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N= 2 Calogero models within superspace

1. Introduction

The famous Calogero model of 𝑛 interacting identical particles on a line [1, 2], pertaining to
the roots of 𝐴1 ⊕ 𝐴𝑛−1 and given by the classical Hamiltonian

𝐻 =
1
2

𝑛∑︁
𝑖=1

𝑝2
𝑖 +

1
2

∑︁
𝑖≠ 𝑗

𝑔2

(𝑥𝑖−𝑥 𝑗)2 , (1)

plays a significant role in mathematical and theoretical physics. Being the prime example of
an integrable and solvable many-body system, it appears in many areas of modern mathematical
physics, from high-energy to condensed-matter physics (see e.g. the review [3] and refs. therein).

Subsequently, the Calogero model has often been the subject of “supersymmetrization”. In this
endeavor, extended supersymmetry has turned out to be surprisingly rich. After the straightforward
formulation of N= 2 supersymmetric Calogero models by Freedman and Mende [4], a barrier
was encountered at N= 4 [5]. An important step forward then was the explicit construction of the
supercharges and the Hamiltonian for theN= 4 supersymmetric three-particle Calogero model [6, 7],
which introduced a second prepotential 𝐹 besides the familiar prepotential𝑈. However, it was found
that quantum corrections modify the potential in (1), and that 𝐹 is subject to intricate nonlinear
differential equations, the WDVV equations, beyond the three-particle case. These results were
then confirmed and elucidated in a superspace description [8]. Finally, extending the system by
a single harmonic degree of freedom (𝑠𝑢(2) spin variables [9]) it was possible to write down a
unique 𝑜𝑠𝑝(4|2) symmetric four-particle Calogero model [10]. 1 A detailed discussion concerning
the supersymmetrization of the Calogero models can be found in the review [11].

A common property of all these models is the limited number of fermionic components
accompanying the bosonic coordinates 𝑥𝑖 (four fermions for each 𝑥𝑖 in the case of N=4). It seems
that a guiding principle was missing for the construction of extended supersymmetric Calogero
models. Indeed, while for 𝑛 ≤ 3 translation and (super-)conformal symmetry almost completely
defines the system, the 𝑛 ≥ 4 cases admit a lot of freedom which cannot a priori be fixed. In
the bosonic case, such a guiding principle exists [12]. The Calogero model as well as its different
extensions (see, e.g. [13–15]) are closely related with matrix models and can be obtained from
them by a reduction procedure (see [16] for first results and [3] for a review).

A different approach to supersymmetric Calogero-like models has been proposed in [9, 17–19].
Starting from a supersymmetrization of the Hermitian matrix model, the resulting matrix fermionic
degrees of freedom are packaged in N=4 superfields. This approach, developed in [20, 21] for
the rational spin-Calogero models with N= 2, 4 supersymmetry, was recently extended to N= 2, 4
supersymmetric hyperbolic Calogero models [22–24]. A similar extended set of fermions appeared
in [25], however their bosonic sector contains no interaction.

Inspired by these results we developed a supersymmetrization of the free Hermitian matrix
model and constructed an N -extended supersymmetric 𝑠𝑢(𝑛) spin-Calogero model [26]. By em-
ploying a generalized Hamiltonian reduction adopted to the supersymmetric case, we derived a
novel rational 𝑛-particle Calogero model with an arbitrary even number of supersymmetries. Like

1Here and in the above history, the goal is a bosonic potential exactly as in (1). Models with more general interactions
can be found for any number of particles.
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N= 2 Calogero models within superspace

in the models of [9, 17–19, 25], it features N𝑛2 rather than N𝑛 fermionic coordinates and increas-
ingly high fermionic powers in the supercharges and the Hamiltonian. While quite satisfactory
from a mathematical point of view, the new N -extended supersymmetric Calogero models [26]
look very complicated for possible applications. The reason for this is expressions

√
𝑔 + Π𝑖𝑖, where

𝑔 is a coupling constant and Π𝑖 𝑗 ∼ (fermions)2, present in the supercharges and the Hamiltonian.
Since the Π𝑖 𝑗 are nilpotent, the Taylor expansion of the square root eventually terminates, but for
𝑛 particles the series will end with a term proportional to (Π𝑖𝑖)N(𝑛−1) , generating higher-degree
monomials in the fermions, both for the supercharges and for the Hamiltonian.

In [27] we found a non-trivial redefinition of the matrix fermions, which brings the supercharges
of N -extended supersymmetric Calogero models [26] to the standard form, maximally cubic in the
fermions. Then it was demonstrated that the complexity of the initial supercharges is shifted to
a non-canonical and nonlinear conjugation property of the redefined fermions. The simple form
of the supercharges admits a supersymmetric generalization of a “folding” procedure [28, 29],
which relates the 𝐴2𝑛−1 ⊕ 𝐴1 Calogero model with the 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 ones. Based on this idea,
it was provided a supersymmetric extension of the 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 rational Calogero models with
an arbitrary even number of supersymmetries in [27] and their trigonometric/hyperbolic N= 4
extensions in [30].

The Hamiltonian approach turned out to be very fruitful for the extended Calogero models.
However, in the construction of the supersymmetric models, it is also important to find a super-
space formulation for the Calogero models at least for the lowest number of its supersymmetric
extension, namely, for N= 2. In our recent paper [31] this description was provided for all types of
N= 2 extended Calogero models, including both their rational and their trigonometric/hyperbolic
versions.2

This paper is organized as follows. In Section 2 we start with a review of the Hamiltonian
description of the supersymmetric Calogero models. Then in Sections 3 and 4 we give a super-
field representation for Calogero models of type 𝐴1 ⊕ 𝐴𝑛−1 and types 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, respectively,
We demonstrate that there is a universal nonlinear fermionic chiral supermultiplet which collects
all matrix fermions occurring in all super-extended Calogero models. Finally, in Section 5 we
present more general supercharges (and a superspace Lagrangian), which correspond to an N= 2
supersymmetrization for a bosonic potential 𝑔2

2
∑

𝑖< 𝑗 𝑓 (𝑥𝑖−𝑥 𝑗)2 with an arbitrary function 𝑓 .

