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Abstract
We develop a toolbox for manipulating arrays of Rydberg atoms prepared in high-dimensional
hydrogen-like manifolds in the regime of linear Stark and Zeeman effect. We exploit the SO(4)
symmetry to characterize the action of static electric and magnetic fields as well as microwave and
optical fields on the well-structured manifolds of states with principal quantum number n. This
enables us to construct generalized large-spinHeisenberg models for which we develop
state-preparation and readout schemes. Due to the available large internal Hilbert space, these
models provide a natural framework for the quantum simulation of quantum field theories, which
we illustrate for the case of the sine-Gordon and massive Schwinger models. Moreover, these
high-dimensional manifolds also offer the opportunity to perform quantum information
processing operations for qudit-based quantum computing, which we exemplify with an entangling
gate and a state-transfer protocol for the states in the neighborhood of the circular Rydberg level.

1. Introduction

In the early days of quantum mechanics, Wolfgang Pauli proposed an elegant algebraic solution of the
hydrogen problem based on the SO(4) symmetry of the Hamiltonian for an electron moving in a Coulomb
potential [1]. This provided not only a derivation of quantized energy levels for Hydrogen described by the
Rydberg formula En =−Ry/n2, with n= 1,2, . . . the principal quantum number, but also explained the
n2-fold (orbital) degeneracy of the n-manifolds. In (weak) static external electric and magnetic fields, these
degeneracies are lifted resulting in a linear Stark and Zeeman effect [2, 3], leading to a large and regularly
structured internal state space associated with each value of n.

Here we look at such high-dimensional and well-structured internal atomic state spaces, as provided by
hydrogen-like Rydberg states of multi-electron atoms, as a novel opportunity for both storing and
manipulating quantum information for quantum- simulation and computing. This involves the control of a
given nmanifold of single Rydberg atoms with external electromagnetic fields, as well as entangling
operations via strong dipolar interactions. Availability and control of large internal Hilbert spaces is of
interest in quantum simulation of general scalar field theories [4], gauge theories of high-energy physics [5],
condensed matter models with large spins [6–11], or the emulation of synthetic spatial dimensions [12–16].
In view of the recent experimental advances with neutral atoms laser-excited to Rydberg states [17, 18], we
will explore some of these opportunities from a theory perspective and with Pauli’s algebraic formalism
providing a framework to treat the single- and many-body problem.

Rydberg atoms are already known as one of the most promising neutral-atom platforms for quantum-
information and simulation purposes in various scenarios [17–20]. These include the storage of qubits (or
qudits) in ground states where fast and high fidelity entangling gates can be performed via interactions
between atoms that are laser-coupled to Rydberg states [21–32]. Moreover, Rydberg excited atoms provide a
direct realization of interacting spin-1/2 models by encoding a spin between a ground state and Rydberg
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Figure 1. SO(4)-symmetric n-manifold for quantum simulation. (a) Two tweezer trapped Rydberg atoms i and j in an external
electric (F) and magnetic (B) field at a distance Ri j with relative orientation parametrized by the angles θij and ϕij.
(b) Numerically calculated Stark effect for 87Rb, where energies corresponding to n= 21 are colored in blue. The large amount of
discrete energy levels emerging from highly degenerate F= 0 manifold makes the spectrum appear continuous. Notice that for
non-hydrogenic atoms low orbital angular momentum states are shifted away from the Stark manifold (d-states are shown).
(c) Energy eigenvalues for the n= 21 manifold sorted with respect to the quantum numberml for a typical electric field value
(indicated by the dashed line in (c) for F= FIT/2) FIT > F> 0 and parallel magnetic field B> 0, with ωZ = 0.1ωS, forming a
rhombus shaped level structure. The manifold of states is described by two large angular momenta, where the application of
raising operators Ĵa,+ and Ĵb,+ connects neighboring states along the diagonal direction indicated by the corresponding arrow.
For non-hydrogenic atoms the highly regular spacing of the rhombus for |ml|< l∗ (blue shaded area) is disturbed as low angular
momentum states are shifted to lower energies due to quantum defects. For 87Rb the quantum defects are significantly nonzero
for l ≲ 3 [63, 64], and for sufficiently large electric fields as considered here, only s, p,d-states are effectively missing and therefore
we have l∗ = 3. The bordered and shaded areas indicate different manifolds of states, namelyHt (orange),Ha (red) andHv

(green), which are used in this paper for quantum simulation purposes. The inset is a zoom of the level structure where the
eigenstates and energy differences ωa and ωb are explicitly indicated.

state [33–36], or by directly encoding a spin in two Rydberg states [37, 38], or off-resonant Rydberg dressing
of ground state spins [25, 39–43]. Advances in optical trapping with tweezers [44–48] and ground state
cooling [49–51] provide both a freely programmable geometric arrangement [52, 53], including coherent
transport of atoms [54], as well as scalability to hundreds of particles [55, 56]. Experiments with circular
Rydberg states [57–59] promise longer single particle lifetimes [60], with a future potential for scaling to
even larger system sizes [61, 62]. We note, however, that up until now Rydberg platforms have mainly
focused on quantum simulation of spin-1/2 systems.

In contrast, we now investigate opportunities offered by the larger Rydberg n-manifold of states of alkali,
alkaline earth and lanthanide atoms trapped in optical tweezers in the regime of a linear Stark and Zeeman
effect, as illustrated in figure 1. We use the SO(4) Lie algebra represented by two large angular momentum
operators, which we denote by Ĵa and Ĵb, to characterize the hydrogen-like high orbital angular momentum
states and the action of the external electromagnetic fields. Within this framework, we show how to encode
and manipulate quantum states in these high-dimensional Rydberg manifolds. Moreover, this algebraic
representation in terms of two angular momenta allows us to translate the dipole–dipole interactions
between Rydberg atoms into generalized (large angular momentum) Heisenberg models, for which we
discuss state preparation and readout schemes.

By exploiting the mapping of large angular momentum operators into conjugated (continuous)
variables, we show that such Heisenberg models can be used to simulate quantum field theories (QFTs). Our
approach enables the simulation of far-from-equilibrium dynamics, which is notoriously difficult to simulate
classically and largely inaccessible to implementations based on low-energy approximations. We illustrate
our ideas with the sine-Gordon model in near equilibrium and its massive extension, which is dual to 1+1D
QED, namely the Schwinger model in out-of-equilibrium situations. Furthermore, we also discuss
opportunities for quantum information processing offered by the Rydberg n-manifolds. We exemplify this
for states near the circular level by providing a state-transfer protocol that can be employed to realize
entangling gates for qudit-based quantum computation.

A timely opportunity to implement the results of our work is provided by recent Rydberg experiments
with open inner shell atoms such as Er [65]. First, the hydrogen-like high orbital angular momentum states
can be directly accessed by laser light from low-lying atomic states due to the admixing of the core
configurations with large angular momentum components. Second, alkaline earth and lanthanides offer the
possibility to optically trap the atoms in Rydberg states via the valence core electrons and the corresponding
ion core polarizability [57, 66–68].

This article is structured as follows. In section 2, we introduce the SO(4) formalism, the coupling to
external fields, the form of dipole–dipole interactions and the role of quantum defects. In section 3, we
discuss how to encode and manipulate quantum information in the n-manifolds of Rydberg atoms, and we
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show the corresponding generalized Heisenberg models for Rydberg atoms in tweezer arrays. In section 4, we
demonstrate how our approach can be used to simulate continuous variable systems, and in particular we
discuss the paradigmatic sine-Gordon model and its massive extension. In section 5, we discuss a protocol to
perform state transfer and entangling gates between two atoms within the manifold of states near the circular
level. We conclude our work in section 6 with an outlook on future perspectives.

2. SO(4)-symmetric Rydberg manifolds

In this work, we consider atoms trapped in tweezer arrays (e.g. alkali, earth-alkaline and lanthanide atoms)
that are excited to hydrogen-like Rydberg states with principal quantum number n in the regime of linear
Stark and Zeeman effect. The corresponding manifold of n2 levels displays a clean and regular structure
originating from an underlying SO(4) symmetry described by two large angular momenta Ĵa and Ĵb, as
illustrated in figure 1, which provide an efficient description to treat the single- and many-body problem. In
this section, we introduce the angular momentum structure of the Hydrogen problem, the resulting Rydberg
state manipulation with electromagnetic fields and interactions, and discuss how these results translate to
experimentally relevant multi-electron atoms.

2.1. Algebraic solution of the hydrogen problem
The SO(4) symmetry of the hydrogen atom [1, 69, 70] allows for an elegant algebraic description of the
Rydberg manifold of states with a fixed principal quantum number n. In particular we consider the
non-relativistic hydrogen Hamiltonian, ĤH = p̂2/(2mr)− e2/(4πϵ0 |̂r|), where we ignore electronic spin
degrees of freedom andmr is the reduced electron mass,−e the electron charge, ε0 the vacuum permittivity
and p̂ and r̂ are the momentum and position operators, respectively.

A convenient approach to solve for the bound states of ĤH is to exploit the conservation of orbital
angular momentum L̂ and Runge–Lenz (RL) vector Â (see appendix A for details). These two sets of
conserved quantities generate the SO(4) symmetry of the hydrogen Hamiltonian. As the SO(4) group is
doubly covered by SU(2)×SU(2), we can construct two commuting angular momentum operators that read

Ĵa =
1

2

(
L̂− Â

)
and Ĵb =

1

2

(
L̂+ Â

)
, (1)

and therefore obey [̂Ja,i, Ĵa, j] = iϵi jk Ĵa,k and [̂Jb,i, Ĵb, j] = iϵi jk Ĵb,k, furthermore, the angular momentum raising
and lowering operators are defined as Ĵa(b),± = Ĵa(b),x± i Ĵa(b),y. Note, in this paper we use units where ℏ= 1.

Due to the orthogonality between the orbital angular momentum and the RL vector (L̂ · Â= 0), the lengths
of the two angular momenta are constrained, Ĵ2a = Ĵ

2
b.

Within this formalism, the Hamiltonian can be recast in the simple form ĤH =−Ry/[2(̂J2a + Ĵ2b)+ 1], see
appendix A, where Ry= e2/(8πϵ0a0) is the Rydberg energy and a0 = 4πϵ0/(e2mr) the Bohr radius. A natural
basis for the hydrogen atom eigenstates is therefore given by states |J,ma,mb⟩, where

Ĵ2a(b)|J,ma,mb⟩= J(J+ 1)|J,ma,mb⟩ and Ĵa(b),z|J,ma,mb⟩=ma(b)|J,ma,mb⟩, (2)

with J= 0,1/2,1, . . . andma(b) ∈ {−J,−J+ 1, . . . , J}. The corresponding energies of the Hamiltonian take
the form En =−Ry/(2J+ 1)2 =−Ry/n2 from which we can read off the relation between the principal
quantum number n and angular momentum length J= (n− 1)/2. Therefore, a manifold of states with fixed
n hosts n2 degenerate states |J,ma,mb⟩, which can be labeled by the quantum numbers of two angular
momenta.

A final result of the angular momentum formalism discussed in this subsection is the form of the electric
dipole operator µ̂=−er̂ whose transition matrix elements, within a single nmanifold, can be identified as

µ̂=−3nea0 Â/2= 3nea0
(̂
Ja− Ĵb

)
/2 , (3)

see [1, 71–73] and appendix A. In the following, we will exploit this relation to analyze the angular
momentum level structure in the presence of external electric fields and to express dipole–dipole interactions
in terms of Ĵa and Ĵb.

2.2. Coupling to external fields
The coupling of the electron to weak static external electric F and magnetic B fields lifts the degeneracy of
states with fixed n, and is described by the Hamiltonian

ĤB,F = µBL̂ ·B− µ̂ · F , (4)

where µB = e/(2mr) is the Bohr magneton. For a manifold of hydrogen-like states with a specific n, the L̂ and
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µ̂ can be replaced by angular momentum operators according to equations (1) and (3), respectively. The
replacement of µ̂ is valid below the Ingris-Teller limit |F|< FIT = 2Ry/(3ea0 n5), i.e. when couplings to
adjacent n′ = n± 1 manifolds are weak with respect to the gap En− En±1 [3, 74, 75]. Analogously,
diamagnetic couplings are negligible in the limit |B|< 2Ry/(µB n4) [76].

In the following analysis, we focus on a single manifold of states with fixed n and take the two fields to be
parallel and oriented along the z-axis, F= Fez and B= Bez, see figure 1(a), such that the projection
ml =ma +mb of the orbital angular momentum L̂z remains a good quantum number. Within the limits
discussed in the previous paragraph the Hamiltonian from equation (4) becomes

Ĥn =−ωa Ĵa,z +ωb Ĵb,z , (5)

with ωa = ωS−ωZ and ωb = ωS +ωZ, where ωS = 3nea0 F/2 is the Stark splitting and ωZ = µBB is the
Zeeman splitting (Larmor frequency). The linear Stark and Zeeman effect lifts the energy levels degeneracy,
as shown in figure 1(b) as a function of the electric field strength for 87Rb.

The resulting spectrum, at fixed electric field, takes a regular spacing that forms a rhombic-shaped level
structure [74, 77, 78], as shown in figure 1(c). Deviations aroundml = 0 of the regular spacing occur due to
core corrections for non-hydrogenic atoms, which we discuss below in section 2.4. For positive values of the
electric field of a few V cm−1, and for magnetic fields of hundreds of Gauss, and principal quantum numbers
in the range 30< n< 70, we have ωZ < ωS such that ωa(b) > 0. Within this parameter regime the absolute
values of ωa and ωb can be of the order of 2π× (102− 103)MHz, which allows for direct coupling between
the angular momentum states with microwave (MW) radiation.

Let us consider two circularly polarized MW fields whose electric field amplitudes are given by
Fa = Fae−exp(−iωMW

a t)+ c.c., and Fb = Fbe+exp(−iωMW
b t)+ c.c., with frequencies ωMW

a(b), electric field

amplitudes Fa(b) and polarizations e± =∓(ex± iey)/
√
2. The electric field of the MWs couple to the dipole

operator µ̂, which for hydrogen-like states is represented by equation (3). By combining the effect of the
static and time-dependent fields and after going to the rotating frame, equations (4) and (5) give rise to the
most general Hamiltonian linear in angular momentum operators

ĤMW =
∑
σ=a,b

[
−∆σ Ĵσ,z +

(
Ωσ Ĵσ,+ +Ω∗

σ Ĵσ,−
)]
, (6)

where we dropped fast oscillating terms and the rotating frame transformation is defined by
R̂= exp[−i(ωMW

a Ĵa,z−ωMW
b Ĵb,z)t]. Here,∆a = ωa−ωMW

a (∆b = ωMW
b −ωb) and Ωa(b) = 3nea0 Fa(b)/(2

√
2) are

independently tunable detunings and complex Rabi frequencies, respectively. We note that such MW control
has already been proposed [2] and demonstrated in recent experiments [79]. Deviations from perfectly
circularly polarized MW fields can give rise to unwanted transitions, which can be suppressed by tuning the
level spacing imbalance ωa−ωb via the magnetic field.

