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Abstract: A relativistic version of the rational extended thermodynamics of polyatomic gases based
on a new hierarchy of moments that takes into account the total energy composed by the rest energy
and the energy of the molecular internal mode is proposed. The moment equations associated with
the Boltzmann—Chernikov equation are derived, and the system for the first 15 equations is closed by
the procedure of the maximum entropy principle and by using an appropriate BGK model for the
collisional term. The entropy principle with a convex entropy density is proved in a neighborhood of
equilibrium state, and, as a consequence, the system is symmetric hyperbolic and the Cauchy problem
is well-posed. The ultra-relativistic and classical limits are also studied. The theories with 14 and 6
moments are deduced as principal subsystems. Particularly interesting is the subsystem with 6 fields
in which the dissipation is only due to the dynamical pressure. This simplified model can be very
useful when bulk viscosity is dominant and might be important in cosmological problems. Using the
Maxwellian iteration, we obtain the parabolic limit, and the heat conductivity, shear viscosity, and
bulk viscosity are deduced and plotted.

Keywords: relativistic extended thermodynamics; rarefied polyatomic gas; causal theory of
relativistic fluids

1. Introduction

Rational extended thermodynamics (RET) is a theory applicable to nonequilibrium
phenomena out of local equilibrium. It is expressed by a hyperbolic system of field equa-
tions with local constitutive equations and is strictly related to the kinetic theory with the
closure method of the hierarchies of moment equations in both classical and relativistic
frameworks [1,2].

The first relativistic version of the modern RET was given by Liu, Miiller, and Ruggeri
(LMR) [3] considering the Boltzmann—Chernikov relativistic equation [4-6]:

paazxf =Q, 1)

in which the distribution function f depends on (x*, pf), where x* are the space-time coor-
dinates, p* is the four-momentum, d, = 9/9x*, Q is the collisional term, and &, § = 0, 1,2, 3.
For monatomic gases, the relativistic moment equations associated with (1), truncated at
tensorial index N + 1 are:

Qu At — M with =0, N, 2)
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where ¢ denotes the light velocity, m is the particle mass in the rest frame, and

o WA
p
If n = 0, the tensor reduces to A%; moreover, the production tensor in the right-side of (2)
is zero for n = 0,1, because the first 5 equations represent the conservation laws of the
particle number and of the energy-momentum, respectively.
When N = 1, we have the relativistic Euler system

0, A =0, 9,A% =0, (4)

where, also in the following, A* = V* and A*f = T*f have the physical meaning, respec-
tively, of the particle number vector and the energy-momentum tensor. Instead, when
N = 2, we have the LMR theory of a relativistic gas with 14 fields:

0A* =0, 9,AY =0, 9,AT = [PY, (’y =0,1,2,3; I* = o). ®)

Recently, Pennisi and Ruggeri first constructed a relativistic RET theory for polyatomic
gases with (2) in the case of N = 2 [7] (see also [8,9]) whose moments are given by

av—me [ [ fprp(z)azap,
1 (]
/R3/0 fP“P‘B(mcz-i-I) ¢(Z)dzap, (6)

AP —
Ay — L T By (2 27) ¢(Z)dZ dP
= e Jos Jo PP (me” +21) o(T) /

mc

where the distribution function f(x%, pP, ) depends on the extra variable Z, similar to the
classical one (see [2] and references therein), that has the physical meaning of the molecular
internal energy of internal modes in order to take into account the exchange of energy due to
the rotation and vibration of a molecule, and ¢(I) is the state density of the internal mode.

In [7], by taking the traceless part of the third order tensor (i.e., A*f7)) as a field
instead of A*f7 in (5)3, the relativistic theory with 14 fields (RETq4) was proposed. It was
also shown that its classical limit coincides with the classical RET14 based on the binary
hierarchy [2,10,11]. The beauty of the relativistic counterpart is that there exists a single
hierarchy of moments, but, as was noticed by the authors, to obtain the classical theory of
RET}4, it was necessary to put the factor 2 in front of 7 in the last equation of (6)! This was
also more evident in the theory with any number of moments, where Pennisi and Ruggeri
generalized (6) considering the following moments [12]:

Xopky 1 oo X 01 Xn 2
A = ) fPP ceep mc” +nZ 4)(I)dIdP,
7)
400
Il!(l'“tl(n — m}/lc /l‘%3/‘0 Qplxl .. plxn (mC2 + nI) ¢(I) dIdP

In this case, we need a factor nZ in (7) to obtain, in the classical limit, the binary hierarchy.
To avoid this unphysical situation, Pennisi first noticed that (mc? + nZ) appearing in (7)
are the first two terms of the Newton binomial formula for (mc? + Z)" / (mc?)"~1. Therefore
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he proposed in [13] to modify, in the relativistic case, the definition of the moments by
using the substitution:

(mcz)”*l (mc2 + nI) with (mc2 + I)n,

that is, instead of (7), the following moments are proposed:

1 \2n—-1 +00 n
a0 L S Y 1 2
A (o) /RS [ gt (me 4 T) p(T)dZaP, o
[t — (i)znil/ +oo Qpft---p™ (mc2 —I—I)n‘i’(I) dZ dP
me Rr3 Jo '

Such definitions are more physical because now the full energy (the sum of the rest frame
energy and the energy of internal modes) mc? + Z appears in the moments.

The aim of this paper is to consider the system (5) with moments given by (8). In
this way, for the case with N = 2 also, by taking the trace part of A*f" as a field, we have
15 field equations, and to close the system, we adopt the molecular procedure of RET based
on the maximum entropy principle.

The paper is organized as follows. In Section 2, the values of generic moments in an
equilibrium state are estimated in the general case. In Section 3, the RET theory for 15 fields
(RET;5) is proposed, and the constitutive quantities are closed near the equilibrium state. By
adopting a variant of the BGK model appropriate for polyatomic gases proposed by Pennisi
and Ruggeri [14], the production tensor is derived. In Section 4, the four-dimensional
entropy flux and the entropy production are deduced within the second order with respect
to the nonequilibrium variables. Then, we show the condition of convexity of the entropy
density and the positivity of the entropy production, which ensure the well-posedness of
the Cauchy problem and the entropy principle as a result. We also discuss in Section 5 the
case of the diatomic gases for which all coefficients are expressed in closed form in terms of
the ratio of two Bessel functions, similar to the case of monatomic gases. In Section 6, we
study the ultra-relativistic limit. In Section 7, the principal subsystems of RET;5 are studied.
First, we obtain RET74 in which all field variables have physical meaning. Then, at the
same level as RET14 in the sense of the principal subsystem, there also exists the subsystem
with 6 fields in which the dissipation is only due to the dynamical pressure. This system is
important in the case that the bulk viscosity is dominant compared to the shear viscosity
and heat conductivity, and it must be particularly interesting in cosmological problems.
The simplest subsystem is the Euler non-dissipative case with 5 fields. In Section 8, we use
the Maxwellian iteration and, as a result, the phenomenological coefficients of the Eckart
theory, that is, the heat conductivity, shear viscosity, and bulk viscosity are determined
with the present model. Finally, in Section 9, we show that the classic limit of the present
model coincides with the classical RET5 studied in [15].

2. Distribution Function and Moments at Equilibrium

The equilibrium distribution function fr of polyatomic gas that generalizes the Jiittner
one of monatomic gas was evaluated in [7] with the variational procedure of the maximum
entropy principle (MEP) [1,16-18]. Considering the first 5 balance equations of (5) in
equilibrium state:

t = VE =mnU", A"éﬁ = Tgﬁ = ph*f + c% usu®.

MEDP requires that the appropriate distribution function f = f(x%, p*, Z) is the one which
maximizes the entropy density

+0c0
0S = hp = KUy = —kgc Uy /Ra/o Fln fp¢(T) dZ dP,
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under the constraints that the temporal parts V*U, and TP Uﬁ are prescribed. Here,
kg, n,p(=nm), U", h*B, p, e, S are, respectively, the Boltzmann constant, the particle number,
the mass density, the four-velocity (U*U, = c?), the projector tensor (h*f = U*UP /c* —
¢*P), the pressure, the energy, and the entropy density, and g*# = diag(1, —1, -1, —1) is
the metric tensor.