2. Hamiltonian description of N= 2 supersymmetric Calogero models

In the series of papers [26, 27, 30], the Hamiltonian approach was used to formulate the
supersymmetric extensions of Calogero models. With this approach, it was obtained an ansatz for
supercharges, which provides a description of all Calogero models associated with the classical 𝐴𝑛,
𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 Lie algebras and their trigonometric/hyperbolic extensions. Since the Hamiltonian
approach was successfully developed for N -extended supersymmetric Calogero models (in the
rational case) as well as for N= 2, 4 trigonometric/hyperbolic Calogero models, it was important
to obtain also its superfield formulation, for the simplest case with N= 2 supersymmetry. Such

2A superspace description of the N -extended supersymmetric Euler-Calogero-Moser system has been provided in
[32].
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N= 2 Calogero models within superspace

a construction has been performed in N= 2 superspace in our recent paper [31]. But before
proceeding to the construction in superspace, let us review the Hamiltonian description of the N= 2
supersymmetric Calogero models.

2.1 The case of 𝐴1 ⊕ 𝐴𝑛−1 Calogero models

In the Hamiltonian approach the 𝑛-particle supersymmetric Calogero model with N= 2-
extended supersymmetry [26, 27, 30] is described by the following degrees of freedom:

• 𝑛 bosonic coordinates 𝑥𝑖 and momenta 𝑝𝑖 with 𝑖 = 1, . . . , 𝑛,

• 2 𝑛 fermions 𝜓𝑖 and �̄�𝑖 ,

• 2 𝑛(𝑛−1) fermions b𝑖 𝑗 and b̄𝑖 𝑗 with b𝑖𝑖 = b̄𝑖𝑖 = 0.

The non-vanishing Poisson brackets read{
𝑥𝑖 , 𝑝 𝑗

}
= 𝛿𝑖 𝑗 ,

{
𝜓𝑖 , �̄� 𝑗

}
= −i 𝛿𝑖 𝑗 ,

{
b𝑖 𝑗 , b̄𝑘𝑚

}
= −i

(
1−𝛿𝑖 𝑗

)
(1−𝛿𝑘𝑚) 𝛿𝑖𝑚𝛿 𝑗𝑘 . (2)

In the Hamiltonian construction a central role plays the composite objects Π𝑖 𝑗 and Π̃𝑖 𝑗 , which are
defined by the following expressions

Π𝑖 𝑗 =
(
𝜓𝑖−𝜓 𝑗

)
b̄𝑖 𝑗 +

(
�̄�𝑖−�̄� 𝑗

)
b𝑖 𝑗 +

𝑛∑︁
𝑘=1

(
b𝑖𝑘 b̄𝑘 𝑗 + b̄𝑖𝑘b𝑘 𝑗

)
, (3)

Π̃𝑖 𝑗 = 2𝛿𝑖 𝑗𝜓𝑖�̄�𝑖 +
(
𝜓𝑖+𝜓 𝑗

)
b̄𝑖 𝑗 −

(
�̄�𝑖+�̄� 𝑗

)
b𝑖 𝑗 +

𝑛∑︁
𝑘=1

(
b𝑖𝑘 b̄𝑘 𝑗 − b̄𝑖𝑘b𝑘 𝑗

)
. (4)

They form an 𝑠(𝑢(𝑛) ⊕ 𝑢(𝑛)) algebra with respect to the introduced Poisson brackets (2),3{
Π𝑖 𝑗 ,Π𝑘𝑚

}
= i

(
𝛿𝑖𝑚Π𝑘 𝑗 − 𝛿𝑘 𝑗Π𝑖𝑚

)
,

{
Π𝑖 𝑗 , Π̃𝑘𝑚

}
= i

(
𝛿𝑖𝑚Π̃𝑘 𝑗 − 𝛿𝑘 𝑗Π̃𝑖𝑚

)
,{

Π̃𝑖 𝑗 , Π̃𝑘𝑚

}
= i

(
𝛿𝑖𝑚Π𝑘 𝑗 − 𝛿𝑘 𝑗Π𝑖𝑚

)
.

(5)

The N= 2 supersymmetric Calogero models of 𝐴-type [27, 30] are defined by a generic form
of their supercharges,

𝑄 =

𝑛∑︁
𝑖=1

𝑝𝑖𝜓𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

]
b 𝑗𝑖 ,

𝑄 =

𝑛∑︁
𝑖=1

𝑝𝑖�̄�𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

]
b̄ 𝑗𝑖 ,

(6)

with some function 𝑓 , to be specified in a moment. These supercharges form anN= 2 super-Poincaré
algebra, {

𝑄,𝑄
}
= −2iH and

{
𝑄,𝑄

}
=
{
𝑄,𝑄

}
= 0 , (7)

together with the Hamiltonian

H =
1
2

𝑛∑︁
𝑖=1

𝑝2
𝑖 + 1

2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

] [
(𝑔 + Π𝑖𝑖) 𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π 𝑗𝑖

]
+ 𝛼

2

𝑛∑︁
𝑖, 𝑗

Π𝑖 𝑗Π 𝑗𝑖 .

