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摘要：近年来，凝聚态物理学中的轴子绝缘体研究引起了广泛关注，因为它具有类似于高能物理

中假想基本粒子 轴子的电磁响应，从而导致体系中出现半量子化的表面霍尔电导或拓扑磁电

效应性质。最近，在三维磁性拓扑绝缘体异质结和本征磁性拓扑绝缘体 MnBi2Te4 的输运实验中

发现了轴子绝缘体存在的迹象，然而，精确测量轴子绝缘体的半量子化电磁响应仍具有挑战性。在

这篇综述中，我们回顾了磁性拓扑绝缘材料中轴子绝缘体研究的理论和实验进展。讨论了由于体

边对应关系导致的轴子绝缘体的半量子化棱电流激发，以及一种基于半磁性拓扑绝缘体的半量子

化霍尔电导的输运理论。最后，我们探讨了轴子绝缘体中的无序诱导相变，包括表面存在的二维

类量子霍尔电导平台相变的普适类，并提出了利用这种相变的普适特征来探测轴子绝缘体的方案。
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I. 引言

拓扑物态的研究是当今凝聚态物理学的前沿问题，

其不仅开辟了基础物理学的新领域，还在实现低功耗

电子器件方面展现出潜在的应用价值。1980 年，K.
von Klitzing在实验中发现，二维电子系统在低温和强
磁场条件下的霍尔电阻出现了量子化平台，且纵向电阻

在这些平台处降为零，这一现象被称为整数量子霍尔效

应 (integer quantum Hall effect, IQHE) [1]。IQHE 起源
于电子在磁场下做圆形回旋运动，形成离散的朗道能级

(Landau levels)，导致体态绝缘并在系统边界产生手征
边界态。不久后，D. J. Thouless 等人提出了 Thouless-
Kohmoto-Nightingale-Nijs (TKNN) 公式，明确了朗道
能级的陈数与霍尔电导之间的关系，以及其与系统中手

征边界态数目的关联 [2]。量子反常霍尔效应 (quantum
anomalous Hall effect, QAHE) [3] 是一种破坏体系时间

反演对称性 (time-reversal symmetry, TRS) 但无需外
加磁场的量子霍尔效应。QAHE 的概念被推广到保留
时间反演对称性的情形，发展出了二维量子自旋霍尔效

应 (quantum spin Hall effect, QSHE) [4]。随后，QSHE
的概念进一步拓展至三维拓扑绝缘体 [5–7]。

轴子绝缘体 [8–11] 是一种破坏时间反演对称性的三
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维磁性拓扑绝缘体，其研究起源于粒子物理学中对假想

基本粒子轴子的探索。轴子的提出旨在解决量子色动力

学 (quantum chromodynamics，QCD)中的强相互作用
电荷宇称 (charge-parity，CP)破坏问题。同时，轴子被
认为是暗物质的候选者之一 [14–17]，然而至今轴子仍未

在实验中被观测到 [8,18,19]。1987年，F. Wilczek提出在
凝聚态物理系统中可能可以观察到轴子的电动力学 [10]。

例如：三维磁性拓扑材料具备能够产生拓扑磁电现象

的拓扑 θ 项 [10,20–23]，这种 θ 项与为描述轴子电动力

学而添加到麦克斯韦方程中的项具有类似的形式。2008
年，祁晓亮等人提出了一种在三维磁性拓扑绝缘体异质

结中实现轴子绝缘体的理论方案，此后，轴子绝缘体的

研究引起了广泛的实验和理论关注 [11,24–30]。三维拓扑

绝缘体是一种受时间反演对称性保护的拓扑物质，其特

征是在体带隙内具有无能隙的狄拉克表面态 [24]。如果

时间反演对称性被打破，当无能隙的狄拉克表面态被指

向表面外 (或内) 的磁化打开时，就会出现轴子绝缘体
态 [11,24]。

与普通绝缘体相比，轴子绝缘体由于具有有质量的

狄拉克表面态而拥有一些独特的电磁响应，例如量子

化的拓扑磁电响应和半量子化的表面霍尔效应 σxy =

e2/(2h) [11–13,25–27]。拓扑磁电效应 (topological magne-
toelectric effect，TME)，是指在拓扑材料中，电场能够诱
导出同方向正比的磁场，反之亦然，这种效应的比例常数

量子化为精细结构常数 α = e2/(h̄c) 的奇数倍 [11,25,28]。

例如：考虑对一个圆柱形的轴子绝缘体施加一个平行于

圆柱的磁场 B，大小随时间从零递增，由于电磁感应定

律，系统会产生一个平行于侧表面的环形电场，进而诱

导一个与磁场平行或反平行的霍尔电流 JH ∝ σxy
dB
dt。

因此，顶部和底部表面便会积累与 B 成正比的电荷密

度，从而磁场能够诱导出同方向正比的电极化，比例常

数量子化为精细结构常数的奇数倍。另一方面，传统的

量子化霍尔效应可以通过霍尔电输运测量方法得到，由

于轴子绝缘体的上下表面磁化方向相反，且它们彼此间

存在时间反演对称性，从而导致上下表面的半量子化霍

尔电导相互抵消。轴子绝缘体显示出巨大的纵向电阻和

零霍尔电导 [29–31]，但这些结果与平庸能带绝缘体一致，

因此通常无法通过这种方法直接测量。因此，目前如何

得到轴子绝缘体的确切实验证据仍存在巨大挑战。

本综述分为五部分，第一部分我们介绍轴子绝缘体

的研究现状；第二部分，我们展示轴子绝缘体中的半量

子化棱电流及其拓扑起源和实验表征；第三部分，我们研

究了半磁性拓扑绝缘体中半量子化霍尔电导的输运理

论及其实验对比；第四部分我们介绍轴子绝缘体中的安

德森局域化行为，包括其输运特性和普适相变特征，无

序轴子绝缘体的相图；最后我们给出一个简单的总结。

需要指出的是本综述侧重于我们过去完成工作领域的

研究进展。

II. 轴子绝缘体的研究进展

近年来在磁性三维拓扑绝缘体异质结以及本征磁

性拓扑绝缘体 MnBi2Te4 中寻找轴子绝缘体的研究引

起了广泛关注 [11,26,28–56]。Mogi 等人通过在拓扑绝缘
体 ((Bi, Sb)2Te3) 薄膜的顶部和底部表面附近进行调
制掺杂磁性离子 (Cr) 的方法，实现了一种磁性三维拓
扑绝缘体多层异质结构 [30,41]。当顶部和底部 Cr 掺杂
的 (Bi, Sb)2Te3 层的反平行磁化排列时，由于顶部和底

部的表面霍尔电导相互抵消，实验观测到零霍尔电导，

这被认为这是轴子绝缘体存在的证据。然而，进一步的

磁畴成像测量发现在零霍尔电导体系表面是随机磁畴

排列而不是反平行磁化排列 [57]。随后，常翠祖等人在

V掺杂 (Bi, Sb)2Te3/(Bi, Sb)2Te3/Cr掺杂 (Bi, Sb)2Te3

的异质结构中，观察到了零霍尔电导平台，并通过磁力

显微镜发现此时体系的磁化为反平行 [29]。最近，层状

范德瓦耳斯化合物 MnBi2Te4 在理论上被预测并在实

验上被验证为具有层间反铁磁 (AFM) 序的拓扑绝缘
体 (TI)。 MnBi2Te4 是一种罕见的同时具备拓扑性和

本征磁性的化合物，因此可以用于构建轴子绝缘体和陈

绝缘体等的理想平台。实验中，通过分子束外延 (MBE)
技术，采用交替生长 Bi2Te3 五层结构和 MnTe 双层
结构，实现了高质量的本征磁性拓扑绝缘体 MnBi2Te4

