o n  

ml, o 
=>tT + Y ) *  (50 - 700) key . 

» 1 The most recent experiment made in DESY 3) 

1"((;p = Nov) < 18 key 

gives the upper limit 

but more experimental information is needed to confirm such a value . 
o I 5 ) Let us go back to the uJ-p interference problem. If the order of 

magnitude (H.29) obtalned for the ratio fn1T0y/fw'T0y is correct we can 
replace Eqs . (H.23) by 

f 
o1'r0y 

f 
o011oy 

f 
e: UJ0TI'0'Y 

f wn°y UJoTI' Y 

and the contribution due to e in fpn0y remains a correction and cannot 
explain, by itself, the complete p => no + Y transition. We then have , 
for the process 6+ + e' => nO + Y , in the w-p region a dominant con- 
tribution due to the up-meson amplitude and a w-p interference which 
looks to  be constructive from Eqs . (H.25) and (H.26) and which is 
dominated by the term fpoTlo Y fw0nO~{' 

References 
1. I. E.  Augustin et al, to be published . 

I. I-Iaissinski, talk given at the Conference onTrrr and 1TK 
Interactions, Argonne, May 1969 . 

2 .  G. I. Gounaris and I. I. Sakurai, Phys. Rev. Letters 21, 244 
(1968). 

3 .  G. I. Gounaris, preprint EFI 68-86 (1968). 
4 .  M. Gourdin, to  be published in the Proc. of the Schladming 

Winter School, section L. 
5 .  W .  D. Walker et al, Phys. Letters Q, 208 (1964). 
6 .  G.  Liitjens and I. Steinberger, Phys. Rev. Letters , 1095 

(1965). 
7 .  C .  Alff-Steinberger et al, Phys. Rev. 145, 1072 (1966). 
a. s. m. Flatté t a l ,  Phys. Rev. up. 1050 (1966). 
9 .  S .  L. Glashow, Phys. Rev. Letters _7, 469 (1961). 

10. Particle Data Group . 
11. R. Erbe et al, Nuovo Cimento 48A, 262 (1967). 



354 M. GOURDIN 

12. E.  Cremmer and M. Gourdln, Nucl. Phys. B10, 179 (1969). 
13. C. Bemporad et al, DESY preprint 69/15 . 
SECTION I: Vector Meson Dominance Model and Spectral Represen- 
tat1ons 

AW (k) 

I. Sum Rules 

O I . 1 ) The spectral representation of the Fourier transform of the vacuum 
expectation value of the time ordered product of two components of a 
conserved current I§(x) has been obtalned in Eq. (C.21) of Section c 

°' god. 
= dm3 guv I0 k +m -is W dm3+k k 

p, 
' pcna (m2 ) 

v m2 (k2 +m2 -je ) o 

+ Q o  
m 

g r  o 
pCI-CI. lm" P ma dm2 0 (1.1) 

We consider more specifically the electromagnetic current I 
1so'vector and isoscalar parts 

em and its u 

and we want to derive consequences of an asymptotic SU(3) symmetry . 
o , l . 2 ) The assumption made by Das, Mathur and Okubo ) is the follow- 

ing' the SU(3) symmetry becomes exact for the distribution R i k )  in 
the limit k => °°. We then derive 

a) 'Ja convergence relation 

I 3 11m A (k) k=¢ll*J'V 
U- 

- A B  0 
up am] 

The spectral function integral associated to the k k 
must vanish and we obtain a first sum rule u v 

term in Eq. (I.1) 

y E p33 B8 
(HIS) - 0 in 

o 
2 which i .s a first Weinberg type sum rule ) 

equality of two Schwinger terms (see Eq. (C. 17)) 

nm" dm2 :: 0 W1 

one can also interpret as the 
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3 8 C - C = 0 (1.2) 

b) a superconvergence relation . 
Moreover, we can also impose the vanishing of the spectral function 
integral associated to the g term in Eq. (I. 1) and we obtain a second 
second sum rule uv 

to 
H p 3 3  

o 
(m2 ) - 88 p (m3)] dm2= 0 We 

2 which is a second Weinberg type sum rule ) requiring to be conver- 
gent a more rapid decreasing of the spectral function at hlgh energy 
than in the previous case. Therefore, WE is highly questionable . 

form of the SU(3) asymptotic symme1:ry can be assumed 
3 We then deduce 

o 3 ) A different 
fixing ka to be zero . 