2.3. Dipole–dipole interactions
We now turn our attention to the role and form of interactions. Let us consider a pair of atoms i and j, with
a relative position Ri j = Ri j ei j, here Rij is the inter-atomic separation and ei j = (cosϕi j sinθi j, sinϕi jsinθi j,
cosθi j)T is the corresponding unit vector, where θij and ϕij are the azimuthal and polar angle, respectively, see
figure 1(a). For distances of a few to tens of micrometers, i.e. relevant for optical tweezer experiments, the
interaction between two atoms is dominated by the electric dipole–dipole coupling [80, 81]

Ĥi j
dd =

1

4πϵ0R3
i j

[
µ̂(i) · µ̂( j)− 3(µ̂(i) · ei j)(µ̂( j) · ei j)

]
,

where µ̂(i) and µ̂( j) are the dipole operators of atom i and j, respectively.
We consider the situation where the two atoms i and j are initially prepared in a Rydberg n-manifold, and

dipole–dipole interactions are weak as compared to the energy gap to adjacent n′ = n± 1-manifolds, such
that no transitions to other n′-manifolds occur. Within these criteria, the dipole operator can be expressed in
terms of angular momentum operators through the application of equation (3), and the interaction
Hamiltonian can be compactly written as

Ĥi j
dd = Vi j

[̂
J(i)a · Ĵ( j)

a − 3(̂J(i)a · ei j)(̂J( j)
a · ei j)

+Ĵ(i)b · Ĵ
( j)
b − 3(̂J(i)b · ei j)(̂J

( j)
b · ei j)

−Ĵ(i)a · Ĵ
( j)
b + 3(̂J(i)a · ei j)(̂J

( j)
b · ei j)

−Ĵ(i)b · Ĵ
( j)
a + 3(̂J(i)b · ei j)(̂J

( j)
a · ei j)

]
, (7)
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with Vi j = (3nea0)2/(16πϵ0R3
i j). Corrections to the above Hamiltonian, like van der Waals interactions

mediated by states with principal quantum number n′ ̸= n, are discussed in appendix C.
Similarly to other dipolar systems [82], the spatial anisotropy (θij and ϕij) of interactions and the

geometrical arrangement of the atoms can be exploited to tune the dipole–dipole interactions. Furthermore,
time-dependent methods [83–85] can also be applied to control and design the interaction Hamiltonian, as
recently experimentally demonstrated for magnetic dipolar atoms [86] and for Rydberg atoms [87, 88]. This
will therefore allow us to realize and tune a whole class of interaction Hamiltonians.

2.4. Nonhydrogenic atoms and the electron spin
The Rydberg manifolds of states with n≫ 1 of experimentally relevant alkali, alkaline earth and lanthanide
atoms follow, up to core corrections, the SO(4) symmetric hydrogenic results presented in section 2.1. In
particular, only a few low orbital angular momentum states, which are typically l= s, p,d(, f) states,
penetrate the core region and are therefore energetically shifted away from the nmanifold under
consideration. Their energy shift is described by quantum defect theory [89, 90] and is given by
En,l =−Ry/(n− δl)2, where δl is the quantum defect [91].

Including the quantum defects, the Rydberg Hamiltonian from equation (5) for a given nmanifold
becomes [92]

ĤQD
n = Ĥn +

∑
|ml|⩽l
l<l∗

|n, l,ml⟩⟨n, l,ml|(En,l− En), (8)

where the threshold value l∗ is dictated by the magnitude of the quantum defects, which is different for each
atomic species [93]. For example, for the case of Rb, and sufficiently strong electric fields, l∗ = 3 while for Er
typically l∗ = 4. In contrast to the hydrogenic case, the energies of ĤQD

n do not form a perfectly regular
rhombus structure anymore because the inner region |ml|< l∗ presents an irregular spacing [3, 94].
However, for n≫ 1 the large majority of states follow the hydrogenic description, as shown in figure 1(c) for
the n= 21 manifold.

The treatment of non-relativistic Hydrogen has thus far ignored the effect of spin–orbit coupling, which
in fact should be taken into account for realistic atoms. Nevertheless, spin–orbit coupling primarily only
affects the low l states which are shifted away from a Rydberg manifold n due to quantum defects. The spin
orbit coupling of high l states instead, is negligible for sufficiently large magnetic fields, due to a strong-field
spin Zeeman (or Paschen–Back) effect [95]. Hence, the rhombus manifold, which consists of only states with
high l, decouples from the electron spin an thus comes in two copies, |J,ma,mb⟩⊗ |s,ms⟩ with the electron
spin state |s,ms⟩= |1/2,±1/2⟩, energetically resolvable through the spin Zeeman splitting. This provides in
principle a further degree of freedom that doubles the available state space, but in the remainder of this paper
we will focus on a single spin state |s,ms⟩= |1/2,1/2⟩.

Let us finally comment on possible decoherence mechanisms of the hydrogen-like Rydberg states of a
given n-manifold. First, radiative decay due to spontaneous emission and black body radiation is a well
known source of decoherence in Rydberg experiments [96–98]. However, similar to experiments with
circular Rydberg states [61, 99], black body radiation can be suppressed in a cryogenic environment, while at
the same time spontaneous emission is strongly reduced for all states withml > l∗ since the primary decay
channels to energetically low-lying states are dipole-forbidden (for further details see appendix B.1).
Radiative decay rates can therefore safely be assumed to be well below all other relevant energy scales in this
work.

Further sources of decoherence can for instance originate from fluctuations in electric and magnetic
fields, which directly affect the energy levels ωa(b), and therefore enter as dephasing. Experimentally
demonstrated electric field stabilizations on the level of tens of µV cm−1 [100] and magnetic field
stabilization of tens of µG [101] should however be sufficient to render these decoherence effects negligible.
Another source of decoherence for tweezer trapped Rydberg atoms is motional dephasing, due to the
trapping potential being dependent on the internal state. Trapping of the core-electron, as is possible for
alkaline-earth and lanthanide atoms, would remove this problem by providing state insensitive traps
[66–68], see appendix B.2. Furthermore, atoms internally prepared in the Rydberg state experience (state
dependent) dipole–dipole forces, which leads to heating of the initially laser-cooled [50, 51] motional state.
These heating rates are negligible for the inter-atom distances of few tens of µm and for the time scales
considered in this manuscript, see appendix B.2.

In summary, Rydberg states with a fixed principal quantum number n of experimentally relevant atomic
species provide a natural setting for quantum simulation and quantum information processing with a large
internal state space. Except for very few states that are affected by quantum defects, the Rydberg n-manifold
inherits the physics of the hydrogen states. This includes the single-particle couplings to external fields, see
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equation (6), and two-body dipole–dipole interactions, see equation (7), giving rise to generalized
Heisenberg models for arrays of many atoms. In the next section, we consider different subsets of the
n-manifold and illustrate several concrete examples of many-body Hamiltonians that can be naturally
implemented with this platform.

3. Engineering of quantummany-bodymodels

In this section, we consider different subsets of the n-manifold in order to engineer specific examples of
many-body Hamiltonians for the hydrogen-like states, thus avoiding the quantum defect modified region.
More specifically, we discuss in the following two manifolds that we employ for quantum simulation and
quantum information processing applications, namely the triangular and edge manifold. In addition, we
discuss a manifold that can be employed for state preparation and measurement, the vertical manifold.

Triangular manifold:

The first and largest manifold that we consider is the triangular manifold defined for a fixed n by

Ht =
{
|ψt

ma,mb
⟩
}
, with |ψt

ma,mb
⟩ ≡ |J,ma,mb⟩ , (9)

andml ⩾ l∗. This defines the set of all states unaffected by quantum defects on the right side of the rhombus
and highlighted by the orange triangle in figure 1(c). In addition to dipole–dipole interactions and
single-particle control, we will demonstrate how to design nonlinear terms in the angular momentum
operators with ponderomotive manipulation techniques that can be used for different kinds of state
manipulation and engineering schemes. Later in this work, these nonlinear terms will be instrumental for the
analog simulation of QFTs. Furthermore, near the circular level we derive an effective description by using
the Holstein–Primakoff transformation, which enables us to perform a state-transfer operation between
pairs of atoms as a building block for qudit-based quantum computing. The quantum defect modified
region at lowml can be avoided by choosing the system parameters such that the dynamics is restricted to the
tip of the diamond, as discussed in section 3.4.

Edge manifold:

The second manifold that we consider is a subset of the triangular manifoldHt and is defined by the states
with maximally-polarized angular momentum Ĵb, namely

Ha =
{
|ψa

ma
⟩
}
, with |ψa

ma
⟩ ≡ |J,ma,mb = J⟩ , (10)

andma +mb ⩾ l∗, which is highlighted in red in figure 1(c). This manifold is closed under dipole–dipole

interactions governed by H(i j)
dd as all processes leavingHa are energetically suppressed by the Stark- and

Zeeman- splitting, as discussed in section 3.5. In addition to the control offered by the triangular manifold,
here we can also engineer additional nonlinear squeezing terms by off-resonantly MW coupling between
different n′ > nmanifolds. This additional ingredient will provide the kinetic term required for the
simulation of QFTs.

Vertical manifold:

The last manifold considered in our discussion is the vertical manifold defined by

Hv =
{
|ψv

ma
⟩
}
,with |ψv

ma
⟩ ≡ |J,ma,mb = l∗−ma⟩, (11)

and fixedml = l∗, which defines a set of states immediately next to the quantum defect modified region
highlighted in green in figure 1(c). Although this set of states is not closed under dipole–dipole interactions,
its unique properties can be exploited for state preparation and readout for theHa manifold.

3.4. Triangular manifoldHt

The triangular manifoldHt is defined in equation (9) and is highlighted in orange in figure 1(c). Here below
we discuss a specific example of a many-body Hamiltonian, the ponderomotive manipulation technique to
engineer a class of nonlinear terms and we provide an effective theory for the states near the circular level.
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3.4.1. Model Hamiltonian
To be specific, we consider the case where all atoms are placed in a plane perpendicular to the static electric
and magnetic fields, θi j = π/2. Furthermore, we focus on the regime |ωa(b)| ≫ J2Vi j, where the interaction

term Ĵ(i)a,+ Ĵ
( j)
a,+ and Ĵ(i)b,+ Ĵ

( j)
b,+ in equation (7) are energetically suppressed by the Stark- and Zeeman-splitting.

By considering the single-particle and many-body terms introduced in the previous section in equations (6)
and (7), with the addition of the ponderomotive drive that we detail in the next subsection, the many-body
Hamiltonian takes the form

Ĥt =
∑
i

(
Ĥ(i)

MW + Ĥ(i)
P

)
+

1

2

∑
i̸= j

Vi j

[(
Ĵ(i)a,z− Ĵ(i)b,z

)(
Ĵ( j)
a,z − Ĵ( j)

b,z

)
− 1

4

∑
σ

(
Ĵ(i)σ,+ Ĵ

( j)
σ,− +H.c.

)
+

3

2

(
ei2ϕi j Ĵ(i)a,+ Ĵ

( j)
b,+ +H.c.

)]
, (12)

where we transformed to the rotating frame defined below equation (6) under the resonant condition

∆a +∆b = ωa−ωb. The term Ĥ(i)
P is the ponderomotive coupling for the ith atom defined as

ĤP =
∑
κa,κb

λκa,κb (̂Ja,+)
κa (̂Jb,+)

κb +H.c. , (13)

where λκa,κb denotes complex coupling strengths. The ponderomotive coupling in equation (13)
corresponds to a transfer of orbital angular momentum by κ= κa +κb, where κa(b) can take on negative and

positive values [thus with the identification (̂Ja(b),+)
−1→ Ĵa(b),−]. For the special case κb = 0 implying

κ= κa, the ponderomotive Hamiltonian ĤP reduces to λκ(̂Ja,+)κ +λ∗κ(̂Ja,−)
κ, where we use the simplified

notation λκ ≡ λκ,0. In this case, this coupling Hamiltonian can be used, for instance, to generate a two-axis
twisting term [102], i.e. i(̂Ja,+)2− i(̂Ja,−)2 for κ= 2.

3.4.2. Ponderomotive manipulation
In order to realize the nonlinear coupling in equation (13), we employ the ponderomotive manipulation
techniques [62, 103–105]. The core idea is to interfere two co-propagating (along the z-direction) hollow
Laguerre-Gauss laser beams with different frequencies ω1 and ω2 and non-zero orbital angular momentum.
The corresponding interference pattern forms a ponderomotive potential Uκ(r)e−iκϕe−iδωt +H.c. , rotating
at the beating frequency δω = ω1−ω2, which can be arranged to be in the MW frequency domain to match
the resonance condition δω =−κaωa +κbωb. When centered at the atomic position, this spatially-rotating
ponderomotive potential transfers κ= κa +κb quanta of orbital angular momentum, see figure 2(a).

For simplicity, we focus here on the case κb = 0 and therefore κ= κa. The transition matrix elements of
the ponderomotive coupling Uκ,ma,mb ≡ ⟨ψt

ma+κ,mb
|Uκ(r)e−iκϕ|ψt

ma,mb
⟩ are shown in figure 2(b) for

κ= 2, 4, 6,mb = J and different values of n. As discussed in appendix D, when the beam waist is large
compared to the Rydberg orbital radius, the leading order expression of these matrix elements is
Uκ,ma,mb = λκ⟨ψt

ma+κ,mb
|(̂Ja,+)κ|ψt

ma,mb
⟩. For simplicity, we extract the coefficient λκ by a least square fit and

show the accuracy of this procedure in figure 2(b). The degree of accuracy can be controlled by increasing the
laser beam waist, which requires more laser power to maintain the same strength for the transition
amplitudes. The parameter λκ can be complex and is controlled by the relative phase of the Laguerre-Gauss
beams. Furthermore, the coupling matrix elements Uκ,ma scale as n

2κ for |ma| ≪ J, and are in the range
2π× (102− 103)kHz for hundreds of mW of laser power. Further details of these calculations and precise
beam parameters are discussed in appendix D.