(8)

3It is to remind that
∑
𝑖 Π𝑖𝑖 = 0.
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N= 2 Calogero models within superspace

For further convenience, a new variable is introduced

𝑧𝑖 𝑗 = 𝑥𝑖 − 𝑥 𝑗 , (9)

and the constant parameter 𝛼 and the function 𝑓 are given as follows,

rational Calogero model 𝛼 = 0, 𝑓 (𝑧𝑖 𝑗) =
1
𝑧𝑖 𝑗

=
1

𝑥𝑖−𝑥 𝑗

,

hyperbolic Calogero-Moser model 𝛼 = −1, 𝑓 (𝑧𝑖 𝑗) =
1

sinh(𝑧𝑖 𝑗)
=

1
sinh(𝑥𝑖−𝑥 𝑗)

,

trigonometric Calogero-Moser model 𝛼 = 1, 𝑓 (𝑧𝑖 𝑗) =
1

sin(𝑧𝑖 𝑗)
=

1
sin(𝑥𝑖−𝑥 𝑗)

.

(10)

The bosonic part of Hamiltonian (8) is given by

H𝑏𝑜𝑠 =
1
2

𝑛∑︁
𝑖=1

𝑝2
𝑖 + 𝑔2

2

𝑛∑︁
𝑖≠ 𝑗

𝑓 2(𝑧𝑖 𝑗). (11)

2.2 The case of 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 Calogero models

The structure of supercharges for the 𝐵, 𝐶 and 𝐷-type Calodgero models have a more compli-
cated generic form [27, 30], because they include both composite objects Π𝑖 𝑗 and Π̃𝑖 𝑗

Q =

𝑛∑︁
𝑖=1

𝑝𝑖𝜓𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

]
b 𝑗𝑖 + i

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃𝑖 𝑗

]
b 𝑗𝑖

+ i
𝑛∑︁
𝑖

[
(𝑔′ + Π𝑖𝑖) 𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

]
𝜓𝑖 ,

Q =

𝑛∑︁
𝑖=1

𝑝𝑖�̄�𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

]
b̄ 𝑗𝑖 − i

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃𝑖 𝑗

]
b̄ 𝑗𝑖

− i
𝑛∑︁
𝑖

[
(𝑔′ + Π𝑖𝑖) 𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

]
�̄�𝑖 .

(12)
In addition, the following variable is introduced here to simplify the notation

𝑦𝑖 𝑗 = 𝑥𝑖 + 𝑥 𝑗 , (13)

while the function 𝑓 is the same as in (10). The supercharges (12) form the same N= 2 super-
Poincaré algebra (7) together with the Hamiltonian

H =
1
2

𝑛∑︁
𝑖=1

𝑝2
𝑖 + 1

2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

] [
(𝑔 + Π𝑖𝑖) 𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π 𝑗𝑖

]
+ 1

2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃𝑖 𝑗

] [
(𝑔 + Π𝑖𝑖) 𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃ 𝑗𝑖

]
+ 1

2

𝑛∑︁
𝑖

[
(𝑔′ + Π𝑖𝑖) 𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

] [
(𝑔′ + Π𝑖𝑖) 𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

]
.

(14)
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N= 2 Calogero models within superspace

Its bosonic sector reads

H𝑏𝑜𝑠 =
1
2

𝑛∑︁
𝑖=1

𝑝2
𝑖 + 𝑔2

2

𝑛∑︁
𝑖≠ 𝑗

(
𝑓 2(𝑧𝑖 𝑗) + 𝑓 2(𝑦𝑖 𝑗)

)
+ 𝑔′2

2

𝑛∑︁
𝑖

𝑓 2(𝑦𝑖𝑖). (15)

Note that due to the presence of only two coupling constants, 𝑔 and 𝑔′, in supercharges (12) and
Hamiltonian (14), it is possible to describe 𝐵, 𝐶 and 𝐷-type models in the rational case and 𝐶 and
𝐷 (but not 𝐵)-type models in the hyperbolic/trigonometric case.

3. N= 2 superspace 𝐴1 ⊕ 𝐴𝑛−1 Calogero models

In a superspace description ofN= 2 supersymmetric Calogero models, the physical components
𝑥𝑖 , 𝜓𝑖 , �̄�𝑖 , b𝑖 𝑗 and b̄𝑖 𝑗 are collected in some N = 2 superfields, which, possibly, must satisfy
irreducible constraints.

As follows from the structure of the supercharges 𝑄 and 𝑄 (6), the coordinates 𝑥𝑖 transform
into the fermions 𝜓𝑖 and �̄�𝑖 under N= 2 supersymmetry:

𝛿𝑥𝑖 ≡
{
𝑥𝑖 , i 𝜖𝑄 + i 𝜖𝑄

}
= i 𝜖𝜓𝑖 + i 𝜖�̄�𝑖 . (16)

Thus, one is let to 𝑛 bosonic N= 2 superfields 𝒙𝑖 with the components 4

𝑥𝑖 = 𝒙𝑖 |, 𝜓𝑖 = −i𝐷𝒙𝑖 |, �̄�𝑖 = −i𝐷𝒙𝑖 |, 𝐴𝑖 =
1
2

[
𝐷, 𝐷

]
𝒙𝑖 |. (17)

The rest of fermionic components b𝑖 𝑗 , b̄𝑖 𝑗 can be considered as the first components of 2𝑛(𝑛−1)
new fermionic superfields 𝝃𝑖 𝑗 and �̄�𝑖 𝑗 with vanishing diagonal parts, i.e.