a) a convergence relation I 

11m 
k : t o  
u 

[A3v(kl -A8v(k)]k2=0 = 0 . 

written at kg 
The spectral function integral associated to  the kuku term in Eq. (I. 1) 

= 0 must vanish and we obtain a new sum rule 

B8 l" "E 33wn- Imam D m n  doa= 0 Wo 

which can be interpreted as the equality of the isoscalar nd isovec- 
tor hadronio contributions to the charge renormalizat1on.4 

b) a super convergence relation . 
We obviously obtain the sum rule W1 . 
II. Vector Meson Dominance Model I 

33 88 1°) The spectral functions gem, p and p have been related in 
Section C to total cross sections for electron-positron annihilation 
Into hadrons (Eqs.. (c.23) and (Q.26)) 
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pem(s) So 

1 EtB Q2 
.|. _ 

0 e + e hadrons tot( = ) 

pas (s) 

pas (s) 

So - 
1617312 oror(e+ + e I = 1) 

3s3 + - _ 
16n3&2 °r0r(e + e 1 ' 0) 

=> 

= (1.3) 

O . _ 
2 ) The total cross sectlon for the process e+ + e => F is written in 
the vector meson dominance model as (Eq. (G.44)) 

( * +  - e e O`tot 
f47tu.}2 

= V => P) = So YF 
(s)l2 

a 

me 
a 

f aF 
f'~ 
a 

1 
W a(S) 

la s (1.4) 

In this section we neglect all the interferences between vector meson 
contributions (p38 = p83 = 0) and Eq. (I.4) is replaced by 

( ' +  - O' e e tot 
=)V=1I')=-= (asTral" 

So | 2 
yF(s) Ma to 

a 

1 
Wa (s) - 

3 I S (1.5) 

We sum over all possible final states F 
+ - 121T e e otot(e+ + e => v => hadrons) ='* s 2 

a 
(s) 0a(s) Iwa(s}_ $1= 

(1.6) 

where the functions GPs) 

0'F(S) I pa? I 
2 YF (s) '0a(s) =§ 0F(8) 

F 

have been previously introduced in Sec. G. 

3°) The total cross sections play the role of spectral functions in the 
integral representations we are considering. It is then convenient, 
in a first calculation, to make a narrow width approximation . 

The basic formula will be a definition of the Dirac distribution 
as a limit of a sequence of functions 
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11m 
EI =a 0+ 

€ 

X - i e  2 =Tr 6G{) (I.7) 

Substituting 

e = m l` a a G a (ma) 

we obtain 

O` (e+ + e- V =° hadrons) tot 
=> 

+ 
b e  2 l` a 12nd ( ; 6(s 

B 

) -ma) (I.8) 

a 

O . . » . 4 ) In the narrow-wldth approxlmatlon of the vector meson dominance 
model, the sum rules We , W1 and W2 become1)'4 

e+e-) + mcp1l"(¢p => )] = 0» Vo _ + m1I` (p=)e e 
p 

-) 3l:M-l]."(U.) => w 
+ e e  

T(F) = e+e-) e e  
+ 

=> e e 

+ e 

M p - SumLU 

M p l"(o=° e ) - so m3 T`(w =° w 

l`(ua=> * ' ) + m  to -)] 
cp 

) + M p  I`(qp'=> + 
e e  e+e-)] 

O
 II 

o II 

VI 

V2 

Inserting the experimental data from Or say we obtain 

+0.51:l:  0 .75 = 0  Vo 

- 0.'75:I: 0.80 = 0  VI 

l.58:l: 0 .70  = 0  V2 
o . o 5 ) From the mass inequalities between vector mesons 

3 
'O

 A 3 
E 

A S;
 

Such a correction 
factor has been proposed by Sugawara5) who replaces the Das- 
Mathur-Okubo sum' rule V1 by 

it follows that the three sum rules Vo I VI , VB are not compatible . If 
one of them turns out to be exact, we must introduce in the two 
other ones a correction factor associated to a particular breaking of 
the SU(3) symmetry. 

For instance , consider VO to  be correct . 
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M 01"(p = e+e-) i n  3[m I`(uJ=° + w e e-) + mcpI`€p = e+e 
_ 3m2 
)] 5 0 4mK*- ma 

p 
0 S 

With the Or say data we obtain 

+ 0 . 2 8 ¢  0.65  = 0  lm
 

Let us also remark that if the electromagnetic current is only a U spin 
scalar and contains a component belonging to the scalar representa- 
tion of SU(3), the sum rules VO , VI , VI become inequalities only 

(Q) S 3[(uJ)+¢P)] 0 .  