The equilibrium distribution function for a rarefied polyatomic gas that maximizes
the entropy has the following expression [7]:

fr = @@e@%[(”mﬁ)”ﬁ”ﬁl Aly) = /0+°° i1 ¢(Z)dT )

with T being the absolute temperature,

* * * T . WlC2
Im,n—]m,n("/ ) Y —7(14'@)/ ’Y—m/
and oo
Jmn(y) = / e~V oshs ginh™ s cosh™ s d s,
0
subjected to the following recurrence relations [3,7]:
T2 (Y) = Tmn+2(¥) = T (7) (10)
_’7]m+2,n(')') = n]m,nfl('Y) - (” +m+ 1)Im,n+1 (,),) . (11)

The pressure and the energy compatible with the equilibrium distribution function (9)
are [7]:

kg

p=-—pT, e = pctw(7),
T (1455 ) ¢(T)dT 12)
with  w(y) = T .
o J19(Z)dT

Taking into account that e = pc? + pe, where ¢ is the internal energy, we deduce from (12):
e=c*(w—1). (13)

Therefore, the internal energy is a function only of - or, it is the same, of T as in the classical
case for rarefied gases.
The moments in equilibrium state A?Xl”ﬂj for j > 2 were deduced in [13]:

j+1
2

Al)Eqm'X”rl =) pCZka,j AT TR IR 5 IS N § 7SV (14)
k=0

where
+00 1y A ]
1 (j+1\Jo Tarszjir-ak (1 + W) ¢(Z)d1
%i = 21\ 2 S (11 dT (15)
o J19(T)



Entropy 2022, 24, 43

5 of 30

are dimensionless functions depending only on <. Taking into account (12) and (15), we
obtain 6y = 1, 6p1 = w(7), and using the recurrence Formula (10) and (11), in [13], the
following recurrence relations hold:

oo =1,
00,41 = 60, — 6o ith =2
0j+1 =w(7) 060, — 0y wi =4
_jt2 j+3—2h _ j+1 (16)
eh,j+1 = (Gh,j + o7 9]1_1,]') forh = 1, ey, 72 ’
1 ,
012 for j even.

Al Ty b

It is interesting to see that all the scalar coefficients can be expressed in terms of the function
w(7) and of its derivatives with respect to y (or with respect to the temperature T), and
w is strictly related to the internal energy & by (13). A similar situation is studied in the
article [15] for the non-relativistic case.

The values of 6, ; can be determined, by using the recurrence Formula (16), according
to the following diagram:

boo = 61 = 6o = b3
N\
011 — 010 — 013

pY

ths — 04

We see that all the 6 ; can be obtained from 6y by using Equation (16),, and the other
6, with j > h can be obtained from Equations (16)34. In particular, we can evaluate
the following ones that need to be known for the model with 15 fields in the subsequent
sections:

oo =1, o1 = w, fop = w? — &,
003 = w® 4+ " — 3w, fo4 = Wt — 0" +dww” + 3w - 60*,
1 3 6
611 = —, 01, = —=(yw+1), 013 = — |7 (w? — W) +2(yw +1)|,
11 ” 1,2 7 (v ) 13 7 [7 ( ) (7 )} 17)
0., — 9{3 ) 30,3 4 1 /
4= Ylw(yw +2) =y’ + 64+ 7 (0’ + W' = Bww') ¢,
3 15
03 = $(7w—|—1), 0r4 = ?hz(wz — ') +3('yw+1)}.

3. The Closure for the 15 Moments Model

In this section, we consider the simplest and physical case, that is, the system (2) for
n = 0,1,2 with the moments given by (8):

V¥ =0, 9, =0, 09,A¥7 =17,  (B,v=0,1,2,3). (18)
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with
" +00 N ap 0o «, p A
% :mc/Rs/O P @(T)dTdP, T :c/m/o fripP (1455 ) g(z)dzap,
+oo T 2
AT = %/}1{3/0 Frvfe (1+ 5 ) g(z)dzap, (19)
+oo T \?
57 — %‘Rﬁ ./0 Qpfp” (1 + W) ¢(T)dI dp.

To close the system (19), we adopt the MEP, which requires finding the distribution function
that maximizes the non-equilibrium entropy density:

—+o0
I = WU, = —kpc Uy /RS/O Flnfp*¢(I)dTdP — max (20)

under the constraints that the temporal part V*U,, T*PU, and A*P7U, are prescribed.
Proceeding in the usual way as indicated in previous papers of RET (see [2,7]), we obtain:

2
f: —e 7, with x=mA + AP 1+ L + l/\ pov (14 z 1)
15 / xX=m np 2 PP me2 )

where A, Ay, Ay, are the Lagrange multipliers.
Hereafter, recalling the following decomposition of the particle number vector and the
energy-momentum tensor

Ve = U, T = é U“UP + (p + I + C%(u"‘q/3 FUPG) > (22)

we can choose as fields, as usual, 14 physical variables; p, T, U*, 11, 4%, t<2B>3 where I is
the dynamic pressure, g* = —hf, U, T is the heat flux, and +<*F>3 = THv <hf,h€ — %h“ﬁ hw)
is the deviatoric shear viscous stress tensor. We also recall the constraints:

Uiy =c?, q"Uy=0, t=*F3U, =0, t<%. =0,

and we choose as the 15th variable:

4

Achz

U Ugl, (A“M - A‘g”) : (23)
The pressure p and the energy e as function of (p, T) are given in (12).

Remark 1. For any symmetric tensor M*F, we can define its traceless part M<*F> and its 3-
dimensional traceless part M<*P>3, which is the traceless part of its projection in the 3-dimensional
space orthogonal to U*, as follows

M<’Xﬁ> — (gg gg — ig“ﬁgyv> MW = M’Xﬁ — iglﬂj MVVg"‘.B’
M<‘X'B>3 - (hi‘l he - ;haﬁh‘uv) M]/W/

which are different except for the case in which MU, = 0 and MM ¢,, = 0. In fact, these
conditions indicate that

M<D£‘B> — M<0£‘B>3 .

Moreover, in the following, a parenthesis between two indexes indicates the symmetric part.
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3.1. The Linear Deviation from Equilibrium

The thermodynamical definition of the equilibrium according to Miiller and Rug-
geri [1] is the state in which the entropy production vanishes and hence attains its minimum
value. Using this definition, the theorem was proved [19,20] that the components of the
Lagrange multipliers of the balance laws of nonequilibrium variables vanish, and only
the five Lagrange multipliers corresponding to the equilibrium conservation laws (Euler
system) remain. In the present case, we have:

1 2 uy
e 3] aem e At .

where ¢ = ¢ + p/p — TS is the equilibrium chemical potential. We remark that Ag, A, are
the components of the main field that symmetrize the relativistic Euler system, as was first
proved by Ruggeri and Strumia (see [21]).

In the molecular RET approach, we consider, as usual, the processes near equilibrium.
For this reason, we expand (21) around an equilibrium state as follows:

fis 2fE(1 - é??)
7

. 1 T \?
X=m(A=Ag) + (Au = Aue) p" <1+ W> + EAMVPVPV@‘F W) :

(25)

Inserting the distribution function (25) into the moments (19), we obtain the following
system:

_m
kg

F<P>3 4 [ThP C% ulgh) = _kﬂ [Tgﬁ(A — Ap) + APH (A# - )\ug) + A”gﬁ””/\w} , (26)
B

0=V~ Vg =~ [VEA = A8) + T8 (A — A ) + AF A,

AXBY _ A’Eﬁ’Y — _% [A”éﬁ? (A—Ap)+ A/’EB'W (Ay _ )‘HE) + Aoéﬂ'yyv/\w} )

where the equilibrium values of the tensors A‘z-ﬁ " A%ﬂ " and Alzﬁ MY can be obtained by (14),
taking j = 2,3,4:

A(Eﬁry = p90,2 u- Uﬁlﬁ + pC2 91,2 h<"‘5u”’),
Avéﬂ]ﬂ/ =0 90,3 uauﬂuy uv + 0 C2 91’3 h(ﬂtﬁu}l ul/) + 0 C4 92,3 h(“,BhP“/), (27)
AP — 60, USUPUTUMUY + o 2014 KPUTUFUY) + pc*0,4 hERTHUY),

with the 0’s given in (17).