We point out that for fixed laser power and n achievable coupling strength decrease as |κa|+ |κb| is
increased. For |κa|+ |κb|≲ 6 and a combined laser power of hundred mW per site give rise to coupling
strength of hundreds of 2π×kHz, see figure 2(b). Moreover, notice that the expression (13) also contains the
linear expression (6) obtained via a MW driving as a special case. However, as the ponderomotive coupling is
driven by laser light, it directly provides a way to locally engineer these couplings, i.e. at the level of a single
Rydberg atom, which can be exploited for digital quantum simulation purposes.

3.4.3. Effective theory near the circular state
A model Hamiltonian similar to equation (12) can also be realized with coupled atomic ensembles [106],
where a single large angular momentum of length J is constructed out of 2 J two-level atoms. In our case two
large angular momenta, both of length J, are encoded in a single atom with principal quantum number
n= 2J+ 1, which can be manipulated with external fields enabling, for example, the preparation of squeezed
states, see equation (13). While atomic ensembles are usually coupled via atom-light interactions, here pairs
of angular momenta are naturally coupled by dipole–dipole forces.

7
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Figure 2. Nonlinear control: (a) illustration of the time-dependent part of the ponderomotive potential Uκ(x,y,z= 0)e−iκϕ, see
equation (D4) in appendix D. The color intensity is proportional to the potential strength Uκ and the color code indicates the
phase pattern ϕ. The blue dot represents the ionic core c+, whereas the dashed circle represents the spatial extent of a typical
valence electron e− Rydberg wavefunction as compared to the ponderomotive potential extent. (b) Comparison of numerically
computed transition matrix elements Uκ,ma,mb ≡ ⟨ψt

ma+κ,mb
|Uκ(r)e−iκϕ|ψt

ma,mb
⟩ (crosses) with the expression

λκ⟨ψa
ma+κ,mb

|(̂Ja,+)κ|ψa
ma,mb

⟩ (circles) for different values of n, κ andmb = J. The parameter λκ is extracted from a least-square
fit. The coupling strengths are normalized to the sum of the two laser beams powers with wavelength λ= 1300nm and beam
waist λ/2. (c) Illustration of the off-resonant MW coupling between theHa manifolds with n= 41 (blue) and n′ = 44 (red). The
static electric field is chosen to be F= FIT/2 and for illustrative purposes we choose the magnetic field such that ωa(n) = 0.
(d) The upper panel displays the AC stark shift of the states |ψa

ma
⟩ which is quadratic in the vicinity ofma = 0. The lower panel

monitors the purity of the dressed eigenstates |cma |2, which decreases forma →−J as the MW detuning isma dependent as
shown in (c). For both panels the electric field is chosen as in (c), the magnetic field B> 0 is chosen such that ωZ = ωS/2, whereas
the other parameters areΩma=0 = 2π× 319MHz,∆0 = 2π× 1.4GHz leading to χ = 2π× 92kHz.

Analogous to atomic ensembles, where states close to the maximally stretched state are described by
continuous variables [106], we now focus on the Hamiltonian (12) on a subspace of states close to the
maximally stretched (circular) level |ψt

J,J⟩. We thus perform a Holstein–Primakoff transformation

Ĵ(i)−,σ =
√
2J
√
1− n̂iσ/(2J) ĉiσ and Ĵ(i)σ,z = 2(J− n̂iσ), where ĉiσ (̂c†iσ) are standard bosonic annihilation

(creation) operators satisfying the commutation relations [̂ciσ, ĉ
†
jσ′ ] = δσσ′δi j and n̂iσ = ĉ†iσ ĉiσ , with σ = a,b

playing the role of pseudo-spin.
In this framework, the circular level serves as the vacuum for both bosonic modes, |0,0⟩ ≡ |ψt

J,J⟩, and the
Hamiltonian (without MW and ponderomotive couplings) takes the form of a generalized spinful
Bose–Hubbard model

Ĥt
HP =

∑
σ=a,b

[
−
∑
i

∆σ n̂iσ −
1

2

∑
i̸= j

hi j

(
ĉ†iσ ĉ jσ +H.c.

)]
(14)

+
1

2

∑
i ̸= j

[(
wi jĉ

†
iaĉ

†
jb +H.c.

)
+Ui j(n̂ia− n̂ib)(n̂ ja− n̂ jb)

]
,

which is valid up to corrections O(1/J). Here∆σ are onsite energies, hi j = JVi j/2 describes intra-species
hopping, wi j = 3JVi jexp[i2ϕi j] pair gain/loss processes, and Ui j = 2Vi j density–density interactions. In
contrast to standard Bose–Hubbard models the pair gain/loss term wij violates total particle number
conservation and can be used to generate parametric squeezing. Further below in section 5 we outline
another application of equation (14), where we employ the hopping term hij for quantum state transfer and
an entangling gate between a pair of atoms. We note that this Hamiltonian is valid inside the triangular
manifold and not in the quantum defect modified region, see figure 1(c). In the limit |wi j|≲−∆σ the low
energy dynamics (with respect to−J∆σ) is constrained to the tip of the triangle and this condition is met.
Furthermore, interaction terms causing transitions into the quantum defect modified region are typically
energetically suppressed due to the irregular level spacing in this region.
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The physics of equation (14) can be explored starting from, for example, the vacuum state |ψt
J,J⟩, which

can be initialized through well established circularization methods, i.e. via the adiabatic rapid passage
method [2, 107–109], the crossed electric and mangnetic fields method [3, 110], multi MW photon transfer
[79, 111] or direct ponderomotive coupling [105]. Another possible scheme to prepare more general product
states is outlined in section 3.6, where we describe a generalization of the adiabatic rapid passage protocol
used to prepare circular levels. Readout can be performed by applying energy-selective MW pulses that
transfer the population of individual levels to different n′-manifolds, which are subsequently resolved by an
electric field ionization measurement [79].

3.5. Edge manifoldHa

The edge manifoldHa is defined in equation (10) by having Ĵb maximally polarized, as highlighted
in figure 1(c). Notice that we could define an analogous manifoldHb by considering the states with
Ĵa maximally polarized. Choosing the static external electric and magnetic fields such that
|ωa(b)|,|ωa±ωb| ≫ J2Vi j, this manifold is closed under dipole–dipole interaction induced processes

governed by Ĥi j
dd [112]. SinceHa is a subset ofHt, it inherits many of the properties discussed before, such as

the ponderomotive control. Additionally, we can also construct a nonlinear squeezing term

ĤSQ = χ (̂Ja,z)
2 , (15)

where χ is the squeezing strength. This can be generated by off-resonantly coupling theHa manifold with
principal quantum number n to anotherHa manifold with n′ > n, through MW radiation.

In the blue detuned regime, see figure 2(c), and z-polarized MW fields, the system can be treated as a
collection of independent two-level systems, one for eachma. As shown in figure 2(c), the detuning
∆ma =∆0 + δωama of each two-level system varies withma, where∆0 is an overall detuning and
δωa = ωa(n′)−ωa(n) is the differential level shift. Moreover, the coupling strength Ωma depends smoothly
onma through the dipole transition matrix elements. In the regime∆ma ≫ Ωma the coupling leads to an AC
Stark shift Ω2

ma
/(4∆ma) that can be expanded in a power series ofma when∆0≫ δωama, namely

Ω2
ma
/(4∆ma) = χm2

a +O(m4
a), where the constant and linear terms are absorbed in∆0 and δωa, respectively.

The (quadratic) leading term of this expansion therefore gives rise to the anticipated squeezing term, as
shown in the upper panel of figure 2(d). Cubic terms can be canceled exactly by carefully picking∆0 and
Ωma , as discussed in appendix E.

For moderate values of the MW intensity, χ can be on the order of 2π× 100kHz, thus giving rise to level
shifts as large as 2π× 10MHz for |ma| ∼ J. For such values of the level shifts, a small admixture of states from
the n′ manifold is present, see the lower panel of figure 2(d). Moreover, imperfect MW polarization can lead
to unwanted two-photon Raman processes, which can be made off-resonant by tuning ωa≫ Ω2

ma
/∆ma .

By taking into account all the terms discussed so far, the Hamiltonian for theHa manifold takes the form

Ĥa =
∑
i

{
−∆a Ĵ

(i)
a,z +χ

(̂
J(i)a,z

)2
+
∑
κ

[
λκ

(̂
J(i)a,+

)κ
+H.c.

]}

+
1

2

∑
i ̸= j

Vi j

[̂
J(i)a,z Ĵ

( j)
a,z −

1

4

(
Ĵ(i)a,+ Ĵ

( j)
a,− +H.c.

)]
. (16)

The first line describes linear and nonlinear single-particle terms. As previously mentioned, the κ= 1 term
can also be obtained by MW engineering (λ1 =Ωa), see equation (6). The second line describes long-range
dipolar interactions under the assumption that the atoms are placed in a plane perpendicular to the static
electric and magnetic fields (θi j = π/2), thus realizing a ‘large-spin’ XXZ model.

In section 4, we will discuss two examples of specific many-body models obtained from the
Hamiltonian (16) that provide a direct application of the platform developed in this work. State preparation
and readout for theHa manifold require specific schemes involving the states inHv, which we discuss in
detail in the next subsection.

3.6. Vertical manifoldHv

The vertical manifoldHv defined in equation (11) and highlighted in green in figure 1(c) plays a
fundamental role in our system, for multiple reasons. First, this manifold can be accessed from atomic
ground states using a single or multiple laser transitions (depending on the atomic species), thus enabling to
coherently (de)populateHv. Second, a mapping scheme that we demonstrate below allows to transfer
arbitrary states fromHv toHa and vice versa with high fidelity. As a consequence, the manifoldHv provides
the capabilities to perform state preparation and readout onHa, which make the Hamiltonian in
equation (16) a particularly accessible many-body model.

9
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Figure 3. State preparation and readout: (a) low orbital angular momentum state admixture |⟨n, l= l∗, l∗|ψv
ma
⟩|2 [69] for the

subset of statesHv, where |n, l,ml⟩ are the eigenstates of the hydrogen Hamiltonian ĤH, with l being the orbital angular
momentum quantum number. (b) Level structure of non-hydrogenic atoms in the presence of parallel electric and magnetic
fields, with ωZ = 3ωS/4. The blue shaded area displays the region modified by quantum defects. A ground (or intermediate-state)
|gs⟩, with orbital angular momentum components l∗ − 1, is coupled with circularly polarized laser light to states in the
sub-manifoldHv. The red arrow illustrates the multi MW photon coupling of the adiabatic rapid passage for a single value ofma.
The inset shows the instantaneous eigenenergies of the adiabatic rapid passage path in the rotating frame defined above
equation (6) for a singlema = 0 and for parameters n= 31, F= FIT/2, ωZ = ωS/2,∆0 =Ω0 > 0.

The presence of low orbital angular momentum components in |ψv
ma
⟩, see figure 3(a), offers a unique

opportunity for laser coupling the atomic ground state to the Rydberg manifoldHv. In particular, for
lanthanides like erbium the valence electrons have f -orbital character in their electronic ground state due to a
submerged shell structure [65]. TheHv manifold of erbium in turn contains an admixture of Rydberg
g-states, which allows direct laser coupling from the ground state |gs⟩ to specific states inHv, selected by the
laser frequency, see figure 3(b). For multiple laser frequencies, this coupling is described in the rotating frame
by the Hamiltonian

Ĥvg =
∑
ma

(
Ωma,gs

2
|ψv

ma
⟩⟨gs|+H.c.

)
, (17)

where Ωma,gs are the individual Rabi frequencies that satisfy |Ωma,gs| ≪ |ωS|. This laser adressability can also
be used to perform projective readout within theHv manifold employing quantum gas microscope
techniques [113, 114]. Note that the connectivity offered by the individual Ωma,gs in equation (17) provides a
convenient setting to perform holonomic quantum computing operations within theHv manifold [115].

We now proceed to discuss a scheme realizing the state transfer

Û va : |ψv
ma
⟩ ←→ |ψa

ma
⟩ ∀ma , (18)

via a adiabatic rapid passage that generalizes the one originally developed to prepare circular Rydberg
levels [2]. We start by noting that a state |ψv

ma
⟩ is connected to the final state |ψa

ma
⟩ for anyma by a

multi-photon MW transition (see the highlighted red arrow and levels in figure 3(b)), while transitions into
the defect region are energetically suppressed. The required time-dependent drive is based on the MW
Hamiltonian ĤMW(t) (equation (6)) with Ωa = 0, such that only couplings among the highlighted states in
figure 3(b) are present. During the driving sweep, the detuning∆b(t) has to change sign and the Rabi
coupling Ωb(t) has to be turned on and off again in order to adiabatically (|Ωb(t)| ≪ |ωa(b)|) connect the
different states |ψv

ma
⟩ and |ψa

ma
⟩. Note that in general the individual states acquire a state-dependent

dynamical phase that can be canceled by an appropriate transformation inHv.
In the following, we numerically demonstrate the adiabatic rapid passage Û va for a selected state

(ma = 0) and a particular driving protocol∆b(t) = ∆0cos(π t/T) and Ωb(t) = Ω0sin(π t/T). In the inset of
figure 3(b), we show the instantaneous energy levels in the rotating frame defined above equation (6) as a
function of time. For t= 0, several energy levels are present. The ones with positive energy (E> 0) are equally
spaced and correspond to the levels highlighted in red in figure 3(b). Levels with differentma are not shown,
as they are not coupled by the MW field. As the adiabatic sweep progresses, the initial state |ψv

ma
⟩ changes

into the target final state |ψa
ma
⟩, as indicated by the red line in the inset. However, one can notice that several

level crossings take place during the time evolution. These occur with states that have negative energy E< 0
at t= 0, corresponding to states withml <−l∗ and the same value ofma, i.e. located on the left side of the
rhombus level structure. Additionally, level crossings with states from the defect modified region (|ml|< l∗)
can also be present. All these crossings are in fact avoided crossings with a very narrow gap that is determined
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by multiple off-resonant transitions through the defect region. Thus, they can be diabatically crossed via
Landau–Zener tunneling without hindering the sweep protocol.

Due to the highly regular Rydberg level spacing, we remark that the passage connects all the states inHv

to their respective counterpart inHa. For∆0 and Ω0 on the order of 2π× 10MHz and T on the order of a
few µs, the passage reaches numerically calculated fidelities above 99% for all the states.

In summary, the hydrogen-like Rydberg manifold discussed in this paper can be accessed by laser exciting
atoms to Rydberg states with small orbital angular momentum components and a subsequent transfer to
states with large orbital angular momentum components. This allows to explore the physics offered by the
engineered many-body models introduced in sections 3.4 and 3.5. In the following Sections we show how
these models can be used to simulate QFTs and how controlled entanglement between pairs of atoms can be
generated.

