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ABSTRACT

The field of quantum communication concerns the distribution of quantum
information in networks, encoded into quantum states of matter. By leveraging
properties of quantum information that are unique to quantum physics, it can
develop advanced network communication methods that overcome the limitations
of classical physics. Quantum cryptography, a closely related field, details the
use of quantum information for secure communication, in particular through
quantum key distribution, which promises unconditionally secure communication.

Entanglement — a quintessential property of quantum states for which there
exists no classical counterpart — is a ubiquitous resource fundamental to this
field. It manifests as correlations between two or more quantum systems (‘bi-
partite’ and ‘multi-partite’ entanglement, respectively) that cannot be explained
by classical physics.

This thesis presents my two main research contributions. First, it provides
a theoretical study of multi-partite entanglement, presenting analytical tools
to evaluate and compare its myriad different forms, additionally studying the
potential equivalence between these forms.

Second, it presents the utilization of multi-partite entanglement in cryp-
tographic tasks, specifically focusing on anonymous conference key agreement
(ACKA). ACKA protocols allow any number of nodes in a network to secretly
communicate, while keeping their identities private.

The research presented in this thesis demonstrates that multi-partite entan-
glement can enhance communication protocols compared to traditional bi-partite
approaches, contributing to the ongoing development of quantum communication
technologies and the emerging vision of a global quantum internet.






/ZUSAMMENFASSUNG

Das Feld der Quantenkommunikation befasst sich mit der Verteilung von
quantum information in Netzwerken, kodiert in quantum states of matter. Durch
die Nutzung von Eigenschaften der quantum information, die einzigartig fiir
die Quantenphysik sind, kénnen fortschrittliche Kommunikationsmethoden fiir
Netzwerke entwickelt werden, die die Einschrinkungen der klassischen Physik
iberwinden. Die quantum cryptography, ein eng verwandtes Gebiet, behandelt
den Einsatz von quantum information fiir sichere Kommunikation, insbesonde-
re durch quantum key distribution, die bedingungslos sichere Kommunikation

verspricht.
Entanglement — eine grundlegende Eigenschaft von quantum states, fir die
es kein klassisches Pendant gibt — ist eine allgegenwértige Ressource, die fiir

dieses Feld von zentraler Bedeutung ist. Sie zeigt sich als Korrelation zwischen
zwei oder mehr Quantensystemen (bi-partite bzw. multi-partite Entanglement),
die nicht durch klassische Physik erklarbar sind.

Diese Dissertation présentiert meine zwei Hauptforschungsbeitrige. Erstens
wird eine theoretische Untersuchung von multi-partite entanglement vorgestellt,
die analytische Werkzeuge zur Bewertung und zum Vergleich der zahlreichen
unterschiedlichen Formen liefert. Dariiber hinaus wird die mogliche equivalence
zwischen diesen Formen untersucht.

Zweitens wird die Nutzung von multi-partite entanglement in kryptographi-
schen Aufgaben présentiert, mit besonderem Fokus auf anonymous conference
key agreement (ACKA). ACKA-Protokolle ermdglichen es beliebigen Knoten in
einem Netzwerk, geheim zu kommunizieren, wihrend ihre Identitédten privat blei-
ben.

Die in dieser Dissertation vorgestellte Forschung zeigt, dass multi-partite
entanglement Kommunikationsprotokolle im Vergleich zu traditionellen bi-partite
Ansétzen verbessern kann und leistet einen Beitrag zur Weiterentwicklung der
Quantenkommunikationstechnologien sowie zur Verwirklichung der aufkommen-
den Vision eines globalen Quanteninternets.
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PREFACE

Many years later, as he faced the thesis committee, Colonel
Aureliano Buendia was to remember that distant afternoon when he
decided to do a PhD.

Gabriel Garcia Marquez, One Hundred Years of Solitude
(paraphrased)

This thesis is the culmination of the research that I have performed during the
last years, in the context of my PhD. In this research, I have explored different
aspects of the exciting field of quantum communication and cryptography. This
growing and flourishing field aims to utilize new paradigms on the boundary
between physics, mathematics and computer science (and an ever-so-slight touch
of philosophy, if you so please), combining all these sciences to develop secure
communication, blazing-fast networks, and novel applications that would have
been understood as science-fiction five decades ago.

The field of quantum information science saw a tremendous increase in pop-
ularity over the last one or two decades, which has been coined the second
quantum revolution. Many people are hopeful that two will be enough, and
that the current endeavours in research and development will be able to carry
the field beyond its academic roots, and lift it to be the disruptive, powerful new
technology it aspires to be. For quantum communication specifically, this would
culminate in the vision of a global quantum internet, that allows anyone on earth
to participate in quantum communication tasks.

Only time will tell if this will be the case, but one thing is clear: there are
many open questions and tasks that have yet to be answered before a full-fledged
quantum internet is realised. My research has aimed to answer some of these
questions, presenting new protocols, methods and tools to be used in quantum
communication.

Jarn (Jan Scholtens) de Jong
Berlin, 2024
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REFERENCING AND NOTATIONAL
STYLE

This chapter details and explains style in referencing and in notation, and naming con-
ventions that are used in this thesis.

Referencing

All references are clickable links, and all clickable links are coloured. All the links that
refer to content elsewhere (i.e. citations) are coloured blue. Any link that refers to content
within this thesis is coloured red. Depending on what it refers to, different styling is used:

- Equations are not referenced with any preposition, i.e. they are referenced as (1.1).
For example, ‘Combining (1.1) with (1.6), it follows that...”. An exception is made
when they occur at the start of a sentence, then e.g. ‘EQ. (1.1) shows that...” will be
written.

- Chapter and section references are abbreviated in the middle of a sentence, and not
abbreviated at the start of a sentence. For example, ‘Chapter 1 introduces the topic
of...” and ‘In sec. 1.1, the topic of...".

- References to definitions, theorems and corollaries, are always abbreviated and capit-
alized. For example, ‘Def. 1 gives the...” and ‘From Thm. 1, it is...".

- References to figures and tables are similar, but also in small-caps and boldface,
e.g. ‘...which is shown in F1G. 3.1.; or ‘TAB. 1.1 shows...".

- References to protocols are never abbreviated, and are in monospace. Moreover, they

are numbered with roman numerals, e.g. ‘The steps of Protocol I are....”.

- Citations are always written ‘[1]’, and never e.g. ‘Ref. [1]".

- My own publications are referenced separately using the abbreviation ‘Pub.” and
are numbered with alphabetical characters, e.g. ‘Pub. [A] contains the first...”; or
‘The protocols from Pubs. [A] and [C] are...”. At times, the actual citation will be
included between brackets, e.g. ‘Pub. [A] (|2]) contains the first...”. An overview of
my publications can be found in a separate list the bibliography.

- Supplementary material to my own publications and other material is presented as
a separate list in the bibliography as well . They are referenced with Sup. (for
supplementary material), e.g. ‘...Python code can be found in Sup. [sB]...".

Notation

Terminology and naming conventions have been adopted from literature as much as
possible.

Pauli operators are denoted by X, Y and Z, or P, @ for general (n-qubit) Pauli operators.
The notation o, etc. is not used in this thesis, except briefly in chapter A.
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Classical registers are, whenever possible, denoted with the letters X, Y and Z. At the
same time, quantum registers are, whenever possible, denoted with the letters A, B and C.

General quantum states are described by |¢) and |¢) if they are pure, or p and o if they
are mixed. At times the proper normalization factors will be dropped if it introduces no
ambiguity, e.g. in the inline expression |GHZp) = [0...0)p + |1...1)p, because it reads
better without it. Alternatively, the ‘o’ sign might be used to indicate that a state is merely
proportional to another state, e.g. |Bgo) o [00) + |11).

Following [1], with the notation [n] the following set is indicated:

] ={1,2,....n}. (1)

The notation {0,1}" indicates the set of all possible bit strings of length n.

The operator I is used to represent the identity operator on any space, whenever context
permits. That means that T can be both the single-qubit operator {(1) (1)], but also the
generalisation to any number of qubits, or other spaces.

For n-qubit operators, the notation from [3] is adopted and adapted. More specifically,
superscripts for operators are used to indicate a power, e.g. Z2 indicates the operator ZZ
(which equals I). A superscript of 0 indicates, by convention, the identity operator: Z° = I.
A superscript including a ‘®’ sign is shorthand for an n-fold tensor product: I®? = I®I® L

Subscripts for operators are used to indicate (sub)spaces on which the operator acts.
For any qubit a € [n], the notation Z, denotes the n-qubit operator that acts with the Z
operator on qubit a:

Z,=1® - 0leZele - -@l=1°0"Dgzx %", (2)
SN——— S————
a—1 times n—a times

Note that the total number of qubits n that the operator acts on is only given implicitly.
This notation is extended to sets of qubits, and additionally products are allowed, so that
the operator Zy; 2y X, indicates the following n-qubit operator:

ZunXn=202018 - @IeX =20 Zx1*" ¥ g X. (3)
’ N—_——

n—3 times

The orbit of a graph G under local complementations, as introduced in chapter 3, is
written O(G). The local Clifford orbit of a graph state, as introduced in chapter 4, is
written OYC(|G)); to emphasize the difference it is never written O©(G), but only with the
full graph state |G) as the parameter. To emphasize the difference between local Clifford
and local unitary orbits, an LU-orbit of a graph state |G) is written O'V(|G)), again with
the graph state as the parameter.

The n-element permutation group is denoted V,. This is not standard notation, which
would be S,, or potentially S,,. However, S,, or S,, and alternatively P, or P,, are all
either too close to, or reserved for, other things in this thesis.
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INTRODUCTION

Physical systems at the atomic scale, like single photons or electrons, are governed by
quantum mechanics instead of classical physics. The rules that dictate such quantum systems
invoke counter-intuitive phenomena, such as the superposition principle, which removes the
notion that a system is always in one definite configuration, and the Heisenberg uncertainty
principle, a fundamental limit which states that quantum systems cannot have well-defined
values simultaneously for certain pairs of properties, like their position and speed.

Broadly speaking, quantum information science is the field of research that aims to
leverage these phenomena by encoding and manipulating quantum information: a form of
information that can only be represented in quantum mechanics. The idea of using quantum
systems as information carriers originated in the 1960s, when Wiesner showed' that such
quantum information can possess properties that have no counterpart in classical physics
[5]. Two decades later, Bennett and Brassard solidified the field when they introduced? its
first proper application: quantum key distribution (QKD) [6] — a concept to be introduced
below, that provides strong secure communication in networks.

Quantum information science is a many-faceted field of research, under whose umbrella
fall both quantum computation [7] and quantum communication. Quantum computation
leverages quantum information to perform computations in ways that are not possible in clas-
sical physics, to open up unmatched possibilities in computation and simulation. Quantum
communication considers the distribution of quantum information as signals in a quantum
network to realise many realisations of tasks that are either not possible using classical
physics, or improve over current methods.

Indeed, such quantum networks are a counterpart or a complementation to classical net-
works. Their most well-known application is QKD, but there are other applications for
quantum networks, including other examples of the subfield of quantum cryptography |8,
9] like random number generation [10-12], verified deletion [13, 14|, digital signatures [15—
17], blind quantum computation [18-21], multiparty computation [22-25] and anonymous
communication [26]. Beyond cryptographic tasks, quantum networks can also be used for
quantum sensing [27, 28], quantum clock synchronisation [29] and quantum position verific-
ation [30, 31].

Ultimately, an envisioned quantum internet [32, 33] would be a world-wide quantum net-
work that connects anyone on earth to perform these applications, creating the opportunity
for unprecedented means of communication, security and distributed computation.

The research that I have performed in the field of quantum communication and cryp-
tography has been largely two-fold: multipartite entanglement and anonymous communic-
ation. These two topics are introduced separately below, and are each addressed in more
detail in their own part of this thesis, specifically parts II and III for multi-partite entan-
glement and anonymous communication, respectively. A more detailed explanation of the
structure of this thesis is presented in the next chapter.

Entanglement

Many of the applications in quantum communication and cryptography utilize one of
the quintessential phenomena of quantum mechanics: entanglement. Popularly phrased as

I His research was not accepted for publication until 1983 however, in part because it was initially rejected
and Wiesner then did not try any further until much later [4].
2Interestingly, again a proper publication didn’t follow for another two decades.
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spooky action at a distance®, entanglement is a direct consequence of the superposition prin-
ciple and can be understood as a certain quality that the state of two or more quantum
mechanical systems can have, for which there exists no classical counterpart. The state of
a (collection of) quantum systems is a description of its relevant information and configur-
ation, and will be addressed in more detail in chapter 1. Entanglement manifests as correl-
ations between multiple quantum systems that can not be reproduced by classical physics
[34]. These non-classical correlations are leveraged to realise many of the striking results
in quantum communication, and they form the basis of the security of most cryptographic
applications [1, 17].

Because entanglement is consumed when it is utilized by an application, it can be un-
derstood to be a resource in a quantum network. Moreover, it is easily rendered useless by
small amounts of noise, and it is difficult to generate and distribute in a network. Thus,
good methods of entanglement generation and distribution are paramount to the function
of any quantum network; all these aspects of entanglement form an active field of research.

Entanglement was originally conceptualized and studied between two systems, which
is generally called bi-partite entanglement [35, 36]. The generalization to more than two
parties, called multi-partite entanglement [37, 38|, is a phenomenon that is less well under-
stood. However, it has seen a growing interest in recent years [2, 39-47], because results
indicate that it can be used to outperform methods that only rely on bi-partite entanglement
in various cryptographic tasks [48-50]. Multi-partite entanglement exists in myriad different
forms that can potentially be transformed into each other, and part of the theoretical study
of multi-partite entanglement is devoted to determine such equivalence.

An indispensable tool in the study of multi-partite entanglement is the concept of graph
states, a special type of quantum state which is multi-partite entangled, and is represented
by a mathematical graph [3]. This graph can represent many of the relevant and interesting
properties of the associated quantum state, including its form of multi-partite entanglement.
Graph states in quantum networks and their entanglement properties are an active field of
research [51-55], and my research in multi-partite entanglement has also been governed by
graph states. Specifically, it gave the complete characterization of a specific setting were one
type of entanglement is to be obtained from another, and also gave methods to compare and
categorize all different forms of multi-partite entanglement in graph states. My publications
regarding the subject of multi-partite entanglement are Pubs. [F] to [H].

Anonymous communication

While entanglement is not a direct application of quantum communication itself, it is an
invaluable resource underpinning many quantum communication and cryptography tasks.
As mentioned before, the most well-known example of quantum communication and crypto-
graphy is QKD, a method to provide — at least in theory — unbreakable public encryption,
by using the non-classical properties of quantum information. Modern QKD indeed relies
on entanglement for its fundamental security statements.

Encryption allows two parties in a network, colloquially known as Alice and Bob, to
secretly communicate using means of communication that are accessible by anyone else. Alice
and Bob wish to uphold this secrecy even in the presence of an adversary, usually embodied
by the eavesdropper Eve, who wishes to break the encryption. Unbreakable encryption is
possible by means of the one-time-pad (OTP) method [56], but this method relies on a
cryptographic key: a secret bit string shared between Alice and Bob that no one else has
access to. Ultimately, this key needs to be established in such a way that no one else in

3This term was coined by Einstein, although he used it to argue the incompleteness of quantum theory. A
long discussion ensued which is beyond the scope of this thesis, but it culminated in the landmark publication
of Bell [34] and the associated Bell tests that can assert the correctness of the predictions of entanglement.
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the network can learn it, because such leakage would make the encryption void. The term
public in public encryption indicates that Alice and Bob cannot rely on some initial shared
secret to establish the key, e.g. by using a shared password.

Strong classical methods to publicly establish a key exist [57, 58] and are widely in use
today. However, these methods are only secure assuming certain restrictions — usually
phrased as computational assumptions — that are put on the adversary. These assumptions
have been put under stress by the recent advent of rudimentary functional quantum com-
puters [59, 60]. Indeed, such machines can run Shor’s algorithm [61, 62], which is able to
break current classical cryptographic systems®.

To combat this problem, QKD aims to establish secret keys without relying on any as-
sumptions, thereby providing unconditional security®. Fundamentally, QKD is a method
that allows two parties to establish a key by leveraging the non-classical properties of
quantum information; the security of this method is then derived from the physical laws
of nature. There is a large body of research that has been exploring the idea since its con-
ception, and recently it has been argued that indeed a practical advantage over classical
methods is within reach [63]. A generalization of QKD is conference key agreement (CKA),
that allows more than two parties in a network to establish secret keys.

Beyond providing security in communication, quantum communication can hide the iden-
tity of the involved parties from the rest of the network, thereby providing anonymity. My
research has explored anonymous conference key agreement (ACKA), the combination of
anonymity and conference key agreement. The research provided the first protocol that
performs ACKA, and various additional protocols that improved upon the first in different
settings. Beyond theoretical analyses, experimental implementations were realised. These
realisations were not performed by me, but I did perform or aided in the theoretical analysis
and post-processing. My publications regarding the subject of anonymity are Pubs. [A]
to [E].

Topics not discussed in this thesis

Although most of the work that I have conducted in the scope of my PhD is presented
in this thesis, there are a few other topics I have worked on that are worth mentioning here.
They are either very recently finished or ongoing projects, unsuccessful projects, or topics
that have no direct merit for scientific publication. In no particular order, they are:

- The concept of public quantum cryptography, which I explored together with Alex Grilo
at Sorbonne Université in Paris, France. The idea that we worked on was promising
but in an early stage, and when two very similar ideas where published [64, 65|, we
did not pursue it any further.

- My work for the Quantum Internet Alliance [33], a European-wide project to realize
the worlds first quantum internet, built in Europe.

- Pub. [H], which is only very recently available for preprint. It is closely related to the
contents of Pub. [G], to be discussed in chapter 6, and will be briefly mentioned there.

- The graphstabilizer Python package (Sup. [sC]), a set of tools to work with graph
states, the topic of chapter 3, that I developed while working on these states. It can
also be used to plot graphs; all figures of graphs in this thesis were made with it.

4In fact, the boom in popularity of quantum computation that was provoked by the publication of Shor
can be seen as the first quantum revolution (see preface).

5Whether QKD truly provides unconditional security is a hotly debated topic, which will be addressed
in more detail in chapter 7.
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- An ongoing project with colleagues, and researchers from Sorbonne Université in Paris,
France to combine the concept of anonymity in quantum networks (to be discussed in
part III), with the concept of privacy in networked quantum sensing [66, 67].



STRUCTURE OF THIS THESIS

The main body of this thesis consists of three parts, each with multiple chapters. Fur-
thermore, these chapters each have their own introduction, and their own conclusion, unless
specifically stated otherwise.

My own research is presented in the second and third part, each on a separate field of
study. They are similarly structured: both start with a chapter that introduces and explains
the relevant literature, followed by multiple chapters that each present one or more of my
publications.

Each of these chapters on my own publications contain a brief discussion of the associated
publication in their introduction. Moreover, their conclusions contain some of the discussions
that were presented in the original publications, including ideas for further research.

A brief description of the remainder of this thesis is as follows:

Part I - Mathematical Properties of Quantum Networks
Part I introduces the relevant background information that is needed to present and discuss
the results from the rest of the thesis. Specifically, chapter 1 introduces the basic con-
cepts of classical- and quantum information science that are relevant to my publications.
This includes the basic notions of quantum states, operations and measurements, quantum
entanglement, and (both classical and quantum) entropies.

Two special topics require their own chapter. Chapter 2 presents the so-called stabilizer
formalism, a mathematical framework and theory that efficiently describes a versatile set
of quantum states. Afterwards, chapter 3 introduces the concept of graph states, a strong
graphical tool to represent and study many interesting aspects of the stabilizer formalism,
including its entanglement properties. They are foundational to the study of quantum
networks, and parts II and IIT heavily rely on them.

The reader that is familiar with these concepts is likely safe to skip their respective
chapters. However, chapters 2 and 3 contain some topics and details that might still prove
unfamiliar; for easy reference these topics are explicitly stated in the introductions of these
chapters.

Part II - Multi-partite Entanglement in Quantum Networks
Part II concerns the distribution and characterisation of multi-partite entanglement in
quantum networks. There are myriad forms of entanglement, but two quantum states may
be said to have the equivalent form of entanglement, even though they are distinct quantum
states. Chapter 4 makes this notion of equivalence more precise, and introduces the relevant
concepts and results from literature.

Chapter 5 presents the contents of Pub. [F] ([68]). It is studied if, in a networked
scenario, a specific type of quantum state can be obtained from another quantum state. It
gives a complete characterization of when this is, and is not possible.

The last chapter of the part, chapter 6, is associated with Pub. [G] ([55]). It takes a
more abstract approach than the previous chapter, and provides methods to characterize
the form of entanglement for a given quantum state, and additionally provides methods to
compare two or more quantum states regarding their equivalence.

Part III - Anonymous Conference Key Agreement

Part III is on a more operational aspect of quantum communication. Specifically, it regards
the topic of anonymous conference key agreement, a specific quantum cryptographic task.
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Conference key agreement (CKA) is a generalization of QKD to more than two parties.
Chapter 7 concerns both QKD and CKA, and explains the relevant literature to obtain
modern, strong encryption through QKD. As its title suggests, this part is on anonymous
conference key agreement (ACKA), in which the parties not only communicate privately, but
also remain anonymous, in the sense that no one else in the network knows their identities.
The concept of anonymity is also presented in chapter 7. Note that facets of anonymity were
originally presented as new research in Pubs. [A] and [C], even though they are included in
the introductory chapter of this part.

Chapter 8 presents the contents of Pubs. [A] and [C] (]2, 48]), that presented protocols
to perform ACKA in a star network. These publications were the first to introduce such
protocols, but make use of a somewhat stringent network topology.

Chapter 9 presents the contents of Pub. [D] ([46]), that presented an ACKA protocol in
a linear network, which is a less stringent network topology.

To complement the theoretical presentations of chapters 8 and 9, chapter 10 presents the
contents of Pubs. [B] and [E] ([45, 47]). These two publications presented an experimental
proof-of-concept realisation of the protocols of Pubs. [A] and [D]. The actual experiments
were not performed by me, but the analysis and post-processing I did perform; these are
presented in the chapter.

Conclusion, Bibliography and Appendices
This thesis is concluded in chapter 11. Various ideas for further and future research that
are not restricted to any single of my publications are presented in the chapter thereafter.
The bibliography is included after the conclusion, and my publications are listed separ-
ately.
Various prolonged discussions, proofs and other sections have been deferred to the ap-
pendices.
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MATHEMATICAL PROPERTIES OF
QUANTUM NETWORKS






MATHEMATICAL PRELIMINARIES

This chapter introduces and defines some basic concepts in quantum information theory.
It explains only those concepts and properties that are directly of use in the rest of this
thesis, and by no means aims to provide a comprehensive introduction; the quintessential
introduction to quantum- computation and information is the seminal book by Nielsen &
Chuang [7]. Books more focussed at quantum information science are the one by Watrous
[36] and by Wilde [69]. For quantum communication specifically, a good introduction can
be found in the book by Khatri and Wilde, available for preprint [70]. Both quantum
computation and communication thrive from the concept known as entanglement, which is
comprehensively studied in [35, 71]. Finally, the book by Vidick and Wehner [72] provides
an introduction specifically to quantum cryptography.

A central cornerstone of quantum communication is formed by the Pauli matrices and
Pauli group. They are introduced in sec. 1.1, where the relevant of their many useful
properties are explained as well.

The quantum state, the mathematical description of the relevant configuration of a
quantum mechanical system, is the main ingredient to any quantum computation, or
quantum communication protocol. Unless explicitly stated otherwise, in this thesis only
qubits are considered: the most basic form of a quantum state with only two levels of
freedom, so that they are the direct quantum mechanical counterpart to the classical
bit. Section 1.2 introduces them, where additionally various concepts and conventions are
defined.

To utilize quantum states one must perform operations on them. More specifically,
unitary operations can change quantum states to other quantum states, and measurements
are operations that extract classical data from quantum states in the form of measurement
outcomes. Both these types of operations are discussed in sec. 1.3.

In both classical and quantum information science, the concept of entropy is an important
tool to determine many qualities of random processes. They come in different forms and
are indispensable in, among other applications, the study of quantum cryptography. Those
entropies that are used in the rest of this thesis are introduced in sec. 1.4.

One of the defining qualities of quantum states is that they can be entangled. Such
entangled states show behaviour that can not be mimicked by classical systems, and this



1.1 THE PAULI GROUP Page 4

behaviour is leveraged by many of the applications in quantum communication and com-
putation. Entanglement is introduced in sec. 1.5, where additionally the (arguably) most
important and fundamental entangled state is defined: the Bell or EPR pair.

An important subset of all possible quantum operations are the Clifford operations.
These, and the associated Clifford group, are introduced in sec. 1.6. The section additionally
introduces the notion of local unitary operations, and the interplay between the two: the local
Clifford operations. All these concepts play an important role in the study of entanglement,
which will be discussed in part II. As this chapter presents the basics of quantum information
science, the familiar reader may feel free to skip this chapter.

1.1| The Pauli group

The three Pauli matrices X,Y and Z, named after the famous physicist, are operators
that play an integral role in quantum computation and communication. Together with the
identity operator I, they form a basis of the space of 2 x 2 matrices, and are defined as:

10 0 1
S EE e

Up to a phase, the Pauli operators are related to each other by multiplication:

YZ =iX,
ZX =iy, (1.2)
XY =iZ.

Through the tensor product, they can be extended to form the Pauli group P,.

Definition 1. The n-qubit Pauli group P, is the set of all n-fold tensor products of the
single-qubit Pauli operators:

P ={1,-1,i,—i} - (I, X, Y, Z)®™, (1.3)

where the phases {1, —1,i,—i} have been introduced so that the set is closed. It is straight-
forward to verify that the Pauli group P, indeed forms a group.

In the remainder of this thesis, the term Pauli operator will be reserved for the extensions,
i.e. the elements of the Pauli group P,,, and not just the operators from (1.1) (unless explicitly
stated otherwise). Rather, the operators from (1.1) will be explicitly referred to with X, Y
and Z whenever possible.
Any element P € P,, can be written as a tensor product of single-qubit Pauli operators
Pj € Py:
P ={+1,+i}- Q) P (1.4)
j€[n]
In this thesis, it can usually be assumed that the phase of a Pauli operator is either +1

or —1, unless explicitly stated otherwise. Moreover, when it is not important, the phase will
be dropped.
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The Pauli group P,, has many interesting and useful properties; the remainder of this
section will discuss those properties that are applicable or relevant to the rest of this thesis.
Additionally, some other associated concepts that are useful in later chapters are defined.

The Pauli operators are both unitary and Hermitian, which implies that they are their
own inverse. Moreover, the Pauli operators either commute or anti-commute. More specific-
ally, for two Pauli operators P, @ € P,, either of the following two equations hold:

[PQ] =PQ-QP=0,
(PQ} =PQ+QP=0.

For any Pauli operator P = {£1, 4i}- ®;L=1 P;j, the set of tensor factors on which it acts
non-trivially (i.e. those j for which P; € {X,Y, Z}, and not I) is called its support:

supp(P) = {j € [n] = {L...n}|P; #1}. (1.6)

The weight w(P) of a Pauli operator P € P,, is the number of elements in its support:
w(P) = |supp(P)|. Any n-qubit Pauli operator that has w(P) = n is said to have full weight.

The trace of the 2 x 2 identity operator I equals two, and the single-factor Pauli operators
X,Y and Z have trace zero. Using the identity tr [A ® B] = tr [A] tr [B], it follows that,
up to a phase, for any P € P, it holds that:

tr [P] _ {2” when P =1, (1.7)

(1.5)

0 otherwise.

This can be generalized to partial traces. The partial trace over the last n — k tensor
factors of the Pauli operator P = ®?:1 P; is only non-zero when its support supp(P) is
contained in all factors that are not traced out:

on—k ®§:1 P; when supp(P) C {1...k},

trk+1,...,n [P} = {0

Partial traces over any other subset follow similarly. Note that any phase {£1, +i} has been
omitted from (1.7) and (1.8).

| (1.8)
otherwise.

Pauli eigenspaces

The eigenspaces of Pauli operators will play a central role in chapter 2, and therefore some
useful properties of the associated projectors are introduced. Because the Pauli operators
are both Hermitian and unitary, they have only a +1 and a —1 eigenspace. The spectral
theorem implies that any Pauli operator P € P,, can thus be written as:

p=1% -1, (1.9)
where 11}, and IIZ, are the projectors upon the +1 and —1 eigenspaces of P:

I+P P I-pP
5 -, = 5 (1.10)
Because the dimension of an eigenspace is equal to the trace of its projector, it follows that
both eigenspaces have equal dimensions, namely 27~ 1.
If a Pauli operator P € P,, commutes with another Pauli operator @ € P, then P
commutes with the +1 and —1 eigenspace projectors of @) as well. This is shown by the
following equation for the +1 eigenspace projector:

H+Q)_P+PQ_P+QP_<]I+Q
2 2 2 2

P _
H+1—

PIY, =P < > pP=1%P. (1.11)
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The case for the —1 eigenspace projector follows similarly.

A separate, useful result regarding the +1 eigenspaces of two commuting Pauli operators
P and (@, is that their overlap is contained in the +1 eigenspace of the Pauli operator PQ.
More specifically, let Hfl and H% be the +1 eigenspace projectors for two commuting Pauli
operators P and (). Additionally, let H(le) be the projector for the +1 eigenspace of the

product P(Q. The overlap of the subspaces associated with Hil and H% is then always
contained in the +1 eigenspace of PQ, which the following calculation shows:

1
n;9n? e, = 1+ PQ)(I+ P)(1+ Q)

—(H+P+Q+PQ)+P—8Q(]I+P+Q+PQ) (1.12)

(I+P+Q+ PQ) =1’ 19,.

| Do Col = oo

This result shows that the shared +1 eigenspace of the operators P, @ and PQ is
determined by P and @ alone, a fact that will be important in chapter 2.

1.2 | Quantum states

A quantum state, denoted [|¢), is the mathematical description of the configuration of
a quantum mechanical system. In its most basic form, such a quantum mechanical system
is a two-level system, with the two levels usually labelled as |0) and |1). Such a system is
called a qubit.

One defining feature of quantum states is that they can be in a superposition of the two
basis states: a linear combination with coefficients a, 5 € C. In its most general form, the
state |¢) of a qubit can thus be written as:

) = al0) + B1). (1.13)
The coefficients are subject to the normalization condition:
o> +18)* = 1. (1.14)

Mathematically, a quantum state is an element® of a Hilbert space Hz; the basis {|0), [1)}
which is used in (1.13) is called the computational basis, and the two states are the +1 and
—1 eigenstates of the Pauli Z operator, respectively.

Because a state is a vector in a Hilbert space Hs, it can be expressed in any other basis
of the space. For instance, in the basis {|+),|—)}, where the states |+) and |—) are the +1
and —1 eigenstates of the (single-qubit) Pauli X operator (therefore known as the X-basis,
and additionally as the Hadamard basis):

1 1

+) 7 (10) + 1)), =) = — (10) = [1)). (1.15)

S

2

The state |¢) expressed in this basis then becomes:

[¥) =a|0) + B 1)
=@+ /) [+ +(@=p)|-).

ITwo quantum states that differ only by a global phase, e.g. |0) and —|0), are physically identical.
Therefore, such a global phase is physically irrelevant, and one can even define a quantum state to be a
ray in a Hilbert space. Alternatively, a quantum state can be defined as an element of a complex projective
Hilbert space. Another approach, adopted by e.g. [36], is to define quantum states purely in terms of density
matrices, introduced below. However, for this thesis no such extra specification is necessary.

(1.16)
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Like the case for the X-basis, the +1 and —1 eigenstates of the Pauli Y operator, labelled
|+i) and |—i), form the Y-basis:

1 1
V2 V2

For any state 1) = a|0) + B]1), its dual (3| is a map H — C. For the contents of this

[+i) = —= (10) +2[1)), =) (10) —il1)). (1.17)

thesis, the state |1)) can be viewed as a column vector [¢)) = g , and its dual can be viewed

as a row vector (Y| = [a* ﬁ*], where o* denotes the complex conjugate of «, and likewise
for g*.
For states |¢1) = a1 |0y + 81 ]1) and |¢2) = a9 |0) 4+ B2]1), the expression (i1]1)2) then

means:
(nlin) = [of 1] [52] = aton + 51k, (1.18)
while the expression |11 (92| means:
_ @2 * *1 aylﬂoQ 5ika2
ool = 7] bt 1) = [ o] (1.19)

Note that, for two states [¢)) and |¢) that only differ in a global phase (i.e. |¢) = e'® b)),

the expressions || and |¢)¢| coincide. These global phases are physically irrelevant.
EqQ. (1.19) allows the eigenspace projectors of the X, Y and Z operators to be written

in terms of their eigenstates. It follows that the Pauli operators X, Y and Z can be written

X = [4)H — =},

Y = |+i)+i] — |—i)—1], (1.20)
Z = |0)0] — [1)(1].

Multiple qubits states

The states of multiple quantum systems can be combined using the tensor product. More
specifically, suppose that two qubit systems A and B are in the state [¢4) = ag [0) 4 +a1|1) 4
and [¢p) = bo|0)z + b1 |1) 5, where the underscores A and B indicate the systems. The
state |1)) 45 of the combined system AB is then an element of the compound Hilbert space
Hap =Ha @ Hp:

V) ap = [a) @ [¥B)
= (a0 |0) 4 + a1 (1)) @ (bo |0)5 + b1 (1))
= Z a;bj |Z>A ® |j>B

i,7€{0,1}

(1.21)

This is usually simplified by dropping the explicit ‘®’ signs. Moreover, when context permits,
the description of the systems is dropped as well:

|1/}>AB = aobo |00> + aObl |01> + albO |10> + (llbl ‘11> . (122)

This procedure can be generalized to describe the state of any number of qubits. Note
that there are generally 2™ coefficients necessary to describe the state of an n-qubit system,
because the qubits can be in a superposition.
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Mixed states

If there exists statistical uncertainty regarding the state of a quantum system, it is
described by a statistical mixture of quantum states. The mathematical method to do so
is the density matriz, a 2 x 2™ matrix. A density matrix, usually written p or o, must be
positive semidefinite, and is subject to the normalization condition tr[p] = 1. As a direct
consequence of the spectral theorem, p can be written in its spectral decomposition:

on

p=Y_ Nilga)asl, (1.23)

i=1

where the \;’s are the eigenvalues of p, and the normalization condition implies ). \; = 1.
Note that one or more A;’s may be zero, so that the rank rnk(p) of p may not be 2.

In the special case that p has rank rnk(p) = 1, it can be written as p = |)(¢}|, for some
quantum state |1). It is then called pure, and usually it is described as [¢) (instead of |1)1|
or p). Any quantum state p that is not pure is called mized.

To emphasize the difference with (statistical) mixtures, a pure quantum state that is in
a superposition is often said to be coherent, or be in a coherent superposition.

Classical states

In the context of (quantum) information science, a classical system is often called a
classical register or just register. In this thesis such a classical register is an n-bit system,
whose state can be any of the 2™ bit-strings, unless explicitly stated otherwise. Because it
is classical, it can not be in a coherent superposition. Nevertheless, the state of the register
can be a statistical mixture described by a probability distribution p over all 2™ possible
states of the register. Sometimes it is useful to represent this (classical) state as a diagonal
density matrix pelassical:

Pclassical = Z p(Z) "L><Z| . (124)

1€{0,1}"

Each time it is used it should be made clear, either explicitly or through context, that a
classical system is indeed a classical system, and thus cannot have off-diagonal elements, or
be in a coherent superposition.

Reduced states

For a system of n qubits in the state p, one may be interested in the state of only a
subset M C [n] of the qubits. The density matrix pa; that describes this state is called the
marginal- or reduced state of p on M, or just the marginal®. It can be computed from p by
tracing over all other qubits:

py = trare [p], (1.25)

where M+ = [n] \ M is the complement of M. Sometimes, when context permits, the M is
dropped, and the reduced state is just called the marginal.

For any state p defined on some system A, a purification of p is a pure state [¢)) 4,5 €
Ha ® Hp, for some extra system B, such that the reduced state on A equals p:

2Because it is easy to do so, whenever context permits I will use the word ‘marginal’ for both the reduced
state pps and for the selection of qubits M. Moreover, when it makes sense, the term k-body marginal refers
to a marginal with k elements.
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p=trp[[Y)XY|sp]- (1.26)

A purification is not unique, but many of its properties are the same for every choice of
purification [7].

Distinguishing quantum states

Although, for instance, the basis states of the Pauli Z operator are orthogonal, two
arbitrary quantum states p and o will generally have some non-zero overlap. In this sense,
quantum states can be understood to have a distance between each other. There are two
standard notions of distance between quantum states: the fidelity and the trace distance |7,
36]. Both represent a notion of how close two states can be, so that close states are less
distinguishable than states that are further apart.

The fidelity F(p, o) is defined as [36]:

F(p.0) = |[Vavall, = tx [Vapv/a] . (1.27)

If at least one of the states is pure, e.g. p = |¢)}v)|, the fidelity simplifies to:

F(ly),0) = {Ylof) . (1.28)

In general 0 < F(p,0) < 1, where F(p,0) = 0 indicates that the states are completely
orthogonal, and F(p,c) = 1 indicates that the states are identical (up to a global phase).
Like the fidelity, the trace distance Dy, (p, o) is defined on two states p and o:

1
D(p,0) = 9 o —oall; - (1.29)

Again, in general 0 < Dy, (p,0) < 1, but now Dy (p,0) = 0 indicates that the states are
identical, and Dy, (p, o) = 1 indicates that the states are completely orthogonal.

The trace distance has an important operational interpretation in terms of the power to
distinguish two states. If any generalized measurement, to be defined in sec. 1.3, is performed
on a mixture of the two states, the measurement outcomes’ ability to distinguish the two
states is bounded by the trace distance. This statement will be made more precise by (1.38)
in sec. 1.3.

1.3 | Operations on qubits

A quantum system can be acted upon, so that its state p is transformed into some other
state o. There exists a rich theory of the types of transformations that are possible, known
as completely positive and trace preserving or CPTP maps [7, 36, 69]. Such a CPTP map
A, also referred to as a quantum channel, is a linear map:

o =Alp). (1.30)

The condition that the map is completely positive and trace preserving guarantees that the
output o is a correctly defined quantum state, even if the state p was part of a larger state.
Quantum information theory is largely concerned with the study of quantum channels and
how they can affect quantum states [36, 69].

An important subclass of all CPTP maps are the unitary evolutions or unitary rotations.
These are described by unitary operators, i.e. elements of the unitary group U,,. Here, the n
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1+12 1+4 0 2

1 1 0
T= |:O ezZ:| P((b): |:0 ez¢7:|

1 000 100 0
152 |0 1.0 0 o1 0 o0
Cx =10 0 0 1 Cz=1p 0 1 o0

0010 00 0 —1

TABLE 1.1: An overview of important unitary operations. The first three rows consists of single-
qubit operators, that change the state of a single qubit. The last row contains two-qubit gates,
that act on the composition of two qubits.

indicates that the unitary applies to n qubits, so that it is a 2" x 2" matrix. More specifically,
a unitary operation maps a quantum state p to a state o:

p—o=UpUT. (1.31)

In the case that p = |[)}| is pure, the output state o = |¢)¢| is pure as well, and the
transformation is written as:

) = 1¢) =Ule). (1.32)

In the context of quantum computation, unitary operators acting on qubits are also called
gates, a convention which is adopted in quantum communication.

As a general rule of thumb, in quantum computation the goal is to implement unitary
operations, while more general CPTP maps and mixed states are usually unwarranted.
When a state is mixed in a quantum computation, it usually means that it is noisy, which
has to be addressed by quantum error correction [73, 74] and fault tolerance [75].

On the other hand, statistical mixtures play an integral role in quantum communication
(consider e.g. cryptography, where an encryption key must be completely unknown and
random to an adversary). Thus, CPTP maps and mixed states are prevalent in this field,
although CPTP maps are only used implicitly in this thesis.

As noted before, the Pauli operators are unitary. The X and Z are known as the bit-
flip and phase-flip operators, respectively, because of their action on computational basis
states. Some other important unitary operators are presented in TAB. 1.1, and introduced
in further detail below.

The operator H is called the Hadamard operator, and swaps between the computa-
tional and Hadamard basis. As their notation suggests, the operators v X,vY and V/Z are
operators that square to X, Y and Z, respectively. Using (1.20), VX can be computed as:

VX = VI + VT =] = [ + =K (1:33)

and VY and v/Z follow similarly. The v/Z operator is sometimes referred to as the S gate.
The T gate is the (positive) square root of the V'Z gate, and plays an important role in
quantum computation [7] because of its ties to fault-tolerance [76] (see also sec. 2.5). The
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P(¢) gate, known as the phase gate, is a generalization of the Z, S and T gate to arbitrary
phases.

The Cx and Cy gates act on two qubits and are therefore two-qubit gates. Moreover,
they are conditional gates, where its action on one of the qubits (the target) depends on the
state of the other (the control). They can be written as a sum of tensor factors:

O = 0)0] @ T+ [1)1] ® X,

Lo (1.34)
C,7*=0)0| T+ |1X1| ® Z,

which shows why they are referred to as the controlled-X and controlled-Z gates, respectively.
The superscript indicates the control towards the target qubit; because the Cyz gate is
symmetric (i.e. CL72 = CZ71), its superscript will be dropped or written as e.g. C(ZI’Z) in
the remainder of this thesis.

Measurements

Quantum measurements forms a rich topic with many different formulations |7, 36]. For
most purposes of this thesis, a measurement of a quantum system in the state p can be
understood as a PVM or projector-valued measurement. Such a measurement results in a
measurement outcome m, randomly drawn from the set of possible outcomes M; w.l.o.g. the
set M can be understood to consist of only real-valued numbers. With every possible
outcome z € M, a projection operator II, is associated. These projection operators are
also known as the measurement operators, and they must obey the completeness relation
ZEGM I, =L

The probability Pr(m = z) that the measurement results in the outcome m = x can be
calculated by the Born rule [7]:

Pr(m =z) = tr [l p] . (1.35)

In general, the state of the quantum system is non-trivially affected by a measurement.
When the outcome m = x is obtained, the state collapses to the post-measurement state:

11, pIl,
>’

T (1.36)

where the denominator is there to ensure that the post-measurement state is properly nor-
malized.
The observable O = )\, xIl, can be used to calculate the expectation value E(O) of
the measurement:
E(O) = tr [Op] . (1.37)

In the special case that the measurement operators are the eigenspace projectors of a
Pauli operator, e.g. Hfl and I1%, for the operator Z, the possible measurement outcomes
are taken to be the eigenvalues +1 and —1, respectively. Such a Pauli-basis measurement
results in the outcome® m = +1 or m = —1, with the probabilities still dictated by (1.35).

3Instead of labelling the outcomes of Pauli measurements with their eigenvalues +1 and —1, they are
often labelled with 0 and 1, especially in quantum networking protocols. I like to use both in different
settings: +1 and —1 are slightly more intuitive because they are the actual eigenvalues of the measurement
observable, but 0 and 1 better reflect that it’s a binary outcome encoded by a single bit — this is a very
useful representation in e.g. networking protocols. For this reason, physicist generally tend to use the first
representation, whereas in computer science the second representation is more prevalent. In later chapters I
will generally use {0,1}, and to (hopefully) limit confusion and ambiguity I will always explicitly write the
‘+” in ‘41’ for the outcome in the {41, —1} representation, so that ‘1’ is reserved for the outcome in the
{0, 1} representation.
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Especially common are measurements in the X-, Y- and Z-basis, where the measurement
operators are their eigenspace projectors (see (1.10)) and the outcomes are their eigenvalues
+1 or —1. Note that a measurement of a general n-qubit Pauli operator P is possible as
well, where the outcome is still +1 or —1, i.e. either of its eigenvalues. However, the post-
measurement state is then not collapsed onto a basis state, but onto the eigenspace of P
associated with the measurement outcome (see (1.10)).

PVMs are not the most general description of quantum measurements. A more complete
description is given by a positive operator valued measurement or POVM, where the meas-
urement operators are not just projectors but replaced by positive semidefinite operators
{E;} st. Y, E, =1. APOVM on a quantum system A can be understood as a PVM on
a compound quantum system AB, i.e. where the system A has been extended by an extra
system B that is usually referred to as the environment. These generalized measurements
[7, 36] will show up in certain definitions in this thesis, but calculations with them are not
necessary.

Generalized measurements can be used to make the operational meaning of the trace
distance more precise, as e.g. by theorem 9.1 from [7]. More specifically, let {E,,} be a
POVM, and let p,,, = tr [pE,,] and g, = tr [0 E,,] create the probability distributions p and
q of the measurement outcomes on the two states resulting from this POVM. Then the total
variational distance of these measurement outcomes is bounded by the trace distance:

D(pm, gm) < Di:(p,0). (1.38)

This bound is a special case of a more general theorem, called the Holevo-Helstrom theorem
[36].

1.4 | Entropies

Entropies are useful quantities that are used throughout this thesis. Many different
interpretations of what exactly an entropy is exist, but in general they are a measure of
randommness that probability distributions can have. There does not exist one unique entropy,
but there are multiple related concepts. They are all sometimes referred to as entropic
measures.

The most foundational entropy is the Shannon entropy, named after Shannon who in-
troduced it in his seminal paper [77]. It is either defined on a probability distribution, or on
a classical register X with a state described by such a probability distribution.

Definition 2. Let X be a classical register with the state described by a probability distri-
bution p. The Shannon entropy of X is defined as:

H(X) = = 3 pla) log(p(x). (1.39)
reX

Although not technically necessary, the logarithm log is usually taken in base two, so that
the Shannon entropy is measured in bits. When context permits, the Shannon entropy can
alternatively be defined directly on a probability distribution p.

In the case that a probability distribution has just two outcomes with probabilities A
and 1 — A, the Shannon entropy reduces to the binary entropy:

ha(A) = —=Alog (A\) — (1 = A)log (1 —\). (1.40)

Note that, as is customary, the binary entropy is not defined in terms of a register or a
probability distribution, but in terms of the parameter \.
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Probability distributions may not be independent, so that the randomness of a distribu-
tion p may be affected by the outcome of another distribution ¢. If X and Y are registers
with states described by p and ¢, the conditional entropy H(Y|X) quantifies the reduction
in entropy of Y given access to the contents of the register X.

Definition 3. For registers Y and X, the conditional Shannon entropy H(Y|X) of Y
w.r.t. X is defined as:
HY|X)=H(X,Y)—- H(X). (1.41)

In this context, X is called the side information, because it can imply information re-
garding the register Y. It always holds that H(Y|X) < H(Y'), and whenever the inequality
is strict, X and Y are said to be correlated.

Quantum entropies

Because quantum states can be mixed, there are notions of entropy associated with
quantum systems as well. The most fundamental quantum entropy is a generalization of the
Shannon entropy towards quantum systems, the Von Neumann entropy, named after the
famous polymath.

Definition 4. For a quantum state p, the Von Neumann entropy Sx(p) is defined as:

Sx(p) = —trlpln(p)]. (1.42)

Using the spectral decomposition p = >, A; [1;)(¢);], calculating the Von Neumann en-
tropy reduces to calculating the Shannon entropy:

Sn(p) = —tr Z/\iwz')@/%“n ZM%X%\

_ Z X In(Ag) tr [[9i )t [ )51 ] (1.43)
== 2_Ail(\) = Hp),

where p is the probability distribution generated by the spectrum A = (A1 ... \,) of p, and
the second equality follows from the linearity of the trace.
Like for its classical counterpart, there exists a conditional von Neumann entropy:

Sx(alp) = Sn(p,0) = Sx(p). (1.44)

The conditional Von Neumann entropy plays a central role in many topics in quantum
information science, especially in the study of entanglement, and in quantum cryptography.
An important generalisation of the Von Neumann entropy is used in part III, the so-
called conditional min entropy Hpin(A|B). Its general definition is somewhat involved [78,
79|, but for the purposes of this thesis it can be simplified. Specifically, for a bi-partite
state pxp where the first system X is classical but B may be quantum, the conditional min

entropy reduces to [1]:
Hmin(X|B) = _IngguesS(X|B)' (145)

The conditional guessing probability pguess(X|B) captures how well one can guess the con-
tents of the classical register X, given access to the quantum system B. Any generalized
measurement is allowed to be performed on B:

Pguess(X|B) = s}131p Z Pr[X = z|tr [EmpB|X:IEl] , (1.46)
T rxeX
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where ppix—, = ((z| ®1p) pxp (|r) ® ) is the state of the system B conditioned that
the state of the classical register X is . The E,’s form a POVM (see sec. 1.3), and the
supremum is taken over all generalized measurements on the quantum system B.

Another useful entropic measure is the conditional maz entropy Huyax(A|B), which can be
defined directly in terms of the conditional min entropy. For a state p4p with a purification
pac = |UNY| 4pos it is defined as [79]:

Honax(A|B) = — Hunin (A|C). (1.47)

The conditional min- and max entropies together play an important role in the security of
QKD, which will be addressed in part III.

Finally, there exist smoothed versions of the quantum entropies, which allow for small
variations in the state to be considered and make the entropies continuous. For any € > 0,
the smooth conditional Von Neumann entropy is defined as [80]:

Sn(plo)® = sup Sx(p'|o), (1.48)
o’

where the supremum is taken over all quantum states p’ that are at most e-close to p in
the purified distance [81]. The purified distance is a generalisation of the trace distance for
sub-normalised states [1], which are (unphysical) states for which tr[p] < 1. Nevertheless,
these sub-normalized states give some operational advantages in security proofs, so that the
definition of the smooth entropies is adapted to not use the standard trace distance. Note
that for e = 0 the non-smoothed Von Neumann entropy is retrieved. The conditional smooth
min-entropy and smooth max-entropy are defined in a similar fashion.

1.5| Entangled states

Any state [¢) , 5 defined on two quantum systems A and B can be written in a standard
form called the Schmidt decomposition [7].

Definition 5. Let [¢) .5 € Ha ® Hp be an arbitrary state, and let n = dim(H4) and
m = dim(Hp). The Schmidt decomposition of |¢) , 5 is defined as:

W) ap =D VAilai) @1bi), (1.49)

where v < min(n,m) is called the Schmidt rank of the state and the \;’s are called the
Schmidt coefficients, which are subjected to the normalization condition Y ,_; A; = 1. {|a;)}
and {|b;)} are sets of orthonormal states in Ha and Hp, respectively, and are called the
Schmidt vectors.

A pure quantum state [¢) , 5 is called separable over the bipartition A : B of its qubits if
[V) ap = [¥) 4 @ 1)) g for some quantum states |1)) , and [¢)) 5, which is true if and only if its
Schmidt rank » = 1. When its Schmidt rank r is at least 2, the state is called entangled, and
when r is maximum (i.e. » = min(n,m), see Def. 5) it is called mazimally entangled. For a
pure state [¢)) 4 5, the reduced state p4 is mixed if and only if the state |¢) , 5 is entangled.

There exists a rich theory of entanglement; it is one of the defining properties of quantum
information science, and an indispensable resource in quantum computation and communic-
ation. For a comprehensive review see [71] or [35].

Some states are more entangled than others, and quantifying entanglement is performed
using entanglement measures [35]. For pure states, the best known entanglement measure
is the entanglement entropy [35, 36].
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Definition 6. Let ) 45 € Ha ® Hp be an arbitrary state with Schmidt coefficients p =
(A1, A2, ..., Ay) and Schmidt rank r. Furthermore, let pa and pp be the reduced states of
[) 45 on A and B, respectively.

The entanglement entropy £a.5(|%)) of |¢) 45 with respect to the bi-partition A : B is
defined as:

Ea:p(|¥)) = Sx(pa) = Sx(pp) = H(p). (1.50)

From Def. 5 it follows that Sx(pa) = Sx(pg). From the same definition it follows that p
can be viewed as a probability distribution, so that H(p) is well-defined.

It follows that for any state |¢) 45 it holds that 0 < £a.p(|¢)) < log(r), where r is
the Schmidt rank of |¢). Moreover, it follows that the entanglement entropy of a state is
maximized exactly if the state is maximally entangled.

Quantum correlations

Entangled states can produce correlations that can not be reproduced by classical systems
[36]; this is roughly known as the EPR-paradox [82], named after the physicists Einstein,
Podolsky and Rosen who addressed it in the early stages of quantum physics.

The difference between quantum- and classical correlations was made more precise by
Bell in his seminal work [34], where he additionally proposed a method to operationally
distinguish these quantum- or non-classical from correlations allowed by classical mechanics
(e.g. through hidden variable models). Distinguishing is usually phrased in terms of a non-
local game, the first of which is the well-known CHSH game, named after the physicists that
introduced it in [83]. In such a game, two or more parties can win with a strictly higher
probability by utilizing quantum states, compared to them using a purely classical strategy.
Other important non-local games are the Mermin-Peres magic square game [84, 85] and the
GHZ-game. Colloquially, an experiment or test that can distinguish quantum- from classical
behaviour is called a Bell test. For a comprehensive review see [86].

The fact that only quantum systems can show these quantum correlations, can function
as a test of ‘quantumness’. This is the basis of some facets of quantum cryptography, which
will be discussed in more detail in part III.

Examples of entangled states

The quintessential example of an entangled state is the state % (|00) + |11)), which is
fundamental and ubiquitous in quantum communication. It is known as the EPR pair,
named after the EPR-paradox and the three associated physicists [82], but the actual state
itself was only popularized by Bell [34]. It can be prepared from two qubits initialized in the
|00) state by applying a Hadamard operation on the first qubit, followed by a controlled-X
operation from the first to the second qubit:

% (100) + |11)) = CXx%(H ® 1) |00) . (1.51)

The EPR pair is the first of the four Bell states, which are all maximally entangled:

1 1
[Boo) = 5 (100) +11)) . [Bor) = —= (00) = 1)), -
1Bio) = —= ((01) + [10)), [ Bu) = — (01) — [10}).

V2 V2

For this reason, the EPR pair is often also referred to as the Bell pair. The four Bell states
are all related by a single unitary operation on either of their qubits:

|By,p,) = (X1 2% @ 1) |Byo) = (1@ X* Z%)|By) . (1.53)
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Sometimes the Bell states are written as [®T),|®~),[¥T) and |¥~) for the states
|Boo) , | Bo1) » | Bio) and | B11), respectively. However, in this thesis mainly the latter notation
will be used. Together they form the Bell basis.