𝝃𝑖𝑖 = �̄�𝑖𝑖 = 0 ∀ 𝑖. (18)

However, since the general N= 2 superfields, the 𝝃𝑖 𝑗 and �̄�𝑖 𝑗 contain a lot of components and, there-
fore, correspond to reducible superfields, they have to be constrained somehow. The appropriate
constraints can be derived from the explicit form of the supercharges 𝑄 and 𝑄 (6), which leads
to the following supersymmetry transformations of the leading components b𝑖 𝑗 and b̄𝑖 𝑗 of these
superfields,

𝛿𝑄b𝑖 𝑗 ∼ i𝜖
[
−

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

(
𝜓𝑖−𝜓 𝑗

)
b𝑖 𝑗 + b𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝑧𝑖𝑘)b𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝑧 𝑗𝑘)b 𝑗𝑘
)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

( 𝑓 ′(𝑧𝑖𝑘)
𝑓 (𝑧𝑖𝑘)

+
𝑓 ′(𝑧𝑘 𝑗)
𝑓 (𝑧𝑘 𝑗)

)
b𝑖𝑘b𝑘 𝑗

]
,

𝛿
𝑄
b̄𝑖 𝑗 ∼ i𝜖

[
−

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

(
�̄�𝑖−�̄� 𝑗

)
b̄𝑖 𝑗 + b̄𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝑧𝑖𝑘)b̄𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝑧 𝑗𝑘)b̄ 𝑗𝑘
)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

( 𝑓 ′(𝑧𝑖𝑘)
𝑓 (𝑧𝑖𝑘)

+
𝑓 ′(𝑧𝑘 𝑗)
𝑓 (𝑧𝑘 𝑗)

)
b̄𝑖𝑘 b̄𝑘 𝑗

]
.

(19)

4We use the N= 2 spinor covariant derivatives 𝐷 and 𝐷 obeying
{
𝐷, 𝐷

}
= 2i𝜕𝑡 and {𝐷, 𝐷} =

{
𝐷, 𝐷

}
= 0. We

denote by A| the \ = \̄ = 0 limit of a superspace expression A.
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N= 2 Calogero models within superspace

To realize this transformation property we are forced to impose a nonlinear chirality condition on
the superfields 𝝃𝑖 𝑗 and �̄�𝑖 𝑗 ,

𝐷𝝃𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
𝝍𝑖−𝝍 𝑗

)
𝝃𝑖 𝑗 + 𝝃𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝒛𝑖𝑘)𝝃𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝒛 𝑗𝑘)𝝃 𝑗𝑘

)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

(
𝑓 ′(𝒛𝑖𝑘)
𝑓 (𝒛𝑖𝑘)

+
𝑓 ′(𝒛𝑘 𝑗)
𝑓 (𝒛𝑘 𝑗)

)
𝝃𝑖𝑘𝝃𝑘 𝑗

]
,

𝐷�̄�𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
�̄�𝑖−�̄� 𝑗

)
�̄�𝑖 𝑗 + �̄�𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝒛𝑖𝑘)�̄�𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝒛 𝑗𝑘)�̄� 𝑗𝑘

)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

( 𝑓 ′(𝒛𝑖𝑘)
𝑓 (𝒛𝑖𝑘)

+
𝑓 ′(𝒛𝑘 𝑗)
𝑓 (𝒛𝑘 𝑗)

)
�̄�𝑖𝑘 �̄�𝑘 𝑗

]
.

(20)
These constraints leave in the superfields 𝝃𝑖 𝑗 and �̄�𝑖 𝑗 the following components

b𝑖 𝑗 = 𝝃𝑖 𝑗 |, 𝐵𝑖 𝑗 = 𝐷𝝃𝑖 𝑗 |, b̄𝑖 𝑗 = 𝝃𝑖 𝑗 |, 𝐵𝑖 𝑗 = 𝐷𝝃𝑖 𝑗 | . (21)

It is also important to have the correct brackets (2) for (𝜓𝑖 , �̄�𝑖) and (b𝑖 𝑗 , b̄𝑖 𝑗) after passing to the
Hamiltonian formalism. This is achieved when the kinetic terms for these fermionic components
have the following form in the Lagrangian

L𝜓

𝑘𝑖𝑛
=

i
2

𝑛∑︁
𝑖=1

(
¤𝜓𝑖�̄�𝑖 − 𝜓𝑖

¤̄𝜓𝑖

)
and L b

𝑘𝑖𝑛
=

i
2

𝑛∑︁
𝑖, 𝑗

(
¤b𝑖 𝑗 b̄ 𝑗𝑖 − b𝑖 𝑗

¤̄b 𝑗𝑖
)
. (22)

In N= 2 superspace, this amounts to the free action (𝑔 = 0)

𝑆0 =

∫
𝑑𝑡 𝑑2\

[
− 1

2

𝑛∑︁
𝑖=1

𝐷𝒙𝑖 𝐷𝒙𝑖 +
1
2

𝑛∑︁
𝑖, 𝑗

𝝃𝑖 𝑗𝝃 𝑗𝑖

]
with 𝑑2\ ≡ 𝐷𝐷. (23)

The next task is to construct the interaction terms in superspace. Again, some hints come
from the transformation properties of the fermions b𝑖 𝑗 and b̄𝑖 𝑗 under 𝑄 and 𝑄 supersymmetry,
respectively,

𝛿
𝑄
b𝑖 𝑗 ∼ i𝜖 𝑔 𝑓 (𝑧𝑖 𝑗) + . . . , 𝛿𝑄 b̄𝑖 𝑗 ∼ i𝜖 𝑔 𝑓 (𝑧𝑖 𝑗) + . . . . (24)

In order to realize such transformations in superspace, there is the unique possibility to add to the
action 𝑆0 (23) a term of the form

𝑆𝑖𝑛𝑡 = i
𝑔

2

∫
𝑑𝑡 𝑑\̄

𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗)𝝃𝑖 𝑗 + i
𝑔

2

∫
𝑑𝑡 𝑑\

𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗 . (25)

