
ANALYSIS OF THE PANOFSKY-WENZEL THEOREM
IN PILLBOX CAVITIES WITH A BEAM PIPE

L. M. Wroe, A. Latina, S. Stapnes, W. Wuensch, CERN, Geneva, Switzerland
R. J. Apsimon1, M. Southerby1, Lancaster University, Lancaster, United Kingdom

1also at Cockcroft Institute, Warrington, United Kingdom

Abstract
In this paper, we derive the multipolar form of the

change in transverse and longitudinal momenta of an ultra-
relativistic charged particle that traverses a harmonic TM𝑚𝑛0
mode in a pillbox cavity with a beam pipe. The relevant
equations are first formalised before presenting results from
the numerical integration of RF cavity field maps. In par-
ticular, we show that the radial dependence of the change
in transverse and longitudinal momenta through a TM𝑚𝑛0
mode has polynomial, and not Bessel, dependence.

INTRODUCTION
In 1956, Panofsky and Wenzel derived their eponymous

theorem stating that the change in transverse momentum
Δ𝑝⟂ of a rigid particle of charge 𝑒 and ultra-relativistic ve-
locity ⃗𝑣 = 𝑐 ̂𝑧 which traverses an RF cavity supporting a
mode 𝑙 of resonant angular frequency 𝜔𝑙 and longitudinal
electric field 𝐸𝑧 is [1, 2]

Δ𝑝⟂(𝑟, 𝜃) = −𝑖 𝑒
𝜔𝑙

∫
𝐿/2

−𝐿/2
∇⟂𝐸𝑧( ⃗𝑟, 𝑡)𝑑𝑧. (1)

Here 𝐿 is a longitudinal length that is sufficiently longer
than the RF cavity such that electromagnetic fields decay
to a negligeble value, 𝐸𝑧(𝑟, 𝜃, |𝑧| > 𝐿) ∼ 0, and the integral
limits in Eq. 1 can be replaced with 𝐿 → ∞.

In the case of the ultra-relativistic particle having co-
ordinate 𝑧 = 0 at 𝑡 = 0 such that 𝑡 = 𝑧/𝑐 and the har-
monic RF cavity mode having phase 𝜓 at 𝑡 = 0 such that
𝐸𝑧( ⃗𝑟, 𝑡) = 𝐸𝑧( ⃗𝑟)𝑒𝑖(𝜔𝑙𝑡+𝜓), Panofsky-Wenzel’s Eq. 1 be-
comes

Δ𝑝⟂(𝑟, 𝜃) = −𝑖 𝑒
𝜔𝑙

∫
∞

−∞
𝑒𝑖(𝜔𝑙𝑧/𝑐+𝜓)∇⟂𝐸𝑧( ⃗𝑟)𝑑𝑧. (2)

Thus the change in transverse momentum is simple to calcu-
late if the longitudinal electric field is known completely.

A completely general representation of the spatial com-
ponent of the longitudinal electric field for a standing-wave
mode 𝑙 in an RF cavity is derived in Ref. [3] as

𝐸𝑧( ⃗𝑟) = ∫
∞

−∞
𝑑𝑘 𝑒𝑖𝑘𝑧

√2𝜋

∞
∑
𝑚=0

̃𝑔𝑚(𝑘)𝑅𝑚(𝜅𝑙𝑟) cos (𝑚𝜃 − 𝜙𝑚)

=
∞
∑
𝑚=0

𝐸𝑧,𝑚(𝑟, 𝑧) cos (𝑚𝜃 − 𝜙𝑚). (3)

In this formalism, ̃𝑔𝑚(𝑘) has the same units as the electric
field and represents the strength of the multipole of order 𝑚
and 𝜙𝑚 is the orientation of the multipole of order 𝑚 (𝜙𝑚 = 0

is normal and 𝜙𝑚 = 𝜋/2 skew). Furthermore,

𝑅𝑚(𝜅𝑙𝑟) =
⎧{
⎨{⎩

𝐽𝑚(𝜅𝑙𝑟), 𝑘 < 𝑘𝑙;
𝐼𝑚(𝜅𝑙𝑟), otherwise,

(4)

where 𝜅2
𝑙 = |𝑘2 − 𝑘2

𝑙 | and 𝑘𝑙 = 𝜔𝑙/𝑐 is the wavenumber of
the mode.