6o) For the p-meson contribution the narrow-width approximation 
must be corrected and we proceed in the following way. We assume 
the total cross section °tOt(e+ + e' = T = 1) to be dominated by the 
or*-n' contribution given by 

+ = n  ( + +  - + `) o e e or tot 
T r y a  l 

3 S 
1 

4ma 3/2 
1T 

s F11 (s)l3 (1.9) 

and for PTT (s) we take the model proposed by Gounaris and Sakurai6) 
(see Eq. (B182)). We have used such a form in the entire range of 
integration whereas it has been tested only in the p-meson region . 
We must keep in mind that such an approximation is very doubtful 
especially in a calculation where the high-energy region plays an 
important role (Schwinger terms) . 
III. Schwinger Terms 

1o) The hadronic contributions to the Schwinger term associated to 
the electromagnetic current are given, in the narrow-width approxima- 
tion of the VMD model by 

Cem(hadrons) 3 + e e - ) '  

vector Schwinger term C3 

ma 
= m l` a a 4Tra2Z a l :  Hal" ' 

o a a 

2 ) The p-meson contribution to Eq. (I. 10) is identified with the 1so- 
From experiment 

3 . _ c = (2.49 i 0.32)10 2 Gev2 

(1.10) 

(1.11) 
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A more sophisticated calculation of 03 , using a numerical integration 
gives a -7% effect 

Cs = (2.31:l: 0.17) 10 GeV" .- 
I 

(1. l-2) 

o m 3 ) The isoscalar part of Ce is the sum of the w and up contributions . 
From experiment 

LU contribution = (0.33 i 0.06) 10-2 GeV" 

QP Contribution '-= (0.75 i 0;10) 10 Gev° i 

I 

8 The Schwinger term C is three times the isoscalar contribution so  
that , i \ 

co-= (3.24 :|: 0.48) 10-2- Gev-* (1.13) 

o - . - e . 4 ) The electromagnetic Schwinger term G M(hadrons) is given, in 
that model, by the sum of the three vector meson contributions . We 
obtain . 

C°"'(hadrons) = (3.57 :1: 0.48) 10 GeV" 

Com(hadrons) = (3.39 :h 0.39) 10-.8. GeV" 

wlth 

with I 

(1.11) 

. .(I._12) 

1 

o . 
5 ) The Das-Mathur-Okubo sum rule,V1 gives 

Cs - 08 = (-0.7s :1: 0.80) 10 GeV" 

3 8 » . C - c = (-0.93 :i: 0.76) 10-3 Ge\/3" 

with 

with 

(1.11) 

(I. 1°2) 
o 6 ) The Sugawara sum rule S gives 

I 

3 C .- 

3m 0 

lim" - in" K* p 

8 _ 
C = (-I-0.28:l: 0.65) 10 a GeV" with (1.11) 

3 a M e Ce 
._ ma 

p 

8 c - 
4rnK* (+0.l0 i 0.50) 10'2 GeV-= with (1.12) 
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IV. Charge Renormalization 

lo) The hadronic contributions to the charge renormalization are 
given in the narrow-w1dth approximation of the VMD model combining 
Eqs . (D.9) and (I. 8) 

6 ea 
O 

ea 
e+e-) _Qé 

G. 
a 

I`(a= _ m - a  
a a 

2 
4 TT (I.l4) 

o 2 ) The p ,  w and cp contributions are computed using the experimental 
Or say data 

p contribution (0.526 d: 0 . 062) 03 

w contribution (0.067 A: 0.012) 0. 

cp contribution (0 . 091 :t 0 . 013) (I- 

so that we find 

6 e2 
ego = ( 3 . 6 5 ¢ 0 . 5 2 )  10* . (1.15) 

o . I 3 ) For the sum rule Vo , we obtaln 

4rr 41; 
1 f,,I2 + 

_ 3 3 'HT 
2 ] 

up W 

7 V .  Muon Anomalous Magnetic Moment ) 

0 .0511  0.075 

a (hadrons) u 
+ 

=¢ e 8 

o u . I . 1 ) The hadronlc contributions to the muon anomalous magnetlc 
moment are given, in the narrow width approximation of the VMD model 
combining Eq. (D. 10) and (I-8) 

