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Abstract: The idea of varying constants of nature is very old, and has commanded a lot of attention

since first mooted. The variation in the gravitational parameter G and cosmological parameter Λ

is still an active area of research. Since the idea of a varying G was introduced by Dirac almost a

century ago, there are even theories that have variable G such as the Brans–Dicke theory and the scale

covariant theory. Both these theories also have a varying Λ in their full generalisations. A varying

Λ was also introduced around the same time as that of varying G. It is interesting to note that a

possible solution to the cosmological constant problem can be realised from a dynamic Λ. In this

work, we focus on a varying Λ and G framework. In almost all studies in the simplest framework of

variables Λ and G, it is found that one of them has to increase with time. However, observations and

theoretical considerations indicate that both Λ and G should decrease with time. In this paper, we

propose a solution to this problem, finding theories in which both Λ and G decrease with time.

Keywords: variable Λ; variable G; conservation of energy momentum

1. Introduction

The idea of varying constants of nature, such as the fine-structure constant α, the speed
of light c, Newton’s gravitational constant G, Boltzmann’s constant kB, Planck’s constant h̄,
and Fermi’s constant GF, is not new. There are many reasons to believe that these constants
should vary [1,2].

• From quantum theory, string theory, and other similar points of view, there are strong
reasons for believing in more than three spatial dimensions. Hence, the constants from
these higher dimensions need not be constant as viewed from our three-dimensional
point of view. Any change that is slow in the size of higher dimensions can be detected
by changes in the “constants” in our 3-dimensional space.

• Symmetry-breaking processes that are spontaneous in the very early universe intro-
duce irreducibly random elements as far as the values of the constants of nature.

• The outcome of a theory of quantum gravity is expected to be probabilistic, whose
probability distributions for observables may not be very sharply peaked for all
possibilities. So, the gravitation “constant”, G, or Ġ may vary.

• At present, we do not know why any of the constants of nature have the values
that they do. Also, we have not been able to predict the value of any dimensionless
constant before it has been measured.

• The measured values of the possible changes in the values of the constants of nature are
usually weak. Sometimes, they are made out to sound strong by chosen parametrisations.

• Using publicly available data, Li et al. [3] were able to construct samples from 40 spec-
tra of galaxies that emit Lyman α lines and 46 from QSOs in the redshift range
1.09 < z < 3.73. Having used two methods, they were able to calculate α(z) by
measuring the wavelengths of two components of the spin-orbit doublet. By analysing
the spectra obtained, they found a change in α of (−3± 6) × 10−5, as compared to the
laboratory value. Many scientists suspect a bias in the observational measurements of
the data, or in the laboratory calculations, and are presently re-analysing this matter.
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• Varying G and Λ can cause changes in the dynamics of the universe, thereby changing
perturbations and growth of the perturbations on a large scale [4,5]. The apparent
simplicity of the ΛCDM model belies the intricate challenges associated with the cos-
mological constant, including the cosmological constant problem and the coincidence
problem. Consequently, alternative explanations have been sought. Their findings
highlighted the differences and potential advantages of considering time-variable
parameters in the cosmological model which can impact the formation of large-scale
structures in the universe. While further research and observations are needed to
validate their findings, valuable insights were gleaned to our understanding of the
cosmos beyond the standard cosmological paradigm.

The literature on varying cosmological and gravitational constants is very vast, and we
only focus on some of the key papers. The references therein provide additional reading
matter. It seems that Dirac [6,7] first proposed the idea of varying G. The electromagnetic
force between an electron and a proton is around 1040 times higher than the gravitational
force. Furthermore, the radius of the observed universe is about 1040 times greater than
the radius of the electron. In addition, Nb = (c3/(mpGH0))∼1080, where Nb is the number
of baryons in the universe and H0 is the present value of the Hubble parameter. Dirac
noticed the similarity between these numbers, and felt that this could not be a coincidence.
Since H0∼t−1 is not constant, he proposed that Newton’s gravitational constant G is not
really a constant, but varies as G∼t−1. According to Dirac’s choice, e, c, and me turn out to
be constants that are fixed, but this choice is not unique to yield G∼t−1. One could make
other choices to obtain the same result [8,9]. It is important to note that observations of the
change in G yield only Ġ/G ≤ 10−2H0 and not any stronger constraints [1].