The system (26) permits one to deduce the 15 Lagrange multipliers in terms of the
15 field variables, including A given in (23), and then we can obtain the remaining part of
the tensor A*F7.

To solve this system, we consider first Equation (26); contracted with Uy,
Equation (26), contracted with U, Ug, Equation (26); contracted with U.Ugl,/ c3,
Equation (26); contracted with h,z/3, and (26)3 contracted with Uyhg, / (3¢?), obtaining
the system
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U c?

000 (A — Ap) + g1 U" (Ay T) + 802 UMUY Ay + 50121 Ay =0,

2

C
o1 (A — Ap) + 602 U"()\y T) 60,3 UMUY Ay +€91,3h’”’)\;w =0,
602 (A —Ag) + 6 uﬂ(/\ fﬂ)ﬂa uruva +ée WA, = — —KB__ A
0,2 E 0,3 12 T 0,4 uv 10 1,4 uv Am2nct "’ (28)

1 Uy 1 52 ks

11 (A~ Ag) + 5612 U" (A,, - T) T 891/3 MU Ay + ¢33 H Ay = — —2

1 1 u c?
012 (A —Ap) + g 613U ()\,, H) + = 914 uruy Ay + 5 O a WA Yy =

3 I 10
kB A 1¢xﬁ'y
3mzc4n ( “PY E )uahﬁ'y.

This is a system of 5 equations in the 4 unknowns A — A, U¥ (/\;4 U ) uruyAyy, W Au;

in order to have solutions, the determinant of the complete matrix must be zero, that is,

b0 o1 o2 361 0
1 B0 oz i3 0
0= |02 63 boa 15014 - 4;I;Bc4 A : (29)
011 3012 §013 3623 mcz I
1010 1015 L6014 1054 3m b (A”‘ﬁ v — %ﬁv) Uyhg,

By defining
o0 601 oo 3012
o1 G0 Boz 013

1
b2 bos  Oos qgbia

1 1 5
th1 3612 g3 3§b23

b0 o1 oo i61o o0 o1 o2 3012
01 o2 o3 L013 b1 bo2 o5 L0153
NI = — , N&= ,
oo o3  Ooa 15014 011 3612 2615 3023
10120 2013 15014 3604 1012 2613 15014 3024
Equation (29) gives:
1 wfy _ AdpY _NH N2 1
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We contract now Equation (26); with hﬁ, Equation (26), with U, hg, Equation (26)3
with U, lllghzs7 /c® and (26)3 with hghm /(3 ¢?), obtaining the system

2
C291,1 hoH (/\P‘ — /\#E) + §C291,2 U”h‘s"/\w =0,

3kp
010 M (A — Apg) + €015 UMKV Ay = T m2n 7 (31)
18 6k
2 ) 2 ) _ B apy )
P13 WM (A = M) + 5 POa UMy = —of (A7 — AP ) UaUght,
2 40,3 10 Ay — A ) + 244 UMK Ay = B (A“ﬁW—A”‘M)h ho
3 2,3 i UE 3 24 nw — m2n E wpleey -

By eliminating the parameters 7" (Ay—Ayup) and uyhév/\w from these equations, we obtain

(a7 — AP ), = - CZ% 7,
3
(32)
apy s Na1 s
(487 = A" ) aghty, = =T
with
b1 b1 1|0u1 O2 b1 012
D3 = , N3 = 5 , Nz = .
010 3013 015 2014 56023 3624
We contract now Equation (26), with h? hg>3 and (26)3 with h? h/95>3 U, obtaining
_ kj t<59>3 — %mnc492,3 hy<5h9>3v/\w ,
T/Z By ;<5 0> 2 m 6 <610> (33)
«® v
(A T AY )h,x Uy = = g o mn e O WIS Ay
from which it follows
7\ },<6 0> 2 <60 - 164
(A”‘ﬁ'V — A% )h; MU, = G5t with s = ; e (34)

Finally, (26)3 contracted with k¢ h% h$>3 gives
(A% — AF ) oWy = 0.

This result, jointly with (30), (32), and (34), gives the decomposition of the triple tensor

AP
AMBY _ pAYPT _ 1 AUUPUY — 3 NiA ARBY) 3 Nin h«fym)
E 4c4 4c2 Dy Dy
3 N5 sy 4 3 N3 @) (<ap>sp7)
+02D3q uru +5D3h q" +3Cst uv.

Thanks to Equation (27)1, we have the closure of the triple tensor in terms of the physical
variables:

A 11
4 4
35
3 N3 (wyBr ) o S N1y (B ) (<aB>3717) )
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3.2. Inversion of the Lagrange Multipliers

In this section, we present the explicit expression of the Lagrange multipliers in terms
of the 15 physical independent variables. From the representation theorems, they are
expressed as follows:

A=A =T+ aA,
Ay — Ay = (i IT+ by AU, + baqy, (36)
)\]/“/ = (0(11_1 + ﬁlA)u”uU + (DézH + ﬁ2A)h},{]} + a3 (q‘uuV + qyu;[) + 064t<y1/>3/

where Ap and Ay, can be found in Equation (24), and the coefficients a1, b1 23, #1234 and
B1,2 are functions of p and <. By using Equations (28), (31) and (33), it is possible to obtain
the explicit expressions of these coefficients.

For convenience, let us denote by DZ the minor determinant obtained from Dy by
deleting its ith row and jth column. From system (28), we obtain

kg 2 B a
—Ap=— —I1c“D -—D
A /\E n’lc4p D4< c Uy + 4 i
— 2 D32
UF(Ay = Apg) = mc4pD4 (Hc D$? >,
(37)
_ 33
UuPU Ag, = mC4PD4< I1c°Dy° + D4 )
WP A g, = - —D34 .
By mc4p D, (
From system (31) we obtain
3k3912 5 9k3911
WM (A = Ayg) = : d UPHAgy = ———=—¢°. (38
(Ap = Aug) mc*o Dy an Py 2mctp D3q (38)
Finally, from Equation (33) we have
5 3k
hﬁ<()h9>3'y)\ — _ B t<59>3
Py 2mc4p92,3 ’
that, multiplied by t s, gives
3kp
<Br>3) _ "B y<Pr>3y 39
BT T T 2mctos, <pr>3- (39)
By comparing Equations (36); with (37);, we have
kp a1 ks 31
= D =—-——F—D;. 4
aq m2oD; az YmctoD; (40)

By multiplying Equation (36), times U* and h*, respectively, and using Equations (37),
and (38);, we have

kg kg 32 b — _ Skpbo

R b = D y = . 41
mcp Dy 2 4mcbp Dy * 3 mc*pDs (41)

by = —
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Finally, by multiplying Equation (36); times U* UV, kY, U"h#*, h*<°h?>V, respectively, and
using Equations (37)-(39), we obtain that

ay = ks e ay = — _ ks u
mcbp Dy 3mcipDy '
Okpb: 1 3kg

= 211 =2 4

% 2mc6p D3 4 2mc4p92,3 ( )
kg 33 kg 34
= —7D ; = .

Fi 4mc8p Dy P2 12mc®p Dy

3.3. Production Term with a Variant BGK Model

To complete the closure of the system (18), we need to have the expression of the
production tensor I PY Tt depends on the collisional term Q (see (19);), and obtaining the
expression of Q is a hard task in relativity. Usually, for monatomic gas, the relativistic
generalization of the BGK approximation first made by Marle [22,23] and successively by
Anderson and Witting [24] is adopted. The Marle model is an extension of the classical BGK
model in the Eckart frame [6,25], and the Anderson-Witting model obtains such extension
using the Landau-Lifshitz frame [6,26]. There are some weak points for the Marle model,
and the Anderson-Witting model uses the Landau-Lifshitz four velocity. Starting from
these considerations, Pennisi and Ruggeri proposed a variant of the Anderson-Witting
model in the Eckart frame both for monatomic and polyatomic gases, and proved that
the conservation laws of particle number and energy-momentum are satisfied and the
H-theorem holds [14] (see also [2]). In the polyatomic case, the following collision term has
been proposed:

uoc
Q=

1+ -L,
(fE—f fertau——"7 ) (43)

bmc?

where 3b is the coefficient of h(*fU7) in Equation (27)1, that is, 3b = p6291,2, and T > 0
denotes the relaxation time.