; Q (m2) (1.16) a a ' 
1* (a 

m a 
) I<(2)(ma) = a 

a 

417 
B 

LA 

Ku)  
1-1 

a 

O I I I I 2 ) For the p-meson contrlbutlon, experiments owe 

a ( D )  = (5 .0¢  0.3) 10'" . (I.17) 
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We a-lso have evaluated the integral (D. 10) using the rr+1T- cross 
section as  given in Eq. (I.9) . The numerical integration leads to 
the result 

r + - _ 
a u(rr n ) =  ( 5 .41  0.3) 10 a 

which is 8% larger than the narrow-width estimate (I. 17) . 
3°)'. For the isoscalar contributions we have 

(I.l8) 

r 6 #(w)= (0.61 :l: 0.11) Io 

a u(cp) = (0.s0 :iz 0.07) 10"" . 
4°) Combining now is os color and isovector contributions we obtain 

a u(hadrons) = (6.5 A: 0.5) 10-e . 1 

The theoretical prediction including 2nd, 4th, 6th order calculations 
is now given by - 

I 

a u = (116587 :|: 2) 10-e' 

9 the last experimental value is ) 

I I 

a u = (116616 :iz 31) 10-e 

Therefore 

a u(th) -- au(exp) (-29 :i: 34) 10-e . 
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cations, extensi 
lion sum rules . 

I .  Introduction 
During the past two years there has been much interest in appli- lm and derivations of the Weinberg spectral func- 

2 -8) It has been noted) soon after Welnberg's origi- 
nal derivation of the SU(2) x SU(2) .sum rules , that the Iacobi identity 
may be used to derive the first sum rule for any Lie algebra from the 
assumption that the Schwinger 'terms in the commutators [xo 
go*-I* (x) , IkB(y)] are C numbers . Here ix) denotes the currents of 
the Lie algebra considered. ]acklw3) has also used the Iacobi identity 
to derive the second Weinberg sum rule for the SU(2) ® SU(2) currents . 

Among the extensions of the Weinberg sum rules , Rothle1tr1er4) 
has derived a sum rule for baryon spectral functions . The main 
assumption of Ref. 4 concerns the commutator of the time component 
of the axial current Aoa(=<J go é 1,2,3)  and the nucleon field 'IN (y) at 

The assumed ) commutator reads 

[A &(x) ,'11 (y)] = -rA1ll(x)Y5»ra 6L-alX) + (possible (AI=§)-terms) . 
(1) 

equal times . 
o 

Yo) 

The absolute value of the constant I-A may be determined from current 
algebra . 13) From this commutator, using the techniques of Ref, 1 , 
Rothleitner derived a sum rule for ba,ryon spectral functions . The same 
sum rule (in the approxirnatiol é>f one particle intermediate states) has 
been derived by M.  Sugawara ) from his set of self consistency con- 
ditions , derived in Refs . 12 from the x-integrated Eq. (1) ,and addi- 
tional assumptions . These conditions agree with experiment and thus 
support Eq. (1). 

'1'Presented at the INSTITUTE FOR THEORETICAL PHYSICS I 

University of Colorado, Summer 1969. 
=l=Supported by the DAAD through a NATO grant . 
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In the present note we first present (for SU(21 ® SU(2)) a sim- 
plified version of the proof of the first Weinberg sum rule, described 
in Ref. 2 . Assuming charge-current commutators we will see that the 
first Weinberg sum rule holds if and only if either (xo = yo = zo) 

a b C [QUO (xO). [As (y), Vo (z)J] 0 (2) 
o 

or 
b 

[Q5a(x0), [Vi (y),  in] A c  
O 

II 0 (3) 
o 

It turns out that these expressions are equa acid proporti na to 
Bké (X-81) I i .e  . only the Schwinger term in Elk (y) , ]oc(z) l  could 

possibly contribute . 
Next we assume in addition that the divergence of the axial 

vector current commutes at equal times with the space components of 
the currents . From this we derive conditions equivalent to the second 
Weinberg sum rule . One of the se conditions reads 

a 3 b ZN C a C x f d A , [QE ( O) [I Y k (y) Bxo . - -= = V. (x) 5x1 Vo (x) o 0 

and is equivalent to  one of the assumptions made in Ref. 3 to  derive 
the second sum rule. In Ref. 3 , the consequences of current conser- 
vation which we need here are also assumed. In our treatment, how- 
ever, we need not make the additional assumptions of this reference . 
We then do not gain the additional information on the commutator 

| ' -  c _ a. C ,k  Ln (x) X. Io (x), In (al 

(4) 

obtained by Iackiw. The main result--that Eq. (4) implies the second 
sum rule--remains however also under our wea her assumptions . 