薄膜的实验制备 [58]。理论上发现 MnBi2Te4 具有拓扑

非平庸磁性态，并提出 MnBi2Te4 的磁基态是具有大

能隙的反铁磁拓扑绝缘体，并呈现出轴子绝缘体。进一

步的输运实验发现，在六层 MnBi2Te4 的超胞结构中，

体系出现了巨大的纵向电阻和零霍尔平台，这些是轴子

绝缘体态存在的重要实验特征 [31]。此外，在对不同厚

度 MnBi2Te4 薄片的输运研究中发现在偶数层轴子绝

缘体态中观察到巨大的非局域传输信号 [59]。

另一方面，由于轴子绝缘体顶部和底部表面具有

(2+1) 维的狄拉克费米子，因此体系具有宇称反常引起
的半量子化霍尔电导 [60–62]。最近，在研究半磁性拓扑

绝缘体异质结构的实验中，成功观测到了这种宇称反常

引起的半量子化的霍尔电导 [48]，因此半磁性拓扑绝缘

体异质结在结构上实现了“一半的”轴子绝缘体。半磁

性拓扑绝缘体异质结构表面态，由顶表面上的一个有质

量狄拉克锥和底表面上的无质量狄拉克锥组成，因此在

输运测量中表现为金属。实验发现，霍尔电阻和纵向电
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阻都是非量子化的。令人惊讶的是，如果将电阻转化为

电导，霍尔电导呈现半量子化，此时纵向电导却不为零。

这与只能在绝缘体相中 (如量子反常霍尔效应) 观察到
量子化霍尔电导的传统观念相违背 [3]。因此，构建一个

半量子化输运理论具有重要的理论和实验意义。

III. 轴子绝缘体中的半量子化棱电流

轴子绝缘体的表面是 (2+1) 维有质量的狄拉克体
系，由于狄拉克费米子的宇称反常，其上存在半量子化

霍尔电导。40 多年来，在 (2+1) 维度中探测宇称反常
诱导的半量子化输运信号是凝聚态系统中具有挑战性

的问题 [22,63–69]。一个关键问题是体边对应规则意味着

宇称反常系统中应该存在某种半量子化的边缘激发。这

一节中，我们揭示轴子绝缘体中的宇称反常引发了一种

独特的边缘激发：半量子化的螺旋棱电流。基于半经典

波包动力学，我们建立了这些棱电流的微观图像。我们

提出在轴子绝缘体侧表面的无质量狄拉克电子被有质

量的顶部或底部表面反射时 (图 1(a) 和 (b))，会出现
横向的古斯–汉欣位移 (图 1)，类似于全反射光束的古
斯–汉欣位移 [70–74]。有趣的是，我们发现古斯–汉欣位
移电流的微分 δIGH 对费米能 EF 的微分来说正好是半

量子化的，即 δIGH = eδEF/(2h)。我们证明古斯–汉欣
位移电流源自于散射过程中非零的贝里曲率，其半量子

化对参数的变化具有鲁棒性。

A. 模型哈密顿量和古斯–汉欣位移

首先，我们通过一个三维磁性拓扑绝缘体来表示轴

子绝缘体模型，其中顶部和底部表面的能隙相反，而侧

表面保持无能隙。这样的模型与用于实现磁性拓扑绝缘

体异质结构或反铁磁拓扑绝缘体 MnBi2Te4
[29–31,41] 中

的轴子绝缘体态的实验设置一致。根据体边对应关系，

轴子绝缘体的顶部、底部表面和侧表面可以分别由以下

二维有效哈密顿量描述：

H =

{
h̄vF(−iσx∂x − iσy∂y)− U (side)
h̄vF(−iσx∂x − iσy∂y) +mσz (top/bottom)

.

(1)
这里，vF 表示费米速度，U 是门电压，m是磁化引起的

质量项。在接下来的讨论中，我们将轴子绝缘体的顶部–
侧面–底部表面 (图 1(a)) 展开到 x–y 平面中 (图 1(b)
所示)。

我们使用概率流守恒方法 [72,73,75] 来计算轴子绝

缘体棱上的古斯–汉欣位移。如图 2(a) 所示，将无质

量的侧面放置在 x ⩽ 0 中，将有质量的顶部/底部
表面放置在 x > 0 中。首先通过在 x = 0 处

的边界条件匹配 ψint(r) = ψin + rψre(x ⩽ 0)

和 ψeva(r) = e−κx+ikyyψ(0, 0)(x > 0) 来解决散

射问题，其中 ψint(r) 是在无质量区域中的入射波

ψin(r) = eikxx+ikyy[e−i α2 , ei α2 ]T /
√
2 和反射波 ψre(r) =

e−ikxx+ikyy[e−i π−α
2 , ei π−α

2 ]T /
√
2 的干涉叠加，ψeva(r)

是质量区域中的隐失波，α = arctanky

kx
代表入射角

(图 2(a))，且 r = (x, y)。这里只考虑全反射过程引起

的磁化能隙内的物理。反射系数 r = eiϕr 由文献 [75] 中

给出。接下来，假设入射波和反射波具有如图 2(a)所示
的有限宽度，则可以在概率流守恒约束下获得古斯–汉
欣位移。如图 2(a) 所示，Jint、Jeva 和 JGH 分别表示

干涉波、隐失波和与古斯–汉欣位移部分成比例的部分
流。Jd 是用蓝色表示的宽度为 d 的横截面的流。假设

入射/反射波的概率密度是归一化的，即 ψ†
in(r)ψin(r) =

ψ†
re(r)ψre(r) = 1，则有

Jd = vFd sinα, JGH = vF∆GH cosα.

Jeva = vF
sin α+cos ϕr

κ .

Jint(d) = vF[d sinα+ sin(ϕr+kxd)
kx

− sin ϕr

kx
]. (2)

通量守恒条件要求 Jint + Jeva = JGH + Jd。古斯–汉欣
位移关于 d 的关系式如下：

∆GH(d) =
sinα+ cosϕr

κcosα − sinϕr
kxcosα +

sin(ϕr + kxd)

kxcosα .(3)

在半经典极限下，与 d 有关的 ∆GH(d) 经过求平均，导

致净古斯–汉欣位移

∆GH = ⟨∆GH(d)⟩d =
sinα+ cosϕr

κcosα − sinϕr
kxcosα. (4)

在图 2(b) 上方子图中，在固定 E、U 和 m 不变的情况

下，我们作了 ∆GH 作为入射角 α 的函数图像。对于掠

入射，即 α→ ±π/2，∆GH 将发散，但对于 α = π/2和

−π/2 的两个掠入射，具有相反的符号。这表明，在入

射角较大时，古斯–汉欣位移与入射波具有相同的方向，
因此不显示手性特征。然而在垂直入射时，即 α→ 0时，

∆GH 出现峰值，清楚地表明古斯–汉欣位移倾向于确定
的方向，说明此时的古斯–汉欣位移表现出手性特征。手
性的 ∆GH 进一步说明了在棱上积累的净古斯–汉欣位
移电流是手性的。然后，我们根据来自隐失波 ∆GH,eva

和干涉波 ∆GH,int 的贡献对 ∆GH 进行分解。后面将要

讨论，∆GH,eva 和 ∆GH,int 引入了具有不同衰减规律的

位移电流分量。图 2(b)的下方子图展示了 ∆GH 的手性

部分主要由隐失波部分 ∆GH,eva 贡献，它位于时间反演

对称性破缺的轴子绝缘体顶部/底部表面上。相比之下，
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图 1. 半量子化棱电流示意图。半量子化的棱电流源于轴子绝缘体 (a) 和陈绝缘体 (c) 有能隙的顶部和底部表面之间来回弹跳
在棱上积累的古斯–汉欣位移电流。(b) 轴子绝缘体顶面–侧面–底面的展开视图。无质量电子的轨迹说明了古斯–汉欣位移电流
IGH 的形成。当考虑所有电子的贡献时，棱上的轨迹段合并在一起，形成净螺旋棱电流。

图 2. 由于古斯–汉欣位移而产生的棱电流的微观机制。(a) 棱上散射过程的示意图，其中无质量的狄拉克电子被有质量的界面
全反射。(b) 在 U = 1，m = 0.1 和 E = 0 的情况下，古斯–汉欣位移与 α 的关系。上子图展示了总的古斯–汉欣位移 ∆GH，下
子图展示了其来自隐失波 (∆GH,eva) 和干涉波 (∆GH,int) 的贡献。(c) 不同 m 下，α 的反射相位差与 α 的关系。插图展示了隐
失波和干涉波对 δIGH (以 eδEF/h 为单位) 与 m 的关系。

