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Abstract

What happens when a warp bubble has mass? This seemingly innocent question forces
one to carefully formalize exactly what one means by a warp bubble, exactly what one
means by having the warp bubble “move” with respect to the fixed stars, and forces
one to more carefully examine the notion of mass in warp-drive spacetimes. This is
the goal of the present article. In this process, we will see that often-made throw-away
comments regarding “payloads” are even simpler than commonly assumed, while there
are two further, distinct yet subtle ways in which a mass can appear in connection
with a warp drive space-time: One, that the warp bubble (not its payload) has the
mass; two, that the mass is a background feature in front of which the warp drive
moves. For simplicity, we consider generic Natdrio warp drives with zero-vorticity
flow field. The resulting spacetimes are sufficiently simple to allow an exact and
Sfully explicit computation of all of the stress-energy components, and verify that (as
expected) the null energy condition (NEC) is violated. Likewise the weak, strong, and
dominant energy conditions (WEC, SEC, DEC) are violated. Indeed, this confirms
the community’s folk wisdom, and recent (fully general, but implicit) results of the
present authors which closed previous gaps in the argument. However, folk wisdom
should be carefully and critically examined before being believed, and the present
examples for general results will greatly aid physical intuition.
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1 Introduction

Warp bubbles and warp drives by now have a quite extensive 27-year history in the
general relativity community. First formulated by Alcubierre in 1994 [1], two dis-
tinct modifications (zero-expansion and generic) were subsequently developed by
Natério [2] in 2001. Considerable work along these lines has continued [3-21], largely
focussing on the Alcubierre and Natdrio zero-expansion variants, culminating in a
recent focus on zero-vorticity warp drives [22-25], and the closely related, and very
recently introduced notions of tractor/pressor/stressor beams [26, 27].

A mainstay in warp drive research past and present has been the study of energy
conditions in such space-times, just as in many other reverse-engineered space-time
geometries such as wormholes, the Godel universe, or Krasnikov hypertubes. Specif-
ically, this last year has seen multiple misguided claims [22-24, 28-33] as to the
asserted possible avoidance/amelioration of the known energy condition violations in
warp drive spacetimes; violations that were first established over 20 years ago, to vary-
ing degrees of generality. We have previously provided [25], for the first time, a full
proof of NEC violations in all generic Natdrio warp drive spacetimes (using implicit
arguments in the form of a proof by contradiction), thereby firmly establishing that
those claims of non-violation are irretrievably erroneous. In the current article we
will focus on the zero-vorticity case of Natario warp drives to provide a particularly
simple, straightforward and fully explicit calculation showing exactly where the key
difficulty lies. In counterpoint we should specifically mention that energy condition
violations are not the absolute prohibition that they have often been taken to be in
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the past—energy condition violations are instead an invitation to think very carefully
about the underlying physics [25-27, 34-36].

Additionally, and possibly more importantly than yet-another demonstration of
violated energy conditions, this allows for the first time an explicit discussion of
the meaning of mass in warp drive space-times. We start by asking the innocent
sounding question “What happens when one puts a Schwarzschild black hole into
a warp bubble?”. Answering this question forces one to focus on several basic and
fundamental issues: What does one mean by a moving warp bubble? How does one
formalize the notion of mass for a warp bubble?

In order to answer these questions, we shall first set up the general framework
(making use of the asymptotic flatness of generic Natdrio warp drives), including
a discussion of three distinct notions of mass in a warp bubble context. (That the
notion of mass in any general relativistic context is a subtle one might be gleaned
from references [37-39], and the textbook discussions in [40, Chapter 19] and [41,
Chapter 11.2].) We then specialize to zero-vorticity warp bubbles, (which are closely
related to the Painlevé—Gullstrand version of Schwarzschild spacetime), and carefully
distinguish a moving zero-vorticity warp bubble from, for instance, the Painlevé—
Gullstrand version of Schwarzschild spacetime.