In this representation, ̃𝑔𝑚(𝑘) has no dependence on radius.
Therefore, if the longitudinal field 𝐸𝑧 is completely known on
the surface of a cylinder of radius 𝑎, 𝑔𝑚(𝑘) can be explicitly
calculated as

̃𝑔𝑚(𝑘) = 1
𝑅𝑚(𝜅𝑙𝑎) ∫

∞

−∞
𝑑𝑧

√2𝜋
𝑒−𝑖𝑘𝑧𝐸𝑧,𝑚(𝑎, 𝑧). (5)

By solving Eq. 5, the longitudinal electric field is then also
calculable at any point in the cavity using Eq. 3 and, from this,
so too is the change in transverse momentum by Panofsky-
Wenzel’s Eq. 2 which becomes

Δ𝑝⟂ = −𝑖 𝑒
𝜔𝑙

∫
∞

−∞
∇⟂( ∫

∞

−∞
𝑑𝑘

√2𝜋
𝑒𝑖𝑘𝑧𝑒𝑖(𝑘𝑙𝑧+𝜓)

∞
∑
𝑚=0

̃𝑔𝑚(𝑘)𝑅𝑚(𝜅𝑙𝑟) cos (𝑚𝜃 − 𝜙𝑚))𝑑𝑧. (6)

From here, we present analytical and numerical results
from field map integrations using Mathematica [4] to de-
rive the form of the change in transverse momentum through
TM𝑚𝑛0 modes in RF cavities.

PILLBOX CAVITIES WITH BEAM PIPES
Figure 1 shows a pillbox cavity with a beam pipe and

the relevant parameters used for this analysis: 𝐺 is the cell
length, 𝑅 the cavity radius, 𝑎 the beam pipe radius, and 𝐿
the field map length.

Figure 1: Cross-section of a pillbox cavity with beam pipe.
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The longitudinal electric field of the TM𝑚𝑛𝑝 mode in the
cavity shown in Fig. 1 is derived by assuming a fixed bore
electric field of

𝐸𝑧(𝑎, 𝜃, 𝑧) =
⎧{
⎨{⎩

𝐸𝐺 cos (𝑚𝜃 − 𝜙𝑚) cos (𝑘𝑝𝑧), |𝑧| < 𝐺/2;
0, otherwise,

(7)
where 𝑘𝑝 = 2𝑝𝜋/𝐺.

Limiting this study to the normal 𝜙𝑚 = 0, 𝑝 = 0 modes
and inserting Eq. 7 into Eq. 5 gives

̃𝑔𝑚(𝑘) = 𝐸𝐺
𝑅𝑚(𝜅𝑙𝑎) ∫

𝐺/2

−𝐺/2
𝑑𝑧

√2𝜋
𝑒−𝑖𝑘𝑧

= 𝐺𝐸𝐺

√2𝜋𝑅𝑚(𝜅𝑙𝑎)

sin (𝑘𝐺/2)
𝑘𝐺/2 . (8)

From Eq. 8, the longitudinal electric field throughout the
cavity is determined using Eq. 3 as

𝐸𝑧( ⃗𝑟) = 𝐺𝐸𝐺

√2𝜋𝑅𝑚(𝜅𝑙𝑎)
cos (𝑚𝜃)

∫
∞

−∞
𝑑𝑘

√2𝜋
𝑒𝑖𝑘𝑧 sin (𝑘𝐺/2)