非手性部分，特别是对于 α→ ±π/2 的掠入射，主要由

∆GH,int 贡献。

B. 半量子位移电流

为了对由古斯–汉欣位移引起的手性棱电流提供微
观图像，我们将散射问题中的电子视为点粒子，如图 1(b)
所示，该粒子在两个有质量的表面畴壁之间来回反弹。

假设相对棱的宽度为 Lx，因此在两次连续反弹之间的

平均时间间隔为 ∆τ = 2Lx/(vF cosα)，其中 −π/2 <

α < π/2。当粒子从棱上弹开时，就会发生横向古斯–汉
欣位移 ∆GH。这种横向位移会引起电子沿着棱的反常

速度，如下所示：

vGH =
∆GH
∆τ

=
∆GHvF cosα

2Lx
. (5)

由 vGH 引发的总古斯–汉欣位移电流是通过计算所有填
充电子的贡献得到的，如下所示：

IGH =
∑
filled

evGH
Ly

=
e

h

EF∫
−∞

dE
K∫

−K

dky
2π

∆GH, (6)

这里 Ly 是侧表面的周长，K = (E + U)/(h̄vF) 是能量

E 处的费米波矢。计算的细节可参考文献 [75]。通过采

用稳态相位法 [71,75–78]，我们发现古斯–汉欣位移可以写
成 ∆GH = −∂ϕr/∂ky，将该结果带入到公式 (6)，得到
微分位移电流 δIGH = δEF[ϕr(−π/2)−ϕr(π/2)]e/2πh。
在图 2(c) 中，对于不同的 m，作出 ϕr 关于 α 的关系

图。可以看到 ϕr(−π/2)− ϕr(π/2) = π 对 m 的变化具

有鲁棒性 [75]。因此，δIGH 相对于 δEF 是半量子化的：

δIGH =
e

2h
δEF. (7)

此外，δIGH可以根据其来自于隐失波和干涉波的贡献来

进行分解，即 δIGH = δIGH,eva+δIGH,int。需要强调的是，

δIGH,int表现出从棱向侧表面内部的幂次衰减 (x− 1
2 )，而

δIGH,eva 则呈指数级衰减 e−x/λ [75]，因此 δIGH 与通常

的拓扑保护边缘态或棱态所携带的电流不同。图 2(c)的
插图展示了 δIGH,eva 和 δIGH,int 关于 m 的变化关系。

当 m 较小时，δIGH 的贡献主要来自于 δIGH,eva，随着

m 的增加，δIGH,int 将提供主要的贡献。
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C. 半量子古斯–汉欣位移电流的拓扑起源

我们在绝热电荷输运理论 [2,79–81] 的框架下提供了

半量子古斯–汉欣位移电流的拓扑观点。这里使用哈密
顿量H(r) = h̄vF(−iσx∂x−iσy∂y)+m(x)σz 来描述散射

过程，其中 m(x) 是一个联系着无能隙和有能隙区域的

平滑函数，且满足m(x) → m(x≫ 0)和m(x) → 0(x≪
0) (图 3(a))。在散射过程中，能量 E和动量 ky是守恒的。

因此关系式 h̄2v2Fk
2
x+h̄

2v2Fk
2
y+m

2 = E2仍然成立。下面

我们取 t = −h̄vFkx 作为虚时，散射过程现在由含时的

一维哈密顿量 H(ky, t) = −tσx + h̄vFkyσy +m(t)σz 描

述，该哈密顿里描述了一个泡利旋量与含时磁场B(t) =

[−t, h̄vFky,m(t)](图 3(b))之间的塞曼耦合。这时，古斯–
汉欣位移的研究就被简化为在 y 方向上研究一个绝热

电荷输运问题，且该问题在磁场 B(t)作用下具有内部绝

热自旋进动过程 [82]。含时哈密顿量H(ky, t)的瞬时本征

态为 |u±(ky, t)⟩ = [E±m,−t+ih̄vFky]
T/

√
2E(E ±m)，

其中 ±表示旋量的向上和向下分量。根据文献 [81] 中的

分析，在哈密顿量变化速率的一阶近似下，波函数可以

表示为：

|u±(ky, t)⟩ − ih̄
∑
n
′ ̸=n

|un
′ (ky, t)⟩⟨un

′ (ky, t)|∂un(ky, t)/∂t⟩
En − En

′
,(8)

这里，n(n
′
) = ± 表示自旋向上和向下的分量。对于给

定的 ky，平均速度可一阶近似地表示为：

vn(ky) = ∂En(ky)/h̄∂ky−i
[〈

∂un

∂ky

∣∣∣∣∂un

∂t

〉
−
〈
∂un

∂t

∣∣∣∣ ∂un

∂ky

〉]
= ∂En(ky)/h̄∂ky − Ωn

kyt, (9)

其中，Ωn
kyt

= −2Im ⟨∂un/∂ky|∂un/∂t⟩ 是 ky − t 空间

中的贝里曲率。我们只考虑发生在导带 n = + 的散射

过程，因此从现在开始我们省略指标 n。对于给定的 ky，

y 方向上的古斯–汉欣移位 (图 3(c)) 是：

∆GH(ky)=

T (ky)∫
−T (ky)

v(ky)dt=
T∫

−T

[
∂E(ky)

h̄∂ky
−Ωkyt

]
dt.(10)

考虑到 T (ky) =
√
E2 − h̄2v2Fk

2
y，将其与公式 (6) 相结

合，可以得到：

δIGH
δEF

= − e

h

E
h̄vF∫

− E
h̄vF

dky
2π

T∫
−T

Ωkytdt = − e

2πh
Γ(C), (11)

其中 Γ(C)是沿着积分流形的边界 C 的贝里相位。由于

能带结构相对于 ky 是对称的，∂E(ky)/(h̄∂ky) 的积分

为零。由于轴子绝缘体的侧表面上有无能隙的狄拉克电

子，自然有 Γ(C) = ±π。为了确定 Γ(C) 的符号，从而

确定微分古斯–汉欣移位电流的方向，我们在极坐标系
中进行上式积分。定义 k =

√
t2 + h̄2v2Fk

2
y，t = k cos θ

以及 h̄vFky = k sin θ。极坐标系下的贝里曲率变为
Ωkθ = i [⟨∂u/∂k|∂u/∂θ⟩ − ⟨∂u/∂θ|∂u/∂k⟩] /k =

−sgn(m)/(2E
√
E2 − k2)， 其 中 |u(k, θ)⟩ =[

E +m,−ike−iθ]T
/
√

2E(E +m)。贝里相位为

Γ(C)=

2π∫
0

dθ

E∫
0

kdk −sgn(m)

2E
√
E2 − k2

= −sgn(m)π. (12)

因此我们得出结论，半量子化的手性古斯–汉欣移位电
流 δIGH/δEF = sgn(m)e/(2h) 受到无能隙的狄拉克电

子的 π 的贝里相位保护，而其方向则由有质量 m 的表

面决定。

D. 可视化半量子化的棱电流分布

半量子化的棱电流可以通过基于三维磁性拓扑绝

缘体哈密顿量进行数值可视化。模型哈密顿量表示为

H = H0 +HM，其中 H0 表示非磁性部分，具有形式：

H0 =
∑

i=x,y,z Akiτx⊗σi+(M0−Bk2)τz⊗σ0，而 HM

表示磁化项，具有形式：HM =M(r)τ0 ⊗ σz
[83,84]，在

这里，σi 和 τi 分别是作用于自旋和轨道空间的泡利矩

阵。穿越 x-z 平面的 y 方向的电流密度 [60](r=(x, z))可
以描述如下：

Jy(E, r)=− e

πh

π∫
−π

ImTr
[
∂H(ky)

∂ky
Gr

ky
(E, r, r)

]
dky, (13)

其中 Gr
ky
(E, r, r

′
) 是动量切片哈密顿量 H(ky) 的推迟

格林函数。首先，我们评估了一个在 y–z 平面中顶部
表面有能隙的半磁性拓扑绝缘体，它可以被视为轴子绝

缘体的“一半”(图 4 (a)) [48,49,85]。如图 4(b) 所示，电
流通量 Iy(x̄) =

∫Lz/2

0
dz

∫ x̄
0

dxJy(x, z) 在 0.5 左右震
荡，电流通量平均值 ⟨Iy(x̄)⟩ =

∫ x̄
0
Iy(x̄

′
)dx̄′

/x̄ → 0.5，

这清楚地说明了棱电流的半量子化，与古斯–汉欣位移
分析吻合。对于一个顶部和底部表面带有相反磁化能

隙的轴子绝缘体 (图 4(c) 和 (d))，在棱上出现了一对
反向传播的棱电流。移动平均电流通量 ⟨Iy(x̄)⟩MA =∫Lz/2

0
dz

∫ x̄+7

x̄−7
dxJy(x, z) 进一步证明了棱电流是近半量

子化和螺旋化的。
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图 3. 半量子化古斯–汉欣位移电流的拓扑起源。(a) 描绘了一个无质量的狄拉克电子波包与一个有质量的壁垒散射的过程，波
包在 y 方向上经历了一个横向的半量子化古斯–汉欣位移。(b) 在动量空间中描述了波包的反射过程，其中由于 y 方向的平移
对称性，ky 保持不变。在反射过程中，能量 E 保持不变，因此在满足 h̄2v2Fk