This allows us to define a precise notion of motion (of the warp bubble with
respect to the fixed stars), and explicitly calculate the stress-energy tensor. Within this
zero-vorticity framework we then first develop a Schwarzschild-based warp drive—
wherein a Schwarzschild black hole is embedded in a warp bubble, and then develop a
more specialized framework suitable for describing a finite-mass payload (spacecraft)
embedded in a warp bubble. The zero-vorticity case is sufficiently simple to allow fully
explicit computation of the stress-energy, and explicitly verify violations of the NEC.
In this regard the zero-vorticity warp bubble closely follows the fully explicit com-
putations that have previously been carried out for the Alcubierre and zero-expansion
warp bubbles.

The article is organized as follows: In Sect. 2, we introduce the notation used in
this paper, and the geometry and basic facts of the generic Natdrio warp drive. We
also explain the three distinct physical ways in which a warp drive spacetime can be
combined with relativistic notions of mass. Two of these are investigated subsequently.
Section 3 then gives the special zero-vorticity case of the generic Natario warp drive on
which we will build our analysis. In Sect. 4, we define a warped Schwarzschild space-
time, colloquially referred to as a “black-warp spacetime”, a Schwarzschild black hole
engineered to move through spacetime in a prescribed manner, and then investigate its
properties. Subsequently Sect. 5 replaces the central black hole by a regular finite-mass
payload inside the warp bubble. In Sect. 6, we conclude and discuss future directions.

2 Natario generic warp drives

Let us first discuss generic Natério class of warp drives [2]. This generic Natario class
is broad enough to cover almost all of the relevant literature.
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2.1 Metric, co-tetrad, and tetrad

The Natério generic warp bubbles all have line elements explicitly of the form [2]:
ds? = —dr® + 8;; (dx’ — v’ (¢, X)dr) (dx/ — v/ (¢, X)dr). 2.1

The spatial 3-slices are flat Euclidean space; the lapse function is unity; all of the
physics is encoded in the flow vector v’ (¢, X), which is the negative of what is usually
called the shift vector in the ADM formalism [42, 43]. Furthermore, this space-time is
assumed to be asymptotically flat. Originally/Traditionally warp drives are subject to
the added assumption of global hyperbolicity, but we think this is a misleading property
to assume, as many of the more problematic features of warp drives space-times can
then not be properly discussed.!

Also note that this set-up certainly includes more than just warp drives:
Schwarzschild in Painlevé—Gullstrand coordinates is contained in this form. This will
play a role in what is to come in Sect. 4. Also, the static patch of the de Sitter uni-
verse can in suitable coordinates be cast in this form, as can all spatially flat FLRW
spacetimes [44]. Neither of these examples can or should be considered a warp drive.
Since—apart from warp drives themselves—it is clear that other space-times (or parts
of space-times) can fit into this general Painlevé—Gullstrand form, it is important to
raise the question: How can we safely tell apart a warp drive from a non-warp metric
in unusual coordinates? As a first step in order to answer this question, an additional
interpretative dance around the flow vector vi(z, %) has to be undertaken.

Usually, this involves giving the flow vector a “Newtonian” interpretation, whatever
this means in general relativity, and wilfully ignoring the fact that the previous non-
warp-drive examples allow this interpretation just as well. Still (and sadly?) this is
needed to make the very important distinction between superluminal and subluminal
warp drives (v'v; > 1and v'v; < 1, respectively). Below, in Sect. 3.1, we will employ
a co-moving perspective to make this pseudo-Newtonian picture of v’ clearer. A good,
additional requirement is then to demand that this metric is not static. This gives a
better notion of movement, though it remains somewhat unclear if this asymptotic
flatness and non-staticity are enough to exclude non-warp space-times.

Back to our main line of inquiry: From this line element one can easily read off a
suitable orthonormal co-tetrad

o, dxt =dr: e, dx® = dx' — vl dr; 2.2)
and the corresponding orthonormal tetrad

e =0+ 8 e 8, =0 (2.3)

1

' And we would like to caution the reader that this assumption might possibly invite proponents of faulty
logic, who then conclude the absence of causality issues in superluminal warp drives based on its assumed
global hyperbolicity. Much more serious physics issues than the energy condition can occur and need to be
addressed in warp drive space-times. A minimal definition ensures easy access to these discussions.
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Viewed as 4 x 4 matrices these are simply

7 1 |0 1|+
b _ a __ g
e“_[—v/ 51ii| and ¢ _|:O Sj’]’ 2.4)

which satisfy the orthogonality conditions

et =50y and e, e =5,°. 2.5)

It is then a straightforward if somewhat tedious exercise to use the ADM formalism
to calculate all of the orthonormal components of the Riemann, Ricci, and Einstein
tensors—see reference [25] for full details.