𝑘𝐺/2 𝑅𝑚(𝜅𝑙𝑟), (9)

and, from here, the change in transverse momentum is cal-
culable using the Panofsky-Wenzel theorem in Eq. 2 as

Δ𝑝⟂(𝑟, 𝜃) = −𝑖 𝑒
𝜔𝑙

𝐺𝐸𝐺

√2𝜋𝑅𝑚(𝜅𝑙𝑎)
cos (𝑚𝜃)∇⟂

∫
∞

−∞
𝑒𝑖(𝑘𝑙𝑧+𝜓) ∫

∞

−∞
𝑑𝑘

√2𝜋
𝑒𝑖𝑘𝑧 sin (𝑘𝐺/2)

𝑘𝐺/2 𝑅𝑚(𝜅𝑙𝑟)𝑑𝑧. (10)

We also note explicitly that, under our assumptions, the
change in longitudinal momentum is

Δ𝑝𝑧(𝑟, 𝜃) = 𝑒
𝑐 ∫

∞

−∞
𝐸𝑧( ⃗𝑟, 𝑡)𝑑𝑧 → Δ𝑝⟂ = −𝑖 𝑐

𝜔𝑙
∇⟂𝑝𝑧.

(11)

FIELD MAP INTEGRATIONS
Equations 8–10 are non-trivial to analyse directly1 and

so here we present an analysis of the 3 GHz TM010, TM110,
and TM210 modes in pillbox cavities of length 𝐺 =
𝑐/2𝑓 ∼ 50 mm and with beam pipes of varying radii.

Figure 2 shows ̃𝑔0(𝑘), ̃𝑔1(𝑘), and ̃𝑔2(𝑘) for the TM010,
TM110, and TM210 modes for different beam pipe radii 𝑎.
In the case of 𝑚 ≥ 1, we note that the function diverges at
𝑘 = 𝑘𝑙 ∼ 62.9 m−1.

Figure 3 shows 𝐸𝑧(𝑟, 0, 𝑧, 𝑡 = 0) and 𝐸𝑧(𝑟, 0, 𝑧, 𝑡 = 𝑧/𝑐)
when 𝜓 = 0 in the TM010, TM110, and TM210 modes
for a fixed beam pipe radius2. The peak field at 𝑧 = 0
varies as 𝐽𝑚(𝑘𝑙𝑟) and the leakage of the field into the beam
pipe beyond |𝑧| > 𝐺/2𝑐 ∼ 25.0 mm is visible. For the
oscillating case, this coincides with a change in sign of the
electric field.
1 Refs. [5, 6] present a thorough treatment of the simpler, 𝑎 = 0 regime.
2 To achieve sufficient accuracy, 1000 integration steps were taken in the

𝑑𝑧-integral up to 100 mm and 2000 in the 𝑑𝑘-integral up to 5000𝑘𝑙.

(a) TM010. (b) TM110.

(c) TM210.

Figure 2: ̃𝑔0(𝑘), ̃𝑔1(𝑘), and ̃𝑔2(𝑘) for the 3 GHz modes
TM010 (𝑅 ∼ 38.3 mm), TM110 (𝑅 ∼ 60.9 mm), and TM210
(𝑅 ∼ 81.7 mm) modes with 𝐺 = 𝑐/2𝑓 and 𝐸𝑔 = 1 V/m.
The legend denotes the beam pipe radius.

(a) Static TM010. (b) Oscillating TM010.

(c) Static TM110. (d) Oscillating TM110.

(e) Static TM210. (f) Oscillating TM210.

Figure 3: 𝐸𝑧(𝑟, 0, 𝑧, 𝑡 = 0) and 𝐸𝑧(𝑟, 0, 𝑧, 𝑡 = 𝑧/𝑐)
along the different radii stated in the legend for the 3 GHz
TM010 (𝑅 ∼ 38.3 mm), TM110 (𝑅 ∼ 60.9 mm), and TM210
(𝑅 ∼ 81.7 mm) modes with 𝐺 = 𝑐/2𝑓 and 𝑎 = 𝑅/2.
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(a) Static TM010. (b) Static TM010. (c) Oscillating TM010. (d) Oscillating TM010.