However, the early history of variable constants, and in particular, variable G, is
not very clear, but there were several others apart from Dirac who were also involved in
studying variable constants at around the same time. One of the earliest of these to study
varying constants was Lord Kelvin and Tait [10], well over a century ago in 1874. This
was some 30 years before Einstein came up with his special theory of relativity in 1905, in
which c is an assumed constant. At the time of Kelvin, a varying speed of light was quite
acceptable to the scientific community, as it played no special role in physics. However,
after 1905, the situation changed completely, as expected. Now, it was not Dirac who had
first conceived the idea of the so-called “Large Numbers Hypothesis (LNH)”, which is
usually attributed to his name. Hermann Weyl [11,12] in 1917 and 1919 speculated that the
radius of the observed universe could be the the radius of some hypothetical particle whose
ratio to the electron radius was of the order of 1042. The coincidence was further developed
by Eddington in 1931 [13], who related it to the estimated number of charged particles in
the universe, which is around 1042. Milne [14] came up with an idea of two systems of
units, one for atomic purposes, and the other for gravitational, which were related by a
logarithmic transformation. By requiring that the mass of the “universe” to be constant, he
was able to derive a variation of G of the type G ∝ t. However, it appears that Milne was
motivated by his dislike of relativity rather than the LNH. The biologist Haldane [15,16] in
1935 took an interest in the theory of Milne, writing a few papers dealing with evolution
of life. These authors proposed that biochemical activation energies could change on the
τ timescale, yet look like constants as far as the t timescale was concerned. Hence, the
universe does not evolve uniformly. Jordan [17,18] was also able to derive a variation
of G as the inverse of time by a slightly different method. An interesting exposition of
Jordan’s cosmology is given by Dubois and Furza [19]. The variation G ∝ 1/t was shown
to be unlikely by Teller [20] since it would lead to too quick a change in the temperature
of the Earth, and life would not be able to exist. However, the ideas of Dirac led Jordan,
Brans, and Dicke to develop the Brans–Dicke theory [21] in 1961, which would allow for
the variation of G by the introduction of a suitable scalar field Φ(t), which had an evolution
equation for G(Φ) in the theory.

Apart from that mentioned above, the motivation for varying G specifically is the following:
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• Theoretically, many theories of gravity apart from general relativity and Newtonian
gravity may be framed with a varying G [22–24].

• Experiments and observations have been used to set limits on Ġ/G [25], including

solar evolution, lunar occultations, and eclipses (∼10−11 yr−1), paleontological ev-
idence (∼10−11 yr−1), white dwarf cooling and pulsations (∼10−10 yr−1), neutron
star masses and ages (∼10−12 yr−1), star cluster evolution (∼10−12 yr−1), big bang
nucleosynthesis abundances (∼10−12 yr−1), astroseismology (∼10−12 yr−1), lunar
laser ranging (∼10−14 yr−1), evolution of planetary orbits (∼10−14 yr−1), binary pul-
sars (∼10−12 yr−1), high-resolution quasar spectra (∼10−14 yr−1), gravitational wave
observations of binary neutron stars (∼10−8 yr−1), and supernovae. (See the list of
references in [25]).

• An important point to note is that if one chooses a variation of G of the type

Ġ/G ≤ 10−14 yr−1, then there will be no problems with the mass and size of galaxies,
stars, and planets, as they will not be affected.

• It is interesting to note that a variation of fundamental constants can lead to the
solution of the Hubble tension problem [26–28].

The ΛCDM model is currently the most favoured model for explaining the current
acceleration of the universe, where Λ refers to the cosmological constant. Now, a major
problem in cosmology is the cosmological constant problem [29,30]. Now, a dynamic cos-
mological parameter [31] can, inter alia, provide a solution to this problem. A Lagrangian
description of variable Λ has been given by Poplawski [32]. The variation of the cosmologi-
cal parameter seems to have first been considered by Bronstein [31,33] in 1933. Overduin
and Cooperstock [34] have given a review of all the different forms of varying cosmological
parameter Λ that have been considered in the literature as of 1998. A review of varying Λ

and quintessence has been given by Kragh and Overduin [35].
In general relativity, Λ is a strict constant and associated with the vacuum energy

density, ρ(vac). However, in the anaFLRW universe, quantum field theory entails a cosmo-
logical constant Λ that is changing with time. This also means a vacuum density that is
changing with time. Via quantum effects, Λ turns out to vary: Λ → Λ + δΛ. The GR limit
can be recovered smoothly. The connection of the varying Λ with quantum field theory
can be motivated from semi-qualitative renormalisation group arguments [36]. However,
an explicit quantum field theory calculation has appeared only very recently [37–41]. Also,
recently, a running vacuum model was studied in the Brans–Dicke theory, and it was found
that observations favour this model over the one with constant Λ [42].

The authors of [42] solved both the perturbation and background equations for the
variable cosmological parameter model (BDRVM) and the vacuum energy density model
(VED). Data from the latest SNIa + H(z) + BAO + LSS + CMB observations were used in
the analysis. To ascertain whether these models perform better than the ΛCDM in general
relativity, use was made of the criteria from the AIC and DIC statistics. The data from three
different sources were used to test the two different models. It was found that both the two
models can fit the observations, but the BDRVM one performed slightly better. Hence, a
dynamical Λ performs better than the constant Λ, and the BDRVM model has the potential
to solve the two tensions in general relativity. However, more investigations are necessary.

Hence, there is a strong motivation to study the variation of the gravitational parameter
G and the cosmological parameter Λ in cosmology.