These considerations serve as  an introduction and 
the main purpose of the present talk: t o  present a for the 
Rothleitner-Sugawara sum rule derived from the following identity of 
the Jacobi type 

i11us)tration to 
conditions 

+ 
[ ra .bJ ,cl +I[b,c]_l_,a =[EC.aJ b] . 

' + 
To this purpose we will have to assume that the divergence of the axial 
current and the nucleon field commute at equal timesl and that 

(5) 
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ccsawo), Mt); = -tA»7(y)y5¢a 

+ possible (AI = %)-terms . 

365 

(6) 

Our assumption, Eq. (6), is more general than the assumption 
of Eq. (1) and allows for arbitrary Schwinger terms . 16) This way we 
obtain that the Rothleitner-Sugawara sum rule is equivalent to  
(Xo = to = zo) 

[Q5a(xO), [ada Y 
1. 

For additional sum rules similar L 
ing that the axlal current is conserved . 

To illustrate possible applications , we assume the first two sum 
rules to hold. The relations obtained predict the existence of a 
pn (m > 1470 MeV) nucleon resonance (the P11 (1750) ?) from the exis- 
tence of the four nucleon resonances P11 (940) , P11 (1470) , 811 (1550) 
and $11 (l7l0) • 

0 .  

derived , assum- 

(7) 

II. The Weinberg Sum Rules 
To fix notation, we explicitly write the spectral representation 

a s  

1' l l  

'-.'iv 

;II 1.nl-' 

vu-1 
'lllll"l"1 l lll'hFIlll.l'l 

The original Weinberg sum rules for SU(2) ® SU(2) assume the 
currents to be conserved. Then, the first sum rule reads 

[p(V)(m2) - plA)(m2)l do2 = 0  (11) 

and the second one reads 
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/[p(v)(m2) _ 0(A)(m2)] dm2 0 (12) 

If zero mass states are absent, infinite many sum rules for 
spectral functions of nonconserved currents reduce to Eq. (11) or (12) 
in the limit of current conservation. These sum rules differ by the 
scalar or pseudoscalar contr1butions17) and it is easy to see that 
only 

J`[ W11 pI(V)(m2) - n 

W11 E Jo "rI(V)(m2) - pH(A)(m2)] dmz = 0 

reduces to Weinberg's first sum rule, for which the pion is treated as 
Goldstone boson. 18) Due to the smallness of the mass of the only 
spin zero state assumed to contribute (the pion) all the generalisa- 
tions of the second sum rule are equivalent to]-8) 

IlAl(m2)] dm" : 0 . 
In our treatment, Eqs . (13) and (14) will show up. Note that in our 
notation WI1 and WI represent (in this order) the first or second 
Weinberg sum rule , respectively. 

In order to derive conditions for the first Weinberg sum rule , 
we introduce as our first assumption: 

go. The commutators of and 
Q6a(XD) with the currents Vu (x) and A a  (x) are of standard 
current algebra form . 

Note that nothing is assumed about commutators of space com- 
ponents wlth space components and that arbitrary Schwinger terms are 
allowed in all the commutators . 

We wlll sometimes make explicit the contributions from possible 
violations of the JaCobi identity and define I(A,B,C) by 

the sU(2 ® SU(2) charges Qla(xo) 

(13) 

(14) 

I(A,B,c) 2 (lA,fB,cJl 
CYCl.(A.B.C) 

o 
(15) 

Under Assumption we now have (xO 
over 1) 

Yo = zo, not summed 
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I(QSa(xo). Vu (y) .~ As°(z)) - 
= ieabc { [Ao 

1 1 
(z ) ,A IJ. (y)] [ 

[QB a (to) .[v*b(y) .AO°(z)l] 
| o 

. - 1(y) } 
o o , 

1 V o ( ) , v  
Z U- 

f o r p = 0  

II 

0 
. abc 
1e: W II 

a MY k Bz 
3) form k .  (16) 