Multi-partite entanglement

For states of three or more qubits, the bi-partition over which the entanglement is to
be understood must be specified. Consider, for instance, the three-qubit state |¢) ,p~ =
|Boo) 4 ®10) -+ it is entangled over the bi-partition A : BC, but separable over the partition
AB:C.

When a state of more than two quantum systems is considered, the state can show
multi-partite entanglement. This is an extension of the bi-partite form of entanglement,
where quantum states are divided into more than two partitions.

Definition 7. Let [¢), , , be an n-qubit state, and let M € [n] be an arbitrary subset of

the qubits. The state |), 5
as:

_, s separable over the bi-partition M : M if it can be written

|¢>1,2,.H,n = [a)p @ [b) pro s (1.54)

where |a),, and |b) ;. are two arbitrary pure states on the qubits in M and M=, respectively.
If no such bi-partition M : M~ exists, the state is called genuine multi-partite entangled,
or just multi-partite entangled.

In general, because the choice of M introduces arbitrary permutations of the nodes, it can
be non-trivial to determine if a state is multi-partite entangled. Multi-partite entanglement
will be discussed in more detail in part II.

An interesting special class of multipartite entangled states are the absolutely mazimally
entangled states [87]. These states are not just entangled over every bi-partition M : M+,
but are maximally entangled (see the start of this section) over every possible bi-partition.

1.6 | The Clifford group and local unitary operations

The Clifford group is a subgroup of the n-qubit unitary group that is closely related
to the Pauli operators. It plays a central role in stabilizer theory (see chapter 2), and by
extension in entanglement theory [35, 71| and quantum error correction [74]. The Clifford
group can be defined as the normalizer of the Pauli group in the unitary group.

Definition 8. The n-qubit Clifford group C,, C U,, is the normalizer N of the n-qubit Pauli
group Py, in the unitary group U, :

Con =N(P,) ={U cU,|[UP U =P,}. (1.55)
When an operator is in the Clifford group C,,, it is called a Clifford operator or just Clifford.

Because the normalizer of any subgroup is itself a subgroup, it follows that the Clifford
group C,, is a subgroup of U,,.

Def. 8 gives an infinite subgroup, because the center {al}qec of U, is infinite and con-
tained in the normalizer. However, this center represents global phases and is thus physically
irrelevant, so that it can be removed from the Clifford group without affecting its action on
quantum states. This leads to a redefinition® of the Clifford group as a projective group,
which is finite:

Cn — Cp \ {al}. (1.56)

“4Instead of defining C,, as the projective group N(Pp) \ {al}nec, one can alternatively define C,, in terms
of a set of generators with the desired property. Usually this is taken (H;,/Z;, C;(_” ), and while its center
is not trivial, this group is at least finite. See [88] for more details.



Page 17 1. MATHEMATICAL PRELIMINARIES

In general, in this thesis the projective group is implied, unless explicitly stated otherwise.

Some important single-qubit and two-qubit gates are Clifford, including I and the Pauli
operators. Notably, all operators in TAB. 1.1 are Clifford, except the T and P(¢) gates (for
general ¢).

From Def. 8 it is straightforward that, for any n > m, any operator C € C,, is part of
Cn, when it is suitably extended by I operators to be an element of U,,.

The fact that, up to phases, the operators X; and Z; are generators of the n-qubit Pauli
group P,, can be used to provide an easy test to determine if an operator U € U,, is Clifford.
Indeed, U is Clifford if and only if, for every i € [n], UX;Ut € P, and UZ,UT € P,.

As an example, with the use of (1.34), a straightforward computation reveals that:

Cz2X.CL =Cr(X @)CL = (X ® Z) € Py, (1.57)
CzZ,C} = Cx(Z@N)Cl, = (Z 1) € P. (1.58)

The Cy gate is symmetric, so that its action on X5 and Z, follows similarly. It can be
concluded that Cy is Clifford.

Local operations

A general unitary operator U € U,, can not be represented as a tensor product of single-
qubit operators. For example, there do not exist single-qubit unitary operators U; and Us
such that Cz = U; ® Uy (see (1.34)). Those unitary operators that can be decomposed
into single-qubit unitary operators can be interpreted as a series of single-qubit operators
chained together. More specifically, if U = U; ® Us, it is exactly the same as the product of
Uy ®T and I ® U,. In a sense, these operators act only on every individual qubit separately.
Such local operations are important in a networked setting, where quantum systems might
be macroscopically removed from each other, so that multi-qubit gates are hard to perform.
The local unitary group is the set of all unitary operations that are local.

Definition 9. The n-qubit local unitary group £Y is the collection of all operators that are
n-fold tensor products of single-qubit unitary operators:

Y= QUlU eth . (1.59)

1€[n]

It is straightforward to show that the local unitary group is a subgroup of the unitary group
U,. Any operator U € LY is called a local unitary operator or just local unitary.

Finally, the local operators that are Clifford form the local Clifford group.

Definition 10. The n-qubit local Clifford group LS is the collection of all operators that
are n-fold tensor products of single-qubit Clifford operators:

Lo=3 Q) cilCiec . (1.60)

1€[n]
Equivalently, it is the intersection of the local unitary group and the Clifford group:
£ =c,ucLk. (1.61)
Any operator C € LS is called a local Clifford operator or just local Clifford.

It is straightforward to show that the local Clifford group EEL is a subgroup of both the
Clifford group C,,, and of the local unitary group £¥.






THE STABILIZER FORMALISM

One defining feature of quantum states is the superposition, which allows them to show
behaviour not possible in classical physics. However, it renders them harder to represent
as well: for a general quantum state of n qubits, the number of coefficients needed to
specify the state grows exponentially in n. Certain classes of states allow for more efficient
representation, e.g. separable states, states with bound Schmidt number [7], bound matrix
product states [89], and most notably stabilizer states.

Stabilizer states are the class of quantum states that can be described using the stabil-
izer formalism, which was originally developed in [73] for quantum error correction. Not all
quantum states are stabilizer states, but many useful or interesting types of quantum states
fall within the class. Importantly, the stabilizer formalism can represent many forms of en-
tanglement, and allows efficient simulation of a certain class of evolutions and measurements
of stabilizer states, known as Clifford circuits.

This chapter first introduces the stabilizer formalism in sec. 2.1, in which stabilizer
states are defined as well. Unitary evolutions of stabilizer states are discussed in sec. 2.2,
and measurements on stabilizer states are discussed in sec. 2.3. Section 2.4 addresses the
properties of marginals of stabilizer states, which is used extensively in part 11, most notably
chapter 6. Finally, sec. 2.5 concludes the chapter, and gives some details about both the
aforementioned Clifford circuits and possible extensions of the stabilizer formalism.

The reader familiar with the stabilizer formalism may feel free to skip this chapter,
although the concepts introduced in sec. 2.4 are not necessarily part of the standard basic
introduction of the stabilizer formalism.

2.1| Stabilizer states

For a given quantum state |1}, an operator O stabilizes 1) if O [¢) = (41) |9), i.e. 1))
is a (+1)-eigenstate of O.

Definition 11. The stabilizer S of an n-qubit state |¢) is the (possibly empty) collection
of all Pauli operators that stabilize the state:

S={PePulP[Y) =) }. (2.1)
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A state |1) with stabilizer S is a stabilizer state if it is the unique state for which S is the
stabilizer. If it is useful to do so, one can write SI¥) to refer to the stabilizer of a specific
state |1).

Stabilizer states have many useful and interesting properties; most of these follow imme-
diately from their definition. More specifically, let 1)) be a stabilizer state with stabilizer
S. The product PQ of two random elements P,Q € S is then necessarily in the stabilizer:

(PQ) 1Y) = PQ¢) = PY) = [¢¥), (2.2)

In particular, this means that S is closed. Additionally, I € S for any stabilizer, so that it
contains an identity element. Moreover, P and ) commute on the stabilizer state:

PQ) = Pld) =) = Qy) = QP[y). (2.3)

Since Pauli operators either commute or anti-commute (see (1.5)), this implies that P and
() commute everywhere. It can be concluded that the stabilizer forms an Abelian subgroup
of P,.

Let {g;}!_; C & be a (minimal) set of generators for S, for some number I to be specified
later. The Pauli operators are self-inverse, so due to the Abelian structure of S, any element
P € S can be uniquely represent as:

P=glgy.. g, (2.4)

where b; € {0,1} encodes the ‘usage’ of generator g; w.r.t. P. Since there are 2! choices of
such bit strings b = (by, ba, ..., b;), it holds that |S| = 2!.

Moreover, when a Pauli operator @ € P commutes with all the generators of a stabilizer
S, (2.4) implies that [P, Q] = 0 for every element P € S. This can be used to prove that
any such @ has to be an element of the stabilizer S itself. More specifically, let |¢') = Q |v).
For every operator P € P,, it holds that

Py') = PQp) = QP ) = Qv) = [4'), (2.5)

ie. |¢') is a +1 eigenstate for every operator P € S. By definition, the stabilizer state |1))
is the unique state for which this holds, so that |[¢/') = @ |¢)) = |[¢)). But then @ stabilizes
|1}, so that it is in the stabilizer S.

It follows that £Q € S if and only if it commutes with a generating set {g;} of S:

Qg =¢:Q Vie{1,2,...,n}. (2.6)

This gives an easy test to determine if a given element @) € P, is in the stabilizer S or not.

The stabilizer state is, by definition, the unique state in the shared +1 eigenspace of all
elements of S. Let IIs = [] 5. II¥; be the projector of this eigenspace, where 11}, = %
is the +1-eigenspace projector of P (see (1.10)). Using the insights of (1.12) and (2.4), the
stabilizer state can then be written as:

ol = s = [T 17y =T = 5 T[+ 0. 2.7

PesS i

where [ is the number of generators of S. This shows an important fact: any stabilizer
state |¢) is the unique +1 eigenstate of merely the generators of its stabilizer instead of
all 2! elements, and therefore one can uniquely specify a stabilizer state by just a set of
generators. However, note that the choice of generators for a stabilizer S is mot unique.
Selecting a suitable set of generators is often an important part of the analysis of a stabilizer
state.
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EQ. (2.7) can additionally be used to specify the number [ of generators for S. Because
|1} is the unique state in the shared +1-eigenspaces of all Pauli operators, the dimension of
the subspace associated with the projector Ils is 1. The dimension of a subspace is equal to
the trace of its projector, so

1 =tr[llg] = tr == =2

1,

PeS

(2.8)

where it is used that all Pauli operators except the I operator are traceless (see (1.7)). This
means that the number [ of generators of S equals n and therefore that there are exactly
n generators needed to specify an n-qubit stabilizer state. If there are fewer generators,
the stabilized subspace (i.e. the subspace associated with the projector J]pcg Hil) is of

dimension 2"~!. In this case (2.7) can still be used to describe the (mixed) state, except
that it would not be properly normalized. Such mixed states are discussed in more detail in
sec. 2.4.

Combining (2.7) with the insights from (2.4) allows the stabilizer state [)v| to be
represented as a sum of all stabilizer elements:

o)XY = 2% [[a+g)= 2% > gtey g = 2% P. (2.9)
i be{0,1}" PeS
From (2.9), it is evident that there is a one-to-one correspondence between stabilizer states
and their stabilizer. Every stabilizer state uniquely determines its stabilizer, and every
stabilizer uniquely determines its associated stabilizer state: the only freedom in describing
a stabilizer state is the choice of generators.
Additionally, it follows that any set {P;}_; of n Pauli operators that both pairwise
commute and are independent (i.e. they are not a product of each other), generates a valid
stabilizer S and associated stabilizer state.

2.1.1| Fidelity of arbitrary states with stabilizer states

The fidelity of an arbitrary state p with a stabilizer state can be computed using (2.9).
Because the stabilizer state is pure, (1.28) can be used and

Flp, 1)) = tr [p [6)] = tr [,o (21 3 P)] = oo S wwloP], (2.10)

pPes PeSs

where the last equality follows from the linearity of the trace. The terms tr[pP] are ex-
pectation values of simple Pauli-basis measurements; this plays an important role in the
verification of stabilizer states, which will be addressed in part III.

2.1.2| Examples of stabilizer states

One of the most straightforward examples of a stabilizer state is the state |[4+). X |+) =
[4+), so its stabilizer is SI*) = {I, X}, which is generated by a single generator g; = X.
Similarly, the state |1) is the +1 eigenstate of the operator —Z, so its stabilizer is SI" =
{I, —Z}, generated by a single generator g = —Z.

A less trivial examples is that of the Bell states (see (1.52)). A straightforward compu-
tation reveals that (X ® X)|Boo) = |Boo) and (Z ® Z) |Boo) = |Boo). Additionally, these
operators commute: [X ® X, Z ® Z| = 0. It follows that |Bgg) is a stabilizer state with gen-
erators g = X ® X and ¢g» = Z ® Z, and with the stabilizer S/Po) = {I, XX, ZZ, -YY},
where the ‘®’-sign is dropped for brevity. The other three Bell states follow similarly, as
listed in TAB. 2.1.
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g1 g2 S
| Boo) X®X ZQZ {I, XX, ZZ,-YY}
| Box) X®X -Z®Z {I, XX,-ZZ, YY}
| Bio) -X®X zZeoZ {I,-XX, ZZ, YY}
|B11) - X®X —Z®Z {I,-XX,-ZZ,-YY}

TABLE 2.1: The four Bell states (see (1.52)) are stabilizer states that are closely related to each
other. For the Bell state [By,1,) = (2" X" @) 7= (|00) + [11)), its stabilizer is generated by

g1 = (—1)"2XX and g2 = (=1)"' ZZ, resulting in the stabilizer SIPriv2) with four elements.

2.2 | Unitary evolutions of stabilizer states

When a state [¢)) is rotated under a unitary transformation U, its density matrix p =
|)1)| is evolved as p — UpUT. The unitary evolution of a stabilizer state |¢))1)| with
generators {g;} can be calculated using (2.7):

[vXe| = 2% H(H+gi) - U <21n H(]I—i-gi)) Ut

i i

= U (@4 9) T+ g2) .. (T4 62))U"

(2.11)
1
:%U((H +g)UTUI+ g)U'U ... UTU(T+ gn)) Ut

1
where UTU = 1T is freely introduced in the third row, and where the last equality uses
U+ g;)UT =1+ Ug,UT. This means that the rotated state is the shared +1 eigenspace
of the elements of the group (Ug;UT). However, the operators Ug;UT may not be Pauli
operators, so that the state may fail to be a stabilizer state.

This representation is especially useful when U € C is a Clifford operator, because then
Ug;U' is (guaranteed to be) in P. Moreover, conjugation with a unitary operator preserves
commutation relations, and the rotated generators thus correctly create a stabilizer group.
Therefore, the rotated stabilizer state is a stabilizer state as well, with associated generators:

gi = g, = Cg;CT. (2.12)

2.2.1| Examples of evolutions of stabilizer states
As an example, (the generators of) the Bell pair |Bgg) can be computed directly with
(2.12). The state |00) can be used to prepare the Bell pair |Bgg) by applying a Hadamard
operation to the first qubit, followed by a C'%7?2 gate controlled by that same qubit. There-
fore, the generators of the Bell pair can be obtained by evaluating the action of these unitary
operators on the generators of the |00) state. The state |00) has generators ¢ = Z ® I and
92 =1® Z, so (using (1.51)) these generators are first transformed by H ® I:

Z®l - HeDZe)(HxD)! = XoI, (2.13)
I®Z — (HD)(IeZ)(HeD)! = IeZ, :
and subsequently by C72:
1—2 1=2\f
Xl —» Oy (XeD(Cx?) X®X, (2.14)

Iz — CY*(Ie2)(C¥H = ZeZ
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The generators of the other Bell states follow readily. E.g. for the Bell state |Byig) =
(X ®1)|Bygo) (see (1.53)), the discussion before (2.12) implies that its generators are:

XX - XehXeX)(XeDf
Z®Z — (Xe)(ZeZ)(XeDf

X®X,
—Z® 7.

(2.15)

Note that these generators coincide with the generators as listed in TAB. 2.1.

2.3 | Measurements on stabilizer states

For any Pauli operator O € P, interpreted as an observable, it is straightforward to
compute the expectation value E [O] for a stabilizer state |i):

0(2% > P)

1
2 = o > wr[oP], (2.16)

PeS

E[O] = (¢ O¢) = tr [0 [{)¢]] = tr

where the second equality follows from (2.9). This expectation value shows different beha-
viour depending on if O or —O is in the stabilizer, or neither of them are included:

1 0es,
E[0O]=¢-1 —-0€S, (2.17)
0 O ¢&S8.

The first two cases are straightforward. When O € S, the term O? =1 exists in the sum in
(2.16), which has trace 1 when normalized. Similarly, when —O € § the term (—O)O = —I
exists in the sum, which has trace —1 when normalized. All other elements in the stabilizer
are traceless, so that the sum in (2.16) equates to +1 or —1, respectively.

The last case follows from the fact that when O ¢ S, the set OS is a (left) coset of S
and thus does not contain +I. That means that all terms in OS are traceless, and the sum
in (2.16) equals zero.

Any observable A can be written as A = ), ., apP. By the linearity of the trace,
(2.17) generalises to any other observable:

E[A]=Y apE[P]=) ap— Y ap, (2.18)
pPeP PeS —PeS

In the case that O is a Pauli operator, the measurement will result in an outcome m = +1
or m = —1. Using the identity E[O] = Pr(m = +1) — Pr(m = —1) together with (2.17) it
follows that this measurement either always has the same outcome, or that it is uniformly

random:
1,0 0Oe€s,
Pr(mo = +1),Pr(mp =-1)=<0,1 -0¢€S8, (2.19)
il r0¢S

2.3.1| Post-measurement states of Pauli measurements

The post-measurement state of such a Pauli-measurement can be determined from its
generators, and will be a stabilizer state as well. More specifically, the post-measurement
state |m) is the projection of 1)) upon the eigenspace according to the measurement outcome
m (see (1.36)). The projection operator for the measurement outcome m = %1 is H(Om) =

O (see (1.10)), so the post-measurement state is, up to a normalization factor, |m) =
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When either O or —O is in the stabilizer S, the state |1)) is already an eigenstate of O
or —O, respectively. In these cases the stabilizer state is unaffected by the measurement (or
obtains a global phase —1).

When neither O nor —O is in the stabilizer S, the stabilizer state |¢) is not an ei-
genstate of O and will be non-trivially affected by the measurement. Nevertheless, the
post-measurement state is still a stabilizer state whose generators can be determined. First,
if £0 ¢ S, by (2.5) and the analysis below it, there exists at least one generator g; that
does not commute with O (and therefore anti-commutes).

W.l.o.g. assume that only the first m generators anti-commute with O (where 1 < m <
n). It is straightforward to define a change of generators g; — g} for the stabilizer S so that
afterwards only one generator anti-commutes:

i 1= 1;
9i = 9i =91 2<i<m, (2.20)
Gi 1> m.

By construction, only the generator g; anti-commutes with O, while all other generators
commute with the measurement operator.

By definition, the post-measurement state |m) has to be an m-valued eigenstate of O,
so that |m) is stabilized by (m)O. However, using (1.11) one can show that |m) is still
stabilized by any generator g; that commutes with O:

giImo) = gillG, ) 1) = 1G,, ) gi 1) = T1G, ) [¥) = [mo) . (2.21)

The post-measurement state |m) is still stabilized by the generators {g}} ,, and ad-
ditionally stabilized by (m)O. All of these operators commute by construction, and are
independent of each other. This means that they form a valid set of n generators, so that
they form a valid stabilizer SI™ (see (2.9) and the discussion after it). In conclusion, the post-
measurement state |m) is a stabilizer state with the stabilizer S™ = ((m)O, gb, g4, ..., gL).

2.3.2| Examples of Pauli measurements

As a straightforward example of a Pauli-basis measurement, consider again the Bell state
| Boo) = % (|00) + |11)) with generators X ® X and Z ® Z (see TAB. 2.1). When the first
qubit is measured in the X-basis, i.e. the basis {|+),|—)} with outcome +1 or —1, the
associated observable is X ® I. This operator does not commute with Z ® Z so it follows
that X ®I & S (see (2.6)). It immediately follows from (2.19) that the measurement results
in a uniformly random outcome m = +1.

The only generator that the measurement operator does not commute with is Z ® Z.
For the post-measurement state only this generator is replaced (i.e. there is no change of
generators needed), and the post-measurement state is stabilized by X ® X and (m)X ® L.

Although technically not necessary, a change of generators is instructive: applying the
second generator to the first results in X @ X —» (X @ X)(m)X ®I) = (m)I® X. The
post-measurement state after measuring X @1 is thus given by the generators (m)X ®1I and
(m)]l ® X. If the measurement outcome was m = 0 or m = 1, the post-measurement state
would be |[+) ® |[+) or |—) ® |—), respectively. See TAB. 2.2 for a detailed analysis of the
same measurement.

A less trivial example is given in TAB. 2.3. Here, the initial state is the four-qubit
state |Boo) ® |Boo), which is a four-qubit stabilizer state with generators X XII, ZZIT and
ITXX,11ZZ. The second and third qubit are measured in the Bell basis (see (1.52)), which
results in that these two qubits are in one of the four Bell states | By, m, ), where my and mq
specify the measurement outcome. An interesting result is shown in TAB. 2.3: the first and
last qubits are in the state |Bp,.m,) as welll Those familiar with it might recognize this as
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meas. c.o.g.
XX - XX —- mIeX
zZ®7 -  (mXRI -  (mXI

TABLE 2.2: Two qubits are initially in the state stabilized by X ® X and Z ® Z, which is the
EPR pair |Bgo) = % (]00) 4 |11)) (see TAB. 2.1). The first qubit is measured in the X-
basis (labelled meas.), represented by the measurement operator X ® I. The anti-commuting
generator Z ® Z is replaced by the measurement operator (m)X ® I, that now carries the
uniformly random measurement outcome m € {41, —1} as a phase. A change of generators
(labelled c.o.g.) shows that the post-measurement state has generators (m)X ®I and (m)I® X,
which shows that the second qubit has ‘collapsed’ as well to |[+) or |—) when m is +1 or —1,
respectively.

entanglement swapping, i.e. the swapping of pairs of qubits that share entanglement. This
is the basic building block of the quantum repeater, where entanglement between a network
node and a midway station, and entanglement between the midway station and another
node, is swapped for entanglement between the two nodes.

2.4 | Reduced states and bipartite entanglement

The marginals of stabilizer states show structure that is useful to study the entanglement
of these states, and they will play a central role in chapter 6. Calculating the marginals
of stabilizer states can be done within the stabilizer formalism, and is facilitated by (2.9).
More specifically, let |¢)) be any stabilizer state with stabilizer S, and let M C {1,2,...n}
be any selection of the qubits of |¢) with size |M| = k. The goal is to compute the reduced
state par = trpse [[¥)|]. To this end, it is useful to introduce another concept first, the
reduced stabilizer.

Definition 12. Let S be any n-qubit stabilizer, and let M C {1,2,...n} be a subset of size
M| =k. Write P=Q);_, P; for every operator P € S.

The reduced stabilizer Sy; C Py is then the collection of k-qubit Pauli operators P’ =
Rsenr Pi for every P € S whose support supp(P) (see (1.6)) is contained in M :

Sy = {P’ =) PP = éa € S, supp(P) C M} . (2.22)

ieM i=1
Alternatively, it can be defined immediately from the elements of S by tracing away the
qubits outside of M and renormalizing:

1
Sy = {Tl_ktrML [P]|P € S,supp(P) C M} ) (2.23)
where the scaling factor Qn%k is there to renormalize, so that indeed Spy C Pr. When context

permits, Spyr can additionally be referred to as the reduced stabilizer of the marginal M.

In other words, the reduced stabilizer Sy; is the collection of all elements P € S with
support contained in M, when their I’s on the qubits outside of M are removed by tracing
them away, after which they are properly renormalized.
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c.0.g. meas. 1 c.0.g.
XXII — XXII — XXII — XXIIT
ZZI1I — ZZI1I — (m)IXXI — (m)IXXI
I1XX — XXXX — XXXX — (m)XITIX
1177 — YANA — YANAVA — YANVA
meas. 2 c.0.g.

XXII — (mo)IZZI1 — (mo)IZZI1

(m)IXXI — (m)IXXI — (m)IXXI

(m)XIIX — (m)XIIX — (m)XIIX

27707 — 2177 — (m2)ZI1Z

TABLE 2.3: Bell-state measurement on the second and third qubit of a four-partite quantum

state [10) = |Boo) ® |Boo), that has generators XXII,ZZII and I1I1XX,11ZZ. (Top) A
change of generators (labelled c.o.g.) facilitates the measurement of the operator IX X1, so
that this operator anti-commutes with only one generator, ZZII. The measurement (labelled
meas. 1) thus replaces this operator with the measurement operator (m1)IXXI. Another
change of generators results in the generators listed in the top right.
(Bottom) The measurement (labelled meas. 2) of the operator IZZI is performed; this
operator anti-commutes with only the generator X X 1I. This operator is thus replaced by the
measurement operator (mg)IZZI. Another change of generators (labelled c.o.g.) results in
the generators listed in the bottom right. By TAB. 2.1, the state of the second and third qubit
is the state |Bm,,m, ). As a consequence, the state of the other two qubits is |Bmy,m, ) as well.
The reader that is familiar with the concept might identify this as entanglement swapping.

It is straightforward to show that Sy; is an Abelian subgroup of P with a number of
generators 1 < dp; < k, where the dimension dj; of Sps is the number of elements in a
(minimum) generating set for it.

Because its elements are self-inverse and S is an Abelian subgroup (see (2.4)), the di-
mension dy; is exactly the base-two logarithm of the number of elements in Sy;:

dyr = log(|Sum|). (2.24)

Finally, Sys stabilizes a subspace® of H of dimension 2= (see (2.8) and the discussion
immediately afterwards). The number of generators dj; and number of nodes k = |M| in
(2.24) are the total number of qubits n and number of generators [ in (2.8), respectively.

Reduced states of stabilizer states

Using the reduced stabilizer Sy, the marginal pa; = trpse [|9)e0]] (see (1.25)) of the
stabilizer state [ ¢)] = 5= Y. peg P (see (2.9)) can be calculated:

py = trppe [[PX]]

1
= on E tI‘M* [P]v
2" s (2.25)

1For those familiar, Sy; forms a stabilizer code with k — dys logical qubits, although a pretty bad one for
most choices of S and M.
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where the first equality follows from the linearity of the trace, and the second equality follows
from (1.8). If it is the case that Sy; = {I}, the marginal pys is the maximally mixed state,
and it is called trivial.

Using the insights from (2.7) and (2.9), the reduced state pj; is exactly the maximally
mixed state in the subspace stabilized by Sy;. Moreover, if {gi}ffl is a generating set for

Shr, then:
1
PM = S Z P
PeSy
1o

:WH(H+9i)

=1
1 dr (226)

sl

rnk(par)

- > i)l

k(o) 2

where tnk(pys) = 2/MI=9x is the rank of pys, and |¢;) forms a basis for the shared (41)-
eigenspace of the generators g; of Sy, i.e. the subspace stabilized by Syy.

Furthermore, the rank of py; equals the Schmidt rank r of |1)), so using this expression the
Schmidt rank of any stabilizer state |) (w.r.t. the bipartition M : ML) can be calculated:

r = rnk(pa) = 2/MI—dar (2.27)

It follows that the Schmidt rank for a stabilizer state is always a power of two.
Finally, for any choice of bipartition M : M1 it holds that rnk(pys) = rnk(pys1). There-
fore, from (2.27) it follows that:

| M| —dp = |M*| = dpye. (2.28)
This means that d,;1 is determined by dj;.

Bipartite entanglement for stabilizer states

For any n-qubit stabilizer state |¢)) with stabilizer S, and any bipartition M : M=, the
entanglement entropy Eyr.are([t) ) (see Def. 6) can be calculated using (2.26):

Entars (|1)) = Sn(pmr)

ol M|—dpg

1 1
> S 10g<2M|_dM) (2.29)

j=1

where Sx(par) is the Von Neumann entropy of pas (see (1.42)) and where it is used implicitly
that the Schmidt rank of i) is r = 2/MI=dn,

When the stabilizer state |1)) with stabilizer S is separable over the bipartition M : M,
it holds that |¢)) = |1ar) ® |¢are), i.e. par is a pure state. In that case, this means that the
subspace that Sys stabilizes has dimension one, and thus that dy, = |M| (see (2.26)). The
same applies to pys1, so it follows (for separable stabilizer states) that:

S=8u®Sy-. (2.30)

This deconstruction can be generalized to stabilizer states with an arbitrary Schmidt rank
r [90]. Let {a; ® Iy }?“:/11 be the generators for Sy and {I); ® bk}ng be the generators
for Spr1, both extended to be elements of P,,.
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This gives a total of dj; + djr1 generators; there need to be n generators in total, so
there are n — dy; — dps = 2log(r) other generators.

These other generators can always be chosen canonical form [90], which are generators
that show a rich, useful structure. More explicitly, these canonical generators form log(r)
pairs (g;, h;) (for 1 <4 < log(r)), defined as:

_ Y3 7

9 = 90 @ Inay (2.31)

hi = hi; ® hiyo.

Although g; commutes with any other generator of S due to its Abelian structure, the pro-

jections g4, and 93\/1 1 do not necessarily commute with the other (projections of) generators.

However, the canonical form dictates that the projections of the pairs (g;, h;) anti-

commute with each other:

{9, Pir} =0, (2.32)

but both commute with all other projections (i.e. g}'\} and hﬁ\l/f for any i’ # i, and every a).
The projections 9?\/1 . and h3\4 1 have similar commutation relations.

These pairs (g;, h;) together form another subgroup Sy;.ar+, so that the stabilizer S has

the structure

where - denotes the product of the two subgroups. In a sense, all entanglement properties
of |¢)) are encoded into the group Sy;.pr1, while the local information of the subsystems M
and M~ are encoded into Sy; and Sy 1, respectively.

2.5| Conclusion and further reading

The stabilizer formalism is ubiquitous in both quantum computation and communica-
tion, with usage in quantum error correction, fault tolerance, entanglement- distillation and
distribution in networks. Following (2.12) and sec. 2.3, any circuit with only Clifford op-
erators and Pauli measurements can be simulated efficiently, something which is known as
the Gottesman-Knill theorem [91, 92]. This efficient simulation is facilitated by the binary
representation of Pauli operators [93], which allows to represent a stabilizer as a subspace in

", which is then usually mapped to a symplectic subspace of F2" [7]. This representation
will be used in chapter 4.

Even though many interesting and highly entangled quantum states can be represented
within the stabilizer formalism, and thus efficiently simulated, the stabilizer formalism can
only simulate the action of Clifford operators, so that BQP-complete circuits remain intract-
able. It shows an intricate interplay with the theory of fault-tolerant quantum computation
[75], especially because of the fact that including one more type of gate into the circuit
(usually the T' = diag(1,e’%) gate) alleviates its power to be BQP-complete |7, 94].

To circumvent these shortcomings and allow for a larger class of states to be represented,
the stabilizer formalism can be extended to include other operators than the Pauli operators.
Because the Pauli Y operator can be written as the product ¢ X Z, all stabilizer elements
(in the standard framework) are elements of the group? (—1I, X, Z)®™. The first well-known
extension of the stabilizer formalism introduces stabilizer operators that are elements of the
group (il, X, S = diag(1,e'7))®" [95], and is thus known as the X S-stabilizer formalism.
Note that this means that the elements of the stabilizer then do not necessarily commute
any more.

More recent work gives a family of stabilizer extensions for any choice of natural number
N. Tt introduces w as a 2N-th root of unity and P = diag(1,w?) as an N-th root of Z; the

2Remember that a stabilizer element can only have a phase +1.
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stabilizer elements are then elements of the group (wl, X, P)®". As such, it is known as the
X P-stabilizer formalism [96]. Note that N = 1 retrieves the standard stabilizer formalism,
and N = 2 retrieves the X S-formalism. To compare against these extensions, the standard
stabilizer formalism is sometimes referred to as the X Z-formalism.

These extensions can indeed represent more states, but this comes at a reduction in
efficiency of simulation. (Note that simulation of the X P-formalism for arbitrarily large N
gives BQP-completeness).

Although bipartite entanglement of stabilizer states can be characterized using the meth-
ods introduced in sec. 2.4, multi-partite entanglement is less straightforward. Both in
quantum computation and in quantum networks with more than two parties, (multi-partite)
entanglement is an important resource, so that the characterization of multi-partite entan-
glement is exceedingly useful. The study of multi-partite entanglement is helped by an
important subclass of the stabilizer states: the graph states. These are introduced and
defined in chapter 3, where additionally important basic results are stated. Making use
of these new concepts, various facets of multi-partite entanglement are then addressed in
part II.






(GRAPH STATES

Although stabilizer states permit an efficient and straightforward description in terms of a
generating set of their stabilizer, it is not always immediately clear how to interpret these
operators. Moreover, it can be tedious to analyse the action of unitary evolutions or Pauli
measurements by hand, or to determine certain interesting properties of the state (e.g. if it
is separable under a certain bipartition).

A specific subset of the stabilizer states, known as the graph states, allows for a much
quicker and more intuitive inspection and understanding. These useful properties mostly
arise from the fact that they can be represented by the mathematical concept of graphs, or
(depending on the perspective) can even be defined in terms of them. A graph, a collection
of points and potential lines between them, can be easily drawn on e.g. a piece of paper,
which facilitates convenient inspection. This chapter introduces all their concepts that are
relevant for this thesis; a comprehensive introduction of graph states and their properties
can be found in [3].

Many of the interesting properties of graph states can be seen in terms of properties of
their underlying graphs, so that often it is enough to merely inspect the drawing of this graph
by hand to determine the properties of the graph state. As an explicit example, there exist
an intricate relation between local Clifford operations on graph states and a specific graph-
theoretic operation known as local complementation. Additionally, the action of single-qubit
Pauli measurements on graph states can be understood in terms of their underlying graphs
as well, so that the effect of these measurements can be computed from the graphs directly.
This chapter introduces the necessary concepts of graphs and graph states, so that they can
be used to study entanglement and other properties of both graph- and stabilizer states in
part II.

Section 3.1 gives the mathematical definition of a graph and introduces some of its
relevant concepts, including the local complementation. Graph states themselves are then
defined in sec. 3.2, where some examples are given as well. Among these examples is the GHZ
state, which is an important resource in quantum communication and will play a central role
in both chapter 5 and part III. In sec. 3.3 the relation between the local complementation on
a graph and its effect on the associated graph state is discussed. The effect of single-qubit
Pauli measurements on graph states is discussed in sec. 3.4. Finally, sec. 3.5 concludes this
chapter and gives further topics that can be studied.
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The reader familiar with the theory behind graph states may feel free to skip this chapter.

3.1| Graphs

A mathematical graph is, in its most basic form, a collection of points, that may or may
not be connected to each other'. The points are generally referred to as vertices or nodes,
and the latter name is used in this thesis. The connections between the nodes are called
edges.

Definition 13. A (simple) graph G = (V, E) is a pair of two things:
(1) The vertex set V, a collection of nodes.
(2) The edge set E, a possibly empty collection of edges. An edge is a pair of two nodes.

Edges cannot connect a node to itself, so it holds that E C (V x V) \ {(i,i) }iev. Any two
elements u,v € V are said to be connected if (u,v) € E. The notation V(G) refers to the
vertex set V' of the graph G.

The collection NV,, = {v € V|(v,u) € E} is the neighbourhood of u, i.e. the collection of
nodes in V that are connected to u. A node i is isolated if it holds that A; = 0.

A series of edges and nodes that link two nodes v and v is called a path between these two
nodes. If there is a path between any two nodes in a graph, that graph is called connected.
Unless explicitly stated otherwise, any graph in this thesis will be connected. A graph that
is not connected is called disconnected, and consist of two or more smaller connected graphs.
The reader that is familiar with graph theory may note that here only the simple connected
graphs are considered.

Graphs have a clear graphical depiction, where circles represent nodes, and lines between
them represent edges. Three examples of graphs are given in F1G. 3.1. They include four-
node instances of two important types of graphs:

e The line graph Ly, the graph with edge set {(i,7 + 1)}y\(n} that resembles a line?.

e The complete graph Ky, with edge set (V x V) \ {(i,4)}v, i.e. the graph containing
every possible edge.

In this thesis, any graph G will have a vertex set V = [n] = {1,2,...n}, unless explicitly
stated otherwise. n is referred to as the size of the graph, i.e. the number of vertices in G.
Sometimes merely n is used as a shorthand for the vertex set; e.g. Ky is the complete graph
on the four nodes V = {1,2,3,4}.

Given a graph G = (V, E) and a node i € V, the notation G \ ¢ indicates the graph that
results from removing node ¢ and all its incurrent edges. In other words, G\i = G’ = (V' E’),
with

V=V i), (3.1)
E =En(V' xV').
Given two random graphs G = (V, Eg) and H = (V, Eg), the graph F' = G @ H is the

graph with vertex set V' and edge set Er, defined as the symmetric difference of the initial

edge sets:
Er = FEqg & Fy, (3.3)

n this thesis, only simple, unweighted graphs are considered, but they are referred to as just graphs.

2An ordering has been assumed to the vertex set V, with n being the last element. If this order is not
apparent from context, or chosen differently, the order is made explicit: e.g. G, = L3142 from Fic. 3.1 has
edge set {(3,1),(1,4),(4,2)}. This graph still represents a line, but on the path 3 -1 — 4 — 2.



Page 33 3. GRAPH STATES

| 11X

G: G Gs3

FIGURE 3.1: Three different graphs with four nodes each. The graph G; on the left is a line
graph L4, resembling a line from node 1 to node 4 through 2 and 3. The middle graph G> is
the complete graph K4, because it contains every possible edge. The graph G35 on the right is
a line graph as well, specifically the line 2 — 4 — 1 — 3. The neighbourhood N7 of node 1 is
highlighted in red for all three graphs. Finally, it holds that G1 = G2 ® G3. Since G2 = K4
is the complete graph, G1 and G3 are each others’ complimentary graph.

where @ denotes the symmetric difference. In other words, Er contains all edges that are
either in Eg or in Eg, but not in both.

For any graph G = (V, E), its complementary graph is the graph G with vertices V and
edge set B+ = ((V x V) \ {(4,i)}v) \ E, i.e. the graph with the same vertex set, that has
exactly and only those edges that G does not have. An alternative definition is:

Gt =GaoKy. (3.4)
Finally, the Adjacency matriz T € Fy*™ is a symmetric matrix that encodes the edge
set:
- 0 (i,4) € E,
I'(i,j) = <. .) (3.5)
1 (i,5) € E.

The columns of the adjacency matrix I' encode the neighbourhood of the nodes. Let the
i-th column of I" be denoted as 7);; it is a vector of length n that has a 1 at entry j if node

j € N;, and 0 otherwise:
. 0 j&N,
i) = 3.6
() {1 PN (3.6)

3.1.1| Local complementation
The local complementation is an important operation on a graph that is defined for each
of its nodes, and transforms the graph into a new graph based on a graphical rule. A local
complementation on node i € V is denoted 7;, and the resulting graph is denoted 7;(G).
7:(G) results from the graph G where the subgraph on the neighbourhood N is replaced
by its complementary graph. In other words, it results from G, where every possible edge
between the elements of the neighbourhood N; is inverted: the edge is removed or created if
it was or wasn’t there, respectively. Examples of local complementation are very instructive;
for two examples see F1G. 3.2.
Using some slight abuse of notation, the local complementation can alternatively be
defined in terms of a transformation of the adjacency matrix of a graph:

I =Ta @ Tk, =Ta@nm & diag(nm, ), (3.7)

where K[N;] is the complete graph on the neighbourhood N, and its adjacency matrix is
assumed to have been ‘extended’ with the other nodes of the graph G (i.e. the dimensions



3.2 GRAPH STATES Page 34

of the two adjacency matrices are compatible). The second equality follows from the fact
that the outer product of n; with itself resembles the complete graph on N, except that the
diagonal contains some 1’s. From this definition it is evident that a local complementation
is self-inverse: 7;(7;(G)) = G.

n T3

. ©
0 o / é\
~ TN 7N
O oe—o © o

Ga Gp Gc

FIGURE 3.2: Two examples of local complementation. The graphs G, and G} are related by the
local complementation 73 on node 3, so that G4 = 73(Gp). Similarly, G. = 72(Gs), but there
is no single node 7 such that G, = 7;(G.). The neighbourhoods N3 and N>, that are inverted
by the two local complementations, have been highlighted in G, and G, respectively. A local
complementation 7; is self-inverse, so that Gy = 73(G.) and Gy = 12(Ge).

Local complementations can be chained, so that graphs can be related by a series of
local complementations. If two graphs G and G’ are related by a local complementation
7;, and G’ is related to a third graph G” by a local complementation 7;, it follows that G
and G” are related by (at least) the combination of 7; and 7;. See for example G, and G,
from F1G. 3.2, that are not related by a single local complementation, but are related as
GC = T2 (’7’3 (Ga))

Because local complementations are self-inverse, they invoke an equivalence relation.
When two graphs G and G’ are related by a series of local complementations, they are
called locally equivalent, denoted G' ~ G’. This invites the definition of the orbit:

Definition 14. For a given graph G, its orbit O(G) is the collection of all graphs H that
are locally equivalent to G:

O(G) ={H is a graph|H ~ G}. (3.8)

Any element H € O(Q) is called a representative of the orbit. The size of an orbit is the
number of elements |O(G)| it contains.

This definition partitions the set of all connected graphs of a fixed size: every (connected)
graph belongs to exactly one orbit, and the collection of all orbits is exactly the set of all
connected graphs. As an example, the complete orbit of L4 can be found in F1G. 3.3. The
graph Lo143, for instance, is in the orbit, because it is related to L4 by the successive local
complementations 75, 71, 73 and 74, in that order.

Note that if two graphs are locally equivalent, it does not necessarily mean that the series
of nodes to perform the local complementation on is unique. For instance, F1G. 3.3 shows
that L, is additionally related to L2143 by the local complementations 73, 74, 72 and then 7.

3.2 | Graph states

An important subclass of the stabilizer states is formed by the graph states. They are a
specific type of stabilizer state that can be defined in terms of a graph.
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FIGURE 3.3: The entire orbit O(G,) of the graph G, from FiG. 3.2, shown in the middle and
highlighted. O(Ga) is the collection of graphs that are locally equivalent to G4: those graphs
that can result from one or more successive local complementations performed on G,. The
graph Gy from F1aG. 3.2 is part of the orbit, because it related to G, by 73. Not all elements
of the orbit are related to GG, by a single local complementation: e.g. G. from FiG. 3.2 is
related to G, by two local complementations, namely 73 and 2. The different sequences from
Go = L4 to the graph L2143 in the middle of the left column show that there may be multiple,
distinct chains of local complementations that can link two graphs in an orbit.

Definition 15. Let G = (V, E) be a graph with V = [n]. The associated graph state |G) of
G is the n-qubit state that results from initializing a qubit in the |+) state for every node in

the graph, and applying a C(Zﬂ’w) operation between every pair of qubits v, w whose associated

nodes share an edge:
v,w 14
[T ¢ . (3.9)
(v,w)eEE

All Cz operations commute, so the order in which they are applied is irrelevant.

It is straightforward to show that any graph state is a stabilizer state. More specifically,
the state |—|—)®V is a stabilizer state generated by {X; }icv; and only the Clifford operator Cz
(see (1.57)) is applied to it. It follows from the discussion in sec. 2.2 that |G) is a stabilizer
state (see (2.12)).

EQ. (2.12) can also be used to determine the generators of a graph state |G). Denoting

U= H(v.w)EE C(Zv’w) and starting from the state |+>®V, the generators are updated as:

X, > UX;UT. (3.10)
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From (1.57) it follows that applying the operator C(Zl’w) on X; introduces an operator Z,,.
The generator X; is thus transformed by introducing a Z operator for every node that ¢
shares an edge with, i.e. the neighbourhood N; of i. The generators {g;}! , of a graph state
|G) are therefore given by:

JEN;

3.2.1| Entanglement in graph states

From the underlying graph, it is straightforward to determine certain properties of graph
states regarding its entanglement. Most notably, it is easy to see if a qubit in a graph state
is separable: it is only separable from the rest of the state, if its associated node is isolated
[3].

This extends naturally to multi-partite entanglement. More specifically, a graph state is
multi-partite entangled (see (1.54)) if and only if its underlying graph is connected [3]. It is
easy to determine if a graph is connected by e.g. a breadth-first search or by calculating its
algebraic connectivity [97, 98]. This gives an efficient method to determine if a graph state
is multi-partite entangled. From results like this, the study of multi-partite entanglement,
as discussed in part II, is therefore greatly helped by the concept of graph states.

It should be noted that the number of edges of a graph does not represent the amount
of entanglement in a graph state, measured by a suitable entanglement measure ([35], or
see e.g. Def. 6); this will also follow from the results from sec. 3.3.

As mentioned before, in this thesis every graph is connected unless explicitly stated
otherwise. Therefore, every associated graph state will be multi-partite entangled (unless
explicitly stated otherwise).

3.2.2 | Examples of graph states

A straightforward but very important example of a graph state is given in FIG. 3.4.
The graph B = ({1,2},{(1,2)}), i.e. the graph consisting of two, connected nodes, has the
associated graph state:

1
V2

This shows that the Bell state |Bgg) is, up to a local Clifford operation I ® H, the graph
state associated with two, connected, nodes. From (1.53) it follows that any other Bell state
is, up to a local Clifford, the same graph state. Therefore, the connected two-node graph is
often referred to as the Bell- or FPR pair.

1BY=CY? [ @ +) = —= (100 @ |+) + 1) ® [-)) = (1® H) [Boo) - (3.12)

B

FIGURE 3.4: The graph B represents the graph state |B) = C4* |+) [+); this is, up to a local
Clifford operation, the Bell pair |Boo) (see (1.53)). Therefore, both B and |B) are often
referred to as the Bell pair or EPR pair.
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The linear cluster state

A somewhat more extensive example is given by the graph Lio3, shown in F1G. 3.6. The
associated graph state |Lio3) is:

|Lisg) = C3P 0T |+ + 4)

_ 1 (1,2) ~(2.3) (1,2) ~(2,3)

1
= — (J[40+) + |-1-)).
7 ([+0+) + [-1-))
|L123) is an example of a linear cluster state, which is the multi-partite entangled graph
state associated with the line graph L, , for any number of nodes.

Definition 16. The n-qubit linear cluster state |L,) is the n-qubit graph state associated
with the line graph L, = L1, . It can be written in the form

n—1

L) =[] CZiia I9)°". (3.14)

i=1

Furthermore, it has the canonical generators

X1 2o i=1,
g = Zi_le-Zi_H 2 < ) <n-— 1, (315)
Zn_an i=n.

The GHZ state

Another important example is the GHZ state, named after Greenberger, Horne and
Zeilinger, who introduced it in their seminal paper [99]. It is a multi-partite entangled
state defined on n nodes, that is ubiquitous in many applications and facets of quantum-
computation, communication and information theory. It can be seen as a generalisation of
the Bell pair to more than two qubits.

Definition 17. The (generalized) GHZ state |GHZ,) is the n-qubit stabilizer state defined
as

1
(GHZ,) = 5 ([0-.0) +[1..1). (3.16)

Furthermore, it has the canonical generators

. (3.17)
X]_XQ...XTL T=n.

{ZiZiJrl 1<Z<’I’L—1,
gi =

The GHZ state is technically not a graph state, but it closely resembles the graph state
associated with the star graph. The star graph is a graph with n nodes and the edge set
E = {j,i}icqv\j}: the graph where a single node j, the central node, is connected to all
other nodes, and no other edges exist. In the case that the central node is the first node,
the graph state associated with the star graph is the state % (jo+---+)+1—---=)). It
follows that the GHZ state is related to the star graph state by a Hadamard operation on
every node except the central node. Note that this operation is local Clifford.
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The star graph is related to the complete graph K, by a local complementation on the
central node, and a subsequent local complementation on any other node results in a star
graph centred around that node. The complete orbit of an n-node star graph thus consists of
the complete graph and the n star graphs with the n different central nodes. The complete
orbit of the 6-node star graphs is depicted in F1G. 3.5.

FIGURE 3.5: The star graph is the n-node graph in which a specific node, the central node, is
connected to all other graphs, and all other graphs are only connected to the central node.
It is related to to the complete graph K, by a local complementation on the central node,
so that its complete orbit is given by all n different star graphs, and K,, which functions
as a ‘connection’. The star graph represents the graph state % (Jo+---+)+1—---=))
(where the central node is the first qubit). As such, it is closely related to the GHZ state
% (100...0) 4 |11...1)); the star- and complete graph are therefore synonymous with the

HZ state.

For reasons that will become apparent in the next section and in chapter 4, the n-qubit
GHZ state is often taken synonymous with the star graph, and, because it is part of the
same orbit, with the complete graph K.

3.3| Local complementations and local Clifford opera-
tions

When a local complementation 7; is performed on a graph G, it is transformed to a graph
G’ = 7;(G). The two associated graph states will be related by a unitary operation Uy,:

G') = U, |G). (3.18)

There exists a strong correlation between local Clifford operations on graph states, and
local complementations on the associated graphs. As shown in this section, the unitary
operator U, is in fact local Clifford, and can be determined by analysing the graph.
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To do so and ease notation, it is useful to divide the neighbourhood N; of the node i
into four parts w.r.t. another node j € N;:

o M\j = (M \WN;) \ {4}, the set of nodes that share an edge with node ¢ but not with
node j (except for node j itself).

. ./\f]\Z = (WN; \ V) \ {i}, the set of nodes that share an edge with node j but not with
node i (except for node i itself).

° M||j = N; NN, the set of nodes that share an edge with both ¢ and j.
o A set with only the node {j}.
It follows that A is the combination of all four sets:
Ni = {FUNY UN UNG;. (3.19)

This notation can be used to perform a change of generators {g; = X;Zx;; } of the graph
state |G):

959i = (X;2n;) (XiZn;) = Y52 ()2 (s T €N

' (3.20)
9 = X; 2, j&Ni,

9 — g =

where Iy, ; is written to emphasize that if j € Ni, g;- does not have support on any node
that shares an edge with both 4 and j.

When the local Clifford operation U, = VX I\/? N, € LC is applied to the graph state,
its generators are transformed as (see (2.12)):

XiZjZ(A/i\j)Z(Afj\i) j €N,

’ rrrt
gj - Uﬂ'g'Un - .
XjZ_/\[j J ¢M

/ (3.21)

These are exactly the generators of the graph state |7;(G)), i.e. the state associated with
the graph 7;(G). It can be concluded that for any pair of graphs G and G' = 7;(G),
their associated graph states |G) and |G’) are related by a local Clifford operation U,, =
VX7

|G") = 7:(@)) = U, |G). (3.22)

F1G. 3.6 contains three examples. The graph states |Lais), |L123) and |Li32) are all
related to |K3) by a local Clifford operation U, ,U,, and U, respectively. This can be
understood by the fact that their associated graphs are all related to K3 by a local com-
plementation on those same nodes (note that these graphs all belong to the 3-node GHZ
orbit). TAB. 3.1 shows how the generators of |K3) relate to those of |L123) in more detail.

The relation in (3.22) gives a clear graphical rule for the effect of the local Clifford U,
on any graph state G. A (stronger) reverse statement is true as well, which will be presented
and discussed in chapter 4.

Finally, note that Ufi = g;, reflecting the fact that a local complementation is self-inverse.
Moreover, the unitary operator implemented by a local complementation is not unique: a
rotation in the different direction for both the Z and X axis works as well. As such, there are
two equivalent options for the local Clifford U, that represent the local complementation:

¥
UT‘ _ \/)7(1 \/ZJENZ) 9
Rzl

The difference between these two operators is exactly the generator g;, which acts as the
identity I on the graph state because it is a stabilizer element.

(3.23)
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C.0.8. U,
XzZ = YYI — XZI
ZX7z = ZXZ — ZXZ
ZzX = IYY — IZX

TABLE 3.1: The generators of the graph state |K3) from F1G. 3.6 are first changed (labelled
c.o0.g.) towards another set, after which they are transformed under the local Clifford unitary

U, = \/)72 ﬁl ﬁd This results in the generators of the graph state |L123).

3.4| Single-qubit Pauli measurements on graph states

The action of single-qubit Pauli basis measurements on graph states can be understood
in terms of the underlying graph. Especially the result of a Z-basis measurement is straight-
forward, but the Y- and X-basis measurements can be understood in terms of the underlying
graph as well. The Z-, Y- and X-basis measurements are discussed in secs. 3.4.1 to 3.4.3,
respectively.

3.4.1| Measurement of a single node in the Z basis

The measurement outcome of a measurement in the Z basis on node 1 is straightforward:
there is only one generator that does not commute with Z;, namely the generator g; =
XiZy,. Therefore, by (2.19), the measurement outcome m = £1 is uniformly random.

Because there is only one generator that anti-commutes with the measurement operator
Z;, it is straightforward to determine the post-measurement state using the results presen-
ted in sec. 2.3.1. It follows that the resulting post-measurement state is stabilized by the
generators {g; };-, and that the generator g; is replaced by the observable (m)Z;, that now
carries a phase.

In a networked setting, any qubit that has been measured is not useful afterwards, so
only the post-measurement state of the rest of the nodes is important. The measured qubit
can be removed from the generators using the method from e.g. TAB. 2.2. Following the
same analysis, the measurement outcome is introduced as a phase for every generator that
is associated with a node in the neighbourhood of the measured node.

o o o o
/N ) / \ \
06— 6—0 6 0 0—0O

FIGURE 3.6: The complete graph Ks is associated with the graph state |K3) =
Cy°CLC%°% |4+ + +).  Following (3.13), the graph Liss represents the state |Lizz) =
% ([40+) +]—1-)). Since K3 and Li23 are related by a local complementation 72, it holds

that |Ks) = U, |L12s) = VX1V Z3V/Z5 |L12s). Similarly, it holds that |Ks) = Uy, |L21s) and
|Ks) = Ury | L132).
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The generators of this (n — 1)-qubit post-measurement state are:

= Xi2N, 7¢N“ (3.24)
(m)X;Zn, JeEN:.