2
x + h̄2v2Fk

2
y +m2 = E2 的约束条件下，kx 和局

部哈密顿量的质量 m 发生变化。当我们将 t = −h̄vFkx 视为虚拟时间时，这样的反射过程也可以理解为在 y 方向上进行一维
电荷输运问题。有效的含时哈密顿量可以看作是一种类似于塞曼耦合的 H(t) = B(t) ·σ，其中 B(t) = [−t, h̄vFky,m(t)]，反射
过程被简化为对于固定的 ky 和 E 的绝热自旋进动。(c) 在 y 方向上的绝热电荷输运过程。非平庸的贝里曲率 Ωky,t 在 y 方向
上引发了反常速度 v(ky)。在反射后，绝热电流的总贡献引起了古斯–汉欣位移。

图 4. 半磁性拓扑绝缘体和轴子绝缘体的电流密度分布。(a)
和 (c) 为半磁性拓扑绝缘体和轴子绝缘体 (在 y 方向无限长)
的示意图。在 z 方向的厚度为 Lz = 8。在 (a) 和 (c) 中，粉
色区域 (0 ⩽ z ⩽ Lz/2) 为计算电流区域，而 (c) 中的虚线框
部分为 x− z 平面的横截面。对于半磁性拓扑绝缘体，(c) 显
示了穿过区域 0 ⩽ x ⩽ x̄, 0 ⩽ z ⩽ Lz/2 的电流以及 ⟨Iy(x̄)⟩。
在 (d) 中，上方子图显示了 x− z 平面上 Jy(x, z) 的分布。下
方子图显示了通过窗口 [x̄− 7 ⩽ x ⩽ x̄+ 7, 0 ⩽ z ⩽ Lz/2] 的
移动平均电流 ⟨Iy(x̄)⟩MA。Jy 和 Iy 的单位都是 e/h。

E. 半量子化螺旋棱电流的实验表征

半量子化的棱电流 δIGH 可以通过图 5(a) 所示的
六端口装置进行实验测量。端口 1 和 3(2 和 4) 与轴子
绝缘体的顶部 (底部) 表面附近接触，而导线 5 和 6 则
与样品的两端接触。根据 Landauer–Büttiker 公式，端
口 i 和 j 之间的透射系数为 Tij = Tr[ΓiG

rΓjG
a]，对

应的微分电导为 Gij = e2/h · Tij [86–89]，Gij 的测量方

法详见文献 [75]。Γi 是端口 i 的线宽函数，而 Gr(a) 是

轴子绝缘体的推迟 (超前)Green 函数。为了证明螺旋棱
通道的存在，我们计算了端口 i 和 j 之间的非互易电导

GN
ij = Gij − Gji。如图 5(c) 所示，对轴子绝缘体来说，

GN
13 = e2/(2h) 和 GN

24 = −e2/(2h) 都是符号相反的半
量子化，而 GN

65 = 0。这意味着存在两个反向传播的半量

子化的棱通道。此外，从格点 i到 j的局域电流 Ji→j(E)

的空间分布 [90] 进一步揭示了轴子绝缘体中输运棱电流

的螺旋特征，如图 5(b) 所示。由于非互易电导 GN
ij 计

算了 Ji→j(E)的非对称部分，我们可以推断半量子化的

导电通道源自轴子绝缘体棱上的半量子化的螺旋古斯–
汉欣位移电流 δIGH。这些结果与古斯–汉欣位移 (图 2)
以及电流密度分布 (图 4) 所确定的结果一致。因此，这
些输运信号有力证实了图 1中提出的半量子化棱电流的
微观图像的可靠性。由于半量子化的螺旋棱电流是轴子

绝缘体的特征，我们的方案还促进了轴子绝缘体在实验

中的确认。

F. 讨论

半量子化的螺旋棱电流可以解释为轴子绝缘体中

量子化的拓扑磁电响应的结果 [11]。如图 5(d)所示，轴子
绝缘体表面费米能的偏移引发了一个界面电场 δEs =

−∇δEF/e。根据具有轴子项的麦克斯韦方程，δj =

e2/(2πh) · ∇θ × δEs
[11,91]，其中 θ 是空间变化的轴子

项。通过在角处的 δj 积分，可以得到半量子化的棱电

流 δI = ±eδEF/(2h)。总之，我们发现了轴子绝缘体中
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图 5. 通过非互易电导的实验表征半量子螺旋棱电流。(a) 六端口装置的示意图。电极 5 和 6 接触轴子绝缘子薄膜的端部。端
口 1 ∼ 4 是表面电极，其中 1 和 3(2 和 4) 接触在靠近顶部 (底部) 表面。(b) 轴子绝缘体的局部电流分布。(c) 电极 i 和电极
j 之间的非互易电导 GN

ij 与 EF 的关系。(d) 量子拓扑磁电效应响应和半量子螺旋棱电流之间关系的示意图。δEs 是界面电场，
δj 是棱电流。

存在半量子化的螺旋棱电流，并建立了其基于古斯–汉
欣位移电流的微观图像。古斯–汉欣位移电流的半量子
化具有拓扑起源，并且对参数变化具有鲁棒性。我们通

过数值方法证明了半量子化的棱通道由半量子化的非

互易电导来体现。我们的研究加深了对轴子绝缘体边缘

激发的理解，并为通过输运实验探测轴子绝缘体提供了

线索。

IV. 半量子化霍尔电导的输运理论

轴子绝缘体表面中的二维有质量狄拉克费米子作

为一种相对论粒子，由于宇称反常，它的霍尔电导是半量

子化效应 [22,64,65]，这在形成各种拓扑效应中发挥着重要

作用 [11,27,82]。迄今为止，已经有许多理论和实验工作致

力于观察半量子化霍尔电导，但直接观测半量子化霍尔

电导仍然很困难 [29,30,55,60,92–95]。其主要挑战有两方面：

根据费米子倍增理论，具有相反手性的狄拉克费米子在

实际系统中总是成对出现 [96]，宇称反常相互抵消；与具

有无耗散的手性边界模的整数量子反常霍尔效应不同，

单个二维有质量狄拉克锥没有拓扑保护的边缘态，因此

半量子化霍尔电导的机制超越了传统的量子输运范式。

在本节中，我们发现半量子化的手性电流会沿着强退相

干金属的边缘传播，称为经典金属，这可以引发半量子

化霍尔电导。具体来说，我们通过 Landauer–Büttiker
公式研究了半磁性拓扑绝缘体在退相干过程中的表面

输运。这里的退相干可以由实际样品中的电子–声子相
互作用 [97]、电子–电子相互作用 [98,99] 和零点涨落 [100]

引起。我们发现，当退相干强度超过临界值时，霍尔电

导 σxy 达到了半量子化平台，而纵向电导 σxx 不为零。

此外，我们还证明了沿样品边缘透射系数 td 的差值是

半量子化的，并且与退相干强度无关，从而产生了一个

鲁棒的半量子化手性边界电流。然后，通过建立 σxy 和

td 之间的解析关系，我们揭示了半量子化 td 可以在经

典金属极限下引发半量子化霍尔电导，其中系统尺寸远

远大于相干长度。为了与实验结果 [48] 进行比较，我们

计算了低温下的霍尔电导和纵向电导。结果表明在低温

下，无论温度如何变化 σxy 都会保持半量子化，而 σxx

随温度单调增加，这与实验结果一致。

A. 模型哈密顿量和退相干

我们考虑了如图 6(a) 所示的半磁性拓扑绝缘体异
质结构。系统的四带有效哈密顿量为 H = H0 + HM，

其中

H0(k) =
∑

i=x,y,z

Akiσx⊗si + (M0 −Bk2)σz⊗s0 (14)
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描述了各向同性的三维拓扑绝缘体 [84]，A、B 和 M0 为