4. Application: quantum simulation

The central feature of the simulator discussed in this work is the high-dimensional and regularly structured
Rydberg manifold leading to a many-body problem described by Heisenberg models with large spins (or
angular momenta). A promising application of these models is the simulation of QFTs [4], which we discuss
in this section. For instance, a scalar quantum field is represented by pairs of conjugate variables on each
spatial point, which span an infinite-dimensional space. These can be conveniently represented by the large
spins of the Rydberg n-manifold, a procedure that naturally requires a truncation set by the finite (large) spin
length.

Our construction provides a bottom-up approach to simulating QFTs, differently from other systems,
e.g. ultracold atomic gases [116], where QFTs appear as a low-energy description. The Rydberg platform
offers the opportunity to avoid unwanted thermal effects inherent to atomic gases, thus allowing us to access
the zero temperature limit of these theories and to freely choose different geometries or dimensionalities.
Moreover, the programmability and control of the platform allows for the preparation of initial states of
interest, e.g. product states or other states obtained through adiabatic sweeps, the readout of the
corresponding out-of-equilibrium quantum dynamics via quench protocols and the exploration of phase
diagrams from the weakly- to the strongly-interacting regime. In particular, our approach paves the way for
simulating non-equilibrium dynamics of scalar quantum fields in real-time, something which is notoriously
hard for classical simulators and in general also not accessible with implementations based on low-energy
approximations.

In this section, we illustrate these possibilities with two case studies, namely the massless and massive
sine-Gordon (SG) model. The first case is a paradigmatic and ubiquitous integrable scalar QFT that plays an
important role in many areas, ranging from high-energy physics [117] to condensed matter [118]. The
second case is a scalar QFT that is dual to 1+1D quantum electrodynamics (QED), namely the massive
Schwinger [119]. The quantum simulation of such a theory requires a continuous variable representation of
the scalar fields, which are naturally embedded in the Rydberg manifold, as we show below.

In section 4.1, we first discuss how the platform’s unique properties, namely the availability of spins with
large spin length J≫ 1, can be used to faithfully approximate the physics of continuous variables. In the
following section 4.2, we show that the naturally occurring interactions enable us to realize a lattice
regularization of the SG model. For this example, we focus on close-to equilibrium properties in order to
provide a clean benchmark of our setup. Finally in section 4.3, we turn our attention to gauge field theories,
more precisely QED in one spatial dimension, the so-called massive Schwinger model. We discuss how to
realize a dual lattice formulation of this model using the Rydberg architecture. Here, we demonstrate how to
probe nontrivial gauge theory dynamics, relevant for investigating processes like pair production and string
breaking. These demonstrations serve as a qualitative illustration for potential applications in
non-equilibrium situations that are inaccessible by other means.

4.1. Conjugated continuous variables
Standard quantum-mechanical position φ̂ and momentum π̂ operators obey the canonical commutation
relation [φ̂, π̂] = i. For quantum mechanics on a unit circle, it will be more convenient to consider phase
operators eiφ̂ satisfying [

π̂,eiφ̂
]
= eiφ̂ , (19)

where the momentum operator π̂ takes discrete eigenvaluesmπ ∈ Z on its eigenstates |mπ⟩.
The commutation relation (19) shows that eiφ̂, similar to a spin operator Ĵ+, acts as a raising operator on

|mπ⟩. Taking into account the normalization of the operators, this suggests to identify
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Figure 4. Large spin limit for a single Rydberg atom. (a) Potential landscape of the continuum theory with ponderomotive
coupling λ′ = 0 (solid line) and λ′ = 10χ (dashed line). The horizontal line marks the ground state energy for λ′ = 0 and
Ω′ = 50χ in the limit J→∞. In the inset, the corresponding wavefunction is shown in momentum space. (b) Continuum
theory energy spectrum for λ′ = 0. The vertical dashed line indicates the valueΩ′ = 50χ used in the rest of the figure.
(c) Spectrum of the single-particle Rydberg Hamiltonian (solid lines) compared with the exact continuum theory spectrum
(dashed lines) as J increases. (d) Spectrum comparison as in (c) for J= 50 as a function of the ponderomotive coupling λ′/χ for
κ= 4.

π̂↔ Ĵz , e±iφ̂↔ 1√
J(J+ 1)

Ĵ± . (20)

The (2J+ 1)-dimensional Hilbert space spanned by eigenstates |m⟩ of Ĵz withm=−J, . . . J thus ‘regularizes’
the infinite-dimensional Hilbert space of the continuous variables by cutting off the spectrum of π̂ at a
maximum value |mπ|⩽ J [120]. The identification becomes exact for states aroundm= 0 in the
limit J ≫ 1.

We now numerically demonstrate how the above identification converges to a continuous variable
representation in the large spin limit J≫ 1. Here, we focus on a single Rydberg atom in the subset of states
Ha described by the Hamiltonian in equation (16). Choosing∆a = 0 and defining Ω′ =−2Ωa

√
J(J+ 1) and

λ′ =−2λκeiθ[J(J+ 1)]κ/2 for a fixed κ> 1, λ′ > 0 and a phase θ, the single Rydberg atom Hamiltonian in
the continuous variable limit becomes

ĤJ→∞ = χ π̂2−Ω ′cosφ̂−λ ′cos(κφ̂+ θ) . (21)

The Hamiltonian in equation (21) describes a particle of mass (2χ)−1 moving on a ring and subject to a
periodic potential, as depicted in figure 4(a). The spectrum of the continuum theory (21) can be numerically
computed by exploiting the periodicity of φ̂ and solving the eigenvalue problem in Fourier space, thus
yielding the result shown in figure 4(b) for λ′ = 0. Depending on the ratio Ω′/χ, the low-energy physics of
this model ranges from the free particle regime (Ω′≪ χ) to the harmonic oscillator regime
(Ω′≫ χ).

We now consider an intermediate regime, where the nonlinear character of cosφ̂ is evident, and
calculate the spectrum of the spin model for increasing values of the angular momentum J, as shown in
figure 4(c). For the chosen parameters and the selected energy range, the truncation accurately reproduces
both bound and a few unbound states of the model with continuous variables, equation (21), when J≳ 30.
In figure 4(d), we further test the effect of λ′ on the spectrum for a fixed value of the spin magnitude J= 50,
and find that the spin model also captures the target model including the higher-harmonic potential,
controlled by λ′.

We have thus verified that for experimentally relevant spin lengths J (or principal quantum numbers
n= 2J+ 1) the large spin captures the physics of a continuous variables theory in a single Rydberg atom.
This capability constitutes the basis to engineer a QFT simulator using an array of interacting Rydberg
atoms, which we illustrate in the following subsection for the SG model.
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4.2. Sine-Gordonmodel
4.2.1. Overview of the model and Rydberg implementation
The SG model is a paradigmatic QFT that is described by the Hamiltonian [117, 121]

ĤSG =

ˆ
dx

{
1

2
[π̂(x)]2 +

1

2
[∂xφ̂(x)]

2− M2
0

β2
cos[βφ̂(x)]

}
, (22)

where the fields obey [φ̂(x), π̂(x′)] = iδ(x− x′),M0 has units of energy, distances are measured in units of
inverse energy and β is a dimensionless parameter. Let us briefly summarize some key features of the SG
model (see, e.g. [122]) and references therein). At β2 = 8π, the theory exhibits a Berezinskii–Kosterlitz–
Thouless (BKT) transition, separating a gapless phase at large β from a gapped phase at small β. In the
gapped phase (0< β2 < 8π), the low-energy degrees of freedoms are fermions interacting attractively

(repulsively) for β2 < 4π (β2 > 4π), which can be identified with quantized solitons of massM
β→0−→ 8M0/β.

In the attractive regime, the solitons form bound states, so-called breathers. The lightest one of them has a

massm1
β→0−→M0 (see appendix F for general expressions of the masses).

For the implementation of the SG model we consider a one-dimensional array of tweezer-trapped
Rydberg atoms excited to the manifoldHa. The system is therefore described by the many-body
Hamiltonian (16), which in the large J limit allows for a continuous variable description through
equation (20) that reads

Ĥ(lat)
SG =

∑
i

χπ̂2i −λ ′cos(κφ̂i)−
∑
j>i

V ′
i j

2
cos

(
φ̂ j− φ̂i

) , (23)

where we rescaled the interaction V′
i j = Vi jJ(J+ 1), while keeping∆a = 0, and λ′ =−2λκ[J(J+ 1)]κ/2 for a

single value of κ, which corresponds to either a MW (κ= 1) or ponderomotive (κ⩾ 1) coupling,
respectively. Notice that in the large J limit, the Ising terms have been neglected, which we benchmark in the
next subsection.

In order to recover the continuum QFT in equation (22), we take only nearest-neighbor terms
V′
i,i+1 ≡ V′

nn and rescale the continuous variables and Hamiltonian appropriately (see appendix G). The
correspondence is achieved by the identification of parameters as follows

V ′
nn

χ
=

4κ4

β4
,

λ ′

χ
=

2κ2(ℓM0)
2

β4
, (24)

where we introduced a short-distance scale ℓ that sets a UV-cutoff Λ∝ 1/ℓ for the lattice regularization,
ℓM0 = κ

√
2λ′/V′

nn→ 0. With these identifications, all the regimes of the theory,
0< β2 = 2κ2

√
χ/V′

nn <∞, are in principle accessible. In particular, in appendix G we present realistic
experimental parameter estimates, which indicate that values β2 ≳ 8π can be reached with a spin length of
J= 20. This suggests that this platform can be employed to investigate the critical properties of the model
across the quantum phase transition.

Before turning to a benchmark analysis of our SG model implementation, let us briefly point out some
existing proposals and experimental realizations. The SG model can be realized with ultracold atoms, for
example, by using binary mixtures [123, 124] or tunnel-coupled superfluids [125], and the theory has been
tested in the semiclassical regime by measuring high-order correlation functions [116]. Recently, it has been
proposed to realize a lattice regularization of the quantum SG model using superconducting circuits [126],
which is most closely related to our approach with large spins discussed here.

4.2.2. Numerical benchmark in the massive phase
We now illustrate how the lattice SG physics emerges from the large spin approximation. In particular, we
test the influence of finite spin length, the presence of Ising terms and discuss the effect of long-range tails.
For this, we numerically analyze an array of N = 5 Rydberg atoms assuming periodic boundary conditions
[127] and compare with analytical results for the low-energy excitation spectrum and ground state
expectation values. Further below, we also briefly discuss how to measure the many-body gap through a
realistic quench protocol.

We perform our analysis deep in the gapped phase, setting V′
nn = 10χ and κ= 1, i.e. β2 =

√
0.4≪ 8π,

and vary λ′/χ, thereby effectively scanning different values of ℓM0. In this parameter regime, we expect the
model to be well approximated by a quadratic (free) theory obtained by replacing cosφ̂i ≈ 1− φ̂2

i /2, and
similarly for cos(φ̂i+1− φ̂i). After diagonalizing the quadratic theory (see, e.g. [128] and appendix H), we
obtain the single-particle dispersion relation ωq =

√
2χ(λ′ +V′

nn−V′
nncosq) with q ∈ [0,2π], where we
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Figure 5. Sine-Gordon benchmark. (a) Spin-size scaling of the energy gap up to J= 12 obtained from the spin Hamiltonian
including the Ising terms (full circles) and without them (full squares) for N= 5 atoms, κ= 1 λ′ = 50χ and V′

dd = 10χ obtained
by exact diagonalization with periodic boundary conditions (PBC). The prediction of the free theory is shown for the J≫ 1 limit.
(b) Lowest branch of the excitation spectrum obtained by ED (markers) with the parameters chosen as in (a) for J= 10. The free
theory prediction is shown in the nearest-neighbors (NN) approximation (dashed line) and including the entire long-range (LR)
tail of the interactions (dotted line). (c) Energy gap for a wide range of λ′/χ obtained via the quench protocol with α= π/50
described in the text (cross markers) and compared with the ED gap (empty circles). The plot shows also the free theory
prediction (dashed line) and the exact lowest breather massmB = m1 (dotted line). In the inset, the oscillation dynamics of ⟨̂Jy⟩
from which we extract the gap for λ′ = 10χ. (d) Vertex operator expectation value ⟨eiφ̂⟩ ↔ ⟨̂Jx⟩/

√
J(J+ 1) obtained with ED

(full circles) and within the free theory (dashed line). The discrepancy is mainly originating from the small spin length, as shown
in the inset for λ′ = 50χ. ED in panels (b)–(d) is performed for J= 10 and the site indices are dropped as we considered a
translation invariant system.

truncated the interactions to nearest neighbors. These low-energy massive excitations with dispersion ωq

correspond to coherent displacements of the phase variable from the equilibrium position ⟨φ̂i ⟩= 0, which
can be interpreted as gapped spin waves of the original spin model.

As illustrated in figure 5(a) for finite J, the numerically calculated dispersion obtained by neglecting Ising
terms and long-range contributions is in perfect agreement with the analytical formula for ωq. We find that
including the Ising terms has the effect of reducing the overall bandwidth of the dispersion relation. In
figure 5(a), we also show the effect of the long-range dipolar tail, which is calculated semi-analytically in
appendix H by using Ewald’s resummation [129]. For q≈ 0, we find ωq ≈

√
2χ[λ′−V′

dd(c2q
2 + c′2 q

2logq)],
with c2 ≈−0.739 and c′2 ≈ 1/2. The long-range dipolar interactions have therefore the effect of increasing
the bandwidth of the excitation spectrum, which gains a non-analytical sub-leading contribution at small
momenta. Note that the energy gap∆E= ω0 =

√
2χλ′ is thus unaffected by the long-range tails.

We now study the gap∆E of the model in more detail. As previously stated, we expect the Ising terms’
contribution to vanish in the J≫ 1 limit. This is confirmed in figure 5(b), where we show the dependence of
the energy gap∆E in the finite-spin model as a function of J with J= 5, . . . ,12, both with and without Ising
terms. Comparing against the predicted result ω0 =

√
2χλ′ of the free theory, we find that both finite-spin

results overestimate the value of the gap. These systematic errors vanish smoothly as J is increased,
demonstrating that the finite spin model reproduces the expected gap in the large J limit. Given the regular
J-dependence, we note that a finite spin-length scaling analysis can also be performed in an experimental
realization by repeating appropriate measurements in different nmanifolds. In principle, this allows to
extrapolate the asymptotic value of the gap, thereby improving the prediction of the Rydberg quantum
simulator.