A useful feature of these co-tetrads and tetrads is to note that the (space)—(space)
portion is just the ordinary Kronecker delta, an observation which can be used to
simplify the (space)—(space) portion of many calculations. For instance for any T20
tensor X5, we have

Xon = e esb Xap = el ek Xk = 3,‘j 5jk Xjr = Xij. (2.6)
ij i i
So for covariant spatial indices, within the Natario generic class of spacetimes, one
need not bother distinguishing orthonormal form Cartesian components.

2.2 Three specific simplified sub-classes

There are three major specific simplified sub-classes of the generic Natério class of
warp drives that are of particular interest.
Alcubierre: For the Alcubierre warp bubble the flow field v(z, X) is auto-parallel.
That is
v(t, X) = v(t, X) 0; ¥ = (constant). 2.7)

In this situation explicit computation shows that the NEC, and so the SEC, WEC
and DEC, are all explicitly violated. See specifically the original discussion in [1],
and the subsequent follow-up discussions in [12—17], and [20, 21].

Zero-expansion: For the zero-expansion warp bubble the flow field v(z, X) is taken to
be solenoidal (divergence free). That is

V-9, %) =0. (2.8)

In this situation explicit computation shows that the NEC, and so the SEC, WEC
and DEC, are all explicitly violated. See specifically the original discussion in [2],
and subsequent follow-up discussions in [14—17], and [20].
Zero-vorticity: For the zero-vorticity warp bubble the flow field (7, x) is potential.
That is [22-24],
v(t,X) = Vo(t, X). 2.9

In this situation the NEC, and so the SEC, WEC and DEC, energy conditions are
still violated.
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Many of the early discussions of energy condition violations in warp drive space-
times often relied on either approximations or specific choices for the flow field to
facilitate easy calculation. As said in the introduction, in previous work [25], the present
authors provided a first, general proof of NEC violations of the generic Natdrio warp
drive. While the proof of NEC violations is fully general, it proceeds indirectly (a
proof by contradiction) and hence implicitly—the proof cannot tell explicitly where
energy condition violations happen; just that they must occur.

It is the zero-vorticity warp bubble that we shall focus on in the current article.
Specifically, this is the form most appropriate to make the appearance of notions of
mass in a warp drive explicit, as it can be easily compared to Schwarzschild in Painlevé—
Gullstrand form. Additionally, we shall make use of its simplicity to highlight where
violations of the NEC occur, independent of mass. This should provide the added
benefit of yielding better intuition for the general proof of [25].

2.3 ADM mass in warp drive spacetimes

Ever since their inception, a common side remark concerning warp-drive spacetimes
was how the presence of a finite-mass space-ship (the payload) inside the warp bubble
might or might not change the technical details. In this section we shall briefly explain
why this particular concern is not really all that troublesome, and how non-zero masses
actually can play a role in warp drive metrics. At a minimum, there are three distinct
ways in which mass can appear in a warp drive metric:

A As amass (a payload, presumably a space-ship) inside the warp bubble.

B As the mass of the warp bubble itself (for sufficiently high mass this could be
called a “black warp”).

C As an external mass the warp drive is passing by.

First of all, case A: Warp drives are a prime example of metric engineering, specifi-
cally reverse engineering. As a reverse-engineered metric, it need not concern itself
with possible interaction between its constituent parts: The metric is already fixed,
essentially it is given by fiat. To illustrate this, take any massive space-time metric g
and any warp metric gwarp. Suppose that the interior of the warp bubble has roughly
radius R, and write the geodesic distance from the warp bubble’s centre as r. Now, let
fr(r) = 0be a smooth bump function centred on the middle of the warp bubble, such
that fr(r) = O for any r > R, and fr(r) = 1 for some inner radius Ry < R. Any
sufficiently advanced civilization interested in reverse-engineering spacetime metrics,
(not just in the sense of the purely mathematical, technical meaning of “metric engi-
neering” as it is used in this article!), could now easily engineer a new metric

gE(l_.fR(r))gwarp+fR(r)gM- (2.10)