The integrands in (25) must be chiral and antichiral, respectively, then the action will be invariant.
The nonlinear chirality constraint (20) provide this

𝐷

( 𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗
)
= 0 and 𝐷

( 𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗
)
= 0. (26)

Thus, combining all these facts together, we conclude that the superfield action reads

𝑆 =

∫
𝑑𝑡 𝑑2\

[
−1

2

𝑛∑︁
𝑖=1

𝐷𝒙𝑖 𝐷𝒙𝑖+
1
2

𝑛∑︁
𝑖, 𝑗

𝝃𝑖 𝑗𝝃 𝑗𝑖

]
+i

𝑔

2

∫
𝑑𝑡 𝑑\̄

𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗)𝝃𝑖 𝑗+i
𝑔

2

∫
𝑑𝑡𝑑\

𝑛∑︁
𝑖≠ 𝑗

𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗 ,

(27)
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N= 2 Calogero models within superspace

where the superfields 𝝃𝑖 𝑗 and 𝝃𝑖 𝑗 are subject to the nonlinear chirality constraint (20).
Let us go back to the constraints (20). It turns out that, after passing to new fermionic superfields

𝝀𝑖 𝑗 ≡ 𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗 and �̄�𝑖 𝑗 ≡ 𝑓 (𝒛𝑖 𝑗) 𝝃𝑖 𝑗 , (28)

the nonlinear constraints (20) are simplified to

𝐷𝝀𝑖 𝑗 = i
[
𝝀𝑖 𝑗

𝑛∑︁
𝑘≠𝑖

𝝀𝑖𝑘 − 𝝀𝑖 𝑗

𝑛∑︁
𝑘≠ 𝑗

𝝀 𝑗𝑘 +
(
1−𝛿𝑖 𝑗

) 𝑛∑︁
𝑘≠𝑖, 𝑗

𝝀𝑖𝑘𝝀𝑘 𝑗

]
,

𝐷�̄�𝑖 𝑗 = i
[
�̄�𝑖 𝑗

𝑛∑︁
𝑘≠𝑖

�̄�𝑖𝑘 − �̄�𝑖 𝑗

𝑛∑︁
𝑘≠ 𝑗

�̄� 𝑗𝑘 +
(
1−𝛿𝑖 𝑗

) 𝑛∑︁
𝑘≠𝑖, 𝑗

�̄�𝑖𝑘 �̄�𝑘 𝑗

]
.

(29)

In this form, the constraints have lost any 𝑓 -dependence, which however will reappear in the action,

𝑆 =

∫
𝑑𝑡 𝑑2\

[
−1

2

𝑛∑︁
𝑖=1

𝐷𝒙𝑖 𝐷𝒙𝑖+
1
2

𝑛∑︁
𝑖, 𝑗

𝝀𝑖 𝑗 �̄� 𝑗𝑖

𝑓 (𝒛𝑖 𝑗) 𝑓 (𝒛 𝑗𝑖)

]
+i

𝑔

2

∫
𝑑𝑡 𝑑\̄

𝑛∑︁
𝑖≠ 𝑗

𝝀𝑖 𝑗+i
𝑔

2

∫
𝑑𝑡 𝑑\

𝑛∑︁
𝑖≠ 𝑗

�̄�𝑖 𝑗 .

(30)
It is also obvious that the component Lagrangian, Hamiltonian and Poisson brackets will be more
complicated in terms of the composite superfields 𝝀𝑖 𝑗 and �̄�𝑖 𝑗 .

Despite the extremely simple form of the superfield action (27), its component version looks
quite complicated due to the constraint (20). Let us consider in more detail how the calculations
are carried out in this case. After integration over \ in (27) the off-shell Lagrangian reads

L = L0 + Lpot , where (31)

L0 =
1
2

𝑛∑︁
𝑖

(
¤𝑥𝑖 ¤𝑥𝑖 + 𝐴𝑖𝐴𝑖

)
+ i

2

𝑛∑︁
𝑖

(
¤𝜓𝑖�̄�𝑖 − 𝜓𝑖

¤̄𝜓𝑖

)
+ i

2

𝑛∑︁
𝑖, 𝑗

(
¤b𝑖 𝑗 b̄ 𝑗𝑖 − b𝑖 𝑗

¤̄b 𝑗𝑖
)

+ 1
2

𝑛∑︁
𝑖, 𝑗

(
b𝑖 𝑗𝐷

(
𝐷b̄ 𝑗𝑖

)
− 𝐷

(
𝐷b𝑖 𝑗

)
b̄ 𝑗𝑖 − 𝐷b𝑖 𝑗𝐷b̄ 𝑗𝑖 + 𝐵𝑖 𝑗𝐵 𝑗𝑖

)
,

Lpot = −𝑔

2

𝑛∑︁
𝑖, 𝑗

𝑓 ′(𝑧𝑖 𝑗)
( (

𝜓𝑖 − 𝜓 𝑗

)
b̄𝑖 𝑗 +

(
�̄�𝑖 − �̄� 𝑗

)
b𝑖 𝑗

)
+ i

𝑔

2

𝑛∑︁
𝑖, 𝑗

𝑓 (𝑧𝑖 𝑗)
(
𝐵𝑖 𝑗 + 𝐵𝑖 𝑗

)
.