模型参数。σi 和 si 分别是轨道和自旋自由度的 Pauli
矩阵。HM = M(z)σ0⊗sz 是塞曼劈裂，其中 M(z) 在

顶部表面取值为 Mz，其他地方为零。当 H0 在晶格常

数 a = 1 的立方晶格中离散化时，三维拓扑绝缘体在

0 < M0 < 4B [101] 处为强拓扑区域，在每个表面上具有

单个无能隙的狄拉克锥 [102]。HM 带来的塞曼劈裂在顶

表面上打开了狄拉克能隙 ∆ = 2Mz，从而产生了具有

半量子化霍尔电导的有能隙狄拉克锥。因此，半磁性拓

扑绝缘体在顶部和底部表面上分别有一个有能隙和无

能隙的狄拉克锥 [102]。通过使用实空间久保公式 [103,104]

计算的数值结果表明，当费米能 EF 在狄拉克能隙内调

节时，半磁性拓扑绝缘体顶部表面的霍尔电导是半量子

化的 [102]，这与前面的分析一致。为了研究六端口霍尔

棒状器件的表面输运 (图 6(b))，我们将哈密顿量 H 离

散化为 Nx×Ny×Nz 个立方晶格点。通过在底部和侧表

面上使用 nx×ny 和 nx×nz 根 B�uttiker虚拟端口，模拟
了退相干过程 [102,105–107]。根据 Landauer–Büttiker 公
式，端口 p 中的电流可以表示为：

Ip =
e2

h

∑
q ̸=p

(TqpVp − TpqVq) , (15)

其中 Vp 是端口 p中的电压。Tpq(EF) = Tr [ΓpG
rΓqG

a]

是从端口 q 到 p 的透射系数，其中线宽函数 Γp =

i
(
Σr

p −Σr†
p

)
，格林函数 Gr = [Ga]† = [EFI −Hcen −∑

p Σ
r
p]

−1。Σr
p 是由于与端口 p 耦合产生的推迟自能。

Hcen 是半磁化拓扑绝缘体的晶格哈密顿量。对于真实

端口 (p = 1, 2, ..., 6)，Σr
p = −i(Γp/2)Ip，其中 Ip 是

4np × 4np 的单位矩阵，np 是与真实端口 p 耦合的点

数目。对于虚拟端口，Σr
p = −iΓv/2，其中 Γv 是退相

干强度 [107]。当纵向电流 Ix 从端口 1 流向 4 时，可以
通过公式 (15) 获得霍尔电阻 Rxy = (V2 − V6)/Ix 和

纵向电阻 Rxx = (V2 − V3)/Ix。由于电流仅沿着无能

隙的表面流动 (两侧和底部表面)，所以有 ρxy = Rxy，

ρxx = Rxx/(L/W )，L 是端口 2 和 3 之间的距离，
W = Ny +2(Nz − 1)− 1 是无能隙表面的总宽度。通过

张量关系，可以得到纵向电导 σxx = ρxx/(ρ
2
xx + ρ2xy)，

和霍尔电导 σxy = ρxy/(ρ
2
xx + ρ2xy)。接下来我们展示电

导的数值结果。在图 6中，对于较小的退相干强度，如
Γv = 0.5，霍尔电导 σxy 和纵向电导 σxx 都不是量子

化的，随着 Γv 的增加，霍尔电导 σxy 迅速减小，并达

到半量子化的平台 (图 6(e))，而纵向电导 σxx 保持非

零 (图 6(f))，稍后将对此进行解释。在这种半量子化之
后，σxy 不再依赖费米能 EF(图 6(c) 和6(e))。此外，在
图 6(d) 中，σxx 几乎随着 EF 线性增加，因为无能隙的

狄拉克锥态密度与 |EF| 成正比，而在图 6(f) 中，随着

Γv 的增加，σxx 迅速减小，这是由虚拟端口带来的动量

弛豫所导致的 [108]。

图 6. (a) 在顶表面上有能隙的 Dirac 锥和在底表面上无能隙
的 Dirac 锥的半磁性拓扑绝缘体示意图，其中红色箭头表示
顶表面上的磁化。(b) 一个六端口的霍尔棒器件，其中红色球
代表连接到虚拟端口的格点。两个最近的球之间的距离为 4。
(c) 和 (d) 分别说明了不同退相干强度 Γv 下的霍尔电导 σxy

和纵向电导 σxx 随费米能 EF 的变化。(e) 和 (f) 分别说明
了不同费米能 EF 下的 σxy 和 σxx 随 Γv 的变化。在这里，
Nx = 640，Ny = 153，Nz = 5，nx = 160，ny = 39，nz = 2，
端口 5 和 6 之间的距离为 L = 40。模型参数固定为 A = 1.0，
B = 0.6，M0 = 1.0 和 Mz = 0.4。

B. 半量子化的手性通道和半量子化霍尔电导

为了更深入地理解半量子化霍尔电导的起源，我们

研究了虚拟端口之间的透射系数。方便起见，我们将侧

面和底面放平铺在 xy 面上 (图 7(a))，红色的圆圈代表
连接到虚拟端口的位置。在 y 方向的虚拟端口总数是

ñy = ny+2(nz −1)。数值结果表明，从端口 q 到端口 p

的透射系数 Tpq 随着它们之间的距离 rpq 急剧衰减
[102]。

因此我们可以定义一个临界距离 rc；当 rpq = rc 时，

Tpq = 0.001T1，这样当 rpq > rc 时可以忽略 Tpq，这里的

T1 是两个最近端口之间的透射系数。在图 7(c)中，rc 与

相干长度成正比，因此 rc 随着退相干强度 Γv 的增大而

减小 [102]。为了揭示输运的方向性，我们定义了黑匣 a和

b之间透射系数的差值 Td(x, y) = Tba−Tab，其中 (x, y)

是匣子 a 右下角的红色小球的空间坐标 (图 7(a))。这
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里的 Tba =
∑

p∈b,q∈a Tpq 是从匣子 a 到 b 的透射系数，

其中 p ∈ a表示端口 p位于匣子 a中 (图 7(a))。图 7(b)
显示在上下边界有 Td = ±1/2，而其他地方为零。顶表

面边缘的透射系数差 td ≡ Td(nx/2, ñy − rc) 对于不同

的费米能 EF 和 Γv 保持半量子化 (图 7(d))。半量子化
的 td 意味着在顶表面的边缘上存在半量子化的手性通

道或半量子化的手性电流 [60](图 7 的蓝色箭头所示) 而
引发了半量子化霍尔电导。半量子化的手性电流对退相

干过程具有鲁棒性，因此我们可以在图 6(a) 中获得不
同退相干强度下的完美半量子化霍尔电导平台，并且半

量子化的 td 对于无序也具有鲁棒性
[102]。

图 7. (a) 图 1 中样品平铺在 x–y 平面上的侧面和底面。红色
小球代表附加虚拟端口的格点，蓝色箭头表示手性边界电流。
a 和 b 用于标记两个相邻的黑色方框，黑色方框的尺寸为 rc。
(x, y) 是盒子 a 右下角的红色小球的坐标。(b) 透射系数 Td
的空间分布，其中 Γv = 4.0，EF = 0.3。插图显示了上边缘
(y = ñy − rc)，中间区域 [y = (ñy − rc)/2] 和下边缘 (y = 1)
处的 Td 值。(c) 和 (d) 显示了不同 EF 下，rc 和 td 与 Γv 的
关系。其他参数与图 6中的参数相同。

为了建立 σxy 和 td 之间的解析关系，我们将

图 7(a) 中的系统映射到一个描述经典金属的导体网络
模型中 [109,110]。在图 7(a) 中，每 r2c 个红色小球被重

新排列成图 8(a) 中的一个蓝色方框。由于 rc 远大于

相干长度 [107]，相邻两个蓝色方框之间的输运是非相干

的，系统可以被视为经典导体网络模型 [109,110]。由于当

rpq > rc 时，Tpq ≪ 1，图 8(a) 中导体网络模型的电导
由相邻两个蓝色方框中端口之间的总透射系数决定。使

用 Ipq = (TpqVq−TqpVp)表示从端口 q 到 p的电流，能

够得到 (更多细节请参考文献 [102])：

σxy = e2

h [1 +
rcαtn+t2n
t2d+t2n

1
ñy−1 ]td,

σxx = e2

h [1 +
rcαtn+t2n
t2d+t2n

1
ñy−1 ]tn.