Inside the warp bubble, within the radius Ry, this will just be the metric of the mass
inside. After a distance R from the centre is reached, only the warp drive metric
contributes. In between Ry and R, the technology (indistinguishable from magic) of
the arbitrarily advanced civilization will enforce a smooth transition between these
two parts. Most importantly, the mass of the whole space-time will only depend on

@ Springer



ADM mass in warp drive spacetimes Page 7 of 19 14

the warp bubble itself, as the new metric gwarp effectively screens and possibly can-
cels completely the interior mass. In spirit, this may remind some readers of various
proposals for regular black holes. Variations on this will be discussed in Sect. 5.

This brings us to the second possibility, that of case B, that the warp bubble itself has
a non-zero mass. This is most easily described in the Natario framework for generic
warp bubbles (2.1), wherein the warp drive metric is not just locally in ADM form,
but actually is also globally hyperbolic. In this framework the ADM mass is defined
by the large-distance asymptotic falloff in the flow vector

Vi, 7)) = v () + ZTM Mo, 2.11)

Then this case B simply means that this warp metric has a finite ADM mass. For this
reason, we will call this a “Schwarzschild-based warp drive” in Sect. 4 below. There
are one quirky, and two important things to notice here. Starting with the important,
moving to the quirky:

e One, most extant warp drive metrics have ADM mass that is identically zero, as it
keeps the headaches for interpreting the metric to a minimum. Specifically, both
the Alcubierre and zero-expansion warp drives have identically zero ADM mass;
whereas the zero-vorticity warp drive can, but need not, have a non-zero ADM
mass. One does however want the ADM mass to be both non-negative and finite.
A negative ADM mass is observationally disfavoured, astronomers have looked
for such objects and not seen them [45], and is also theoretically disfavoured [46,
47]—causing problems for both chronology protection and gravitational lensing;
one would expect unusual caustics which do not seem to correspond to anything
astronomers have ever seen [48, 49]. Infinite ADM masses are perhaps worse; com-
pletely undermining the notion of asymptotic flatness. Put differently, finiteness of
the ADM mass places mild constraints on the fall-off of the metric components, for
them not to be picked up by the integral in the equivalent formulation M = [ pdV
of the ADM mass [25].

e Two, as this discussion only depends on the asymptotic fall-off region of the
warp bubble, this ADM mass is—according to the previous paragraph—entirely
independent of whatever masses might be hidden inside the warp bubble.

e Three, speaking about hiding: If the warp bubble’s mass is significant enough to be
hidden behind a horizon, one could properly call this a “black-warp” space-time.
Here, it would be some kind of compact horizon buzzing (or crawling...) through
space-time, reminiscent of the interpretation of the C-metric as an accelerated
black hole—albeit with no strings attached [50, 51].

Implementing option C can be significantly harder: Here, the idea is to let the warp
drive move through another space-time that possibly has a finite mass M of its own.
The simplest example to imagine is a warp bubble moving outside of, and manoeuvring
around, a Schwarzschild black hole. (Especially a superluminal warp drive might have
interesting, geometric things to say about how the compact black hole horizon and the
non-compact warp drive horizon entwine; but that is another story and shall be told
another time).
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The most common examples, (albeit without a mass), are attempts (usually unsuc-
cessful or otherwise doubtful for various reasons) to implement a warp bubble together
with a cosmological constant. If we now focus on the mass aspects of this situation, itis
easiest to interpret if the warp bubble by itself generates no mass contributions. Essen-
tially, this means that in this situation the warp drive metric is to be engineered as a zero
ADM mass example of the second option, and then added to the “background” metric
gm of ADM mass M in a comparable but inverted way to the previously discussed
option (2.10):

g =~ fR0)) gm + fR() Gwarp- 2.12)

This would, however, be by far not the only possibility. Any less obvious change to
the metric g) would require very careful thought as to whether or not other features,
that should not change, might have changed.