\ 
I 

I 

. I lB 
ax 

Now , Eq. (16) shows that 

To obtalh the last line, we have used the spectral representation, Eq. 
(8) , and have performed the equal time limit under the 1ntegra1, using 

' A(x;m2!) = SQQ) (17) 
o . * .  v 

O , . _ ssuming I = 
Qs6(X0)l' Vkb(y) ,'A00(z) is proportional to Bk6(y - 5) and thus 

' ' o  ' c b at most the flrst ~ order Schwinger term of [As (z) ,Vi (y)] may survive 

in Eq. (16). The sum rule Eq. (13) is thus equivalent to ' 

, a b c f . . , V 1 , A z ] = 0 EQ (xO) I k . (y) o ( )1 o . (18) 
H 

or to 

a b C = ,t(z - y)k Los (xo), [vi (y), Ao ml] o 0 

If we had performed the above manipulations starting from 
I 0(Q5&(x0), Aub(y), vo°(2)) the result would have been 

(19) 

Io(Q§ (xO) .A*b(y) ,vo°(z)) 

0 

[oaacxo [ (y),vo°(z)]] 
b 

) .  A 
kJ» 

forl.1=0 

o 

II 

form. k ab . 
-je C W a 6 (y - z) II k - 

Bz 

The conclusions which follow are analogous to the ones above . 

(20) 
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In order to deal with the second Weinberg sum rule we state two 
additional assumptions which we w111 use alternatively. These ar@=19) 

A2 .  It is fo rx  = y o o 
b [I dax a*'A a , A ] u (x) k (y) (21) 

and 
A3.  It is f o r x  = y 
i o o 

l jd3xa*"A a(x ) .  v b(y) l  = 0 . (22) IJ, k 
There are two situations in which the above assumptions evi- 

dently hold. If the pion is treated as a Goldstone boson and the axial 
current is conserved r Eqs . (21) and (22) hold trivially. They are 
canonical rules in a model for which PCAC holds with a canonical 
pion field and with canonical vector or axial vector field proportional 
to the vector or axial vector current, respectively (see also the 
"Note added"). 

We first derive from A2 and charge-current commutators the 
following equal time commutator 

[QE a (yO) ,Akbwnl = 6 to  [QE a (yo) .Akbuol - [QE a (yo) ,Akbml 

ieabd . 3 b 
vkdw) - [Id x a*'Aua(x),Ak ml je 

abd veld (y) (23) 

From this , using charge- current commutators again, we get 

_ abc 
1€ 

b 
Ll 

{ [Akim ,As(y)l 

abc /do{[»I"" (ma ) 

I(Q5a(xo),v (y).Ak° (Zn - [Q5a(xo),[vb(y) ,Arc(z)ll)o 

- lvk"*(z),v§(y)] O} 
o 

= -in - OI(A) (m2 >] auk + 

II 

+ lp11 (V) (m2 ) (ma)l } M Y - z : m 2 )  a 
B 20 

for LE 

_ F) (A) Ba 
II Byuby 

0 0 
b aa 

B y  B y  
je W lwlgkx, + 11 

forl.L=1L (24) 
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The coefficient of the second order Schwinger term vanishes if the 
first Weinberg sum rule holds. We next use Eq. (20) to subtract this 
term out. Specializing to  u =»c in Eq. (24) and differentiating Eq . (16) 
with respect to v*> we obtain, after subtraction , 

k 
a A c 

o 
b . b 

I(Q5a(xO),v& (v),Ak°(z)) - I(Q5a(x¢).v, (y),6Z (2)) 

- [Q5a(xO). [v b(y),Ak°(z) - 
b = jea c W I  gk; 6(2. - z )  

Am a 
k Bz o 

(25) 

Note that the above expression contains a non-Schwinger term only . 
We next assume the Iacobl identities to hold and get, after 1n- 

tegrating over X 

+ 

o L 
a a b - C B C IQ; (x ) .  [Id yV (y),Ak (z) - B z k  Ao (2) 

1 abc W = e • I gas 
Obviously, if the assumption A2 were not made , the term 

b d3 v [I y L (y) .r 
v 

[flax a ;\,a(x),Ak°(z)l]) 

o 

(26) 

(28) 

would appear on the left hand side of Eq. (26). 
If we had performed the same manipulations as above, starting 

from I(Q5&(x0), A b e l  , Vk0(2)) and the assumption A3 instead of A2 , 
analogous results would have followed. Especially, we would have 
gotten instead of Eq. (26) 

ffosa(xo) ,W Y A b ( y )  , v'kC(z) 
E) k V  

52  O 
°(z)]l 

O _ abc 
je W I gfak (29) 