(32)

To eliminate the auxiliary fields 𝐴𝑖 and 𝐵𝑖 𝑗 one firstly has to evaluate the terms in the second line
of (32) by using the constraint (20). This is a straightforward but rather tedious calculation. After
employing the equations of motion we finally obtain the desired result,

L =
1
2

𝑛∑︁
𝑖=1

¤𝑥𝑖 ¤𝑥𝑖 +
i
2

𝑛∑︁
𝑖=1

(
¤𝜓𝑖�̄�𝑖 − 𝜓𝑖

¤̄𝜓𝑖

)
+ i

2

𝑛∑︁
𝑖, 𝑗

(
¤b𝑖 𝑗 b̄ 𝑗𝑖 − b𝑖 𝑗

¤̄b 𝑗𝑖
)

− 1
2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

] [ (
𝑔 + Π𝑖𝑖

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π 𝑗𝑖

]
− 𝛼

2

𝑛∑︁
𝑖, 𝑗

Π𝑖 𝑗Π 𝑗𝑖 .

(33)
Thus, the superfield action (27) with the superfields 𝝃𝑖 𝑗 and 𝝃𝑖 𝑗 subject to the nonlinear chirality
constraint (20) indeed describes all N= 2 supersymmetric 𝐴1 ⊕ 𝐴𝑛−1 Calogero models.
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4. N= 2 superspace 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 Calogero models

As follows from (12), the supercharges of the N= 2 supersymmetric 𝐵, 𝐶 and 𝐷-type Calogero
models have a more complicated structure than those which are given for Calogero model of 𝐴-type
in (6). Therefore, it is expected that the nonlinear chirality constraint for the superfields 𝝃𝑖 𝑗 and 𝝃𝑖 𝑗
are more intricate as well. Indeed, the explicit structure of the supercharges (12) uniquely fixes this
constraint to be

𝐷𝝃𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
𝝍𝑖−𝝍 𝑗

)
𝝃𝑖 𝑗 −

𝑓 ′(𝒚𝑖 𝑗)
𝑓 (𝒚𝑖 𝑗)

(
𝝍𝑖 + 𝝍 𝑗

)
𝝃𝑖 𝑗

+
{( 𝑓 ′(𝒚𝑖𝑖)

𝑓 (𝒚𝑖𝑖)
− 𝑓 (𝒚𝒊𝒊)

)
𝝍𝑖 +

( 𝑓 ′(𝒚 𝑗 𝑗)
𝑓 (𝒚 𝑗 𝑗)

+ 𝑓 (𝒚 𝑗 𝑗)
)
𝝍 𝑗

}
𝝃𝑖 𝑗

+ 𝝃𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

(
𝑓 (𝒛𝑖𝑘) + 𝑓 (𝒚𝑖𝑘)

)
𝝃𝑖𝑘 −

𝑛∑︁
𝑘≠ 𝑗

(
𝑓 (𝒛 𝑗𝑘) + 𝑓 (𝒚 𝑗𝑘)

)
𝝃 𝑗𝑘

)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

( 𝑓 ′(𝒛𝑖𝑘)
𝑓 (𝒛𝑖𝑘)

+
𝑓 ′(𝒛𝑘 𝑗)
𝑓 (𝒛𝑘 𝑗)

− 𝑓 ′(𝒚𝑖𝑘)
𝑓 (𝒚𝑖𝑘)

+
𝑓 ′(𝒚𝑘 𝑗)
𝑓 (𝒚𝑘 𝑗)

)
𝝃𝑖𝑘𝝃𝑘 𝑗

]
,

𝐷�̄�𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
�̄�𝑖−�̄� 𝑗

)
�̄�𝑖 𝑗 −

𝑓 ′(𝒚𝑖 𝑗)
𝑓 (𝒚𝑖 𝑗)

(
�̄�𝑖 + �̄� 𝑗

)
�̄�𝑖 𝑗

+
{( 𝑓 ′(𝒚𝑖𝑖)

𝑓 (𝒚𝑖𝑖)
+ 𝑓 (𝒚𝒊𝒊)

)
�̄�𝑖 +

( 𝑓 ′(𝒚 𝑗 𝑗)
𝑓 (𝒚 𝑗 𝑗)

− 𝑓 (𝒚 𝑗 𝑗)
)
�̄� 𝑗

}
�̄�𝑖 𝑗

+ �̄�𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

(
𝑓 (𝒛𝑖𝑘) − 𝑓 (𝒚𝑖𝑘)

)
�̄�𝑖𝑘 −

𝑛∑︁
𝑘≠ 𝑗

(
𝑓 (𝒛 𝑗𝑘) − 𝑓 (𝒚 𝑗𝑘)

)
�̄� 𝑗𝑘

)
−

𝑛∑︁
𝑘≠𝑖, 𝑗

( 𝑓 ′(𝒛𝑖𝑘)
𝑓 (𝒛𝑖𝑘)

+
𝑓 ′(𝒛𝑘 𝑗)
𝑓 (𝒛𝑘 𝑗)

− 𝑓 ′(𝒚𝑖𝑘)
𝑓 (𝒚𝑖𝑘)

+
𝑓 ′(𝒚𝑘 𝑗)
𝑓 (𝒚𝑘 𝑗)

)
�̄�𝑖𝑘 �̄�𝑘 𝑗

]
.

