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Abstract: Research on axion insulators in condensed matter physics has generated
widespread attention in recent years. Axion insulators exhibit an electromagnetic response
similar to that of the hypothetical elementary particle-axion-proposed in high-energy physics,
leading to phenomena such as half-quantized surface Hall conductivity or topological magne-
toelectric effects in the system. Recently, transport experiments on three-dimensional mag-
netic topological insulator heterojunctions and intrinsic magnetic topological insulators like
MnBi;Tes have revealed signatures of the existence of axion insulators. However, precise mea-
surement of the half-quantized electromagnetic response of axion insulators remains challeng-
ing. In this review, we summarize the theoretical and experimental progress in axion insulator
research within magnetic topological insulating materials. We discuss the excitation of half-
quantized edge currents in axion insulators due to the bulk-boundary correspondence, as well
as a transport theory based on half-magnetic topological insulators for half-quantized Hall con-
ductivity. Finally, we explore disorder-induced phase transitions in axion insulators, including
the universality classes of two-dimensional quantum Hall-like conductivity transitions on the
surface, and propose methods to detect axion insulators using the universal characteristics of

these phase transitions.

Key words: axion insulator; disorder; Half-quantized; Goos-Hanchen shift; topological mag-

netoelectric effect; quantum transport
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