If the warp drive part has a non-vanishing mass by itself, this will likely lead to subtle
issues of disentangling the masses—a common issue with notions of mass in non-
static situations. (Remember that the warp drive itself should be moving; the metric
hence cannot be static!) This is not unique to this (rather unphysical) context. General
relativity simply eschews straightforward implementations of notions of (total) mass
and quasi-local mass based on the more familiar Newtonian gravity. (See for instance
references [37-39], and the textbook discussions in [40, Chapter 19] and [41, Chapter
11.2]). In particular, this should make us very worried if a “metric-engineered” warp
drive (by itself or with a “background” metric) has an undefined (vulgo: infinite) ADM
mass.

Lastly, it is obviously possible to combine the cases A to C in varied ways. As this
only obfuscates otherwise easily discussed physics, we will opt not to indulge in this
needless complication.

3 Zero-vorticity warp drives

Let us now adapt and extend some of the discussion above, to refine the definition of
a zero-vorticity warp bubble.

3.1 Metric: the notion of motion

For zero vorticity we can explicitly write the metric (line element) in the form:
ds? = —dr? 4 8;; (dx' — VI (2, %) dr) (dx/ — VI @(z, %) do), 3.1

Let us now extend the previous discussion, to make it more precise and manageable.
Specifically, we will aim to divide the spacetime geometry into a “base geometry” and
a “warp field”.

To make the warp bubble interesting, you want it to “move”. The easiest way to
do this is (we shall soon note at least one alternative) to ensure that ® (¢, X) really is
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time-dependent, and the easiest way to ensure that is to enforce
D, %) > DX —Xi(2)). (3.2)

That is, the zero-vorticity warp drive line element is taken to be
ds? = —dr? 4y (d' = VIOE = 5,0) dr) (dx/ = VoG = £.0) dr) . 3.3)

This is to be interpreted as follows: Start with some static asymptotically flat “base”
spacetime geometry, described by the line element

(ds)? = —dr® + 8 (dx" _Vio®) dt) (dxf —Vio®) dt) . (34

where we choose ¥(X) = V®(X) — 0 at spatial infinity. We then subject this “base”
spacetime to a time-dependent spatial translation X, (¢), the “warp field”. This is man-
ifestly a specific example of a zero-vorticity warp drive, and it is important to note that
the instances of vorticity-free warp drives given in [22-24] explicitly fall under this
classification. This particular version of the warp bubble has been carefully chosen
to make the flow vector asymptote to zero at large distances—so in this coordinate
system the “fixed stars” are at rest, while the “warp bubble” is moving.

ds? = (dseo)® = —di? + &;; di’ di/. (3.5)
Alternatively, one could choose coordinates X comoving with the warp bubble:
r=1; X =x'—xl); (3.6)

so that _ _ . . '
dr = dr; dx' = dx' — x[(r) dr = dx' — vl (¢) dr. 3.7

In these comoving coordinates the spacetime metric is

A% = —di? + 8 (A& = [V + vi0)] dr) (a& = [V/ o) + vl (0] dr).
_ _ (3.8)
At spatial infinity, where v’ (&K = Vid (k) — 0, we see that

5% — (dSoo)? = —d2 + 8 (d)'ci — i) dt) (d)'cj — vl dt) . (39

So in these coordinates it is the “warp bubble” that is “at rest”, while the “fixed stars”
are moving.
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Either one of these two coordinate equivalent spacetime line elements,

ds? = —dr +6;; (dx" —VIOGFE — F (1)) dt) (dxf VIO — %)) dt) ,
(3.10)

45 = —dr? + 8; (A% = [V () + vl (0] dr) (d&/ — [V/OE) + vl dr).,
(3.11)

represents exactly the same spacetime physics, and they are equally valid ways of
representing the warp bubble—which one you use is a matter of choice—but however
one does it, one needs either the explicit spatial shift xi () or the warp flow vi (1) =
XL (t) to encode the “notion of motion” of the warp bubble with respect to the fixed
stars.

In either situation, either by setting the spatial shift xfk (t) — 0, or by setting the
flow vi (t) — 0, one recovers the same “base” spacetime geometry

(dso)? = d? + & (dxi _Vio®) dt) (dxf _Vio®) dt) . (.12)

(For the base geometry, since one has switched off the warp bubble, one does not need
to distinguish x? from x').