(34)

Nevertheless, the complicated form of this constraint disappears after passing to the composite
superfields in the same way as in the previous case

𝝀𝑖 𝑗 =
(
𝑓 (𝒛𝑖 𝑗) + 𝑓 (𝒚𝑖 𝑗)

)
𝝃𝑖 𝑗 and �̄�𝑖 𝑗 =

(
𝑓 (𝒛𝑖 𝑗) − 𝑓 (𝒚𝑖 𝑗)

)
𝝃𝑖 𝑗 , . (35)

In terms of these superfields the constraint acquires its familiar form (29),

𝐷𝝀𝑖 𝑗 = i
[
𝝀𝑖 𝑗

𝑛∑︁
𝑘≠𝑖

𝝀𝑖𝑘 − 𝝀𝑖 𝑗

𝑛∑︁
𝑘≠ 𝑗

𝝀 𝑗𝑘 +
(
1−𝛿𝑖 𝑗

) 𝑛∑︁
𝑘≠𝑖, 𝑗

𝝀𝑖𝑘𝝀𝑘 𝑗

]
,

𝐷�̄�𝑖 𝑗 = i
[
�̄�𝑖 𝑗

𝑛∑︁
𝑘≠𝑖

�̄�𝑖𝑘 − �̄�𝑖 𝑗

𝑛∑︁
𝑘≠ 𝑗

�̄� 𝑗𝑘 +
(
1−𝛿𝑖 𝑗

) 𝑛∑︁
𝑘≠𝑖, 𝑗

�̄�𝑖𝑘 �̄�𝑘 𝑗

]
.

Taking into account the arguments used in the analysis of the structure of superfiled action (27),
one can conclude that the superfield action for N= 2 supersymmetric 𝐵, 𝐶 and 𝐷-type Calogero

9



P
o
S
(
R
e
g
i
o
2
0
2
0
)
0
1
7

N= 2 Calogero models within superspace

models is given by

𝑆 =

∫
𝑑𝑡 𝑑2\

[
− 1

2

𝑛∑︁
𝑖=1

𝐷𝒙𝑖 𝐷𝒙𝑖 +
1
2

𝑛∑︁
𝑖, 𝑗

𝝃𝑖 𝑗𝝃 𝑗𝑖 −
1
2
𝑔′ ℎ(𝒚𝑖𝑖)

]
+ i

𝑔

2

∫
𝑑𝑡 𝑑\̄

𝑛∑︁
𝑖≠ 𝑗

(
𝑓 (𝒛𝑖 𝑗) + 𝑓 (𝒚𝑖 𝑗)

)
𝝃𝑖 𝑗 + i

𝑔

2

∫
𝑑𝑡 𝑑\

𝑛∑︁
𝑖≠ 𝑗

(
𝑓 (𝒛𝑖 𝑗) + 𝑓 (𝒚𝑖 𝑗)

)
𝝃𝑖 𝑗 ,

(36)

where

ℎ′(𝒚𝑖𝑖) = 𝑓 (𝒚𝑖𝑖). (37)

Compared to the action of the 𝐴1 ⊕ 𝐴𝑛−1 Calogero models (30), only the term 1
2 𝑔

′
∫
𝑑𝑡 𝑑2\ ℎ(𝒚𝑖𝑖)

carrying the new coupling constant 𝑔′ appears in the action (36). All other terms just mimic those
in (30).

It is a matter of straightforward but tedious calculations to check that, after excluding the
auxiliary fields by their equations of motion, the final on-shell Lagrangian acquires the expected
form

L =
1
2

𝑛∑︁
𝑖=1

¤𝑥𝑖 ¤𝑥𝑖 +
i
2

𝑛∑︁
𝑖=1

(
¤𝜓𝑖�̄�𝑖 − 𝜓𝑖

¤̄𝜓𝑖

)
+ i

2

𝑛∑︁
𝑖, 𝑗

(
¤b𝑖 𝑗 b̄ 𝑗𝑖 − b𝑖 𝑗

¤̄b 𝑗𝑖
)

− 1
2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π𝑖 𝑗

] [ (
𝑔 + Π𝑖𝑖

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

Π 𝑗𝑖

]
− 1

2

𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃𝑖 𝑗

] [ (
𝑔 + Π𝑖𝑖

)
𝑓 (𝑦𝑖 𝑗) −

𝑓 ′(𝑦𝑖 𝑗)
𝑓 (𝑦𝑖 𝑗)

Π̃ 𝑗𝑖

]
− 1

2

𝑛∑︁
𝑖

[ (
𝑔′ + Π𝑖𝑖

)
𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

] [ (
𝑔′ + Π𝑖𝑖

)
𝑓 (𝑦𝑖𝑖) −

𝑓 ′(𝑦𝑖𝑖)
𝑓 (𝑦𝑖𝑖)

Π̃𝑖𝑖

]
.

(38)

Thus, the superfield action (36) with the superfields 𝝃𝑖 𝑗 and 𝝃𝑖 𝑗 subject to the nonlinear chirality
constraint (34) indeed describes the N= 2 supersymmetric 𝐵, 𝐶 and 𝐷-type Calogero models.5

5. New N= 2 supersymmetric 𝑛-particle models

The starting point was the explicit form of the N= 2 supercharges for the Calogero models (6)
and (12) constructed in [27, 30]. In all considered cases the function 𝑓 to be not arbitrary but to
be chosen from the list (10). Indeed, for generic function 𝑓 the supercharges (6) do not form the
closed algebra (7). As a consequence, the nonlinear chirality condition (20) is not self-consistent
for an arbitrary function 𝑓 (i.e. 𝐷 acting on the r.h.s. of (20) does not vanish). On the other hand,
as can be straightforwardly proved, the universal chirality constraint (29) is self-consistent. This

5Except again for 𝐵-type models in the trigonometric/hyperbolic case.
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implies a weaker chirality condition on 𝝃𝑖 𝑗 and 𝝃𝑖 𝑗 :6

𝐷𝝃𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
𝝍𝑖 − 𝝍 𝑗

)
𝝃𝑖 𝑗 + 𝝃𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝒛𝑖𝑘)𝝃𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝒛 𝑗𝑘)𝝃 𝑗𝑘

)
+

𝑛∑︁
𝑘≠𝑖, 𝑗

𝑓 (𝒛𝑖𝑘) 𝑓 (𝒛𝑘 𝑗)
𝑓 (𝒛𝑖 𝑗)