Recently, the existence and asymptotic behavior of classical solutions for the Boltzmann-—
Chernikov Equation (1) with Q given by (43) when the initial data is sufficiently close to a
global equilibrium was proved [27].

The most general expression of a nonequilibrium double tensor as a linear function of
A, T1, t<#"=3 and g# is the following:

1F" = (B A+ BI'TT) UPUY + (BS A + BRIDIPT 4 B1UP g7) + Bt <P,

In order to determine the coefficients in I*f, we have to substitute Equation (43) into
Equation (19)4, obtaining

Iﬁw_m/Rs/mu - fE—f fep" % b 7 )P’g;ﬂ (1+ i)ch(z) dTdP =

_ &(A‘EM _ A"‘r’”) _3 Uy Aaﬁw,

2T 01,m2ncot " E
then we have
1 1 NA 1 NI
Bf=———, Bll=0, B{=_>-—"-,  Bll=_-—"—
1 4ctt 1 27 421 Dy 2 T Dy (44)
1 (03 Ns , 1
Bﬂ:—( 3 _ ) Bt = — - Cs.
91,2 D3 T

Therefore, the final expression of the production term I#7 is
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1 1 N2 NI 2 N3y 6451
7 = = ——A p DA ST\ RBY _ 23,73 BUY) — Cet<Br>3 4
T{ 4 urur +(4C2 D4 + D4 ) +( C2 D3+91262)q u C5 ( 5)

We summarize the results of this section as:

Statement 1. The closed system (18) obtained via MEP is the one for which V*, T, A*BY, [BY
are given explicitly in terms of the 15 fields (p, v, T1, A, U, g%, t<*F>3) using the expressions (22),
(35), and (45). All coefficients are completely determined in terms of a single function w(y) given
by Equation (12)3 and its derivatives up to the order 3. Observe, by taking into account (13), that
the coefficients 0’s given in (17) can be formally written in terms of the internal energy e and its
derivatives.

3.4. Closed System of the Field Equations and Material Derivative

It is now possible to explicitly write the differential system for the field variables using
the material derivative. The relativistic material derivative of a function f is defined as the
derivative with respect to the proper time T along the path of the particle:

e % ZJ; jf[ T(auf +0/0;f) = U%d,f, (46)

where T is the Lorentz factor, and we take into account that

_odx®

(24
u 4t

= (T¢,Tv),

where Uj is the Velocity. Now, we observe that for any balance laws, we can have the
fOllOWing identity:
ﬁu
ey ey B ey B u o ety
LR aa Arara g Jn AXO1 0 — (— h,x N :2 ) aB Alky

_ Ua

= CZ Axerin hg aﬁ AXK

In our case with n = 0, 1, 2, these equations are written as follows:

3 (pU*) =0, hgp (u“ TF — hho, T ﬁ) Up (u”‘ ™ — hla T"‘ﬁ)

hsphoy < LAY — pio, AT — 1/57)

Us

hsp Uy (u"‘ A% — pla, AT — 1/57) =0, Ugl, ( AT — 19, AT — 1!37) =0.

By using the expressions (22), (35) and (45), respectively, for V¢, T*F, A*PY and IPY, we see
that these become
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p-‘rpaauazo,
e+p+1II1.. 1 i 1 . 1 1
_ fizué + ?h%qﬁ + §t<a5>3 u, — h5}lay(p+n) _ quua”ué _ szq‘saau”‘ _ h%hxayt<aﬁ>3 =0,

é+ z%q“ + (e+p+I1) 0, U* — hyd,q* —t=*F>39,Ug =0,
1, 1 NA NIT e <0y . 2 /N3 1Ny y
hsp (gPC b2 — 12 EA - D74H) + Cshsy hopt tleop G5 5 (73 tz E)q(ahﬁ)yu -
NA NI

1 N31 1, 1 1 0
5c2 D, o 0" Uat (‘5’” b2t 120,21 By )[_hfsﬁa“ua+2hﬂ<5hﬁ>af‘u]+

N, 1 N:
5 (¢0sp 2000) 20 () = 5 o [ron 0+ 200 3+

Cs [t<5,3>3 A U™ + 26KY73 0,5 1y 9 ue] =

1,1 N® N 1
7 (g B &+ B Whon = 7 Csteaps “n
1 1 N2 NI N; N3 \* :
h‘B(;U‘B<‘D902C + pC2912+ i2 A— 72 DfA— ZEH> +hﬁ5§qﬁ— qs (i) + (2C5 —1) t<5fy>3 ur—
1 N2 NI N; 1N
P O VS _ N 3 31\ (u «
héa"(:apcelfz i, 2 D4CH) ( 5D3)(q a,,u(,+q5aau)
L N1 o g —1&77913 ;
5 D3 haq aVUWJFh a;t (CSC t<tX§>3>_ (D3 2912)%/
PO DR R\ " 4,2 4p L1, LNt N
(p@o,zc +ZA 3 q U, +0, U (P90,2C + 3pc 012 + 4A 3 D, A—2 Ds Ilc )
hly 9, (& 2 q“) — 2G5t M 9,U, = — 4% A.
It may be useful to decompose (47); into the trace and spatial traceless parts. The trace part
is given by
20 _iNiAA_3N7HH .—l—Ch ,@<97>3+l(2&_1&) U —
pebL2 42134 D, 5116y 2\“D, 5Dy /)1
1 N4 N N.
2 a 31
0 A ) 3, U* +q"0, (1) — 48
( pc 12+42D4 +D4 +q Ds (48)
N3i o 3,1 N2 NI
DLk o, g% —2Cst° 9, U =~ (— —— —_— H),
D, a0k " = 2Cs et Ul = 2 (4o D, D
and the spatial traceless part is:
. . 2 (N 1N .
9 3 31
Cs h,y<(5 hﬁ>39t<7 >3 4 t<sp>s Cs + 2 <D + 5 Dg)q@- Uﬁ>3 +
NA N
2
+2< SpcC 912+4 5 D4A-‘r Dy )h7<§hyﬁ>3ayu7+ )

2 U N31 2 N31 M 1%
+5 (a<0tp,) 3 <D3> T 5Dy (<ot ") +
1
+ Cs [t<(5ﬁ>3 o, U* + 2 t<y7>3h7<15 h(5>3v ay UV] = — p Cs t<55>3 .

The system formed by the 15 Equations (47)1 23, (48), (49) and (47)56 is a closed system for
the 15 unknown (p, Uy, T, I1, t<up>y 05 A).
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4. Entropy Density, Convexity, Entropy Principle, and Well-Posedness of
Cauchy Problem

In this section, we evaluate the entropy law, and we want to prove that all solutions
are entropic with an entropy density that is a convex function.

4.1. Entropy Density

By substituting the distribution function (25) with (36) into (20), we can evaluate the
four-dimensional entropy flux. In this procedure, it is necessary to be careful concerning the
order of the nonequilibrium variables. The present linear constitutive equation is related to
the entropy with the second order of the nonequilibrium variables. By taking into account
up to the second order in the expansion of the distribution function and of the constitutive
equations, we may evaluate as follows:

B =R+ R+ (50)

where h(l) and h( 2 are, respectively, the contribution of the first and second order terms of
the nonequilibrium variables, which can be derived as follows (see Appendix A for details):

c oo N
= /11&3/0 P feXxeXq) ¢(Z)dZdp,

c +oo .
Iy = _%/Rs/o P fe X2 9(T) AT dP,

where ¥ (1) is ¥ defined in (25) with the linear constitutive equations studied in the previous.
After cumbersome calculations, we obtain explicit expression of them as follows:

(51)

o

u
My = Ae(ve—ve) + 2L (T —1) = L,

T
= g (25 e+ () (0 4E) 427+ 0 ) 45+

+2(A=AF) (A = AE) TE +2(A = AE) () AP + 2(Ag = AF) () A7 } (52)
1 204C N3 b3
= CZU"‘{M;St<"V>3f<yv>3 - (Cztx 3D, + )%’1” + LT + LoA? +2L3HA}

1 » N3 N3 , NI » N3 N31 1 NA .