Now that we have refined the zero-vorticity notion of warp drive by introducing
these notions of “base” and “warp”, we can ask more precisely targeted question such
as this: “How precisely does the stress-energy tensor change when you switch the
warp field on or off?”. Fortunately all of the relevant tools have been developed in
earlier work [25].

3.2 Einstein tensor and stress-energy tensor

For the generic Narari6é warp drive, and so also for the zero-vorticity warp drive, we
have previously determined the full stress-energy tensor in [25]. Let us now split the
zero-vorticity warp bubble into “base” and “warp” and adopt comoving coordinates,
dropping the over-bar on the x for brevity, so that

ds? = —dr? + 8 (dx’ = [v' (5 + o] dr) (dnd = [0 F) + w01 ).
(3.13)
(dso)? = —dr? + 8 (dxl' Wi (@) dt) (dxf' @ dt) . (3.14)

For the extrinsic curvature K;; = vy j), using the fact that the warp field vﬁ (1) is
spatially constant, 9; vi () = 0, we have the particularly simple result that

Kij = (Ko)ij- (3.15)
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In these comoving coordinates, the extrinsic curvature does not change as you switch
on the warp field. In contrast, for the Eulerian 4-velocity we have

nt = (1; vl (oK) 4+ vi(t)) — (n0)" + (0; u;(t)) . (3.16)

This is a simple linear sum of the base spacetime contribution and the warp field con-
tribution. This in turn affects the Lie derivatives of the extrinsic curvature. Specifically

LK = L, K +vi(t) %K, (3.17)

and
LoKij = LogKij + vE@) %Kij. (3.18)

Feeding this into the Einstein tensor, for the tetrad components we find
Gun = (GO)uns  Gni = (Godnis  Gij = (Go)ij+vX(1) l[Kij—K8ij1. (3.19)

Applying the Einstein equations, for the tetrad components one has

1
p=p0; fi=U0)i; Tij =To)ij + 3 vk (t) k[Kij — K8ij1. (3.20)

So we see that it is only the spatial parts of the stress-energy that are affected by
switching on the warp field—and even then the effect is rather simple—a contribution
linear in the warp field v¥ (7).

If we explicitly make use of the zero-vorticity condition then one sees

1
p=poi  fi=0; Tj=(To)+ o~ V() (@ — VPR S8;]. (3.21)

Now consider the average pressure p = %(Sif Tu = %8’7 T;;. From the above we
have

o 1

h=h— v (1) % V2. (3.22)
We can rewrite this as 1

h=po— 5 Ve V(V20) (3.23)

Furthermore for the quantity (p + p) that is of direct relevance to testing the NEC

|
(o +p) = (po + po) — Tom V(V®) (3.24)
s

Note the effect of switching on the warp bubble is linear in the warp field v,’§ ).
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4 Schwarzschild-based warp drive
Now, using the framework developed above, let us develop the notion of a

Schwarzschild-based warp drive—the above option B that might at times be called a
black-warp space-time.

4.1 Schwarzschild spacetime in Painlevé-Gulistrand form

It is well-known that Schwarzschild spacetime can be represented in Painlevé—
Gullstand form as follows:

ds? = —dr® + & (dx" — 2mr # dt) (dxf — 2mJr P dt) , 4.1y

Here r = |¥| = /x2 + y2 + z2, and # is the radial unit vector: # = % =X,
This is fully equivalent to writing

| i , j
ds? = —di® + 8 (dx’ —2m = dt) (dx/ —V2m = dt) L @2

|)‘C'|3/2 |)‘C’|3/2

When written in this manner the Schwarzschild spacetime has a number of interesting
features, including the fact that these coordinates are horizon-penetrating, and that
the so-called “drip” geodesics (corresponding to radially infalling geodesics that start
from spatial infinity with zero 3-velocity) are particularly simple. (See for instance
references [52—54]). The relevant potential @ is easily seen to be

®(X) = 2v/2mr = 2/2m ||X]]. 4.3)
(This is not the usual Newtonian potential).