When the measurement outcome is m = +1, this is exactly the graph state |G \ i) of the

graph G\ 4, i.e. the graph with node i deleted (see (3.1)).

In the case that the measurement outcome is m = —1, the second set of generators carry
a non-trivial phase, so that the post-measurement state is not a graph state. However, the
local Clifford operation Z;, removes this non-trivial phase, so that the post-measurement
state then becomes the graph state |G \ i) as well.

In conclusion, there are clear and straightforward graphical rules for the effect of a Z-
basis measurement on a graph state. The post-measurement state is the graph state |G \ i),
i.e. the graph with the measured node removed, up to a local Clifford correction Zy, when
the measurement outcome m equals —1. Two examples are given in F1G. 3.7.

(2] 2] 2]

Ve 7\
(4] O——© (4] ®
G(zs) G Gz,

FIGURE 3.7: The graph in the middle is the graph G = G} from F1G. 3.2. Measuring a node of
a graph state in the Z-basis results in a graph state with that node removed. Thus, measuring
node 3 of G results in the three-qubit graph state ‘G(Zg)>. Similarly, measuring node 1 of G
results in the three-qubit graph state ‘G(zl)>. The choice of node for Z-basis measurements
can greatly influence the post-measurement state: the graph state ’G( Za)> is the same as
|L412), but for ’G(zl)>7 the second node 2 is completely disentangled from nodes 4 and 3, that
form a Bell pair. The actual post-measurement states may not be exactly the depicted graph
states, but can differ by a (measurement-outcome-dependent) local Clifford rotation.

3.4.2| Measurement of a single node in the Y basis

A measurement in the Y basis on ¢ follows from the analysis of the Z-basis measurement;
in particular, graphical rules can be obtained as well. There is always at least one generator
that anti-commutes with Y; (namely g; = X;Z,), so by (2.19) the measurement outcome
m = %1 is uniformly random.

The post-measurement state for either outcome can additionally be determined. Using
the relations |+4) = \/)TT |0) and |—i) = \/)?Jr |1), a Y-basis measurement can be seen as a
Z-basis measurement preceded by the Clifford operator v/X. This insight can be used to
determine the post-measurement state for the outcome m = +1:

i)+l |G) = VXL 0)0], VX, |G)
= VX! 00|, VX VZ AV Z, G)
————

T I , (3.25)
— VZr X |0)0, VXV Z . |G)
——

U,
k3

— VZp VX! 00, |7 (G)) -
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The analysis for the m = —1 outcome follows similarly.

Hence, up to a local Clifford rotation v/Z, A;, & measurement of a node ¢ on a graph state
|G) in the Y-basis acts the same as a Z-basis measurement of the same node on the graph
state |7;(G)).

A Z-basis measurement involves deleting the node, so the post-measurement state is
|7:(G) \ ), up to a local Clifford operation. For two examples, see F1G. 3.8.

This local Clifford operation consists of Zy, when the measurement outcome is —1,
followed by the correction N A; regardless of the measurement outcome. Note that these
two operators commute, so they can be applied in either order.

In conclusion, a measurement of ¥; on an n-qubit graph state |G) results in the (n — 1)-
qubit graph state |7;(G) \ 7). However, note that the post measurement state for neither the
+1 nor —1 outcome is this exact graph state, but merely a stabilizer state related by a local
Clifford operation to the one given in the analysis.

[ 2]
A\ e Ay ]

Gy G(v,)

FIGURE 3.8: Similarly to Z-basis measurements, the effect of Y-basis measurements on graph
states can be analysed using graphical methods. Measuring a node of a graph state in the Y
basis can be interpreted as performing a Z-basis measurement on the same node, preceded by
a local complementation on that node. Thus, measuring node 1 of G in the Y basis results
in the three-qubit graph state ‘G(y1)>, which can be obtained by first applying a local com-
plementation 71 and subsequently removing node 1: G,y = 71(G) \ 1. Similarly, measuring
node 3 of G in the Y basis results in the three-qubit graph state |G(y3)> = |13(G)\ 3). As
with Z-basis measurements, the choice of node for Y-basis measurements can greatly influ-
ence the post-measurement state, resulting in very different states that may be entangled or
not. Note that all the post-measurement states are only the depicted graph states up to a
(measurement-outcome-dependent) local Clifford rotation.

3.4.3 | Measurement of a single node in the X basis

Similarly to a measurement in the Y basis, graphical rules for a measurement in the
X basis on a node i follows from a Z-basis measurement. There is always at least one
generator that anti-commutes with X; (namely any generator associated with a node in
N;), so that by (2.19) the measurement outcome m = +1 is uniformly random. Again, the
post-measurement state for either outcome can be determined. Similar to the Y basis, the



Page 43 3. GRAPH STATES

identities |+) ﬁ\/?T\/)?T |0y and |—) ﬁ\/?T\/)?T |1) can be used®. This allows the X-basis
measurement to be represented by a Z-basis measurement, preceded by a rotation by the
local Clifford operator vV Xv/Z.

The rotation operator v/Z T\/y f is somewhat more involved than for the Y-basis case,
and cannot be realised by a single local complementation. However, a local complementation
on any node in the neighbourhood N; of i can induce a v/Z rotation on node i, and a local
complementation 7; on node 7 itself can induce a v/ X rotation on node i; combining these
two can realise the necessary rotation.

To this effect, let & € A; be a random neighbour of i. A local complementation on k,
followed by a local complementation on ¢ gives the state:

17i(11(@))) = Ur, U, |G)
= U, VX,VZx, [G)
= U VXV Z w1y VZ: [G)
= VXN Zy VXNV Z i )V 2 |G)
= VZ\ VX WV Z o i VXNV Z|G)
= AVXVZ;|GY,

(3.26)

where A = \/EJT\/, \/XL\/?(Nk\{i}) is a local Clifford operation.
For the measurement outcome m = +1, a measurement in the X basis then results in
the post-measurement state:

)+, 1G) = VZIVE )0l VXiVZi |G)
Af | (1 (G))) (3.27)
— AWVZIVX! |00, |7 (m(G)))

The post-measurement state of the m = —1 outcome follows similarly.

To ease notation, let G’ = 7;(7%(G)) \ ¢ be the graph obtained after the two local
complementations and the node deletion. When the measured node is removed, the post-
measurement state is At |G’) or ATZy; |G’), for the +1 and —1 outcome, respectively.

Although this gives a closed form for the post-measurement state of either measurement
outcome, some extra insights can be instructive. Node 7 was removed, so it can be dropped
from AT, resulting in AT = ﬁj\/k VXV Zy, = UV Zy, (ie. node i is now understood to
be removed from N).

Moreover, the identity v XvZvX - 1 YT implies that:

. t
Uq-k\/ZM = ’L\/Z(Ni\{k})\/?kUTk. (3.28)

This can be used to interpret part of AT as another local complementation. Specifically for
the +1 measurement outcome, this results in (up to a irrelevant phase):

ANGY = U, V2, |G
i
=VZ VY Un |G') (3.29)
i
= VZ VY i (G

3Note that these identities are only true up to an irrelevant phase, which will cancel out for the meas-
urement operators |[+)+| and |—)}—| (see (3.27)).
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The —1 outcome can be addressed similarly. The identity v Xv/Z "X —ivy implies:

T . T
[]—,—,C \/ZNL = Z\/Z(Ng\{k})\/?kUTk’ (330)
which can be used to show that for the m = —1 outcome, the post-measurement state is

\/EIM\{k})\/?k |7%(G")) (up to an irrelevant phase).

EQs. (3.29) and (3.30) show that performing another local complementation on the (ran-
domly chosen but fixed) node k after the removal of the measured node i results in a graph
state that is in essence ‘closer’ to the true post-measurement state: the local Clifford correc-
tion consists of fewer non-trivial operations. For this reason, the last local complementation
is often included in the analysis of an X-basis measurement.

In conclusion, an X-basis measurement on node 7 of a graph G results in a post-
measurement state that is, up to a (measurement-outcome dependent) local Clifford rotation
the following graph state:

|7 (73 (T1(G)) \ ), (3.31)

where k is a random node from the neighbourhood N; of node i. The measurement-outcome
dependent local Clifford operation can be retrieved from (3.29) and (3.30). Finally, note
that an X-basis measurement can also be understood as a local complementation on the
node k, followed by a Y-basis measurement. See F1G. 3.9 for an example of an X-basis
measurement, but note that there is some ambiguity in choosing the node k.

Freedom in choosing &

The choice of the node k from the neighbourhood N is arbitrary, but different choices
may result in different graphs. As an example, the graph G from F1G. 3.8 has Ny = {1, 3}.
F1G. 3.9 shows the post measurement states resulting from an X-basis measurement on
node 4 for this graph for both £ = 1 and £ = 3 as the random choice of node in the
neighbourhood. The resulting graph states are not the same. However, the bottom row of
F1G. 3.9 shows that the graphs are related by two local complementations.

This is exemplary of a more general fact. EQ. (3.27) and the analysis directly after it
determines that the post-measurement state is AL |7:(7:(G)) \ ), for any choice of neighbour
k (the correction operator A = Ay now carries a subscript & to emphasize that it is dependent
on the choice of k). Equating the post measurement states for two different & and k' results

' AL 7 (e (@) \ ) =AL [7:(7a (G)) \ )
S (@) \ i) = AAL |7 (7 (G)) \ i)

Both AL, and Ay are local Clifford, so their product is as well, which means that the
graph states |7 (7% (G)) \ i) and |7;(7% (G)) \ i) are related by a local Clifford operation.

F1G. 3.9 shows that for the two particular post-measurement states that it contains,
their associated graphs are locally equivalent (i.e. they are in each others orbit). However,
this does not follow immediately for the general case. Is it guaranteed that the two graphs
7i(1(G)) \ i and (7 (G)) \ 7 are locally equivalent because their associated graph states
|7: (76 (G)) \ %) and |7 (7% (G)) \ i) are related by a local Clifford operation? This is an
important question that is addressed in chapter 4, and is the reverse statement that was
hinted at earlier.

(3.32)

3.5| Conclusion and further reading

As was explained in sec. 2.4, the entanglement properties of stabilizer states can be ana-
lysed by their reduced states. Some properties of the marginals of graph states can be in-
spected from their associated graph alone, so that e.g. the entanglement entropy (see Def. 6)



Page 45 3. GRAPH STATES

o) o) o)
/NP (S
o~ e o~—¢ 0o—¢o

lel *
12}

c&@ T3 0& T1

a3
—
=~

FIGURE 3.9: The effect of an X-basis measurement on a graph state. An X-basis measurement
of a node 7 on a graph state |G) results in the graph state |74 (7:i(7x(G)) \ ¢)), where k is
a random neighbour of i. The choice of neighbour k is not trivial, as the example shows.
Choosing node 1 or node 3 as the random neighbour for an X-basis measurement of node 4
results in two different post-measurement graphs. Nevertheless, these two graphs are locally
equivalent, a fact which will be true for any choice of X-basis measurement on any graph
state.

of a graph state can be computed by inspecting the graph. These marginals and their prop-
erties are addressed in more detail in chapter 6, where they are used to study multi-partite
entanglement.

Like with the stabilizer formalism (see sec. 2.5), there exist extensions of the theory of
graph states so that a larger set of states can be represented. The most well known such
extension defines states in terms of hyper graphs, where an edge is not necessarily a pair
(v,w), but can be a hyper edge, i.e. any subset of V. The associated hyper graph state [100]
is then defined in a similar manner to the standard graph state, where the C'z gate in its
definition is extended to the generalized multi-controlled version C’?". In this n-qubit gate,
a Z gate is applied to the last qubit if and only if the state of all other qubits is |1). However,
this generalized Cz gate is generally not Clifford, so a hyper-graph state usually fails to be
a stabilizer state.

Another well-known extension is formed by the weighted graph states |3, 101, 102], rep-
resented by graphs whose edges carry weights, i.e. any real number ¢ € [0,27). For such
weighted graph states, the C; gate is replaced by a controlled phase gate diag(1,1,1,e').
Such a gate is Clifford only for ¢ € {0, 7}, so it follows that most weighted graph states are
not stabilizer states.

Graph states play an important role in the theory of quantum communication and net-
works. In these networked settings, the only operations that are freely available are the local
operations, e.g. a local unitary, or a single-qubit measurement. Multi-partite entanglement,
the topic of part II, is therefore characterized by local operations. Chapter 4 makes various
of their concepts and notions more precise, and discusses the equivalence of stabilizer states
under these local operations.
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LOCAL OPERATIONS ON STABILIZER
STATES

All separable states are alike; each
entanglement class is entangled in its
own way.

Leo Tolstoy, Anna Karenina
(paraphrased)

Graph states are ubiquitous in quantum networking settings, and play an important
role in many communication protocols. In these networked settings, it is usually assumed
that every node has one qubit, and that all n qubits are together in some (entangled) state.
Operations that involve multiple qubits at the same time (e.g. a Cz or Cx gate) are generally
hard to implement in a network, because they involve the communication of quantum signals
(e.g. the qubits have to be ‘brought together’ to implement a Cz gate).

At the same time, operations on single qubits, like local unitary operators and single-
qubit measurements, are much easier to implement. Although they cannot create entangle-
ment, these local operations can have a non-trivial effect on the total quantum state of the
network, so that two ostensibly different stabilizer states can be locally equivalent.

Part II studies the local equivalence of pure, multi-partite entangled states, i.e. the
equivalence of a multi-qubit state |i2) and another multi-qubit state |¢)1) under single-qubit
operations. In this and the following chapters, |11) will be referred to as the resource state,
and |12) will be referred to as the target state, especially when measurements are considered.
As is customary in quantum communication, only stabilizer and graph states are considered.

Part 11 consists of chapters 4 to 6; chapter 4, this chapter, introduces the relevant concepts
and results from literature. Chapters 5 and 6 present the contents of Pubs. [F] and [G],
respectively, and will be introduced in the conclusion of this chapter.

In principle, the term ‘locally equivalent’ indicates the case where the states |¢1) and
[1)2) have an equal number of qubits, so that no measurements are involved. In such a setting
the operations can usually be inverted, so that |i¢1) can be obtained from |i5), indicating
a proper equivalence relation between the states. This raises an important question: given
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two different states, can it be determined if they are locally equivalent or not, and if so, by
what operations? Moreover, given a specific state, what is the set of other states that are
‘reachable’ by local operations?

The more general case, involving measurements, is not necessarily invertible. Here, the
number of qubits of |¢)9) is potentially lower than the number of qubits of |¢1), so that
reconstructing the state |t¢)1) from the state |i2) is impossible without providing new qubits
and, potentially, multi-qubit gates. Consider e.g. TAB. 2.2, where one qubit of a Bell state
is measured in the X basis. The post-measurement state is separable, so it can not be
locally equivalent to the original Bell state. It follows that by including measurements, an
equivalence relation is not obtained. Although the setting is nevertheless important from
an operational point of view, it is less well understood, and many of the relevant questions
are harder to answer.

Chapter 4 introduces various important results that intricately come together to determ-
ine many aspects of local equivalence of stabilizer states, both in the setting without, and
with measurements. More specifically, in sec. 4.1 the setting of local equivalence is made
more precise, and the Local Operations and Classical Communication (LOCC) paradigm
and other related paradigms are introduced. Additionally, the section introduces the first
important result, which shows that for the local equivalence of stabilizer states of equal size,
one can focus solely on local unitary operations, instead of a much more broader class of
operations.

A second important result is presented in sec. 4.2, which shows that every stabilizer
state is locally equivalent to at least one graph state. This means that in the study of local
equivalence of stabilizer states, one needs to consider graph states only.

Section 4.3 presents various sets of graph states that are grouped under different notions
of equivalence, which are useful to discuss local equivalence more precisely.

The equivalence of graph states of equal size is discussed in sec. 4.4. More specifically, a
third important result is presented in sec. 4.4.1, which shows an intricate interplay between
the equivalence of graph states under local Clifford operations, and local (complementation)
equivalence of the associated graphs. The same section additionally presents the fourth
important result, which is an efficient method to determine if two graph states are equivalent
under local Clifford operations. The difference between the equivalence of graph states under
local Clifford and local unitary operations is then discussed in sec. 4.4.2.

The setting where measurements are included is discussed in sec. 4.5. Finally, the chapter
is concluded in sec. 4.6, where additionally the other chapters of part II are introduced.

The reader familiar with the theory of local equivalence of graph states may feel free to
skip this chapter, although there doesn’t exist standard notation for some of the concepts
introduced in sec. 4.3; some details presented in that section regarding the number of LU-
orbits per entanglement class are not found in literature either. Additionally, the results
from TAB. 4.1 are calculated by me, and (technically) use the results of Pub. [G] where it
is shown that the number of LC-classes and entanglement classes (see sec. 4.3) is equal for
nine qubits.

4.1|Local operations and the LOCC paradigm

When two quantum systems A and B are entangled, the system of A cannot be specified
without including B as well, and vice versa. As sec. 1.5 explained, this implies that meas-
urements on one system can collapse the state of the system. Consider the Bell pair |Bgo),
and an X-basis measurement on the first qubit (see TAB. 2.2). If the outcome m; of the
measurement is 0 or 1, the second qubit has collapsed to |+) or |—), respectively.

However, if B does not learn the measurement outcome, the state ps for the second qubit
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is a statistical mixture between these two collapsed states:

p2 = Pr(my = 0) [+ + Pr(my = 1) | %] = 5, (4.1)

where the last equality follows because the two outcomes are equally likely. System B has
statistical ambiguity regarding the state of the qubit, which can only be removed by learning
the measurement outcome. Because the outcome itself is classical, it can be communicated by
classical communication. This shows that it is important to include classical communication
when considering local operations.

The inclusion of classical communication in the set of allowed operations is made rigorous
by the paradigm called local operations and classical communication, often abbreviated as
LOCC [35, 36]. A complete introduction is beyond the scope of this thesis, but an LOCC
operation is essentially a general quantum channel (see (1.30)), where the map A can be
written in a certain separable form. For the purpose of this thesis, it is not important to
specify LOCC operations further.

Technically, the LOCC paradigm only permits deterministic transformations. The gen-
eralisation where probabilistic transformations are allowed is known as stochastic LOCC
or SLOCC. The study of bi-partite entanglement, and if one state can be transformed to
another, is largely covered by the SLOCC paradigm [35, 36]. One of the main results in en-
tanglement theory was proven by Nielsen in [103], which states that a bi-partite (entangled)
state |11) can be transformed to another bi-partite state |¢2) by SLOCC operations if and
only if the Schmidt coefficients (see Def. 5) of |¢2) are majorized [36] by those of |11).

Other paradigms of local operations have been studied as well. In networking scenarios,
it might not always be possible or practical to perform classical communication, especially
with current levels of quantum hardware!. For that reason, it has been considered to reduce
the set of allowed operations to so-called local operations and shared randomness or LOSR
[104]. In this paradigm the nodes in the network are not able to classically communicate, but
they do have access to shared randomness, which they can use to take decisions regarding
the transformation. Although not widely studied or well understood, recently some no-go
results have been shown regarding LOSR. In particular, it is not possible to prepare graph
states using only Bell pairs in an LOSR setting [53, 54|, which was shown using inflation
techniques [105].

Reducing the set of allowed operations even further, the paradigm of LO (for local oper-
ations) permits only local operations, without any coordination made possible by commu-
nication or shared randomness. In the study of (multi-partite entanglement) equivalence,
this is often restricted further to include only local unitary operations, which results in the
notion of LU-equivalence.

Definition 18. Let |[¢)1) and |¢2) be two n-qubit quantum states. |¢1) and |ip2) are LU-
equivalent if there exists a local unitary operation U € LY such that:

the) = U |¢h1) . (4.2)

Because UT € LY if and only if U € LY, and UV € LY for any U,V € LY, an equivalence
relation is implied.

The first important result that was mentioned in the introduction is regarding the equi-
valence of graph states under SLOCC or under local unitary operators. It holds, perhaps
surprisingly, that multi-partite entangled graph states are SLOCC equivalent if and only
if they are LU-equivalent. This was shown in [106], using results from [107], and follows
from the fact that all single-qubit marginal states of (connected) graph states are maximally

IThe quantum states could e.g. have decohered before the classical communication arrives.
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mixed. It follows that it suffices to consider just local unitary operations when investigating
the equivalence of graph states.

Finally, instead of considering all local unitary operations, one can in fact restrict to only
local Clifford operations.

Definition 19. Let |[¢)1) and |¢2) be two n-qubit quantum states. |¢1) and |¢a) are LC-
equivalent if there exist a local Clifford operation C' € LS such that:

[1h2) = C'[41) . (4.3)

Because CT € LS if and only if C € LS, and CD € LS for any C, D € LS, an equivalence
relation is implied.

The restriction to local Clifford operations might seem arbitrary at first. However, vari-
ous methods and results concern LC-equivalence, some of which are presented in sec. 4.2
and sec. 4.4.1. The relation between LU-equivalence and LC-equivalence is discussed in
sec. 4.4.2.

4.2 | Reduction to graph states

The second important result regarding the equivalence of stabilizer and graph states,
is that every stabilizer state is LC-equivalent to at least one graph state. This was shown
in [108] by making extensive use of the binary representation (see [93] or sec. 2.5). In
this representation, Pauli operators are mapped to elements of F3", so that a stabilizer S
becomes an n-dimensional symplectic subspace spanned by the binary representations of its
generators. Symplectic means that any element x € F3" of this subspace is self-orthogonal
under a symplectic inner product:

2T Pz =0, (4.4)

0 I
rjo |
The Z- and X-supports are encoded into the first and last n bits of the vector, respect-
ively, so that the stabilizer of an arbitrary stabilizer state is then represented by its generator
matriz S:

where P =

S = [)Z(] , (4.5)

where Z and X are matrices that encode the Z- and X-support of the generators of the
stabilizer, so that S is full rank for the stabilizer of a stabilizer state. The stabilizer S
is then represented by the symplectic subspace spanned by the columns of the generator
matrix S, so it becomes somewhat independent of the specific basis. A change of basis for
this subspace doesn’t change the stabilizer, but represents a different set of generators for
S. Such a change of basis can be understood as an invertible matrix R € F3*", so that two
generator matrices S and S’ = SR represent the same stabilizer and thus stabilizer state.

Due to the special structure of the generators of a graph state |G), its stabilizer SI¢
has a generator matrix Sg):

Sigy = [I];} ; (4.6)

where I' is the adjacency matrix of the graph G.
A local Clifford operation on a stabilizer state is represented by an invertible matrix
Q € F3"*2™ that is in block diagonal form:

A

N o



]);l‘g(‘ 93 1. LOCAL OPERATIONS ON STABILIZER STATES

i.e. A, B, C and D are all diagonal matrices. Additionally, () must preserve the symplectic
structure of the subspace of the generator matrix [109], which means that:

QPQ ' =P (4.8)

It follows that a stabilizer state |¢)) with generator matrix S is local Clifford equivalent to
a graph state |G) with generator matrix Sg, if and only if there exist invertible matrices @
(in the form of (4.7) and (4.8)) and R € F3*" so that

S = QSR. (4.9)

Careful inspection of the properties of the matrix S reveals that such @ and R always exist
[108].

For a given stabilizer state |¢), the graph state |G) to which it is local Clifford equivalent
is not unique. Indeed, consider the graph G’ that is obtained by a series of local comple-
mentations on G. Following sec. 3.3, the graph states |G) and |G’) are LC-equivalent, from
which it follows that if |¢) is LC-equivalent to |G), it is LC-equivalent to |G') as well.

4.3 | Orbits and entanglement classes

Considering the discussion of secs. 4.1 and 4.2, it can be very helpful to group together all
graph states that are equivalent under a suitable set of operations. Following the discussion
in sec. 4.1, the most general set for (connected) graph states of equal size is the set of local
unitary operations. The set of all graph states |G’) that are LU-equivalent to a graph state
|G forms its LU-orbit OLV(|G)).

Definition 20. Let |G) be a graph state. The set of all graph states |G') that are LU-
equivalent to |G) is called the LU-orbit OFV(|G)) of |G):

OW(@)) = {|G") | |G") is a graph state,3U € LY s.t. |G') = U |G)}. (4.10)
Any element |G") € OVY(|G)) is called a representative of the LU-orbit.

Beyond LU-equivalence, it is also useful to restrict the set of allowed operations to only
local Clifford operations, resulting in the LC-orbit O(|G)).

Definition 21. Let |G) be a graph state. The set of all graph states |G') that are LC-
equivalent to |G) is called the LC-orbit OC(|G)) of |G):

OMC(|@)) = {|G"Y | |G") is a graph state,IC € LE s.t. |G') = C|G)}. (4.11)
Any element |G') € OC(|G)) is called a representative of the LC-orbit.

There exists a very strong relation between the LC-orbit OC(|G)) of a graph state |G)
and the (local-complementation) orbit O(G) of the associated graph G (see sec. 3.1.1)7.
This relation is discussed in sec. 4.4.1.

2Note that, to ease the distinction, the parameter of an LU- or LC-orbit will always be a graph state |G).
Thus, it will always be written as OV (|G)) or OFC(|G)), but never written as O*V(G) or OFC(G). The
local complementation orbit of a graph G is then written O(G).
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Entanglement classes

Historically, two graph states that are the same up to a permutation of their qubits
were considered to have identical entanglement. More specifically, usually unlabelled graphs
were considered, so that the nodes of the graph have no ordering, and there is no notion
of permutation. To make the distinction with labelled graphs more precise, it is easier to
still assume labelled graphs, but consider permutations of the nodes of a graph to result in
‘equivalent’ graphs. More specifically, let V,, be the permutation group of n elements, and
let 0 € V,, be any permutation. The notation o(G) then indicates the (labelled) graph that
results from permuting the nodes of the graph G with o. The resulting graph G’ = ¢(G) is
called a permutation of G. For a given graph state |G), the set of all graph states |G’) that
are LU-equivalent to |G), or where there exist a permutation o € V,, such that |G') = |o(G)),
or both at the same time, is then called the entanglement class E¢(|G)) of |G).

Definition 22. Let |G) be a graph state and let O%Y(|G)) be its LU-orbit. The entanglement
class Ec(|G)) of |G) is the set of all graph states |G'), for which there exists a permutation
o € V,, such that |o(G')) is in OFY(|G)):

Ec(|G)) ={IG") Fo € Vs 1 0(G")) € OVV(|G))}- (4.12)
Any element |G') € Ec(|G)) is called a representative of the entanglement class.

Because LS C LY, the following inclusion relation follows:
Or(1G)) € OM(IG)) < &c(IG)). (4.13)

Any entanglement class E¢(|G)) can be ‘built’ as the aggregate of all the different LU-
orbits that are associated with it; these are exactly the LU-orbit OMY(|G)), and all its
permutations. This means that multiple, distinct LU-orbits are associated with every en-
tanglement class, but every unique permutation of a graph does not necessarily create a new
LU-orbit associated with the entanglement class. Indeed, usually there are permutations
of a graph that leave it invariant. Moreover, there can be multiple permutations o of a
graph G so that the resulting graph o(G) is not identical to G, but its graph state |o(G))
is LU-equivalent to |G). It follows that not every permutation o € V,, necessarily gives its
own distinct LU-orbit, so that the total number of distinct LU-orbits associated with an
entanglement class is generally smaller than the total number of permutations, |V,| = n!.

An instructive example is given by the entanglement class E¢(|L1234)) of the four-qubit
linear cluster state | L1234), shown in F1G. 4.1. The LU-orbit O"Y(|L1234)) of |L1234) consists
of 11 elements, which are shown in the first row of F1G. 4.1. The states |L1234), |L2134),
|L2143) and |Li342) (highlighted in yellow), are all elements of O%Y(|L1234)) that follow from
permutations of Ly34.

The number of LU-orbits associated with an entanglement class can be determined by
inspection of the permutations. Let D be the set of all permutations of G so that the
associated graph state falls into the LU-orbit of |G):

D = {0 € V,||0(G)) € O*Y(|G))}. (4.14)

This set forms a subgroup of the permutation group V,,, and all of the different LU-orbits
associated with the entanglement class of |G) are represented by the different cosets of this
subgroup. It follows from Lagrange’s theorem that the number of LU-orbits per entangle-
ment class is %!.

For the nodes of |Lia34) in FIG. 4.1, there are 4! = 24 permutations in total. As
noted before, the four permutations that give L1934, L2134, L2143 and L1342, as well as their
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FIGURE 4.1: The entire entanglement class Ec(|L1234)) of the state |La) = |L1234). It consists
of three different LU-orbits, that are each shown in a separate row. For each row, the per-
mutations of the first graph that remain in the same LU-orbit are highlighted. The top row is
O"Y(|L1234)), the LU-orbit of |L1234), the middle row is the LU-orbit O*Y(|L1432)), and the
bottom row is the LU-orbit (’)LU(|L1324)).

reversals, are all part of the set D, for a total of eight elements. It follows that there are

21 = 3 distinct LU-orbits associated with the entanglement class ¢ (|L1234)). The other two
LU-orbits, shown in FIG. 4.1 as the other two rows, can be interpreted as OV (| L432)) and

OLU(|L1324>), so that:
Ec(|L123a)) = O"Y(|L1234)) U O"Y(|L14s2)) U O™V (| L1s24)). (4.15)

Note that the LU-orbit OYV(|L1a34)), i.e. the first row of FIG. 4.1, consists exactly of the
graphs in the local complementation orbit of Lis34 (see F1G. 3.3). This is no coincidence
but exemplary of a broader fact that will be discussed in sec. 4.4.1.

Another instructive example of an entanglement class is given by the GHZ state
(see Def. 17). From FIG. 3.5 it is straightforward to see that any permutation of the
star graph either results in the same star graph, or in a star graph with another central
node. The other star graphs are related to the original star graph by local complementations,
so the associated graph states are LC-equivalent (see sec. 3.3). It follows that the LU-orbit
and entanglement class of the GHZ state are identical, O'V(|GHZ,) ) = & (|GHZ)).

The total number of LU-orbits and entanglement classes grows quickly with the number of
qubits. Similarly, the size (i.e. the number of elements) of a single LU-orbit or entanglement
class generally grows quickly with the number of qubits. TAB. 4.1 details the number, and
average and maximum sizes of all LU-orbits and entanglement classes up to nine qubits. Note
that the number of LU-orbits times its average size is equal to the number of entanglement
classes times its average size, and is exactly the total number of connected (labelled) graphs
of a given size>.

Finally, it is useful to extend LC-orbits to additionally include permutations, similar to
how LU-orbits and entanglement classes are related. This results in an LC-class®.

Definition 23. Let |G) be a graph state and let O¥C(|G)) be its LC-orbit. The LC-class
EFC(|G)) of |G) is the set of all graph states |G'), for which there exists a permutation
o €V, such that |o(G")) is in OXC(|G)):

EEN@) ={IG") B0 €V, |o(@)) € OV(IG))}- (4.16)

Any element of |G') € EEC(|G)) is called a representative of the LC-class.

3The number of connected labelled graphs of size n can be retrieved on the OEIS, the online encyclopedia
of integer sequences, specifically sequence nr. A001187 [110].

4This is not a term found in literature. Sometimes in literature it is called non-isomorphic LC-orbit, but
I find this vague and ambiguous.
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n 3 4 5 6 7 8 9
# 1 4 27 312 6103 214722 14639499
aver. | 4.0 95 270 856 3058  1171.5 4528.6
max. | 4 11 132 372 1096 3248 9432
#1240 11 26 1 440

aver. | 4.0 19.0 182.0 2427.6 71779.1 2490580.1 150673388.8
max | 4 33 450 7920 378720 30280320 3206407680

TABLE 4.1: The number, and average- and maximum sizes of all LU-orbits O*Y(|G)) (middle
rows) and entanglement classes £¢(|G)) (bottom rows) for size 3 < n < 9. There are many
more LU-orbits than entanglement classes, because with every entanglement class there are
O(n!) different LU-orbits associated: permutations of graphs that are not associated with the
LU-orbit, can create a new LU-orbit associated with the entanglement class.

Similarly to (4.13), it holds that:

OF(G)) C E°(1G)) € Ec(IG)). (4.17)

4.4 | Local equivalence of graph states

This section addresses the local equivalence of graph states, for which it suffices to
consider only local unitary operations, following the discussion in sec. 4.1. More specifically,
this section aims to provide tools to determine if, for two graph states |¢), and [¢) ;, it holds
that 1), € OV (|¢) ). However, it is useful to first consider only local Clifford operations,
which is done in sec. 4.4.1. In sec. 4.4.2, the extension to local unitary equivalence is made,
and the difference between the LC-orbit OC(|G)) and the LU-orbit O™€(|G)) of a graph
state |G) is discussed.

4.4.1| Local Clifford equivalence of graph states
In sec. 3.3 it was shown that the graph states |G) and |7;(G)) are related by a local
Clifford operation, for a local complementation 7; on any node 7. Because the local Clifford
operators form a group, it follows that any graph H ~ G (i.e. H € O(G), see sec. 3.1), gives
a graph state |H) that is LC-equivalent to |G). In other words, it holds that:

H e O(G) = |H) € O*(|@)), (4.18)

i.e. any graph in the orbit of G gives a graph state that is LC-equivalent to |G).

The third important result that was mentioned in the introduction is that the reverse
of (4.18) is true as well, which was proven in [108]. If a graph state |H) is LC-equivalent
to a graph state |G), then it holds that H ~ G, i.e. they are related by a series of local
complementations. So, it holds that the LC-orbit of a graph state |G) and the set of graph
states associated with the orbit of G are the same:

OF(|G)) = {|H) |H € O(G)}. (4.19)

Determining if two graph states are LC-equivalent is therefore equivalent to determining if
the two associated graphs are in the same orbit.

To do so, it can be helpful to use the binary representation of the stabilizers of the
two graph states. Specifically, let the two stabilizers have generator matrices Sg and Sy,
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respectively. If the two graph states are LC-equivalent, there exists an invertible matrix
Q@ of the form (4.7) so that Sg and QSp represent the same stabilizer. The stabilizer
is represented by the (self-orthogonal) subspace spanned by the columns of the generator
matrix, so it follows that Sg and Sy represent the same stabilizer if and only if it holds
that:

SLPQSy =0, (4.20)

for some @ in the form of (4.7) that is additionally subject to the condition of (4.8). Compare
this with (4.9): although that equation gives a closed form for the graph state that is local
equivalent to the state |¢)) with generator matrix S, (4.20) is easier to use as a test for
equivalence, because the change-of-generators matrix R does not have to be specified.
If T'¢ and T'y are the adjacency matrices of G and H, respectively, (4.20) reduces to
(using (4.6) and (4.7)):
I'eBlgp e D'y ¢ I'gA¢ C =0, (4.21)

where ‘@’ indicates entry-wise addition over 5. This results in a set of linear equations of
4n variables, which can be solved by Gaussian elimination in O(n?) steps. Any element of
the set of solution of this system, which is essentially the kernel of (4.21), additionally needs
to be subject to (4.8) to be a true solution. That is, every element in the set of solutions
needs to be checked against this condition. Note that this set forms a subspace of some
dimension d < 4n, so that there are 2¢ elements to check. This means that, in the worst
case, the condition would have to be checked against an exponential number of elements.

The fourth important result mentioned in the introduction is that the set of solutions for
which (4.8) needs to be checked, can be reduced to a smaller set that is polynomial in size.
Specifically, let {b;}%_; be a basis of the subspace of solutions to (4.21), and suppose it has
more than four elements®. Then it suffices to check (4.8) only for the elements {b; ®b; };; of
the subspace, i.e. the sums of pairs of distinct basis elements. This gives O(d?) elements to
check, instead of all 2¢ linear combinations of the basis elements. This was originally proven
and presented in [111, 112] in purely graph theoretic terms, where it was presented as an
algorithm to verify if two graphs G and H are in each others’ orbit. It was then introduced
to the quantum community and connected to graph states in [113], and the formulation of
that publication has been used here. Nevertheless, the method explained here, in the form
of an algorithm, is known as the Bouchet algorithm, named after the author of the original
presentation [111].

Although the Bouchet algorithm gives an efficient method to determine the LC-
equivalence of two graph states, many other properties are hard to determine. Calculating
the size |OYC(|G))| of the LC-orbit of a random graph state |G) is #P-complete [114],
which means that it is at least as hard as an NIP-complete problem. Separately, the element
of O(G) with the least number of edges has an important operational meaning, because
it corresponds to the element of OC(|G)) that takes the smallest number of Cz gates to
prepare. Determining this element is essentially the same as calculating every element of
the orbit, which is computationally hard [114, 115].

4.4.2 | Local unitary versus local Clifford equivalence of graph states

The results of sec. 4.4.1 give a clear graphical tool to understand the LC-equivalence
of graph states, and a programmatic method to efficiently determine such LC-equivalence.
The methods form important tools in the study of LU-equivalence as well, because any two
graph states that are LC-equivalent, are by definition LU-equivalent as well.

It was a long-standing conjecture that the converse also holds, implying that LU-
equivalence and LC-equivalence of graph states are identical. It was shown that this
conjecture, known as the LU-LC-conjecture, holds for up to 8 qubits [116], but it should be

51f there are only four basis vectors, all 24 = 16 elements need to be checked, but this is manageable.
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noted that this was only done for unlabelled graphs. This means that for every graph state
|G) with eight or fewer qubits it holds that & (|G)) = EFC(|G)).

Recent work (Pubs. [G] and [H] ([55, 117])) has increased this threshold to 11 qubits.
Additionally, the same work has shown that for labelled graphs the conjecture holds up to at
least 8 qubits, so that OFV(|G)) = OYC(|G)). These results will be discussed in chapter 6.

For graph states of any size it was shown [118] that the conjecture must hold for specific
subclasses of all graph states; these subclasses make use of the marginal properties of the
graph states (discussed in chapter 6), and include those graphs for which:

MPerlr=IL (4.22)

The set of graph states for which the LU-LC-conjecture holds was extended to include all
graphs without cycles of either three or four nodes [119].

However, [120] ultimately showed that in general the conjecture is false, using a counter-
example of 27 qubits. This was followed by a constructive family of counterexamples of at
least 27 qubits [51], for which the previous counterexample is the smallest member. It is an
open question what the smallest counterexample to the LU-LC conjecture is.

4.5| Equivalence involving measurements

As shown in section sec. 3.4, single qubit measurements on graph states result in post-
measurement states that are themselves graph states, up to local Clifford corrections. These
correction operators can depend on the measurement outcomes, so in a networked setting
the situation fits neatly into the SLOCC paradigm. Given the graphical rules explained in
that same section, it follows that a graph state |Gg) can be obtained from another graph
state |Gg) by local Clifford operations and Pauli measurements if and only if H can be
obtained from G by local complementations and node deletions. This statement is made
more precise in [52], using the concept of vertex minors [121, 122].

Definition 24. [52] Let G and H be two graphs such that V(G) C V(H) (see Def. 13).
Then G is a vertex minor of H, denoted G < H, if G can be obtained from H by a series
of local complementations and node deletions on H.

The definition of vertex minors is useful, because for two random graphs G and H,
the associated graph state |G) can be obtained from the graph state |H) by local Clifford
operations, single-qubit Pauli measurements and classical communication if and only if G <
H [52]. As explained in the introduction, |G) and |H) are referred to as the target and
resource graph states, respectively.

When G < H the local complementations and node deletions that relate H to G can be
understood to occur in arbitrary order. Still, it was shown in [52] that equivalently one can
assume all local complementations to occur together, before any nodes are deleted. This
means that if G < H, there exists some graph H' € O(H) such that G = H' \ m, where
m = {V(H) \ V(G)}, i.e. the nodes that are in H but not in G. Even though this gives a
simpler condition, it is still NPP-complete to determine if G < H for two randomly chosen
graphs G and H [123].

If there is structure in either the resource or target graph states, this can potentially be
used to efficiently determine if the associated graphs are vertex minors. If the rank-width
[122] of the graph associated with the resource state is bounded, it is efficient to decide
if a target graph state can be obtained [123] (using results from [122]). This rank-width
is a complexity measure of a graph, and is strongly related to the entanglement entropy
(see Def. 6) of the associated graph state [124]. It should be noted that, even though it is
technically efficient to decide if G < H for fixed rank-width, the coefficients in the polynomial
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scaling are exceedingly® large [123]. However, for specific choices of resource or graph states
it is practically possible to determine if one can be obtained from the other. Chapter 5
presents such a specific choice.

4.6 | Conclusion

The results and methods introduced in this chapter offer strong tools to study the en-
tanglement of stabilizer states. However, especially for the case where measurements are
involved, the general questions are still hard to answer. As mentioned in sec. 4.5, if there is
usable structure in either of the states, it can sometimes be determined if a target state can
be obtained from a resource state.

Chapter 5 presents the contents of Pub. [F] ([68]), which takes the specific choice of the
linear cluster state and the GHZ state as the resource and target state, respectively. It gives
a full characterization of which choices of node deletions are possible, and which are not.

The discussion in sec. 4.5 only considers single qubit measurements in the Pauli-bases,
and local Clifford operations. From sec. 4.4.2 it follows that local Clifford operations do not
give the most general setting, and a similar argument can be made regarding measurements
in only Pauli-bases. Generalising to local unitary operations and non-Pauli-basis measure-
ments could potentially widen the set of target states that can be obtained from a given
resource state, but this general question has not been broadly studied and seems to be hard
to answer.

Using the Bouchet algorithm to determine LU equivalence is not infallible, because it
only checks for LC-equivalence. However, it can still provide conclusive results if the states
are LC-equivalent, because this implies LU-equivalence. Moreover, it is highly unlikely that
the algorithm gives a false negative, because the LU-LC conjecture holds for a vast majority
of graphs. Nevertheless, it is technically possible that wrong results are obtained, as shown
by the counterexamples in [51, 120]. An algorithm to verify LU-equivalence of general n-
qubit states was presented in [125, 126], but this algorithm is generally inefficient, because
the number of steps to check for equivalence is exponential in n.

Moreover, these algorithms determine the equivalence of (graph) states by direct pairwise
comparison. This means that to determine the equivalence of a set of L graph states, the
algorithm has to be run a total of % times. Chapter 6 introduces methods from Pub. [G]
([55]) that can be used to categorize the LU-orbit or entanglement class from a single graph
state.

Recent work, Pub. [H] ([117]), introduced a novel algorithm to determine the LU-
equivalence of graph states, which is separate from the Bouchet algorithm, but this public-
ation is not addressed in this thesis.

6This coefficient is a ‘power tower’ of ten 2’s followed by the rank width r, and is so unfathomably large
that it is not even possible to practically write it down in scientific notation.






EXTRACTING GHZ STATES BY
LOCAL OPERATIONS

Reach for the stars!

Buzz Lightyear, Toy Story (Pizar)

As discussed in the conclusion of chapter 4, it is hard in general to decide if one graph
state can be obtained from another by local operations and single-qubit measurements.
When only Pauli measurements and local Clifford operations are considered, determining if
the target state |G;) can be obtained from the resource state |G,) reduces to determining if
Gy < G, i.e. if the associated graphs are related by a vertex-minor relation (see Def. 24).
Still, the problem is NP-complete in general [123], but it might be possible to answer it
when there is structure in either or both of the resource and target graph states that can be
utilized. When |G;) can indeed be obtained from |G, ), it is said that the target state can
be eztracted from the resource state.

This chapter presents the contents of Pub. [F] ([68]), where specific choices for both the
resource and the target graph state are made. The resource graph state is the n-qubit linear
cluster state (see Def. 16), and the target graph state is the m-qubit GHZ state (see Def. 17).
When m = n > 3 (for the case m = n = 3, see FIG. 3.6), the LU-orbits OY(|GHZ,,))
and OYY(|L,,)) of the GHZ and linear cluster state are not the same, which means that the
states are not LU-equivalent. It follows that at least one node of the resource state has to
be measured, so that m < n.

Because there is at least one node that is measured, the target graph state is extracted
on a specific choice of the original n qubits. This selection can play a significant role,
meaning that only for specific selections of the original qubits extraction is possible. A
specific selection of nodes on which the GHZ state is to be realized is referred to as an
extraction pattern, or just a pattern if context allows. Following the same terminology, an
extraction pattern is possible if the target graph state can be extracted from the resource
state, or impossible if this is not the case. Finally, note that the local unitary operations are
allowed to depend on outcomes of measurements on other nodes, so that the situation fits
into the LOCC paradigm (see sec. 4.1).
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Extraction is possible only for specific patterns; this chapter gives a complete character-
ization of which patterns are possible, and which are not. Any extraction pattern with a
certain structure in the choice of nodes will be shown to be impossible, following a theorem
that was originally presented in Pub. [F|. Any other pattern is possible, which is shown by
explicit construction. Hence, a complete characterization is obtained for the extraction of
GHZ states from linear cluster states, from which it follows that there is an upper bound
on m in terms of n, so that no GHZ that is larger can be obtained. To complement the
theoretical analysis, Pub. [F] presented the results of an implementation of the extraction
on real hardware.

The post-measurement state that is obtained from the linear cluster state after per-
forming the extraction, is LC-equivalent to the GHZ state. In general, the local Clifford
operations to obtain the true target state depend both on the specific extraction pattern
and on the outcomes of the measurements. Certain details regarding these correction oper-
ators were not presented in Pub. [F] but deferred to its supplementary material Sup. [sB]
([127]). In this thesis, the same details have been deferred to chapter B.

First, sec. 5.1 introduces some useful terminology and makes the setting more precise.
In sec. 5.2 a useful theorem is presented, that can be used to show the impossibility of many
extraction patterns. The same theorem and associated corollaries help to bound m in terms
of n without having to resort to specific extraction patterns. A specific extraction pattern
that saturates this bound, referred to as the maximal pattern, is introduced in sec. 5.3. In
sec. 5.4 any other extraction pattern that is not strictly ruled out by the previous results,
is shown to be possible by a constructive argument. The experimental implementation is

presented in sec. 5.5, and the chapter is concluded in sec. 5.6

5.1| Setting

To ease the discussion, useful terminology and notation is introduced. The set Vi =
[n] = {1,...,n}, referred to as the network, is a set of n qubits. The linear cluster state
|Ly,) defined on the network V7, is the resource state. The goal is to extract a |GHZy,)
state on a subset Vi C V7, referred to as the extraction pattern, which has m = |Vg| qubits.
This chapter will detail which choices of Vi; are possible, and which are not.

It is useful to represent the nodes of V, as lying on a horizontal line, which is naturally
implied by the linear structure of the resource state. Specifically, this means that node 1 is
adjacent to nodes i — 1 and 74 1; these nodes are referred to as the left- and right neighbours,
respectively, of node i. If a node has no neighbours on the left or on the right (i.e. for nodes
1 and n), that node is said to be on the left and right edge, respectively. Moreover, nodes
can be left or right of each other, even if there exist other nodes between them, and concepts
like consecutive nodes apply as well.

This terminology can be adopted to refer to the nodes in the extraction pattern Vi,
so that they can be referred to be e.g. left of other nodes in the pattern. Moreover, the
boundaries of the extraction pattern can be used to refer to the leftmost- and rightmost
node within the pattern.

Additionally, it is useful to refer to a set of consecutive nodes in the extraction pattern
with the term island.

Definition 25. A k-island is a series of k consecutive nodes {i,...,i +k —1} € Vi (for
some i) that are all part of the extraction pattern, so that {i,...,i+k—1} € Vg. A k-island
at node i in Vg indicates the set {i,...,i + k — 1}, i.e. the k-island with its leftmost node
positioned at node i.

Note that, as defined, a subset of an island can be an island itself; if Vi would contain
e.g. the 3-island {1, 2,3}, then {1,2} and {2, 3} would be a 2-islands of V. k-islands play
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an important role in determining which extraction patterns are possible, and which ones are
not.

5.2 | Impossible extraction patterns

There are strong restrictions imposed on the possibilities of extraction patterns contain-
ing islands, which the following theorem shows.

Theorem 1. (Pub. [F]) No 2-island can have both a left and a right neighbour in V. This
means that if there is a 2-island at node i, there is no node left of i or right of i + 1 in Vg.

In other words, if the extraction pattern contains a 2-island, it is necessarily at the
boundary of the extraction pattern. Thm. 1 leads directly to the fact that all nodes in Vg
are ‘isolated’: if node 7 is in the extraction pattern, then neither ¢ — 1 nor ¢ + 1 can be in
the extraction pattern, except for the two boundaries. The proof of Thm. 1 is deferred to
chapter A.

A useful corollary to Thm. 1 that concerns larger 2-islands follows.

Corollary 1. (Pub. [F]) If Vo contains a 3-island, then |Vg| = 3, i.e. they are the only
nodes in the pattern.

Proof. The proof is by straightforward contradiction. Assume that Vi contains the 3-island
{#,7+ 1,7+ 2} and additionally some other node j. W.l.o.g. assume that j > i+ 2, i.e. it is
to the right of the 3-island. Then, {i+ 1,7+ 2} is a 2-island with both a left neighbour (node
i) and a right neighbour (node j) in Vi, which is in direct contradiction to Thm. 1. O

F1G. 5.1 contains three examples of (possible or impossible) extraction patterns. The
resource state is |Lg), and the nodes in the extraction pattern have been highlighted. Two of
the three given examples are prohibited by Thm. 1 and have been marked by X. The other
example, marked by v/, is not directly prohibited by Thm. 1. That this extraction pattern
is indeed possible does not follow from Thm. 1, but it is proven in sec. 5.4.

veg— 00— 00— 0 0—-—0—-0
X0— 00— 60— 06— 000

X0—0— 00— 00— 66— 0—0—0

FIGURE 5.1: Three different choices for the extraction patterns Vg are depicted, on which the
|GHZv,,) state is to be extracted from the |Lg) state. The highlighted nodes are those nodes
in Vi; the other nodes are measured during the extraction. For every pattern it is shown by
X or / if extraction is made impossible or not by Thm. 1. Note that Thm. 1 only prohibits
certain extraction patterns, but does not say anything about the possibility of patterns that
it does not prohibit. In secs. 5.3 and 5.4 it is shown that all other patterns are possible.

Another corollary to Thm. 1 gives an upper bound to the size of any GHZ state that can
be extracted from a linear cluster state.
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Corollary 2. (Pub. [F]) Let Vg be a pattern to extract a GHZ state from a linear cluster
state of size n. Then, the size of Vg is bounded from above:

n+3
5 )

vl < | (1)
Proof. The proof is by simple arithmetic. There can be at most two 2-islands by Thm. 1, so
the number of nodes in Vg is maximized by including the left 2-island {1, 2}, and the right
2-island {n —1,n}. To not violate Thm. 1, every other alternating node has to be measured,
i.e. the nodes 3,5, - & Viz. For odd n, this sequence ends at node n — 2, so that k = n—3/2
nodes have been measured. For even n, this sequence would end at n — 3, inadvertently
creating the 3-island {n —2,n — 1,n}. So, node n — 2 is also measured, for k¥ = »—2/2 nodes
in total. In both cases it holds that |V| = n — k, and the bound follows. O

Note that the additional node that is removed in the proof of Cor. 2 when n is even,
does not have to be n — 2. It can be either 1 or n, or any other internal node so that two
other consecutive nodes are measured.

An extraction pattern of a similar but slightly smaller size |Vig| = n/2 was reported in
[128], albeit without proof or claims of maximality. In the same publication the concept of
entanglement persistency is introduced; the entanglement persistency of a (multi-qubit) state
is equal to the minimum number of single-qubit measurements that need to be performed,
so that the post-measurement state is completely separable. This concept was used to prove
Cor. 2 in [129], but cannot be used to prove either Thm. 1 or Cor. 1.

It remains to be proven that the pattern given in the proof to Cor. 2 is indeed a possible
pattern. The pattern of the proof of Cor. 2 for odd n, referred to as the mazimal extraction
pattern, is discussed and proven possible in sec. 5.3. Subsequently, in sec. 5.4 it is shown
that any other pattern not prohibited by Thm. 1 is possible as well, by reducing it to the
maximal extraction pattern.

5.3 | The maximal extraction pattern

The maximal extraction pattern Vg = {1,2,4,6,...,n — 3,n — 1,n} dictates that the
nodes j € {3,5,...,n — 2} are measured, for a total of (»—3)/2 measurements. Indeed,
the post-measurement state is (LC-equivalent) to the star graph state if all of these nodes
are measured in the X basis, which means that the set of measurement operators for the
extraction is {X;}j=35, . n—2.

An X-basis measurement can be interpreted (see sec. 3.4.3) as a Y-basis measurement,
preceded by a local complementation on a random neighbour of the measured node'. Meas-
uring the nodes in ascending order, taking the right neighbour of every measured node
to perform the local complementation, results in the star graph centred around node 2,
from which it follows that the post-measurement state is LC-equivalent to the GHZ state
(see Def. 17). F1G. 5.2 shows the pattern for seven qubits, which generalises to any (odd)
n.