+<b1—b3+c D3a1+D—3a2+2¢x3c D, )Hq + = (b +c ,B + [32+ D4 Ag
2 Ny
bs + 2c%a3Cs — =a >t<”‘”>3
(3 365~ 5 4D3 qu
where
3¢2 NU 1 NA 1 /3y N2 o, N c2py
141—70&2[)4 L2—8<3,52D4—C 51), L3—4<4D4+3C ,52[)4—4)

In particular, for the entropy density & = h*U,, we have

2
C CK4C5 2 N3 b3 L3 11
h= hE + Tt<‘uv>3t<w/>3 + (C 0(3D73 + ? qu}l (H A) L3 L, A (53)
We emphasize that the convexity of the entropy density is satisfied because from (52);,

we have h"‘l U, = 0, and from (51), we have h‘é‘z) U, < 0 everywhere and zero only at
equilibrium. Therefore, the following inequalities are automatically satisfied:

N.
2sCs < 0, 2c2a3D—3 +b3 >0 (because q,q* <0), Ly >0, LjLy—(L3)*>0.
3
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4.2. Entropy Production

According with the theorem proved by Boillat and Ruggeri [19] (see also [1,2]), the
procedure of MEP at molecular level is equivalent to the closure using the entropy principle,
and the Lagrange multipliers coincide with the main field for which the original system
becomes symmetric hyperbolic [2]. Therefore, the closed system satisfies the entropy
balance law

oh* =%, (54)

where the entropy four-vector is given by (50), (52). For what concerns the entropy pro-
duction X according to the result of Ruggeri and Strumia [2], this is given by the scalar
product between the main field components and the production terms [21]. In the present
case, we have

Z = I1PT A, (55)

By using Equation (45), we have

1 1 1 NA NI 2 N 0
_ ) _ = B11v N By 3 13 Br17) _ <Br>3
Y= { C4AU u )‘ﬁv"_( 2 4A+ 4H>h /\,B'Y+< C2 D3+9,2C2>q u )\!; CSt /\‘B }

(56)

By substituting Equations (37)—(39) into Equation (56), and remembering that g# UTAgy =
—q“h"‘ﬁ U7/\ﬁ7, we obtain X in a quadratic form, as follows:

3kp Cs 9kpb1,1 N3 b3 My My (A
Y= <pr>sy — 2= 4 = A TI , 57
2Tmctpb,3 <pr>s T 2tm?nc®D3 ( D3 + )q It ( ) M, Mz)\II (57)
where
ks 5, N% oy kp 5 N° 44 N
' 168 tm2n Dy ( 4t Dy *)’ 2 4c0tm2nDy \ 4 + Dy, * Dy
k NU
M=~
c*tm?n Dy Dy
The Sylvester criteria allow us to state that the quadratic form is positive definite iff all the
following conditions hold:
—— >0, 24+ = | —=— <0, M; >0, M M;— (M 0. 58
2Tmc4p92,3 - ( * 91/2 2tm?n C6D3 < 1~ 1 ( 2) = ( )

The first condition of (58) is automatically satisfied because of the definition of the functions
involved.

In order to prove the second condition, we can consider a space like vector X and the
following function that is defined to be positive for each value of XP:

ot = | e (82 (10 1) - 2 (1 L)
8 CTkB R3 EP" | Xpp mc2 mc2 mc? vP

By exploiting the calculation in the above integral and by using Equation (27), we have

2
¢(T)dZdP.

2., 2 2
g(Xﬁ):m nc ll(@llg) 2 X’BX/g.

=0
Tkpg 3 91,2 5 14




Entropy 2022, 24, 43

16 of 30

If we choose, as a particular value,

1 9kg

xbo_ L %k 4
D32m2nct L

we obtain

9kp0 N 6
i (N sy o

XFP) =
8(XP) D, "o,

= 2t n oD,
This proves that also the second condition of (58) is satisfied.

Conditions 3 and 4 of (58) can be proved by showing that they are coefficients of a
quadratic form that is definite positive. In order to obtain the entropy production up to
the second order, we have to substitute Equation (19)4 into (55) and take the collisional
term (43) up to the first order. Then,

c +o0 7 \2
£2) _ E/Rs/o QU pPp Ay, (1+ =) 9(Z) dZaPp,

with

CONS /Ry P R z
Q c2tkp Uup [X bmez <1+ me2 ) |’
If we substitute to Ag, its expression obtained from Equation (25);, we obtain
£@) QW zp(7)azap
=c /R , /O QY k(1) :

In the state where g = 0 and t<*f>3 = 0, the Lagrange multipliers and the Entropy
production assume particular values that we denote with a x*, in particular

(2*):£/ /'+°° (1%) o+ :g/ /+°°
> m Jes Jo Q X (p(I)dIdP m e Jo

which is clearly a positive quantity. Moreover, we have

St o ar e,

(2%) 1137*/\57*

which corresponds to the quadratic form

M; M\ /(A
(& 1) (Mz M3> <H)
which, therefore, turns out to be definite positive. Therefore, the following is proved:

Statement 2. The entropy density (53) is a convex function and has its maximum at equilibrium.
The solutions satisfies the entropy principle (54) with an entropy production (57) that is always
non-negative. According to the general theory of symmetrization given first in covariant formulation
in [21], and the equivalence between Lagrange multipliers and main field [19], the closed system
is symmetric hyperbolic in the neighborhood of equilibrium if we chose as variables the main field
variables (36), with coefficients given in (40)—(42), and the Cauchy problem is well posed locally
in time.
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5. Diatomic Gases

The system (47) is very complex, in particular, because it is not simple to evaluate the
function w(7y), which involves two integrals (12); that cannot have analytical expression
for a generic polyatomic gas. Taking into account the relations [7]

Ja(y) = 2Ka(), ha() = - (Ka(n) = 2 Fa(m),

where K, denotes the modified Bessel function, we can rewrite w given in (12)3 in terms of
the modified Bessel functions [7]:

1 UK 9(T)dT

w(y) = 7\ e KO -1
Lo B e(@)dT

Moreover, to calculate the integrals, we need to prescribe the measure ¢(Z). In [7], the

measure ¢(Z) was assumed as

VD =T, a==3",

because it is the one for which the macroscopic internal energy in the classical limit, when
¥ — o0, it converges with that of a classical polyatomic gas, where D indicates the degree
of freedom of a molecule. As was observed by Ruggeri, Xiao, and Zhao [28] in the case of
a =0 (i.e.,, D = 5 corresponding to diatomic gas), the energy e has an explicit expression

similar to monatomic gas:
Ko (7) )
e= +3).
P( Ki(7)

waa(n) = 20+ 2

Therefore, from (12), we have

Using the following recurrence formulas of the Bessel functions

Ka(7) = 55 (Kusa (1) = K1 (1)), (59)
we can express w in terms of
K3(v)
G(y) = .
™ Ky (7)
In fact, we can obtain immediately the following expression:
() = -+~ (60)
diat\Y) = v G — 4’

which is a simple function similar to the one of monatomic gas, for which we have [3]:

Wmono(Y) = -1+ 7 G.