4.2 Line element for Schwarzschild-based warp drive

Elevating the Painlevé—Gullstrand form of Schwarzschild to a Schwarzschild-based
warp drive (black-warp spacetime) merely amounts to the replacement X — X — X (¢)
so that the spacetime metric becomes:

¥ — X ()2 ¥ — X ()2

) i _ it . J— xi(t
ds? = —dr>+8;; <dx’ V) dt) <dxf—«/2m X %) dt) .
44

In this coordinate system the “fixed stars” are “at rest” and the warp bubble is “moving”.
At large distances o
ds? = —dr* + 8;; dx’ dx/ . (4.5)
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If we change to comoving coordinates ¥’ = x’ — x’(¢) then by our previous
arguments the black-warp line element becomes

. W . T
di? = —di?+5;; (d)z’—[\/% x—+u;(r)} dt) (d)?]—[«/2m x—+ui(z)] dt).
4

|§|3/2 |§|3/2

In this coordinate system the “fixed stars” are “moving” and the warp bubble is “at
rest”. At large distances one now has

(d500)? = —dr? + 8y (4& = i) dr) (d&/ = vl (1) dr). 4.7

4.3 Energy conditions for Schwarzschild-based warp drive

In view of the fact that the “base” stress-energy is zero for Schwarzschild spacetime, in
coordinates moving with the Schwarzschild-based warp drive we have the very simple
results

1
p=0; fi=0, Tjj= o V() R[@;; — V2D 81, D =2v2mr. (4.8)

Without any calculation, since p = 0, while 7;; # 0, we immediately deduce DEC
violations.
Furthermore taking the spatial trace

I 1 .. I, )
N Y I SO Y7 I
p= 3 ) Tl.j =3 8T = e Ve (1) V- . 4.9)

Note that

1 1 - 3
V=V (5 G ;) _v. (zr—w r) =37 @

and consequently

9

WD = —Z«/2m r2 (P 4.11)
Thence

_ 3 22mr .

p= o T (B0 7). (4.12)

But the key observation here is that the inner product {B* (t) ~f} changes sign as
one moves from front to back of the warp bubble; therefore there are regions (an
entire hemisphere in fact) where p is negative. Since p = 0 by construction, there
is consequently an entire hemisphere where p + p < 0 and the NEC is explicitly
violated. (So, since DEC — WEC — NEC, and SEC — NEC, the explicit
violation of the NEC implies that all of the SEC, WEC, and DEC are also violated).
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5 Regular warp bubble containing a massive payload

Let us now modify the Schwarzschild-based warp drive (black-warp spacetime), to
bring it more into line with what we would expect a warp bubble containing a payload
(spacecraft) to look like. As discussed in Sect. 2.2, we can expect this to have sur-
prisingly little impact on the physical situation based on general arguments. However,
there is nothing like practice to understand something, so let us re-examine the NEC in
this context once more. Having done so, we can then also slightly modify and further
generalize the argument.

5.1 Localized regular base spacetime

To avoid horizons and singularities, and more closely envisage the notion of a spaceship
embedded in a warp bubble, one can modify the base spacetime by making it regular at
short distances and Schwarzschild at large distances. Specifically choose some finite
radius a > 2m and set:

(’)(rz) r<a;
®(r) = { differentiable r =a; . 6.1
2/ 2mr r>a.

The ®(r) = O(?) condition keeps the curvature and stress-energy finite at the ori-
gin. (The location of the spacecraft). The differentiability condition at r = a keeps
V& continuous, and so keeps the metric continuous. (Hence the Christoffel symbols
are at worst discontinuous and the Riemann tensor at worst contains thin-shell delta
functions). For r > a one has a vacuum Schwarzschild exterior.

The argument presented above for the Schwarzschild-based warp drive (black-
warp spacetime) then guarantees (once one switches on a non-zero warp velocity vy)
violation of the NEC in the exterior region r > a over the entire hemisphere where
{5* . f} < 0.

5.2 Asymptotically Schwarzschild base spacetime

One can also extend the argument to a base spacetime that is only asymptotically
Schwarzschild. Specifically let us set

o), r — 0;
®(r) = { differentiable, all r; 5.2)
22mr [14+0O0@™)], r —> o0, n>0. .