To determine the exact local operations necessary to obtain the GHZ state, a more
careful analysis is needed, which can be obtained by inspection of the generators of the linear
cluster state. TAB. 5.1 contains these generators, grouped by odd (top) and even (bottom)
index. Additionally, the generator g, is changed to g) = [] {even i} 9i = 929496 - - -, SO that
the measurement operators {X j }j:3,57_,,’n,2 commute with all odd-indexed generators, and
with g5. The other |Vi| — |[Vg| = (»=3)/2 generators, g4,96,.-.,9n—1, all anti-commute

LAs explained in sec. 3.4.3, sometimes an additional local complementation on the random neighbour is
included after the node deletion. However, this does not affect the current discussion, as can be easily seen
in F1G. 5.2: the chosen neighbours are leaves [130] and are therefore unaffected by a local complementation
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FIGURE 5.2: GHZ state extraction from |L7) with the extraction pattern Vo = {1,2,4,6,7}
(highlighted in the top row), which is the maximal extraction pattern for n = 7. All nodes
not in the extraction pattern are measured in the X basis, which can be viewed as a Y-
basis measurement of the node preceded by a local complementation on a random neighbour
(see sec. 3.4.3). Here, the right neighbour is chosen as the random neighbour, so that the
consecutive measurements result in the star graph centred at node 2. Following Def. 17, this
is LC-equivalent to the GHZ state, so that the extraction is indeed possible. This method
generalizes straightforwardly to linear cluster states of arbitrary (odd) size.

with at least one measurement operator X;. Note that there is an equal number of anti-
commuting generators and measurement operators. Following the discussion in sec. 2.3, the
measurement can be interpreted as the measurement operators replacing the anti-commuting
generators, provided they carry the measurement outcomes m; = %1 as the phase. The post-
measurement state is then generated by the odd-indexed original generators, the generator
g5, and the measurement operators (m;)X;:

gi (Z Odd)a
9o, (5.2)
(mj)Xj (]:3,5,,n—2)

After removing the X-support on the measured nodes of the odd-indexed generators
(see sec. 2.3), they can be removed from the post-measurement state. This results in the
|V |-qubit post-measurement state with generators listed in TAB. 5.2. These generators
closely resemble those of the GHZ state as defined in Def. 17, but are not exactly the same.
A local Clifford operation, which in general depends on the measurement outcomes, maps
the post-measurement state to the desired |GHZy,,) state. The exact calculation of this
local Clifford operation is presented in chapter B.
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1 2 3 4 5 6 --- n—-3 n—2 n—-1 n
g1 X Z
gs Z X 7
95 Z X Z
gn—2 Z X Z
dn Z X
gé 7 X X X X Z
g4 Z X Z
Jde Z X
9n—-3 X 7
Jn—1 VA X A

TABLE 5.1: Generators of the odd-n |L,) state (see Def. 16). The generators with odd and even
indices have been grouped separately, and g2 = Z1 X273 has been changed to g5 = g2g4gs - . . -
Now only the generators in the third section anti-commute with the measurement operators
{X;}jevy of the maximal extraction pattern Vg = {3,5,...,n — 2}. Measuring these nodes
and removing them results in the post-measurement state in TAB. 5.2.

1 2 4 6 - n—3 n—1 n ¢
gs Z 7 ms
gs Z 7 ... ms
gn—Z e Z Z mp—2
Gn Z X | +1
d |z x X . X X ZzZ| +1

TABLE 5.2: After performing all measurements and removing the measured nodes, only those
generators from TAB. 5.1 that commute with the measurement operators remain, which now
carry the measurement outcomes {m; = +1} as a phase ¢. The post-measurement state
is LC-equivalent to the target GHZ state (see Def. 17); the exact local Clifford operation is
detailed in chapter B.
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5.4 | Reduction of other patterns

Section 5.2 showed that many extraction patterns are not possible due to Thm. 1, and
sec. 5.3 showed that extraction is indeed possible for a specific pattern that is not prohib-
ited by the same theorem, namely the maximal extraction pattern. As noted before, the
only restriction on the extraction patterns is that of Thm. 1, so that all other patterns
not prohibited by it are possible as well. This section details how any such other pat-
tern can be interpreted as a reduction to the maximal pattern of a smaller linear cluster
state. Section 5.4.1 details how any smaller linear cluster state can be extracted from |L,,),
and sec. 5.4.2 subsequently details how any non-maximal extraction pattern can be seen,
provided it is not prohibited by Thm. 1, as the maximal extraction pattern of such a smaller
linear cluster state.

5.4.1| Extracting smaller linear cluster states from |L,,)

An important and useful feature of the linear cluster state is that |L,,_1) can be extracted
from |L,,) by removing any choice of node. If the chosen node is the first or last, a Z-basis
measurement obtains the desired result: such a measurement is represented by a deletion of
the node, followed by a Z Pauli operation on node 2 or n — 1 if the measurement outcome
was m = —1 (see sec. 3.4.1).

Similarly, a Y-basis measurement on any internal node j results in a linear cluster state
on the remaining nodes. A Y-basis measurement is represented by a local complementation
on the node, followed by its deletion (see sec. 3.4.2), so the measurement Y; first connects
the nodes j — 1 and j + 1 by the local complementation, and subsequently removes node j.
This means that the resulting graph is a line graph from 1,2,...,7—1,741,...,n, and the
post-measurement state is LC-equivalent to the associated graph state.

To obtain the true desired |L1 2, j—1,+1,..n) State, a correction using the operators

A /Zj_lJr and /Zj_HJr on the two neighbours of the measured nodes is needed. Moreover, a
subsequent Z operator to these two nodes has to be applied if the measurement outcome
was mj; = —1 (see sec. 3.4.2).

These internal and external measurements and corrections can be repeated to extract a
linear cluster state on any subset of the original nodes. As an example, consider the linear
cluster state |Li 456,7) that is to be extracted from the state |L1,23.4,56,7). One could first
extract the state |L134.5,6,7) by performing a Y-basis measurement of node 2 and applying
the associated correction operators. Subsequently, the state | L1 4,5,6.7) can be extracted by
performing a Y-basis measurement of node 3, including the suitable correction operators.

However, note that the correction operator \/ZigJr associated with the first measurement
essentially rotates the subsequent measurement of node 3 towards the X basis (although the
original correction operators still apply for the second measurement). If aset {j+1,...,j+k}
of consecutive (internal) nodes is to be removed, these rotations give an alternating Y-X-

Y-... pattern for the measurement bases. The correction operators are then (4 /ZjT)k and

(3 /Zj+k+1T)k, ie. a ZT operator on the nodes j and j+ k+ 1 for every node that has been
measured. The measurement outcomes still need to be accounted for by potentially applying
another Z Pauli operation to the same two nodes. The calculation to determine if these
need to be applied is tedious but straightforward: it reveals that the correction needs to be
applied only if the collection of measurement outcomes has odd parity. Python code that
calculates the correction operators for any selection of nodes and measurement outcomes
can be found in Sup. [sB] ([127]).

5.4.2| Reduction of non-maximal extraction patterns

Turning back to extracting GHZ states, the above discussion can help with any extraction
pattern that is not directly prohibited by Thm. 1. Any such pattern can be seen as the
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FIGURE 5.3: Any extraction pattern that is not impossible by Thm. 1 is possible, by viewing
it as the maximal extraction pattern of a smaller ‘virtual’ linear cluster. The highlighted
extraction pattern Vg = {3,4,7,9} is not the maximal extraction pattern for the state |Lo),
but it is for the state |Ls,4,5,7,8,9,1 ), where node V is an additional ‘virtual’ node. This smaller
linear cluster state can be obtained from |Lg) by two Z-basis and one Y-basis measurement
(see sec. 5.4.1).

maximal extraction pattern for a smaller linear cluster state. This smaller linear cluster state
can be obtained from the original n-partite resource graph state as described in sec. 5.4.1.

F1G. 5.3 shows such a non-maximal extraction pattern, and how it relates to a smaller
linear cluster state. However, the extraction pattern Vi has only one 2-island, so it cannot
be a maximal extraction pattern exactly. How this can be addressed is discussed below.

In the (general) case that an extraction pattern has no left 2-island (i.e. its leftmost node,
[, has no direct neighbour), it can not be seen as a maximal extraction pattern for any smaller
linear cluster state. However, a larger GHZ state can then first be realized, after which a
single-qubit measurement realizes the desired target GHZ state on V. Indeed, including
the node [ —1, the left neighbour of node I, results in an extraction pattern V, = {{-1}UVg
that can be seen as the maximal extraction pattern for a (potentially smaller) linear cluster
state. This extraction pattern gives the state |GHZVC/;>. A subsequent X-basis measurement
on node [ — 1 removes this node from the larger GHZ state, so that the desired target state
|GHZy,) is obtained. If the outcome of this measurement is mg_13 = —1, a Z; correction
is needed.

When the leftmost node is [ = 1, it does not have a left neighbour. However, since it will
be measured anyway, one can introduce a ‘virtual’ node 0, which would be measured in the
X-basis if it existed. The case for when Vi does not have a right 2-island follows similarly.

These considerations allow to analyse the pattern in F1G. 5.3: the resource state is the
9-qubit linear cluster state |Lg), and the desired extraction pattern is Vi = {3,4,7,9}. Vi is
not the maximal extraction pattern for |Lg), but it is for the state |L3 4,5 7.8,9.1), where node
V is the ‘virtual’ node that has been virtually introduced. This state can first be realized
from |Lg) by Z-basis measurements of nodes 1 and 2 and a Y-basis measurement of node
6, followed by the associated corrections. |Ls 4,57.89,v) can then be measured according to
the maximal extraction pattern, obtaining the desired GHZ state.

Any pattern that is not prohibited by Thm. 1 can be seen as a maximal pattern for a
smaller linear cluster state, so that it is possible, which completely characterizes all target
GHZ states that can be extracted from a resource linear cluster state. F1G. 5.4 contains the
7-qubit linear cluster state as the resource graph state, the maximal extraction pattern for
this resource state, and all the choices of extraction patterns Vg of size four. The possible
and impossible extraction patterns are highlighted in different colours.
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7.4

FIGURE 5.4: (Top row, left) The linear cluster state |L7) is the resource graph state, the
desired target graph state is the GHZ state. (Top row, right) The maximal extraction
pattern obtains the largest GHZ state, containing five qubits. (Bottom rows) All extraction
patterns Vg with four nodes. Those that are possible have been highlighted in green, those that
are impossible through Cor. 1 have been highlighted in violet, and those that are impossible
directly through Thm. 1 are highlighted in red.

5.5 | Implementations

To complement the theoretical analysis and to experimentally demonstrate the GHZ
state extraction, implementations on IBMQ hardware were performed using the qiskit SDK
[131]. More specifically, linear cluster states of size n € {5,7,...,19} were prepared on
both the IBMQ Cairo [132] and IBMQ Mumbai [133] devices, from which GHZ states of size
n={4,5,...,11} were extracted through the maximal extraction pattern.

The traditional method to prepare linear cluster states, using qubits prepared in the |+)
state on which the gates C’(Z“H) are applied, is not suitable for the native gate set of the used
devices. Therefore, the preparation circuit is compiled towards the gate set of the devices as
shown in F1G. 5.5 for three qubits; the generalisation for higher (odd) n is straightforward.

The last layer in the circuit, consisting of Hadamard operations on the odd-numbered
qubits, is not actually implemented. The maximal extraction pattern dictates that the nodes
not in Vi (i.e. {3,5,...,n — 2}) are measured in the X-basis, which on the IBMQ devices
is implemented as another Hadamard operation followed by a Z-basis measurement. These
Hadamard operations would cancel out against those in the last layer of the right circuit
in F1G. 5.5, so they are both omitted. Similarly, the analysis in chapter B shows that the
local Clifford corrections to obtain the GHZ state involve a Hadamard operation on the first
and last qubit; these two operations are cancelled out by those in the last layer of the right
circuit in F1G. 5.5, which means that for the first and last qubit this layer can be omitted
as well.

To test the performance of the extraction, the fidelity of both the prepared linear cluster
states and extracted GHZ states is estimated. More specifically, a lower bound on the fidelity
is estimated by performing selected measurements of the stabilizer elements. For the linear
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FIGURE 5.5: The left circuit is the traditional circuit that prepares the linear cluster state |Ls).
However, the IBMQ Montreal device does not allow for native Cz or Hadamard gates, but only
for C'x gates and rotations along the Pauli axes. The right circuit is a hand-compiled circuit
that prepares the |L3) state with only native gates. The last layer of the compiled circuit,
containing Hadamard operations, is not implemented but emulates the X-basis measurements
from the extraction pattern and the associated corrections. The generalized circuit for larger
(odd) n is straightforward.

cluster state, this estimate is provided by an analysis similar to [134], originally inspired by
[135]. More specifically, following (2.10) the fidelity of the prepared state p with the linear
cluster state (up to the last layer of Hadamard rotations) can be calculated as:

Flo L) = [ o [T 5%] (5.3)

where the g; are the generators of the rotated linear cluster state, i.e. without the last layer
of F1G. 5.5. They can be grouped into a set of ‘odd’ generators GOL ={Zi-1Z:;Z;i+1}odd i
and ‘even’ generators GeL = {X;_1X; X1 }even i, Where it is to be understood that o0 =
o1 = 1. These two sets generate two different subgroups of the stabilizer, referred to as
the ‘odd’ and ‘even’ subgroups:

S, = (GE) c s,

Se = (Gé )y C S.
Note that the elements of S, and S, only consist of Z and X operators, respectively, which
is very useful in the estimation method.

By writing G, = ngGL H%q, and similarly for the even generators, (5.3) can be written
as:

(5.4)

F(p,|Ln)) = tr[GoGepl
= tr [Gop] + tr [Gep] — tr [Ip] + tr [Kp],

where K = (I— G,) (I — G,). The term tr [G,p] can be written in terms of the elements of
So:

(5.5)

tr[Gop] = E[Go] = ﬁ S tr [po], (5.6)
gES,

and tr [G.p] follows similarly. Moreover, K is positive semidefinite so that the last term in
(5.5) can be discarded. This results in a lower bound for the fidelity (using tr [Ip] = 1):
F(p, |Ln>) > E [Go] +E [Ge] -1 (57)

Rewriting the fidelity like this is very helpful, because it is relatively straightforward to
obtain (estimates for) E[G,] and E [G.]. Still, either subgroup Sy(.) contains an exponential
number of elements, so measuring the terms tr[po| one-by-one is undesirable. Moreover,
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the elements of S, and S, are multi-qubit operators, whose measurements generally involve
multi-qubit operations. However, these measurements can be reconstructed from single-
qubit measurements, which is explained in chapter C.

As noted before, the odd subgroup S, consists of only Z (and I) operators. The meas-
urements of all the elements of S, can therefore be reconstructed from simultaneous meas-
urements of every single qubit in the Z-basis. Similarly, every measurement associated with
the even subgroup can be reconstructed from the measurement setting where every single
qubit is measured in the X-basis. Using the analysis in chapter C, it follows that with just
two measurement settings the fidelity can be estimated; for both settings the measurements
have to be repeated so that the terms E [G,] and E [G,] can be estimated.

Similar to the linear cluster state, the generators of the GHZ state can be grouped into
GS = {Xy,}and GS = {Z;Z; 11} jev, (where the node j+1 indicates the right neighbour of
§ within the extraction pattern). Note that the odd group G$ consists of a single generator.
Combining the associated measurements with the measurements necessary for extraction,
the fidelity of the GHZ state can be estimated with just two measurement settings as well.
After the measurements for the extraction of the GHZ state, post-measurement correction
operators need to be applied as detailed in chapter B. This correction consists of applications
of X operators to some selection of the nodes in V{z; this selection depends on the outcomes
of the measurements during the extraction.

However, immediately after applying these X operators the qubits are measured in the
X- or Z-basis. For the X-basis measurements, the X correction operator has no effect. For
the Z-basis measurements, the only effect that these X correction operators have on the
measurement outcomes is that these are flipped. It follows that instead of actually applying
the X correction operator, the qubits can be measured in the Z-basis without them, after
which the +1 and —1 outcomes are exchanged; this technique generalizes to the Pauli frame
[76], and is closely related to a similar technique discussed in sec. 9.5. Thus, the X-basis
measurements of the qubits not in Vi for the extraction, and the X- or Z-basis measurements
of the qubits in Vi for the fidelity estimation, can be performed simultaneously.

All measurement settings were repeated a total of 32000 times to gather enough statistics
to obtain a good estimate of the terms in (5.7); the results are presented in FI1G. 5.6.
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FIGURE 5.6: A lower bound for the fidelity obtained for both the resource graph state |L,) and
the target graph state GHZ. Linear cluster states of size n = {3,5,...,19} are prepared using
the circuit from FI1G. 5.5, from which GHZ states of size |Vg| = {4,5,...,11} are extracted
through the maximal extraction pattern. Due to a technical detail in the estimation method
of the fidelity, the bound is less strict for the linear cluster state than for the GHZ state.
This results in an estimated fidelity for the linear cluster state that is lower than that of the
associated GHZ state.
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A caveat with the described estimation method is that for the GHZ state the odd gener-
ators give a subgroup S, = (X, ) = {I, Xy, }, with just two elements. The ‘even’ subgroup,
and both subgroups for the linear cluster state, are all considerably larger and growing with
n. Due to the small size of the odd subgroup of the GHZ state, the term tr [Ip] = 1 has a
relatively large impact in (5.6). Noise and imperfections affect all terms of the sum where
the stabilizer element is not I, so that if the subgroup is larger, it is (relatively) more affected
by noise. Especially for larger n this effect becomes more pronounced, so that the estimates
of the GHZ nodes become considerably better than the estimates of the linear cluster states,
even though the former is extracted from the latter. This is clearly visible in F1G. 5.6.

One option to solve this issue is by taking the sum in (5.6) over S, \ {I} and S, \ {I}. By
removing the identity elements, all elements in the sum are equally affected by noise. This
results in (estimates of) a lower bound that are generally less strict (i.e. worse), but give
fairer results between the linear cluster states and the GHZ states. F1G. 5.7 contains the
estimates with this adapted method, which indeed show more equal, but generally worse
fidelities than F1G. 5.6.
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FIGURE 5.7: The bounds in this figure use an adapted method of estimating the fidelities, so
that the bounds give a more equal estimate between the resource and target graph states.
However, at the same time it gives a lower, less strict bound than that of FiaG. 5.6.

5.6 | Conclusion

This chapter has shown that, for specific choices of resource and target states, it can be
decided if extraction is possible. It has shown an upper bound to the size of any GHZ state
that can be extracted from linear cluster states, and has completely characterized what GHZ
states can indeed be obtained. Generalizing to other specific target or resource states is not
straightforward by using the methods presented in this chapter. However, as was already
pointed out in the discussion of Pub. [F], the methods do generalise easily to ring graph
states, i.e. the linear cluster state with an additional edge between nodes 1 and n. In such
a case only a single 2-island is possible, so that the upper bound becomes V| = [n+1/2].

Although in this chapter the linear cluster state was explicitly chosen as the resource
state, any state that is locally equivalent to it is automatically suitable for GHZ state
extraction as well. Indeed, that state can first be rotated to the linear cluster state by a
local operation, after which the extraction can be performed as explained in this chapter.

Technically, this chapter has considered only local Clifford operations and single-qubit
Pauli measurements, instead of the more general case of local unitary operations and single-
qubit measurements in other bases. It is straightforward to show that the LU-orbit and
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LC-orbit of the GHZ state coincide, as they do for the linear cluster state (see sec. 4.4.2).
It follows that no generality is lost by considering only local Clifford operations instead of
the more general local unitary operations. Although not proven yet, it seems as if a similar
argument can be made for the single-qubit Pauli measurements, so that no generality is lost
by not allowing for single-qubit measurements in any basis.

Because any state in the LU-orbit O"Y(|L,,)) is suitable for GHZ state extraction, it is
very useful to determine if a given graph state |G) is part of this LU-orbit. More generally,
characterising different states by their associated LU-orbits is helpful to determine many
useful properties. The methods of chapter 6 work towards this goal.






CHARACTERIZING
ENTANGLEMENT

The distinguishing mark of the orbit is
the marginal, the instrument with
which it does all its mischief.

George Orwell, Animal Farm
(paraphrased)

The previous chapter showed that it is possible to characterize extraction patterns, but
only for highly specific cases like the extraction of GHZ states from linear cluster states. It
was assumed that the resource state was exactly the linear cluster state, somehwat restricting
the usability of the results. Nevertheless, there are many other states that can be used as
resource states for GHZ extraction; at least any state that is LU-equivalent to the linear
cluster state is guaranteed to be suitable. Indeed, first the state can be rotated to the linear
cluster state by a local unitary operation, after which the GHZ extraction can be performed;
of course, states from other orbits could be suitable for the extraction as well.

Following the discussion in sec. 4.2, any stabilizer state is LC-equivalent to a graph state,
so this chapter focusses solely on the equivalence of graph states. In general, as discussed
in chapter 4, graph states from the same orbits can be seen as containing the same type
of entanglement, and thus (roughly speaking) as the same resource in networking tasks. It
is therefore incredibly helpful to be able to identify if a set of states belongs to the same
LU-orbit, or even characterize states by what specific LU-orbits they belong to.

This chapter presents the contents of Pub. [G] ([55]), that presented methods to study
the LU-equivalence of graph states, and introduced methods to characterize LU-orbits. This
characterization can be computed from any representative of any LU-orbit, resulting in a
type of ‘identifier’ that is constant for every element of the LU-orbit the representative
belongs to. Elements of the same LU-orbit are then evaluated to have the same identifier,
meaning that the identifier is invariant for all the elements of an LU-orbit. Hence, this
identifier needs to be derived from an LU-invariant, i.e. a property of any stabilizer state
that does not change when the state undergoes a local unitary transformation.
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In a slightly more abstract, theoretical setting, one may wish to determine if states
are from the same entanglement class (see sec. 4.3) instead of LU-orbit, where stabilizer
states that are equivalent under permutations would additionally evaluate as having the
same identifier. Thus, an identifier that is not only invariant under LU operations, but
additionally invariant under permutations needs to be obtained. Beyond the equivalence of
LU-orbits, Pub. [G] addressed the equivalence of graph states in this setting as well, and
the characterisation of entanglement classes.

These identifiers are designed in such a way that elements of an LU-orbit or entanglement
class are always evaluated to have the same identifier, essentially labelling the LU-orbit or
entanglement class with that identifier. Ideally, these identifiers are unique, in the sense that
two different LU-orbits or entanglement classes are always labelled with different identifiers,
so that they can be distinguished. This is not always the case, so the performance of the
identifiers must be assessed.

For both LU-orbits and entanglement classes, the identifiers that are introduced in this
chapter are derived from a single specific LU-invariant: the dimension of the reduced stabil-
izer (see Def. 12). How to compute the dimension for a graph state is discussed in sec. 6.1.
Section 6.2 shows that the stabilizer dimension can indeed be used as an LU-invariant. In
sec. 6.3 various identifiers are derived from this invariant, for both LU-orbits and entan-
glement classes. The performance of the identifiers is assessed in sec. 6.4 by two different
performance metrics. This assessment makes use of an online database of (representatives
of) LC-classes (see sec. 4.3) found in [136], the supplementary material of [115].

It can happen that two (representatives of) different LC-orbits are calculated to have
identical values for all introduced identifiers. Interestingly, this does not necessarily mean
that the identifiers have failed in faithfully determining LU-equivalence. Indeed, although
the representatives are from different LC-orbits, they can in principle still be LU-equivalent,
so that their identifiers are equivalent as well. This would render them counterexamples to
the LU-LC-conjecture (see sec. 4.4.2). Examples of two different LC-orbits with the exact
same identifiers can indeed be found; the smallest example consists of two graphs of nine
nodes, presented in sec. 6.5. However, they are indeed LU-inequivalent as well. Because
the identifiers fail to tell them apart, another method is necessary to show this, which is
discussed in the same section. Section 6.6 discusses the efficiency and scaling properties of
calculating the introduced identifiers. Finally, sec. 6.7 concludes the chapter.

Pub. [G] ([55]) introduced and discussed more methods regarding its topics than are
addressed in this chapter. The interested reader is referred to the publication. Some of
these results were presented in [137] as well.

6.1| The reduced stabilizer for a graph state

EQ. (2.25) showed that the reduced state of a stabilizer state and its associated reduced
stabilizer are closely related. Hence, to calculate the reduced state of a graph state, one
could first calculate its reduced stabilizer. Calculating this could in principle be done by
first listing every element in the original stabilizer, and selecting only those with the correct
support. However, this is a tedious process as the stabilizer grows exponentially in size.

This section introduces another method to calculate the reduced stabilizer for graph
states, which is a much more efficient approach. More specifically, let |G) be an arbitrary
graph state on the qubits V' = [n] with stabilizer S and generators {g; = X;Zn;, }icv. The
goal is to find the reduced stabilizer Sys for an arbitrary choice of M C V, with k = | M|
the size of M. For this, it needs to be determined, for every P € S, if supp(P) C M (see
Def. 12).

To this effect, (2.4) can be used to represent P by a sequence of bits {by,bs,...,b,},
where b; ‘encodes’ if the generator g; is ‘used’ or not. Let B = {i € V'|b; = 1} represent the
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set of generators that are ‘used’. Then, the operator P can be decomposed into an X- and
Z-part separately, in terms of B:

P=1[xiZn, ~ (I] X)) (I] 2n.) = Xa(]] Zn.). (6.1)

i€B icB i€B icB

where X represents an X operator on every node in B and ~ indicates that equality holds
up to a phase +1. Ultimately this representation is used to determine if the support of P is
contained in M, for which this phase is irrelevant.

From (6.1) it follows directly that for any P € S that is in the reduced stabilizer, it must
hold that B C M. Indeed, otherwise P would have support (at least with X) on every node
B\ M, which are nodes in M+.

0’9\9
0— I |\
/

@ ¢

FIGURE 6.1: A graph with a selection of marginals highlighted; all these marginals are non-
trivial, so that dys > 1. The dimensions of the four highlighted marginals M; = {1,2},
M, ={8,9}, M3 = {4,5,8} and M4 = {1,2,4} are all analysed in the main text.

If the neighbourhood of every generator that is ‘used’ (i.e. those in B) is additionally
contained in M, then it is straightforward to see that supp(P) C M. Consider the marginal
M, = {1,2} from F1G. 6.1, highlighted in green. Node 1 has N7 = {2}, so taking B = {1}
results in the Pauli operator P = X;Z5, whose support is contained in M. Thus, the
operator X175 (as an element of Ps) is part of the reduced stabilizer Sy, .

However, generators that have Z support outside of M do not necessarily lead to stabilizer
elements that cannot be elements of Sy;. Indeed, the Z support from different generators can
cancel out through the identity Z? = I. Consider the marginal M, = {8,9} from FIG. 6.1,
highlighted in red. Neither the generator gs = XgZ32Z7 nor the generator g9 = X9Z377 has
its support contained in M>. However, their product gsgg = XgXg9 has no Z operators in
M-, because every Z operator outside of My appears an even number of times, and has
thus cancelled out. It follows that the stabilizer element gggg has its support contained in
M>, and is therefore (as an operator from Ps) part of the reduced stabilizer Syy,.

General case

The case for general M follows readily. Let P € S be any stabilizer element, and let
B be the selection of generators (i.e. nodes) that represent P through (6.1). It is the goal



6.1 THE REDUCED STABILIZER FOR A GRAPH STATE Page 78

to determine if P € Sy, or not. Any time a node j € M~ is contained an even number of
times in the neighbourhoods N; of the nodes in B, the Z operators on node j cancel out.
Thus, for the selection B, Z operators only remain on those nodes that are included an odd
number of times in the neighbourhoods of the nodes in B.

This set of nodes is exactly the symmetric difference of all the neighbourhoods combined,
denoted (with abuse of notation) AB. Using this insight, (6.1) can be rewritten as:

P~ XpZag. (6.2)

It can be concluded that the elements of Sys are exactly those that can be written as (6.2)
with both B C M (for the X-part of the support), and with AB C M (for the Z-part of
the support).

At this point it is extremely useful to represent these neighbourhoods as the columns 7;
of the adjacency matrix T of the graph G (see (3.6)). The symmetric difference AB of all
neighbourhoods combined then is represented by the binary vector np:

nB = @Th‘, (6.3)

i€B

where the addition is performed over the binary field; now 7 (j) = 1 only for those j € AB.
Thus, supp(P) C M if and only if B C M (for the X-part), and ng(j) =0 Vj € M=+ (for
the Z-part).

W.l.o.g. M can be taken to be the first k nodes of V. The vector np can then be split
into its parts regarding M and M=. The necessary condition then becomes that the latter
part is equal to the zeros vector:

(M) (M)
B B
B = e = s (64)
B 0

€
where 0 indicates a zeros vector of adequate length. Note that the equality m(gM ) = 0 does

not hold in general for any B, but only whenever the Z-support is indeed contained in M.
Similarly, the adjacency matrix I" itself can be written in block form:

(M, M) (M. M)

I = .
ML M) | prt ity | (6:5)

where the matrix T'45) indicates the sub—matrii( of I with the rows and columns indexed
by A and B, respectively. The sub-matrix ™M) ig exactly the matrix whose columns
(M)

are the vectors 7, (i.e. m; split into parts as in (6.4)):

ML+ M) _ M+ Mt M+
PO [arty ety ), (6.6)

In other words, T™ M) represents the ML -part of the neighbourhoods #; for every node
in M.

Using (6.3), any ngng) can then be written as a linear combination of these columns:
PO M)y — 1), (6.7)

where xp is the binary vector of length! & ‘selecting’ the nodes in B.

1The length of xp is k because it has already been (implicitly) assumed that B C M.
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The Pauli P associated with B has support contained in M if nJ(BML) = 0 (see (6.4)).
Combining this with (6.7), this results in the condition:
0
TS Mg = |1 (6.8)
0

It follows that every element P € S corresponds to a unique vector xp for which (6.8) holds.
These vectors are exactly the elements of the kernel (over F¥) of the (n — k) x (k) matrix
.M ), so that determining the reduced stabilizer Sy is the same as finding the solutions
to a set of n — k linear equations.

This set of solutions forms a linear subspace of F5, and every element of it uniquely
represents an element of the reduced stabilizer. By Def. 12 and (2.24), the dimension of this
subspace, which is the nullity of I'(™ TM ), is exactly the stabilizer dimension dj;. Since it is
efficient to compute the nullity of a matrix, this provides an efficient method to determine
the stabilizer dimension dp; of a graph state |G) for any marginal M.

EQ. (6.8) and its insights can, beyond calculating djs, additionally be used to obtain
representations of the actual elements of the reduced stabilizer Sy;. More specifically, a
basis {bl}f;‘ﬂ of the above subspace exactly represents a set of generators {gl(M)} for Sp;:

g =11 o (6.9)

1€M|by(i)=1

where b;(7) is the i-th element of the vector b;.

Beyond the two examples already discussed earlier, F1G. 6.1 presents two other examples
of non-trivial marginals. The marginal M3 = {4, 5, 8}, highlighted in blue, has no generators
whose support is contained within Mj. Similarly, any product of two generators results in
a Pauli operator that has support outside of M3 as well. However, the product g4g59s =
X4 X5Xg results in a Pauli operator with support contained in Mjs, which means that the
marginal is not trivial. There is only one surviving element, so that dy;,, = 1.

The marginal My = {1,2,4}, highlighted in yellow, has multiple non-trivial elements,
however. The generator g3 = X775 remains, and so does the product g9y = 77 X2Xy.
These two elements can be seen as a generating set for Sy, = {1, g1, 9294, 919294}, so that
the marginal dimension for My is dys, = 2.

6.2 | The rank of reduced states as an invariant

It is straightforward to show that the rank of any marginal cannot change under local
unitary operations, as the following theorem shows (also shown in [3] and Pub. [G] ([55])).

Theorem 2. Let p and o be two LU-equivalent stabilizer states with respective stabilizers
SP and 8%, so that p = UoU' for some U € LY. Then for any choice of subset M C
{1,2...,n}, their reduced states have equal rank:

rnk(par) = rnk(oar). (6.10)

This rank is called the marginal rank (w.r.t. M ).
Furthermore, the reduced stabilizers S%; and 8§, have equal dimension as well:

&, = d3,. (6.11)
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Proof. Because U € LY, it holds that U = Uy ® U, for any choice of M. py; can easily
be computed in terms of the reduced state ojps:

pym = trpe [p] =trpo [(UM@UML)O’(UM@UML)T} = UMO'MUL- (6.12)

Thus, the reduced states pp; and oy are related by a unitary operation. It follows directly
that their rank is identical. As M was chosen arbitrarily, it holds for any reduced state of
p and o. From (2.27) it follows that the dimensions of the reduced stabilizers are equal as
well. O

Thm. 2 shows that the rank of the reduced state is indeed an LU-invariant for any choice
of M. It follows that having the same marginal rank or dimension for every choice of M is
a necessary condition for any pair of states to be LU-equivalent. Together with the analysis
of sec. 6.1, this allows for an easy to compute method to determine if graph states are
LU-inequivalent.

One example is given in F1G. 6.2. The three graphs from the figure are all from different
LU-orbits, because their highlighted marginals have different dimensions.

FIGURE 6.2: Three 6-qubit graph states |G1),|G2) and |G3), where two different marginals are
highlighted. The three graph states all belong to different LU-orbits. This follows from an
inspection of the highlighted marginals. |G1) has for both highlighted marginals dy = 0. |G2)
has that the red marginal is non-trivial with dys = 1, but the blue marginal is trivial. For
|G3), both highlighted marginals are non-trivial with dy = 1.

6.3 | Identifiers derived from the rank invariant

Fi1G. 6.2 shows that it can be very useful to consider more than one marginal at the
same time to decide on LU-equivalence, especially when more than two graph states are to
be considered. In general it is useful to categorize the marginal dimensions of a graph in a
consistent approach, to facilitate comparisons of graphs regarding LU-equivalence. A first
concept that offers such categorization is the marginal list, which can be defined for any
marginal size k.

Definition 26. For an n-node graph G with vertex set V, and marginal size k < n, the
k-body marginal list [ is the length-(k + 1) vector

I =Ly y¢ ... LP9], (6.13)
where Lf’G (for 0 < @ < k) is the number of all k-body marginals M C V with stabilizer

dimension dy; = i:

LFC = |{M c V||M| =k, da = i} (6.14)
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When context permits G is dropped, so that the marginal list is written [, .

In other words, the marginal list [ is a vector of length k + 1, where the i-th entry
is the number of k-body marginals of G with marginal dimension i. Using Thm. 2 it is
straightforward to see that the marginal lists of two graph states from the same LU-orbit
are identical, which means that the marginal list l,? can function as an identifier of LU-orbits.
Note that for connected graphs the last entry in the vector always equals zero. Furthermore,
note that the sum of the entries of I$ is always equal to (Z), the total number of k-body
marginals.

The marginal list l,? can distinguish many different LU-orbits (e.g. I§ is different for all
three graphs from F1G. 6.2), but cannot represent where the marginals of a given dimension
are. This means that it can fail to distinguish graph states even though they are LU-
inequivalent. Notably, two elements from a single entanglement class may be from different
LU-orbits, but the marginal list will never be able to distinguish them. For example, F1G. 6.3
shows two graphs that are not in each others LU-orbit, even though their marginal lists [,
coincide for every k.

a ? 0—0
0—© 0—0©)

L1234 L1432

FIGURE 6.3: Two graphs that can not be distinguished by their two-body rank lists IS, as they
contain the same number of two-body marginals with dys = 1. However, the positions of these
marginals are different, so that their marginal tensors T are different. From this it can be
concluded that the graphs are LU-inequivalent. Note that the two graphs are representatives
of two different LU-orbits from the entanglement class of the |L4) state, shown in FiaG. 4.1.

It can therefore be necessary to not only categorize the number of marginals with every
dimension, but additionally how they relate to one another, i.e. the ‘positions’ of the mar-
ginals w.r.t. the nodes. For this, it is useful to define the marginal tensor.

Definition 27. For an n-node graph G with vertex set V, and a marginal size k < n, the
(k-body) marginal tensor T is the tensor defined as

T = (Til'”ik)il,...,z'keV’ (6.15)

where the entries of the tensor are defined as
Tiyoip = d{il,..‘,ik}, (6.16)
with double occurrences of nodes in the set {iy,...,ix} understood to be removed. When

context permits G is dropped, so that the marginal tensor is written T},.
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In other words, the entry of the tensor indexed by {i1,42,...,4x} is exactly the dimension
of the marginal of the graph state |G) given by M = {iy,42,...,ix}. As noted in the
definition, these indices {i;} are not necessarily unique, so that double occurrences are
dropped. This leads to 1 < |M| < k. In turn, this means that the marginal tensor of
dimension k contains the dimensions of all marginals of size < k. Furthermore, note that
the marginal tensor is supersymmetric.

Similarly to the marginal list, the marginal tensor functions as an identifier of LU-orbits:
from Thm. 2 it is straightforward to see that the marginal tensors of two graph states from
the same LU-orbit are identical. Because the positions of the marginals are represented by
the tensor as well, it can distinguish strictly more graphs than the marginal lists. Indeed,
the two graphs from F1G. 6.3, while having identical marginal lists, have different marginal
tensors. From this it can be concluded that they are LU-inequivalent.

Distinguishing entanglement classes

The power of the marginal tensor TkG to additionally represent the location of marginals
with given dimensions can be helpful to distinguish LU-orbits. As e.g. shown in F1G. 6.3, it
can distinguish more graphs than the rank lists can. However, for distinguishing entangle-
ment classes, this is counterproductive. Indeed, because it represents the ‘location’ of the
marginals, the marginal tensor TF is not invariant under permutations of the nodes. This
means that two elements from the same entanglement class may have different ¢, which
makes them unsuitable as an identifier of entanglement classes. Indeed, F1G. 6.3 contains
an example of this: the two graphs are permutations of each other and therefore from the
same entanglement class, but their rank tensors T, are not equal.

On the other hand, the rank list is permutation invariant, and thus suitable as an
identifier of entanglement classes. Still, it loses some information w.r.t. the marginal tensor,
as it contains no information whatsoever regarding the (relative) positions of the marginals.

To circumvent this loss, it is desirable to obtain an identifier that is both permutation
invariant and contains information regarding the relative locations. Such an identifier is
formed by the marginal eigenvalue, which can be derived from the marginal tensor.

Definition 28. For an n-node graph G with vertex set V, and a marginal size k < n, take
its marginal tensor TS as defined in Def. 27. Let H be the Hermitian k x k matriz obtained
after summing TkG over k —2 arbitrary azes. Let {\1,\a,... ¢} be the k real eigenvalues of
H. Define the marginal eigenvalue tf as the product of non-zero eigenvalues {\;}:

tf =T » (6.17)

Xi#£0
When context permits G is dropped, so that the marginal eigenvalue is written t,,.

Because eigenvalues are invariant under simultaneous permutation of the rows and
columns of a matrix, ¢, is permutation invariant. Moreover, it directly inherits its LU-
invariance from T),. Therefore, the marginal eigenvalue is indeed an identifier for entangle-
ment classes.

Higher order marginals

The examples that have been shown so far all make use of the two-body marginal di-
mensions to show the LU-inequivalence of sets of graphs. This is not always adequate, as
F1G. 6.4 shows: all two-body marginals of the two depicted graphs are maximally mixed, so
that no conclusion can be made regarding their LU-equivalence. However, the highlighted
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Gl G2

FIGURE 6.4: Two graph states |G1) and |Gz2) with the same dimension for all their two-body
marginals, which are all trivial (i.e. maximally mixed). Nevertheless, the two graph states
are LU-inequivalent, as the highlighted three-body marginal shows: that marginal for G is
non-trivial with dys = 1, but the same marginal for G2 is trivial.

three-body marginal, for which the two graphs have different marginal dimensions, shows
that they are indeed LU-inequivalent.

Thus, it can be necessary to increase the marginal size k to determine LU-inequivalence
of a set of graphs. A higher k is computationally more intensive (the number of k-body
marginals of an n-qubit state is super-exponential in k, see also sec. 6.6), so it is not always
preferred to increase the marginal size. It is thus an important question how well the
identifiers perform w.r.t. the choice of k; this will be studied in sec. 6.4.

It should be noted that there is a limit after which increasing k cannot provide new
insights. By (2.28), the marginal rank of any marginal M is directly determined by the
marginal rank of its counterpart M=. It follows that calculating T, s U or ty forany k> [ 3]
is superfluous: it is completely determined by its respective counterpart of marginal size
k' = n — k, which is easier to calculate.

6.4 | Performance of the identifiers

It is the goal to assess how well the identifiers perform in their task of categorizing graphs
into LU-orbits or entanglement classes. Because the marginal tensor 7}, is the only identifier
that is not invariant under permutations, it is the only identifier that is tested in its power
to distinguish LU-orbits. The marginal list /,, and marginal eigenvalue ¢, are tested in their
power to distinguish entanglement classes.

Two figures of merit are used to assess the performance of the identifiers. These figures
of merit can be computed for graphs and marginals of any size n or k, and are detailed as
follows:

- The ratio of the number of different identifiers to the total number of LU-orbits (for
T,) or entanglement classes (for [, and ¢,); this ratio is denoted r(T},), 7(I;,) or 7(t;).

- The probability that two random labelled (for T},) or unlabelled (for {, and t,) LU-
inequivalent graph states are evaluated to have identical identifiers; this probability is

denoted p(T},), p(l;,) or p(t;).
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The first figure of merit reflects how well the identifiers perform to label different orbits
or classes. If one wants to categorize all LU-orbits or entanglement classes, it is exceedingly
useful to obtain a unique identifier for every one of these orbits. The ratio r(-) reflects how
many different identifiers there are. In general, it holds that 0 < r(-) < 1, where a ratio
of 1 indicates that every LU-orbit or entanglement class is labelled with a unique value for
the identifier. A ratio that approaches zero indicates that the identifier fails to label any
LU-orbit or entanglement class uniquely. As such, the performance of the identifier is better
for higher ratios r(-), because then there are more unique labels.

The second figure of merit focusses more on graph states themselves. Consider, for
example, the situation where graphs with equal identifiers are always assumed to be from
the same LU-orbit. In such a setting, if different LU-orbits have identical values for the
identifier T}, this would inadvertently lead to incorrect conclusions. However, if this equal
labelling happens only for two comparatively small LU-orbits, the fact that they are labelled
with the same identifier is a relatively minor issue. It is then extremely likely that the mutual
LU-(in)equivalence of two random graphs can faithfully be determined, since in such a case
there are only a few cases that lead to false positives.

In general, it holds that 1 > p(-) > 0, where a probability of 0 indicates that any
two graphs that are LU-inequivalent or from different entanglement classes will always be
correctly distinguished. This means that a faithful decision on LU-(in)equivalence can always
be taken. On the other hand, if the probability approaches 1, it means that no two graphs
that belong to different LU-orbits or entanglement classes can be distinguished. Thus, the
performance of the identifier is better for lower probabilities p(-), as inconclusive results or
false positives are then less likely to occur.

The test of performance is facilitated by an online database of every local complementa-
tion orbit of graphs up to 9 qubits, which is provided as supplementary material of [115] and
can be found at [136]. The database contains a representative of every LC-class (see sec. 4.3),
which means that two points need to be taken into consideration:

- If the database is used as-is to test for LU-equivalence, essentially it is assumed that
the LU-LC conjecture is true for all graphs in the database. As noted before (see
sec. 4.4.2), the conjecture is indeed true for all entanglement classes up to 8 qubits
[116, 138], but special care is warranted for larger graphs or orbits.

- Not considering the above point, the database provides representatives of entanglement
classes. To test the performance of T}, (i.e. for distinguishing LU-orbits) representatives
of every LU-orbit need to be obtained. These need to be computed from the repres-
entative of the entanglement class by calculating all its permutations and categorizing
those into separate groups of LU-orbits, as explained in sec. 4.3.

6.4.1| Performance for LU-orbits

The two figures of merit are calculated for the marginal tensor 7}, for all LU-orbits® of
size 3 <n < 8 and of all LC-orbits of size 9, and marginals of size 2 < k < [§]. The results
are shown in TAB. 6.1.

For small graphs, identifying the two-body marginal dimensions (i.e. taking k = 2)
provides enough information to uniquely label all LU-orbits - at the same time increasing k
would not provide any extra insights, as explained at the end of sec. 6.3 (see additionally
(2.28)). For m = 6, which is the lowest graph size for which the three-body marginals are
independent from the two-body marginals, T, proves considerably less effective than Tj.

2Actually, the database technically covers LC-orbits instead of LU-orbits. [116] showed only that the
LU-LC conjecture is true LC-classes and entanglement classes, but the results of this section show that it
holds for LU- and LC-orbits as well. This means that LC- and LU-orbits of graphs up to and including 8
nodes are indeed identical.
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n r(Ty) r(13) r(T,) pTz) pT3) p(Ty)
3 1 - - 0 - -
4 1 - - 0 - -
5 1 - - 0 - -
6 | 0.52 1 - 0.05 0 -
7| 0.13 1 - 0.12 0 -
8 | 0.02 0.88 1 0.22  0.0001 0
9 | 0.001 048 0.999 | 0.37 0.0004 3e-10

TABLE 6.1: The performance of Tj, as an identifier of LU-orbits is tested by computing the
figures of merit r(T}) and p(T}) for all marginal sizes 2 < k < | 4] and all LU- (or LC-)orbits
of size 3 < n <9. If r(T}) = 1, every LU-orbit has a unique T}, which can thus serve as a
unique identifier for the orbit. If p(7},) = 0, two random LU-inequivalent graphs will always
be distinguished by their marginal tensor. Perfect labelling is obtained for all graphs of size
n < 8, provided a large enough k is used. For 9 qubits no identifier has this desirable property.
Indeed, LU-inequivalent graphs exist that have the exact same structure for their marginal
dimensions; sec. 6.5 addresses these in more detail.

This behaviour is the same for larger graphs as well: increasing k always provides a higher
ratio and a lower probability.

Moreover, for graphs up to 8 qubits, there always exists a marginal size k such that
the identifier works flawlessly: the ratio reaches 1, indicating that every LU-orbit has a
unique value for the identifier, and the probability reaches 0, indicating that every pair of
LU-inequivalent graphs can be distinguished.

At the same time, for a fixed marginal size k the performance deteriorates drastically as
n increases. Only identifying two-body marginals, for 6 nodes the number of unique labels
is only roughly half the number of LU-orbits (counsider e.g. F1G. 6.4); for 9 nodes this is
reduced to about just 0.1%.

Interestingly, this effect is less pronounced for the probabilities. Even though for n = 6,
k = 2, there are only about half as many unique labels as there are LU-orbits, the probability
of obtaining a false positive (i.e. assuming that two LU-inequivalent graphs with the same
identifier T, are LU-equivalent) is only 5%; even for graphs of 9 nodes the probability is well
under 50%.

Increasing the marginal size to k = 3 increases the performance considerably: T, performs
perfectly for graphs of size 6 and 7, and false positives are extremely unlikely for 8 and even
9 nodes. Nevertheless, marginals of size k = 4 are needed to correctly identify and label all
8-node LU-orbits.

For n = 9, the marginal tensor fails to perform perfectly even for k = 4; the reason for
this is that there are two different orbits with the exact same structure for their marginal
dimensions, so that their marginal tensors inevitably are identical as well. Representatives of
both orbits are shown in F1G. 6.7. Interestingly, the cut-off between perfect and imperfect
performance lies exactly at the boundary of the lower bound to the LU-LC conjecture [116,
138].

As explained above, the graphs in F1G. 6.7 are two representatives of LC-orbits rather
than LU-orbits; it is thus known that these two representatives cannot be distinguished by
their marginal tensors, even though they are LC-inequivalent. This makes for an interesting
pair of graphs, as they are LC-inequivalent without a conclusive answer regarding their
LU-equivalence. In other words, the pair forms a potential counterexample to the LU-LC
conjecture. This pair is the only such candidate for n = 9, and their LU-(in)equivalence is
addressed in more detail in sec. 6.5.
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6.4.2 | Performance for entanglement classes

Similar to the LU-orbits, the two figures of merit are calculated for every entanglement
class of size 3 < n < 8 and LC-class of size 9, and for marginals of size 2 < k < L%J The
figures of merit are calculated for both [,, and t,. The results for [, are listed in TAB. 6.2,
and the results for ¢, are listed in TAB. 6.3.

nor(ly) r(ls) r(ly) R p(ly)  pls)  plly) P
3 1 - - 1 0 - - 0
4 1 - - 1 0 - - 0
5 1 - - 1 0 - - 0
6 | 0.73 0.82 - 1 0.01 0.01 - 0
71042 0.85 - 092 | 0.17 0.03 - 0.03
8 | 015 054 056 094 | 030 0.05 0.03 0.01
9004 034 070 083 044 0.05 0.01 o0.01

TABLE 6.2: The performance of [, as an identifier is tested by computing the figures of merit
(lx) and p(l;,) for all marginal sizes 2 < k < | § | and all entanglement classes of size 3 < n < 9
. Note that for n = 9 the set of LC-classes (see sec. 4.3) is used, as explained at the start
of sec. 6.4. These are not necessarily exactly the same as the entanglement classes, which
concern LU-equivalence. If r(l;) = 1, every entanglement class has a unique [, which can
thus serve as a perfect identifier for the class. If p(l;,) = 0, graphs from two randomly selected
but different entanglement classes are always correctly distinguished. The columns R and P
detail the ratio and probability when the identifiers for every different k are combined.

As with the LU-orbits, increasing the marginal size k for a fixed n always provides better
results. Still, perfect results are only obtained for entanglement classes up to 6 nodes;
entanglement classes of larger graphs can never be perfectly labelled for any single k.

Fixing k and increasing n again shows quick deterioration: the ratio r(ly) goes from 1
(n=1>5) to 0.73 (n = 6) down to just 0.04 (n =9). Similar behaviour exists for I5, but r(l,)
is actually higher for n = 9 than for n = 8. This is most likely an oddity w.r.t. the 8-node
graphs.

Similarly to the LU-orbits, the probabilities show the same behaviour as the ratios,
although with less severe deterioration. The probability of a false positive for any graph size
never exceeds 3%, provided a large enough k is used. Fixing k = 3, even for entanglement
classes of size 8 and 9 the probability never exceeds 5%. Moreover, the discrepancy with the
ratio of [, being better for 9 nodes than for 8 nodes can not be found for the probabilities.

Interestingly, combining the results for multiple marginal sizes k (i.e. the columns marked
R and P) can provide more insights than any individual k alone. Consider for example the
ratios: the 6-qubit entanglement classes cannot be labelled perfectly by using either I, or 5.
However, when both are used as a label at the same time, the ratio becomes 1, meaning that
every entanglement class is uniquely identified. Similar behaviour is shown for larger graphs,
although here no perfect labelling is retrieved by combining the different marginal sizes. The
combination of multiple marginal sizes can provide an improvement for the probabilities as
well. However, here the effect is far less pronounced: only for the entanglement classes of 8
nodes the combination actually provides a better result.

This means that there are pairs of entanglement classes that have the exact same 3-body
marginal dimensions, even though at least one 2-body marginal differs in dimension. An
example of such a pair is given in F1G. 6.5: I3 is equal for both graphs, but [/, is able to
distinguish them. This shows that focusing solely on larger k can be counterproductive.

Additionally, a perhaps unexpected phenomenon occurs. The marginal lists are able to
provide a larger ratio for the 8-node graphs than for the 7-node graphs. This is perhaps,
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FIGURE 6.5: Two graph states |G1) and |G2) that are from different entanglement classes, which
can be shown by comparing their marginal lists. Indeed, for £ = 2 the lists are different:
ISt = [16,5,0] but 152 = [18,3,0]. All non-trivial two-body marginals have been highlighted;
since they differ in number, the inequivalence of the two graphs follows. Interestingly, their
marginal lists for k = 3 coincide: l3G1 = lg; 2 =[12,22,1,0], so that their inequivalence cannot
be determined from the three-body marginals. This shows that a higher k does not always
offer a better or even equally performing identifier, but can be counterproductive.

at least in part, explained by the fact that combining the marginal lists of different & is
especially effective for 8 nodes: for no single k the ratio exceeds 0.56, but combining all
marginal lists obtains a ratio of 0.94.

For the probabilities a similar phenomenon occurs, not only for the 8 node graphs, but
for the 9 node graphs as well. Indeed, a lower probability of false positives can be obtained
for both these sizes compared to the 7 node graphs.

nor(ty) r(ts)  r(ty) R p(ta)  p(ts) p(ty) P
3 1 - - 1 0 - - 0
4 1 - - 1 0 - - 0
5 1 - - 1 0 - - 0
6 | 0.73 1 - 1 0.01 0 - 0
7 | 0.46 1 - 1 0.16 0 - 0
8 | 0.19 0.89 1 1 0.30  0.0001 0 0
9

0.06 0.73 0.998 0.998 | 0.44 0.01 le-06 1e-06

TABLE 6.3: Similarly to [, in TAB. 6.2, the performance of ¢, as an identifier is tested by
computing the figures of merit r(t;) and p(t;) for all marginal sizes 2 < k < [%] and all
entanglement classes of size 3 < n < 9 (with the caveat that for n = 9 the set of LC-classes
is used, as explained at the start of sec. 6.4). If r(¢,) = 0, every entanglement class has a
unique t;, which can serve as a unique identifier for the class. If p(¢,) = 0, graphs from two
randomly selected but different entanglement classes are always correctly distinguished.

In general, the behaviour for the marginal eigenvalues ¢, is similar to that for [, , but
overall it performs better than the lists. Most importantly, the overall behaviour of T} for
LU-orbits (i.e. TAB. 6.1) is retrieved. In particular this means that up to 8 nodes there
is always a k that perfectly distinguishes all entanglement classes. An example of a set of
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entanglement classes that cannot be distinguished by their marginal lists [, but can be by
their marginal eigenvalue ¢, can be found in F1G. 6.6.
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FIGURE 6.6: Representatives |G1),|G2) and |G3) of three different entanglement classes. It
holds that ldfl = lf2 = lg?’, so that the marginal lists are not able to distinguish the classes.
However, t$1,t52 and t$® are all different, so that the marginal eigenvalue can be used to
distinguish the classes. This shows that sometimes a marginal eigenvalue is able to distinguish
classes that no marginal list can.

Additional similar behaviour is apparent: fixing k, the performance deteriorates quickly
with increasing n. Again, this is more severe for the ratios than for the probabilities. For
e.g. n = 9, the ratio has dropped down to r(¢,) = 0.06, but there is still less than a 50%
chance that a false positive occurs. In general, the probabilities for a false positive are
exceedingly small, or zero, for large enough k.

Again for 9 nodes there is no perfect labelling possible, similar to the case for T, with
LU-orbits. This shows that the two aforementioned graphs with the exact same structure
for their marginal dimensions (i.e. those shown in F1G. 6.7 and addressed in more detail in
sec. 6.5) are not just LC-inequivalent, but they belong to different LC-classes (see sec. 4.3)
as well.

Contrary to the marginal lists, combining identifiers of different marginal sizes k does
not provide any extra information compared to individual ¢,’s, which is the same behaviour
as for the marginal tensor. For a marginal tensor of size k, the marginal tensor of lower size
k' < k is ‘embedded’ into T}, which means that no information can be lost by increasing
k. Due to the nature of how it is computed, ¢, could theoretically have this flaw, but as is
evident from the results it does not occur.