In a quantum simulation experiment based on the Rydberg platform discussed in this work, the gap can
be accessed by the following quench protocol. First, we prepare the ground state of equation (23) with
cosφ̂i → cos(φ̂i +α), which can be obtained in the spin model by taking, for example, a MW field in
equation (6) with complex Rabi frequency Ωa→ Ωaeiα. For small α, this corresponds to a small uniform

displacement of the spin expectation value away from ⟨̂J(i)y ⟩= 0. Quenching to α= 0, the energy gap can be

extracted by measuring the oscillation frequency of ⟨̂J(i)y ⟩(t).
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The leading contribution of the induced dynamics within linear-response, i.e. for |α| ≪ π, is

⟨̂J(i)y ⟩ ∝ ⟨φ̂i ⟩+O
(
⟨φ̂3

i ⟩
)
, which therefore gives direct access to the coherent displacement of the phase

variable. The determination of the many-body gap can be accurately determined for a wide range of λ′/χ
values, as shown in figure 5(c). The initial state preparation can be performed using the scheme outlined in
section 3.6 for large λ′ followed by an adiabatic ramp to the final value of λ′/V′

nn and λ
′/χ, which is

protected by the many-body gap. The same scheme in section 3.6 also allows to measure the value of ⟨̂J(i)y ⟩
after the time evolution.

Several other types of correlation functions are also measurable via the scheme detailed in section 3.6. We
give another example in figure 5(d), where we compute the ground-state expectation value of the vertex

operator via ⟨̂J(i)+ ⟩ ∝ ⟨eiφ̂i⟩= ⟨cosφ̂i⟩ and compare it against the free theory prediction

⟨cosφ̂i⟩= exp
[
− χ

2N

∑
q

1
ωq

]
. The plot displays a systematic difference between the numerical ED result and

the free theory prediction. As shown in the inset for λ′ = 50χ, this is mainly originating from the finite spin
length (J= 10) used in the ED simulations. Note that the observables discussed so far can be measured by

only using global MW control. However, more general correlation functions as ⟨̂J(i)+ Ĵ( j)− ⟩, with i ̸= j, require
single site control, which can be achieved by using electric field spatial gradients for MW fields [130] or local
laser addressing, see section 3.4.2.

The main discussion of this section has focused on benchmarking low-energy SG properties in the
massive phase. However, the Rydberg simulator offers the unique opportunity to prepare more general
high-fidelity pure states and study their non-equilibrium quantum dynamics, e.g. after quenching the model
parameters. An intriguing property of the SG model is the presence of topological excitations, or solitons,
which are relevant to characterize the BKT transition. A possible application is the simulation of such
high-energy metastable states [131–133]. This will provide a testbed to study questions related to
false-vacuum decay [134], which plays a central role in cosmological models as well as in first-order phase
transitions [135].

4.3. Massive Schwinger model
4.3.1. Overview of the model and Rydberg implementation
We now come to our final quantum simulation application, namely QED in one spatial dimension, also
known as the massive Schwinger model. Here we make use of the fact that a non-integrable modification of
the SG model, the so-called massive SG model, described by the Hamiltonian

ĤmSG =

ˆ
dx

{
1

2
[π̂(x)]2 +

1

2
[∂xφ̂(x)]

2 +
M2

2
[φ̂(x)]2− ucos[βφ̂(x)+ θ]

}
, (25)

provides a dual low-energy effective description of the massive Schwinger model [119, 121, 136],
described by

ĤQED =

ˆ
dx

{
1

2

[
Ê(x)+

eθ

π

]2
+ ψ̂†(x)γ0

[
−iγ1D̂x +m

]
ψ̂(x)

}
. (26)

Here, γ0(1) are the gamma matrices in two space-time dimensions, we abbreviated D̂x = ∂x− ieÂ(x),

the fermionic spinors obey
{
ψ̂ j(x), ψ̂

†
j′(x

′)
}
=δ j j′δ(x− x′) and the gauge fields fulfill[

Â(x), Ê(x′)
]
= iδ(x− x′). The duality requires to fix the massM, the coupling u and the parameter β as

β = 2
√
π, M2 =

e2

π
, u=

exp(γ)

2π
Λm, (27)

where e denotes the electric charge,m is the free fermion mass, and γ≈ 0.577 is the Euler–Mascheroni
constant. The above duality is valid in the continuum limit for a UV cutoff (imposed on the
Hamiltonian (25)) Λ≫ e,m. In this limit, one obtains a QFT described by two dimensionless parameters,
the coupling 0⩽ e/m⩽∞ and the topological angle θ ∈ [−π,π].

The Schwinger model is a well-studied toy model that shares several qualitative properties with more
complicated gauge theories such as quantum chromodynamics, for example confinement. Let us briefly
discuss some key features of the model [119], starting with the case of θ= 0. For e/m= 0, the gauge fields
trivially decouple and we obtain a theory of non-interacting massive fermions. For finite e/m> 0, the gauge
fields mediate a density–density interaction∝ ρ̂(x)ρ̂(x′) among the charge densities ρ̂= eψ̂†ψ̂ with a
Coulomb potential growing with distance as∝ |x− x′|. Fermions of opposite charge thus interact attractively
and are confined into bosonic bound states. In the dual theory these are directly described by the field φ̂,
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which can be identified with the electric field Ê/e. In the limit e/m=∞, namely u/M2 = 0, these bosons
propagate freely with a mass given byM.

A finite value of θ corresponds to a background electric field, which is identical to the field created by two
static background charges±eθ/π via the Gauss law constraint ∂xÊ= ρ̂. The physics is periodic in θ with
period 2π (which is manifest in ĤmSG) because any background chargeQ=±ne with integer n is screened by
the production of particle pairs induced by the corresponding background electric field, ⟨Ê⟩= Q. For the
special case of θ =±π (without additional external charges), the ground state of the model undergoes a
second-order quantum phase transition at (m/e)c ≈ 0.3335(2) [137], with order parameter ⟨Ê⟩ (or ⟨φ̂⟩),
which falls in the Ising universality class and corresponds to the spontaneous breaking of the Ê→−Ê (or
φ̂→−φ̂) Z2 symmetry. For fixedm/e> (m/e)c, the system undergoes a first-order phase transition at
θ =±π, see figure 6(a) for a sketch of the phase diagram. Further details can be found in [119, 136].

We obtain a lattice version of equation (25) by repeating a similar discretization as described in the
previous section for the SG model. This requires to include the MW field and the ponderomotive couplings
simultaneously. In particular, starting from the many-body Hamiltonian in equation (16), in the large J limit
the continuous variable description reads

Ĥ(lat)
mSG =

∑
i

χπ̂2i −λ ′
κcos(κφ̂i + θ)−Ω ′cos(φ̂i)−

∑
j>i

V ′
i j

2
cos

(
φ̂ j− φ̂i

) , (28)

where we use the identification V′
i j = Vi jJ(J+ 1), Ω′ =−Ωa[2

√
J(J+ 1)] and λ′κ =−2λκ[J(J+ 1)]κ/2, and

neglect the Ising interactions. Our target model is again approached in the continuum limit with the
identifications

V ′
nn

χ
=

κ4

(2π)2
,

λ ′
κ

χ
=
κ2ℓ2exp(γ)Λm

(2π)2
,

Ω ′

χ
=
κ4e2ℓ2

(2π)3
, (29)

and keeping only nearest-neighbor terms V′
nn ≡ V′

i,i+1. As discussed in appendix I, the massive SG model in
equation (25) is recovered under the conditions

χ, λ ′
κ≪ Ω ′≪ V ′

nn , λ ′≪
√
χV ′

nn . (30)

We emphasize that a suitable choice of parameters in principle allows us to probe the whole non-trivial
range of the theory with 0< e/m<∞. A specific realistic example of parameters is provided in appendix I,
where we employ a spin length of J= 30, yielding e/m≈ 4.5.

In recent years, there has been a growing interest in quantum simulating gauge theories. Experimentally,
real-time dynamics of the massive Schwinger model has been realized digitally on trapped-ion [138] and
super-conducting qubit [139] quantum computers. Analog simulations of directly related models have been
performed with Rydberg arrays [140], cold mixtures [141] and Bose–Hubbard systems [142]. Our proposal
differs from all of these existing realizations since we directly target the dual scalar field theory, which can be
naturally implemented with Rydberg atoms in theHa manifold.

4.3.2. Numerical illustration: capacitor discharge
In the remainder of this section, we illustrate how our platform allows us to probe paradigmatic gauge-theory
phenomena. Let us consider a system of size D with a given background electric field determined by θ ̸= 0.
This effectively forms a charged capacitor with plates separated by distance D. In general, the ground state of
this system for sufficiently small e/m exhibits a nonvanishing electric field ⟨Ê(x)⟩ ̸= 0, which is
inhomogeneous due to the finite system size. Turning off the bias field, θ→ 0, which corresponds to a
quantum quench as indicated in figure 6(a), induces a discharge of the capacitor as dynamical charges are
produced and accelerated across the capacitor [143], thus reducing the background electric field, as sketched
in figure 6(b) (see [144] for another motivation to study quenches of the θ angle). The dynamical processes
are reminiscent of Schwinger pair production and string breaking in strong fields, which leads to plasma
oscillations due to the coupling between the gauge field and the fermionic matter [145]. In the dual picture,
these processes can be probed by monitoring the damped oscillations of ⟨Ê⟩=−e⟨φ̂⟩/(2π) together with the
charge density ⟨ρ̂⟩=−e⟨∂xφ̂⟩/(2π). In general, studying these dynamical processes is computationally hard,
which motivates us to address this problem with an analog quantum simulator.

While an experimental realization of our proposed setup will be able to faithfully simulate the full
dynamics in the massive SG model, we necessarily restrict ourselves to a relatively small lattice system with
small spin lengths to illustrate the qualitative behavior in a numerical simulation. To be specific, we consider
a lattice with N = 7 atoms, spin length J= 4 and κ= 4. The result of a quench θ = π/2→ 0 is shown in
figures 6(c) and (d), where the chosen parameters are indicated in the caption.
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Figure 6. Schwinger model illustration. (a) Phase diagram of the massive Schwinger model as a function of the angle
θ ∈ [0,2π] and the coupling e/m ∈ [0,∞]. The grey line at θ = π indicates the first-order phase transition, which terminates
in a second-order critical end-point at (e/m)c. The insets illustrate the shape of the interaction potential

V(φ) = M2

2
φ2 − ucos[βφ + θ] at characteristic points indicated by the crosses and the red arrow marks the type of quench

considered in panels (c) and (d). (b) Sketch of capacitor plates with corresponding electric field that leads to the creation of
charged particle pairs which in turns reduces the background electric field. (c) Time evolution of the (lattice) electric field and

charge density as measured by the expectation values ⟨Êi ⟩ ∝ ⟨̂J(i)y ⟩ and ⟨ρ̂i ⟩ ∝ ⟨̂J(i)y − Ĵ
(i−1)
y ⟩, respectively. (d) Comparison of the

electric field dynamics for the different sites. The electric field ⟨Êi ⟩ for the central lattice site i= 0 exhibits a stronger damping
than the outer sites i = 1,2,3. In (c) and (d), the parameters of the simulation are given by V′

nn/χ = 44/(4π2),Ω′/V′
nn = 0.5,

and λ′/χ = 2→ 0.5 is quenched simulatenously with θ = π/2→ 0.

In figure 6(c) we show the real-time dynamics of ⟨̂J(i)y ⟩ and the finite difference ⟨̂J(i)y − Ĵ(i−1)
y ⟩, which

correspond to the lattice version of the electric field ⟨Êi⟩ and the charge density ⟨ρ̂i⟩, respectively, up to
appropriate proportionality constants. Even for the small system size and finite spin length considered here,
we observe the expected damped oscillations of the electric field and the corresponding charge dynamics.
These are driven by the interplay of pair creation and the subsequent interaction among the fermions with
the gauge fields. At later times, we find partial revivals that we attribute to finite-size effects, thus prohibiting
us from studying the long-time limit in our simulations. Nevertheless, as shown in figure 6(d), the plasma
oscillations show an inhomogeneous damping, consistent with the expectation that the electric field decays
in the middle of the capacitor [143], while a finite charge density accumulates at the system’s boundaries,
leading to an effective screening effect, reminiscent of string breaking. In contrast to our benchmark
simulations, an experimental realization can be scaled up to large spin lengths J≫ 1 and large lattice sizes,
namely N≫ 1 Rydberg atoms, with the perspective to reach the QFT limit. Such a realization will enable a
quantitative analysis of the intricate behavior towards later times, which can help to improve our general
understanding of the thermalization process in gauge theories [146, 147].

5. Quantum information prospects

The large and regularly structured Rydberg manifold together with the high level of external control and
manipulation available for such a system offer an opportunity to exploit this platform for qudit-based
quantum information processing. As an illustration we present an entangling gate Û E

i j between a pair of

atoms i and j, where the quantum information of atom i (j) is stored in itsHa (Hb defined in the beginning
of section 3.5) manifold as depicted in figure 7(a). A state transfer operation Û ST

i j moves the quantum
information from the b-degree of freedom of atom j to the b-degree of freedom of atom i, where a general
single particle operation Û SP

i acting on atom i subsequently entangles the two subspaces, before transferring
the b degree of freedom back to atom j.

We now discuss the state transfer gate Û ST
i j that is inspired by the one developed for coupled harmonic

oscillators, see for example [148]. The state transfer protocol can be realized near the circular level |0,0⟩ by
exploiting the dipole-dipole interactions, see section 3.4.3, as we show at the end of this section. To this end,
consider the initial two-atom state |ψ0⟩= |ni,0⟩i⊗ |0,n j⟩ j, where the atom i encodes information in theHa

manifold and the atom j encodes information in theHb manifold. In order to transfer the information from
atom j to atom i, we consider the Hamiltonian ĤST

i j =−hi jĉ
†
i bĉ j b +H.c., see equation (14), valid for ni,n j≪ J,
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Figure 7. Entanglement generation and state transfer protocol. (a) Gate sequence to perform an entangling gate
Û E

i j = Û ST
i j Û

SP
i Û ST

ji on two Rydberg atoms for states near the circular level. (b) Fidelity of the state transfer protocol Û ST
i j for

different initial states obtained with the spin Hamiltonian including flip-flop and Ising terms (dots) and without the Ising terms
(crosses) with J= 50.

that generates the unitary Û ST
i j = exp

(
− iĤST

i j T
)
. Taking T= π/(2hi j), the application of the unitary yields

|ψT⟩ ≡ Û ST
i j |ψ0⟩= (−i)n j |ni,n j⟩i⊗ |0,0⟩ j,

which achieves the desired state transfer, see appendix J for further details. Generalization to arbitrary initial
superposition states is straightforward.