(16)

其中 tn = t12+ t13+ t14，α = t56+ t57+ t89+ t810−2tn，

图 8. (a) 用蓝色框将图 2(a) 中的红色球分割，每个蓝色框包
含 r2c 个红色球。数字用于标记方框。(b)-(d) 在 rc = 1 的简
单情况下，理论结果和数值结果的比较。(b) σxy 与 ñy 的关
系，tn = 1。(c)和 (d)，σxy 和 σxx 作为 tn 的函数，̃ny = 200。
(b)-(d) 中的其他参数为 nx = 7ñy 和 td = 0.5。(e) σxy 和 td
关于 ñy 的关系。(f) σxx 和 tn 关于 ñy 的关系。(e) 和 (f) 的
参数为：EF = 0.2，Γv = 3.0，nz = 2，ny = ñy − 2(nz − 1)，
nx = 4ñy，Nz = 5，Ny = 4(ny − 1) + 1，Nx = 4nx，其他
参数与图 6中的参数相同。

tij =
∑

p∈j,q∈i Tpqxpq/rc。xpq = xp − xq，xp(xq) 是端

口 p(q) 的 x 坐标。p ∈ i 表示导端口 p 位于匣子 i 内，

如图 8(a) 所示。值得注意的是，在 ñy ≫ 1 的大尺寸极

限下，我们有 σxy = td(e
2/h) 和 σxx = tn(e

2/h)。这

表明半量子化霍尔电导与顶表面边缘存在的半量子化

手性通道 td 直接相关，而 σxx 则是来自普通通道 tn

的贡献。接下来证明公式 (16)的有效性。首先考虑一个
rc = 1 的简单模型，其中只有两个最近端口之间的透射

系数是非零的 (更多细节请参考文献 [102])。在图 8(b)-
(d) 中，我们通过公式 (15) 和公式 (16) 分别数值和解
析地评估了当 td = 0.5 时，σxy 和 σxx 与 tn 和 ñy

的关系，结果吻合得很好，这证明了公式 (16) 的正确
性。再从实际的半磁性拓扑绝缘体哈密顿量出发，我们

使用公式 (15) 计算 σxy、σxx、tn 和 td，并在图 8(e)
和 (f)中作出这些量与 ñy 的关系图。发现 σxy 和 (σxx)

随着 ñy 的增大而减小并最终收敛到 td(tn)，这与公式

(16) 的理论结果一致，再次证明了公式 (16) 的有效性。
实际系统中如果 ñy 或 Γv 太小，将导致 ñy/rc ≲ 1，
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由于有限的 tn 导致了上下边缘的两个半量化手性电流

在空间上混合，从而破坏了 σxy 的量子化。我们因此

得出结论，退相干过程在分离金属区域中的两个半量化

手性电流方面起着关键作用，从而导致半量子化霍尔电

导。这种半量子化霍尔电导的机制与在绝缘相中观察到

的传统量子化霍尔电导的机制非常不同 [3]。

C. 与实验输运结果的比较

实验上最近报道了半磁性拓扑绝缘体中霍尔电导

σxy 呈现半量子化的现象
[48]。但实验直接测量的霍尔

电阻 ρxy、纵向电阻 ρxx 以及纵向电导 σxx 均未量子

化。此外，这些物理量都表现了对温度的依赖性。为

了进行比较，我们使用非零温度 Landauer–Büttiker
公式 [111]，计算 ρxx、ρxy、σxx 和 σxy 关于温度 T

的函数：Ip = (e2/h)
∑

q ̸=p

(
T̃qpVp − T̃pqVq

)
。其中

T̃pq(T,EF) =
∫
Tpq(E)[−∂f0/∂E]dE，费米分布 f0 =[

e(E−EF)/(kBT ) + 1
]−1
，kB 为玻尔兹曼常数。在图 9(a)

和 (b) 中，ρxx 和 ρxy 都没有量子化，而是随着温度

T 和费米能 EF 的变化而变化。值得注意的是，当将电

阻 (在图 9(a) 和 (b) 中) 转换为电导时，σxy 呈半量
子化，σxx 是 T 的单调增函数，对不同的 EF 也是如

此 (图 9(c) 和 (d))，这与实验结果完全一致。根据非零
温度下的 Landauer–Büttiker 公式，对于 ñy ≫ 1，能

够得到 σxy(EF, T ) =
∫
σxy(E, T = 0)[−∂f0/∂E]dE 和

σxx(EF, T ) =
∫
σxx(E, T = 0)[−∂f0/∂E]dE [102]。这表

明，零温下电导对费米能的依赖性决定了电导对温度的

依赖性。在图 9(d)中，σxx 随着 T 的增大而增大，因为

图 9. 霍尔电阻 ρxy(a)，纵向电阻 ρxx(b)，霍尔电导 σxy(c)
和纵向电导 σxx(d) 与温度 T 的关系。曲线对应不同的费米
能 EF。退相干强度 Γv = 4.0，其他参数与图 1 中的参数相
同。

在零温下，σxx 几乎与 |EF|成线性关系，而在图 9(c)中，
σxy 在低温下与 T 无关，因为在零温下，对于 EF = 0.05

和 0.1，σxy 与 EF 无关。ρxy 随着 T 的增大而减小，

因为 ρxy = σxy/(σ
2
xx + σ2

xy) 是 σxx 的单调递减函数。

ρxx = σxx/(σ
2
xx+σ

2
xy)在 σxx < σxy 时随 σxx 增大，而

在 σxx > σxy 时随 σxx 减小。因此，对于 EF = 0.05 和

0.1，在零温度下 σxx < σxy，所以 ρxx 将先增大后减小，

而对于 EF = 0.15 和 0.2，在零温度下 σxx > σxy ，所

以 ρxx 将随 T 的增大而单调减小。

D. 结果和讨论

我们研究了半磁性拓扑绝缘体在退相干作用下的

表面输运性质，揭示了沿着强退相干金属边缘的半量子

化手性电流可以导致半量子化的霍尔电导，这与量子反

常霍尔效应有很大不同。此外，我们在低温下获得了半

量子化霍尔电导的平台，这点与实验结果一致 [48]。与先

前的理论相比 [48]，我们揭示了退相干过程在驱动无能

隙狄拉克表面变为失去量子相干性的经典金属中的关

键作用。实际上的二维金属应该受到杂质的强烈影响，

无能隙的狄拉克锥可以被驱动到一个能够容纳半量子

化霍尔电导的临界金属相 [29,30]。实验中的半量子化的

霍尔电导是在数百微米大小的样品中测量的，远远超出

了退相干长度，因此该系统属于经典金属。此外，如果

顶部和底部表面都被磁场打开带隙，那么系统将表现出

量子反常霍尔效应，只要退相干强度远小于体带隙，霍

尔电导就会量子化。

图 10. (a)包含了具有反平行磁矩表面的三维时间反演不变拓
扑绝缘体的轴子绝缘体示意图。(b) 磁化项可以在表面态的狄
拉克点处打开一个能隙 ∆。(c)具有反平行磁化排列表面的三
维拓扑绝缘体在弱无序下的示意相图。红色曲线描述了霍尔
电导随费米能变化的情况。鉴于检测量子表面霍尔电导的困
难，我们提出了轴子绝缘体和安德森绝缘体之间的相变作为
轴子绝缘体的普遍实验特征。
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V. 轴子绝缘体态的临界行为和普适特征

安德森局域化 [112] 是指在无序系统中，电子或其

他波在传播时由于随机散射和量子干涉效应而被局限

在局部区域，无法自由扩散。该现象会导致系统从导电

态转变为绝缘态，称为金属–绝缘体转变。根据标度理
论 [113]，安德森相变的临界指数等临界行为具有普适性，

往往只依赖于体系的空间维度、对称性等一般属性，而

并不依赖于具体模型的细节。对磁性拓扑绝缘体的量子

相变实验研究已经广泛进行，并揭示了拓扑态的一些独

特性质 [31,114–120]。在这一节中，我们通过研究具有反平

行磁矩表面的三维拓扑绝缘体的无序效应，发现了一种

二维量子霍尔效应电导平台相变的普适类，并给出三维

轴子绝缘体中无序诱导的相图，提出可以利用该普适相

变行为在铁磁性三维扑绝缘体异质结构和反铁磁性拓

扑绝缘体MnBi2Te4
[31,32,119–125] 中探测轴子绝缘体态。

A. 轴子绝缘体的有效模型

我们考虑了在实验中已经实现的具有反平行磁矩

表面的三维拓扑绝缘体 (图 10(a)) [28,29,31]，其四带有

效哈密顿量为

H = H0 +HM (17)