6.5 | Different LC-orbits with equal identifiers

TABS. 6.1 and 6.3 show that, as explained before, there are separate LC-classes and LC-
orbits that have the same structure for their marginal dimensions. This means that they
cannot be distinguished by 7}, or t,, respectively, for any marginal size k. FIG. 6.7 shows
two graphs L and R, whose associated graph states are representatives for two different LC-
orbits OFC(|L)) and OYC(|R)) that have the same structure for their marginal dimensions,
ie. TL = Tlf for every k. They form the smallest example of such a pair of LC-orbits, and
the only nine-qubit example.

The identifiers are invariants for LU-operations, but the two graphs are known to be from
different LC-orbits. Therefore, it is in principle possible that |L) and |R) are LU-equivalent,
even though they are LC-inequivalent,. This would make them the smallest counterexample
to the LU-LC conjecture, because it holds true for at least all graph states up to 8 qubits
(see [116] for entanglement classes, or TAB. 6.1 for LU-orbits).
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However, it indeed holds |L) and |R) are LU-inequivalent as well, which is the statement
of Lemma 12 from Pub. [G] ([55]). For a proof the reader is referred to that publication. This
shows that there are LU-orbits and entanglement classes that cannot be distinguished by
the structure of their marginal dimensions, and therefore by any of the identifiers presented
in this chapter.

o090 000
0606 0 0660
O 060 060

L R

FIGURE 6.7: Two graph states |L) and |R) that are LC-inequivalent. Still, the dimensions of all of
their marginals align, so that their 7},’s are the same for every k. This means that no conclusion
can be made regarding their LU-inequivalence from their marginal tensors. Therefore, they
form a potential counterexample to the LU-LC conjecture. However, in Pub. [G] ([55]) it is
shown that the graphs are indeed LU-inequivalent.

As a final interesting note, there are pairs of isomorphic graphs that cannot be distin-
guished by their marginal tensors for any k, but are still LU-inequivalent. This shows that
there are separate LU-orbits from a single entanglement class with the exact same structure
for their marginal dimensions. One example is formed by the Peterson graph, which can be

found in FIG. 6.8, also presented in Pub. [G] ([55]). It holds that &(|P)) = 56(]15>), but
OMU(|P)) # OMY(

]5>), even though TF = T,f' for every k.

6.6 | Efficiency of the introduced methods

It is exponentially hard to compute the marginal for an arbitrary quantum state. How-
ever, the method presented in sec. 6.1 can be used to compute the stabilizer dimension of any
k-body marginal by calculating the nullity of the (n — k) x (k) binary matrix [(M*.M) - Thig
can be performed by Gaussian elimination over Fy, which has a complexity of O((n — k)k?)
or O((n — k)?k), whichever is lowest. Because calculating the marginal dimension of any
marginal with k& > [ 5] is not relevant (see sec. 6.3), the complexity of calculating dys is
O((n — k)k?).

For a given graph size n and marginal size k, there are (2) = #'),k, marginals. This
means that, using Sterling’s approximation, calculating the dimensions d; of every M with
a fixed size k is O(k3~FnF+1). Tt follows that the complexity of calculating I, or Tj, of an
n-node graph G for k > 2 is of that same order.

For t,, the eigenvalues of an n x n Hermitian matrix have to be calculated. Although
there technically exist bounds that are lower, in practice this is O(n?). Thus, calculating 178
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FIGURE 6.8: The two graphs P (the Peterson graph) and P are isomorphic: permuting all
‘inner’ with all ‘outer’ nodes of one graph results in the other. Hence, the graph states |P)
and ‘15> are part of the same entanglement class. Moreover, beyond their marginal lists [},
and eigenvalues t;, their marginal tensors T} coincide as well. However, they are not LU-
equivalent; this shows that there are cases were different LU-orbits cannot be distinguished
by the methods presented in this chapter, even though they are part of the same entanglement
class.

is O(k2~Fn*1) or O(n3) if given access to T

6.7 | Conclusion

The methods that are presented in this chapter can be used to inspect the local equi-
valence of graph states, and by extension stabilizer states. They consider LU-equivalence,
so that the methods are more versatile than the results that focus solely on LC-equivalence
that were presented in chapter 4.

It should be noted that recent work, Pub. [H] ([117]), introduces a new method to verify
the LU-equivalence of graph states. It is an algorithm that works similar to the Bouchet
algorithm for LC-equivalence (see sec. 4.4): it takes two graphs as input, and outputs
either NO if the two graphs are not LU equivalent, or outputs an exact form of the local
unitary operator under which they are equivalent. The first step of the algorithm involves
an inspection of the marginals dimensions such as presented in this chapter. A subsequent
step of the algorithm is exactly the method used in Pub. [G] to show that the two graphs
from F1G. 6.7 are LU-inequivalent.

This chapter has focussed on equivalence of graph states solely under local unitary op-
erations. Although e.g. chapter 5 addresses the more general setting that includes meas-
urements, it does this for a very specific set of resource and target states. The effect of
measurements on the stabilizer dimension can be studied, so that potentially the methods
presented in this chapter can be adapted to assess the equivalence of graphs when node
deletions are included.

Part II has introduced and discussed, through chapters 4 to 6, various methods to study,
characterise and manipulate multi-partite entanglement in networks. Part III, the next
part of this thesis, aims to discuss the utilization of multi-partite entanglement in quantum
networking and cryptography. More specifically, the usage of multi-partite entanglement
is studied in networking tasks where anonymity must be guaranteed. In such anonymous
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settings, the identity of the nodes of a network that are involved in the networking protocols
must remain hidden from other parties.






PART III

ANONYMOUS CONFERENCE KEY
AGREEMENT






INTRODUCTION TO QUANTUM
CRYPTOGRAPHY

In part II the question was addressed how to manipulate or obtain different forms of entan-
glement in quantum networks, with a focus on multi-partite entangled states. Part III takes
a turn to a more operational topic, by studying how multi-partite entanglement can be used
in networking protocols to realise cryptographic tasks. Specifically, the topic of anonymous
conference key agreement (ACKA) is discussed in chapters 8 to 10.

Conference key agreement (CKA) is a generalisation of the well-known topic of quantum
key distribution (QKD) to more than two parties. QKD provides a method for two parties
in a network to establish a secret key that can be used for cryptographic tasks.

The topic of anonymity in quantum networking is relatively new. Here, the goal is not
to hide e.g. the content of a message, but rather the identity of the source, or recipient, or
both. As such, it can be interpreted as an addendum to the requirements of a cryptographic
protocol: ACKA aims to provide conference key agreement, with the added requirement
that the involved parties remain anonymous.

This chapter introduces the concepts regarding QKD that are applicable to this thesis.
For completeness, the basics of cryptography that are relevant to this thesis are discussed
first, in sec. 7.1. In sec. 7.2, the fundamental concepts of QKD are introduced, and an
intuition behind its functionalities and security is discussed.

Modern QKD thrives because of rigorous security definitions, that cover both the secrecy
and correctness of the generated key. Secrecy indicates that the key is only known to the
parties that are communicating, colloquially referred to as Alice and Bob. Correctness
indicates that the keys that Alice and Bob generate are identical. Section 7.3 provides this
rigorous security definition.

An integral part of any QKD protocol to obtain security is post-processing, which can be
understood as a collection of steps to perform error correction, providing correctness, and
privacy amplification, providing secrecy. These post-processing steps, and how they imply
security through security proofs, are addressed in sec. 7.3 as well.

Conference key agreement, the generalization of QKD to more than two parties, is ad-
dressed in sec. 7.4. Subsequently, the concept of anonymity is introduced in sec. 7.5, which
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specifically discusses anonymous conference key agreement (ACKA), the topic of chapters 8
to 10 that are based on Pubs. [A] to [E]. The chapter is concluded in sec. 7.6.

The contents of this chapter are largely an introduction based on literature [7, 17, 72],
with the exception of sec. 7.5, whose contents (including the definitions of anonymity) were
originally presented in Pubs. [A] and [C].

7.1| Basics of cryptography

Cryptography is a field of research with a wide range of applications. The original and
most widespread application is that of private communication, which this chapter will mostly
focus on. More specifically, the setting has two parties that are colloquially known as Alice
and Bob but also referred to as A and B'. Alice and Bob want to communicate: they want
to exchange a message, usually assumed to be sent by Alice to Bob. Alice and Bob are
physically separated from each other, but can communicate over e.g. the internet. Either
way, they cannot prevent anyone from inspecting their messages, reading and potentially
copying them. Complementing the names Alice and Bob, this eavesdropper is known as Eve,
or just E, and is additionally referred to as the adversary. The means of communication
that allow Alice to send a message to Bob is referred to as a channel. Since any potential
adversary is assumed to be able to read the contents of the message, the channel is said to
be a public channel.

To prevent Eve from being able to read the message Alice encrypts the message m,
resulting in a cyphertext c. Instead of sending m she sends ¢ over the public channel: Eve
then has access only to ¢, but not to m. Provided Alice and Bob use a good encryption
scheme, m cannot ‘reasonably’® be obtained from ¢, so that Eve is not able to read the
message. Bob, upon receiving ¢, decrypts the cyphertext and recovers the original message
m.

It is then the question why Bob would be able to decrypt the message, whereas Eve is
not able to do so. To obtain this desired effect, Alice and Bob need to use a shared secret k,
called the key. The encryption and decryption both use k, so that without it decryption is
not possible. This means that the key needs to be strictly secret and only shared between
Alice and Bob. There are two solutions to realise this:

e Before the protocol runs, Alice and Bob meet and agree on a secret key, or they use
a trusted courier (i.e. a ‘private’ channel). This is usually referred to as a pre-shared
secret.

e Alice and Bob perform public key exchange [139], so that they can agree on a secret
key. The most well-known examples of public key cryptography are Diffie-Hellman key
exchange [57] and the RSA cryptosystem [58].

The first option is not always applicable or practical, but the second option is only
possible using assumptions on the power of the adversary. More specifically, the key exchange
process is facilitated by calculations that are straightforward to perform in one direction, but
are hard to invert. The assumption is then that these calculations are too hard to perform
for the adversary, and therefore these assumptions are called computational assumptions.
The most well-known example of such a one-way function is calculating the product of
two co-prime numbers, which comes from the RSA cryptosystem. Computing products of
two numbers is straightforward with simple computers, but factoring to retrieve the two
original co-prime numbers from their product is increasingly hard. This task generalizes to

1A and B is used to refer to the quantum systems of A and B as well, if they have one.
2What is meant by reasonably is addressed later in this section.
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the discrete logarithm problem, which additionally is the relevant one-way function of most
Diffie-Hellman key exchanges.

Factorization and solving the discrete logarithm problem is classically hard to perform,
but there exist efficient quantum algorithms to perform these tasks - most notably the cel-
ebrated Shor’s algorithm [61, 62]. Hence, with the recent advent of (rudimentary) quantum
computers [59, 60], there is a need for different methods to obtain shared secret keys.

Quantum Key Distribution (QKD) aims to provide shared secret keys by the commu-
nication of quantum signals. In principle, this approach allows for information-theoretic
security: no assumptions or restrictions are put on the adversary, but the security of the
process comes from the laws of physics. Providing that our understanding of nature is
correct, QKD can provide unconditional security?>.

7.1.1| Security of the key

Regardless of what method Alice and Bob use to obtain a shared secret key, it results
in Alice having a key k4 and Bob having a key kp. In the ideal case k4 = kg = k, but in
an imperfect scenario the two keys will not be identical. Still, the keys need to be strongly
correlated (see sec. 1.4): knowing k4 gives a lot or all information regarding kg, and vice
versa. At the same time, k4 and kg must be as uncorrelated as possible with whatever
information Eve has access to. This information is referred to as Eve’s side information,
and includes all communication over public channels and any quantum registers that Eve
may have. Non-perfect cases, which are inevitable in the real world, need to be carefully
treated. Under such careful treatment, even when the keys are not completely correlated
with each other, or completely uncorrelated with Eve’s side information, security can be
obtained. An intuition why QKD provides security is discussed in sec. 7.2, while sec. 7.3
addresses security and how to prove it in more detail.

7.1.2| Authenticated channels

The concept of public channels allows anyone to see the contents of a communicated
message, but an important assumption on the channel usually remains: it is often the case
that the channel is authenticated, which means that Bob knows that the message came from
Alice. Such an authenticated channel is usually necessary to perform many cryptographic
tasks, including QKD. To realize an authenticated channel is not a trivial task, but the RSA
cryptosystem can be used to implement one. However, this would nullify the purpose of
QKD, as RSA resides on computational assumptions. QKD, aiming to provide unconditional
security, would then inevitably make use of RSA, which it is trying to replace.

The security and effectiveness of QKD is debated mostly regarding the topic of channel
authentication. A somewhat unsatisfying solution is offered by the perspective that, even
if assumptions must be made, these assumptions must hold only during the QKD-process,
resulting in ever-lasting security afterwards. This is in contrast to purely classical methods:
there, all encrypted communication can be copied and stored during transmission, and
cracked and decrypted later?.

Another approach is to utilize a shared secret between Alice and Bob to realize an
information-theoretic authenticated public channel. If the key that is created is longer than
what was initially necessary to realize the authenticated channel, there is a net positive
amount of key that comes out of the protocol. Repeated rounds of QKD can then realize
an arbitrary amount of secret key. In this sense, QKD is a key-growing or key-expanding
protocol. This is the approach taken in this thesis as well: Alice and Bob are always assumed

3 An implicit assumption that is still present is that the communication channels are authenticated, which
will be discussed shortly.

4 An adversary model aptly named store-now-decrypt-later. It is believed to be widely used currently by
many larger parties, with the promise of quantum computers on the horizon to eventually break the current
encryption.
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to have a shared initial secret, from which they can obtain more information-theoretically
secure key.

7.2 | Introduction to quantum key distribution

QKD is not a single set of rules, but a conglomeration of different techniques and methods
that all involve quantum communication to realize secure and secret key. BB84 [6], the
first proposed QKD protocol, is a prepare-and-send protocol [17]: in such protocols, Alice
prepares a quantum state and sends this (over a public quantum channel) to Bob. Other
prepare-and-send protocols include the siz state protocol [140] and the B92 protocol [141].

Modern security proofs [1] obtain security for prepare-and-send protocols by a reduc-
tion to equivalent entanglement-based protocols [17], that utilize entangled states and the
non-classical correlations that they can provide to obtain security. The most well-known
entanglement-based protocols are E91 [142], which essentially performs a Bell test [34, 83]
to guarantee that any adversary must be uncorrelated with Alice and Bob, and BB92 [143],
which is closely related to BB84 and does not involve a Bell test. BB92 is easier to implement
than E91, but E91 has a stronger security guarantee. In particular, due to the Bell test, less
trust needs to be put in the hardware that Alice and Bob use to implement the protocol. As
such, E91 can be seen as the first device independent QKD (DI-QKD) protocol [144], where
(at least some of ) the hardware of Alice and Bob is treated as a black box. Eve is assumed to
have full power over this hardware. Surprisingly, security is still possible in such a scenario,
but performance is often detrimentally affected in comparison with QKD protocols that are
not device independent.

There exist myriad other, different QKD protocols [17] that function in many distinct
ways, but a complete overview is beyond the scope of this thesis. Instead, this introduction
focusses on entanglement-based protocols only.

7.2.1| The basics steps of a QKD protocol

Any QKD protocol can be understood to consist of four or five separate parts, of which
only the first actually involves quantum communication. The other steps are considered
post-processing and are purely classical, but do involve (classical) communication. In the
first step, one or more quantum states are prepared, communicated as quantum signals
and subsequently measured. The communication is not necessarily from Alice to Bob: the
direction could be reversed, and it is also common that a third party is involved, who
creates the quantum states that Alice and Bob receive. Additionally, there are two-way
QKD protocols, in which the quantum signals are being sent forth-and-back. These are
addressed briefly in sec. 7.2.2.

After the communication, Alice, Bob or both perform some measurement resulting in
an outcome on their respective quantum systems A and Bj; these outcomes form the basis
of the ultimate key. The choice of measurement basis is usually random for every party
that measures, and it needs to be recorded. This first step is repeated many times, so that
enough key can be created. This concludes the quantum part of the protocol.

The second step, called sifting, involves discarding part of the generated measurement
results. Sifting does not occur in every protocol, but is necessary for every round where
Alice and Bob used incompatible measurement bases - what is considered incompatible is
dictated by the specific protocol. What is left over is known as the raw key, with length L,
referred to as the block size.

Due to the presence of noise in the quantum channel and a (potential) adversary that is
interfering, the sifted raw keys of Alice and Bob might not be identical or secret. Integral
to QKD is that active interference of an adversary would always result in a certain type of
noise on the raw key, which can be estimated. This noise needs to be accounted for in later
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steps, but these steps reduce the length of the raw key - the worse the noise, the more raw
key has to be forfeited. If the amount of noise reaches a certain threshold, it is assumed
that Eve has interfered to such an extent that no secret key can be created. It is therefore
vital that the noise levels are estimated and compared against pre-determined thresholds -
this step is known as parameter estimation.

The noise that is not attributed to an adversary results in incorrect keys: Alice’s and
Bob’s raw keys are not identical. This would render them unusable in any cryptographic
application, so that the differences between the two raw keys have to be corrected. The step
called error correction performs this, which involves some public communication between the
two parties, and allows Bob to correct any errors his raw key might have w.r.t. Alice’s raw
key. Error correction involves another round of public communication, so that the success
of the error correction can be verified.

Any noise that can be attributed to Eve, is assumed to be caused by her. The amount
of correlation (measured in a suitable entropic measure, see sec. 1.4) that Eve can have with
the raw key (identical for Alice and Bob after error correction), is directly computed from
the amount of noise. This correlation with the raw keys is removed by Alice and Bob by
distilling the secret key from the raw key. The final step, privacy amplification, provides
this: it distils a secret key of length ¢ < L from the raw key.

The necessary reduction in key length by privacy amplification is upper bounded by the
amount of side information that Eve can have. This includes the amount of correlation com-
puted from the noise level, and additionally includes the amount of public communication
during error correction.

To simplify analysis it is often assumed that L — co. However, for finite L, finite effects
are introduced in the parameter estimation, which additionally have to be accounted for.
In this finite regime, the parameter estimation is imperfect, so special care in the security
proofs needs to be taken. This can greatly complicate the analysis, especially for smaller
block sizes L. Such finite key effects reduce the key length ¢ further, but their influence
vanishes for larger block sizes. These finite key effects are largely determined by the fact
that, for smaller L, there is a larger ambiguity in the estimated parameters. To still provide
security, this statistical uncertainty is taken in the ‘worst-case’ interpretation, so that the
estimate of the noise level becomes much higher than its true level.

If the noise levels are too high, or the finite key effects are too strong (i.e. when L is
too small), no distillation is possible with a non-negative secret key length. Increasing the
block size always provides better parameter estimation, so that ¢ is (relatively) larger for
larger L, even for fixed noise parameters. To emphasize the dependence on the block size,
the secret key length ¢ will usually be written as a function of L in this thesis, i.e. £(L). It
is thus natural to consider the ratio of amount of secret key per block size L. This ratio is
called® the key rate r, and is monotonically increasing with L and decreasing with the noise
parameter.

In the setting that an infinite number of rounds have occurred, all the finite key effects
have vanished. In this asymptotic regime, the key rate becomes the asymptotic key rate rg:

re = lim Z(L).

For many QKD protocols, finite key effects become unimportant for a block size of L ~ 107,
so that the finite and asymptotic key rates practically coincide.

5To call this the key rate is a convention used by theorists. Experimentalists, on the other hand, might
use the term ‘key rate’ for something else, namely roughly the number of generated raw key bits per ‘channel
uses’ (e.g. laser pulses). These two notions are incompatible.
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7.2.2| Other topics in QKD

There are various topics and details that have not been addressed in the previous sections,
even though they warrant mentioning. They are listed here in arbitrary order.

Attenuated laser pulses and the PNS attack

Early QKD protocols like BB84, E91 and BB92 all assume that the quantum signals
that are being communicated are true single-qubit states. Although a single qubit can be
represented by a single photon, in practice it is extremely hard, if not impossible, to create
a single photon and send it over macroscopic distances without it being lost. To circumvent
this, an attenuated laser pulse can be used instead: a coherent bundle of single-wavelength
photons that follow a Poisson distribution with an average photon number p that is below
one. Such beams of light are much easier to communicate over long distances, but they
involve intricacies due to the fact that the signal is not represented by a single qubit any
more. More specifically, even though the average number of photons p is below one, there
is a finite chance that multiple photons exist in the channel, which can create problems for
security. The most well-known such problem is the photon number splitting or PNS attack
[145, 146], where Eve ‘snoops’ any extra photon that might exist in the channel. Without
alteration of the underlying protocol, this has strong implications on security and drastically
affects the key rates, but methods exist to remedy this attack.

Indeed, by sending decoy states [147-149] this attack can be mitigated. Instead of send-
ing the normal pulse with average photon number u, a decoy state pulse can be randomly
sent. This decoy state pulse has an average photon number randomly chosen from a pre-
determined set of values; only after all communication has happened the average photon
numbers are communicated. Other approaches exist, like the SARGO4 protocol [150], which
circumvents the PNS attack by not directly communicating the measurement bases (neces-
sary for sifting), but encoding them in two non-orthogonal quantum states (much like the
B92 protocol).

Another approach to solve the PNS attack is to not use an attenuated laser as the
quantum signal source, but instead use a source that is able to create a photon distribution
that is much more close to a true single-photon distribution. Most notable are the quantum
dots [151], which provide a distribution that results, at least in theory, in stronger key rates
than decoy-state methods.

Continuous variable QKD

Modern security proofs [1] don’t assume that the transmitted signals are single qubits,
but model the quantum states in Hilbert spaces of arbitrary (but finite) size. This means
that the signal is still discrete (i.e. a superposition of a discrete number of basis states), so
that these types of protocols are known as discrete variable- (DV-) protocols [17].

In comparison, continuous variable- (CV-) protocols [17, 152-154] use continuous signals
in infinite Hilbert spaces [155, 156]. Such CV protocols are less prone to noise and have
a higher theoretical limit on the key rate per channel use. However, even though security
proofs exist [157, 158], both error correction and finite key effects are much harder to address,
which makes CV-QKD less practical with current technologies.

Two-way QKD

All protocols that have been named involve Alice sending a (quantum) signal to Bob, or
a third party distributing entanglement between the two parties. These protocols are known
as one-way protocols, as they involve signals going from one location to another, but never
back over the same channel.

In contrast, two-way QKD protocols [159, 160] involve multiple rounds of quantum com-
munication back and forth between Alice and Bob. In a two-way protocol, Bob applies a
unitary transformations to the signal before sending it back, instead of immediately meas-
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uring it. Such protocols allow, in principle, for high key rates, but are greatly affected by
noise. Moreover, due to their two-way nature and because they involve unitary operations
on the signal, they are considerably harder to implement than most one-way protocols.

Measurement device independent-QKD

Measurement device independent- (MDI-) QKD protocols [161, 162] can be seen as a
‘time-reversed’ BB92 protocol: instead of a third party distributing entangled states between
Alice and Bob, the two parties send BB84-encoded states to a third party, usually referred
to as Charlie. Charlie subsequently measures the two incoming quantum signals together in
the Bell basis, and announces the measurement outcome.

For the correct Bell state outcome (that is obtained with non-unit probability), Alice
and Bob are guaranteed to have correlated input states if they used the same basis to encode
their states. As such, they do not have to announce the states that they encoded, but merely
the bases. This means that Charlie does not need to be trusted, and at the same time that
neither Alice nor Bob need to have access to a measurement device, that can be costly and
impractical.

Security assumptions

In every QKD protocol there are certain assumptions made - sometimes explicit, some-
times implicit. Great care needs to be taken to charter these assumptions, because a protocol
that fails to meet these assumption may be rendered insecure. A good example is given by
the PNS attack: the assumption that the quantum signal is a single qubit is not met, while
security implicitly assumed this to be the case. Many other so-called side-channel attacks,
colloquially known as quantum hacking [17], are made possible by not carefully laying out the
assumptions. In a way, one can view DI-QKD as the result of removing as many assumptions
as possible.

The PLOB bound

The different types of protocols that have been discussed can all obtain different keyrates,
where certain types perform notably better than others. Nevertheless, there exists a funda-
mental limit to key rates that any type of protocol cannot exceed. This bound is known as
the PLOB-bound and is named after the four authors that introduced it in [163]. It does
not assume any structure for a QKD protocol, but instead is derived purely from quantum
information theoretic arguments by invoking channel capacities [36]. It provides an ultimate
limit on asymptotic key rates that any type of DV- or CV-QKD protocol may obtain. How-
ever, the bound is for repeater-less communication: they can be overcome by introducing
quantum repeaters [164], which are essential building blocks of a global quantum internet
that extend the reach of entanglement by performing entanglement swapping (see TAB. 2.3).

7.2.3 | Quantitative intuition for security in QKD
In a basic entanglement-based QKD protocol, Alice starts by preparing a Bell pair |Boo),
after which she sends half of the pair to Bob®. Alice and Bob both measure their respective
qubits randomly in either the computational or the Hadamard basis. Whenever they picked
the same basis, their outcomes are perfectly correlated, as writing |Bgp) in either the Z or
X Dbasis shows:

|Boo) o |00) + [11) = |[++) + |——). (7.2)

Thus, Alice and Bob perform their measurements in the random bases, and only after obtain-
ing their measurement outcomes they announce their chosen basis. If the bases coincide,
they can use their measurement outcomes as the key, since their outcomes are perfectly

6 Alternatively, this could be in the other direction, or there could be a server distributing the state. The
important point is that, after the communication has happened, Alice and Bob share an EPR pair.
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correlated. If they had opposite bases, they discard their measurement (i.e. sifting). By
repeating these steps they can create secret key of any length.

The fact that perfect correlations in two different bases can be obtained has no classical
analogue, and provides the fundament for security of QKD. If the adversary Eve were to
intercept the quantum signal, she could e.g. measure the qubit, and then send it to Bob.
However, such a measurement will make the qubit collapse to the measurement outcome,
which means that Alice’s qubit collapses to the same outcome (see (7.2) and the discussion
around TAB. 2.2). Importantly, Eve has to make a choice whether to measure in the Z or
X basis. Consider, for example, that she measures in the X basis, and obtains the outcome
|+). After she forwards the qubit, the state that Alice and Bob have is thus |[4++); if Alice
and Bob happen to both measure in the Z-basis, their outcomes are individually random
- they are completely uncorrelated. The possible outcomes are, all with equal probability,
(0,0), (0,1), (1,0), (1,1): half of these outcomes are not correctly correlated. Thus, if Alice
and Bob verify their outcomes, they find out - with 50% probability - that their outcomes
have the wrong parity. A total of m repetitions of these tests would fail to catch Eve with
probability 27, which is exponentially small in the number of such tests.

Therefore, it is vital that Alice and Bob use part of their measurement outcomes to
verify the parities. Because Eve may act maliciously only during those rounds that are not
used for verification, it is important that the selection of verification rounds is random, and
only selected after the measurements have taken place. Alternatively, Alice and Bob could
secretly coordinate this choice beforehand, but Eve should not learn this selection.

Moreover, even in the absence of any adversary the correlations will never be perfect
due to noise. Any modern protocol allows for some noise, and therefore for some of these
verification rounds to fail. Although somewhat imprecisely stated, the rate of failure of these
verification rounds can be referred to as the error rate of the implementation. Sometimes,
this is called the (X-basis) ‘QBER’ (Quantum Bit Error Rate) or Qx. Additionally, an
estimate must be made for the error rate in the rounds which are not used to verify the signal,
but for the actual key generation. This key-generation error rate might be independent from
Qx, and is often named” Qz or Z-basis QBER. An estimate of both these error rates needs
to obtained, which is done during the parameter estimation step® of the protocol. Often
there is a pre-determined maximum threshold that Alice and Bob have agreed upon, so that
when they find a QBER that exceeds this, they abort the protocol.

The attack by Eve proposed above covers only one specific strategy that she might use,
so that the analysis so far is not a complete security proof. Taking a more abstract but
completer perspective, the security of QKD follows from the monogamy of entanglement
[165]. Loosely stated, it means that when two qubits A and B are entangled with each
other, neither can be entangled with another quantum system C. If Eqn (A : B) is a suitable
entanglement measure [35] (like e.g. the entanglement entropy, see Def. 6), this monogamy
can be quantified:

Eent(A: B) 4+ Eoni (A : C) < Eent(A : BC) (7.3)

One consequence from (7.3) is that, if Eont(A : B) is mazimal, then
Eent(A : C) < Eent(A : BC) - Eent(A : B) =0. (74)

An entanglement measure vanishes on separable states, so the monogamy of entanglement
guarantees that if A and B are maximally entangled, F is completely separable from A (and,

"In principle ‘X’ and ‘Z’ are arbitrary labels for the testing and key generation rounds, but it is often the
case that these rounds indeed involve measurements in those specific bases, e.g. in the protocols introduced
in chapters 8 and 9.

8Sometimes a pre-determined estimate of Qz is used instead of estimating it during the protocol run, as
it does not affect security to do so, and errors in the key are either solved by error correction, or the protocol
is aborted. However, it is vital that Qx is determined during the protocol, as security is derived from it.
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by extension, from B). In other words, maximally entangled states cannot be entangled with
any other system, which mean that they can not be correlated either.

7.3 | Security of QKD

The discussion in sec. 7.2 provides context and intuition for the security of QKD, but it
makes no rigorous statements. Moreover, it does not even properly define what it means for
a key to be secure, let alone how any key generated by QKD adheres to such a definition.
This section makes all these topics more precise. First, in sec. 7.3.1 a rigorous definition
of security is given. The methods that obtain security in QKD under this definition are
addressed in the rest of the section. Specifically, sec. 7.3.2 discusses error correction, the
tool to assure that the keys of Alice and Bob are identical. Section 7.3.3 discusses the concept
of privacy amplification, which is the tool to assure that the generated key is uncorrelated
with the adversary Eve, and therefore secret. How these tools exactly provide security under
the rigorous definition is detailed by a security proof of a protocol, which is discussed in
sec. 7.3.4.

7.3.1| Security definition

Beyond the intuition that it provides, the monogamy of entanglement, as introduced in
the previous section, allows for a more quantitative approach. Let A and B be the quantum
systems of Alice and Bob, and let E be the combination of all the quantum systems and
classical registers that Eve has access to, that together contain her side information. The
complete state of A, B and E is papg, some statistical mixture of pure states in Hapg. If
the reduced state pap = trg [papg| of Alice and Bob is equal to the Bell pair:

tre [pase] = [Boo)Bool » (7.5)

then it follows from the monogamy of entanglement that the state p4pg must be separable
over the bi-partition AB : E, so that the full state may be written as:

paBe = |Boo)Boo| ® pE, (7.6)

for some arbitrary state pg. This is the basis of DI-QKD: if Alice and Bob can confirm that
they share the state |Bgp) (or any other maximally entangled state), they are guaranteed
that the state is correlated with nothing else, not even other parts of their own hardware,
or any secret side channels that Eve might have implemented in either of their labs.

Still, verifying that the entanglement is indeed maximal is not easy; in general, extra
steps need to be taken which will affect the key rates. Moreover, (7.6) provides, in a sense,
too much: what is needed is not a statement on the state that Alice and Bob share w.r.t. the
adversary, but rather a statement on how their generated keys, k4 and kg, are correlated
with Eve’s side information.

Historically, security was defined [166, 167] in terms of the mutual information In(ka :
kg) [7, 36] between Alice’s key k4 and a (hypothetical) key kg in the possession of Eve,
or the definition was adapted to use the accessible information [7, 36] instead. However,
intricate problems with this definition mean that the key can only be regarded secure as
long as it is not used in any subsequent application [168, 169], and thus the definition does
not imply any practical security [170].

The problems are solved by the concept of composable security, developed originally in
the scope of classical cryptography [171] and subsequently adapted to the quantum setting
[168]. Notably, the framework of abstract cryptography [172, 173] provides an approach where
security is defined in terms of closeness to some ideal scenario. This scenario is represented
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by the ideal result of a QKD protocol, the state piqeal:

1
pideal = 7= Y [ka)kal ® pp, (7.7)
Kl e

where K is the set of all allowed keys, which is usually the set of all bit strings of a fixed length
£. Note that this state is not on the compound system AF, but rather on the compound
system X F, where X4 is a classical register that holds the key of Alice. Therefore, the
ideal state disregards the quantum system of Alice: this allows, as noted earlier, to derive
a statement on the correlation between Eve’s side information and just the key of Alice,
instead of her entire quantum system. Ultimately, this means that the security of a QKD
protocol can be stated in terms of the output key only, and not in terms of the quantum
system of Alice (which would, as noted earlier, be doing ‘too much’).

Note that the ideal state does not contain Bob’s key kp. This is because the definition
of security is split into two parts, so that correctness and secrecy are covered separately.
Correctness ensures that k4 and kp are identical, and secrecy ensures that Alice’s key is
uncorrelated with any side information of Eve; by extension Bob’s key is then secret as well.

No implementation of any QKD protocol will ever be perfect, and therefore only approz-
imate security can be obtained. This introduces the need of security parameters, usually
denoted with € << 1, that represent the level of security that the protocol provides. The
actual state px,x,p is then a state with classical registers X4 and Xp holding the keys
ka and kp of Alice and Bob, and a quantum register E representing all side information in
possession by Eve. This state needs to be close to the ideal state; how close is encoded by
the security parameter. This allows e.-correctness and e4-secrecy to be defined:

Definition 29. [78] A QKD protocol that outputs ka and kp is e.-correct if:
Prlka # k) < e (7.8)
Definition 30. [78] A QKD protocol is es-secret, if:

Dtr(PXAEvpideal) g Es, (79)
where Dy (a,b) denotes the trace distance (see (1.29)).

Note that, as mentioned before, Bob’s register is dropped in the definition of secrecy.
However, this has no effect on security [174]. Finally, a QKD protocol is (e, + £5)-secure if
it is e,-correct and e,-secret”.

7.3.2| Error correction

Because the definition of security separates correctness and secrecy, they can be addressed
separately. Correctness is addressed first using error correction, which is also known as
information reconciliation [176]. At this point in the protocol, Alice and Bob are assumed
to have keys ka4 and kp that are not necessarily equal, but are at least highly correlated
(i.e. Bob’s key has some, but not too many errors compared to Alice’s key). The relative
number of errors, i.e. the error rate, can be quantified by e.g. upper bounding the conditional
Shannon entropy H(kalkp) (see Def. 3).

To correct these errors, Alice and Bob use an error correction scheme: Alice calculates
the error syndrome eg from her key k4, and sends this over a public channel to Bob. The
error syndrome is a bit string that characterizes the key k4 but is considerably shorter than

9n both Defs. 29 and 30 the concept of robustness [175] has been omitted. A more complete definition
would include this, but it is not strictly necessary for the current discussion. Robustness roughly encompasses
the notion that a QKD protocol should, in the presence of ‘not-too-much-noise’, still succeed with a decent
probability.



Page 105 7. INTRODUCTION TO QUANTUM CRYPTOGRAPHY

it, and therefore cannot contain a complete characterization of the key. However, the error
correction scheme allows Bob, given kp and e;, to decode a key k; that is the same as k4
with extremely high probability:

p = dec(kp, es). (7.10)

The length of the error syndrome plays an important role and depends on the chosen error
correction code. If e; is chosen too short, the code may fail to correct all the errors of
kp wr.t. kg. At the same time, it should be chosen as short as possible: it must be
communicated publicly, so that all information of k4 that is encoded in the syndrome is
learned by Eve. The theoretical minimum of the length of e, is given by the aforementioned
conditional entropy [177], but real error correction will suffer from some inefficiency f > 1.
This results in a lower bound of the relative length of the error syndrome:

= = fH(kalkp), (7.11)
|kl
where |k 4| is the length of the key k4. Still, codes exist that can obtain f — 1 and thus
can get arbitrarily close to the theoretical minimum rate.

The quantity H(ka|kp) must be estimated, which Alice and Bob do during parameter
estimation by e.g. cross referencing part of their keys k4 and kp. Note that this reduces
the effective length of k4 and kp: this cross-referencing is done using the public channel, so
that these communicated bits can not be used as raw key any more.

In the asymptotic limit, (7.11) will reduce!” to the binary entropy h2(Qz) (see (1.40))
of the Qz error rate [77]:

= h2(Q2z). (7.12)

Although this is a theoretical limit, there exist many practical codes that can approach the
limit for many different error rates @z and key lengths |k4|. A choice that is often used is a
low-density parity check code (LDPC) [178], for instance that of the DVB-S2-standard [179].
Finally, note that instead of estimating () during the protocol, Alice and Bob can use a
pre-determined characterisation of the typical Z-basis QBER.

To obtain an actual quantitative bound on the correctness of the key, Alice and Bob need
to verify the error correction scheme. For this they use a two-universal hashing function [180,
181], which is a function that takes the key as input and outputs a hash: a bit string of
length ¢ < n. Alice and Bob compute their respective hashes, t4 and tg, both with length
t. Alice communicates her hash ¢4 to Bob over the public channel, and Bob verifies that
ta = tp. The relevant property of two-universal hashing functions is that, if t4 = tp, it is
extremely unlikely that k4 # kp [1]:

Prka # kplta =tg] < 27" (7.13)

From (7.13) and Def. 29 it is thus immediate that e.-correctness is obtained when ¢ = log -
Note that ¢, scales (inverse) exponentially with the hash length, which is a highly des1rable
property. This means that the hash is relatively small, and independent of the key size.

10This reduction only works well if the different errors in the bit string are independent from each other,
i.e. uncorrelated with other errors in the bit string. In the standard practice of DV-QKD, where the
measurement outcomes that lead to the raw key are binary outcomes, this is a sound assumption. In
CV-QKD the measurement outcomes are continuous, so they are first discretised and then mapped to a
bit string before error correction. This makes the (bit-)errors highly correlated between each other, which
complicates the error correction process. This is one of the reasons why CV-QKD, although better in theory,
performs worse in practice.
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7.3.3 | Privacy amplification

Privacy amplification, the final step of a QKD protocol, is arguably the most important,
because it provides the actual secret key. As stated before, an upper bound to the amount
of side information that Eve has can be directly computed from the X-basis QBER Qx.
Additionally, the public communication during error correction (i.e. both the error syndrome
and the hash) needs to be accounted for.

Privacy amplification can intuitively be understood as removing any left-over correlation
between the key and any side information in the possession of Eve. This step is made possible
by once again applying a two-universal hashing function, because of another property of two-
universal hashing functions that can be interpreted as the inverse of (7.13): for two inputs to
the hashing function that are not exactly the same, it is extremely unlikely that the outputs
are the same. As such, the outputs are truly uncorrelated, even though the inputs might
be somewhat correlated. Again, the length ¢ of the output of the two-universal hashing
function is necessarily shorter than the length |ka| of the input.

To obtain a truly random key, the key length must be reduced by at least the amount
of information that Eve can have about the original key. This is upper bounded by her
side information, estimated by @Qx, plus that information she can learn from the public
communication. It is hard to exactly determine how much information Eve can learn from
this communication, but it can never be more than the lengths (in bits) of the error syndrome
and hash.

In the asymptotic limit, the amount of Eve’s side information is given by the binary
entropy of QQx, and sec. 7.3.2 explained that the length of the error syndrome is given by
the binary entropy of Q7. Subtracting these, this results in an asymptotic key rate r,:

ra =1— ha(Qx) — ha(Qz). (7.14)

Note that (7.14) does not depend on the hash length. The length of the hash is independent
of the key length, as explained in sec. 7.3.2, and therefore vanishes in the asymptotic limit.
In practice, Alice and Bob often choose the (type of) hashing function in advance, so that
they use a fixed error rate Qo) instead of the true Qx in the privacy amplification. They
then verify that (Qx is not above this threshold. The benefit in doing so is that then only
one of the two parties needs to be able to estimate @ x, but it comes with the drawback that
technically they could obtain a longer secret key by using @ x. Furthermore, note that the
hashing function should be chosen randomly from a family of two-universal hashing functions
during the protocol - this choice is usually made by Alice and can be communicated publicly
to Bob, but choosing it during the protocol, instead of pre-determining it, ensures security''.
Note that in the asymptotic limit, the dependence of the key rate on the security paramet-
ers has vanished, exactly because the guarantees given by (7.13) and the reverse statement
for privacy amplification are only dependent on the length of the hash, but not of the input.
In the finite regime, the key rate will indeed be dependent on the security parameters
and block size L. Furthermore, using different security proofs, a single QKD protocol might
have different keyrates. Security proofs are discussed in more detail in the next section.

7.3.4 | Finite keys and security proofs
A security proof is a complete proof that shows that a specific QKD protocol is (e, +¢€5)-
secure, usually for security parameters that can be chosen arbitrarily small. In doing so, it
gives (an upper bound on) ¢, the amount of secret key that can be obtained - which is usually
dependent on the desired values of the security parameters. Security proofs exist for both

1n this setting, the two-universal hashing function is a randomness extractor [182]. For technical reasons
[182-184], this extractor needs a seed, an (uncorrelated) random bit-string, which makes the random choice
from the family. Recently, seedless extractors were considered [185]. However, these cannot function with
the conditional min entropy [186] as the extractor promise, so the left-over hashing lemma can not be used.
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general DV-QKD protocols [1] and general CV-QKD protocols [157, 158], and additionally
for more specific types of protocols like MDI-QKD [187] and DI-QKD [144].

An indispensable tool in these proofs is the leftover hashing lemma [1, 78]. It provides
an upper bound to the trace distance from Def. 30 in terms of the smooth conditional min-
entropy Hrgn/in(kA‘pE) (see (1.45)), and guarantees that by using privacy amplification an
es-secret key can be extracted with the length:

' 1
€= He (kalps) +2 — 2log () , (7.15)

for any € > 0 and &’ > 0 s.t. € + 2¢’ < &5 [46].

Aided by the leftover hashing lemma, proving security reduces to obtaining a bound on
the smooth conditional min-entropy an/in(k alpe). There exist many different techniques
that can provide such a bound. If Eve is assumed to attack every round of quantum com-
munication independently and identically (the i.i.d. setting), the smooth conditional min-
entropy reduces [188] to the smooth von Neumann entropy (see (1.48)), which is much easier
to estimate.

This i.i.d. setting is somewhat contrived: Eve may very well combine classical side in-
formation of different rounds together (known as collective attacks), or perform an attack
on all the quantum signals combined (known as a coherent attack). It is possible to perform
a reduction to the i.i.d. case in these scenarios, by e.g. using the asymptotic equipartition
theorem [189] based on de Finetti’s theorem [36, 78], or using the related post-selection
technique [190]. However, these methods generally give very loose bounds, so that they do
not perform well in terms of the secret key length.

Another method of bounding the smooth conditional min-entropy is known as entropy
accumulation [191, 192]. This method arises naturally in DI-QKD settings but doesn’t
provide particularly strong bounds either. Recently, generalized entropy accumulation [193]
was proposed to improve these bounds.

The method of bounding the smooth conditional min-entropy that has seen a lot of suc-
cess in recent years, uses entropic uncertainty relations |1, 194, 195, which are reminiscent
of the Heisenberg uncertainty principle [196]. Indeed, the raw key k4 follows from Z-basis
measurements on A; (hypothetical) X-basis measurements on the same system wouldn’t
commute with these Z-basis measurements, so that k4 can be expected to obey some un-
certainty relation with the outcomes of such X-basis measurements, denoted x4. This
intuition is quantified by relating the smooth conditional min-entropy HE; (ka|E) of ka
with the smooth conditional max-entropy HE . (x4|B) of x4 (see (1.47)). Together they
obey the following uncertainty relation [1, 46, 194]:

cn(kalE) + HE

min max

(xalkp) = L, (7.16)

where L is the length of the raw key'?. The smooth conditional max-entropy HE,,. (24|B)
is solely determined by the registers in possession of Alice and Bob and does not depend on
the adversary Eve; it reduces to the binary entropy of the X-basis QBER in the asymptotic
limit.

Note that, in principle, HE .. (z4|B) is a quantity regarding the quantum systems asso-
ciated with the key generation rounds. Those systems are already measured in the Z-basis
for key generation, so that H . (z4|B) cannot be directly estimated. However, by using
statistical methods it can be estimated from the outcomes of the verification rounds in-
stead; such a specific estimate is included in the security proof in chapter G for the protocol
presented in chapter 9.

12The equation as presented here has been simplified by omitting the complementarity [1]. Complement-
arity is a value that reflects how well the measurement bases in a QKD protocol ‘complement’ each other,
which is not always perfect in real setups.
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7.4| Generalization to more than two parties

The generalization of QKD to more than two parties is known as conference key agree-
ment (CKA) [43, 188]. Besides a single Alice, it involves multiple receivers, usually referred
to as the Bobs B;. Alice and all the Bobs together form the participants. Both DV (dis-
crete variable) [40, 42, 197] and CV (continuous variable) protocols [41, 198, 199] exist, but
only DV protocols are considered in this thesis. In these protocols, various multi-partite
entangled states are used, most notably the GHZ state (e.g. in [40, 197]) and the |WV,,) state
(e.g. in [42]):

W) = —— (]100...0) + 010 ... 0) + -+ +[000...1)). (7.17)
vn
In chapter 8 GHZ-based CKA protocols are considered. The basic principle of the GHZ
state that allows the participants to generate keys is given by the perfect correlations of
Z-basis measurement outcomes: as soon as any participant measures in the Z-basis, the
state collapses to either |0...0) or |1...1), so that any other participant obtains the same
(Z-basis) measurement outcome.

Post-processing steps in CKA are largely the same as for bi-partite QKD. An error
correction code that corrects errors with a rate (Q can correct errors with a lower rate
as well. The maximum bi-partite Z-basis QBER of Alice with every individual Bob can
thus be taken as the error rate; Alice announces her error syndrome, so that all Bobs can
individually correct their keys. Afterwards, Alice announces the hash of her key, which every
Bob individually can compare against the hash of their key. Privacy amplification is even
more straightforward, as all participants can apply the hash on their own corrected raw key,
resulting in the shared secret key.

Security in the asymptotic regime can follow from the fact that the GHZ state is verified
[2, 200]: instead of measuring their qubits in the Z basis to generate key, every participant
measures their qubit in either the X or Y basis. Due to the stabilizer nature of the GHZ
state, the outcomes of these measurements must be perfectly correlated, provided the total
number of Y-basis measurements is even. The participants can thus verify by announcing
and subsequently inspecting their measurement bases and outcomes. Repetition of such
verification rounds allows the participants to obtain a bound estimating how close their state
PA,B,,E 18 to the desired state: the GHZ state distributed only between the participants,
and some arbitrary state pg that is completely separable form the participants’ quantum
state.

In the finite regime, the verification of the underlying GHZ state could offer security
as well, but (similar to the QKD case) the security can also be stated immediately on the
generated key itself. Indeed, the leftover hashing lemma (see (7.15)) paired with a suitable
selection of estimation method for the smooth min-entropy remove the need of verifying the
underlying GHZ state.

Verification and security will be addressed in more detail in chapters 8 and 9. These two
chapters present different CKA protocols that are additionally anonymous, where beyond
the message itself, the identity of the participants is hidden from the rest of the network as
well.

7.5| Anonymity in networking protocols

QKD and CKA can provide security in communication, so that parties in a network
can communicate without anyone else in the network being able to learn the contents of
their communication. Nevertheless, by running the protocols, it is clear for anyone that
can monitor the network traffic that the participants are communicating. It may be the
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case that e.g. Alice wishes to hide not the contents of her message, but her identity as the
origin of the message. That is, she wishes to remain anonymous: her identity as the sender
remains hidden to anyone else in the network, even after the protocol has ran. Similarly,
Bob as the designated receiver may wish to remain anonymous, although in this case it is
only sensible to hide his identity from anyone in the network except Alice.

These examples show a more general point: anonymity should be defined with respect to
the other parties in the network. This allows for different ‘levels’ of anonymity: e.g. Alice
may wish to hide her identity from anyone in the network except her chosen receiver Bob,
or additionally even from Bob himself.

In the setting with more than two parties, this can generalize to even more different
settings. In a CKA protocol where Alice chooses any number of Bobs from the network as
receivers, she may wish to hide her identity from everyone in the network, or just from those
nodes that she didn’t choose to be a receiver.

Simultaneously, she may wish that the designated receivers are only aware of their own
role, but not who else in the network is a receiver. In contrast, if the receivers know who
in the network are the other receivers, a weaker level of anonymity is obtained. In such a
setting the participants merely form a special ‘group’ in the network; the rest of the network
is then referred to as the non-participants.

Defining anonymity has to take all these considerations into account. Moreover, consider
the perspective of any non-participant that may wish to learn the identity of e.g. Alice. For
this non-participant, determining which node in the network is Alice can be regarded as a
‘guessing game’.

A slightly naive first approach to defining anonymity could be in terms of equal guessing
probabilities for every node in the network. This would be problematic in asymmetric
networks, however. Indeed, consider a network where one node is much more likely to be a
sender than another node, purely based on e.g. its physical location. Here, a definition that
treats every node as equally likely to be the sender would not be applicable.

Early definitions [26, 201] do not necessarily consider this point: anonymity is defined in
terms of an equal probability for every node to be a sender or receiver. Following Pub. [A]
([2]), anonymity can be defined in terms of any extra information that the adversary can learn
during the protocol. This extra information Z,, which includes all public communication
and any quantum systems that the adversary has access to, cannot alter the probability of
a node taking a certain role.

Definition 31. (Pub. [A]) Let P C N be the set of participants of an anonymous protocol
in a network N, and let Eve be an adversary that wishes to learn P. Furthermore, let Tgye be
the information regarding P that FEve has both beforehand and trivially learns by corrupting
any number of non-participants. The protocol is anonymous if, for every subset G C N :

Pr (G = P|Zf,., Tive) = Pr (G = P|Tgye), (7.18)

where I;{ve 18 the information that Eve additionally learns during the protocol, which includes
all pudblic communication and all quantum systems she has access to.

Def. 31 ensures that anonymity can remain intact even if Eve corrupts any number
of non-participants. Upon learning the information Igve, that now includes the quantum
systems of those corrupted non-participants, the probability distribution is unaffected, so
that every subset G C N is as likely to be the set of participants as without learning I]ffve.

However, Def. 31 does not provide a measure of anonymity: under its definition, a
protocol either is or is not anonymous. On the other hand, approximate anonymity - similar
to approzimate security (see Defs. 29 and 30) - involves an anonymity parameter €, that
ensures that a protocol can be anonymous under a suitable notion, without having to be
perfectly anonymous. This is provided by defining e, -anonymity.
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Definition 32. (Pub. [C]) Let pp,c g be the state of any protocol, where P is a (classical)
register that holds the information regarding P, C' is a register that contains all public com-
munication of the protocol, and E is a (quantum) register reflecting all side information of
Eve, which includes quantum systems. Furthermore, let op ¢ g be any ideal state that is
anonymous per Def. 4 of Pub. [C|. Then, the protocol is e,-anonymous if

Dy (pp,c.E,0P,0.E) < €a, (7.19)

where Dy (p,0) denotes the trace distance between p and o (see (1.29)) and where this
inequality must hold for any choice of participants P, or more specifically for any choice of

sender A and Bobs {B;}.

Def. 32 as an alternative definition of anonymity provides a notion of approximate an-
onymity, which could make it composable, although this has not been proven [48]. Further-
more, it allows for easy adaptation towards other notions of anonymity. In particular, the
ideal state o can be replaced by another state that is merely partially anonymous (see Def. 3
in [48]): a partially-anonymous protocol provides anonymity of the participants merely from
the perspective of the non-participants or Eve, but allows the participants to know each
others’ identity. This is in contrast to the above level of anonymity (hence referred to as
fully anonymous), in which only Alice knows the identity of the Bobs; the Bobs are not
aware of the selection of P beyond their own role.

7.6 | Conclusion

This chapter has introduced all the relevant concepts and definitions regarding QKD
and CKA that are used in the subsequent chapters of part III. Chapters 8 and 9 both
introduce protocols for anonymous conference key agreement (ACKA); the first chapter
contains protocols for star networks, while the latter chapter contains a protocol for linear
networks instead. Furthermore, chapter 9 contains a complete finite key analysis of the
protocol that is introduced in that chapter, although some of the technical details of the
analysis and proofs are deferred to the appendices. Chapter 10, the last chapter of part III,
details the experimental realisations of the protocols introduced in both chapters 8 and 9.



ANONYMOUS CONFERENCE KEY
AGREEMENT IN STAR NETWORKS

Chapter 7 has introduced the concept of Quantum Key Distribution (QKD) and its gener-
alization Conference Key Agreement (CKA) as important goals within quantum networking
and communication. Any protocol that performs CKA allows multiple parties in a network
to create a secret hidden key between just themselves, while excluding any other party in the
network from accessing the shared key. Such conference key can subsequently be used is a
versatile range of cryptographic tasks, including private communication [17], secret sharing
[202-204] and multi-party computation [22, 25].

Additionally, chapter 7 introduced the concept of anonymity within the same quantum
communication setting. Anonymity is a desirable property that networking protocols can
have, so that the identities of the involved network parties remain hidden (in addition to
the normal intended purpose of the protocol, like e.g. key distribution or secret sharing).

This chapter covers both Pubs. [A] and [C]. More specifically, it addresses the combina-~
tion of anonymity and conference key agreement. Such anonymous conference key agreement
(ACKA) allows a subset of parties in the network to create a shared secret key without re-
vealing their identity to the other parties in the network, or potentially even to each other.
The first protocol that performs ACKA was introduced in Pub. [A] ([2]). However, some
issues exist with this first protocol, which renders it more a ‘proof-of-concept’ and imprac-
tical for real-world implementation. To address its shortcomings, a second ACKA protocol
was introduced in Pub. [C] ([48]). In fact, this protocol comes in two different versions,
that cater to partial and full anonymity, respectively (see sec. 7.5). Moreover, Pub. [C]
additionally contains a complete finite key analysis of the presented protocols, and a more
complete security proof. This is not presented in this thesis, as it closely resembles the
analysis for a related protocol that will be presented in chapter 9.