In this work, in Section 2, we firstly review the simplest formulation of a Lagrangian
description of general relativity with variable G and Λ. We point out that it is not possible
to have both decreasing Λ and G. A decreasing G is favoured for many reasons, inter alia,
giving rise to late-time acceleration without the need for any exotic matter [43], as in the
ΛCDM model. Then, in Sections 3 and 5, we examine two theories, viz. the scale covariant
theory and f (R, T) theory. These two theories naturally have variable Λ and G. We show
that it is possible to have both decreasing Λ and G.
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2. Lagrangian Formulation

Let us consider Einstein’s field equations in suitable units with variable G and Λ

Rab −
1

2
RGab + Λ(xd)Gab = G(xd)Tab (1)

where the symbols have their usual meanings, but Λ and G are allowed to be variable. It
should be noted that one has to have a variable Λ together with variable G in order for the
usual conservation law to hold. This form of the field equations can be shown to arise from
several different approaches. Firstly, the following Lagrangian [44].We assume that G and
Λ are related, and that the action is

A =
∫

d4xL =
∫

d4x{
√

−g[R/G − V(G)] + Lm}+ A′... (2)

where V(G) is a function of G, G a variable, and Lm the matter Lagrangian. The reason
for the introduction of A′ is to take care of terms in the second derivatives of the metric.
This enables simple equations in the variables G and Λ [45]. The Euler–Lagrange equations
used here are

∂L

∂G
= ▽a

∂L

∂(∂aG)
(3)

This yields

V′(G) =
R

G2
(4)

Varying the action (2) with respect to gab, we obtain

Rab −
1

2
Rgab = GTab − (

1

2
GV(G))gab (5)

where the matter tensor Tab arises from the matter Lagrangian Lm. If we now let

1

2
GV(G) = Λ (6)

then we finally obtain

Rab −
1

2
Rgab + Λgab = GTab (7)

where G and Λ are variable.
From Equation (7), we can derive the field equations as

−3H2 + Λ(t) = −G(t)ρ (8)

−2Ḣ − 3H2 + Λ(t) = G(t)p (9)

From the above two equations, we can derive a modified energy conservation equation
with variable G and Λ, as follows:

ρ̇ + 3H(ρ + p) = −ρ

(

Ġ

G

)

−
Λ̇

G
. (10)

We notice that in this simplest formalism with variable G and Λ, using a Lagrangian
formulation, we can still retain the usual energy conservation law in general relativity
and obtain a separate equation for the variation of G and Λ, as follows:

ρ̇ + 3H(ρ + p) = 0, (11)
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ρ

(

Ġ

G

)

+
Λ̇

G
= 0. (12)

Another Lagrangian derivation has been given by Lau [46] and Lau and Prokhovnik [47] in
terms of a scalar formulation for Λ.

Since ρ is non-negative, it follows immediately from Equation (12) that if Ġ is positive
(negative), then Λ̇ is negative (positive). So, a decreasing cosmological parameter implies
an increasing gravitational parameter, and vice versa. Usually, a decreasing cosmological
parameter is favoured, and this implies an increasing gravitational parameter. A variation
of the type (12) seems to have been first considered by DerSarkissian [48], and since then,
has been considered by many authors. A partial list of them is [49–56]. Further references
can be found in these citations.

It is interesting to investigate what is the situation in other theories of gravity.

3. Scale Covariant Theory

Canuto et al. [57] came up with an alternative theory—the scale-covariant theory of
gravitation. In this theory, there are two systems of units. One of them is gravitational
units in which Einstein’s field equations are valid, and the other is atomic units in which
physical quantities are expressed in atomic units. A conformal transformation relates the
two systems of units, as follows:

ḡab = φ2gab, (13)

where indices a, b take their values 0, 1, 2, 3, the bar indicates gravitational units, and un-
barred quantities refer to atomic units. The scalar function φ satisfies 0 < φ < ∞. The action
for the theory is

I =
∫

(Aφ4 − φ2R + 6φaφa + 2G(φ)L)
√

−gd4x, (14)

where R is the Ricci scalar, L is the Lagrangian of the matter, and φa denotes the ordinary
derivative. We note that the gravitational parameter G(φ) is no longer a constant, but a
function of φ. Performing a variation of (14), we find the field equations for the scale
covariant theory as [57]

Rab −
1

2
Rgab + fab(φ) + Λ(φ)gab = GTab, (15)

where

fab(φ) =
1

φ2

[

2φφa;b − 4φaφb − gab(2φφd
;d − φdφd)

]

. (16)

Here, Rab and Tab stand for the Ricci tensor and energy-momentum tensor, respectively.
Again, we notice that the cosmological parameter Λ(φ) is no longer a constant, but a
function of the scalar φ. The scale-covariant theory involves a non-minimal coupling
between the gauge function φ and the Ricci scalar R.