Entanglement between the two atoms can then be generated by constructing a more general entangling
gate Û E

i j defined by the sequence

Û E
i j = Û ST

i j Û
SP
i Û ST

ji , (31)

see figure 7(a), where the single-particle unitary Û SP
i required for the entanglement generation between the

two atoms can be realized, for example, by the ponderomotive manipulation techniques discussed in
section 3.4.2.

The implementation of Û ST
i j relies on the dipole–dipole interaction Hamiltonian, which we

approximated with ĤST
i j . From inspecting the effective dipole–dipole interaction Hamiltonian, equation (14),

we see that undesired pair-creation terms can be eliminated by tuning |ωa−ωb| ≫ JVi j. Furthermore, we can
isolate the b hopping (or flip-flop) terms, by using electric and magnetic gradient fields that shift the a
hopping processes out of resonance by making ωa spatially dependent. Finally, density–density (or Ising)
interactions can be neglected in the limit ni,n j≪ J.

In figure 7(b), we quantify the accuracy of the state transfer protocol by plotting the gate fidelity
Fni,n j = ⟨ψT|exp(−iĤtT)|ψ0⟩. Here we take several possible initial states and we include only Ising and b
flip-flop terms in Ĥt. We find that a high fidelity Fni,n j ≳ 0.99 can be obtained for ni,n j ≲ 3 and J= 50. The
main source of error is originating from the finite spin length, which affects both the Ising and the flip-flop
terms via the Holstein–Primakoff transformation. The fidelity may be further improved by using optimal
control techniques [149] or by adapting the scheme demonstrated in [87, 88] to our system that could
suppress the effect of the Ising terms.

6. Conclusions

In this work, we have presented an hardware-efficient quantum simulation Rydberg toolbox for atoms in
tweezer arrays based on the high-dimensional manifold of states with principal quantum number n in the
regime of linear Stark and Zeeman effect. We have exploited the SO(4) symmetry of the hydrogen-like states
to characterize these energy levels in terms of two angular momenta of large length, which have been
conveniently used to represent the action of external fields (static electric and magnetic fields as well as
optical and MW fields).

Within this formalism, we have shown that the many-body problem is represented by generalized
‘large-spin’ Heisenberg models whose large local Hilbert space can be used to encode conjugate (continuous)
variables to simulate QFTs. In particular, we have illustrated how to realize the 1D SG model in the massless
and massive case. Besides the quantum simulation applications, these high-dimensional manifolds and their
control via external fields can also be exploited for qudit-based quantum information processing, which we
have exemplified with an entangling gate and a state-transfer protocol involving states in the vicinity of the
circular level. For such applications it is crucial to quantitatively verify the Rydberg simulator, which defines

18



Quantum Sci. Technol. 8 (2023) 015020 A Kruckenhauser et al

one of the major challenges in quantum simulation [150]. One possible approach to analyze the
experimentally realized processor is via Hamiltonian learning [151].

Our results offer the opportunity to simulate more general QFTs in higher dimensions, gauge degrees
of freedom with large occupation numbers or large-spin Heisenberg models in arbitrary lattice geometries.
As our analysis has focused on encoding a local Hilbert space on a single n-manifold, a possible extension is
to study models where multiple manifolds are considered or where the electron spin is also included.
Furthermore, other possible future directions include to employ these Rydberg states to encode synthetic
dimensions [15] or to achieve quantum-enhanced sensing [102, 152].
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Appendix A. Algebraic solution of the Hydrogen problem

Here, we summarize further details of the algebraic solution of the hydrogen atom outlined in the main text
section 2.1.

As already pointed out in the main text, the non-relativistic hydrogen Hamiltonian reads
ĤH = p̂2/2− e/4πϵ0 |̂r|, and a convenient approach to solve for the eigenvalues is to use constants of motion.
In particular, the orbital angular momentum L̂= r̂× p̂ and the Runge–Lenz (RL) vector

Â0 = r̂/|̂r| − 4πϵ0( p̂× L̂− L̂× p̂)/(2mre
2) (A1)

are commuting with ĤH. At the classical level, the RL vector is a conserved quantity of the Kepler problem, it
is aligned with the major axis of a closed orbit and its magnitude is proportional to its eccentricity. Therefore,
the RL vector is orthogonal to the orbital angular momentum vector, which is also inherited by the quantum
problem, namely L̂ · Â0 = 0, and will be used below.

As we are interested in bound state solutions (E< 0), it is useful to redefine the RL vector

Â=

√
−Ry/ĤHÂ0, (A2)

such that we obtain commutation relations of the form [L̂i, L̂ j] = iϵi jkL̂k, [Âi, Â j] = iϵi jkL̂k and

[L̂i, Â j] = iϵi jkÂk that form the SO(4) Lie algebra. It is convenient to change the basis of the algebra to
SU(2)×SU(2)

Ĵa =
1

2

(
L̂− Â

)
and Ĵb =

1

2

(
L̂+ Â

)
, (A3)

which doubly covers SO(4). The commutation relations of the two angular momenta Ĵa and Ĵb are
[̂Jσ,i, Ĵσ′, j] = iδσ,σ′ϵi jk Ĵσ,k, where σ,σ′ = a,b.

From the nontrivial relation ĤH(L̂2 + Â2 + 1) =−Ry, it is possible to rewrite the hydrogen atom
Hamiltonian as ĤH =−Ry/[2(̂J2a + Ĵ2b)+ 1]. Furthermore, the orthogonality between the orbital
angular momentum and the RL vector (L̂ · Â= 0) also fixes the length of the two angular momenta,
Ĵ2a = Ĵ

2
b = (L̂2 + Â2)/4, such that an obvious basis for the hydrogen atom eigenstates is |J,ma,mb⟩, where

Ĵ2a(b)|J,ma,mb⟩= J(J+ 1)|J,ma,mb⟩ and Ĵa(b),z|J,ma,mb⟩=ma(b)|J,ma,mb⟩, (A4)

with J= 0,1/2,1, . . . andma(b) ∈ {−J,−J+ 1, . . . , J}. The corresponding energies of the Hamiltonian take
the form En =−Ry/(2J+ 1)2 =−Ry/n2 from which we can read off the relation between the principal
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quantum number n and the angular momentum length J= (n− 1)/2. For typical Rydberg states where
n≫ 1, one therefore obtains two large angular momenta with J≫ 1 and an enormous n2 = (2J+ 1)2

degeneracy of the energy levels.
From the nontrivial commutator

i
[
ĤH/Ry, L̂× r̂+ |̂r|2 p̂

]
= 6Â0a0 + 4r̂ĤH/Ry, (A5)

it is straightforward to notice that the matrix elements of the left-hand side of this equation within a specific
J manifold vanish because they are all eigenstates of ĤH with the same energy En. As a result, we obtain that
the electric dipole operator µ̂=−er̂ projected on a specific nmanifold takes the simple form

µ̂=−3ea0 n

2
Â=

3ea0 n

2

(̂
Ja− Ĵb

)
, (A6)

see [71–73] for further details of the derivation.

Appendix B. Decoherence

In this appendix we discuss decoherence channels of the Rydberg levels discussed in the main text section 2.4.
In particular, we present spontaneous emission rates and discuss motional decoherence.

B.1. Spontaneous emission
In a cryogenic environment (i.e. for temperatures below a few K [61]) the lifetime of the Rydberg levels is
fundamentally limited by spontaneous emission to lower lying levels. The decay rate from an initial state |i⟩
with energy ωi to a final state | f⟩ with energy ωf is determined by the spontaneous emission rates
γi, f = ω3

i, f |⟨i|µ̂| f⟩|2/(3πϵ0c3) [153], where ωi, f = ωi−ω f is the transition frequency and ⟨i|µ̂| f⟩ the dipole
transition matrix element. The total lifetime τ i of |i⟩ is then given by τ−1

i =
∑

f<i γi, f , where the
∑

f<i is
limited to final states with ω f < ωi.

In figure 8(a) we present the numerically calculated lifetimes for the manifoldHa (introduced in the
main text section 3) for different principal quantum numbers n. The relatively large lifetime of the circular
level (ma = (n− 1)/2) is to a large extent preserved for states with lower orbital angular momentum
components. In figure 8(b) we monitor the scaling of the lifetime with n. The lifetime scaling of the circular
level is n5 [61] and it gradually changes to the numerically calculated n4 scaling for states with low orbital
angular momentum components. The n4 lifetime scaling of states with low angular momentum components
can be understood qualitatively as follows: the lifetime of low orbital angular momentum states typically
scales as n3 [96]; if these states are not affected by quantum defects, in the presence of an external electric
field they are distributed among O(n) Stark states [69] and, therefore, their lifetime is enhanced by a factor n.

B.2. Motional decoherence
Here we summarize decoherence mechanisms associated with motional effects. First we discuss magic (state
independent) trapping of the Rydberg states considered in this paper and then estimate motional excitation
rates due to dipole–dipole forces.

It has been proposed [62, 103] and experimentally demonstrated [154–156] that Rydberg states can be
spatially confined using ponderomotive trapping techniques. For hollow bottle beam tweezers the size of the
Rydberg wavefunctions is typically comparable to the radial extent of the tweezer trap and, hence, the
ponderomotive potential typically depends on the Rydberg state. Therefore, finding magical trapping
conditions that avoid internal state dephasing is challenging with ponderomotive traps.

An alternatively route available for alkaline earth and lanthanide atoms is to use the polarizability of the
optically active core to trap the atom with a red-detuned Gaussian tweezer beam [66–68]. In particular, when
the trapping light is almost resonant with a core transition, the core polarizability becomes much greater
than the ponderomotive potential (from the trapping light) experienced by the Rydberg electron. Therefore
the trapping potential becomes to a large extent independent of the Rydberg state [62, 68], which enables
magic trapping for many different Rydberg states.

Next, we estimate the creation of vibrational excitations due to dipole–dipole forces acting on the nucleus
inside a harmonic trap with frequency ωt . An interaction with effective strength Vi jJ(J+ 1), as considered in
section 4 of the main text, gives rise to an additional potential U(Ri) = 3RiVi jJ(J+ 1)/|Ri j| acting on the ith
atom, where Ri denotes the position of the ith nucleus measured from the center of the trap. If the strength of
U(Ri) at the characteristic trapping length scale lh =

√
1/(Maωt) (Ma is the mass of the atom) is small

compared to ωt , i.e. U(lt)≪ ωt, then at short times (ωtt/(2π)≪ 1) excitations are created as
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Figure 8. Lifetime: (a) lifetime of the levels |ψa
ma
⟩ ∈ Ha for different principal quantum numbers. Note, the lifetime for states with

J+ma < 7 is out reach for the numerical methods, as the radiative decay to low lying states requires knowledge of the ground-
and low lying excited state wavefunctions. (b) Scaling of the lifetime of the states |ψa

ma
⟩ with n. The solid lines are numerically

calculated lifetimes and the dashed lines are a fit of the monomial nα, where α= 5 forma = J,0 and α= 4 forma =−J+ 7.

n(t) = U(lt)2t2/8, where we assumed that the nucleus is initialized in the ground state of the oscillator, which
can be achieved by sideband cooling [50, 51].

As an example we consider the parameters used to realize the SG model from section 4 of the main text,
for which we have an interaction strength of Vi jJ(J+ 1) = 2π× 300kHz for n= 41 and an inter-atomic
separation of Ri j = 17µm. Assuming a typical trapping frequency of ωt = 2π× 40kHz and strontium atoms
(Ma ≈ 87u) gives rise to lt = 54nm for which we get U(lt)≈ 2π× 3kHz≪ ωt. For these parameter values,
n(10tc)≈ 0.05 excitations are created after ten interaction cycles of duration tc = 2π/[Vi jJ(J+ 1)].

Appendix C. Corrections to dipole–dipole interactions

In the following appendix we discuss corrections to the dipole–dipole interaction Hamiltonian Ĥi j
dd

introduced in the main text section 2.3.

C.1. Dipole–dipole interactions
The replacement of the dipole operator by the angular momentum operators Ĵa and Ĵa (see main text
equation (3)) underlies the assumption that the eigenstates of the hydrogen Hamiltonian with principal
quantum number n are not mixed with eigenstates from different n′ ̸= nmanifolds in the presence of a static
external electric field. For electric fields below the Ingris Teller limit (F< FIT) this mixing of different
n-manifolds is small and, therefore, the dipole operator and also the dipole–dipole interactions are well
described by the formalism introduced in the main text section 2.1. In figures 9(a) and (b) the dipole–dipole
interaction matrix elements including and excluding manifold mixing are compared to each other for

different principal quantum numbers. In particular, for the term Ĵ(i)a,+ Ĵ
( j)
a,− + Ĵ(i)a,− Ĵ

( j)
a,+, relevant for the

realization of the Sine-Gordon and massive Schwinger model, the relative mismatch due to manifold mixing
is 10−3 for n= 41.

C.2. Van derWaals interactions
Non-zero dipole transition matrix elements between different n-manifolds give rise to dipole–dipole
couplings from pair states with principal quantum number n to pair states with different principal quantum
numbers n′,n′′ ̸= n. Since the single particle energy mismatch between the pair states is typically considerably
larger than the interaction matrix elements, these couplings give rise to second order corrections, namely
Van der Waals (VdW) interactions. In figures 9(a) and (b) we display the strength of the VdW interaction
matrix elements as a function of interatomic separation Rij for different n, calculated with degenerate
perturbation theory as discussed in the appendix of [61] or in the main text of [62]. For Ri j ≳ 10µm and
n= 41, as considered for the analog simulation of QFTs (see main text section 4), VdW interactions are
considerably smaller than direct dipole–dipole interactions, and can therefore safely be neglected.

For the edge manifoldHa (see main text equation (10)), additional VdW terms, mediated by pair states
contained within the nmanifold under consideration, have to be taken into account. Since the single particle
energy imbalance is controlled by the static electric and magnetic fields these couplings can be rendered
negligible for field strengths and interatomic separations relevant for this manuscript, see figures 9(a)
and (b).
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Figure 9. Rydberg interactions: (a) and (b) dipole–dipole and VdW interaction matrix elements for the initial state |ψa
ma=0⟩⊗2

and any accessible final pair state withinHc ⊗Hc as a function of the interatomic separation Rij for different n. The two atoms
are arranged along the x-axis and the electric and magnetic field are oriented along the z-axis with strengths F= FIT/2 and
B= 100G, respectively. The solid lines (not red) correspond to the numerically calculated dipole transition matrix elements
including level admixing (see text). These transition matrix elements overlap with those of the angular momentum interaction
Hamiltonian from the main text equation (7) (dashed lines). The solid red lines correspond to VdWmatrix elements that are
mediated by intermediate states with principal quantum numbers n′,n′′ = n± 1. The dashed dotted lines represent VdW
interaction matrix elements from the initial state introduced above to any final pair state inHa ⊗Ha that are mediated by pair
states in {Hc ⊗Hc}\{Ha ⊗Ha}.