其中 H0(k) =
∑4

i=1 di(k)Γi，d1 = A1kx，d2 = A1ky，

d3 = A2kz，d4 = M0 − B1k
2
z − B2(k

2
x + k2y)。该哈密

顿量描述了一个时间反演不变的拓扑绝缘体，每个表面

上存在一个独立的狄拉克锥 [24]。Ai 和 Bi 是模型参数，

M0 控制了三维拓扑绝缘体的体能隙。对于 i = 1、2、3，
Γi = si⊗σ1，Γ4 = s0⊗σ3，si 和 σi 分别是自旋和轨道

自由度的泡利矩阵。塞曼劈裂 HM =M(z)sz⊗σ0，其中
M(z)在顶部和底部表面分别取值为 ±Mz，其他地方为

零 (图 10(a))。这样破坏时间反演的质量项将在顶部或
底部表面上打开一个狄拉克能隙 ∆ ≈ 2 |Mz|(图 10(b))，
由 H

t/p
surf = A1(σxkx+σyky)±Mzσz 描述

[11]，这会引起

顶部或底部表面的半量子霍尔电导 σ
t/b
xy = ±e2/(2h)。我

们通过数值计算半量子表面霍尔电导和在方格子上离

散化的哈密顿量 H，证明了轴子绝缘体相的存在 [126]。

与量子反常霍尔绝缘体不同，轴子绝缘体的总霍尔电导

是零，即 σt
xy +σ

b
xy = 0，并且在表面能隙内没有手性边

界模。这解释了为什么在最近的实验中观察到轴子绝缘

体的零霍尔电导和巨大的纵向电阻 [29–31]。然而，这些

结果与平庸能带绝缘体是一致的。为了揭示轴子绝缘体

的特征，我们接下来将研究轴子绝缘体在无序下的临界

行为。我们讨论包含随机磁性无序 HD = V (r)sz ⊗ σ0

的情况，其中 V (r) 均匀分布在 [−W/2,W/2] 范围内，

W 表示无序强度。

B. 量子霍尔型相变

为了计算局域化长度，我们考虑了一个长度为 Ly，

宽度为 Lx = Lz = L 的三维长条样品，在其 x 方向

上取周期性边界条件，除非另有说明，y 和 z 方向上都

取开放边界条件。局域化长度 λ(L) 通过转移矩阵法得

到 [127–129]。一般来说，临界性质可以从重整化局域化长

度 Λ = λ/L 得到，它在金属相中随着尺寸 L 增大而增

大，在绝缘相中随着 L增大而减小，在临界点不依赖于

L。我们考虑一个如图 10(a)所示的样品，并如图 11所示
进行有限尺寸标度分析。图 11显示，轴子绝缘体在不同
的无序强度 W 下，随着费米能 EF 的提高经历了多个

相变。具体来说，对于弱无序 W = 1.5和 2，在图 11(a)
和 (b) 中，可以确定在 |EF/Mz| ≲ 1 时存在一个轴子

绝缘体相，其中费米能 EF 位于表面狄拉克能隙Mz 内，

此时 dΛ/dL < 0。随着费米能的增大，系统发生退局域

化 dΛ/dL = 0，并进入一个没有半量子化霍尔电导的安

德森绝缘体相，这类似于二维量子霍尔系统中的平台-平
台转变。为了确定这样的相变是属于量子霍尔型的，我

们在图 11(e) 中进行了单参数标度分析 [130]。表现出普

适性的临界值指数选为 2.654±0.213，这个 ν 值的评定

与最近基于整数量子霍尔效应的 Chalker–Coddington
模型的数值结果 ν ≈ 2.6 一致 [131–133]。这说明只要磁

性无序超过了安德森无序，二维量子霍尔型相变就仍然

存在 [126]。此外，为了验证相变的确是来自于二维狄拉

克表面，我们在 x 和 z 方向都取周期性边界条件，并

在图 11(f) 中计算重整化局域化长度 Λ。与图 11(a) 相
比，可以看到较低的二维非局域化态消失，只有较高的

相变点仍然存在，这表明存在一个三维安德森金属-绝缘
体相变。因此，在轴子绝缘体的表面存在一个普适的二

维量子霍尔型相变，从而提供了实验中轴子绝缘体态普

适特征 [126]。这里的局域化长度指数 ν = p/(2κ) 直接

由测量的 κ 和 p 确定，它们的值可以通过实验直接从

输运测量中获得 [134]。最后，在强无序极限下，轴子绝

缘体逐渐被三维临界点抑制，并最终消失 (图 11(a) 和
(d))，系统变成了三维扩散金属。这点从相图中更容易
看出 (图 12(d))。

C. 霍尔电导和相图

接下来我们研究霍尔电导来进一步区别上面所描

述的两种绝缘相。对于较低费米能，如果系统处于轴子
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图 11. (a)-(d) 在不同的磁性无序强度 W 和不同的样品
宽度 L 下，重整化局域化长度 Λ = λ/L 随费米能 EF
的变化关系。(e) 在 W = 1.5 时，通过标度函数 Λ =

f(L1/ν |EF − Ec| /Mz) 对插图中的数值数据进行拟合。多项
式拟合方法给出了临界指数 ν = 2.654± 0.213 和临界费米能
Ec = 0.164± 0.005。这里的原始数据取自 (a) 中的灰色矩形
区域。(f) W = 1.5 时，在 x 和 z 方向均取周期性边界条件
的重整化局域化长度结果。其他参数固定为 A1 = A2 = 0.55，
B1 = B2 = 0.25，M0 = 0.3 和 Mz = 0.12。

绝缘体相，表面霍尔电导和整个样品的净霍尔电导应当

分别是半量子化和零。另一方面，当费米能穿过二维非

局域化态时，系统会转变成安德森绝缘体，表面霍尔电

导将由半整数量子化逐渐趋近于零。需要注意的是，在

实际材料中，如铁磁-拓扑绝缘体异质结和反铁磁拓扑绝
缘体 MnBi2Te4 中，磁化方向指向 z 方向，因此，相变

仅发生在顶部和底部表面。在这里，我们通过实空间的

久保公式 [135,136] 计算了层间的霍尔电导：

σxy(z) =
2πie2

h
⟨Tr {P [−i [x̂, P ] ,−i [ŷ, P ]]}z⟩W (18)

这里在 x和 y 方向上采用周期性边界条件。⟨...⟩W 代表
对无序构型求平均，(x̂, ŷ)表示位置算符，而 Tr {...}z 是
第 z层波函数的迹。P 将哈密顿量H 的本征态投影到占

据态的投影算符。通过方程 (18)，我们计算了层相关的
霍尔电导 σxy(z)(图 12(a))。对于干净样品 (W = 0) 和
存在弱无序的样品 (W = 1.5)，非零的霍尔电导主要来

自靠近顶部 (z = 1)和底部 (z = 8)层的表面，而在体内
(z = 2到 z = 7之间)呈指数衰减，这与三维拓扑绝缘体
中表面态的指数衰减相符，表面态只存在于靠近表面的

几层中 [137]。为了进一步了解霍尔电导，我们考虑了几层

的总霍尔电导，每一层贡献的累积和，即
∑n=z

n=1 σxy(n)，

如图 12(b)所示。对于 W = 1.5(W = 0)，在 z = 1(z =
2) 时，累积霍尔电导变成半量子化，表示底部表面的霍
尔电导是半量子化的。当 z = 8时，由于顶部和底部表面

的半量子霍尔电导互相抵消，整个样品的净霍尔电导在

两种情况下都为零。此外，在图 12(c)中，可以看到轴子
绝缘体在较低能量区域 (|EF/Mz| ≲ 0.5) 具有半量子化
的表面霍尔电导平台，而在高能量区域，安德森绝缘体