Taking into account that the derivatives of the Bessel function are known, all coefficients
appearing in the differential system (47) can be written explicitly in terms of G(7), by
using (60) and the recurrence Formula (59). This is simple by using a symbolic calculus like

Mathematica®.
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6. Ultra-Relativistic Limit

In the ultra-relativistic limit where ¢y — 0, it was proved in [29,30] that the energy
converges to

2

nmc . 2 if a<2
e= (@)™, i o= {3 057 )
This implies
_ (a+1) . _f2 if a<2
Wuyltra = T , with a= a if a>2. (62)

By means of this expression, we can evaluate the coefficients 6, ; in (17), which become:

{60,0,60,1,002,003,004} =
{1 a+1 (a+1)(a+2) (a+1)(a+2)(a+3) (a+1)(a+2) uc+3)(oc+4)}

%% 72 ' 7 ' 7
{011,01,2,013,014} =
{1 3(a+2) 6(a+2)(a+3) 10(ax+2)(ax+3)(ax+4) }
A 7’ ' 7t '
{023,624} =
{3(04 +2) 15(a +2)(a +4) }
v 7t '

It follows that, in the ultra-relativistic limit, we have

N3 2(x+3) Ny _ 10 oo atd
D3 y ' D vy ' T o
and
NII 4 NA 1
N et , —=-—, (63)
Dy 0% Dy a+1

where the last two equations hold for & # 2 (i.e., a # 2). For a = 2, the ultra-relativistic

limit of I\B—T and of %—j gives the indeterminate form [%]. We show (see Appendix B for
details) that it can be solved by considering higher order terms for the energy ¢, allowing
one to prove that Equation (63) is valid also with 2 = 2, and hence that the closure of the
present model is continuous with respect to the parameter «, at the ultra-relativistic limit.

7. Principal Subsystems of RETq5

For a general hyperbolic system of balance laws, the system with a smaller set of
the field equations can be deduced (principal subsystems), retaining the property that the
convexity of the entropy and the positivity of the entropy production is preserved according
to the definition given in [20]. The principal subsystems are obtained by putting some
components of the main field as a constant, and the corresponding balance laws are deleted.

Let us recall the system (18). The balance law of A*PT is divided into the trace part Azﬁ

and the traceless part A*<F7>. As we study below, by deleting the trace part and putting
the corresponding component of the main field as zero, we obtain the theory with 14 fields
(RET14). On the other hand, by conducting the same procedure on the traceless part, we
obtain the theory with 6 fields (RETj). It is remarkable that RET;4 and RETj is the same
order in the sense of the principle subsystem, differently from the classical case in which
the classical RETg is a principal subsystem of classical RET14. Moreover, the relativistic
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Euler theory is deduced as a principal subsystem by deleting the balance laws of A*" and
putting the corresponding component of the main field as zero.

7.1. RETy4: 14 Fields Theory

The RET4 is obtained as a principal subsystem of RET;5 under the condition A} = 0.
From (36)3, this condition provides A expressed by I1 as follows:

2 3u N
A — _Ca TRy N o 64
c2B1 — 3B2 D, (64)

where N, = fol + Df’ and D, = D;;’4 + DZ’3. Then, the independent fields are the following
14 fields: (p,v,I1,U*, g%, t<%>3). By deleting the balance equation corresponding to A%,

that is, the one of Azﬁ , the present system of the balance equations is as follows:

0. V¥ =0, 0, T =0, 09,A%P1> =[<br>, (65)

With (64), the constitutive equation is modified in this subsystem. For the comparison
with the RET{4 theory studied in [7], let us denote

Df = 3D, Df Dy Da

We can prove the following identity:

Ny, 1 (Naga 1 : A34 A33
— N N, th N,=N N>,
Da D4 ( Da + W1 b +
where N33 and N234 are the minor determinants of N2, which deletes the third row and

third column, and the third row and fourth column, respectively. Then, as a result, instead
of (35), the closure for A*f7 in the present principal subsystem is given by

48— (0000 — 2 NEm\urubur + o0y, —3 M0 11 Ut + (66)
- 10 0,2 2 DT[ p 1,2 D{[
3N sy & 3 N5 ey (<ap>3177)
t o, 1MUY + 5 T+ 3Cst u.

This result is formally the same as the result of [7] (Equation (56) of the paper). How-
ever, there are differences in the coefficients due to the presence of (mc* + I) " instead of
mc? + n 7T in the integrals.

Similarly, we obtain the production term in this principal subsystem as follows:

USNT AN gy 4+ 2 (08 _ o Mo Loy _ Lo s

<Br> — _
01,2 D3

This expression (67) is formally the same as the result of [8] (Equation (16) of the paper),
except that now we have g instead of 2 defined in [8], and the difference of the integral
in the coefficients is 51m11ar w1th the case for APY,

The system (65) is symmetric hyperbolic in the main field (A, Ay, A<y~ ) given respectively
by (36) with A = A1) given by (64).
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7.2. RETg: 6 Fields Theory

We consider the principal subsystem with Ay~ = Ay — %)\g guw = 0, and then we
have

1
)\yv = ;L/\ngw- (68)

By comparing it with (36), we have

14
<0c1 + C—ﬁ)n + ([51 + ‘?)A =0, Gu=0, tepsy=0.

The first equation indicates that, in this principal subsystem, A is expressed with I1
as follows:

aptay

A6 — TR
2B1 + B2

wIl (69)

where

44 43
D3* —3D3

It should be mentioned that the relation between A and I1 is different from the case of
RET4.
The independent fields are now the 6 fields (p, v, U%, IT), and the balance equations
are the following:
QVE=0, 9,T¥=0, a,xA“f-a;g - 1/‘-"5. (70)

where the energy-momentum tensor is now given, instead of (22), by

b — £ b «p
T C2UU+(p+H)h. (71)
and, from (35),

4 = Loc2 (602 — 010) + A1 jTIU, 72)
where

_ (1N Patar N Dyt —3Dg® + 3NA3* — gNA®
1Ty Dy ) By + B2 Dy D¥* —3D3 '

Similarly, from (45), we obtain
Iﬁﬁ = -4 (73)
The corresponding Lagrange multiplier to AP pisy = 1A%, which is obtained from (68)

as follows:

_ 2MPr—mpr
Pp=c 2B+ B I (74)

The system (70) with (71) and (72) is symmetric hyperbolic in the main field (A, Ay, ) given
respectively by (see (36)1 2 ):

—_

_g+c2

A= T

+ (a1 +aw)T], A = =[1+ (b1 + by w) Uy, (75)

T
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and 1 given by (74).
The closed field equations with the material derivative are obtained as follows:
p + p aa ulx = 0,
IT
%u(; + R 9, (p+11) =0,
(e+p+H)8“U“ =0, (76)
2 (g / .
) pc (90,2 - 91,2) ] Aq N IT
H+—A1 7+A—1H+Haau_—?.
Taking into account
u p+1I
hg ou(p + IT) = Us 2 9s(p +11), (77)
and from (12):
2
. . . c . .
= lpwtpw'y), =500 —p), (78)
the system (76) can be put in the normal form:
p+po. Uy =0,
pe+p+1I (p+11) 1 I A
<p C) 5_ao(p+n) C2 1_A1a)/ Alll[ﬁ—i_’)/ +602 uﬁa U 7U5/
w4 + (p+11)9,U* =0, 79)
. p+1I1 > 11
IT + {H e {A’ln + o2 (6, — 93,2)} }aau"‘ - -

It is extremely interesting that in the relativistic theory the acceleration is influenced by
the relaxation time trough the right hand side of (79),, and this may be important for the
application to the problems of cosmology.

7.3. RETs5: Euler 5 Fields Theory

Let us consider the principal subsystem with A, = 0. This indicates that any nonequi-
librium variables are set to be zero, i.e.,

IT=A=0, tep>; =0, gu = 0. (80)
The independent fields are the 5 fields (n, U%, ), and the balance equations are
V¥ =0, 9, T =0, (81)
with
b — 632 usub + phb. (82)
The deduced system is the one of the relativistic Euler theory, and the system (81) becomes symmetric

in the main field (A = —(g +¢*)/T, Ay = U,/ T), as obtained first by Ruggeri and Strumia
in [21].