For a flat FLRW space-time, the metric is

ds2 = −a2(t)(dx2 + dy2 + dz2) + dt2. (17)

where a is the scale factor. Also, the matter-stress tensor for a fluid that is perfect can be
written as

Tab = pgab + (ρ + p)uaub, (18)

where ρ, p, and ua represent the energy density, pressure, and the four-velocity vector,
respectively. In a co-moving coordinate system, uaua = −1 and uaub = 0. The field equa-



Universe 2024, 10, 404 6 of 11

tions in the scale covariant theory for a flat FLRW space-time can be found by expanding
the tensor Equations (15) and (16), as follows:

2Ḣ + 3H2 + 6H
φ̇

φ
+ 2

φ̈

φ
−

φ̇2

φ2
= −8πGp + Λ, (19)

3H2 + 6H
φ̇

φ
+ 3

φ̇2

φ2
= 8πGρ + Λ, (20)

The continuity equation, which is a consequence of the field Equations (19) and (20), is
given by [58–60]

ρ̇ + 3H

[

ρ + p

(

1 +
φ̇

Hφ

)]

= −ρ

(

Ġ

G
+

φ̇

φ

)

−
Λ̇

G
. (21)

4. Models in SCT with Decreasing Parameters

The modified energy conservation Equation (21) can be split up in the following way:

ρ̇ + 3H(ρ + p) + 3p
φ̇

φ
= 0 (22)

ρ

(

Ġ

G
+

φ̇

φ

)

+
Λ̇

G
= 0 (23)

The reason for splitting up the modified conservation equation in this is the following.

The term 3p
φ̇
φ involves the term p, and hence it needs to be added to the term 3Hp. Also,

we note that when φ = 1 in Equation (22), then we recover general relativity. Secondly,
putting φ = 1 in Equation (23), we obtain the same equation as Equation (11) [48]. We can
write Equation (23) in the following way:

Λ̇

G
= −ρ

(

Ġ

G
+

φ̇

φ

)

(24)

From this equation, it is possible to deduce that there is a large class of solutions that permit
both decreasing Λ and G. The variable Λ is positive [61] and expected to decrease with time
for many reasons, including a possible solution to the cosmological constant problem [62].
Therefore, since G is positive, the left side of Equation (24) is negative. This means that the
right side must also be negative, i.e.,

−ρ

(

Ġ

G
+

φ̇

φ

)

< 0 (25)

or, since the energy density ρ is assumed positive, we must have

Ġ

G
+

φ̇

φ
> 0 (26)

or,
Ġ

G
> −

φ̇

φ
(27)

For decreasing G, we must have Ġ/G < 0. Unfortunately, in the scale covariant theory,
the specific choice of the gauge function φ is not dictated to by the theory itself, but has to be
put in by hand. Then, one has to check how well this fits in with observational constraints.
Canuto et al. [57,63] have resricted φ as follows:

φ ∼ tn, − 1 ≤ n ≤ +1 (28)
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Then
φ̇

φ
=

n

t
(29)

Let us choose n = 1, and for G let us choose

G =
1

logt
(30)

Then, Ġ/G < 0, and we find that the requirement (27) is satisfied.
Hence, we have demonstrated that there are solutions in the scale covariant theory for

which both the cosmological parameter Λ and gravitational parameter G decrease with
time. This is not possible in the equivalent formulation in general relativity.

5. f (R, T) Theory of Gravity

Another very interesting modified gravity theory is f (R, T) gravity [64], which has
recently garnered the attention of researchers. In this theory, the Lagrangian comprises
arbitrary functions of the the trace (T) of the energy-momentum tensor, and the Ricci scalar
(R). The variation of the energy-momentum tensor with respect to the metric leads to a
source term, i.e., f (Lm). Hence, a different set of field equations is obtained for different
choices of Lm. If the action of f (R, T) gravity, then the field equations are obtained by [64]
as follows:

S =
∫

√

−g

(

1

G
f (R, T) + Lm

)

d4x (31)

where Lm is the matter Lagrangian density and f (R, T) is an arbitrary function of the trace
(T) of the energy momentum tensor Tab and the Ricci scalar (R). The field equations of
the theory are obtained in the standard way by the usual variation. Consider a perfect
fluid given by (18), and matter Lagrangian density Lm = −p. In order to analyse whether
we could obtain both Λ and G decreasing, we choose a relatively simple form of f (R, T),
viz., f (R, T) = R + 2ηT, where η is a constant which indicates the departure from general
relativity. For the above choices, the action (31) leads to the following field equations:

Rab −
1

2
Rgab + Λgab = (G + 2η)Tab + η(ρ − p)gab (32)

For η = 0, we obtain the field Equations (7).
Then, the FLRW metric (17) in conjunction with the field Equation (32) lead to the

Raychaudhuri-type equation

−2Ḣ − 3H2 +
k

S2
+ Λ = −ηGρ + (1 + η)Gp (33)

and the Friedmann equation

−3H2 + Λ = −(1 + 3η)Gρ + ηGp (34)

We note that for η = 0, we obtain the Equation (7). By differentiating Equation (34) and
substituting into Equation (33), we are able to derive an energy conservation type equation
in f (R, T) gravity

ρ̇ + 3H(ρ + p) = −

(

Ġ

G

)

−
Λ̇

G
−

3η

G
ρ̇ −

6η

G
ρH −

6η

G
pH +

η

G
ṗ. (35)
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Again, for η = 0, we see that we obtain the same equation as Equation (11). To have the
minimum departure from general relativity, we assume the usual energy conservation law
by splitting the modified energy conservation law (35), as follows:

ρ̇ + 3H(ρ + p) = 0 (36)

and the following equation, which includes the evolution of G and Λ:

−

(

Ġ

G

)

ρ −
Λ̇

G
−

3η

G
ρ̇ −

6η

G
ρH −

6η

G
pH +

η

G
ṗ = 0 (37)

This equation can be written as

−

(

Ġ

G

)

ρ −
Λ̇

G
−

2η

G
[ρ̇ + 3H(ρ + p)]−

η

G
ρ̇ +

η

G
ṗ = 0 (38)

By Equation (36), we finally obtain

Λ̇ = −Ġρ − ηρ̇ + η ṗ (39)

Hence, here we can have both G and Λ decreasing by choosing Ġρ > −ηρ̇ + η ṗ. In fact,
we have the possibility of all nine combinations of decreasing Λ, constant Λ and increasing
Λ with decreasing G, constant G, and even increasing G. Hence, we have demonstrated
that in f (R, T) theory of gravity, it is possible to have both G and Λ decreasing.

6. Results

We have analysed cosmological models in which the gravitational parameter G and
the cosmological parameter Λ are allowed to be variable in the simplest formalism, as con-
sidered by many authors. In general relativity, one parameter has to be increasing and the
other decreasing. The situation in several modified theories of gravity is shown to be more
flexible, and we can have both parameters decreasing, which is preferred by observations.

We comment on splitting the full energy conservation law (35) into Equations (36) and (37).
Firstly, we wish to regain the usual energy conservation law as in general relativity in the
appropriate limit. Secondly, it enables us to obtain one more equation if we are seeking a
full solution to the equations. Several authors have used this splitting, such as [65–67] and
references therein.

7. Discussion

The idea of variable constants of nature is not new and goes back over a century.
In this work, we focus on variable cosmological and gravitational parameters. We firstly
consider the simplest extension of general relativity allowing for variable cosmological and
gravitational parameters. Such a similar formalism can also arise in special forms of other
theories of gravity such as the Brans–Dicke theory (or the scalar tensor theory based on
it), the scale covariant theory and f (R, T) gravity. In general relativity, one parameter can
increase, but the other has to decrease. The preferred variation of these parameters is a
decrease in both. We find that in the scale covariant theory and f (R, T) gravity, we can
have both parameters decreasing. Harko and Mak [68] also found a similar result with
particle creation in general relativity with variables G and Λ. We also noted that a variation
of fundamental constants of nature can solve the familiar Hubble tension problem. A
variation of Λ provides a better fit to the data than does the standard ΛCDM model [69,70].
Sola et al. [71] carried out a very detailed analysis of several models with a running vacuum
parameter (basically a varying Λ), and found a better fit to observations than the ΛCDM
model. The transition redshift was found to be approximately the same as that of the
ΛCDM model. Perico et al. [72] investigated a number of models in which the variation
of Λ is expressed in a power series of the H. The proposed class of such models provides
the following:
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• A possible solution to the graceful exit problem;
• A new solution to inflation;
• The radiation and matter eras;
• At the present time, dark energy that evolves slowly;
• The present acceleration of the universe;
• A de Sitter stage as the end state.

The late-time acceleration is similar to the concordance ΛCDM model. Another
pleasing feature of these models is that they allow for a smooth change between all the eras
of the evolution, i.e., the initial inflation era, the radiation- and matter-dominated era, and
final late-time accelerated expansion. As far as the future is concerned, better observations
will be able to constrain the fundamental constants and their variation to better accuracy.
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5. Abebe, A.; Alfedeel, A.H.; Sofuoğlu, D.; Hassan, E.I.; Tiwari, R.K. Perturbations in Bianchi-V Spacetimes with Varying Λ, G and

Viscous Fluids. Universe 2023, 9, 61. [CrossRef]

6. Dirac, P.A.M. The Cosmological Constants. Nature 1937, 139, 323. [CrossRef]

7. Dirac, P.A.M. New basis for cosmology. Proc. Roy. Soc. Lond. A 1938, 165, 198. [CrossRef]

8. Duff, M.J. Comment on time-variation of fundamental constants. arXiv 2002, arXiv:0208093v4.

9. Olive, K.A. Testing the variation of fundamental constants with astrophysical and spectroscopic data. Can. J. Phys. 2011, 89,

10–107.

10. Kelvin, W.T.; Tait, P.G. Treatise on Natural Philosophy; Cambridge University Press: Cambridge, UK, 1874; Volume 1, p. 403.