The setting for the protocols, including the network topology and security, is made more
precise in sec. 8.1. Subsequently, sec. 8.2 contains the first ACKA protocol: in sec. 8.2.1
the protocol is stated and an analysis is given regarding the correctness and security. The
anonymity of the protocol is addressed separately in sec. 8.2.2; and the aforementioned issues
are discussed in sec. 8.2.3.
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Then, sec. 8.3 contains the two versions of the improved protocol. They are both intro-
duced in sec. 8.3.1; their analysis regarding correctness, security and anonymity is addressed
in sec. 8.3.2. How the improvements over the original protocol affect the performance is dis-
cussed in sec. 8.3.3, which additionally presents the finite key rates. The fully anonymous
version of the protocol makes use of an adapted definition of anonymity, which is described
in sec. 8.3.4. Pub. [C] additionally contains an assessment of the performance of the proto-
cols in a real-world scenario by simulating it and comparing it against an ACKA protocol
that does not involve multi-partite entangled states. This is not presented in detail in this
thesis, but only addressed briefly in sec. 8.4. In that same section, a brief discussion of the
shared network topology of all different protocols can be found, as well as a conclusion to
the chapter.

8.1| Setting for the security and the protocols

It is helpful for the introduction and subsequent analysis of the protocols to define the
setting, and the network on which the protocol is run. The protocols that this chapter
covers all have a central server that distributes a quantum state over the entire network.
This server does not take part in the protocol as a node, and is therefore viewed separately
form the network, which is denoted with A'. The network is referred to as a star network,
because the topology is such that all nodes are connected to the central server, while no
quantum connections between the nodes are implied. Depending on the specific protocol,
there might be various levels of trust imposed on the central server; this is addressed in
more detail in secs. 8.2 and 8.3 and especially in sec. 8.4. In the spirit of the network being
a star network, all protocols presented in this chapter involve a |GHZ,s) state as a resource,
distributed by the central server.

Partitioning of the network

The network N can be divided into different sets that reflect the identities or roles of
the different nodes. More specifically, the network consists of n = || nodes and includes a
special node A € N called Alice; Alice wishes to perform CKA. She picks m < n — 1 nodes,
referred to as the Bobs B;, with whom she wishes to establish a secret key. The set of Alice
and all Bobs together is referred to as the participants P, and the rest of the network is
referred to as the non-participants P = N\ P, which is prohibited from learning the key.

Additionally, Alice wishes for both her and the Bobs to remain fully anonymous, so that
any node in the network learns nothing about the role of any node in the network besides
themselves (with the exception, of course, of A, because she chooses the set of participants).
Alternatively, one version of the protocol in sec. 8.3 is partially anonymous, where the Bobs
are aware of the set of participants as well, including the special identity of A.

The non-participants may be honest-but-curious, which means that they will follow the
steps that the protocol prescribes for them, even though they are still interested in learning
the identity of either Alice or the Bobs. Alternatively, any non-participant can be corrupted,
which means that they can act maliciously to find out either the secret key or the identity
of anyone. This includes actively deviating from the protocol and colluding with any other
corrupted non-participant; they are represented by an adversary FEve. Eve could, in prin-
ciple, be not part of the network, but no generality is lost in assuming that she is in N.
The collection of all honest-but-curious participants is denoted H, and the collection of all
corrupted non-participants is denoted C, so that P = HUC. FIG. 8.1 presents an overview
of the network partitioning.

Note that it is assumed that no participant is corrupted: this would defeat the purpose
of the scheme, as any other corrupted, colluding party would then have access to the secret
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key. However, the participants are still honest-but-curious: they are interested in learning
the identity of Alice or the other Bobs, even though they follow the protocol. In this sense
the anonymity of the protocol needs to be addressed from two different perspectives: from
the perspective of the entire set C (which includes Eve), and from the perspective of a single
Bob in P. The case of a single node in H is then implicitly covered by the C setting.

\ 4&/
P\ A

FIGURE 8.1: The entire network A can be partitioned into four disjoint subsets of nodes. Alice,
denoted A, takes a special role in the protocol; she chooses a set of m Bobs B; to share a
key with. Together, Alice and the Bobs form the participants P. The rest of the network are
the non-participants P; they can be further divided into the honest-but-curious nodes H, who
follow the steps of the protocol but may still wish to learn the identity of P, and the corrupted
nodes C, who act maliciously by actively deviating from the protocol and colluding with each
other. The protocol is anonymous: only Alice is aware of the partitioning of the network
(except how P is divided into H and C). P is notified of their role during the protocol. In
the fully or partially anonymous setting (see sec. 7.5), the participants do not or do know the
identity of A and the other participants, respectively. P is not aware of the identities of P.

Note that all participants and non-participants have access to all public communication
throughout the protocol, so even the honest-but-curious nodes may use this to infer the
partitioning.

8.2 | Original protocol

The original protocol, ANONYMOUS CONFERENCE KEY AGREEMENT (ACKA), consists of vari-
ous steps that include three different sub-protocols; these are presented in sec. 8.2.1, where
also the main protocol is analysed. Anonymity is addressed in sec. 8.2.2. The protocols’
performance is addressed in sec. 8.2.3.

To ease notation in the analysis, the participants are (whenever applicable) identified with
indices ¢, whereas the non-participants are identified with indices j. Moreover, w.l.0.g. the
participants are assumed to be the first m + 1 nodes in the network, so that their qubits can
be referred to as nodes 0 (for Alice) and nodes 1,...,m for the Bobs. This means that the
non-participants are the nodes {j}m+1<j<n—1, for a total of n nodes.

8.2.1| Protocol statement and analysis

The protocol makes use of of three subprotocols. These are named and explained briefly
here; a full statement and analysis can be found in chapter D.

1. NOTIFICATION allows A to anonymously notify every other participant B; that they
are a participant. It is a purely classical protocol originally presented in [205], but
requires private channels between every pair of nodes in the network. The protocol is
introduced in more detail in sec. D.1.
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2. ANONYMOUS MULTIPARTITE ENTANGLEMENT (AME) allows the participants P to anonym-
ously extract a |GHZp) state on just their qubits from the |GHZs) state. During this
protocol, the non-participants P measure their qubit in the X basis and announce the
outcomes z;. Based on these outcomes, A performs a correction on the GHZ state.
See F1G. 8.2 for a visualization. The protocol is introduced in more detail in sec. D.2.

3. VERIFICATION allows A to verify that the state after AME is indeed the expected state,
implicitly verifying the behaviour of P, H and especially C. During this protocol, the
participants P measure their qubit either in the X or Y basis, encoded by a random bit
b;; they announce these with the outcomes as (b;,0;). A uses these announcements to
verify that the outcomes have the correct parity that the GHZ state should generate.
The protocol is introduced in more detail in sec. D.3.

FIGURE 8.2: Visualization of AME. First, a |GHZx) state is distributed by the central server
between all nodes of the network. Even though the participants secretly play a special role,
their aim is to be indistinguishable from all other nodes in the network. During the protocol,
all non-participants P measure their qubit in the X-basis, while the participants P do noth-
ing; after a correction by Alice the state of the network is |GHZp,+1) for the participants,
disentangled from all other nodes in the network.

Using these three subprotocols ACKA can be defined, presented as Protocol I.

Protocol I -  ANONYMOUS CONFERENCE KEY AGREEMENT

Input: Alice as initiator; parameters L and D.
Goal: Anonymous generation of secret key between P.

1: Alice runs NOTIFICATION to notify the m Bobs.
2: The source distributes L |GHZys) states.

3: For each of the L |[GHZ ) states, the network runs AME to extract a |GHZp) state
on the nodes of the participants. P announces their measurement outcomes {x;},
P announces random bits {z;}.

4: For each of the L |GHZp) states, the parties ask a public source of randomness
to broadcast a bit b such that Pr[b = 1] = 1/p.

Verification: If b = 0, P runs VERIFICATION on the (m + 1)-partite state, an-
nouncing the measurement basis and outcome (b;,0;). P announces random
pairs of bits (b;,0;).

Keygen: If b = 1, P measures in the Z basis to obtain a key bit.

5: If Alice accepts all VERIFICATION rounds, she anonymously validates the protocol.
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A flowchart detailing the basic steps of the protocol can be found in FiG. 8.3. First,
in step 1, Alice uses the NOTIFICATION protocol to ensure the Bobs are aware of their role,
while maintaining her anonymity. Next, in step 2, a fixed number L |GHZys) states are
distributed over the entire network. L is pre-determined and referred to as the block size.

'

NOTIFICATION

R Vo

- VES

l NO

- VERIFICATION KEYGEN ——

REJECT

FIGURE 8.3: A flowchart detailing the steps and subprotocols of ACKA; the green boxes are the
subprotocols which are detailed in chapter D. The gray box is repeated until enough key has
been created, after which the key is outputted.

From each of these |GHZy ) states, a |[GHZp) state on only the participants P is ex-
tracted by running AME during step 3. In this protocol, the non-participants P perform a
measurement on their qubit so that they are removed from the |GHZys) state. To obtain
the |GHZp) state, A has to perform a correction to the network state which is based on the
measurement outcomes {z;} of P. Indeed, if the parity of all these measurement outcomes
is odd, the state would have an incorrect phase [0...0)p —|1...1)p; A can correct this by
applying a Z 4 operator to her qubit.

Hence, the non-participants P have to communicate their outcomes to A, which they
do by announcing them publicly. To hide their role, the participants announce random bits
{z:}.

Subsequently, in step 4 this state is either verified using the VERIFICATION protocol
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(a Verification round), or used to generate a bit of raw key (a Keygen round). The
verification rounds ensure that the used states are e-close to the |GHZp) state, where ¢ is
exponentially small in the number of Verification rounds. There are L(1— %) such rounds,
so the asymptotic key rate of the protocol is %.

Analysis

The NOTIFICATION subprotocol allows Alice to anonymously communicate a bit to every-
one in the network separately, to indicate if they are a participant or not. Instead of using the
complete ACKA protocol to anonymously establish a secret key, she could use NOTIFICATION
instead to communicate a random bit to only those nodes in P. This would effectively an-
onymously establish a secret key with the desired parties, bypassing the need for the rest of
ACKA. However, NOTIFICATION has O(n) rounds for one bit of key, and every round needs
pairwise private communication, for a total of O(n?) necessary private channel uses per
generated bit. Implementing this consumes a lot of private key bits, so ACKA can be viewed
as an improvement on this classical scheme with better scaling properties.

As presented in sec. D.3, VERIFICATION is a protocol that runs only on the nodes in P.
The protocol involves communication, which would immediately break anonymity: every
node in the network that performs an announcement, is then automatically a participant.
Similar to AME, the nodes in P therefore announce random pairs of bits to hide their identity".
Even though the announcements are indistinguishable for anyone else in the network, Alice
(having chosen P) can determine what are the ‘true’ measurement bases and outcomes, so
that she can perform the verification. It remains to be proven that all these announcements
are indeed indistinguishable for anyone else, so that the participants remain anonymous;
this is addressed in sec. 8.2.2.

Technically, the Verification rounds only verify the states that are used for verification,
but never the GHZ states from the rounds that are used for key generation. It is therefore
of vital importance to postpone the choice of round type until after the state has been
distributed: otherwise, the adversary, potentially having access to the source, could ‘play
nice’ during the Verification rounds by distributing the correct states, and then distribute
arbitrary different states during the Keygen rounds. In particular, the adversary could
distribute an (n+1)-qubit GHZ state, secretly keeping one qubit for themselves, and perform
a Z-basis measurement - thereby learning the key and completely breaking security.

In the same spirit, the choice of round type has to be performed after AME is used
to extract the GHZ state on the participants. In particular, until after all non-participants
have announced their random bits - this ensures that no non-participant can freely choose to
adhere to the protocol during only those rounds where their behaviour is checked. Moreover,
the public source of randomness must be trusted, in the sense that no adversary can choose
or determine beforehand the bit b. At the same time it is no issue that any non-participant or
adversary learns the value of b when the participants learn it - they have already committed
to all their communication, so can not alter their strategy based on the value of b any more.

The protocol dictates that all L GHZ states are distributed at the same time. This
implies that all nodes must have access to a large quantum memory to store their qubits.
However, in practice this can be performed in repeated steps (i.e. the gray box in F1G. 8.3)
that can be performed one-by-one, merely storing the raw key from the Keygen rounds.

Moreover, the presentation of the protocol is very modular, as the subprotocols are all
self-contained. However, certain steps can be skipped when the protocol is seen as a whole.
As an example, the correction that A performs during the AME step is strictly speaking not
necessary - she would only have to verify for a slightly different state during VERIFICATION,
which results in that she only ACCEPT when the opposite parity is found.

LOf course, any dishonest party in C may not make this announcement. However, the only effect this
has is that they effectively announce that they are not a participant, which they can already do anyway.
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Finally, another useful property of the protocol design is that by performing the
VERIFICATION steps, the NOTIFICATION step are implicitly verified as well. If the wrong
set is notified to be the participants, Alice takes the wrong announcements into account -
at least one person that she believes is in P has in fact announced a completely random
(bj,05) pair, or she does not take into account all true announcements. In these cases, the
announcements that Alice takes into account do not possess the correct correlations, so that
verification will fail.

8.2.2| Anonymity
The anonymity of ACKA follows intuitively from the intrinsic correlations of the GHZ
state and its non-local phase. By applying a Z operation, any node of a GHZ state can
induce a non-local effect on the state:

1
V2

Since this state is independent of the node ¢ to which the Z operation was applied, the
non-local affect is indeed obtained. The effect of the reverse operation is non-local as well,
and therefore the correction by A based on the announced measurement outcomes in AME
does not disclose her identity.

Z;|GHZ,) = — (|00...0) — [11...1)). (8.1)

AME Verification

A random bit zg random bits (b, 0p)
random bit b;
. P H . (3
B; e P\ A| random bit z; outcome bit o,

outcome bit x; random bits (b, 0;)

arbitrary bit Ty arbitrary bits (bg, 65)

FIGURE 8.4: Overview of the public communication throughout ACKA. During AME and
VERIFICATION, the different subsets in the network announce either measurement outcomes
or random bits; these all need to be indistinguishable to prevent anyone from learning the
identities of the involved parties.

During the various steps of the protocol, several measurement outcomes and bases must
be communicated to A (see FIG. 8.4). Since no one in the network is aware of the identity
of A, these outcomes and bases are communicated by a broadcast, so that they become
completely public:

- The outcomes {z;} of P during AME, allowing A to correct the state.
- The bases {b;} of P during VERIFICATION, allowing A to verify the state.
- The outcomes {0;} of P during VERIFICATION, allowing A to verify the state.

As F1G. 8.4 shows, the other parties (i.e. P and P during AME and VERIFICATION,
respectively) announce uniformly random bits to not inadvertently give away anyone’s iden-
tity. This means that the announcements are inherently different in nature for P and P,
so that their difference might be exploited by anyone to determine the identities of the par-
ticipants. To guarantee anonymity, all the announcements must be indistinguishable from
the uniformly random bits. Since the choice of basis b; is an individual, uniformly random
choice for every node in P, it is straightforward that they are indistinguishable from the
announcements of the other nodes.
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The measurement outcomes {z;}p and {o;}p warrant a more careful analysis. Bey-
ond being individually random, there must not be any correlations between the different
announcements as well. Note that A alone, knowing the set P, is able to distinguish the
true measurement outcomes from the uniformly random announcements, so that she can
perform the necessary correction and verification. A detailed proof of indistinguishability
can be found in chapter E.

The Verification rounds ensure that the state on P is e-close to the |GHZp) state for
some small €, and thus dis-entangled from P. Simultaneously, the non-participants in H
measure their qubit during AME and thus become disentangled from the network. Thus, at
the start of a Keygen round the state |NKeygen> of the network is:

|NKeygen> = |GHZ>P ® |H> ® |\Ij>c ’ (82)

where [H) = @,y
who obtained the outcomes {z;}, and H, is the Hadamard operator on node j (see TAB. 1.1).
The state |¥) is an arbitrary (purification of) the state of the colluding parties C. There
is no communication during the Keygen rounds, and the state is separable between the
sets P, H and C, so there can be no leakage of identity during the rounds. A more detailed
analysis that addresses the anonymity from all different perspectives (a honest-but-curious
Bob, a honest-but-curious non-participant in H, or the colluding parties C) can be found in
sec. E.3.

H; \xj>j is the post-measurement state of the honest non-participants

8.2.3 | Performance

ANONYMOUS CONFERENCE KEY AGREEMENT, as presented in Pub. [A] ([2]), was the first
proposal of anonymous conference key agreement, but it suffers from some drawbacks that
render it more a proof-of-concept, instead of a robust protocol. These issues include:

1. The key rate of the protocol is low: on average % bits of key are created for every
network GHZ state. Even with moderate security requirements the parameter D is
relatively large, which means that the key rate can never improve beyond orders of

magnitude below unity.

2. Related to the previous point, the security of the generated key is derived from a bound
on the quantum state, namely that the generated state is e-close to the GHZ state (on
P). This is done by performing many different measurement settings, (i.e. the 2"~! dif-
ferent choices of measurement basis in the VERIFICATION protocol), which is essentially
doing too much. Proving security directly on the created key (through the use of the
left-over hashing lemma and e.g. entropic uncertainty relations, see sec. 7.3.4) would
allow for considerably fewer measurement settings and rounds for security verification.
This would result in a much higher key rate.

3. As presented, the protocol is completely non-robust to noise or other imperfections in
the implementation. Even if just a single verification round fails (through e.g. a faulty
measurement by one of the participants), the protocol aborts.

4. The security analysis derived from the e-closeness of the state does not cover coherent
attacks, but just the i.i.d. setting. To address these shortcomings, tools like de Finetti’s
theorem (see sec. 7.3.4) need to be used to perform a reduction. However, these steps
would decrease the key rate even further.

5. Anonymity is proven (as detailed in chapter E) in terms of Def. 31 instead of Def. 32.

6. Provided the adversary has control over the source, and does not care about the
protocol being successful, they can easily break anonymity. Indeed, if the source
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distributes +1 eigenstates of the X operator (i.e. the |+) state), all (honest) non-
participants would obtain outcome x; = 0 during AME. The participants have z; = 1
with probability half, so any node announcing 1 during AME necessarily gives up their
identity as a participant. VERIFICATION implicitly verifies the distributed state to
be |GHZys), as otherwise the correct correlations can not be produced. However, for
anonymity this is too late, as VERIFICATION has to happen after AME.

These problems, most notably items 1 to 4, make the protocol unsuitable for a real-world
implementation, especially with current or modest-future technology. Moreover, although
they are mentioned in [2] as steps that should be performed, the protocol does not explicitly
include any error correction or privacy amplification steps.

8.3 | Improved protocols

To address the problems and shortcomings listed in sec. 8.2.3, a new protocol, ANONYMOUS
CONFERENCE KEY AGREEMENT VERSION 2 (ACKAv2), was introduced in Pub. [C] ([48]). In
fact, two different protocols were introduced, one of which obtains partial anonymity, and
one of which obtains full anonymity (see sec. 7.5). In contrast to Protocol I, both these
protocols are shown to be anonymous following definition Def. 32. However, the second
protocol only obtains full anonymity under an extra assumption on the network - therefore
the definition of anonymity is adapted to allow for this assumption. Moreover, the two
protocols introduce a new assumption, namely the bounded storage model assumption. It
is assumed that the nodes in the network (but not the adversary) have a quantum memory
with only limited storage time (known as the bounded storage model [206]). Moreover, as
the protocol is a key-expanding scheme, the participants need some pre-shared secret key.

The two protocols are introduced first in sec. 8.3.1, after which differences with
Protocol I are addressed and explained in sec. 8.3.2, where additionally an explana-
tion is given how the issues listed in sec. 8.2.3 are solved. The key rates of the new protocols
are addressed in sec. 8.3.3, and the aforementioned issue in the fully anonymous setting is
detailed in sec. 8.3.4, including the explanation of why an adaptation is necessary.

8.3.1| Protocol statement

The improved protocols make use of a selection of subprotocols, that are introduced and
detailed in Pub. [C] ([48]):

1. IDENTITY DESIGNATION: this protocol has a goal similar to NOTIFICATION, up to a few
key differences and additions. Most notably, beyond notifying the Bobs of their role,
it additionally performs collision detection, so that there is a guarantee that there is
only one sender.

2. PARITY: this protocol allows the network to anonymously compute the parity of a set
of input bits held by each node. The protocol is used to communicate the testing key
(introduced in step 2 of Protocol II) to the non-participants in step 4 of Protocol II.
It is additionally used in step 5 of Protocol II to communicate the parity of the
measurement outcomes of the test rounds. The version used in the main protocol
as presented in Pub. [C] is adapted from [205], but does not need a simultaneous
broadcasting channel.

3. TESTING KEY DISTRIBUTION: this subprotocol is only necessary in the fully anonymous
protocol. It allows A to share the testing key to the other participants, without them
having to know each other. It is quite costly to implement, considerably affecting the
key rate of the fully anonymous protocol.
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4. ANONYMOUS ERROR CORRECTION: this subprotocol allows the participants to anonym-
ously perform error correction to ensure correctness. A partially anonymous version is
used in step 7, and a fully anonymous version is used in the second protocol; both are
introduced in Pub. [C]. A related but different protocol is introduced in more detail
in chapter 9.

Using these subprotocols, ACKAv2 can be defined, presented as Protocol II, to be found
on the next page.

Instead of stating the entire fully anonymous version of the protocol separately, the
differences with Protocol IT are highlighted:

e In step 2 of Protocol II, the Bobs can retrieve the testing key because they are aware
of who A is. In the fully anonymous setting this is not the case, so another method
is needed for A to communicate the testing key. The TESTING KEY DISTRIBUTION
subprotocol is used for this.

e In step 7 of Protocol II, the partially anonymous version of ANONYMOUS ERROR
CORRECTION is used, which relies on the Bobs knowing who A is. This is not the
case in the fully anonymous setting, so the fully anonymous version must be used,
which has worse performance.

8.3.2| Analysis

Protocol IT has similarities with Protocol I, but there are important differences. As
mentioned in the list of issues (see sec. 8.2.3), the original ACKA protocol obtains security
by making a statement on e-closeness of the underlying GHZ state, which is not ideal.
Protocol II derives the security through a direct statement on the generated key instead.

Indeed, the test in step 6 allows one to obtain eg-secrecy of the key without ever having
to make a statement on the underlying state. A welcome side-effect of this is that there
can be considerably fewer testing rounds, which strongly improves the key rate. This solves
issue 2 from the list of issues of Protocol I discussed in sec. 8.2.3.

Moreover, it means that the testing rounds can be performed differently than in the
Protocol I. Instead of separately extracting a |GHZ,, 1) state during AME and subsequently
verifying the state using VERIFICATION afterwards, all measurements are performed at the
same time. This is made possible by the fact that the participants know what rounds are
testing rounds, so that no public source of randomness has to be used.

Compare this with Protocol I: there, the public source of randomness inadvertently
instructs the non-participants as well which rounds are the testing rounds. The non-
participants therefore have to announce their measurement results of AME before the choice
of Keygen- or Verification round is made, so that they show that they have already
performed the measurements and cannot ‘cheat’ during AME for only the Keygen rounds
(see the analysis in sec. 8.2.1).

In Protocol I the measurement outcomes of the non-participants are always announced,
namely during AME. A uses these to correct the state, so that the resulting state (before
Keygen or Verification) is the |GHZ,, 1) state. Protocol II takes a different approach,
where only the measurement outcomes for the testing rounds are used. Although A can thus
not correct the state during the Keygen rounds if it has the incorrect phase (i.e. [0...0)p —
[1...1)p, see the analysis in sec. 8.2.1), the Z-basis correlations are unaffected by these
incorrect phases. This means that the raw key will be the same regardless if A performs the
correction or not.

The calculation of the parity for the testing rounds is performed differently as well. In
Protocol I, all nodes in the network publicly announce their measurement outcomes so that
A can compute the parity that she subsequently uses to perform the correction. Instead, in
Protocol II the network runs PARITY to compute the parity of the measurement outcomes,
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Protocol II -  ANONYMOUS CONFERENCE KEY AGREEMENT VERSION 2

Input: A pre-shared key between P. Parameters L, p, Qio1, Qz.
Goal: A (larger) pre-shared anonymous secret key between the P.

1: P run IDENTITY DESIGNATION to establish A as the sender and the m Bobs {B;}
as the other participants.

2: A generates the testing key: a length-L random bit-string. Fach bit equals 1
with probability p, indicating a test round. Using some of the pre-shared key,
A announces the encrypted, compressed testing key. All other nodes announce
a random bit-string. The other participants, using some of the pre-shared key,
retrieve the testing key.

3: Repeat L times:

1. The untrusted source distributes a state to the nodes in the network; this
state should be |GHZ ).

2. The participants measure their qubit in the Z-basis or X-basis if their testing
key is 0 or 1, respectively. The Z-basis measurement outcomes form the raw
key, the X-basis measurements are used for verification. All non-participants
measure in the X-basis.

4: The testing key is anonymously announced: After the quantum memories of P
and P have decohered, the network runs the Parity subprotocol. A inputs the
testing key, everyone else inputs 0.

5: For every test round, the network uses PARITY to determine if the parity of all
their measurement outcomes is 1, indicating a failed test round. From all testing
rounds A computes Qx, the observed X-basis QBER. A encrypts her input, so
only she obtains @ x.

6: A determines if Qx + Y(Qx) < Qtol + V(Qto1), Where v(Qx) and (Qto1) are
correctional terms for statistical fluctuations [42, 207]. If this is the case, security
is verified; if this is not the case, A aborts.

7: The participants perform partially ANONYMOUS ERROR CORRECTION, thereby con-
suming (1 — p) - L - ha(Qz) plus n bits of pre-shared key. If any participant finds
a discrepancy, the protocol is aborted.

8: The participants perform privacy amplification.
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which is ultimately the only piece of information that .4 needs to determine the X-basis
QBER @Qx. Furthermore, A uses a randomized input, so that no one else learns the result
of the testing rounds, meaning it cannot be used in any attack by the adversary.

An important side-effect is that there cannot be any leakage of identity during these
announcements either. The attack described in the last issue in the list in sec. 8.2.3 is
therefore not possible. In this attack a corrupted server distributes +1 eigenstates of the X
operator, so that all non-participants always measure 0, while the participants announce a
bit 1 with probability half: these outcomes are never announced directly, but only the parity
of all outcomes is computed and obtained as public knowledge.

It should be noted that this approach to determine the X-basis QBER Q@ x is only possible
because there are much fewer testing rounds in Protocol II compared to Protocol I. The
Parity protocol is somewhat costly to run, but this is remedied by the finite key analysis,
which shows that a moderate number of testing rounds suffices to obtain strong security.

Another important detail of this new testing approach is that the participants need to
be instructed on which rounds are testing rounds before the measurements take place, while
the non-participants can only learn the testing key after all measurements have taken place.
The fact that the non-participants need to learn the testing key, is because they need to
know which of their outcomes to use as input for PARITY so that A can determine Qx.

Informing the non-participants of the testing key is done using PARITY as well. In
Protocol I, the non-participants learn what rounds are the testing rounds only after they
have already announced their measurement outcomes (which in that protocol happens dur-
ing the AME step, before the choice of testing round is even made). In Protocol II such
an approach would be impossible: even though there are no ‘announcements’;, the non-
participants have to use their measurement outcomes as input for PARITY in the testing
rounds. This means that waiting to instruct the non-participants on what are the testing
rounds until after they use their outcomes is not possible.

The non-participants can therefore use a targeted approach in which they essentially have
the option to act differently during the testing rounds. To prevent the set of colluding parties
C from performing different measurements during the key generation rounds, the instruction
of the testing key is delayed until the qubits of all the non-participants have decohered. This
means that, even though they are aware of what rounds are the testing rounds before having
to commit to the measurement outcomes, they are forced to have measured their qubits
already before learning the testing key, so that a different measurement strategy during the
key generation rounds is not possible.

In the partially anonymous setting, instructing the participants is done in step 2 by
using the pre-shared key. Since testing rounds only occur with probability p, the testing
key can be compressed to a length of L - ha(p) [176], so that only a moderate amount of
pre-shared key is consumed by encrypting it. In the fully anonymous setting, the TESTING
KEY DISTRIBUTION subprotocol is performed instead, which is more costly to run.

Unlike Protocol I, Protocol II includes explicit error correction and privacy amp-
lification steps. These steps have been adapted from normal CKA protocols to not leak
anonymity. Interestingly, in the partially anonymous setting this does not reduce the key
rate compared to non-anonymous CKA protocols [46, 48]; this will be made more precise
for the related methods in chapter 9. Again, the fully anonymous case has a different
subprotocol for the error correction, which negatively impacts the key rate.

8.3.3| Key rates of the protocols
One of the main issues of Protocol I, as listed in sec. 8.2.3, is that it is completely
non-robust against noise and other imperfections. Indeed, if any Verification round fails,
the protocol aborts. On the other hand, Protocol II allows for noise and imperfections by
explicitly performing error correction and privacy amplification. The participants charac-
terize the Z-basis QBER @z and the typical X-basis error rate Qyo beforehand. During the
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protocol the true X-basis error rate @ x is determined by A, but this is only used to verify
that it doesn’t exceed the pre-determined X-basis error rate threshold Q.. Privacy amp-
lification is performed in terms of the pre-determined )z and Qc], so that the asymptotic
key rate of the partially anonymous version of Protocol II results in [48]:

Ta = 0" (1 = h2(Qro1) — h2(Qz)) , (8.3)

where 7 is the transmittance of the link between a single node and the central server. n was
taken into account in Pub. [C] so that a fair comparison against other protocols is possible;
see sec. 8.4 as well.

The privacy amplification could, in principle, be performed in terms of the true X-
basis QBER Qx; if A has not aborted, it is always lower than Q], so that the resulting
keyrate would be higher. However, by design Qx is only available to A; she would have
to communicate it to all other participants so that they can perform the adjusted privacy
amplification. To ensure anonymity, this has to be performed using e.g. the same steps
as distributing the testing key; the keyrate would suffer in both the partially and fully
anonymous setting.

In the fully anonymous setting, the asymptotic keyrate is similar but includes an extra
penalty [48]:

ra = £0" (1 = h2(Qra1) — h2(Qz)), (8.4)

where 0 < k < 1 is a factor that represents the extra penalties of the TESTING KEY
DISTRIBUTION and adapted ANONYMOUS ERROR CORRECTION subprotocols:

_ n(n —1)n" *hy(Qz) -
o (” 210 - 72 (Qxp) —h2<QzB>>) ’

where Xp and Zp are the the bi-partite X- and Z-bases QBERs.

Note that in these asymptotic keyrates various terms are unaccounted for, as they vanish
with increasing block size L. In the finite setting, a fraction p of the total L rounds is used
for testing, so that no key can be generated during those rounds. Moreover, due to this finite
sample size the correction for statistical fluctuations (v(Qx)) needs to be included [42, 207].
As will be detailed in chapter 9, ensuring e.-correctness and e,-secrecy involves a penalty
to the total amount of key that can be extracted through privacy amplification. Taking all
these into account, for the partially anonymous protocol the maximum length of the secure
key that can be extracted from the raw key is:

(8.5)

M—Qlog

(L) =(1—=p)L[1—ho(Qto1 +7¥(Qto1))] — log - 2e,’

(8.6)

where ¢(L) has been written as a function of L to emphasize that the amount of extractable
secret key is dependent on the block size.

However, this figure does not account for the pre-shared key that was consumed during
the protocol; for a fair comparison this must be taken into account. Revealing the testing
key to the participants in step 2 consumes L - ho(p) bits of pre-shared key. During error
correction the error syndrome, of length (1 —p) - L - ho(Qz) bits, is encrypted using the
pre-shared key. Another n bits of pre-shared key are used during the error correction step
to allow all participants to abort. Subtracting these from ¢(L) gives the effective or net
amount of secret key £yet(L); dividing this by L results in the net key rate:

gnet (L)

Tnet (L) - 7

= (1 =p)[1 = ha(Qro1 +7(Qto1)) — h2(Qz)] — ha(p)

1 2(n—1 1
—— (log(n)—2log —n).
Ee 2e4

L

(8.7)
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When L increases, the latter terms vanish. Moreover, with a larger L a smaller fraction of
testing rounds suffices, so that p can be lower. Note that, however, et (L) is not necessarily
monotonously decreasing in p; the term 7(Qyo1) is heavily dependent on the number of
testing rounds, and therefore on p. It is hard to optimize for p analytically, and it must be
done on a case-by-case basis, taking into consideration the values for L, Q.1 and the security
parameters. The effect of the value of p is addressed in more detail in sec. 10.2.1 for the
protocol introduced in chapter 9, which has a similar parameter.

Since both step 2 and step 7 are different in the fully anonymous version of the protocol,
the terms in (8.7) according to these steps are different as well. In fact, TESTING KEY
DISTRIBUTION does not consume the L - hy(p) bits of pre-shared key, and ANONYMOUS ERROR
CORRECTION does not consume the n bits to allow the participants to abort. Therefore, as
originally presented in [48], the finite key rate of the fully anonymous version of the protocol
is in fact higher than its partial counterpart:

full
rit (L) = b (L) =(1-p)[1 - ha(Qtol +7(Qto1)) — h2(Qz)]

L
1 2(n—1) 1

2 (1og T 910g — ).

L(Og e nges>

However, it should be noted that this apparent higher keyrate comes at a penalty that is
not reflected in the keyrate: the subprotocols of the fully anonymous version make use of
private pairwise channels, which in practice means that all parties in the network need to
have pre-shared bi-partite secret keys with all other nodes. Moreover, as noted, the fully
anonymous version of the protocol makes use of an adapted form of anonymity.

(8.8)

8.3.4| Adapted definition of of full anonymity

An intricate detail is that, by running the protocol, the participants learn if the protocol
aborts or not. Suppose that they have access to the network parameters, i.e. a character-
ization of the link-error rates. Since they know the (pre-determined) error rate QQz and
implicitly have a bound on QS*, they can cross-reference their knowledge of the network
with these parameters. In the fully anonymous setting the Bobs are not aware of who else
is a participant, but through the knowledge of the network parameters they can rule out
certain nodes to be participants, or learn other information regarding P. Indeed, if the
protocol does not abort, certain nodes with link-errors that are too high can be ruled out
from having participated; at the same time subsets of nodes with low enough link-errors
can be ruled out as participants if the protocol does abort. Either way, anonymity is not
guaranteed from the perspective of honest-but-curious participants. The adapted definition
of anonymity Pub. [C] solves this by explicitly stating that, from the perspective of the
Bobs, the network parameters are symmetrical, or that they do not have access to this
information. The presentation there refers to this as weak (full) anonymity.

8.4 | Conclusion and discussion on network topology

The protocols introduced in this chapter make it possible to perform conference key
agreement in an anonymous fashion. The first protocol, Protocol I, was a proof-of-concept
that is unsuitable for current or near-future technologies. The second protocol, Protocol IT,
and its fully-anonymous variant improve upon the first protocol by remedying the issues of
the original protocol as listed in sec. 8.2.3. There are some important differences between
the different protocols, but they are the same in one key point: they all use |GHZ ) states
distributed over the entire network A/.

They are thus protocols that involve multi-partite entanglement. Pub. [C] ([48]) addi-
tionally contains an ACKA protocol that utilizes only bi-partite entanglement, involving
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many Bell pairs that are shared between all the participants. A partially and fully anonym-
ous bi-partite version is included - essentially the NOTIFICATION protocol -, both presented
in the supplementary material at Sup. [sA]. The efficiencies of Protocol II and its fully
anonymous version are compared against these bi-partite protocols, to determine if multi-
partite entanglement can offer a speed-up compared to Bell pairs. It is harder to distribute
an n-partite GHZ state in a network than it is to distribute a Bell pair, because n photons
have to be transmitted at the same time instead of a single photon. Hence the transmit-
tance 7™ is included in (8.3) and (8.4), to offer a more fair comparison. 7 is a single-valued
representation of the quality of the link between a single node and the central server that
represents the likeliness that a photon will successfully be transmitted. It should be noted
that 7 is inverse exponentially dependent on the link length.

It was shown that CKA protocols that utilize multi-partite entanglement can have an
operational advantage over bi-partite protocols [40, 48]. Interestingly, Pub. [C] showed that
this advantage of multi-partite entanglement becomes more pronounced when the anonymity
requirement is added, so that multi-partite ACKA protocols can provide key rates that are
one or two orders of magnitude higher than the bi-partite counterparts. This advantage
occurs for a broad selection of both the total number of nodes n, and link distances (encoded
by the transmittance 7).

Nevertheless, the distribution of the |GHZ,s) states by the central server means that
all nodes in the network must be connected to it, so that the network is assumed to be a
star network. This is a stringent network topology, that makes it harder to implement the
protocols. Moreover, and equally important, the protocols dictate some level of trust in this
central server. Depending on what protocol and what version is implemented, the server is
assumed to not share certain network parameters, to not collude with corrupted parties C,
or to not distribute different states than the expected |GHZys) states. Especially in these
latter two cases, if the adversary has power over the server it can easily break anonymity by
effectively stopping the protocol.

Chapter 9 introduces an anonymous conference key agreement scheme that aims to solve
this problem. By using a different protocol, the requirement for a central distributing server
is dropped: each node in the network has to share a connection with only two other nodes
in the network, for a considerably more feasible network topology.






ANONYMOUS CONFERENCE KEY
AGREEMENT IN LINEAR
NETWORKS

As discussed in sec. 8.4, the protocols presented in that chapter make use of network-wide
GHZ states, which implies that all nodes are connected to a central distributing server. This
somewhat stringent network topology is both impracticable in real-world networks, and this
server has to be provided with some level of trust.

As a different approach, Pub. [D] ([46]) introduced another ACKA protocol. This pro-
tocol is called LINEAR ANONYMOUS CONFERENCE KEY AGREEMENT (LinACKA) and makes use
of another, less stringent network topology. More specifically, instead of all nodes being
connected to a central server, each node is connected to only two other nodes. All nodes
are understood to be positioned along a line, so that every node is connected to only its
direct neighbours, i.e. to its left and its right neighbour. Such a linear network topology
is therefore also known as a mearest-neighbour network, and is less stringent than the star
topology.

The protocol allows three special nodes in the network, Alice (A), Bob (B) and Charlie
(C), who together form the participants P, to create a secret key. They do this in a partial
anonymous setting (see sec. 7.5), i.e. they are aware of each others identity, encoded by their
position in the line. All other parties in the network, the non-participants P, are unaware of
the positions of Alice, Bob and Charlie, and remain so during and after the protocol. This
holds true both for honest-but-curious non-participants, and for dishonest non-participants
that actively deviate from the protocol to try to learn the secure key or the identities of the
participants. Still, the adversarial model prohibits the non-participants to collude with each
other and perform a combined attack, which is a fair model in the linear network topology.

Because there is no central server, the nodes distribute the necessary entanglement them-
selves by sharing Bell pairs between every pair of neighbours; these Bell pairs are regarded
as a resource for the protocol.

The protocol is divided into three parts, where the first two parts are phrased as sub-
protocols. In the first part, the nodes in the network perform STATE PREPARATION: they use
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the Bell pairs to create the network state |N'), which consists of three separate linear cluster
states (see Def. 16); these states arise naturally in the linear network topology. During the
second part, the participants anonymously extract a three-body |GHZp) from the network
state by performing GHZ EXTRACTION. The last part of the protocol consists of measurements
that the participants perform to obtain the raw key or assert its security, and the various
post-processing steps that result in the secure, anonymous key.

Although the adversarial model prohibits the non-participants from colluding to break
anonymity, it should be noted that the security proof of the protocol (i.e. regarding the
security of the generated key) does not rest on this assumption. Rather, it provides security
under a full, broad adversarial model where any number of non-participants can collude with
each other and the adversary.

Pub. [D] includes a full finite security analysis, which is presented in this thesis. This
results in a rigorous finite key rate that is dependent on the various protocol and security
parameters. The performance of the protocol is studied in this chapter by simulating the
finite key rate in different scenarios, consisting of more simulations and discussions than
originally presented in Pub. [D].

This chapter is structured as follows. In sec. 9.1, the setting of the protocol is made more
precise, and the notation that is used in the remainder of the chapter is introduced. Sec-
tion 9.2 contains the protocol statement, divided into the three different parts. Security and
anonymity of the protocol is addressed in sec. 9.3, including a statement of the asymptotic
and finite key rate. A discussion regarding the performance of the protocol can be found in
sec. 9.4, where it is studied what influence the noise levels and block size have on the finite
key rate. Finally, certain other aspects of the protocol are discussed in sec. 9.5, including
a potential generalisation to more than three participants. The chapter is concluded in the
same section.

Various more technical aspects or details have been deferred to appendices. One step
of the protocol involves certain corrections that the participants have to perform on their
qubits, which are detailed in chapter F. The technical details of the security proof have been
deferred to chapter G. Similarly, the technical details of the anonymity proof have been
deferred to chapter H.

9.1 | Protocol and security setting

As explained in the introduction, LinACKA assumes a nearest-neighbour topology, i.e. a
set of n nodes {1,2,...,n} that are positioned along a line. This allows the nodes, similar to
chapter 5, to be indicated relative to each other, so that e.g. the right neighbour of node 1 is
node 2, and that e.g. node 3 would be the leftmost node of the set {3, 4,8}. The participants
P, i.e. Alice, Bob and Charlie, are positioned arbitrarily in the line, and their positions are
indicated by A, B and C, respectively. The participants are aware of each other (i.e. they
know each other’s positions), and w.l.o.g. it is assumed that A < B < C, so that Alice is the
leftmost participant and Charlie is the rightmost participant. The rest of the nodes in the
network are the non-participants P, and they are not aware what positions the participants
have, nor are they even aware if they are e.g. on the right of all participants. The setting is
depicted in F1G. 9.1, where the three participants have taken arbitrary positions.

As initial resources, every node is assumed to share an EPR pair with both their left and
their right neighbour. Node 7 thus possess two qubits: one labelled w; that is entangled with
T;—1, and one labelled 7; that is entangled with w;; ;. Because nodes 1 and n both have only
one neighbour, they have just one qubit each, 7; and w,, respectively. This initial resource
is shown as the top row of F1G. 9.2. Like ACKAv2, the protocol is a key-expanding scheme,
so that the participants have access to some pre-shared secret key.

As noted in the introduction to this chapter, it is assumed that the non-participants P
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FIGURE 9.1: Setting of LinACKA, where all nodes of the network are positioned along a line.
There is no central server, and instead the nodes are connected only to their direct neighbors;
therefore the setting is called a nearest-neighbour setting. Three special parties, Alice (A),
Bob (B) and Charlie (C) aim to establish a shared secret key without the rest of the network
learning their identities.

are either honest-but-curious or actively deviating from the protocol, but that they do not
collude with each other.

9.2 | Protocol statement

This section presents LinACKA. The three parts of the protocol, where the linear cluster
states are created, where the GHZ state is extracted, and where this state is used for key
generation or security assertion, are presented separately. The first part is phrased as a
subprotocol, STATE PREPARATION, and is introduced in sec. 9.2.1. The second part is also
phrased as a subprotocol, GHZ EXTRACTION, and introduced in sec. 9.2.2. The last part is
not stated as a subprotocol but instead explained in sec. 9.2.3. An overview of the first and
second step is shown in F1G. 9.2. Alternatively, chapter G contains a statement of LinACKA,
where it is phrased as one complete protocol involving all different parts.

9.2.1| STATE PREPARATION

The first step, the STATE PREPARATION subprotocol, aims to create the three linear
cluster states from the EPR pairs that are initially distributed. More specifically, by meas-
uring all other qubits, it creates the network state |N) = |LL) ® |Lm) @ |Lwr), that is
composed of the left, middle and right linear cluster states:

|LL> = |L71’7'2,~~~,7'A71,UJA>7
|LM> = |LTA7TA+1y~-~7TC—17WC>7 (9'1)

|LR> = ‘LTC7TC+1;-<-7Tn—17UJn> N

F1G. 9.2 shows the network state |N) in the middle row; the aim of STATE PREPARATION is
to convert the top row to the middle row.

The protocol consists of three steps, but not all steps are performed by all nodes in the
network; TAB. 9.1 details what nodes perform what steps. Most notably, a small selection
of nodes performs a different second step.
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Protocol III -  STATE PREPARATION TABLE 9.1:

The table indicates what
steps are performed by whom
in Protocol III. Nodes 1 and

Input: EPR pairs on qubits 7; and w;yg.
Goal: Preparation of the network state |N).

All nodes 7 perform the following steps consecutively: n do not perform step 1 and
step 3, respectively, so there
1: Receive 0;_1. is neither an outcome og nor

If 0,1 = 1, apply Z on w;. a node n + 1.

. (7i,wi)
2a: Perform C, between 7; and w;. Node | M | N,

Ed
g

Measure 7; in X-basis and record measurement out-
come bit as o;.

1 X 4 v 4 4

2. | x | x | v | x| x
2b: Draw uniformly random bit o;.

If 0, = 1 apply Z on ;. | v | v | x| v | x

Apply H on ;. i | 7|7 P
3: Send o; to i+ 1.

Note that after the protocol has completed, only Alice and Charlie take part in two
different cluster states. All qubits not explicitly stated in (9.1) are measured and removed
during the protocol, so that all other nodes only have one qubit left. These qubits can be
relabelled: 7; — ¢ for all nodes N\ {4,C,n} and w,, — n. Alice’s and Charlie’s qubits from
the middle linear cluster state are relabelled 74,we — A,C, and their qubits from the left
and right linear cluster state, respectively, are relabelled w4, ¢ — A,C.

As presented, the protocol implicitly assumes that neither Alice nor Charlie are at their
respective ‘ends’ of the linear network. If indeed A = 1, Alice performs those steps according
to the 1-column in TAB. 9.1. Similarly, if C = n, Charlie performs those steps according to
the n-column. Note that in such a case there is no |Ly,) or |Lgr).

Ny Ny e Na-1 N Nay1 e Ny e Ne-1 N. Neja e Np-1 N,

FIGURE 9.2: (Top): At the start of the protocol, all nodes in the network share a Bell pair
with both their left and their right neighbour. (Middle): After running STATE PREPARATION,
the Bell pairs have been consumed to create three linear cluster states, that together form the
network state |[N'). (Bottom): Using the network state, the participants extract a |GHZp)
state by running GHZ EXTRACTION. This state is subsequently used by the participant in either
Keygen or Verification rounds.
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9.2.2| GHZ EXTRACTION

The second step, the GHZ EXTRACTION subprotocol, aims to anonymously extract a GHZ
state on the participants P from the network state |A). Again there are three steps, and
similarly to STATE PREPARATION not every step is performed by every node in the network;
TAB. 9.2 details what nodes perform what steps. Generally speaking, the participants and
the non-participants perform different steps, but the outermost nodes 1 and n have their
own selection of steps.

In step 2b, the participants perform a configuration correction C*, for i € P: a local
Clifford operation that rotates the post-measurement state of the participants to the desired
GHZ state. These corrections are closely related to those detailed in chapter 5 for the
extraction patterns explained there, and are explained in more detail in chapter F; note
that they are dependent on the measurement outcomes {m;} of the non-participants.

TABLE 9.2:
The table indicates what

Protocol IV - GHZ EXTRACTION
y steps are performed by whom
Input: |N), Corrections {C'};cp in Protocol IV.
Goal: Anonymous |GHZp) state. Node 1 does not perform step

1 but draws a uniformly ran-
dom bit $1 and node n does
not perform step 3.

All nodes i perform the following steps consecutively:

1: Receive bit §;_1 and compute 3; = 5;_1 D 1.

2a: Measure node ¢ in X or Y basis if 3; is 0 or 1, re- Node | M, - 5 |

spectively.
Record the measurement outcome bit m;. L X 4 4 v
2b: Draw a uniformly random bit m;. 2a. X X v X
If i € P: apply C°.
PPLY % | v v X v
3: Communicate ; to node 7 + 1.
3. 4 v 4 X

Similarly to Protocol III, Protocol IV is stated under the implicit assumption that
neither Alice nor Charlie are at their respective ‘ends’ of the linear network. If indeed
A = 1, Alice performs those steps according to the 1-column in TAB. 9.2. Similarly, if
C = n, Charlie performs those steps according to the n-column.

9.2.3 | Measurements and post-processing

To complete the protocol, the participants use the generated GHZ state either for veri-
fication or for key generation, with a probability of p or 1 — p, respectively, where p is a
parameter of the protocol. More specifically, the network runs STATE PREPARATION and GHZ
EXTRACTION a total of L times, referred to as the block size. Using L-ho(p) bits of pre-shared
key, the participants divide the L resulting |GHZp) states between m = |p - L| randomly
chosen Verification rounds and & = L. — m Keygen rounds. For the Verification rounds,
the participants all measure their qubit in the X basis, recording the measurement outcome,
which is used to assert the security of the key.

To allow A to verify the state during the Verification rounds, B and C announce their
measurement result after each round; every other node in the network announces a random
bit to hide their identity. Moreover, so that the non-participants do not have to know what
are the Verification rounds, all nodes in the network announce a random bit after every
Keygen round as well. Using the announcements of B and C, A computes the fraction
of failed Verification rounds Qx = (1-(XaXsXc))/2. Alice compares this value to a pre-
determined tolerance value Qy.), and REJECTS when Qx > Qo1- In such a case, she sets her
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abort bit to 1, although the actual abort is postponed until a later stage.

The Keygen rounds are used by the participants to generate the raw key by measuring
their qubits in the Z basis, which results in a raw key of length k£ in the possession of
every participant. However, the participants have to perform error correction and privacy
amplification to ensure that they have an e.-correct and es-secret key, respectively.

Although the error correction is comparable to the methods introduced in sec. 7.3.2 and
the generalization to more parties in sec. 7.4, there is one main difference. The participants
still make use of e.g. an LDPC, so that 4 computes the error syndrome eg of her raw key.
However, the error syndrome is not uniformly random, and thus announcing it would give
up anonymity, even when this announcement is masked by random announcements from the
rest of the network. To effectively hide her identity, A encrypts it using |es| = k-ha(Q z) bits
of pre-shared key before announcing it; @z is the maximum (Z-basis) error rate between A
and B, or between A and C, and is pre-determined. To hide the identity of A, every other
node in the network announces the same number of random bits. B and C, having access to
the pre-shared key, are able to decrypt the error syndrome and use it to correct their raw
keys kg and kc¢.

The verification of the error correction has a similar adaptation. Using a publicly selected
two-universal hashing key, A calculates the hash ¢ 4 of her raw key. To obtain e.-correctness,
the length of the hash is taken as [t 4] = log (1/.), and it is encrypted by Alice using |t 4| bits
of pre-shared key to hide her identity; she announces it and every other node in the network
announces the same number of random bits. B and C, after they received and decrypted it
using part of the pre-shared key, compare ¢4 against their own hash and set their respective
abort bits to 1 if they do not coincide.

Using three bits of pre-shared key, the participants subsequently announce their encryp-
ted abort bit, while all non-participants announce a random bit. If any of the participant
announce the value 1, they abort the protocol. If this is not the case, the participants
perform privacy amplification by applying a two-universal hashing function whose output
length ¢ is based on the tolerance @, and the pre-determined security parameters. The
output of this hashing function is the secret key.

9.3 | Security and anonymity

The GHZ state is extracted only from the middle linear cluster state |Lnp), so effectively
only that state is used. The states |Ly,) and |Lgr) are created as a bi-product during STATE
PREPARATION - since the non-participants left of A and right of C are not aware of their
somewhat special position, they take the same steps as those non-participants between A
and C, thereby creating |Lr,) and |Lgr).

In normal QKD or CKA, the adversary learns the error syndrome and error hash because
it is announced through a public channel. Therefore, during privacy amplification, the
output of the hashing function is reduced by the upper bound of the amount of information
that the adversary can learn from these. As noted in sec. 7.3.3, this is upper bounded by
the length of the error syndrome e4 and hash ¢ 4, so that length is taken as the amount that
needs to be subtracted. However, to guarantee anonymity, both es; and t4 are encrypted
in LinACKA', so that there is no information leakage during this step; this in turn means
that it does not need to be accounted for during privacy amplification either. However, the
encryption of e; and t 4 is performed using a pre-shared key, so for a fair comparison it needs
to be reduced from the extracted secret key. Interestingly, this anonymous version of error
correction does not reduce the key length, as the lengths of e; and ¢4 (and thus the amount

IThis is done in the error correction step of ACKAv2, Protocol IT as well, which means a similar argument
applies there.
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of consumed pre-shared key) is exactly the amount of information leakage in standard error
correction, namely k - ho(Qz) + log (Ei)

An arbitrarily large but finite amount of Verification rounds suffices to obtain an ar-
bitrarily good estimate of Q) x, so that in the asymptotic limit p approaches 0. Therefore, all
terms in the key rate that are dependent on p vanish as well; this means that the asymptotic
key rate becomes:

Ta = []— - h2(Qtol) - h2(QZ)} 5 (92)

where the term —ha(Q4o1) is due to privacy amplification, and the term —hs(Qz) is due to
error correction.

In the finite regime, the estimate of () x is based on a finite number m of Verification
rounds. To obtain e4-secrecy, a statistical correction p (ESQE,L,p) is added to the X-basis
QBER Qo1 (similar to y(Qx) in (8.7)). This correction depends on the block size L and
number of Verification rounds m, and introduces a free parameter ¢; it is detailed in
sec. G.2. This results in a finite X-basis QBER estimate Q% = Qo1 + 1 (652_6,[/,])) >
Qto1. Ultimately, privacy amplification can then output an es-secret key of length (L) =
k[1—ha(Qfn)] — 2log(L) (see sec. G.2), which is dependent on the block size L through
the statistical correction.

However, a more fair comparison is obtained by reducing the amount of consumed pre-
shared key from the output length ¢. This takes into account the pre-shared key to determine

the Verification rounds (L - ha(p) bits), to perform the error correction step (k- h2(Qz) +
log(e%) bits) and to communicate the abort bit (3 bits). Writing & = L - (1 —p) and

subtracting this pre-shared key results in a net secret key rate length:

€ — €

bulD) = L+ (1= ) | 1= ha(Qua 1 (255 Lop )~ a(@2)| ~ L kot

2
1 1
—210g(> +log<> —3.
€ Ec

€ > 0 is a free parameter, and p can be freely chosen as well. For given parameters
€s >0, €. >0, Qol, Qz and L, £, (L) can thus be optimized over these two parameters.
The net finite key rate then is rpet(L) = fet(L) - The technical details of the proof can be

T
found in chapter G.