Appendix D. Ponderomotive coupling

In the following we discuss the ponderomotive manipulation techniques introduced in section 3.4 of the
main text in more detail. The discussion is structured as follows: first we introduce Laguerre-Gauss (LG)
laser beams and then we discuss the ponderomotive potential generated by interfering two LG beams.

D.1. Laguerre-Gauss laser beam
The vector potential of a linearly polarized LG laser beam with orbital angular momentum δm and mode
number p, propagating along the z-axis, is in the Lorenz gauge given by [157, 158]

Ap,δm(r, t) = êxAp,δm up,δm(r)e
iα e−iδmϕ e−i(kz−ωt)/2+ c.c., (D1)

where we used cylindrical coordinates (ρ=
√
x2 + y2 and tanϕ= y/x). Here ω is the light frequency,

k= 2π/λ is the magnitude of the corresponding wave vector, λ is the wavelength and α is a phase. Moreover,
Ap,δm denotes the field amplitude and up,δm(r) is a dimensionless field distribution function satisfying the
Helmholtz equation. In the paraxial limit up,δm(r) can be expressed in terms of associated Laguerre

polynomials L(|δm|)
p (x) as

up,δm(ρ,z) = Cp,δm
w0

w(z)

(√
2ρ

w(z)

)|δm|

L(|δm|)
p

(
2ρ2

w(z)2

)
exp

(
−ρ2

w(z)2

)
× exp

(
i

[
kρ2z

2(z2 + z2R)
− (2p+ |δm|+ 1)atan

z

zR

])
. (D2)

The beam waist is defined as w(z) = w0

√
1+ z2/z2R, where w0 denotes the waist in the focal plane and

zR = πw2
0/λ is the Rayleigh length. The normalization constant Cp,δm =

√
p!2/(p+ |δm|)! is chosen such

that
´
dA|u(ρ,z)|2 = w2

0π. Due to this normalization the time averaged electric beam power
P= cϵ0ω2|Ap,δm|2w2

0π/4 only depends on the field amplitude and not on the LG mode numbers.

D.2. Ponderomotive potential
The ponderomotive potential that a highly excited Rydberg electron experiences from a fast oscillating laser
field is given by [159] UPM(R+ r, t) = e2|A(R+ r, t)|2/(2me), where e andme are the electron charge and
mass, respectively. The vector potential of the laser field is evaluated at the position of the electron in the
laboratory frame, i.e. R is the position of the core and r is the position of the electron relative to the core. In
the tight trapping limit, when the size of the vibrational core wave-packet is much smaller than the LG waist
w0, R can be replaced by its mean value. Furthermore, if the laser beam is focused onto the center of the trap,
i.e. ⟨R⟩= 0, which can be achieved by re-using the trapping light optics, the ponderomotive potential
becomes approximately independent of the core position UPM(R+ r, t)≈ UPM(r, t).

As already mentioned in the main text, the core idea to couple states with multiple orbital angular
momentum κ⩾ 1 difference is to use the ponderomotive potential of two co-propagating LG laser beams
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Figure 10. Ponderomotive Coupling: (a) illustrative comparison of the wavefunctions ψt
ma,mb

(ρ,ϕ, z) = ⟨ρ,ϕ, z|ψt
ma,mb

⟩ [69] and
the spatial extent of the ponderomotive potential for δm1(2) = 2, η= 0, λ= 1300nm and w0 = λ/2. (b) Numerical verification

of the relation equation (D7) for n= 41 and different values of κa. The numerically calculated matrix elementsWκa,κb=0
ma,mb=J are

displayed as crosses and the angular momentum matrix elements CκaM
κa,κb=0
ma,mb=J as circles, where Cκa is a proportionality factor

given by Cκa =Wκa,0
0,J /M

κa,0
0,J . The two sets of symbols lie perfectly on top of each other. (c) Scaling of the proportionality factor.

The crosses displayWκa,0
0,J /M

κa,0
0,J for different values of κa as a function of n. The scaling is given by nκa , up to numerical errors

due to a finite integration grid. (d) Numerical calculation of the transition matrix element Uκa,κb=0
ma=0,mb=J (crosses) for different

principal quantum numbers. The solid lines are a fit of the monomial n2κa to Uκa,0
0,J .

with different oscillation frequencies and non-zero orbital angular momentum [62, 103–105]. Using
equation (D1), the vector potential of the two co-propagating LG beams is given by

ALG(r, t) = êxALG

[
uδm1(ρ,z)e

−iδm1ϕe−i(ω1t−k1z−α1) + uδm2(ρ,z)e
iδm2ϕe−i(ω2t−k2z−α2) + c.c.

]
/2, (D3)

where the subscripts 1 and 2 are labels for the first and second LG beam. The field distribution functions
uδm1(2)

are in the most general case a superposition of multiple LG modes up,δm1(2)
from equation (D2), with

fixed δm1(2). For simplicity, the field amplitudes are assumed to be the same for both beams.
The corresponding ponderomotive potential, after dropping fast oscillating terms, becomes

UPM(r, t)≈
[
Uc(r)+ (Uκ(r)e

−iκϕe−iδωt + c.c.)
]
, (D4)

where δω = ω1−ω2 is the oscillation frequency of the interference term and κ= δm1 + δm2 is the
transferred orbital AM. The spatial shapes of the constant and oscillatory terms are given by

Uc(r) = U0

[
|uδm1(ρ,z)|2 + |uδm2(ρ,z)|2

]
/2

Uκ(r) = U0e
i(α1−α2) uδm1(ρ,z)u

∗
δm2

(ρ,z)/4, (D5)

with U0 = e2Ptot/(16π3meϵ0c3)(λ2/w2
0), where Ptot is the combined power of both beams. The contributions

of the ponderomotive potential are twofold: the time independent term gives rise to a level dependent energy
shift and the time dependent term can couple states that differ by κ orbital angular momenta.

Let us start by analyzing the time dependent contribution. In particular, we are interested in the
transition matrix elements of the form

Uκa,κb
ma,mb

= ⟨ψt
ma+κa,mb+κb

|Uκ(ρ,z)e
−iκϕ|ψt

ma,mb
⟩ , (D6)

that satisfy orbital angular momentum conservation κa +κb = κ. Note, κa(b) can take on negative and
positive values. For the determination of the transition matrix element the functional behavior of Uκ(ρ,z) is
of crucial importance. In the limit where the beam waist w0 is greater than the typical extension of the
Rydberg wave-function, see figure 10(a), we can expand the ponderomotive potential in the focal plane z= 0
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around the phase vortex at ρ= 0, and obtain Uκ(ρ,z= 0)≈ Cκ+2η ρ
|κ|+2η , where the leading order |κ|+ 2η,

with η ⩾ 0, is determined by the LG beam modes.
We now claim that, within the manifoldHt, the matrix elements of the ponderomotive potential near the

phase vortex cκ+2η ρ
|κ|+2ηe−iκϕ are exactly proportional to those of (̂Ja,+)κa (̂Jb,+)κb , with

|κa|+ |κb|= κ+ 2η and where we use the convention (Ja(b),+)
−κa(b) = (Ja(b),−)

κa(b) . More specifically,

Wκa,κb
ma,mb

∝ n|κ|+2ηMκa,κb
ma,mb

, (D7)

with

Wκa,κb
ma,mb

= ⟨ψt
ma+κa,mb+κb

|(ρ/a0)|κ|+2ηe−iκϕ|ψt
ma,mb
⟩,

and

Mκa,κb
ma,mb

= ⟨ψt
ma+κa,mb+κb

|(̂Ja,+)κa (̂Jb,+)
κb |ψt

ma,mb
⟩.

As it is quite tedious to find an exact algebraic relation, we instead confirmed the relation (D7) numerically
and found perfect agreement. In figure 10(b) we show such a numerical comparison for the special case of
κb = 0. Figure 10(c) showcases the scaling with n. Note, the relation (D7) was inspired by the findings of
[72], who derived similar results for the matrix elements of z2.

To analyze the ponderomotive transition matrix elements Uκa,κb
ma,mb

from equation (D6) it is important
to take into account the full shape of Uκ(ρ,z). As the functional behavior of Uκ(ρ,z) is determined by
the LG beam modes, it is sufficient to analyze uδm1(ρ,0)u

∗
δm2

(ρ,0). A series expansion of the field
distribution functions at z= 0 and around ρ= 0 yields in the most general case uδm1(ρ,0)u

∗
δm2

(ρ,0) =

cκ+2ηρ
|κ|+2η + c(2)κ+2ηρ

|κ|+2η+2 + . . . . As only the leading term cκ+2ηρ
|κ|+2η generates the desired

nonlinearity, higher orders have to be suppressed, which becomes essential for larger principal quantum
numbers, as the increased size of the Rydberg-orbit starts to explore the full beam shape, see figure 10(a).

To suppress the higher orders we consider further beam shaping beyond a single LG beam mode, which
can be achieved for instance by a spatial light modulator [160]. Alternatively one could use super-positions

of N different LG modes, i.e. uδm1(2)
=
∑N−1

p=0 a
1(2)
p up,δm1(2)

, with
∑

(a1(2)p )2 = 1, which allows to eliminate

2N− 1 higher orders uδm1(ρ,0)u
∗
δm2

(ρ,0) = cκ+2ηρ
|κ|+2η(1+O(ρ2N)). Hence, the scheme presented here

becomes applicable for larger n without increasing the beam waist w0. However, with increasing N the
maximum of the ponderomotive potential moves further away from the vortex and, therefore, Uκa,κb

ma,mb
for

fixed beam power is reduced.
For the transition matrix elements presented in figure 2(b) in the main text, where we used the simplified

notation Uκa,ma,mb ≡ Uκa,κb=0
ma,mb

, the LG beams are chosen as uδm1(ρ,z) = uδm2(ρ,z), with δm1 = δm2 = κa/2
and η= 0. The number of modes used for κa = 2 and 4 is N = 2 and for κa = 6 it is N = 3.

For the same LG laser beams the transition matrix elements Uκa,κb=0
ma=0,mb=J as a function of the n are

presented in figure 10(d). For large principal quantum numbers the transition matrix elements deviate from
the predicted n2κa scaling as the large Rydberg wavefunction probes the whole ponderomotive potential.
Note, the scaling n2κa is obtained from equation (D7) and the fact that the angular momentum transition
matrix element Uκa,κb=0

ma=0,mb=J scales for n→∞ as nκa . We furthermore point out that by tuning the relative
laser phase α1−α2 the coupling matrix elements Uκa,κb

ma=0,mb
can be complex. Moreover, a pair of

co-propagating LG beams generates a single nonlinear term and in order to drive the engineered transitions
resonantly the laser frequencies have to satisfy δω =−κaωa +κbωb.

Let us briefly return to the first term of equation (D5). In contrast to the time dependent term, the
constant part of the ponderomotive potential generates state dependent energy shifts. These shifts can in
principle be used to engineer nonlinearities like higher powers of Ja,z and Jb,z. However, the strength of the
shifts turns out to be relatively weak for reasonable laser powers of hundredths of mW per site, when
compared to the nonlinearities generated by off-resonant MW coupling.

Finally, we remark on decoherence effects induced by the LG beams due to Thomson scattering of the
nearly free Rydberg electron [62]. The scattering rate is given by ΓT = IσT/ω, where I= 2P/(πω2

0) is the
mean beam intensity and σT = (8π/3)e4/(4πϵ0mec2)2 is the Thomson scattering cross-section [161]. For
λ= 1300nm and w0 = λ/2 we obtain ΓT/P= 2π× 0.7Hz/mW, which is typically much less than the
achieved coupling rates, see figure 2(b). Furthermore, we note that for the range of parameters considered
here the Rydberg electron does not probe the high intensity regions (see figure 10(a)) and, therefore, the
calculated scattering rates are overestimated.
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Figure 11. Off-resonant MW coupling: (a) the top panel monitors χ for n= 41 and different values of the MW detuning∆0 and
Rabi frequencyΩ0. The electric field is F= FIT/2 and the magnetic field is chosen such that ωa =−ωb/3. The middle and lower
panel present the strength of third order corrections ξ and the state purity |cma |2 forma = 0, respectively. The dots indicate the

points where ξ= 0. (b) Dipole transition matrix elements of the dressed states |ψ̃a
ma
⟩, calculated for the MW parameters where

ξ= 0.

Appendix E. Offresonant MW coupling

This appendix provides further details on the engineered spin-squeezing term ĤSQ = χ J2z,a introduced in the
main text equation (15). To engineer this nonlinearity we consider z-polarized MW light that couples the
manifoldHa with principal quantum number n to the levels of the manifold n′ = n+ δn, with δn> 0. If the
MW field is blue detuned with respect to the eigen-energies of the n′ manifold, only couplings to the
manifoldHa of n′, i.e. the states |ψ ′a

ma
⟩, are important, see main text figure 2(c). The underlying

Hamiltonian is that of multiple independent two-level systems, one for eachma, and is in a frame rotating at
the MW frequency given by

ĤMW
SQ =−

∑
ma

∆ma |ψ ′a
ma
⟩⟨ψ ′a

ma
|+

∑
ma

Ωma

2
|ψ ′a

ma
⟩⟨ψa

ma
|+H.c., (E1)

withm′
a =ma− δn/2. Here,∆ma =∆0−maδωa is the level dependent detuning given in terms of the bare

MW detuning∆0 and the differential Stark shift δωa = ωa(n′)−ωa(n) = 3ea0 δnF/2, see figure (2)c.
Moreover, Ωma = 2FMW⟨ψ ′a

ma
|µ̂z|ψa

ma
⟩ is the Rabi frequency, where FMW is the electric field amplitude of the

MW.
As already mentioned in the main text, in the far off-resonant limit (∆ma ≫ Ωma), the dressed eigenstates

|ψ̃a
ma
⟩, which are adiabatically connected to |ψa

ma
⟩ for Ωma → 0, experience a state dependent AC-Stark shift

Ω2
ma
/
(
4∆ma

)
. Furthermore, in the limit∆0≫maδωa and due to the smooth dependence of Ωma onma the

AC-Stark shift is expandable in powers ofma,

Ω2
ma
/
(
4∆ma

)
= χm2

a + ξm3
a +O(m4

a), (E2)

where prefactors χ and ξ are in the following determined numerically. Note, the constant and linear part are
absorbed in∆MW and δωa, respectively.