11. Weyl, H. Zur Gravitationstheorie. Ann. Phys. 1917, 359, 117–145. [CrossRef]

12. Weyl, H. Eine neue Erweiterung der Relativitätstheorie. Ann. Phys. 1919, 364, 101–133. [CrossRef]

13. Eddington, A. Preliminary Note on the Masses of the Electron, the Proton, and the Universe. Proc. Camb. Philos. Soc. 1931, 27,

15–19. [CrossRef]

14. Milne, E.A. Relativity, Gravitation and World Structure, 1st ed.; Clarendon Press: Oxford, UK, 1935.

15. Haldane, J.B.S. Physical science and philosophy. Nature 1937, 139, 1002.

16. Haldane, J.B.S. Radioactivity and the origin of life in Milne’s cosmology. Nature 1944, 153, 555. [CrossRef]

17. Jordan, P. Die physikalischen Welkonstanten. Die Naturwissen 1937, 25, 513–517. [CrossRef]

18. Jordan, P. Bemerkungen zur Kosmologie. Ann. Phys. 1939, 428, 64–70. [CrossRef]

19. Dubois, E.; Furza, A. Comments on P. Jordan’s Cosmological Model. Universe 2020, 6, 82. [CrossRef]

20. Teller, E. On the Change of Physical Constants. Phys. Rev. 1948, 73, 801–802. [CrossRef]

21. Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 924–935. [CrossRef]

22. Landau, S.J.; Vucetich, H. Testing theories that predict time variation of fundamental constants. Astrophys, 2002, 570, 463.

[CrossRef]

23. Laurentis, M.D.; Martino, I.D.; Lazkoz, R. Analysis of the Yukawa gravitational potential in f (R) gravity. II. Relativistic periastron

advance Phys. Rev. D 2018, 97, 104068. [CrossRef]

24. Fujii, Y.; Maeda, K.I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003.

25. An J.; Xue, Y.; Caoa, Z.; He, X.; Sun, B. The effect of the gravitational constant variation on the propagation of gravitational waves.

Phys. Lett. B 2023, 844, 138108. [CrossRef]

26. A Possible Solution to the Hubble Tension Problem via the Hypothesis of Cosmologically Varying Fundamental Natural Constants

Paper (I). Research Gate. Available online: https://www.researchgate.net/publication/384160362 (accessed on 25 September

2024).

http://doi.org/10.1098/rsta.2005.1634
http://www.ncbi.nlm.nih.gov/pubmed/16147502
http://dx.doi.org/10.1093/mnras/stad3240
https://arxiv.org/abs/2311.03399
http://dx.doi.org/10.3390/universe9020061
http://dx.doi.org/10.1038/139323a0
http://dx.doi.org/10.1098/rspa.1938.0053
http://dx.doi.org/10.1002/andp.19173591804
http://dx.doi.org/10.1002/andp.19193641002
http://dx.doi.org/10.1017/S0305004100009269
http://dx.doi.org/10.1038/153555a0
http://dx.doi.org/10.1007/BF01498368
http://dx.doi.org/10.1002/andp.19394280106
http://dx.doi.org/10.3390/universe6060082
http://dx.doi.org/10.1103/PhysRev.73.801
http://dx.doi.org/10.1103/PhysRev.124.925
http://dx.doi.org/10.1086/339775
http://dx.doi.org/10.1103/PhysRevD.97.104068
http://dx.doi.org/10.1016/j.physletb.2023.138108
https://www.researchgate.net/publication/384160362


Universe 2024, 10, 404 10 of 11

27. Gammal, J.E.; Günther, S.; Holm, E.B.; Nygaard, A. Circular Reasoning: Solving the Hubble Tension with a Non-π Value of π.

arXiv 2024, arXiv:2403.20219. Available online: https://arxiv.org/pdf/2403.20219v1 (accessed on 25 September 2024).

28. Chluba, J.; Hart, L. Varying Fundamental Constants Meet Hubble. arXiv 2017, arXiv:2309.12083. Available online: https:

//arxiv.org/pdf/2309.12083 (accessed on 25 September 2024).

29. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [CrossRef]

30. Straumann, N. The History of the Cosmological Constant Problem. arXiv 2002, arXiv:gr-qc/0208027. Available online: https:

//arxiv.org/abs/gr-qc/0208027 (accessed on 25 September 2024).

31. Bronstein, M. On the expanding universe. Phys. Z. Sowjetunion 1933, 3, 73–82.

32. Poplawski, N. A Lagrangian description of interacting dark energy. arXiv 2006, arXiv:gr-qc/0608031.

33. Bronstein, M.P. Quantization of Gravitational Waves. Moscow. J. Exp. Theor. Phys. 1936, 6, 195–236.

34. Overduin, J.M.; Cooperstock, F.I. Evolution of the scale factor with a variable cosmological term. Phys. Rev. D 1988, 58, 043506.

[CrossRef]

35. Kragh, H.S.; Overduin, J.M. Weight of the vacuum: A scientific history of dark energy. In Variable Cosmological Constants and

Quintessence; Springer: Berlin/Heidelberg, Germany, 2014; pp. 77–87.