8. Maxwellian Iteration and Phenomenological Coefficients

In order to find the parabolic limit of a system (47) and to obtain the corresponding
Eckart equations, we adopt the Maxwellian iteration [31] on (47), in which only the first
order terms with respect to the relaxation time are retained. The phenomenological coeffi-
cients, that is, the heat conductivity y, the shear viscosity y, and the bulk viscosity v, are
identified with the relaxation time.
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p=ph"o, Uy, hioup=p

The method of the Maxwellian iteration is based on putting to zero the nonequilibrium

variables on the left side of Equation (47):

p—phP*ogl, =0,
e+
c2

Phsptf — 1 a,p=o0,

c2 . N1
Shop (P12-+p8127) — 20012 [hog i 3y U* + 2hg(a I 9, U°|

B)
1/1NMA NI 1
:r(4D4c2+D4H>h5'gTC5t<6ﬁ>3/

: 2 ct 1 /N 0
h/gtg Uﬁ (peo/zcz + 3p6291,2) — hg an (p91,2) = ; <3 — ﬁ

D3 2612
¢* (00 + pOh27) — pe* (602 + 5012 )HE 3, UY = — = A

(83)

From the first three equations of (83) and taking into account p = pc?/v,e = pc?w(7y)

(see (12)), we can deduce

wy+1
2

[ c_ 1
hsgU" 0, UP + ;hé Wy, T= thay Uy .
Putting (84) in the remaining Equation (83)45 6, we obtain the solution

T
qp = —)(h% 0, T — C—ZU”BVU“ ,
H — *Uaaua,

t<‘55>3 = 2‘1/1 h% hga<aUV>,
A =oco,U",

with

20c?
X = T3giT

2 o A 9!
oc 2 12 N> /2 02
- —0 - 3 ] .
Y 3BI! {3 127w Dy (3 12 ’yw’) ’

2
C
,u = _%91,2/

[3002 + 012(1 —w )],

and

7= 35 Gra=35)

where B?, B4, Bt are explicitly given by (44) with the relaxation time 7.

(84)

(85)

(86)

As the first three equations in (85) are the Eckart equations, we deduce that x, v, it are
the heat conductivity, the bulk viscosity, and the shear viscosity, respectively. In addition,
we have a new phenomenological coefficient o, but as A doesn’t appear in either V* or T*#
(see Equation (22) or the first three equations in (47)), we arrive at the conclusion that the
present theory converges to the Eckart one formed in the first three block equations of (47)
with constitutive Equation (85), in which the heat conductivity, bulk viscosity, and shear

viscosity are explicitly given by (86)1 2 3.
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We introduce, as in [9], the dimensionless variables, as follows:
__pTx 2 58002 +0610(1-w7)
AT T 015 _oNs ’
01,2 Ds

v 19 [2 0, N®/2 00,2 (87)

=— = -7 5010~ — 3— (=61, — — ,
v pT 311\5”{3 12 ’yw’+ Dy (3 12 'yw’>

4

- K v

= — = 79 ,
# pt  3Cs 12

which are functions only of v.

8.1. Ultra-Relativistic and Classical Limit of the Phenomenological Coefficients

Taking into account Equations (62) and (63), it is simple to obtain the limit of (87) when
v — 0:

a?—4 2+«

_ _ 2 B
Xultra = 0, Vultra = g ( Hultra = m

1+a)(4+a)
In particular, in the most significant case in which a < 2 for which « = 2, we have

_ _ _ 2
Xultra = 0, Vultra = 0, Hultra = 7+ (88)

3
Instead, in the classical limit for which v — oo, it was proved in [7] that the internal
energy ¢ converges to the classical internal energy of polytropic gas: ¢ = (D/2)(kg/m)T.
Therefore, from (13), w converges to

D
Welass = 1+ E (89)
In the present case, using (89), it is not difficult to find 6),; deduced in (17) in the limit
v — 00, as follows:

D D 3D 2D
{60,0,00,1,602,003,004} = {1,1+ 7,14- 7,1+,1+7},

2y
1 3 61
0 /9 /9 /9 == NN A 7 (90)
{ 1,1,Y1,2,Y1,3 1,4} {,Y vy y }
3 15
023,024 Z{,}-
{ } 2o
Therefore, in the classical limit, we have
N3 N3 10 NI N2
Dy ' D; 2+D’ =1, Dy ’ Dy o O
and we find from (87)
_ D+2 _ 2(D -3 B
Xclass = T ’ Velass = % ’ Hclass = 1, (92)

which are in perfect agreement with the phenomenological coefficients of the classical RET
theory [2].

8.2. Phenomenological Coefficients in RET14 and RET

By conducting the Maxwellian iteration to RET14 as a principal subsystem of RET;5, we
may expect that a different bulk viscosity appears. This is because A is related to IT by (64),
and it affects the balance laws corresponding to ITin RET14. In fact, from (66) and (67), we
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can obtain the closed field equations for 11, and then, through the Maxwellian iteration, as
has been done in [9], we obtain the bulk viscosity for RET14 as follows:

1 1 8
o (96,2 + §95,2) — 57012

(R "

T4 =

We remark that the heat conductivity and the shear viscosity is the same between RET};5
and RET14.
Similarly, from (79)4, we obtain the bulk viscosity estimated by RET as follows:
bo2 — 012

= 4
173 WAL (94)

It should be noted that, in the classical case studied in [15], the bulk viscosities of
RET;5, RETq4, and RETg are the same. In fact, in the classical limit, 714 and 7 coincide with
Velass- However, due to the mathematical structure of the relativity (i.e., the scalar fields I1
and A appear together in the triple tensor), the method of the principal subsystem dictates
the difference of the subsystems.

8.3. Heat Conductivity, Bulk Viscosity, and Shear Viscosity in Diatomic Gases

Inserting (60), after cumbersome calculations (easy with Mathematica®), we can obtain
the phenomenological coefficients in the diatomic case:

W(WZ +29G — 8) {74 <G2 - 1) +292 (G2 + 2) ~ 593G~ 167G + 32}2

= (vG - 4)3{7[—75 + 593 + 48 + (74 — 672 — 12>7G2 + ( — 594 £ 1292 + 96) G] - 192}'
- <72+27G78)2

" o= fs( ) a(ra)e)

. 81

" TG -0

with

g1 = 49°G <G2 - 1) ? 1 819201/°G (762 n 20) 196608 (7@2 + 4) +10249°G (21 G* + 660G2 — 392) -

4096+* (35G4 4 348G2 — 56) 44 <G6 —17G* 4+ 21G? — 5) +11G (7G6 — 86G* + 435G — 256) +

412 ( — 40GS +193G* — 331G2 + 48) n 47“(?( —14GS + 422G* — 943G? + 500) +

16710 (77G6 — 660G* + 677G? — 84) 1167°G (7(;6 — 714G* + 2560G? — 1108) -

6478 (45(;6 —910G* +1472G? — 204) +6497G (G6 1 492G* — 2800G? + 1760) -

2567°(7G° + 740G* — 134G +192) + 18350087G — 1048576,
82 =7*(G*=1) +77(G*+4) =5°G ~81G +16) [7(21°G*(G* ~ 1) +51°G (1 - 3G? ) +

401°G (6 - 5G2) +6494G (11(;2 - 25) +51292G (G2 + 14) — 10247 (362 + 5) +

v (19(;4 17G? + 28) 495 (13G4 198G + 60) 3293 (G4 1+108G2 — 52) + 8192G) - 8192} .

Let us compare the phenomenological coefficients with the ones for the monatomic
case obtained in [9]. In Figure 1, we plot the dependence of the dimensionless heat
conductivity and shear viscosity on -y for both diatomic and monatomic cases. Concerning
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v, we also plot the dimensionless bulk viscosity of RET14 derived in (93) in Figure 2. We
observe that in the ultra-relativistic limit and the classical limit, the figures are in perfect
agreement with the limits (88) and (92) (for D = 3,5). We remark, as is evidently shown
in Figure 2, how small the bulk viscosity in monatomic gas is with respect to that of the
diatomic case.

It is also remarkable that the value of the bulk viscosity of RET4 given by (94) is quite
near to the one of RET}s. For this reason, we omit the plot of 7(®) in the figure. This indicates
that RET¢ captures the effect of the dynamic pressure in consistency with RET;s.