(e) Static TM110. (f) Static TM110. (g) Oscillating TM110. (h) Oscillating TM110.

(i) Static TM210. (j) Static TM210. (k) Oscillating TM210. (l) Oscillating TM210.

Figure 4: Δ𝑝𝑧(𝑟, 0) and Δ𝑝𝑥(𝑟, 0) up to the beam pipe radius in 3 GHz TM010 (𝑅 ∼ 38.3 mm), TM110 (𝑅 ∼ 60.9 mm), and
TM210 (𝑅 ∼ 81.7 mm) modes. The different lines denote the momentum change for the different beam pipe radii 𝑎 stated in
the legend. The dashed lines are fits to a Bessel function (static plots) or polynomial (oscillating plots).

Figure 4 shows Δ𝑝𝑧(𝑟, 0) and Δ𝑝𝑥(𝑟, 0) for static and os-
cillating TM010 (top), TM110 (middle), and TM210 (bottom)
modes for a range of beam pipe radii. For the static cases,
the change in longitudinal momentum of the TM𝑚10 mode
varies as 𝐽𝑚(𝑘𝑙𝑟) and the corresponding change in transverse
momentum as 𝐽𝑚−1(𝑘𝑙𝑟). For the oscillating cases, however,
the longitudinal momentum of the TM𝑚10 mode varies as
𝑟𝑚 and the corresponding change in transverse momentum
as 𝑟𝑚−1 (the divergence to the polynomial fit seen approxi-
mately 5 mm from the beam pipe, particularly in Fig. 4c, is
numerical error). That is, Figs. 4c and 4d show the change in
longitudinal and transverse momentum in the time-varying
TM010 mode is constant and zero respectively for all hori-
zontal offsets, and Figs. 4g and 4h show they are linear and
constant for the TM110 mode, Figs. 4k and 4l show they are
quadratic and linear for the TM210 mode.

Including the time variation of the RF cavity field there-
fore leads to the change in longitudinal and transverse mo-
mentum varying as a polynomial with the radius and not
with a Bessel. Generalising this conclusion, the change in
longitudinal and transverse momenta of an ultra-relativistic
charged particle traversing a TM𝑚10 mode excited in a pill-
box cavity with a beam pipe vary as Δ𝑝𝑧 ∝ 𝐶𝑚−1𝑟𝑚

and Δ𝑝𝑥 ∝ 𝐶𝑚𝑟𝑚−1, where the polynomial coefficient
is 𝐶𝑁 ∝ 1/𝑎𝑁.

This conclusion recovers the well-known result that for a
TM010 mode, the energy gain (i.e. longitudinal momentum
change) is constant and the magnetic focusing (i.e. transverse
momentum change) is zero regardless of any radial offset [7].

CONCLUSION
The presented numerical field map integration results

show that the radial dependence of the change in longitudinal
and transverse momenta of a rigid, ultra-relativistic particle
traversing a harmonic TM𝑚𝑛0 mode in a pillbox cavity with
a beam pipe vary as 𝑟𝑚 and 𝑟𝑚−1 respectively.

The method and results presented here can be utilised in
designing azimuthally modulated RF cavities for precision
control over the multipolar components in their modes. This
is beneficial for many applications including the removal of
unwanted higher-order multipolar components introduced
by incorporating power and/or higher-order mode couplers,
or the addition of wanted higher-order multipolar compo-
nents to create a bespoke electromagnetic field for a tailored
application.

This polynomial dependence breaks down as the assump-
tions of a non-rigid and/or non-relativistic beam are relaxed.
Such a regime also offers an interesting avenue for explo-
ration in the design of RF cavities in the injection stages.
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