𝝃𝑖𝑘𝝃𝑘 𝑗

]
,

𝐷�̄�𝑖 𝑗 = i
[
−

𝑓 ′(𝒛𝑖 𝑗)
𝑓 (𝒛𝑖 𝑗)

(
�̄�𝑖 − �̄� 𝑗

)
�̄�𝑖 𝑗 + �̄�𝑖 𝑗

( 𝑛∑︁
𝑘≠𝑖

𝑓 (𝒛𝑖𝑘)�̄�𝑖𝑘 −
𝑛∑︁

𝑘≠ 𝑗

𝑓 (𝒛 𝑗𝑘)�̄� 𝑗𝑘

)
+

𝑛∑︁
𝑘≠𝑖, 𝑗

𝑓 (𝒛𝑖𝑘) 𝑓 (𝒛𝑘 𝑗)
𝑓 (𝒛𝑖 𝑗)

�̄�𝑖𝑘 �̄�𝑘 𝑗

]
.

(39)
One may check that this nonlinear chirality constraint is perfectly self-consistent for an arbitrary
function 𝑓 .

Now, let us again start from the superspace action (23), but where the fermionic superfields
𝝃𝑖 𝑗 and 𝝃𝑖 𝑗 must obey the constraint (39). Passing to the components and eliminating the auxiliary
components one arrives at

Q =

𝑛∑︁
𝑖=1

𝑝𝑖𝜓𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

(
𝜓𝑖 − 𝜓 𝑗

)
b̄𝑖 𝑗 +

𝑛∑︁
𝑘≠𝑖, 𝑗

𝑓 (𝑧𝑖𝑘) 𝑓 (𝑧𝑖 𝑗)
𝑓 (𝑧𝑘 𝑗)

b𝑖𝑘 b̄𝑘 𝑗

]
b 𝑗𝑖 ,

Q =

𝑛∑︁
𝑖=1

𝑝𝑖�̄�𝑖 − i
𝑛∑︁
𝑖≠ 𝑗

[ (
𝑔 + Π 𝑗 𝑗

)
𝑓 (𝑧𝑖 𝑗) +

𝑓 ′(𝑧𝑖 𝑗)
𝑓 (𝑧𝑖 𝑗)

(
�̄�𝑖 − �̄� 𝑗

)
b𝑖 𝑗 +

𝑛∑︁
𝑘≠𝑖, 𝑗

𝑓 (𝑧𝑖𝑘) 𝑓 (𝑧𝑖 𝑗)
𝑓 (𝑧𝑘 𝑗)

b̄𝑖𝑘b𝑘 𝑗

]
b̄ 𝑗𝑖 .

(40)
For the functions listed in (10) these supercharges coincide with the ones in (6). However, the
supercharges (40) generate the N= 2 super-Poincaré algebra (7) for an arbitrary function 𝑓 . It is
not too hard to find the bosonic part of the new Hamiltonian,

Hbos =
1
2

𝑛∑︁
𝑖

𝑝2
𝑖 +

𝑔2

2

𝑛∑︁
𝑖≠ 𝑗

𝑓 2(𝑧𝑖 𝑗) . (41)

Thus, the supercharges (40) provide an N= 2 supersymmetrization of a wide class of multiparticle
systems with a bosonic Hamiltonian of the type (41). A detailed analysis of such models will be
given elsewhere.

6. Conclusions

In this paper we reviewed the Hamiltonian analysis of the N= 2 supersymmetric Calogero
models, rational as well as trigonometric/hyperbolic, associated with the classical 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and
𝐷𝑛 Lie algebras and then provided a superspace description for all of them. We found a minimal
superfield content, in which a set of 2𝑛2 fermions can be placed for the N= 2 supersymmetric
𝑛-particle model. As 2𝑛 fermions accompany the 𝑛 bosonic coordinates in general bosonic N= 2
superfields, the remaining 2𝑛(𝑛−1) fermions must be put into additional fermionicN= 2 superfields,
which have to be constrained such as to describe those fermions alone. It was shown that the
Hamiltonian approach proved to be useful for obtaining the appropriate conditions on superfields.
After passing to new composite fermionic superfields, the constraints acquired a form of the
nonlinear chirality conditions (29), which solve the task. Although these composite fermionic N= 2

6For the sake of simplicity the 𝐴-type case is considered here, in which the (𝝀𝑖 𝑗 , �̄�𝑖 𝑗 ) and (𝝃𝑖 𝑗 , 𝝃𝑖 𝑗 ) are related as in
(28).
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superfields make the constraint look simple and universal, the Lagrangian written through them
takes a more complicated form. In terms of the fundamental fermions it is the other way around.
Finally, we demonstrated that, due to the self-consistency of the nonlinear constraints, there are more
general supercharges (and the superspace Lagrangian) which provides anN= 2 supersymmetrization
of bosonic 𝑛-particle systems with an arbitrary repulsive two-body interaction.

It may seem that the approach presented here is unnecessarily complicated, because all N= 2
supersymmetric Calogero models can be more or less straightforwardly formulated in the standard
way by the use of the minimal set of 2𝑛 fermions [4]. This, however, is no longer the case with
N> 2 supersymmetric Calogero models, where our treatment with additional fermions becomes
essential. Hence, we consider the results presented here as a preparation for further study of the
Calogero systems with more supersymmetry in a superspace approach. Let us finally note that a
generalization of the N= 2 supercharges for Calogero models to the N= 4 case goes in an almost
trivial way [30]. Therefore, one can expect that the universality of the nonlinear constraints in the
N= 2 case can be implemented in a similar way for N= 4 Calogero models given in superfields and
be useful in a superspace construction of N≥ 4 Calogero models.
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