The ®(r) = O(r?) condition keeps the curvature and stress-energy finite at the origin.
The differentiability condition at all r keeps V& continuous, and so keeps the metric
continuous. For r — oo one asymptotically approaches a vacuum Schwarzschild
exterior with Misner—Sharp quasi-local mass m(r) = m [1 + (’)(r_”)] while the
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ADM mass is simply m. Then it is easy to check that

HVid = —%«/Zmr_S/z e [1+00™], (5.3)
and consequently
_ 3 2mr _ - .
P=Tex 3 [1+O00™")] {v*(t) : V}- (54)

Thence at sufficiently large distances there is again an entire hemisphere, (defined by
{U:() - 7} < 0), where p < 0. So the NEC, (and consequently all of the SEC, WEC,
and DEC), are again violated at asymptotically large distances.

6 Conclusions

As we have seen, mass in warp drives is more than just a question of a “payload”—there
are two more cases to consider: The possibilities of a “background” with mass or the
possibility the “warp bubble” itself being massive. Our guide for this discussion was
that the assumed asymptotic flatness of a warp drive allows invoking the concept of an
ADM mass, and hence, to studying how the ADM mass influences and is influenced
by the presence of a warp drive.

Additionally, we re-investigated the status of energy conditions in these space-times.
Certainly, the status of the energy conditions in all of these classes has already been
covered in the fully general arguments presented in the authors’ previous study [25].
Still, the present article can explicitly show where violations of the NEC (and hence
all other common energy conditions) occur. This was possible by specializing to the
case of zero-vorticity Natario warp drive with sufficient emphasis on how the mass can
enter. Given that proofs of energy condition violations often involve implicit or indirect
arguments (like the proofs by contradiction), this provides additional, helpful intuition
about their location and these decades-old results and convictions concerning warp
drives. And as the discussion in the literature amply shows, in the case of warp drives
(particularly those of the superluminal variety) their violations of energy conditions
are a sign of “bad physics”—though these violations themselves by themselves are at
best a warning sign [34, 35].

For the future one could try to develop further generalizations of the notion of warp
bubble, outside of the Natdrio generic class. This could be done either by relaxing the
unit-lapse condition, or by allowing the spatial 3-slices to deviate from being geomet-
rically flat. (Perhaps conformally 3-flat.) The “massive background” case discussed
here can certainly be considered as first step in this direction. However, there is a cru-
cial and unavoidable trade-off between tractability and generality. If the construction is
too general then not only are stress-energy computations increasingly infeasible [25],
but it also becomes much trickier to even define what one means by the “warp bub-
ble”, and how to disentangle the “warp field” from the “payload” from the “rest of
the universe”. We hope to further explore such issues in future work. Future work will
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also study how the (non-compact) horizon of a superluminal warp drive might interact
with the compact horizon of a black hole either moving as a warp drive, inside a warp
drive as payload, or present as an external immovable background geometry.

Lastly, a word on the most glaring, open problem: A self-consistent formulation of
warp drives. Simply calculating the stress-energy tensor by reverse-engineering the
Einstein equations is telling us little about the actual matter sourcing the warp drive.
We know that a more realistic scenario would entail reverse-engineering at the very
least something like Einstein—Klein—Gordon or Einstein—-Maxwell. With a proverbial
“here be dragons”, one could go a step further and look at quantized fields on a fixed
background. However, the background being fixed, this is unlikely to answer how the
quantized field is actually sourcing anything if it is not yet a source term of the Einstein
equation determining the warp drive metric. An added difficulty is that a superluminal
warp drive comfortably overstays its welcome in the well-established field of curved
space-time quantum field theory, as it cannot be globally hyperbolic [18]. While there
is movement beyond global hyperbolicity (see, for example, [55]), one could still opt
for the full glory: Dealing with the full semi-classical Einstein equations involving a
quantized field on a (backreacting) background space-time [56, 57]. While this would
certainly (finally) address and answer the begged question of the usual invocation of
arbitrarily advanced civilizations/magic by nebulous statements such as “the negative
energy densities would have to be provided by quantum matter”—here be dragons,
indeed.
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