36. Sola, J. Cosmological constant and vacuum energy: Old and new ideas. J. Phys. Conf. Ser. 2013, 453, 012015. [CrossRef]

37. Moreno-Pulido, C.; Sola, J. Running vacuum in quantum field theory in curved spacetime: Renormalizing ρ vac without ∼ m4

terms. Eur. Phys. J. C 2020, 80, 692. [CrossRef]

38. Moreno-Pulido, C.; Peracaula, J.S. Renormalizing the vacuum energy in cosmological spacetime: Implications for the cosmological

constant problem. Eur. Phys. J. C 2022, 82, 551. [CrossRef]

39. Moreno-Pulido, C.; Peracaula, J.S. Equation of state of the running vacuum. Eur. Phys. J. C, 2022, 82, 1137. [CrossRef]

40. Moreno-Pulido, C.; Peracaula, J.S.; Cheraghchi, S. Running vacuum in QFT in FLRW spacetime: The dynamics of ρ vac(H) from

the quantized matter fields. Eur. Phys. J. C 2023, 83, 637. [CrossRef]

41. Peracaula, J.S.; Gomez-Valent, A.; Perez, J.d.; Moreno-Pulido, C. Running Vacuum in the Universe: Phenomenological Status in

Light of the Latest Observations, and Its Impact on the σ8 and H0 Tensions. Universe 2023, 9, 262. [CrossRef]

42. Perez, J.d.C.; Peracaula, J.S. Running vacuum in Brans-Dicke theory: A possible cure for the σ8 and H0 tensions. Phys. Dark

Universe 2024, 43, 101406. [CrossRef]

43. Hova, H. Accelerating universe with decreasing gravitational constant. J. King Saud Univ.-Sci. 2020, 32, 1459–1463 [CrossRef]

44. Krori, K.D.; Chaudhury, S.; Mukherjee, A. Cosmologies with Variable G and Λ from Action Principle. Gen. Relativ. Grav. 2000, 32

1439–1446. [CrossRef]

45. Gibbons, G.; Hawking, S.W. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 1977, 15,

2738–2751. [CrossRef]

46. Lau, Y.-K. The Large Number Hypothesis and Einstein’s Theory of Gravitation. Aust. J. Phys. 1985, 38, 547–553. [CrossRef]

47. Yun, Y.-K.; Prokhovnik, S.J. The Large Numbers Hypothesis and a Relativistic Theory of Gravitation. Aust. J. Phys. 1986, 39,

339–346.

48. DerSarkissian, M. The Cosmological Constant (Λ) as a Possible Primordial Link to Einstein’s Theory of Gravity, the Properties of

Hadronic Matter and the Problem of Creation. Il Nuovo C. 1985, 88, 29–42. [CrossRef]

49. Belinchon, J.A.; Chakrabarty, I. Perfect fluid cosmological models with time-varying constants. Int. J. Mod. Phys. D 2003, 12,

1113–1129. [CrossRef]

50. Chakraborty, I.; Pradhan, A. LRS Bianchi I models with time varying gravitational and cosmological constants. Grav. Cosm. 2001,

7, 55–57.

51. Singh, K.P. On Robertson-Walker universe model with variable cosmological term and gravitational constant in cosmological

relativity theory. Turk.J. Phys. 2010, 34, 172–180. [CrossRef]

52. Jamil, M.; Debnath, U. FRW Cosmology with Variable G and Λ Int. J. Theor. Phys. 2011, 50, 1602–1613. [CrossRef]

53. Singh, G.P.; Bishi, B.K. FRW universe with variable G and Λ term in f (R, T) gravity. Rom. J. Phys. 2015, 60 , 32–43.

54. Shabani, H.; Ziaie, A.H. Consequences of energy conservation violation: Late time solutions of Λ(T)CDM subclass of f (R, T)
gravity using dynamical system approach. Eur. Phys. J. C 2017, 77, 282. [CrossRef]

55. Kumrah, L.; Singh, S.S.; Devi, L.A. Time dependent G and Λ cosmological model in f (R, T) gravity. New Astr. 2022, 93, 101760.

[CrossRef]

56. Singh, V.; Jokweni, S.; Beesham, A. FLRW Transit Cosmological Model in f (R, T) Gravity. Universe 2024, 10, 272. [CrossRef]

57. Canuto, V.; Hsieh, S.H.; Adams, P.J. Scale-Covariant Theory of Gravitation and Astrophysical Applications. Phys. Rev. Lett. 1977,

39, 429–432. [CrossRef]

58. Canuto, V.; Adams, P.J.; Hsieh, S.H.; Tsiang, E. Scale Covariant Theory of Gravitation and Astrophysical Applications. Phys. Rev.

D 1977, 16, 1643–1663. [CrossRef]

59. Beesham, A. Physical interpretation of constants in the solutions to the Brans-Dicke equations. Mod. Phys. Lett., 1998, 13, 805–810.

[CrossRef]

60. Singh, K.M.; Mandal, S.; Devi, L.P.; Sahoo, P.K. Dark Energy and Modified Scale Covariant Theory of Gravitation. New Astron.