The following two sets of equations will summarize the results: 

abc ' e  
1 Wlgkff, [QQ (xo) .Up Y v b ( y )  ,A'k°lzl - 

lQ5a(>°O) 'Up Y v,b(y) ,Ak(z)1] 

a A k 
B z  o 

c(zl]] o 
(30) 

o 
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and _ abc 
1€ Wngkfz, 

II 

[Q5a(xO) [Ida YAb(Y) . VkC(2) - k vi°(z)l] 

vi°(z)]] [©5a( x 0)ll:l-d3 YA b 

11, 
(Y) 

a 
Bz 

r o 
(31) 

The Eqs . (30) are derived under assumption A1 and A2; the Eqs . 
(31) under assumptions Al and A3 . Note again that the condition Eq . 
(4) is included in Eqs. (31) . . , 
integration is replaced by and integration in Eqs . (30) and (31), hold . Note that also the Eqs in which the 1 

III. The Baryon Spectral Function Sum Rules 
We write the spectral representation for the vacuum expectation 

value of the anticommutator of the baryon field as 

(Et(><). 6(yn+) i tdma{ (m='=)(u" + m) a _ 
B xU- o + 

+ F3  (m2)(ij** 
l 

t1ons from the I - 3 , I =% baryon spectrum respectively. We will 

a - m)} A(x-yr m2). 
6 xi 

The Fi (m2) are positive spectral functions and represent the contribu- 

assume the commutator Eq. (6) throughout this section. It can be 

dffvation by assuming that they are absent. We assume in addi- 
seen that the (AI = Q)-terms would not contribute and thus we simplify 
our 
lion: 

. It is 

(32) 

lfd3><®*'A a(x). ml = 0 . 
Eq. (33) would evidently follow from current conservation and is one 
of the canonical rules , if My) and the pion field, defined by PCAC , 
are canonical fields . A derivation completely analogous to the one in 
Eq. (23) now gives us from (6) and (33),  as in Ref. I I ,  

lQsa(xo).w(y)] =~v5T°rAi(y). 

(33) 

(34) 

We write next the Iacobi 
and c = 41(2) . This 

I a 
type idelltlty, Eq. (5) , for a QUO (xO) 

g1ves8)'24 us b We). 
r 
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Q5a(x0), l:*(y). W] 
d: 

= [QS (xo), ¢(y)], Ml + [[Q5(xO), »E(z)], W] 
+ + 

= - RA [v5¢a\L(v), mm] -1~A[&(y), ¥(z)y5Ta] . 
v + + 

(35) 

I 

We take vacuum expectation values and use the spectral represents - 
liOn. Because of the presence of is in Eq. (35) no term proportional 
to j can contribute. Thus we get 

a - - [QB (to), f ¢ ( y ) ,  \iv(z)l + o 
B. . 

= 2rA1T Ys J`dm"m(pf (m2) - pa (man biz -2.) . (is) 

It is 

Before we discuss this result, we derive additional rules 11ke 
(36) from assuming that the axial current is conserved. This is , we 
assume23) 

go. 
U- B A ua(x) - 0 (37) 

Then we derive 

lQsa(xo), ¢f(y)l 
aN 

n ay0 

this relatlon _, 
If (y), and c = MZ) 

a aN . F 'YET A n "Ill 
. ay0 , 

the identi Y E . (5) with a 
reads24)'2€ 

for any integer n .  
Q5a(X0) r b' = 6 9 1  . ynsig1g 

(38) 

I 

[Q5a(»<O),[(§yo)2"'1 my), lF(z)l+l) 
o 

-rAY5Ta - - 
. » + o 

-21TaY6rA l`dm3m[p a (me) - F 2 (m=)](aM 

[(§vo)2"l1¢ (y) .v (z)]+) (Ks o)'""~u(v) .vi (z)]+)rAy aT 

_ .,,=)~-1 my -2.) . (is) 

We discuss this relation for n = 1 , 2  only. The generalisations 
will be obvious. For n = 1, Eq. (39) is identical to Eqs. (35) 
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and (36) . For n = 2 , there is only a non-Schwinger term contained 
in the Eq. (39) . The Schwinger term is multiplied by the expression 
Eq. (3 G) and the non-Schwinger term is multiplied by 