(9.3)

Anonymity

There are various steps and details of the protocol that are in place only to guarantee
anonymity of the participants. Any non-participant that is immediately to the right of a
participant is not aware of their special position, so in step 1 of Protocol III they apply
a Z correction to their qubit (e.g. w441) even though there was no measurement outcome
(e.g. 04). This is why in step 2b the participants perform the Z operation on their qubit
(e.g. 74): by randomly applying this operation, they effectively perform an ‘anti-correction’
which will be corrected by their right neighbour.

Moreover, the alternating (X-Y')-basis measurements during Protocol IV are agnostic of
the positions of the participants, so that the extraction of the GHZ state can be performed
without the positions of the participants leaking. This pattern only works because A and C
are at their respective ends of the linear cluster state; it is for this reason that the network
state JA) consists of three different cluster states, as prepared during STATE PREPARATION.

Similarly to ACKA and ACKAv2, various announcements of measurement results are an-
nounced during Protocols IIT and IV (by the selection of nodes as detailed in TABS. 9.1
and 9.2) and the Verification and Keygen rounds (by B and C). The nodes that do not
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have to perform these announcements, announce random bits instead to mask the identity
of B and C. Chapter H gives a detailed proof that the measurement outcomes are indeed
uniformly random and uncorrelated, and therefore indistinguishable from these random bits.

However, there is a subtle point to be made: imperfect measurement apparatuses or other
noise might alter the probability distribution of the measurement outcomes. In the simple
case of measurement-basis agnostic noise (e.g. depolarizing noise), the outcomes are still truly
random. However, other types of noise might add a bias to the measurement results that are
being announced. This would render the true measurement outcomes distinguishable from
the random bits, because the latter do not have such a bias. The nodes in the network can
circumvent this by adding such a bias to their announced random bits, but special care needs
to be taken to properly mimic the bias that would arise from true measurement outcomes.
They can learn this by pre-characterisation of their measurement devices, so that they can
simulate the bias accurately. Note that such an adaptation of the measurement outcomes
does not affect the key rates or performance of the protocol whatsoever.

9.4 | Performance

As with any QKD or CKA protocol, it is essentially assumed that any imperfections
in the testing rounds are caused by interference from Eve. These are accounted for during
privacy amplification by reducing the secret key length (see the —ha(Qy;) term in (9.2)), but
this means that any actual noise will reduce the amount of secret key as well. Moreover, the
noise will additionally affect @)z, further reducing the total length ¢. This means that, even
in the absence of an adversary, there is a threshold for the QBER, above which no key can
be generated. For QKD systems the X-basis and Z-basis QBERs are usually assumed to be
equal in this scenario, so that this threshold Q¢ becomes the smallest root of 1 —2-ho(Qthyr),
which is Qnr & 0.11. Interestingly, the results for LinACKA are somewhat different. Because
Qo1 is a three-party correlation, while @@z is a two-party correlation, the latter can be
taken to be %rd of the former (assuming i.i.d. white noise, to first order)?. This means
that the threshold Qyy, is the first root of the equation ho(Qinr) + hQ(%chr) — 1, which is
Qinr ~ 0.133.

The value of € plays a role in the statistical correction and implicitly determines how
many Verification rounds are necessary; therefore it sometimes is referred to as €., where
pe stands for parameter estimation. Although an optimization of ¢ is technically possible,
in general its value has little effect on the ultimate key rate rye;. Therefore it is often taken
that € = 5, so that the two terms in (9.3) that are dependent on it are ‘equally distributed’.
For all calculations and simulations in this thesis this choice is indeed made.

The value of p has a much greater impact on r,e; however, so that optimization over p is
considerably more important. The choice of p is addressed in more detail in sec. 10.2.1, but
can typically be taken p < 0.05, so that only a small fraction of the L states are used for
Verification rounds. In general, p can be chosen smaller for a larger block size L, because
for larger L there are more testing rounds, resulting in a smaller statistical uncertainty in
the estimate of Qx. In the remainder of this chapter, all presented results are optimized
over p.

To test the performance of the protocol, the key rates are calculated for various network
parameters. F1G. 9.3 shows the key rate rnet (L) as a function of the block size L, for various
noise levels. Note that the key rate can be negative; this means that the post-processing
steps consume more key than can be generated, or that there is so much error in the raw key
that it can’t be corrected efficiently enough. Although the secret key length as presented in
(9.3) depends on the tolerance Qi) instead of the actual X-basis QBER, the former can be

2Note that, although this gives a higher threshold Qgpy, a direct comparison with QKD is unfair: Qgp, is
a three-party correlation instead of the two-party correlation in QKD, so (for white noise) it will be higher.
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chosen arbitrarily close to the latter. Hence, in the remainder of this thesis every occurrence
of Qo is replaced by the noise rate @ x.

Finite key rate ¢ per total number of rounds L
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FIGURE 9.3: Finite key rate rnet of LinACKA (see (9.3)) as a function of the block size L. The
key rates for various X-basis QBERs Qx are depicted; for every simulation Qo1 = Qx and
the Z-basis QBER is fixed at two-thirds of Qx to simulate white noise. For the smallest
included X-basis QBER (Qx = 0.015) the asymptotic key rate is shown by the dotted line.
The security parameters . and e, have been fixed at 1 x 10719, while e = 5 x 1071*, and p
is optimized for every block size and noise level individually.

From Fi1G. 9.3 it is evident that the key rate is heavily dependent on both the block
size and the X-basis QBER. The key rate is always monotonically increasing as a function
of L; the relative increase is considerably stronger for lower L. This means that for modest
block sizes, it is often very useful to continue with the protocol even a little while longer.
At the same time, obtaining a positive key rate for low block size is only possible for low
error rates; the ‘break-even’ point, where the key rate first becomes positive, ranges from
L < 5x10* for Qx = 0.03, to as high as L ~ 3 x 107 for Qx = 0.12. Additionally, F1G. 9.3
shows the asymptotic key rate for the lowest included error rate. Remarkably, the block size
at which the finite key rate approaches the asymptotic key rate, L ~ 10 x 109, is similar
for all error rate levels.

A more detailed representation is given in F1G. 9.4, where the finite key rate rye; as a
function of both L and @ x is shown as a surface plot. The main figure on the left depicts
Tnet, While the two smaller graphs on the right depict the leading term in (9.3) (the top
right figure) and the finite X-basis QBER Q% = Qx + p (%=, L,p) (the bottom right
figure). The aforementioned threshold Qiy, is visible as the blue strip on the right of the
main graph, where no positive key rate can be obtained. Similarly, the blue strip on the
bottom indicates that, regardless of @) x, no positive key rate can be obtained for small block
size L. This is mostly due to Q' being too large for small L, even if the actual error rate
() x vanishes.

To offer a separate perspective, suppose that one needs a fixed amount of secret key; for
this it useful to know how many network uses (i.e. block size L) are required. TAB. 9.3
details this for a selection of different secret key sizes ¢, for three different X-basis QBER
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(1—p)(1 = ha(QF) — h2(Qz))

Tnct(L7 QX)

~ 1012

= 1012

1010

1010 108

—0.5

108

104 1073 1072 107!
n

—0.2

106

—0.4

-0.6

10% 4 —0.8

1074 1073 102 107!

FIGURE 9.4: The finite key rate et is shown as a function of the X-basis QBER Qx and
the block size L, and is heavily dependent on both. It is taken that Qio1 = Qx, and the
Z-basis QBER has been fixed at %rds of Qx to emulate white noise. The key rates have
been optimized over p, and the security parameters have all been set to e, = e, = 1 x 10719,
while ¢ = 5 x 107!, Left: The net finite key rate rne; (see (9.3)) is monotonically increasing
with L and monotonically decreasing with @x. Top right: the leading term in (9.3) closely
corresponds to the total amount, but differs for smaller L due to terms in (9.3) that are
independent of Qx. Bottom right: the finite X-basis QBER Q%" = Qx + 1 (=27=,L,p)
(i.e. including the statistical correction) is strongly increased by a small block size L.

rates. From the table it is evident that for low block sizes L, a small increase in L can have a
strong positive effect. Indeed, for e.g. Qx = 0.06 the break-even point is at L = 2.185 x 105,
but increasing to L = 2.279 x 10° already gives 1000 bits of secret key; further increasing to
L = 3.039 x 10° gives another 9000 additional bits of secret key.

3 5.696e+04 2.279e+05 1.361e+07
4 9.860e+04 3.039e+05 1.392e+-07
5 3.770e+05 8.439e+05 1.679e+07
6 2.411e+06 4.600e+06 3.854e+07

TABLE 9.3: For fixed secret key lengths ¢ (in base 10 logarithm), the minimum necessary block
size L is given. The table details L for three different levels of X-basis QBER @ x, here
denoted Q'%. Remember that it is taken Qo1 = Q x, and that @z has been fixed at two-thirds
of every Qx to simulate white noise. The security parameters €. and £; have been fixed at
1x 1078, ¢ =5 x 107°, and the simulations are optimized over p from (9.3).
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9.5| Discussion and conclusion

The network state |[N') that is created during STATE PREPARATION is technically depend-
ent on the positions of A4 and C. However, a straightforward computation reveals that the
reduced states of every individual qubit is maximally mixed, so that the quantum state of any
node in the network does not contain any information regarding the set of the participants.

As presented, the participants have to apply the correction operators on their qubits be-
fore they are able to measure them in either the Z or X basis. This is a highly undesirable
property, especially since these corrections are dependent on the measurement outcomes of
the non-participants. Waiting until the measurement outcomes are communicated implies
that the participants need a quantum memory, which would limit the feasibility of an im-
plementation of the protocol. However, these corrections are of such nature that they can
be dealt with differently. All corrections are Clifford operators, so that their ultimate effect
is only a potential change of measurement basis to another Pauli operator. This is also why
the corrections, as presented in chapter F, have been explicitly divided between the config-
uration correction and the measurement outcome dependent corrections. The configuration
corrections involve Clifford operations that might rotate the X- and Z-basis measurements
to another Pauli basis, but these correction can be calculated beforehand, as the distance
between Alice, Bob and Charlie is known. The measurement outcome dependent corrections
are, as detailed in sec. F.1, at most an X and Z operator. The action of these operators on
any Pauli-basis measurement is, at most, that the outcome are flipped (e.g. XZXt = —Z,
so that the +1 and —1 eigenspaces are interchanged, and therefore the measurement out-
comes as well). These corrections can be implemented in post-processing, so that the actual
measurements can take place before the outcomes of the non-participants are communicated;
this removes the need for any quantum memory. This approach is similar to the technique
discussed in sec. 5.5, and is exemplary of a broader topic that is discussed in chapter 11.

The LinACKA protocol in its complete form starts with Bell pairs as an initial resource
that are consumed to create the network state |A') during STATE PREPARATION. However,
due to the modular presentation of the complete protocol, this is somewhat separate from
the rest of the steps. Indeed, if the network were to obtain or realise the |[N) state in any
other way, it could still be used in the subsequent steps of the protocol (provided there
is no leakage of identity). Moreover, the left- and right linear cluster states are, as noted
before, not strictly necessary for the remainder of the protocol. This means that they could
be omitted from any alternative approach to realising the middle linear cluster state. Still,
of course, the anonymity of the participants should be safeguarded, so that any alternative
state on the ‘outer’ nodes does not leak the identity of the participants.

Comparison with ACKAv2

In LinACKA, the non-participants do not have to learn what rounds are the testing rounds,
but rather just announce random bits after every round (i.e. both the Verification and Key-
gen rounds). Only B and C announce an actual measurement result after the Verification
rounds, so that A is able to assert the security of the key.

This is in contrast to the approach in ACKAv2 (Protocol II from chapter 8), where the
measurement outcomes are not announced publicly. Instead, in that protocol the measure-
ment outcomes are used as input to the PARITY protocol, so that A can ultimately determine
the error rate @ x without any node having to publicly announce their measurement res-
ults. Still, this PARITY subprotocol is inefficient, so that it is only possible to run it for
a select number of rounds. In ACKAv2 this is solved by only explicitly performing this for
the Verification rounds. The drawback to this approach is that the non-participants have
to be made aware of the testing rounds, which ultimately allows them to selectively ‘play
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nice’ during only the Verification rounds, so that they can perform any attack during the
Keygen rounds without being caught. The approach of ACKAv2 to remedy this, is to wait
long enough so that the quantum systems of all nodes have decohered (i.e. the bounded
storage model), so that the non-participants are not aware of the type of the round when
they perform their measurement.

Nevertheless, the approach from ACKAv2 solves an issue as well. As already noted in
Pub. [A], an adversary that has power over the central server can distribute +1 eigenstates
of the X-basis measurements that the non-participants perform during ACKAv2. Any node
that announces the incorrect outcome would then inadvertently give up their identity as a
participant. Even though this would result in failed Verification rounds, this is effectively
‘too late’: the identity leakage has already happened. Because in ACKAv2 these outcomes
are never announced directly but only used as input to the PARITY protocol, there is no such
attack possible.

Essentially, the two approaches can thus be seen as a trade-off between assumptions on
the nodes in the network themselves, and assumptions on the power of the adversary over
the central server. ACKAv2, defined on a star topology with a strong central server, does not
put any limitations on the central server, and therefore uses the bounded storage model to
put assumptions on the nodes themselves. LinACKA, on the other hand, does not have a
distributing server, and thus puts its assumptions on the power of the adversary: it assumes
that the adversary cannot corrupt multiple nodes at once to perform a collective attack
involving multiple dishonest nodes.

Collective attacks to break anonymity

Indeed, the restrictions in the adversarial model that is put in place to limit the non-
participants to not perform colluding attacks, is put in place only so that anonymity cannot
be broken. A straightforward analysis shows that, by actively deviating from the protocol,
any pair of nodes i — 1 and i + 1 can determine if the node 7 in between is a participant
or not. More specifically, they can perform measurements during Protocol IV that are
different from the prescribed X- or Y-basis measurements to exploit the stabilizer structure
of the linear cluster state. By e.g. both measuring in the Z-basis, they can effectively create
a 3-body measurement on ¢ — 1, ¢ and @ + 1 that is a stabilizer element (i.e. the operator
Z(i_l)XiZ(i+1))3. The outcomes of these measurements should be correlated, which can
easily be verified by the two colluding nodes because they have access to the outcome m;.
However, in the case that node 7 is in fact a participant, they would announce a random bit
instead of an actual measurement outcome. There is then no correct correlation with 50%
probability, from which the colluding nodes i — 1 and 7 + 1 can conclude that node 7 is a
participant. Similarly, if the correlations are always correct, they can conclude that node 4
is not a participant.

It should be noted that this and similar attacks are, in principle, protocol-breaking. By
performing these deviations from the protocol, the attacking nodes will affect the state in
such a way that ultimately the Verification rounds will fail. As such, even in a stronger
adversarial model where coherent attacks by colluding parties are allowed, anonymity can
not be compromised without such leakage being detected. Furthermore, as noted in the
introduction to this chapter, the security proof presented in chapter G (i.e. for the security
of the key) does not function under this assumption, but allows for these coherent attacks
by colluding parties as well. This means that whenever the protocol does not abort, both
security and anonymity are guaranteed.

31t is here assumed, for brevity, that node i indeed performs an X-basis measurement instead of a Y-basis
measurement. A different attack in the case of a Y-basis measurement is possible as well, but would involve
a different selection of colluding nodes.
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Generalisation to more than three participants

As presented in Pub. [D] ([46]), the protocol specifies that there are exactly three par-
ticipants. During the protocol, they extract a |GHZ3) state from the middle linear cluster
state |Lni) as detailed in sec. 9.2.2. However, from the results presented in chapter 5 it
follows that a larger GHZ state could be extracted from |Lpg). Therefore, in principle a
larger set of participants could use this larger GHZ state during Keygen and Verification
rounds to create a shared secret key or assert its security. However, an integral part of the
anonymity of Protocol IV is the alternating (X-Y')-basis measurement pattern: using this
participant-agnostic pattern, the non-participants cannot determine who are A, B and C.

The measurement patterns from any larger extraction pattern (i.e. one with more than
three participants) would have to be similarly designed so that they are independent of
the locations of the participants. Although not trivial to find, such an extraction pattern
could be used to increase the number of participants in LinACKA. However, note that the
corrections that the participants have to perform to obtain the true GHZ state would be
less trivial as well, so that a closed form as presented in chapter F might prove impractical.

As pointed out earlier, the measurement pattern from Protocol IV with the alternating
(X-Y)-basis measurements works because A and C are at the ends of a linear cluster state
from which the GHZ state is extracted. To realise this, STATE PREPARATION creates the
network state |N') where the middle linear cluster state is indeed from A to C. However, an
adapted measurement pattern (for e.g. a larger number of participants) might not necessarily
need the participants on such exact positions. Hence, an adapted measurement pattern in
GHZ EXTRACTION for a larger number of participants might additionally invoke the need of
an adaptation in STATE PREPARATION, so that e.g. only one, single linear cluster state is
created. Still, a measurement pattern for a larger number of participants that is agnostic of
the positions has proven difficult to find.

It should be noted that, except for the current presentation of Protocol IV and the
associated configuration corrections, it is trivial to adapt the protocol to more than three
participants. The middle linear cluster state would still be used to extract the (larger) GHZ
state, and all measurements, post-processing steps and security- and anonymity proofs are
presented in such a way that it is trivial to adapt them to a larger number of participants.

Conclusion

This chapter has introduced LinACKA, a protocol to perform anonymous conference key
agreement in linear networks. There is no central server that has to distribute the necessary
entanglement, which creates a network topology that is less stringent than the star topo-
logy of ACKA and ACKAv2 from chapter 8. Both the ACKA and the LinACKA protocols were
implemented in a photonic experimental setup; these implementations are presented and
discussed in chapter 10.
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EXPERIMENTAL REALIZATIONS OF
ANONYMOUS CONFERENCE KEY
AGREEMENT

To complement chapters 8 and 9, this chapter details the collaboration with the experimental
group led by Prof. Stephanie Barz at the Universitit Stuttgart. They have performed an
experimental implementation both of ACKA and of LinACKA, originally presented in Pubs. [B]
and [E] ([45, 47]), respectively.

The actual experimental implementation of either of the protocols was not performed
by me, but by the respective first authors. This chapter focuses on the post-processing of
the experimental data, performed by me. It includes both a tomographic analysis of one
of the prepared states, and an analysis of the implementation of the protocols themselves,
including a calculation of the obtainable key rates for LinACKA, specifically.

The first implementation, an experimental realisation of ACKA originally presented in
Pub. [B] ([45]), is presented in sec. 10.1. LinACKA is covered by sec. 10.2. More specifically,
sec. 10.2.1 contains a detailed discussion on the parameter p, the relative number of Veri-
fication rounds whose value can greatly influence the finite key rate r,e;. It was neither
included in Pub. [D] nor in Pub. [E], nor presented anywhere else before. Then, sec. 10.2.2
presents the experimental implementation of LinACKA from Pub. [E]|. Some of the post-
processing presented in that chapter was not performed by me, but it has been included in
the subsection for completeness. Any results that were not obtained or calculated by me
are explicitly stated to be so by citing [47]. Most notably, F1G. 10.5 is taken (but adapted)
from [47]. The chapter is concluded in sec. 10.3.

10.1| Star network ACKA

In the first experimental realisation, presented in Pub. [B] ([45]), a polarisation encoded,
four-photon |GHZ,) state’ was prepared in an all-optical setup, with a fidelity of F' =

IThe prepared experimental state was not exactly the GHZ state, but rather a state LC-equivalent to it.
Thus, all of the measurement bases prescribed by the protocol had been rotated as well, but for clarity this
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0.85(£0.02) [45]. A tomographic reconstruction of the experimental state can be found in
FiG. 10.1; for more details on the experimental setup see [45].

FIGURE 10.1: State tomographic reconstruction of the experimental state as presented in [45],
that is used to implement ACKA. The fidelity with the |GHZ4) state is F' = 0.85(£0.02). A
perfect |GHZ,4) state has four non-zero terms: |0000)%0000| = |1111)0000| = |0000)X1111| =
[1111)1111] = % The experimental state closely resembles this; imperfections and noise are
represented by other non-zero entries.

This state acts as the resource for an implementation of ACKA in a network of four nodes
N = {1,2,3,4}. There are six different partitionings N' = P U P chosen for which to
implement ACKA; four configurations where |P| = 3, labelled A — D, and two where |P| = 2,
labelled E — F. All these configurations are listed in the first two columns of TAB. 10.1.

B 2,3,4 1213/1272 23222/26056 20.48
fe 1,2,3 1210/1265 31111/34924 27.61
D 1,24 1097/1151 69139/77265 67.13

TABLE 10.1: The experimental |GHZ4) state is used to implement ACKA in 6 different network
configurations, i.e. 6 different choices of P. They are labelled A —F, where the second column
details the nodes that are in P. The successful and total number of Keygen and Verification
rounds are detailed in the third and fourth columns, while the security parameter D, the ratio
of number Verification to Keygen rounds, is given in the last column. Note that the number
of participants is 3 for A — D, while it is 2 for E — F.

In a complete, networked implementation of ACKA, the security parameter D would be

is omitted in the presentation in this chapter.
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specified, and a public source of randomness would be used to determine for every prepar-
ation of the |GHZys) state whether it will be used for a Keygen or Verification round.
On the other hand, in the implementation presented here a different approach is taken: all
Keygen and Verification rounds are performed separately in bulk. This results in a total
of 12 different measurement settings, two for each network configuration. An artefact of
this is that the security parameter D is determined as the ratio of total Verification to
Keygen rounds, instead of vice versa.

TAB. 10.1 details, for every configuration separately, the number of successful and the
total number of both Keygen and Verification rounds. A successful Verification round
means a round where Alice does not REJECT; a successful Keygen round means that the
outcome of all participants was the same, so that the raw key bits are identical.

In F1G. 10.2 the rates for all 12 measurement settings are presented. The results of the
Verification rounds are an aggregate of all different measurement settings that can arise
during the verification rounds. Although the original presentation of ACKA in Pub. [A] does
not include a finite key analysis and as such does not explicitly mention the X- or Z-basis
QBER, the rates presented here can be understood as an upper bound on the (inverted) @z
(for the Keygen rounds) and as the de-facto (inverted) Qx (for the Verification rounds)
of the implementation. Note that F1G. 10.2 shows the success rate, so that a rate of 100%
or 0% indicates a QBER of 0 or 1, respectively.
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FIGURE 10.2: Success rates for the experimental implementation of ACKA, of both Keygen
and Verification rounds for all 6 different configurations of the network. These rates can be
viewed as the de-facto (inverted) @z (for the Keygen rounds) and Qx (for the Verifica-
tion rounds) of the implementation. The results show that all rates lie within the theoretical
thresholds, so that an experimental realisation of the protocol with positive keyrates is pos-
sible.

The results show that all rates lie within the theoretical thresholds, so that an experi-
mental realisation of the protocol with positive keyrates is possible. The Keygen rounds
perform considerably better than the Verification rounds, which means that the penalties
in the key rate due to error correction would be relatively small. This difference in per-
formance is explained by the different types of correlations that are being checked. During
the Verification rounds, essentially correlations are checked for the entire network (i.e. in
this case four-body correlations). The Keygen rates on the other hand concern correlations
between only the participants. This also explains why the Keygen rates are better for con-
figurations E and F compared to configurations A — D, because they involve only two-body
correlations, instead of three-body correlations.
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10.2 | Linear network ACKA

This section discusses implementations of LinACKA. Section 10.2.1 discusses the influence
of the value of p on the net finite key rate rpet (see (9.3)); this was not originally presented

in Pub. [D] nor anywhere else. Section 10.2.2 presents the experimental implementation of
Pub. [E].

10.2.1 | Dependence of finite key rate on p

The parameter p in LinACKA, that determines the fraction of rounds that are used for
Verification rounds, can be chosen freely. However the net secret key rate ry. can be
strongly dependent on the value of p. There are various terms in the net key rate ((9.3))
that directly depend on it, but some of these terms are additionally dependent on the block
size L, the QBER @ x and the security parameter €,. These parameters are all intricately
intertwined, so that the effect of the value of p on the key rate is not always straightforward
to understand.

Nevertheless, the value of p can greatly influence the secret key rate: it can make the
difference between a negative or positive net key rate re¢, or it can change the minimum
block size to obtain a fixed ryet by orders of magnitude. F1G. 10.3 shows a plot of the net
key rate rye as a function of p, for various noise levels Q) x.

Finite key rate r,c; as a function of p

0.8
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1076 107° 1074 1072 1072 107*

FIGURE 10.3: The net key rate rnet as a function of p, for various Qx and fixed block size
L =1 x10%. Tt is strongly dependent on p, and for every Qx there is an optimal choice for p.

The optimal choice of p generally depends on the values of L, Q@x and &4, but is not
easily found: for fixed values of L, Qx and the security parameters, (9.3) must be optimized
for p. F1G. 10.4 shows a 2D plot of the optimal value for p as a function of both L and Qx.

From Fi1G. 10.4 it is evident that the optimal choice of p is strongly dependent on
the block size L. This dependence is clear: p directly determines the (relative) number
of Verification rounds, but for a moderate block size L this results in a small absolute
number of Verification rounds. Fewer rounds to estimate ) x results in a larger statistical
uncertainty, which has to be accounted for by a larger statistical correction u, resulting in
a shorter secret key.
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FIGURE 10.4: Surface plot of poptimal, the choice of p that results in the highest net key rate ryet,
as a function of both the X-basis QBER @ x and the block size L. poptimai is heavily dependent
on the block size L, especially for smaller sizes. It is less dependent on @ x, especially in the
regime of positive keyrate. The gray dashed line shows the break-even point, under which
et < 0. Note that the L-axis ranges until 1 x 1087 unlike 1 x 10*? in e.g. Fic. 9.4. The
lowest region (where L is smallest) with p ~4 0 is explained in the main text.

At the same time, the optimal choice of p is less strongly dependent on the X-basis
QBER Qx. Note that (at a fixed L) the optimal choice of p is lower for a higher @ x than
for a lower Qx. The reason why is because, in the term —ho(Qx + u (552_5,L,p)) from
(9.3), the parameter p = (852_ £, L, p) is comparatively small when @ x is high. This means
that choosing a smaller p is then less detrimental, because the total term over which the
binary entropy is calculated (i.e. Qx + p) is already large anyway. It should be noted that
the only region where this plays an important effect is under the gray dashed line, i.e. the
region where no positive key rate can be obtained anyway.

It can be concluded that in settings with positive net key rate rnet, Poptimal can be taken
roughly independent of @) x, which is reflected by FiG. 10.3. Still, F1G. 10.4 shows that it
is strongly dependent on the block size L.

For the lowest region in FIG. 10.4, the term —ha(Qx + p (275, L,p)) in (9.3) becomes
so large (i.e. > %) that it gets cut off regardless of the value of p . Therefore, the lowest p
possible optimizes the key rate, because the term ho(p) in (9.3) is then smallest. However,
for this region it holds that r ¢ < 0 for all p anyway, so that choosing the optimal p is
irrelevant.

10.2.2 | Experimental implementation of LinACKA
For the experimental realisation of LinACKA presented in Pub. [E] ([47]), a polarisation
encoded, four-photon linear cluster state was prepared by fusing two pairs of entangled
photons using a photonic Cz gate [208]. Specifically, a rotated |L}°") is prepared from two
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Bell states |B11) (see (1.52)):
1
|LP*) = 3 (10101) + 0110) — [1001) + [1010)) = C® | By1) @ | By ), (10.1)

which is related to the |L4) state by the local Clifford operation H; XoX3H,4. Instead of
performing this correction, all the measurement bases dictated by the protocol are rotated
under this local Clifford operation.

Every photon has its own output mode which ends in a photon detector that clicks when
a photon is detected in the mode. The Cy gate is effectively realised when a click occurs in
all four detectors simultaneously, which happens with probability 1/9 [47]. This means that
the realisation of the state is probabilistic but heralded. Hence, the setup is left ‘on’ for a
prolonged time, the integration time, during which multiple measurements are aggregated.
Therefore, the |L}°") state effectively ‘lives’ only when it is properly detected and measured.
Different measurement bases are realised by including phase shift wave-plates in the setup.
For more details of the experimental setup, see [47].

Because of the heralded nature, the number of correct detections (i.e. realisations and
measurements of the |L}°) state) is not pre-determined. The fidelity of the experimental
state with the |L°") state was estimated in [47] to be F' = 79.8+0.8% using state tomography
with maximum-likelihood estimation.

In the implementation of the protocol, the nodes A and C are fixed to have the first
and last qubit of the |LI°Y) state, respectively. This means that there is a single non-
participant, which is either at the second or third qubit. Moreover, LinACKA dictates two
different measurement bases for this non-participant, namely the X basis (82 = 0) or Y
basis (f2 = 1). Therefore, there are four different measurement configurations in total,
labelled X5, Y5, X3 and Y3, which are the four different possible measurement operators of
the non-participant. The rate of successful Keygen and Verification rounds for every four
of these configurations is presented in F1G. 10.5.
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FIGURE 10.5: This image is taken and adapted from Pub. [E] ([47] (Fig. 3)). Success rates
for the experimental implementation of LinACKA, of both Keygen and Verification rounds
for all 4 different configurations of the network. The rates for the Keygen rounds are an
upper bound to the (inverted) @z, because they measure the three-party correlations of all
participants, instead of the bi-partite correlations that the actual Qz reflects. The rates for
the Verification rounds can be understood as the (inverted) Qx of the implementation.
The results show that all rates lie within the theoretical thresholds, so that an experimental
realisation of the protocol with positive keyrates is possible.

The values for the Keygen rounds presented in F1G. 10.5 are the relative number of
‘successful’ rounds. Successful here indicates that the generated bit for all three participants
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was equal. This means that the true value for the (inverted) @z will be better (i.e. higher),
because this is the maximum of the pairwise error rate between A and the other two parti-
cipants. It follows that calculating the asymptotic keyrate is, strictly speaking, not possible
from the rates presented in F1G. 10.5. When uncorrelated errors during the Keygen rounds
are assumed, the value for Q7 would, to first order, be % of the Keygen error rate (i.e. the
inversion around 100% from the values presented in FiG. 10.5). Taking this assumption,
this would result in a positive asymptotic key rate for all different measurement settings.
For one specific measurement setting, Xo, the experiment was prolonged so that a larger
set of rounds was performed. More specifically, there were 10.814 Keygen rounds and
294 Verification rounds, for a total of 11.108 prepared linear cluster states, resulting in a
ratio p = 0.026. Out of the 294 Verification rounds, there were 33 incorrect measurement

outcomes, so that Qx = % = 0.112. The bi-partite error rates between A and B, and

A and C are Q?’B = 0.0959 and Qé’c = 0.0927, so that the asymptotic key rate of the
experimental implementation is:

ar =1 — hy(0.112) — hy(0.0959) = 0.0375. (10.2)

The value for @Qz shows that the above assumption leading to Q7 = %QX, gives an
underestimate for the Z-basis QBER. If the errors were uncorrelated, all bi-partite error
rates would be similar, but the bi-partite error rate between B and C is Qg’c = 0.042. This
is considerably lower than Qé’g and Q’;’C, which is caused by the nature of the preparation
of the | L) state (see (10.1)). Before the Cz gate is realised, the state is separable over the
bi-partition {1,2} : {3,4}, and only after the entangling gate it becomes a true multi-partite
entangled state. This analysis and the relatively low bi-partite error rate Qg’c shows that
the prepared Bell states have a relatively high fidelity, so that the correlations between B
and C are relatively strong.

It should be noted that the Verification rounds are bunched, so that multiple Verific-
ation rounds are performed in succession. More specifically, the total experiment is divided
between runs of a fixed length of 60 seconds each. A biased random bit generator indicates,
at the start of each run, if the rounds in the run will be Verification or Keygen rounds.
The experimental setup is then automatically adapted so that the measurements are per-
formed in the correct basis for that type of round. For each run, the integration time of
the setup is thus 60 seconds, during which a random number of correct four-photon clicks
occurs. Repetitions of multiple runs then results in an aggregate number of Verification
rounds and Keygen rounds. This practise is common in proof-of-principle experiments, but
the choice between Keygen and Verification is not independent for every round in such
an approach, which affects the security of the protocol.

10.3 | Conclusion

The experimental implementations that were presented in this chapter have showed that
it is possible to utilize multi-partite entanglement in networking protocols. The realisations
are proof-of-principle instead of fully-fledged implementations of the complete protocols.
Nevertheless, they pave the road forward for quantum networks beyond point-to-point com-
munication.

The presentation of ACKA and LinACKA in chapters 8 and 9, respectively, is theoretical in
nature. LinACKA explicitly allows for failed Verification and Keygen rounds by performing
error correction and privacy amplification. Still, the protocol is completely agnostic to the
source or type of noise. A better inspection of the typical type of noise that arises in the
experimental setup could be beneficial to the performance, and ultimately the keyrates, of
the protocols.
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Additionally, the theoretical presentation of both protocols assume that the distributed
quantum systems are two-level systems, i.e. qubits. The experimental setup from Pubs. |B]
and [E] realises signals that are close to single photons, but as with any experimental im-
plementation there is still a finite probability for other photonic probability distributions
and therefore attacks, e.g. the PNS attack. A security proof that takes this into consider-
ation could improve the key rates or increase the security of the protocol implementation.
Preferably, such an improved security proof would not have to resort to decoy states (see
sec. 7.2.2) or similar techniques, because such measures would reduce the key rates.

Furthermore, the method that is used for cluster state generation is based on a probab-
ilistic gate. This means that a higher number of nodes in the network, which would involve
a larger number of C'z gates, has an exponentially averse effect on the success probability
of the preparation of a single network state. Other methods to realise the entangling gates
from the protocol might therefore be necessary.
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CONCLUSION

The research presented in this thesis has contributed to the advancement of the thriving
field of quantum communication and cryptography, by both addressing fundamental ques-
tions regarding multi-partite entanglement, and by exploring the utilization of multi-partite
entanglement in anonymous quantum networking protocols. Not including the introduction
of the relevant basics of quantum information science presented in part I, the thesis was di-
vided into two parts, that covered these two different research areas that I have been active
in.

The fundamental questions regarding multi-partite entanglement were the topic of
part II, which discussed its distribution, transformation and categorization within quantum
networks. Specifically, chapter 5 (Pub. [F|) concerned extraction, where we showed that
for the exact choice of linear cluster state and GHZ state as resource and target graph
states, respectively, the decision of extraction in a network setting is possible. In doing
so, we showed an upper bound to the size of any GHZ state that can be extracted from a
linear cluster state, and provided a complete characterization of what selections of nodes
are possible.

After this, in chapter 6 (Pub. [G]), we presented various novel methods to characterize
the LU-orbits and entanglement classes of graph states, and novel tools to compare sets of
graph states regarding their LU-equivalence. Moreover, we studied the performance of these
methods in identifying and distinguishing all LU-orbits and entanglement classes up to nine
qubits.

After the part that discussed foundational aspects of multi-partite entanglement, part 111
dealt with a more operational topic and discussed the utilization of multi-partite entangle-
ment in quantum networking protocols. More specifically, the concept of anonymity was in-
troduced in chapter 7, including Defs. 31 and 32, which we originally presented in Pubs. [A]
and [C], respectively.

In chapter 8 (Pubs. [A] and [C]), we introduced two protocols to perform anonymous
conference key agreement (ACKA), where the first protocol is a proof-of-concept, and the
second, more robust, protocol (that has two variants) improves over the first by solving
various problems with the first protocol (see sec. 8.2.3). As discussed in sec. 8.4, both these
protocols assume a (somewhat restrictive) star network topology.
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Chapter 9 (Pub. [D]) introduced a novel ACKA protocol that assumes a linear network
- a less restrictive network topology. In that publication, we showed that ACKA is possible
without the presence of a central distributing server, but that the necessary entanglement
can be distributed by the nodes of the network themselves. This showed that the utiliza-
tion of multi-partite entanglement is effective even in network configurations that are more
constrained in their resources.

Finally, chapter 10 (Pubs. [B] and [E]) presented experimental realizations of these
ACKA protocols. Although I did not perform these experiments myself, I did perform or aid
in the post-processing and the analysis of the experimental data. With these publications, we
showed that the utilization of multi-partite entanglement goes beyond theoretical analysis,
and that it is possible to utilize it in experimental realisations.

Our research has explored the distribution and categorization of multi-partite entangle-
ment in quantum networks, and has shown that it can be a valuable resource in quantum
networking applications. Together with the myriad other recent studies and publications
regarding quantum communication and cryptography, our research paves the way forward
towards a global quantum internet [32].

Looking ahead, future work could explore many more aspects of both the foundational,
theoretical topics of part 11, as well as the more operational topics of part III. The next, and
final, chapter of this thesis details potential ideas for such future research.
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Some of the conclusions in chapters 5, 6 and 8 to 10, i.e. those presenting my research,
include potential ideas for future research that can be conducted. Those ideas are focussed
on the topic of each specific chapter, and are largely similar to the ideas presented in the
discussions and conclusions of the associated publications. This section takes a broader
approach and suggests ideas for future research that do not necessarily fit into the scope
of any particular single chapter. Three different topics are addressed, each in their own
separate section.

A restriction of the LOCC paradigm

The LOCC paradigm introduced in sec. 4.1 is the de-facto standard for the study of
entanglement and the equivalence of states of quantum networks. Most important results
in entanglement theory are within the scope of LOCC operations. However, as discussed in
sec. 4.1, there are many scenarios where the classical communication that is inherent to the
paradigm might not always be practical or possible to perform. As an example, consider a
protocol that dictates that a single-qubit correction has to be applied to a node in a network,
conditioned on the outcome of a measurement of another node. If the nodes are far enough
removed from each other, the time it takes to communicate this outcome might be longer
than the decoherence time of the qubit on which the correction operation has to be applied.
This would mean that the quantum information is lost before it can be acted upon, and
that the protocol would fail.

The LOSR paradigm (see sec. 4.1) is one answer to this problem. Here there is no classical
communication possible, but the nodes in the network can rely only on shared randomness.
As previously discussed, LOSR is not widely studied, but there are certain no-go results
within the paradigm [53, 54].

At the same time, restricting solely to LOSR can be overzealous. Indeed, the techniques
and discussions in secs. 5.5 and 9.5 have shown that the conditional gates in the GHZ extrac-
tion and in LinACKA can be adapted: these corrections are delayed until post-processing, and
all necessary quantum operations, including the measurements, can be performed without
having to wait for the classical communication to arrive.

Although this approach is not possible for all types of correction operators and measure-
ments of any generic protocol or computation', the examples of secs. 5.5 and 9.5 show that
there are indeed protocols where it is possible to delay the corrections. It is thus fruitful
to consider a ‘middle ground’ between LOSR and LOCC, where classical communication is
not prohibited, but no conditional quantum gates? are allowed. In such a paradigm, that I
call LODCC (local operations and delayed classical communication), de-cohering quantum
systems are much less an issue.

There exists a well-defined mathematical description for LOCC [36], which is easily
adapted to describe LOSR. It is unclear if a description of LODCC can be obtained which
is equally well-defined.

!Tndeed, consider measurement-based quantum computation [209]. If any correction operator could be
postponed until after the measurements, this would essentially make such quantum computers classically
simulable, resulting in the collapse of BQP to P.

2That is, quantum gates that are conditioned on classical data of other systems.
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Towards such a description, note that for the examples from secs. 5.5 and 9.5, the commu-
nication can be delayed because the correction operators are single-qubit Pauli operators.
These single-qubit Pauli operators at most invert the outcomes of the subsequent Pauli
measurements, so their effect can de understood as a re-interpretation of the outcomes. A
mathematical description of LODCC would have to reflect this.

This can be extended beyond Pauli measurements and correction operators. Consider
the case where the ultimate step of a protocol is described by some POVM {E,}. Moreover,
suppose that the effect of a correction operator C,, (based on some outcome m of a meas-
urement on another system) at most re-labels the POVM (i.e. the elements of the POVM
get ‘shuffled around’). Then, the effect of the correction operator can be simulated in post-
processing by re-interpreting the measurement outcomes. Beyond mere re-shuffling of the
POVM, the correction could be allowed to, for instance, change certain probability distri-
butions associated with the POVM.

Another important open question regarding LODCC, is which known protocols that fall
within LOCC do not additionally fall under the paradigm of LODCC. I have not been able
to find any examples of such protocols.

Multi-partite entanglement in graph states

Part II introduced various aspects of the study of entanglement in networks, with an
emphasis on multi-partite entanglement. Many of these results are on the equivalence of
graph states, where reversible operations are considered that do not involve measurements.
As is briefly discussed in sec. 6.7, the methods presented in chapter 6 can potentially be
extended to additionally characterize the effect of measurements on graph states.

Measurements on graph states and their effects can potentially also be utilized to develop
invariants of LU- and LC-orbits or entanglement classes and LC-classes, beyond the marginal
dimension (see sec. 6.2). Indeed, consider an n-qubit graph state |G) and its LC-orbit
OYC(|G)). Additionally, consider the post-measurement states after measuring the first
qubit in the X, Y or Z basis, which are |Gx,) = |11 (1, (G)) \ 1)%, |Gy,) = |11 (G) \ 1) and
|Gz,) = |G\ 1), respectively (see sec. 3.4). Now, because a single-qubit Clifford operation on
node 1 can at most permute the three Pauli operators (X7, Y7 and Z;), the set of all three LC-
orbits {O¥C(|Gx,)), OLC(|Gy,)), O¥C(|Gz,))} is invariant under local Clifford operations on
|G), and can thus act as an identifier of O¥C(|G)). These three (n — 1)-qubit LC-orbits can
be identified using, for instance, their two-body marginal tensors T, (see sec. 6.3), so that
different graph states can be compared. Of course, this analysis applies to any node and
not just node 1, which leads to n sets of invariants that can all be separately checked for
LC-orbits. For LC-classes they can all be combined into a set of n three-tuples.

Preliminary results have shown that this method can distinguish pairs of LC-orbits that
cannot be distinguished by the methods of chapter 6. Indeed, the two graphs from F1G. 6.7
can be shown to be LC-inequivalent using this method, even though the structure of their
marginal dimensions is identical. It should be noted, however, that this method only char-
acterizes equivalence under local Clifford operations, but not local unitary operations.

Note that all results presented in part II consider the specific setting where every node
in a network only has access to one qubit of the graph state. Indeed, only local unitary
or local Clifford operations are considered, while both Defs. 9 and 10 explicitly allow only
single-qubit operations. An interesting extension of the set of allowed operations could
include multi-qubit operations like the Cz gate, but only on specific subsets of nodes*. This

3b is some random node in the neighbourhood N7 of node 1.
4Such subsets have to be somewhat restrictive for the problem to be interesting and make sense, and for
it to not be too general. Indeed, if a Cz gate can be applied between any pair of nodes, it is straightforward
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extension has been investigated in [210], where it is called party-local Clifford operations. It
is straightforward to show that a Cz gate between nodes 1 and 2 of a graph state cannot
change its marginal dimension dy; 5}, and it thus seems that the results from chapter 6 can
naturally be extended to settings with such party-local Clifford operations. Many questions
regarding party-local Clifford operations, or their general unitary counterparts, remain open.

Anonymous communication

Part IIT introduced the topic of anonymity, and gave two definitions, Defs. 31 and 32
(see sec. 7.5). Def. 32 aims to improve over Def. 31 by providing a notion of approzimate
anonymity through the introduction of a security parameter €., but nevertheless problems
still persists with this definition. Most notably, open questions remain regarding its com-
posability. First and foremost, it is unclear if a notion of composable anonymity, in the spirit
of composable security [168], is the correct approach or even an applicable notion.

Indeed, the concept of composable security gives guarantees that any output of a protocol
that is composably secure (i.e. key that was outputted by a QKD protocol) can safely be
used in any subsequent application.

The case for anonymity, on the other hand, is different. Def. 32 defines anonymity purely
in terms of the protocol, and there is no notion of anonymity associated with the output of
the protocol, whatever this output may be. As such, the anonymity of the scheme seems to
be independent of the output, and therefore independent of the safety of using that output
in any subsequent step. In that sense, composability would not be applicable.

Note that, even if a correct notion of composable anonymity can be obtained, Def. 32
would either need to be provide this, or would need to be adapted to do so.

Beyond questions of composability, there exist other issues with the definitions of an-
onymity. Although Def. 32 does allow for approximate anonymity, the protocols presented
in chapters 8 and 9 all obtain ‘absolutely anonymity (i.e. e, = 0). Although this seems to be
a strong feature at first glance, this likely means that small artefacts or discrepancies in an
implementation can potentially break anonymity. Such effects can be investigated further.
Moreover, the proofs need to potentially be adapted in such a scenario.

Separately, the presented definitions of anonymity were devised in the scope of key gen-
eration and broadcasting. However, there are many other applications in quantum com-
munication (see e.g. the introduction of this thesis) for which anonymity in one form or
another can be desirable. It remains ambiguous whether anonymity in all these different
tasks can be covered by the same definition, or if all these different tasks need their own
specific definition of anonymity.

to see that any graph state can be reproduced from any other graph state, even the empty graph state.
Moreover, even when only a ‘path’ of C'z gates can be made from any node to any other node, any graph
state can be reproduced (this follows from group-theoretic arguments regarding the Clifford group).
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APPENDICES



Proof of Thm. 1

This appendix gives the proof of Thm. 1. It is directly sourced from Pub. [F]| ([68])
where it is included as appendix A. However, the notation o, has been changed to X, etc.
Still, the proof uses e.g. the notation o} to represent any of the three Pauli operators X,
Y; or Z;, indicated by a; € {z,y,2}'.

For convenience, the theorem is first restated.

Theorem 3. (Pub. [F]) No 2-island can have both a left and a right neighbour in V. This
means that there is no node left of i or right of i + 1 in V.

Proof. The proof is by contradiction. First, fix a set Vg such that {i,i+1} C Vi and let the
post-measurement state |¢>VG be locally equivalent to |GHZy,). Assume now that there
are both j < i and k > i+ 1 for which both j, k € V5. W.l.o.g. assume that j and k are the
direct left- and right neighbour of ¢ and 7 4 1, respectively.

The generators for the linear cluster state are {l;; = Z;_X;,Z;, }i,ev,. If the post-
measurement state is locally equivalent to the GHZ state then there must exist a (reversible)
generator transformation such that their support on i and ¢ + 1 coincides exactly with (the
generators of) the GHZ state - up to local Clifford rotations. We will now show that, from
a reversible transformation of the {l;,}, it is impossible to obtain such a set of generators
when 7,4, + 1,k € V. This directly implies that a measurement pattern such that the
GHZ state can be obtained is not possible.

(A set of) generators for the GHZ state are, {Xv, } U{Z;, Z;, }i,ev, where it is implied
that Z;, = 1 when iy ¢ V. Focusing on 4 and 4 + 1, the only generators with non-trivial
support are {«, 3,7,0} = {O'?i,O';le'gi+1170'?_:_ﬁ1,Ufigfj_ﬁl}7 where a;,a;41,b;,bi41 € {z,y, 2}
reflect the fact that the state is locally equivalent to the GHZ state. This implies that a; # b;
and a;+1 # biy1.

Similarly, only the generators l;_1,1;,l;11 and l; 12 of the linear cluster state (i.e. those
with support on ¢ or i+1) can have a non-trivial contribution to the generator transformation
on the vertices in question. Therefore, w.l.o.g., we can focus on just these four generators
and restrict our attention to vertices ¢ and ¢+ 1. If we show that there is no reversible trans-
formation of {lx}r—fi—1,ii+1,i+2) to obtain {a,[3,7,d} when only considering these nodes,
the theorem follows. We show there is no such transformation by exhaustive contradiction.

There are three different ways of creating generator a: i) a x ;1 = Z;, ii) o «
liolipo = X, iil) a < l;_q10l;0l;49 =Y, where ‘a o [;_1’ should be read as ‘l;_; takes the
role of o’, and o denotes the (qubit-wise) product (e.g. l;0li+1 = X;Zi410Z; X;11=Y;Yi01,
where the last equality is up to an irrelevant global phase). Similarly, there are three

1Note that the super-and subscripts have been interchanged w.r.t. the original presentation in Pub. [F].
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different ways of creating generator v: j) v o lito = Zit2, ji) ¥ X li—1 0 Liy1 = Xita2, jij
v o lj—10liy1 0liyea = Yiyo. Picking e.g. i) and j) one sees that § is fixed at < Z;Z;41.
But this is [;_; o l;492 & «a o ~, which would not be a reversible transformation of the
generators [;_1,l;, ;11 and l;15. Any other pair from {i),ii),iii)} and {j),jj),iij)} would
also necessitate such a non-reversible transformation.

In essence, when viewing the generators as vectors over F3" through the binary repres-
entation (see sec. 2.5 and [93]), the argument follows from the observation that (the vector
associated with) 3 lies in the subspace spanned by (the vectors associated with) a and ~.
As such there can never be a reversible (i.e. basis-preserving) operation on (the vectors
associated with) I;_1,1;,l;1+1 and ;1o that obtains «, 8 and 7. O



Corrections for GHZ extraction in
chapter 5

This appendix details the correction operators from chapter 5, that are necessary to
obtain the target GHZ state from a linear cluster resource state.

The generators of the post-measurement state after measurement of the |L,,) state during
maximal extraction are listed in TAB. 5.2. For easy reference, the generators are restated in
TAB. B.1. As noted in chapter 5, these generators are related by a local Clifford operation
to the generators of the GHZ state (see Def. 17).

1 2 4 6 -+ n—3 n—1 n 10}
g3 zZ 7 ms
gs Z Z ... ms
gn—2 Z 7 Mp—2
In Z  X| +1
gh zZ X X X X Z | +1

TABLE B.1: After performing all measurements and removing the measured nodes, only those
generators from TAB. 5.1 that commute with the measurement operators remain, which now
carry the measurement outcomes {m; = +1} as a phase. The post-measurement state is
LC-equivalent to the target GHZ state (see Def. 17).

More specifically, a Hadamard operation on the first and last node realise the correct
Pauli operators in the the generators with support on those qubits (i.e. g1 and g, become
Z1Zy and Z,_1Z,, respectively). Subsequently, the non-trivial phases of the generators
(due to those measurements outcomes that were —1) can be removed by carefully applying
a series of X operations to the qubits. Applying an X operator to any node j flips the phase
of the generators g;_1 and g;41, so that there does not exist a one-to-one correspondence
with the non-trivial phases of the generators and nodes to apply the X operators to.

In general, choosing what nodes to apply the X operator to amounts to solving the
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underdetermined system of linear equations
Ax =m, (B.1)

where x is the length-|V| binary vector that encodes the choice of nodes to perform the X
operations: if the k-th entry of x is 1, an X operator should be applied to the k-th node in
Ve.

The vector m = [0,m3,ms,...,m,_2,0]T is a length-(|Vg| — 1) vector containing the
phases of the odd-indexed generators (note that the phases have been mapped back to
binary, {+1, -1} — {0,1}), and the operator A is the (|Vg| — 1) x |Vg| matrix:

110 0 ... 00 0O
o110 ... 00 00
0011 ... 0000
A= oo SR A ) (B.2)
00 0O0 ... 1 100
00 O0O0 ... 0110
o000 ... 00 1 1]

which has rank |Vg|— 1 and can be mapped to reduced echelon form by applying the matrix
R that has zeros on its lower left triangle and ones on its diagonal and upper right triangle.
This results in the matrix RA:

100 000 1
10 000 1
001 ...0001

RA= | & @ 0o 0 ). (B.3)
000 ..1001
000 ..0101
000 ... 00 1 1]

Combining (B.1) and (B.3) it follows that RAx = Rm = mg and thus that:
x = [mg, 07 +a[1,1,...,1)7, (B.4)

where o = 0,1 is a free parameter reflecting the fact that A gives an underdetermined
system. That two choices exist for the correction operator is not surprising following the
fact that the vector [1,1,...,1]7 encodes the operator X;X,...X,, i.e. the generator g,
which is part of the stabilizer of the GHZ state and can thus be applied to the state without
non-trivially affecting it.

A jupyter notebook containing Python code to calculate what nodes to apply the X
operation to is presented in Sup. [sB], the supplementary material of Pub. [F], which can
be found at [127].



Details for fidelity estimation
method of chapter 5

This appendix contains some details for the method to estimate the fidelity of the linear
cluster state and GHZ state in the experimental realisation presented in chapter 5. In
particular, it explains how to realise the n-qubit measurement operators as single-qubit
measurements.

To estimate the fidelity, the expectation value E(P) for every P € S, or P € S, has to
be determined, i.e. every element of the even and odd subgroup of the stabilizer (see (5.4)).
All these elements are multi-qubit operators, so that measurements in their basis are hard
to properly perform.

Indeed, measurements on the IBMQ devices are, as is often the case, restricted to single-
qubit measurements. Thus, to properly measure e.g. the generator Z, 7> € S, as a single
operator would involve entangling gates to realise the desired multi-qubit operator from
single-qubit operators. However, the measurement can be simulated by single-qubit meas-
urements when one is only interested in the measurement outcome, instead of additionally
its post-measurement state. More specifically, decomposing Z;Z = I1,; — II_; into its +1
and —1 eigenspace projectors, the term tr [pZ; Z5] becomes:

tr[pZ1Za] = tr [pll41] — tr [pII_q]. (C.1)

The eigenspace projectors 1117 and II_; can be written in terms of the eigenspaces of
the tensor factors of Z1Z5:
L, =17} ® 17 + 0% @ 1%,

(C.2)
M, =7 © 04 + 117 o 7.

Thus, measuring both qubits separately in the Z basis can reconstruct the two-qubit meas-
urement:

tr[pZ12,) =
=tr [p (Hfi ® Hfﬁ)} + tr {p (Hﬁ ® Hg’i)} (C.3)
—tr [p (Hill ® H%‘i)} —tr [p (Hfll ® ngl)} .