4.0 T T T T 1.1 T T T T

3.0 ]

DS T ]

2.0F - b

1.5 1 8

1.0p
0.5

L

— RETs

- RET14M0nalomic

L

0.00 1‘0

20

30 40 50

V

L

— RETs

- RET14M(\na1(\mic 4

L

20

30 40 50

14

Figure 1. Dependence of { (left) and i (right) for diatomic (red solid line) and monatomic (black
dashed line) gases on 7. The dotted line indicates the corresponding value in the classical limit. In
the ultra-relativistic limit (y — 0), Xuitra = 0, fluitra = 2/3 both for monatomic and diatomic gases. In
the classical limit (7 — ©0), Xclass = 2.5, ficlass = 1 for monatomic gas, and X¢lass = 3.5, flclass = 1 for
diatomic gas.

030 . , i '
> 025} — RETs 1
—= RET4 ——
0.20F = = RET,Monatomic e — ]
-
Rl
0.151 R I ]
/‘/ 0.003 ,J/— N
0.10F / / AN ]
ya 0.002 N
/ ! Sl
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Figure 2. Dependence of 7 for diatomic (red solid line) and monatomic (black dashed line) gases on
. The prediction by RETy4 as a principal subsystem of RET;5 is also shown with the dotted line. In
the ultra-relativistic limit (y — 0), Tyyj4ra = 0 both for monatomic and diatomic gases. In the classical
limit (7 — 00), Tass = 0 for monatomic gas, and 7,5 = 4/15 for diatomic gas.

9. Classic Limit of the Relativistic Theory

We want to perform the classical limit y — oo of the closed relativistic system (47) now.
For this purpose, we recall the limits of the coefficients given in (90) and (91). Moreover,

taking into account the decomposition U* = (F c, vi> , where T is the Lorentz factor, we

have 0, U* = % ot (F c) + O (T Uk) , whose limit is 9,0 because 9; T = — 1"3% 9;v' has zero

limit, and a similar evaluation applies to 0; I'. Then,
1 1 1 1 o
SU'U = 5Te—d (Te) + 5709 (Tc) has0limit,

1 11 N1 - .
S U = 5 Te—d, (Iv') + 5 To" 9 (To') has 0 limit.



Entropy 2022, 24, 43

26 of 30

Concerning the projection operator in the limit, it is necessary to remember that, with our
choice of the metric, vj = — v/, then

utu,

.. .. tol .. .. ..
Ba _ _ P ij — _ oif 2 U0 . ij — _ ol — sij
h g+ =2 — h g'+T . — cgrﬂooh g7 =467,
ng_‘looh;——g}:—diag(l,l,l).
While from

0= Udi® = Tch® + Toph* - h0 = "y,

0= Unh™ =Tch™® 4+ Toph - H0 = K0k — 200 jeb,
The last two relations also hold without taking the non-relativistic limit. As a consequence,
we have that lim¢_, 1 40 = 0 and lim, _, 4o h%° = 0.
The relativistic material derivative (46) of a function f converges to the classical
material derivative where we continue to indicate it with a dot. Then, the system (47)
becomes in the classical limit:

o+ pgz =0,
00; + ap +gl;fa§j;<k>=0,
T+ gj{(pqtn)gzl %k)% + 32} 0,
3 o+ Mg =3 Wy 3p(o 5200~
0ij) + %>g +2 <1<1>% —2(p+11) ax> D4+2§Z<> = —%%w
. D+4 dvyy D+4 OJv 2 vy ] )
Uit 2%y, T D29y T D20y
Dzzpr}{(lﬂ +1)dy — oy } g;rl ; (H5zl (zl)) SZ

+ :){(P —11)d; +%1>}<22 - ag;?) + 2;932 = —% i/
A+ (DD+4A+SZH> gz SZJ<lk>§zl - E gfl

AT ST

where 0,5 = —t;;y. The system (95) coincides perfectly with the classical one obtained

recently in [15].

We remark that, as has been studied in [15], for classical polytropic gases, RET14 is
derived as a principal subsystem of RET5 by setting A = 0. Moreover, RET is derived from
RET14 as a principal subsystem of RETy4 by setting 0;;y = 0 and g; = 0. This corresponds

to the fact that, in the classical limit, both A(1*) defined in (64) and A(®) defined in (69)
become zero.
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Appendix A. Entropy-Entropy Flux Density

In order to evaluate the entropy density from Equation (20), we need the expression of
f In f up to the second order with respect to the nonequilibrium variables.
The expansion of the distribution function around an equilibrium state is

1
kst T 203

with 7= 0"+ @Y+ @),

f=feen = f 0+ (0],

defined in (25), and the notation 7)) represents the homogeneous part of the generic
quantity # at the order i with respect to the nonequilibrium variables. With this notation,
(1)
the quantities (A — AF) @, ()\5 — AE) , (Agy) ) are those of Equation (36).
By composing the above expressions, we see that the distribution function up to the
second order is

f="fe {1 g [+ @] + 5 [m“)}z}.

>
ND
N
\
N
—_
| —
—
=1
N~—
~
=
=
=
§)
——
+

1 1
=fg In fg + kaEXE (X)(l) + k2fEXE{(
B B
1 (D]
+ ﬂfE [(X) } .
It follows that
+o00
he = —ch/RS/O PfIn f(T)dTdP =hy + iy + Iy,
where
b= /+°°P"‘f xe (D)W (Z)dTdP =
1) kB.R3 0 EAE

c T z\Uu .
=& /RS/O P fe {m/\5+ <1+ mcz) T”P“] 0" p(z)dTdP,
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ol “fExE{ 0® - 2}{3[@)“)]2}@(1)011@_
m/m/omrf"‘fg (0" ] ¢(Z)dZdP.

Moreover, we have that the moments appearing in system (18) up to the second order are
as follows:

+o0 B 1 5 2
vove- 5 [T @+ m® - [(x)(l)] bozjazar,
06/5:“5_*//+00“ﬁ ERY 0@ - L [p0]
=1 [ (1 )f + (0%~ 5 (0] je@azar,
Ualglly g Uil o,
C4

uauﬁllv [ +o0 e By T 2 ) Q) 1 ~()2
T4 mkg /R3/0 Popep (1+mcz> fE{(X)+(X) T [(x) } }(p(I)dIdP.

The underlined terms give 0 for Equation (36), and there remain

LT e w® - g [0 be@azar—o,
*/RB/ P“Pﬁ<1+z)fg{()€)(2) - i [(X)(l)r}qo(l)dldpzo,

S [ e (14 ) fE{< )@= s [0 e azar —o.

The first two of these allow one to prove Equation (52); and to write

Wy = — 5 [ [ P [0] e azar.

It is sufficient to substitute the expression of ¥ to obtain Equation (52),.

Appendix B. Continuity of the Ultra Relativistic Limit for a = 2

From (12),, and by using the recurrence relations (11) and (10), we have

ve Tl 122(1+mcz)¢(1)d1_3 o s e(T)dT

nmce2 0 ]2,1(P( N4 0+°°]§‘,l<p(I)dI.

By introducing the Ruggeri’s numbers Ry and using Equations (32); of [30], we have

e 3 51
nmc2_3+—ln'yR_4_3 Invy
or
e:”mcz(s—i). (A1)
Y In 7y

Therefore, we have to calculate Dy, N'T and N2 with (A1) instead of (61).
In particular, for D4 we can add to its fourth line the second one pre-multiplied by —3,

so that it becomes
1 (14 2 a2
YyIny\3'37'392"3 92"
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It follows that, afte r cumbersome calculations that we do not report here for brevity,
we have

1 3 12 4

3 12 60 20

lim 9% In y Dy = = —64.
70 12 60 360 120

104 20 4

3 3 3 3

Similarly, for N'T we can add to its fourth line the third one multiplied by — %, so that it
becomes

1 (420 40 8¢
Y Iny\3'37y 7?2 )

It follows that

1 3 12 4
3 12 60 20
lim 4% In y NI = — = 384.
70 12 60 360 120
4 20
§ 0 4 8

Finally, for N® we can add to its third line the second one multiplied by — %, so that its
third line becomes

1 (14 2 4
yIny\3'377392"342)"
It follows that
1 3 12 4
3 12 60 20 64
lim 77 In Y N® = =—.
70 1 4 20 4 3
3 3 3 3
4 20 120 40
By joining all these results we obtain
NI NA 1
li =— lim — = —=
750 Dy ¢ D, T3

which confirms (63) also for a = 2.
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