So *Adm3 ma (P+ (m2 ) 1=2(m2)). (40) 

Thus, 1f5§_ho1d.s, <[Q5&(xO0 ['kG' (y).¢'(z)]J) 
So vanishes . 
is equivalent with 

vanishes if and only if 
If holds, the vanishing of 'lLo5ac»<o).E~1»(y),w(z)J+J) O 

$1 =.fdm3 m(F+ (m2) 0 - p a ( m 2 ) ) =  . (41) 

If L holds in addition, Eq. (41) is also equivalent with the vanishing 
of the Schwinger term in Eq. (39) . 

In the one particle intermediate states approximation, Eq. (41) 
and (40) read 

I m, 
1 

1 = 1  

ez 2 0 1 pi (42) 

and 

1 1 

0 3 
l 

F 
1 

e 3 

i m I (43) 

respectively. Here, we have enumerated the nucleon resonances by 
i = 1, . . . ,R and et  denotes the parity of the respective resonance . 
Evidently, either of the Eqs. (42) or (43) can hold only if baryons of 
opposite parities actually exist . T56 sum rules Eqs. (4112), (42) have been derived by I. Roth- 
leitner and M. Sugawara, respectively. The experimental suc- 
cess of the considerations of Refs. 12 strongly supports Eq. (42) and 
thus shows that to the approximation to which Eq. (33) holds , the 
expression (EQ5a(x0),Ei (v). i(z)J])0 should vanish. 

Finally, to Illustrate possible applications , let us assume that 
both Eqs. (42) and (43) hold. Restrictions will follow from the posi- 
tivity of the F.2's . Enumerating the nucleon resonances N1=P1-. (940) , 

= 311 (1709) by N1 , . . .NO, , we NO = pn(1466'), no = 811 (1548) and no 
mite Eqs . (42) and (43) as 

R 
m1F12 +m2F22 + 

i = 5 

e.m_F_2 
1 1 1 

+ MY F42 (45) 
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a nd 

3 Fa 
2 + ma 3P1 m1 I re + €imi3Fi2 

1 = 5 

a 2 a 2 (46) 

Multiplying (45) by mg2 and subtracting the Eq. (46) from the result 
we get 

2 2 - m m  m ' F  + e , m m 2 -  1 ( 2  1 ) 1  1 i ( 2  i 
i = 5  

m 2)Fi2 

Ms (mg ' 
2 + Ma 3 )Fa M4 (M22 - M42 )FE 2 (47) 

The right hand side is not positive and the first term on the left hand 
side is not negative. Thus , unless all the F12 's vanish, at least one 
term in the sum is negative. Giving the number 5 to it, we have 

2 I - .  e5(m2 m 5 2 ) < 0 .  (48) 

As it seems unlikely that a still undiscovered nucleon resonance with 
a mass smaller than Me exists , we have the prediction 

€5 = + 1 ,  m 5 >  Me . 
This agrees with the existence of the P11 (1750) nucleon resonance . 

(49) 
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f a a = LL a 
7T Mn CD (x) a Au- (x) 
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&(>=) . ana lx). and qua (x) Here, V denote fields which are proportional 
to canonical vector, axial vector, and pion fields . It can be seen 
that--unless the plon is free--t.he interaction must contain in this 
case derivatives of the pion field (H. Genz and I. Katz, On Current- 
Field Identities , Purdue University preprint) . If the interaction Lagr 
Lagrangian does not contain derivatives of the vector or axial vector 
fields , then also 

via (x) - akvoa (x) = via (x) - a k o a  (x) 

or 

Asa (x) - a kAna (x) = aka(x) - a kaoa(x) 

belong to the canonical variables (of course, if v a  (x) or A a  (x) are 
themselves proportional to canonical fields, the same 'conclusions 
hold). Thus, the left hand side of Eq. (29) or Eq. (26), respectively, 
would vanish in thls Case and this would show the validity of the 
second Weinberg sum rule. However, as recently shown, in case of 
canonical realizations of current-f1e1d identities the interaction 
Lagrangian L also contains derivatives of the spin one fields and 
thus Eq. (29) [or Eq. (26)] provides a test for the validity of this 
sum rule, namely 

a b  1e: CWI [Q5a( 
X 0) I Udy A,b ELl 

( y ) ,  av'k(z) o 
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