A single round of single-qubit Z measurements has the outcome (+1,+1), which can
be represented by the two-bit value (0,0), (0,1), (1,0) or (1,1). The terms in (C.3) are
estimated by the relative frequencies of these outcomes in repeated measurements. If this
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measurement is repeated a total of n times, resulting in outcome statistics ngg, 91, 719 and
n11 (summing to n), the expectation value of the Z; Z5 measurement is thus estimated by

Nnoo + N11 — N1o — No1

tr [pZ1Z2] = "

(C.4)

Any multi-qubit measurement operator that involves an identity operator can be recon-
structed from the single-qubit measurement outcomes as well. More specifically, the +1
and —1 eigenspace projectors of operator Z;Iy can again be decomposed in terms of the
eigenspaces of the tensor factors of Z1Z;. Because any state is the 41 eigenstate of the I
operator, the decomposition now becomes:

I, =117 @ 1% + 1% @ 17,

C.5
I, =% @07 + 117 o 1%, €5

It follows, using the same methods as for the operator Z; Z,, that:
tr[pZils] = Ngo + N1 — N1 — N1 . (C.6)

n

This method is straightforward to generalize, so it follows that the expectation value of
any n-qubit operator containing only Z or I tensor factors, can be reconstructed from the
measurement outcomes when every qubit is individually measured in the Z basis. Hence,
the expectation value of all elements of the odd subgroup can be estimated using only one
measurement setting.

The case for the even subgroup, where every operator consists of only X and I tensor
factors, follows similarly when all qubits are individually measured in the X basis. Therefore,
the fidelity can be estimated using only two measurement settings.



Subprotocols of ACKA

This chapter contains an overview of the subprotocols used in ACKA from chapter 8,
i.e. Protocol I. The figures, including their captions, are directly sourced from Pub. [A].

There are three different sub-protocols, that are all discussed in their own section.
Specifically, NOTIFICATION is discussed in sec. D.1, AME is discussed in sec. D.2 and
VERIFICATION is discussed in sec. D.3.

D.1|NOTIFICATION

The first subprotocol, NOTIFICATION, allows Alice to anonymously notify every parti-
cipant B; that they are a participant, where the participants P is a subset of the network
of het choosing. It is based on the NOTIFICATION protocol presented in [205], but slightly
adapted. The protocol is entirely classical, in the sense that no quantum communication
is used, and it results in every participant B; knowing that they are a participant, while
anyone from P does not learn anything.

FiG. D.1, originally presented in appendix B of Pub. [A] ([2]) can be helpful to under-
stand the protocol. It details the public communication of one round (i.e. for one fixed )
of the protocol, and shows how the important information is encoded into the parities of all
this communication.
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Py Py

Py P
(A) Step item la (B) Step 1b with (c) Step 2 with (D) Step 3 with
with jo = 1. i=7. k=3 i =ip.

FIGURE D.1: Visualization of subprotocol 1. The table contains all 7‘; i for a fixed node P; € N/
in the NOTIFICATION protocol. Here, we identify Alice with Pi. She chooses {rj ,}%—; and
sends them to Py in Step la (Iig. D.1a). Note that only if P; is a receiver, the green row adds
up to 1 (mod 2); otherwise to 0 (mod 2). Analogously, the pink highlighting shows Step 1b
from the perspective of P; (Fig. D.1b). This and all other rows add up to 0 (mod 2). The
{r;j,}?zl that P; receives in Step 2 (Fig. D.Ic) are highlighted in purple. The last row,
highlighted in blue, shows the {2z} }7_; received by P; in Step 3 (Fig. D.1d). By construction,
only if P; is a receiver, it adds up to 1 (mod 2).
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Protocol V. -  NOTIFICATION

Input: Alice’s choice of m receivers.
Goal: The m receivers get notified.

For agent i =1,...,n:
1. All agents j € {1,...,n} do the following.

(a) When j corresponds to Alice (j,), and ¢ is not a receiver, she chooses n
random bits {r} ; }}:_; such that @Z:l 7, = 0. If i is a receiver, she chooses
n random bits such that @, _, 7% % = 1. She sends bit r} ;. to agent k.

(b) When j # j,, the agent chooses n random bits {r§7k}ﬁ:1 such that
@;_, 7} = 0 and sends bit 1% to agent k.

2. All agents k € {1,...,n} receive {r} }7_;, compute z} = D rh , and send it
to agent 1.

3. Agent i takes the received {z}}7_; to compute z' = @) _, z}; if z* = 1 they are
thereby notified to be a designated receiver.

Analysis: The correctness of the protocol follows from the analysis in [2, 205]. The an-
onymity of the protocol works because of the fact that all important information (i.e. the
bit 2¢ encoding the role of node i) is encoded into the parity of all public communication.
Therefore, at any moment during the protocol, an adversary can only reveal the role of node
1 by corrupting all participants in the network, including A and node i themselves.
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D.2 | ANONYMOUS MULTIPARTITE ENTANGLEMENT

The next subprotocol, ANONYMOUS MULTIPARTITE ENTANGLEMENT (AME), allows the par-
ticipants P to extract a |GHZ,,+1) state on just their qubits from the |GHZy/) state on the
entire network. It effectively removes the non-participants P from the network state, while
keeping the identity of the participants P hidden. F1G. D.2 contains a visualization of the
steps of the protocol.

By

FIGURE D.2: Visualization of AME. First, a |GHZ,) state gets distributed between all nodes
of the network. Even though the participants secretly play a special role, after distribution
(step (1)) they are indistinguishable from all other nodes in the network. At step (2) all non-
participants P measure their qubit in the X basis, but the Bobs do nothing; after a correction
by Alice the state of the network is |GHZ,+1) for the participants, disentangled from all other
nodes in the network.

Protocol VI -  ANONYMOUS MULTIPARTITE ENTANGLEMENT

Input: |GHZ,) state; Alice knowing P and P
Goal: A |GHZ,,;1) state shared between P.

1: Alice and the Bobs each draw a random bit z;. Everyone else measures in the X
basis, yielding a measurement outcome bit x; for j € P.

2: All parties broadcast their bits in a random order or, if possible, simultaneously.

3: Alice applies a Z gate if the parity of the non-participating parties’ bits is odd,
i.e. if and only if P, pz; = 1.

Analysis: The correctness of the protocol follows from the analysis in [2, 26]. Since Alice
has chosen herself who in the network belongs to P, she also knows what announced bits
belong to the non-participants P. Therefore, she can make the last step of the subprotocol
without any ambiguity. The fact that the resulting state for the participants P is indeed
the desired state |GHZp) follows from a careful rewriting of the GHZ state. First, the
measurements of the non-participants in the X basis are the same as measurements in the
Z basis preceded by a Hadamard operation on those qubits.

It helps to first investigate how a single Hadamard operation applied on the last qubit
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affects the state:

H, |GHZ,)
1
-7 (1050, 4) g+ o L= 1)
1
:i IO)"'a0>1,...,n71 ®(|0>+|1>)n (D.1)

1
31 Dy @ (0 - 1),
L
V2

Thus, if the node in the network with the last qubit applies a Hadamard operation and
subsequently measures in the Z basis, resulting in outcome 0 or 1, the state of the rest of
the network becomes either |GHZ1,. ,—1) or Z4 |GHZ1, . »—1) = % (10,...,0) — |1,...,1}),
respectively!.

A similar analysis for the state Z4 |GHZ;, . ,—1) ® |1), is straightforward, so that the
general case follows readily. Applying a Hadamard operation on all qubits of the non-
participants P results in the state

(IGHZ1,... 1) ®|0),, + Z4|GHZ1 1) ® [1),,).

> |z)p ® |GHZp) + > |7)p ® Za |GHZp) . (D.2)
2€{0,1}Pljeven 1 2€{0,1}Pljodd 1

Thus, if the non-participants announce a set of measurement outcomes {z; };cp s.t. @,cp i =

0, it means that the state of the participants P is |GHZp). Similarly, if the non-participants
announce a set of measurement outcomes {z;},cp s.t. @iel—g z; = 1, it means that the state
of the participants P is Z4 |GHZp). A final Z4 operation by Alice in the latter case results
in the desired state.

All participants announce a random bit to hide their identity.

INote that it has been implicitly assumed that A is not the last node.



Page 187 D. SUBPROTOCOLS OF ACKA

D.3| VERIFICATION

Although the state for the participants after subprotocol 2 should be the |GHZp)
state, any non-participant can arbitrarily deviate from the protocol. In particular, a non-
participant [u] € P could not perform the measurement dictated by subprotocol 2, but
instead announce a bit x,, = 0. The state of the network would then be |GHZm+2>P+M,
which means that they could participate in the key generation - thereby learning the key
completely undetected and thus compromising security. It is therefore vital that the net-
work state is verified - if the state of the participants P is indeed the GHZ state, then
by the monogamy of entanglement the state of rest of the network is completely separable
from the participants. The third subprotocol, VERIFICATION, allows Alice to perform this
verification, so that she can ACCEPT or REJECT the state.

Protocol VII - VERIFICATION

Input: A shared state between |P| = m + 1 parties.
Goal: Alice ACCEPTS or REJECTS the shared state as |GHZ,,41).

1. Every B; draws a random bit b; and measures in the X or Y basis if it equals 0
or 1 respectively, obtaining a measurement outcome o;.

2. Everyone broadcasts (b;, 0;), including Alice, who chooses her bits (bg, 0p) at ran-
dom.

3. Alice resets her bit such that " jb; =0 (mod 2). She measures in the X or ¥’
basis if her bit equals 0 or 1 respectively, thereby additionally resetting og.

4. If and only if $ 3, b; + > i~y 0; =0 (mod 2), Alice ACCEPTS the state, otherwise
she REJECTS.

Analysis: The protocol is inspired by that of [200] and largely follows it, although
adapted for the specific desired output state |GHZ,,11). This is a stabilizer state, and
during the protocol the participants essentially measure an element of the stabilizer Sguz,
determining if indeed the network state is in the correct eigenspace.

Indeed, the choice of measurement basis that Alice makes in item 3 guarantees that the
collective measurement operator of all participants contains an even number of Y operators,
where the rest of the qubits are X operators. Thus, the collective measurement operator is an
element of Sguyz that at least ‘uses’ the generator g, 11 = Xo®X1®,...,X,, (see Def. 17),
and then any number of the other generators {g;}ic(,1,...,m}-

Similar to the method described in chapter C, these stabilizer elements themselves are
not actually measured, but they are reconstructed from the single-qubit measurements by
every participant.

Consider e.g. the operator P = Xp = Xg® X7 ® -+ ® X,,, the stabilizer element
associated with every participant measuring in the X basis (i.e. b; = 0 for all ¢ € P). The
state must be in the +1-eigenspace of this operator, whose projector Hfl can be written in
terms of the projectors Hfj of the single-qubit measurement operators.

The single-qubit measurements result in outcomes o;; the outcomes o; are all either
0 or 1, for the +1 or —1 eigenspace of the measurement operator X, respectively. These
eigenspaces have projectors which can be written as ng, so that all measurements combined
have a projector II} @ IIY @ --- @ II; . The desired stabilizer element projection operator
H_Iil is exactly the sum of all such measurements with an even number of —1 eigenspaces
Hii:
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1’ = > ) @I @ - @I
0€{0,1}IPl|even1

(D.3)

The condition Y " 0; = 0 upon which Alice ACCEPTS ensures that there are an even
number of —1 eigenspaces. Since any such set of outcomes is accepted, the condition thus
ensures that the state can not be in any other eigenspace, and thus must be in the correct
eigenspace of the stabilizer element.

If e.g. bg = by = 1 and all other b;’s are 0, the simulated stabilizer element is Yy ® Y1 ®
Xo®- - -®X,,. Technically, this is not an element of the stabilizer, but rather —YY X ... X €
Scuz. Thus, the +1 and —1 eigenspaces of this operator are swapped, so that instead of
an even number of 1’s, there should be an odd number of 1’s in the measurement outcomes
0;. This occurs any time there is a total number of Y operators which is two times an odd
number - the condition on which Alice thus should accept is 3 3. b;+> 1", 0; = 0 (mod 2).

Due to the nature of the protocol, the choice of stabilizer element that is tested is random;
from the perspective of an adversary the state is tested by a random, unknown stabilizer ele-
ment. In [200] it is shown that any state that passes this random check must be exceedingly
close to the GHZ state. It is thus of vital importance that the choice of measurement bases
(i.e. the b;) are announced at the same time as the measurement outcomes o; - this ensures
that the measurement are random and unknown to Eve until after the measurements have
taken place, to ensure security.

A final small technical point is raised by the fact that not every stabilizer element is
always chosen. The protocol can only realize those elements that always ‘use’ the last
generator Xo ® X1 ® -+ ® X,,, so that only half of all 2" elements in the stabilizer can
be tested. However, the shared +1 eigenspace of all these operators is still a unique state,
exactly the desired GHZ state”.

2Remember that just n generators are enough to specify a stabilizer state as the unique state in the
shared +1 eigenspace of the generators - so the set of 27! stabilizer elements is, in a way, too much.



Anonymity in ACKA

This appendix details the anonymity of ACKA, i.e. Protocol I. This appendix is directly
sourced from Pub. [A] (|2]) where it is included as appendix B.
Anonymity is proven in terms of Def. 31, which is restated first.

Definition 33. Let P C N be the arbitrarily-sized set of participants of an anonymous
protocol and Eve be an adversary that wishes to learn P. Furthermore, let Tgye be the
information regarding P that Eve has both beforehand or trivially learns by corrupting any
number of non-participants. Then, the protocol is anonymous if for any subset G C N

Pr (G = P|Z,., Tove) = Pr(G = P|Tp.e) (E.1)

where I]::"ve is the information that Eve additionally learns during the protocol, which includes
all public communication and any quantum systems she has access to.

In order to satisfy Def. 33, Igve should not change Eve’s probability distribution of
uncovering the partitioning of N into its constituents; it does not reveal anything about P,
H or — implicitly — about C. Apart from the trivial attacker A we consider three different
types of adversary Eve, namely any other party in P, any party in H or all parties in C.
The symbols %, v and «© are used for the AME subprotocol, the Verification round and
the Keygen round, respectively.

A

%3 Vg 03

TABLE E.1: The rows are labelled by the types of adversary and the columns by the roles that
Eve may try to uncover. The first row is mostly trivial, since the protocol is designed such
that A chooses the partitioning A’ = P U P herself and it is irrelevant that she is unaware
of who in P is colluding. The arguments corresponding to the symbols are given in sec. E.1,
sec. E.2 and sec. E.3. Note that Alice is referred to as A instead of A.
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We use the structure of TAB. E.1 to prove anonymity with respect to all different types
of Eve. AME and VERIFICATION will be examined in sec. E.1 and sec. E.2, respectively.
The Keygen rounds do not require any public communication and will be examined in
sec. E.3. To prove our claim we consider the following two aspects. The public communic-
ation (cf. TAB. E.2) throughout the protocol does not help Eve to reveal the roles of the
participating parties. We prove this by showing that all public communication is indistin-
guishable from Eve’s point of view. As A announces only uniformly random and uncorrelated
bits, we will show the same for the parties in P \ A, H and C from any Eve’s perspective.
Likewise, the quantum states accessible to Eve do not help her to reveal the roles of the
participating parties, even given access to the public communication. This means that the
post-measurement states of Eve can neither be correlated with the measurement outcomes
of other parties, nor with any direct information regarding their roles. Note that the global
quantum state may encode such information regarding the roles as long as it is not accessible
to anyone but Alice.

AME Verification

A random bit g random bits (bo, 0p)

random bit b;,
outcome bit o;

B; e P\ A| random bit r;

outcome bit z; random bits (b, 0;)

arbitrary bit @y, arbitrary bits (b, ox)
H

TABLE E.2: Overview of all public communication for any party in N':= P UH U C when
running AME and VERIFICATION. The communication summarized in the two columns needs
to be indistinguishable from the perspective of any Eve. Since A only announces uniformly
random and uncorrelated bits, all other communication must follow the same probability
distribution. Only the communication from C can in principle diverge — should they choose
not to hide their identities.

E.1| Anonymity during AME

At the start of AME, the shared quantum state is as given by the following equation:
1
V2
for some arbitrary states |¥) and |®) held by the corrupted parties C. While AME pre-
scribes measurements to both H and C, the parties in C might not measure and announce
something unrelated to their arbitrary actions on the quantum state — therefore we now
only calculate the probability of the measurement outcomes ugy = {1, | j € H} of H taking
values gy = {28} € {0,1}/Hl. We want to show that they are uniformly random and that

there are no correlations between the outcomes and any Eve that she might exploit, where
Eve might be anyone in the network but Alice. That is, we want to show

V)~ —= (1000 ® [T + 1. 1)y @ |B)s) (E.2)

e} (e 6] (e 1
Pr (MH = oy | IEVC,IEvc) = Pr(pp = 25) = o[ (E.3)

where the second equality implies that the probability distribution of the measurement
outcomes is uniform and the first equality implies that there are no correlations between
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the information accessible to Eve — including her quantum state — and the measurement
outcomes. Moreover, we also want to show that the post-measurement state does not possess
any other correlations regarding the roles of the parties that are accessible or exploitable by

Eve.
The measurements on H in AME are a PVM with outcomes {z§;} and associated project-

ors:
Xiy o= Hu |ogi)estly Hu = Q) H; |« X« |, Hj, (E.4)

jEH
which results in the probability of the measurement outcome puf; taking the value zf; being

given by

Pr(ufy = ofy) = tr [ X MY

:%tr[(\0...0)(0...0|P)]tr[Xﬁ\O...O)(O...O|H]tr[|\I!><\Il|c]
+%tr[(|0 O)1...1p) ] tr [X§[0...01... 1] tr [|¥NP|c ]
+%tr[(|1 1X0...0[p) | tr [Xg|1...1}0...0[ | tr [|®XV]s]
gt [0 1) e [XE L 1 1] [2) ] ]
:%tr[ & H; a5 Xag | H; | [0...0X0...0]g] (E-5)

jEH

1
+ 5t &) Hj o X | Hy | [T 1)L L]
JjEH

; (H o+ T1 |<x?|—>|2>

i€H icH

11 1)1
=3 \gm T gm ) = omr

This satisfies the second equality in Eq. (E.3), showing that the measurement outcomes
are uniformly random, thereby ensuring that all the communication of the AME column of
Tab. E.2 is indistinguishable — excluding the trivial case where C reveals itself. The global
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post-measurement state ppostame is then
PpostAME = Xﬁ |N><N‘ Xﬁ
1 (07 «
= 5 (10...0)0....0p) ® X5 [0....0)X0.... Olgs X © [N ¥|

+%(|o O 1p) © XE (0. 0L Ly XE © [W)@]g
+ % (11...1X0...0/p) ® Xgg [1...1)0... 0l X§1 ® |PXY|
—|—%(|1 S p) @ X 1. 1N g X © (PN
| (E.6)
=5 (/0...0X0...0[p) ® [HXH| ® [¥)¥|q
+ % (10...0X1...1]p) @ (~1)2H) [H)H| @ [U)}P|c
+ % (I1...1%0...0p) ® (=1)2H) [H)H| @ [2)¥|c
+ % (J1...11...1]p) ® H)YH| ® |®)P|
= |NpostAME><NpostAME| y
where |Npostane (Npostave| 1S the pure state
[ Npostaos) = % (10.-.00p @ [W)g + -V 1y @ @)) o 1),  (B7)

showing that the only correlation between the measurement outcome and the state on PUC
is in the phase, where one could in principle learn the parity of the measurement outcome
xg;. However, any such phase estimation is impossible if one does not have access to the
complete state (i.e. tracing out P that do not collude with Eve results in a state on C that is
uncorrelated with the measurement outcome xg;). This means that the post-measurement
state of any attacker in P\ A or C is uncorrelated from the measurement outcome x§; and
the roles of H. Therefore, for either of these types of Eve everyone in H remains anonymous
(cf. %1 in TAB. E.1).

Furthermore H is disentangled from the rest of the network and |H) itself is separable
over the constituents of H. Therefore, nobody in H can learn anything about the roles of
any other party in the network. We can conclude that for Eve in H, Def. (33) holds for any
of the subsets of N (cf. %2 in TAB. E.1).

When Eve is a party in P\ A, the roles of the parties in either P or C are hidden because
the relevant correlations of the state are unchanged by running AME — they essentially share
a GHZ state, possibly including some additional phase, and therefore there are no revealing
correlations available to anyone but 4, meaning that here Def. 33 also holds. The exact
same argument holds for Eve in C with respect to the anonymity of P (cf. %3 in TAB. E.1).

E.2| Anonymity during VERIFICATION

At the start of the Verification round, the state is the post-measurement state from
(E.7), up to the correction by .A. We allow for a faulty correction, therefore keeping the phase
arbitrary in the following analysis, writing (—1)® = 41 for the phase. We again calculate the
probability that, based on some basis choice {b;} and given the AME measurement outcome
x§y, the measurement outcome p* = {p; | j € P\ A} takes some particular value o® =
{09} € {0,1}/P\I show that the outcome is uniformly random and that there are no
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correlations between the outcome and the quantum states of all possible Eves. That is, we
want to show that

o 1
Pr (u ‘ Eve7IEVe) =Pr (/J’ =0 ) 2|P\A| (E8)

where Eve may be anyone in P\ A, H or C. Again, we also show that the post-measurement
states do not possess any other correlations regarding the roles of the parties which are
exploitable by anyone in P\ A, H or C.

Each measurement outcome is associated with a certain measurement projector OP\ A
which is itself dependent on the basis choice {b;}. Explicitly, we define

Op\4({bi}) == Q  Hilof )Xo} | H;
{ieP\ Alb;=0} (E.9)
(a7 (% T
® Q) VZiH;|of) ol | HiN/Z:i
{ieP\Alb;=1}

Hence, for any outcome zg; during AME, the probability of the measurement outcome p®
being equal to 0® becomes (remember that A may depend on x$)

Pr (Ma = ma) =tr [Oa |NpostAME><NpostAME|]

=L (000 ) [0 0. 040, Ol ]t [ JEYH] ] & [ )]
A tr“O (1] 4] tr [O*]0 o Alpy g tr [[HXH]] @ [U)(®|q
Al tr (|10, ] tr[O7 [1... 10Ol ] tr [ JEXE] @ |80 (g.10)
%tr[u (11,4] r 00 ][] © (9)@]
%tr [0~ o.. O‘P\A}
1

+ytr [Oa|1...1><1...1\P\A}.

Substituting O% we obtain

[e3% (e 1 (e} (e
Pr(p® =m®) = 5 H (0f [Hil0) (O[H[of)
(icP\Alb;=0}

I (CIENZ (0) (O/ZiH;lo?)

{ieP\ Alb;=1}

1 (o3 (03
+t3 I[I  (oflHilL) (1Hilof)

{i€P\A|b;=0}

I olHVZ ) ZH o) (E.11)

(icP\A|b;=1}
1 2 2
=3 I el II el
{ieP\A|b;=0} {ieP\A|b,=1}
1 « (o]
+3 T e I e
(icP\Alb;=0} (i€P\AJb;=1}
1

~ 9IP\AJ’
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which satisfies the second equation in Eq. (E.8). The global post-measurement state ppostver
becomes

Ppostver =0 [NpostaME )Y Npostame| O
:% 0X0l4 @ (O [0...0)0..Olpn4 O%) & [HYH] & [ )W
+(71)A%\o><1|A®(oa|o...o><1...1|P\Ao © [HYH| ® [T},
+(71)A%\1><0|A®(oa|1...1><o...o|P\Ao
%\1><1|A®(0a|1...1><1...1|P\A0a ® H)YH| ® |®)X®|q

:% 0X0[4 @ [P\ AP\ Al @ [H)H| @ |W)¥|¢

® [H)H| @ [P)¥|c

)
)
)
) (E.12)

150K [P\ AP\ Al [FYH| @ [w)@]
5 1001 @ [P\ AP\ A [HYH] @ 240

1
+5 1014 @ [P\ AP\ Al @ [H(H| @ [2)(D]¢ ]
= |N postVER><N postVER| ’
where 7 = (—1)2 x (—i){%} and [Vyostver) is the pure state

[Npostver) 1= (|0) 4 @ [¥) e +7[1) 4, ®[P) o) @ [P\ A) @ [H) (E.13)

and |P \ A) is the state associated with the measurement outcome 0%

[P\ A) = @ Hilof); | ® X VZHilof), | (E.14)

i€ {P\Alb;=0} ie{P\Alb;=1}

From the perspective of H, all communication is indistinguishable (cf. the VERIFICATION
column in TAB. E.2); H is dis-entangled from everyone else and the state on H is itself
separable. We can conclude that — with anyone in H as Eve — the anonymity of everyone in
the network is preserved (cf. v'; in TAB. E.1).

Moreover, P \ A is dis-entangled from all other parties in the network and their post-
measurement state is separable as well. Again, all communication from their perspective is
uniformly random (cf. the VERIFICATION column in Tab. E.2), so we can conclude that
— with anyone in P\ A as Eve — the anonymity of everyone in the network is maintained
(cf. V'3 in TAB. E.1).

The only relevant information is |{b;}|, which is encoded into the phase of the state on
A U C; any phase estimation algorithm to retrieve this information would require access
to the entire state, including the state of A, which is inaccessible to C. Again, from the
perspective of C all communication is indistinguishable (cf. the VERIFICATION column in
TAB. E.2) and we can conclude that — with C as Eve — here too the anonymity of all parties
in the network is preserved (cf. v'3 in TAB. E.1).

Note that the Verification round can only pass if |¥), = |®), that is when C is not
entangled to A and P\.A. However, this is not a necessary condition for anonymity, since the
identity of Alice is preserved even if the Verification round fails. There is no information
encoded into the state regarding the distribution of P and H, nor into the measurement
outcome 0. The only valuable information in the state is the parity of the number of Y-
measurements, encoded in the phase of the qubit of A, which is dis-entangled from all other
parties and therefore only accessible to A.
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E.3 | Anonymity during the KeyGen rounds

As the Verification rounds ensure that the |GHZ,,+1) state on P is dis-entangled from
the non-participating parties in P and after running AME no party in H is entangled to any
other party, all subsets listed in TAB. E.1 are dis-entangled from each other. Hence, we can
write the full-network state at the start of the Keygen round as

Wkeygen) =|GHZ)p @ [H) @ V) . (E.15)

Since there is no communication during the Keygen rounds, there is no leakage from P, H, C
outside the subset itself (cf. =01 in TAB. E.1). As |H) is a separable state, the case H is
trivial (cf. =03 in TAB. E.1). Finally, due to its symmetries, the |GHZ,,+1) state cannot
reveal who the parties sharing the state are. This ensures that there is no privacy leakage
for P either (cf. v°5 in TAB. E.1).



Corrections during LinACKA

This appendix details the corrections that the participants Alice, Bob and Charlie have
to perform on their qubits during LinACKA as presented in chapter 9. It is directly sourced
from Pub. [D], where it is included as appendix A. Following the original presentation there,
Alice, Bob and Charlie are referred to as a,b and c¢ instead of A, B and C.

The corrections are divided into three separate parts: the configuration corrections, that
depend on the locations of the participants in the linear network, and the two corrections
that depend on the measurement outcomes of the non-participants, the X -correction and
the Z-correction.

F.1| Detailing the necessary corrections

Alice and Charlie need to perform a correction to obtain the |GHZ3) state with Bob,
whereas Bob never has to perform a non-trivial rotation. The corrections for Alice and
Charlie are structurally similar; we first introduce those for Alice. In order to achieve this,
we define the following quantities.

® 4 :=b—a — 1, the number of non-participants between Alice and Bob.
® Dy := 04 mod 4, the mod-four value of d4
® Gup = 5”1’?%, the integer number of groups of four that fit between Alice and Bob.

For Charlie, ., gep and pep are defined in a similar fashion. We refer to Fig. F.1 for two
potential configurations of the network that exemplifies these definitions.
Alice now performs the following correction steps:

1. Apply a configuration correction Cy;, depending on pgp and ggp, as shown in Tab. F.1,
picking the left (brown, 8, = 1) or right (green, 8, = 0) table.

2. Divide all the measurement outcomes {mi}Zj_ll into a set {mi}gﬂﬂ’ ** and a set

{m; Zjé +pa, — Where it is to be understood that if pa, = 0, the first set is empty.

3. From the outcomes in the first set, they calculate the bits k, and k, using Tab. F.1.

4. From the outcomes in the second set, out of every pair of four they select the meas-
urement outcomes as described in Tab. F.2 and add them all together to calculate [,
and [,, respectively (e.g. if 8, = 1, Alice selects every odd element of the second set
to calculate [, and every second, third and fourth out of four to calculate ).
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N, Nuyi Nazo Nawzs Noew Nosz Nyeo Ny Ny Not1 Nop2 Nows Nepa Neea Neo

S — R S~
Pab =3 gap =1 geo =1 Peb =2
Alice Charlie
N, Nay1 Natz  Npes Np-z Ny—g Noos No—a Noes Nomz Ny Ne—z  Neoy
S~ S
DPab = 2 Yab =2 Peb =3
Alice Bob Charlie

FiGURE F.1: Two exemplary configurations. Top: &y = 7 (with pay = 3 and gap = 1) and
dcp = 6 (with pep = 2 and gep, = 1). Bottom: 04 = 10 (with pay, = 2 and gap = 2) and 6ep = 3
(with pey = 3 and gep = 0).

5. They apply an X operation on their qubit if and only if k, ® [, = 1.

6. They apply a Z operation on their qubit if and only if k, &1, = 1.

1 X9+HP, X Ma+1
2 Z9ab P, Ma+1 Ma+1 O Mat2 2 XYav P, Mat1 Ma+2
Mat1 S
3 Z9v HP, Ma+1 D Mat2 Mat+1 D May3 3 X9 HX Mat2 B
May2 S Mat3

TABLE F.1: Local corrections that Alice needs to perform to obtain the GHZ state with Bob and
Charlie after the non-participants measured their qubits. The left table shows the corrections
if the non-participant a + 1 after Alice measured in the X-basis (3, = 1), the right table the
corrections if it was in the YV-basis (8, = 0). The Cap column contains the configuration
correction which only depends on the number of non-participants d,, between Alice and Bob
— note that gas := [das/4]. The kx column contains the measurement outcomes that add
to ks, which induce together with I, a correction X**®': similarly the k, column contains
the measurement outcomes that create k..

L. 2nd7 3rd’ 4th 2nd’ 4th

TABLE F.2: Selection of measurement outcomes out of every pair of four from the second set to
calculate [, and [, respectively. For example, when §., = 7 and B, = 1, lo = Mmata D Ma+s
and I = Mays5 ® Mate D Mayr.

Note that all three corrections (i.e. the configuration correction, the X correction and
the Z correction) can be contracted into a single Clifford operation. However, since the
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measurement-outcome dependent corrections are only Pauli operators, they will at most flip
the measurement outcomes for Alice in the subsequent steps of the protocol — and need not
be physically implemented. This also means that the participants can perform their KeyGen
or Verification measurements before the measurement outcomes of the non-participants
are announced. By having all nodes {a+1,...,b— 1} perform their measurements and Alice
subsequently perform the aforementioned corrections, the linear cluster state is contracted
towards a |Lq pp+1,...,c—1,c) linear cluster state. Hence, Charlie can perform the same steps
(while using the measurement outcomes {m._1,Mc—2,...,Mpy1}, Ope := ¢ — b — 1 and its
redefined derivatives) to contract the state towards a three-partite linear cluster state |Lq p,c)-
Two final H gates for Alice and Charlie result in the desired |GHZs) state between Alice,
Bob and Charlie.

F.2| Calculating the corrections

Using the stabilizer formalism, it is straightforward to show that, starting from a linear
cluster state |Lq q+1,...,c—1,c), & measurement on node a + 1 in the X- or Z-basis results in
|Laa+2,....c—1,c) up to a local correction Cg;rl for Alice, where this correction depends on
both the measurement basis S,1 and outcome mg,41 as

alj_l(ma+1’,6a+1) — Pz(2ma,+1+ﬁa+1)H — HP£2ma,+l+,Ba,+l)7 (F.1)

where P, := R, (g) is a half-rotation around the Z-axis and P, is defined similarly. Note
that either identity (i.e. the Z- or X-based rotation) can be used.

A series of multiple measurements then introduces a concatenation of these corrections,
where the corrections are performed in order from a + 1 to b — 1. They do not necessarily
commute, but by using the X- and Z-based correction interchangeably (and thus cancelling
out the H operations), and using the identity Z™ P, = P, X™i Z™i (and likewise for P,) one
can group all the corrections that are not measurement outcome based together as the first
corrections; this allows to partition the complete correction into a ‘configuration’ correction
and an outcome-based correction.

Specifically, for the alternating pattern of X-basis and Y -basis measurements, each group
of four consecutive measurements together introduces only Pauli corrections. For example,
for any group of four consecutive nodes {1,2,3,4} (note that these labels resemble any set
of four consecutive nodes) these corrections are

X (o) gmatma-tona) (B = 1)
X (mitmatms) z(met+ma) 7 (Ba =0)
Up to an irrelevant global phase, all these operators commute with each other. Therefore,

starting from the last measured node (i.e. b — 1) an integer multiple of four can be ‘stitched
together’. Since there are gqp := |dqp/4] of such groups, the correction becomes

Gab—1
H X (Mb—aia®mp—si—2) 7(Mp—ai—3®Mp_4i2OMp_4i-1) ¥ _ Yla leXgab, (Ba=1)
=0

gab—1
H X (Mo—ai—a®mp—ai-3BMp—ai—2) 7(Mp—ai—3EMp-4i-1) ¥ — Ylo leZgab’ (Ba = 0)

=0



Page 199

F. CORRECTIONS

DURING Li1NACKA

where [, is defined as

and [, is defined as

L

Gab—1
= @ Mp—gi—4 D Mp—gi—2,
i=0
Jab—1
= @ Mp—4i—a D Mp—4i-3 S Mp—ai—2,
i=0

gab—1
= @ Mp—gi—3 D Mp—si—2 O Mp—4i—1,
i=0
gab—1
= @ Mp—ai—3 B Mp—ai—1-
i=0

(Ba

The corrections for the measurements of the nodes a+1,...,a+ pgp (i-e. the first p,, meas-
urements) are then also grouped together; by splitting them into a measurement-outcome
dependent and -independent part, they can be written as X ke zk= 'y, where Cyp, ky and
k, can be read from Tab. F.1. Note that the X9 or Z9¢ in Tab. F.1 is technically not
part of the correction here, but that they will commute with X*+ Z* and hence the total
correction that Alice needs to perform becomes (where now Cyy is as in Tab. F.1):

Xl 7ls x ke 7k Cop = X Fka®ls ZkZ@lzCab,

(F.2)

where = here indicates ‘up to an (irrelevant) global phase’. Since these corrections only
consider nodes between Alice and Bob, and since there are actions that Bob needs to perform,
the corrections for Charlie work in a similar fashion and can be seen separately from these.



Security proof of LinACKA

This appendix contains a statement of LinACKA and a security proof of the generated key.
Note that the preparation of the network state |A/) (i.e. Protocol III) has been omitted,
as it does not affect security. This appendix is directly sourced from Pub. [D] ([46]) where
it is included as appendix B.

Although the security is proven under Def. 29 and Def. 30, the definitions are restated
in this appendix for easy reference. It should be noted that the security of the protocol
is proven under even less restrictive assumptions than introduced in chapter 9, because it
allows for collective attacks by multiple non-participants together.

G.1| Protocol statement

Input:

L network states |A) connecting {:}? ,, including A, B and C.

=1

Desired secrecy parameter €5 > 0, which determines a correlation threshold Q4,;, and
correctness parameter . > 0.

A random string sy, of length L - ho(p) secretly pre-shared between the participants
to randomly choose m out of the L cluster states to be measured in the X-basis for
parameter estimation where p = m/L, leaving k := L —m measurements in the Z-basis
for key generation.

An estimate of the expected bit error rate ), in the Z-basis between Alice and Bob
and Alice and Charlie. The worst of these will be used to select an error-correcting
code that requires an error syndrome of length ¢gc := k- hao(Q.) to be announced.

A pre-shared secret random string sgc of length fgc to be used to one-time pad the
error reconciliation announcements, another pre-shared string sygc of length fypc =
log,(2/e.) to one-time pad the error correction verification announcements, and three
bits of pre-shared key to communicate aborting by the participants.

Two pre-shared random strings, s, and sygc, of lengths k+ fpa — 1 and & + fygc — 1
respectively to be used as the seeds for hashing, where £py is the output of the privacy
amplification hashing as defined below. The string sy, is used for privacy-amplification
of the private key, while sygc is used to verify the error correction step has succeeded.
Note that unlike the previous seeds, these can be used indefinitely and need not be
replenished after each run of the protocol.
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Output: A key of length ¢ shared anonymously between Alice, Bob and Charlie that is
eg-secret and e.-correct.

1. Fori=1,...,n

(a) Node i receives bit 8;_; and computes 8; = 1 — 5;_1, except for 1 who draws a
random bit 5y instead.

i. If i € P, they measure the operator X* or Y if 3; = 0 or 3; = 1, respectively.
They broadcast the measurement outcome m;.
ii. If ¢ € P, they announce a uniform randomly drawn bit m;.

(b) Node ¢ sends bit j3; to neighbour i + 1, except for node n.

2. The participants perform corrections on their qubits to obtain the desired |GHZ,)
state.

(a) Alice and Charlie apply their configuration corrections C, and C., respectively
(TAB. F.1).

(b) Alice (i = a) and Charlie (i = c¢) both calculate their parameters I, k. and [¢, k%
from the measurement outcomes of the non-participants (TABs. F.1 and F.2)

and each apply X!=®%= and Z!>®k= to their qubit.

(¢) Alice and Charlie each apply a Hadamard operation H to their qubit to obtain
the final desired |GHZ,,) state.

3. Using the pre-shared string s;, the participants coordinate their measurements of all
L |GHZ,,) states into m Verification rounds (i.e. X-basis) and k KeyGen rounds
(i.e. Z-basis). Everyone announces after each measurement a random bit m;, except
for Bob and Charlie, who announce their measurement outcomes for the Verification
rounds.

4. Alice, who can locate Bob’s and Charlie’s measurement outcomes from the Verification
rounds, estimates the X-basis error rate Q3 = 1 (1 — (X*X°X¢)). If this is above the
tolerance Qio1, she aborts by setting her abort bit to 1.

5. Alice computes the necessary information for error correction — the error syndrome of
length /g — and then one-time pad encrypts this information with the string sgc. All
other players announce uniform random strings of length /gc.

6. Bob and Charlie use their copies of sgc to obtain l[gc and correct their k& Z measure-
ment strings, i.e. their raw key. Alice, Bob and Charlie then hash their string using
the seed sygc. Alice encrypts her output using her copy of sygc. Using their copy,
Bob and Charlie each decrypt Alice’s hash outcome and compare it to their own; if
they do not align, they abort by setting their abort bit to 1.

7. Alice, Bob and Charlie, using another three bits of the pre-shared key, encrypt their
abort bit — which is equal to 1 if and only if they want to abort — and announce it,
while all other parties announce uniformly random bits instead. If any participants
announced a 1, everyone aborts (meaning they will not use the generated key).

8. Finally, the participants hash their measurement results with the seed sypa to produce
the final key s of length

lpa =k [1 — hy (Qtol + p (ESQ_é—))] + 24 2log,(e)
=(+lgc + thpc + L - ha(p) + 3.
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However, to fairly evaluate performance the parties should replenish their stock of
secret-shared key so as to be able to perform subsequent CKA protocols. Subtracting
off the non-reusable shared randomness results in a string of length ¢ that is available
for applications.

G.2| Security proof

We now prove the security of our protocol in the scope of an even more general adversary
model than the one introduced in the main text, so that we can resort to a powerful ma-
chinery that has been developed in the literature [175, 214] and we can build on the strategy
of proof laid out in Ref. [215]; the security of our protocol within our adversary model then
follows readily. However, there are some variations to the tools necessary to preserve the
anonymity of the participants which is key to the present work. We briefly explain some crit-
ical quantities and definitions. Let ps,s,s.r’ be the joint classical-quantum state between
the final keys of the participants and an eavesdropper conditioned on passing all checks.
Note that the eavesdroppers system, E’ = ER, is made up of a quantum system, F, that
completely purifies the pre-measurement state papc (and is, therefore, assumed to include
system of the non-participating player) and a classical register R that contains all of the
information announced during the protocol. A protocol is called e,o,-robust if it passes the
correlation and the error correction checks with probability 1 — e,0,. Defining a uniformly
distributed state as

1
pu=) 5] |s){s] (G.1)
sES
with S the set of possible secret keys we have the following definition [215].

Definition 34 (Approximate robustness and secrecy). A CKA protocol that is €,on-Tobust
18 gq-correct if

(1—6mb)Pr[SA7éSB\/SA7éSC]Ssc (GQ)

and e4-secret if

1
(1 — €rob) 5 lpsar — pu @ per|| < es (G.3)

is called (g5 + €.)-secure if it is e.-correct and e, secret.
Turning first to multi-partite error correction we have the following statement.

Theorem 4 (Theorem 2 in Ref. [215]). Given a probability distribution Px, B, Bs.... By
between Alice and n other players there exists a one-way error-correction protocol for all n
players that is: e.-correct, and 2(n — 1)’ -robust on Px, B, .B,.... B, and has leakage

2(n—1)

c

lro < max Hy (Xa|B;) +log, (G-4)
K3
In terms of secrecy the critical results are leftover hashing against quantum side-
information, an entropic uncertainty relation for smoothed min- and max-entropies, applied
to our protocol, states the following.

Lemma 1 (Leftover hashing against quantum side information in Refs. [183, 214]). Let
" >0 and pz, g be a classical-quantum state where Z 4 is defined over a discrete-valued and
finite alphabet, E is a quantum system and R is a register containing the classical information
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learnt by Eve during information reconciliation. If Alice applies a hash function, drawn at
random from a family of two-universal hash functions that maps pz,r to ps,r and generates
a string of length £, then

1 _1cg¢ _
5 lpsaer —pu @ perll < 2 2 (Honin (ZalER)=642) 4 9¢, (G.5)
where HE

cin (ZA|ER) is the conditional smooth min-entropy of the raw measurement data
giwven Eve’s quantum system and the leakage of the information reconciliation.

This leads to the following corollary.

Corollary 3 (Secret string extraction). For an e,op-robust protocol an es-secret string of
length

’ 1
¢=H;; (ZA|ER) + 2 — 2log, - (G.6)

can be extracted for any €,,¢,&’ > 0 such that
€s > e+ 2¢ (G.7)

where Hfr:in (Z4|ER) is the conditional smooth min-entropy of the raw measurement data
giwven FEve’s quantum system and the information reconciliation leakage conditioned on the

protocol not aborting.

Proof: Note that if we choose

(= HE,, (Z4|ER) +2 — 2log, @ (G.8)
then the right hand side of (G.5) is equal to £/(1 — eyop) + 2¢’. Comparing with (G.3) in
Def. 34 we see we want this expression to satisfy €/(1 — eop) + 26’ < £5/(1 — €r0p) SO OUr
security condition is satisfied for any 5 > €+ 2(1 — £,0p)¢’ which is true for any e, > & + 2¢’
where we used that (1 — e;op) < 1. Noting further that log,(1 — &) < 0 yields (G.6).
This means that, provided the constraint in (G.7) is satisfied, the positive constant e can be
optimized over. Typically this makes little difference to the final performance and and they
are commonly chosen as € = €,/2.

Now we see that the problem has condensed to determining Eve’s conditional smooth
min-entropy for Z fg (in the following we will suppress the k superscript), the variable de-
scribing the outcome of Alice’s Z measurements on the k key-generating qubits. To begin
with, consider the situation before any information reconciliation is exchanged (there is no
register R) so we simply have HE. (Z4|E). Since Eve’s state is taken to include that of
all the non-participating players we can assume without loss of generality that there is an
overall pure tripartite state between Alice, the remaining participants (which we denote B;),
and Eve. The required bound for this situation has been derived by applying an entropic
uncertainty relation [183] for the smoothed min- and max-entropies specialized to the case
of observables made up of the k-fold tensor product of either Z-basis and X-basis meas-
urements, (i.e. the observables Z4 = Z' ® 22 ® - ® ZF¥ and X4 = X' @ X2 ® --- @ XF)
[214]

Hiin(Za|E) + Hyo (XalBi) = k,
= Hin(ZalE) 2 k — Hyoo (Xa|Bi),

max max (XA |B7‘)
in the second line. Naively, this bound cannot be evaluated since it is counterfactual, i.e. the

where we have used the data processing inequality in the form HE (X 4|B;) > HE
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k qubits are always measured in the Z-basis so we have no direct access to HE (X a|B;),
which is the conditional max-entropy of the participants given their Pauli measurements if
Alice had instead measured in the X-basis in these k rounds. However, since the parameter
estimation and key generation rounds were selected at random then it has been shown that
Serfling’s bound can be applied to statistically bound the X correlation that would have
been observed in the k key generation rounds based upon those that were actually observed

in the parameter estimation rounds. This is expressed in the following result.

Lemma 2 (Lemma 3 in Ref. [214]). Let k be the number of key generation rounds, m be
the number of parameter estimation rounds, dy a threshold on the number of errors that can
be observed during parameter estimation without the protocol aborting and €' > 0.

Hp (XA|Bl) < khQ(dO + M(gl(l - Erob)))a (Gg)

max

where p(g) is a correction for statistical errors:

m+km+1_ 1
= 771 . '1
1(e) ol (G.10)

Putting all of these results together we can prove the following security statement.

Theorem 5 (Security statement). If the anonymous CKA protocol defined above proceeds
without aborting an (max;e(p,c} Ui, €c) error correction protocol and a two-universal hash-
ing are successfully applied then an (e5 + €.)-secure key of length

- [1_@ (Qmu(%;g)ﬂ

1
+2—210g25—fEc—ghEC—L'h2(P)_3

—L [(1 —p) {1 o (Qtol 1 (55 o 5)) —hy (Q»] - h2<p>]

+ logy (%e.) — 2

(G.11)

can be anonymously extracted.
Proof: At the conclusion of the protocol we can immediately apply Cor. 3 to the k£ round
classical-quantum state p%AE =trp,(|Vap,E) (Yap,r|) to extract an e4-secret key of length

/ 1

m
for positive constants satisfying
gs > e+ 2(1 —epop)e’. (G.13)

Now, because all of the communication involved in error reconciliation is one-time padded
to ensure anonymity we have that HE . (Za|E,R) = HE, (Z4|E) by definition. This gives

in

HE

1
/ cin(ZalE) +2—2log, —
€

k— HE

max

1
(Xa|B;) +2—2log, -

1
k— H(:—2)/2/(1=2v) (X 4| B;) + 2 — 21og, -

G.9
>
G.13
>
G.9
>

s — 1
k — khs <Qt01+u<€ . 6)) +2—2log, -, (G.14)
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where in the third line we have also used that HgL (X|Y) < HE2 (X|Y) for &1 > 2. This
string is guaranteed to be e¢-secret and, by Thm. 4, if the error correction process did not
abort then the string is also e.-correct. However, this is not a fair representation of the
performance of the protocol, since we had to use up the reservoir of pre-shared key for the
basis choices and for one-time padding the error reconciliation information. Thus, to get the
length of useable key we need to calculate how much remains after we have replenished the
pre-shared strings necessary for the next protocol implementation. Subtracting off the seed
for basis choices, L-ho(p), and the length of the error correction information and verification,

lrc and e and the 3 bits for the abort step, gives (G.11).



Anonymity proof of LinACKA

This appendix is concerned with the anonymity of the protocol. It is directly sourced
from Pub. [D] (|46]) where it is included as appendix C. Anonymity is defined using Def. 32.
Most importantly for the analysis, it needs to be shown that all public communication —
the announced measurement results — is independent of the choice of participants. This is
done by showing that they are uniformly random and uncorrelated. Similar to chapter G,
following the original presentation in Pub. [D], Alice, Bob and Charlie are referred to as a, b
and ¢ instead of A, B and C.

H.1| Proof of anonymity

In the proposed protocol, the output state PB|abe has several registers. The only non-
trivial registers that need to be addressed are the ones containing the classical communication
of all the measurement outcomes {o;} U{m;}. The reason is that the reduced quantum state
of any dishonest party is the maximally mixed state, which is independent of the choice of
participants, and therefore trivially fulfils Def. 32. Moreover, all other parties do not hold a
quantum register by the end of the protocol.

In the remainder of this section we will show that there are no correlations between any
of the announced measurement outcomes {o;} U {m;}, i.e. that the outcome distribution is
indistinguishable from that of the uniformly drawn announcements of the nodes 1,a and
¢ during Protocols IITI and IV. We can then conclude that we have complete anonymity,
i.e. our protocol is £,,-anonymous for €,, = 0.

Since the state of the network always remains separable between the tri-partition of the
nodes to the left of (and including) Alice, the nodes to the right of (and including) Charlie,
and the nodes between (and including) Alice and Charlie, it suffices to show that there are
no correlations within the measurement announcements associated with these three separate
groups. We show this absence of correlations only for the left set, since the argument applies
analogously to the other two sets. We first show this in the case of an honest-but-curious
non-participant, followed by the case where a non-participant may actively deviate from the
protocol.
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H.1.1| Honest-but curious setting
Consider the stabilizer of the network state after all C'Z operations have been performed

in Step 2a of Protocol Protocol III. It is generated by the following collection of operators:
0;'03%,
olto?ol?,

{oT o}y,

Wi Ti W T, a—2 (Hl)
T Wil Tip110—
{O'zlo-;vlo'ac1 o'zl }i:27
Wag—1 ~Ta—1 ~W,
fopetmtlo SRt oyl
Ta—1 ~W
(oS
The measurement operator of all measurement outcomes together depends on 31 as
W2 +T2 +W3 +T3 sW4 T4 sW5 +T5 W6 Ta—1 o
A = JOitor oo oy toftogt ooy . 0at (61 =0) (H.2)
W2 T2 ~W3 ~T3 ~W4 ~T4 ~W5 ~T5 ~W6 Ta—1 _ .
o200 oo ooy oot Lot (B = 1)

where all (0,-)observables acting on {7;}¢=, are associated with the measurements of Pro-
tocol III (i.e. the outcomes {0;}) and all others are associated with Protocol IV (i.e. the
outcomes {m;}).

It is now our goal to show that all these measurement outcomes are uniformly random,
and that there are no correlations between the measurement outcomes associated with any
subset S C @, where Q = {wa2, T2, ...,Wa—1,Ta—1} is the set of qubits measured throughout
both Protocol IIT and Protocol IV. Any such S has an associated observable

€S

where b(7) € {z,y} indicates the type of support on qubit i as shown in Eq. (H.2). If
Mg does not commute with at least one generator of the stabiliser (i.e. any operator from
Eq. (H.1)), by Gottesman-Knill simulation, the measurement outcome for Mg is uniformly
random 0 or 1. If this holds for any .S, there cannot be any correlations between any of the
measurement outcomes. The uniform randomness of the individual measurement outcomes
follows readily for the case when S contains only a single qubit. We now show that any Mg
indeed always anti-commutes with at least a single generator.

Suppose that Mg does commute with all generators but is non-trivial. If it has (non-
trivial) support on 7,_1, this is necessarily with . It will then not commute with o2*~"g%e
(the last generator of Eq. (H.1)) and hence cannot have support on 7,_1. Then, if Mg has
(non-trivial) support on we—1, with either a o, or oy, it will not commute with the generator
02" "oz 'o%e - thus it cannot have support on w,_1 either.

We can inductively go through the rest of the qubits in @ in reversed order, i.e. from

right to left through the observable from Eq. (H.2). For j € {a —2,a—3,...,3,2}:

Suppose Mg has non-trivial support on 7;, it is of type o,. Since Mg has by con-

struction no support on any qubit to the right of 7;, it does not commute with the
Tj Wi+l

generator 0.’ 0.’ - hence Mg cannot have support on 7;.

Suppose Mg has non-trivial support on wj, either of type o, or o,. Since Mg has by

construction no support on any qubit to the right of w;, it does not commute with the

O PRPDILD &
generator 0.’ 0,/ 05’ 0’7" — hence Mg cannot have support on wj.

We conclude that there is no Mg with non-trivial support on at least a single qubit that
does not anti-commute with at least one generator.
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From this, we can conclude that there are no correlations possible between any set of
measurement outcomes from {o;} and {m;}, and that they are thus uniformly random and
uncorrelated. Moreover, it stays uniformly random under any noise that does not add a bias
in the used measurement bases (i.e. o, and o).

H.1.2 | Dishonest participant
We are now allowing a single non-participant to deviate from the protocol in an arbit-
rary way. Let the index of this dishonest non-participant be ¢. To try to force any other
node in the network to implicitly reveal their identity, ¢ can actively perform a different
measurement than described, where their outcomes would then be correlated with its (e.g.)
direct neighbours. If these correlations then do not exist between their outcomes and the
announced outcomes, then they can infer that these announced outcomes are artificial, and
therefore that those who have announced them are in fact participants. Let this arbit-
rary measurement be represented by a 2-qubit POVM pu; := {u!}, where without loss of
generality j € {1,2,3,4}.
Slightly abusing notation by combining POVM elements and observables, the measure-
ment operator then becomes

Y {0520;2 oS TelT Qul @aE  er ey o, (B =0) (H.4)

Wi—1 _Ti—1 J Wil Tit1l _Wit2 Ta—1 _
022072 ..oy oy T QRQul Qoy oo Lo, (B =1).

Without loss of generality, the underlying network state is still the same! as in (H.1).
Likewise, all of the single-qubit measurement operators in M for any node j # ¢ do not
commute with at least one of these generators, indicating that the individual measurement
outcomes are uniformly random 0 or 1.

Similar to before, the goal is to show that no choice of u; can create a measurement
operator Mg that shows correlations between the qubits of i and any subset S C Q. It
suffices to show that there is no Mg with support on any of the qubits in @ \ {7, w;} that
commutes with all generators. By the same analysis as in the previous section, Mg cannot
have any support on the qubits of any j|j € {a — 1,...,i + 1}. Moreover, we can make
a similar inductive argument for nodes j|j € {2,...,4 — 1}. Independent of §;, if Mg has
support on wsy it will not commute with the generator o7'o%2. Likewise, if Mg has support
on Ty, it will not commute with the generator o7'c%?072. We can inductively go through
all qubits from the nodes j|j € {2,...,7i — 1} to show that there exists no Mg that has
non-trivial support on any qubit of the nodes {2,...,i—1,i+1,...,a— 1} and at the same
time commutes with all the generators. We can conclude that, even for a dishonest node ¢,
there are no correlations in the measurement outcomes announced by the other nodes.

! Any non-trivial map that i may perform on their subsystem can be merged with the measurements {;}.
The other participants don’t deviate, or 7 is not aware of the deviation and therefore cannot exploit it.
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