The strength χ of the nonlinearity is limited by the electric field ionization threshold, for which a lower
bound is the Ingris Teller limit (|FMW|< FIT). This limitation originates from the fact that the MW also
couples to the permanent dipole moments ⟨ψa

ma
|µ̂z|ψa

ma
⟩ and thus induces a modulation of ωS, if |FMW|

exceeds FIT the modulation leads to MW assisted ionization [162]. For |FMW|< FIT, the modulation averages
out because the MW frequency is much larger than the modulation amplitude 2FMW⟨ψ a

ma
|µ̂z|ψa

ma
⟩ for the

range of parameters considered in this paper.
Within this limitation achievable prefactors χ can be on the order of hundreds of 2π×kHz, see

figure 11(a) upper panel. We point out that for every value of χ there exists a point in∆0, Ω0 parameter
space where the cubic contribution ξ of equation (E2) vanishes, see figure 11(a) middle panel. Note, second
order Stark corrections also give rise to nonlinearities (see figure 11(a) upper panel Ω0 = 0), but these
rapidly decrease with increasing n as 1/n−6 [72, 163]. We also note that a misalignment of the MW
polarization induces Raman transitions between neighboring levels, which are however far off-resonant in
the limit |ωa| ≫ Ωma . As a result, χ is largely insensitive to polarization errors (below 10% of FMW).

Due to the MW coupling the dressed eigen-states |ψ̃a
ma
⟩ acquire character of the n′ manifold. The

corresponding purity is quantified by |cma |2 = |⟨ψa
ma
|ψ̃a

ma
⟩|2 and decreases asma→−J, since the effective

MW detuning is reduced, see lower panel of figure 11(d). Furthermore, in the lowest panel of figure 11(a) we
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monitor |cma |2 forma = 0 and different values of the detuning and driving strength. The admixture of
Rydberg levels from n′ to |ψ̃a

ma
⟩modifies the dipole transition matrix elements, which thus deviate from the

angular momentum formalism introduced in equation (3). As an example of this deviation we present

⟨ψ̃
a

ma+1|µ̂+|ψ̃a
ma
⟩, where µ̂+ = µ̂x + iµ̂y for different MW parameters in figure 11(b). The modifications of

the dipole matrix elements are expected to be in practice negligible for the quantum simulation application
presented in the main text section 4.

Appendix F. Exact results for the SGmodel

For completeness, we provide exact expressions for the spectrum of the SG model in this appendix, see e.g.
[126] and references therein. In the massive phase (β2 < 8π), there exist solitons with mass

M=
2Γ

(
ξ
2

)
√
πΓ

(
1+ξ
2

)
M2

0(1+ ξ)Γ
(

1
1+ξ

)
16ξΓ

(
ξ

1+ξ

)


1+ξ
2

, (F1)

where we abbreviated ξ = β2/(8π −β2). For β2 < 4π, the theory has additional bound states, called
breathers. The number of different breathers depends the value of ξ and they can be labeled by the integers
n= 1,2, . . . ,⌊1/ξ ⌋. The mass of the nth breather is given by

mn = 2Msin

(
nπξ

2

)
. (F2)

Appendix G. Implementing the sine-Gordonmodel with large spins

In the following we outline how to simulate the SG model (22) with the Rydberg simulator. As pointed out in
the main text, we start with a one-dimensional array of N equally spaced Rydberg atoms. Isolating the subset
of statesHa (see section 3), the system is described by the many-body Hamiltonian in equation (16). Within
the large spin limit (J→∞), we can employ the identification shown in equation (20) for every lattice site i.
In order to obtain the desired limit J→∞, we rescale the interaction V′

i j = Vi jJ(J+ 1), while keeping

∆a = 0, and λ′ =−2λκ[J(J+ 1)]κ/2. For the special case κ= 1, this can be achieved by using a MW field as
discussed before. The ponderomotive technique instead allows to achieve couplings with κ> 1, which gives
access to a larger parameter regime of the SG model, as we discuss below. The resulting continuous variable
lattice model reads

Ĥ(lat)
SG =

∑
i

χπ̂2i −λ ′cos(κφ̂i)−
∑
j>i

V ′
i j

2
cos

(
φ̂ j− φ̂i

) , (G1)

where the Ising interactions are neglected in the limit J→∞. The continuum SG model arises by keeping
only the nearest-neighbor terms V′

i,i+1 ≡ V′
nn. To see this, we rescale the fields as κφ̂→ βφ̂, π̂/κ→ (ℓ/β)π̂

and the Hamiltonian as Ĥ→ (2χκ2ℓ/β2)Ĥ. Here, we introduced a short-distance scale ℓ that sets a

UV-cutoff Λ∝ 1/ℓ [136]. As a consequence, we find that the lattice regularization Ĥ(lat)
SG approximates ĤSG

upon identifying the atomic couplings with SG parameters according to

V ′
nn

χ
=

4κ4

β4
,

λ ′

χ
=

2κ2(ℓM0)
2

β4
. (G2)

To summarize, our implementation of the SG model is formally valid in the continuum limit
(ℓM0 = κ

√
2λ′/V′

nn→ 0), together with sufficiently large spin length (J→∞) and a large number of
Rydberg atoms (N→∞). This requires tuning the atomic parameters according to equations (G2), which in
principle allows to probe all regimes of the theory with 0< β2 = 2κ2

√
χ/V′

nn <∞.
In practice, the range of parameters is mainly limited by the maximum value of χ ≲ 2π× 200 kHz. For

example, κ= 1, J= 20 and choosing χ = 2π× 200 kHz, V′
nn = 2π× 100 kHz gives β2 ≈ π. Moreover, for

λ′ = 2π× 5 kHz, we then find ℓM0 ≈ 0.3. From these estimates, we thus expect that several tens of atoms are
sufficient to simulate the SG QFT with reasonable accuracy up to β2 ≲ π, that is deep in the massive phase.
Larger values of β2 can be achieved by using the ponderomotive coupling with κ> 1. For example, taking
κ= 4, χ = 2π× 200 kHz, V ′

nn = 2π× 300 kHz and λ′ = 2π× 3 kHz gives β2 ≳ 8π and ℓM0 ≈ 0.6. With
these parameters one can then investigate the critical properties of the model across the quantum phase
transition.
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Appendix H. Free theory approximation for the SGmodel

Let us consider the many-body Hamiltonian for the lattice SG theory:

Ĥ(lat)
SG =

∑
i

χπ̂2i −λ ′cos(φ̂i)−
V ′
dd

2

∞∑
j=1

1

| j|3
cos

(
φ̂i+ j− φ̂ j

) . (H1)

In the small-fluctuations regime, which applies deep in the gapped phase of the model, we expand to
quadratic order in φ̂i and obtain the momentum space Hamiltonian

Ĥ(lat)
SG =

∑
q

(
χπ̂qπ̂−q +

1

4χ
ω2
qφ̂qφ̂−q

)
, (H2)

where we defined

ω2
q = 2χ

[
λ ′ +V ′

dd(ϵ0− ϵq)
]
, (H3)

and

ϵq =
1

2

∑
j ̸=0

eiq j

| j|3
. (H4)

After performing the transformation [128]

π̂q =
i√
2ℓq

(
b̂†−q− b̂q

)
, φ̂q =

ℓq√
2

(
b̂†−q + b̂q

)
, (H5)

with ℓq ≡
√
2χ/ωq and the bosonic operators satisfying [b̂q, b̂

†
q′ ] = δq,q′ and b̂q|GS⟩= 0, we obtain the

diagonal Hamiltonian

Ĥ(lat)
SG =

∑
q

ωq

(
b̂†q b̂q +

1

2

)
, (H6)

from which we deduce the excitation spectrum ωq and the gap ω0 =
√
2χλ′.

Having diagonalized the model within the quadratic approximation, we can now compute correlation
functions of interest. For the sine-Gordon model a relevant correlator is, for example, represented by the
expectation value of the vertex operator ⟨eiφ̂i⟩. By using equation (H5) and the Baker–Campbell–Hausdorff
formula, we obtain

⟨cosφ̂i⟩= exp

− χ

2N

∑
q

1

ωq

 −→
λ ′≫Vdd

e−
1
2

√
χ

2λ ′ . (H7)

Calculating the long-range effects of dipole–dipole interactions on the dispersion relation requires to
evaluate the sum in equation (H4), which is however slowly converging. An efficient method to compute εq
exploits Ewald summation trick (see [129] and references therein for a description of the method). One
therefore arrives at the expression

ϵq = t0
∑
G

E2
(
(q+G)2/4t0

)
+

t3/20√
π

∑
j̸=0

E−1/2(t0 j
2)eiq j− 2t3/20

3
√
π
, (H8)

where G= 2π j′, with j′ ∈ Z, are reciprocal lattice vectors, t0 is a parameter that plays the role of a cut-off
that we set to t0 = 1 in the calculations, and we have also introduced the functions

Es(z) =

ˆ ∞

1
dyy−se−zy . (H9)

In the expression (H8), only a few terms of each sum are needed as they are exponentially suppressed for
| j|, | j′| ≫ 1. The integrals are then efficiently computed by standard numerical methods. The final result for
ωq is shown in figure 5(b) of the main text.
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The small momenta behavior of the dispersion can however be analytically obtained by considering the
G= 0 term and by using E2(z) = e−z− zΓ(0,z), where Γ(s,z) =

´∞
z dt ts−1e−t is the incomplete Gamma

function. The series expansion Γ(0,z) =−γ− logz+ z+O(z2), with γ the Euler–Mascheroni constant,
therefore leads to

ϵq ≈ ϵ0 + c2q
2 + c ′2 q

2logq+O(q4) , (H10)

where c2 =
1
4 (γ− 1)− 1√

π
E−1/2(1)− log2/2≈−0.739 and c′2 = 1/2. We have therefore found that the

dispersion relation for q≪ 1 has a non-analytical correction scaling like∼q2logq. This is different from the
2D case [129], where a cusp-like non-analytical term∼|q| instead provides the leading contribution and not
the sub-leading one.

Appendix I. Implementing the massive SGmodel with large spins

In order to simulate the massive SG model in equation (25), we repeat a similar discretization as described
for the SG model. However, this requires to include the MW field and the ponderomotive couplings
simultaneously. In particular, starting from the many-body Hamiltonian in equation (16), in the limit J→∞
we find

Ĥ(lat)
mSG =

∑
i

[
χπ̂2i −λ ′

κcos(κφ̂i + θ)−Ω ′cos(φ̂i)−
∑
j>i

V ′
i j

2
cos

(
φ̂ j− φ̂i

)]
, (I1)

where we use the identification V′
i j = Vi jJ(J+ 1), Ω′ =−Ωa[2

√
J(J+ 1)] and λ′κ =−2λκ[J(J+ 1)]κ/2, and

neglect the Ising interactions. Our target model is again approached in the continuum limit with the
identifications

V ′
nn

χ
=

κ4

(2π)2
,

λ ′
κ

χ
=
κ2ℓ2exp(γ)Λm

(2π)2
,

Ω ′

χ
=
κ4e2ℓ2

(2π)3
, (I2)

and keeping only nearest-neighbor terms V′
nn ≡ V′

i,i+1.
Let us briefly discuss the meaning of these identifications. To recover the model in equation (25), we need

to approximate the interaction potential as−Ω′cos(φ̂i)−λ′κcos(κφ̂i)→ (Ω′/2)φ̂2
i −λ′κcos(κφ̂i), up to a

constant. This requires Ω′≫ λ′κ, χ and κ≫ 1, which fixes the ratio V′
nn/χ ≫ 1. As Λ∝ 1/ℓ and Λ≫ e, we

further obtain the requirement V′
nn≫ Ω′. Together with the requirement Λ≫m, these conditions can be

satisfied simultaneously by tuning the couplings in the range

χ, λ ′
κ≪ Ω ′≪ V ′

nn , λ ′≪
√
χV ′

nn . (I3)

When these conditions are fulfilled, the lattice model Ĥ(lat)
mSG faithfully reproduces ĤmSG (equation (25)),

and thus the dual gauge theory with the coupling strength

e

m
=

exp(γ)π√
2π

√
Ω ′χ

λ ′
κ

, (I4)

where we used Λℓ= π [136]. We emphasize that a suitable choice of parameters thus in principle allows us to
probe the whole non-trivial range of the theory with 0< e/m<∞. For example, consider κ= 5, J= 30,
χ = 2π× 50 kHz, which gives V′

nn ≈ 2π× 790 kHz. By further taking Ω′ = 2π× 200 kHz and
λ′ = 2π× 50 kHz, we obtain e/m≈ 4.5, while e/Λ≈ 0.4 andm/Λ≈ 0.09.

Appendix J. State transfer protocol

In the following appendix we briefly summarize the underlying equations for the state transfer discussed in
the main text section 5.

For the sake of simplicity we consider here in the appendix two harmonic oscillator modes a and b and
we explicitly show how the quantum state from the oscillator b is transferred to a. The Hamiltonian,
generating the anticipated transfer dynamic is given by Ĥ=−V(â†b̂+ b̂†â). The Heisenberg equations for

the creation operators read ˙̂a†h = i[Ĥ, â†h] =−iVb̂
†
h and

˙̂
b†h = i[Ĥ, b̂†h] =−iVâ

†
h, where the subscript h denotes

the Heisenberg picture, and are solved by â†h(t) = cos(Vt)â†− i sin(Vt)b̂† and b̂†h(t) = cos(Vt)b̂†−
i sin(Vt)â†. Interestingly, the two oscillator modes swap at time T= π/(2V), i.e. â†h(T) =−ib̂† and
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b̂†h(T) =−iâ†, which will be important for state transfer as follows. To show the transfer we consider the
initial state |ψ0⟩=

∑
n dn|0,n⟩ time evolved under the unitary operation Û = exp(−iĤT):

Û |ψ0⟩=
∑
n

dnÛ (b̂†)nÛ †Û |0,0⟩/
√
n!

=
∑
n

dnb̂
†
h(T)|0,0⟩/

√
n!

=
∑
n

dn(−i)n(â†)n|0,0⟩/
√
n! =

∑
n

(−i)ndn|n,0⟩, (J1)

where the quantum state of the oscillator b is completely transferred to a. The generalization of this protocol
to the Rydberg manifold is straightforward.
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