2020, 77, 101353. [CrossRef]

61. Carroll, S.M. The Cosmological Constant. Liv. Rev. Relativ. 2001, 4, 1–56. [CrossRef] [PubMed]

62. Garriga, J.; Vilenken, A. Solutions to the cosmological constant problems. Phys. Rev. D 2001, 64, 023517. [CrossRef]

https://arxiv.org/pdf/2403.20219v1
https://arxiv.org/pdf/2309.12083
https://arxiv.org/pdf/2309.12083
http://dx.doi.org/10.1103/RevModPhys.61.1
https://arxiv.org/abs/gr-qc/0208027
https://arxiv.org/abs/gr-qc/0208027
http://dx.doi.org/10.1103/PhysRevD.58.043506
http://dx.doi.org/10.1088/1742-6596/453/1/012015
http://dx.doi.org/10.1140/epjc/s10052-020-8238-6
http://dx.doi.org/10.1140/epjc/s10052-022-10484-w
http://dx.doi.org/10.1140/epjc/s10052-022-11117-y
http://dx.doi.org/10.1140/epjc/s10052-023-11772-9
http://dx.doi.org/10.3390/universe9060262
http://dx.doi.org/10.1016/j.dark.2023.101406
http://dx.doi.org/10.1016/j.jksus.2019.11.042
http://dx.doi.org/10.1023/A:1001973832645
http://dx.doi.org/10.1103/PhysRevD.15.2738
http://dx.doi.org/10.1071/PH850547
http://dx.doi.org/10.1007/BF02729027
http://dx.doi.org/10.1142/S0218271803003724
http://dx.doi.org/10.3906/fiz-1007-2
http://dx.doi.org/10.1007/s10773-011-0670-9
http://dx.doi.org/10.1140/epjc/s10052-017-4844-3
http://dx.doi.org/10.1016/j.newast.2021.101760
http://dx.doi.org/10.3390/universe10070272
http://dx.doi.org/10.1103/PhysRevLett.39.429
http://dx.doi.org/10.1103/PhysRevD.16.1643
http://dx.doi.org/10.1142/S0217732398000863
http://dx.doi.org/10.1016/j.newast.2019.101353
http://dx.doi.org/10.12942/lrr-2001-1
http://www.ncbi.nlm.nih.gov/pubmed/28179856
http://dx.doi.org/10.1103/PhysRevD.64.023517


Universe 2024, 10, 404 11 of 11

63. Canuto, V.M.; Hsieh, S.H.; Owen, J.M. Scale Covariance and G-varying Cosmology. III. The (m, z), (θm, z), (θi,z), and [N(m), m]

Tests. Astrophys. J. Suppl. Ser. 1979, 41, 263–300. [CrossRef]

64. Harko, T. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [CrossRef]

65. Jaekel, A.P.; da Silva, J.P.; Velten, H. Revisiting f (R, T) cosmologies. Phys. Dark Univ. 2024, 43, 101401. [CrossRef]

66. Bertini, N.R.; Velten, H. Fully conservative f (R, T) gravity and Solar System constraints. Phys. Rev. D 2023, 107, 124005. [CrossRef]

67. Singh, V.; Beesham, A. The f (R, Tφ) gravity models with conservation of energy–momentum tensor. Eur. Phys. J. C 2018, 78, 564.

[CrossRef]

68. Harko, T.; Mak, M.K. Particle Creation in Cosmological Models with Varying Gravitational and Cosmological “Constants”. Gen.

Relativ. Gravit. 1999, 31, 849–862. [CrossRef]

69. Alam, U.; Sahni, V.; Starobinsky, A.A. The case for dynamical dark energy revisited. J. Cosm. Astro. Phys. 2004, 0406, 008.

[CrossRef]

70. Kaloper, N. Dark energy, H0 and weak gravity conjecture. Int. J. Mod. Phys. D 2019, 28, 1944017. [CrossRef]

71. Sola, J.; Perez, J.C.; Gomez-Valent, A. Towards the First Compelling Signs of Vacuum Dynamics in Modern Cosmological

Observations. arXiv 2017, arXiv:1703.08218. Available online: https://arxiv.org/abs/1703.08218v1 (accessed on 17 October 2024).

72. Perico, E.L.D.; Lima, J.A.S.; Basilakos, S.; Sola, J. Complete Cosmic History with a Dynamical Λ = Λ(H)term. arXiv 2013,

arXiv:1306.0591. Available online: https://arxiv.org/abs/1306.0591v2 (accessed on 17 October 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1086/190619
http://dx.doi.org/10.1103/PhysRevD.84.024020
http://dx.doi.org/10.1016/j.dark.2023.101401
http://dx.doi.org/10.1103/PhysRevD.107.124005
http://dx.doi.org/10.1140/epjc/s10052-018-5913-y
http://dx.doi.org/10.1023/A:1026634204476
http://dx.doi.org/10.1088/1475-7516/2004/06/008
http://dx.doi.org/10.1142/S0218271819440176
https://arxiv.org/abs/1703.08218v1
https://arxiv.org/abs/1306.0591v2

	Introduction
	Lagrangian Formulation
	Scale Covariant Theory
	Models in SCT with Decreasing Parameters
	bold0mu mumu f(R,T)f(R,T)sectionf(R,T)f(R,T)f(R,T)f(R,T) Theory of Gravity
	Results
	Discussion
	References