的霍尔电导逐渐衰减到零。我们通过在不同的无序强度

下进行有限尺寸标度分析，得到了一个 EF/Mz −W 平
面上的相图 (图 12(d))。由于哈密顿量 H 的粒子–空穴
对称性，相图关于 EF/Mz = 0是对称的。对于弱无序情

况，轴子绝缘体和三维扩散金属相被安德森绝缘体相分

隔开。随着无序强度的增加，它们逐渐接近彼此，并在较

大无序强度 W ≈ 2.5时相连接。然后，体能隙在无序作

用下缩小，并于 W ≈ 3.2时关闭，样品最终成为三维金

属，表现出悬浮和成对湮灭的特征 [138]。为了理解上述的

二维相变的基本机制，我们提供了一个唯象的解释。当

W = 0时，表面态满足一个具有空间均匀质量的二维狄

拉克哈密顿量。随着磁性 (质量)无序W 的增加，表面的

质量变得在空间上不再均匀，使得具有正负质量的狄拉

克费米子共存。在三维迁移率边界中，只要费米能量比

三维迁移率边缘小得多，体态就可以被忽略，系统就可

以用二维随机质量狄拉克哈密顿量来描述。在图 12(e)
中，两个狄拉克质量符号相反的区域之间存在一个手性

边缘态 [139]。此外，二维随机质量狄拉克哈密顿量可以映

射到 Chalker–Coddington 模型，该模型描述了量子霍
尔平台之间的转变 [139–141]。图 12(f)展示了准一维系统
上的 Chalker–Coddington网络模型。在每个节点处，入
射和出射通道表示图 12(e) 中相反符号狄拉克费米子之
间的畴壁上的手性边界态。因此，Chalker–Coddington
模型等价于随机质量狄拉克哈密顿量 [139–141]。此外，我

们模型中的临界指数 ν = 2.654±0.213与基于 Chalker–
Coddington 模型的数值结果 ν ≈ 2.6 一致 [131–133]。因

此，从轴子绝缘体到安德森绝缘体的相变与量子霍尔相

变具有相同的普适类别。

D. 讨论和实验方法

最近，一些实验报道了在铁磁三维拓扑绝缘体异

质结和反铁磁拓扑绝缘体 MnBi2Te4 中的轴子绝缘体
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图 12. (a) 霍尔电导与层标号 z 的关系，其中 z = 1 表示底
表面，z = 8 表示顶表面。(b) 从 z = 1 累积求和到第 z 层的
霍尔电导，且经过了对无序构型的平均处理。(c) 顶表面态的
霍尔电导

∑n=8
n=7 σxy(n)，底表面态的霍尔电导

∑n=2
n=1 σxy(n)

和整个样品的霍尔电导
∑n=8

n=1 σxy(n)。(d) 在 EF/Mz − W
平面上的无序轴子绝缘体的相图。(e) 正 (+) 和负 (−) 质量
狄拉克费米子的畴壁上的手性边界模。(f) 准一维系统上的
Chalker–Coddington 网络模型，其中散射矩阵描述了每个节
点 (交叉点) 处从两个入射态到两个出射态的散射。

态 [29–31,118]。他们发现，当顶部和底部表面的磁化在外

加磁场的作用下从反平行排列转变为平行排列时，霍尔

电导从零增加到 e2/h，才导致了从轴子绝缘体态到陈绝

缘体态的相变 [31,118]。然而，这些结果与磁性拓扑绝缘

体系统中的平庸能带绝缘体相符 [115,116]。在图 13(a)中，
如果我们从反平行排列的轴子绝缘体相开始 (MzMb <

0)，两端电导 [87,142,143] 和霍尔电导都会随着底面的磁

矩翻转从零增加到 e2/h。这证明了实验中观察到的轴

子绝缘体到陈绝缘体的转变。相反，对于安德森绝缘

体，两端电导保始终较小，霍尔电导不表现任何量子化

行为 (图 13(b))。因此，我们得出结论，这些已报道的
实验系统可能处于轴子绝缘体相，但不可能处于安德森

绝缘相。这些都可以是进一步通过探测普适的二维相变

来鉴别轴子绝缘体的良好候选材料，从而排除了平庸能

带绝缘体。考虑到在三维样品中改变费米能的困难，我

们建议在 x(y) 方向施加一个面内的磁场。这能通过减

小垂直于平面的磁化 Mz 来增加 EF/Mz，从而可以出

现二维相变。此外，我们还在方程 (17) 中进一步考虑

图 13. 无序平均电导 ⟨G⟩ 和总霍尔电导 σxy 与底部表面磁
化强度 Mb 的关系。(a) 费米能 EF/Mz ≈ 0.083 时，体系
处于轴子绝缘体相。(b) 费米能 EF/Mz = 2 时，体系处于
安德森绝缘相。其他参数：无序强度 W = 1.5，系统尺寸
Lz × Lx × Ly = 8× 40× 400。

了哈密顿量 H 的体反铁磁性，作为 MnBi2Te4 的有效

模型 [32,144,145]，并重复了有限尺寸标度分析 [126]。发现

二维相变保持不变，说明我们的前述结果是与模型无关

的 [126]。因此，我们建议在铁磁性三维拓扑绝缘体异质

结或反铁磁性拓扑绝缘体 MnBi2Te4 中探测轴子绝缘

体的普适二维相变。

E. 结论

我们研究了轴子绝缘体中无序诱导的安德森相变，

并发现了轴子绝缘相和安德森绝缘相之间的二维相变，

这在平庸能带绝缘体中是不存在的。这个二维相变源于

存在于三维系统表面的二维有质量狄拉克哈密顿量。从

Chalker–Coddington网络模型的角度看，指数 ν ≈ 2.65

有力地说明了这个二维相变与量子霍尔平台到平台转

变具有相同的普适类别。因此，我们提出通过研究三维

磁性拓扑绝缘体中二维量子霍尔型临界行为的普适特

征来探测轴子绝缘体。

VI. 总结

在这篇综述中，我们着重介绍了过去几年在轴子绝

缘体输运性质方面的工作。本文首先研究了轴子绝缘体

中独特的分数化边缘激发的半量子化螺旋棱电流，棱电

流从侧表面的无质量狄拉克电子的侧向古斯–汉欣位移
中产生，并且引起的螺旋棱电流是半量子化的。半经典

波包分析揭示了棱电流的拓扑起源，并提出了一个实验

可行的六端口器件，通过测量非互易电导来识别半量子

化的棱通道。第二部分主要内容是关于半磁性拓扑绝缘

体中半量子化霍尔电导的输运理论，揭示了半量子化霍

尔电导直接与强退相干金属边缘上的半量子化手性电

流相关。在大退相干强度下，霍尔电导保持半量子化，

而纵向电导则随费米能级和退相干强度变化。这些结果
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提供了半量子化霍尔电导的微观输运机制，并对未来的

实验具有指导意义。最后一部分主要研究了轴子绝缘体

中杂质诱导的安德森转变，并发现了轴子绝缘体相与安

德森绝缘体相之间的二维相变，并给出系统的相图。通

过对霍尔电导的研究，可以进一步确认轴子绝缘体的存

在，并提供了实验上鉴别轴子绝缘体的方法。
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Abstract: Research on axion insulators in condensed matter physics has generated
widespread attention in recent years. Axion insulators exhibit an electromagnetic response
similar to that of the hypothetical elementary particle-axion-proposed in high-energy physics,
leading to phenomena such as half-quantized surface Hall conductivity or topological magne-
toelectric effects in the system. Recently, transport experiments on three-dimensional mag-
netic topological insulator heterojunctions and intrinsic magnetic topological insulators like
MnBi2Te4 have revealed signatures of the existence of axion insulators. However, precise mea-
surement of the half-quantized electromagnetic response of axion insulators remains challeng-
ing. In this review, we summarize the theoretical and experimental progress in axion insulator
research within magnetic topological insulating materials. We discuss the excitation of half-
quantized edge currents in axion insulators due to the bulk-boundary correspondence, as well
as a transport theory based on half-magnetic topological insulators for half-quantized Hall con-
ductivity. Finally, we explore disorder-induced phase transitions in axion insulators, including
the universality classes of two-dimensional quantum Hall-like conductivity transitions on the
surface, and propose methods to detect axion insulators using the universal characteristics of
these phase transitions.

Key words: axion insulator; disorder; Half-quantized; Goos-H�anchen shift; topological mag-
netoelectric effect; quantum transport
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