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Zusammenfassung

Diese Arbeit widmet sich der theoretischen Untersuchung von Atominterferometern in kom-
plexen Gravitationsfeldern. Die zugrunde gelegten Gravitationsmodelle umfassen einerseits
nicht-triviale Korrekturen im Gravitationspotenzial im Rahmen der klassischen Newtonschen
Mechanik, die iiber die Annahme eines idealisierten oder vollstandig homogenen Gravitati-
onsfeldes hinausgehen. Andererseits wird die allgemeine Relativitétstheorie herangezogen,
um insbesondere im Bereich schwacher Gravitationsfelder eine post-newtonsche Beschrei-
bung zu ermoglichen. Diese Herangehensweise erlaubt es, die dominanten Auswirkungen
einer Raumzeitkriimmung systematisch zu erforschen. Die in dieser Arbeit behandelten
quantenoptischen Systeme sind Atominterferometer, Experimente, die kalte Atome bzw.
Bose-Einstein-Kondensate zur Interferenz bringen. Diese Beschreibung bietet einen mogli-
chen Ansatz, um die Grenzen der modernen Physik auszutesten, und erkundet Regionen, in
denen Effekte der Quantengravitation zum Vorschein kommen konnten, die sich von denen
der Hochenergiephysik unterscheiden.

Wir beginnen mit einer Einfithrung in die (allgemeine) Relativititstheorie und die Theorie
der Atominterferometer in idealisierten, Newton’schen Gravitationsfeldern. Um das Gravita-
tionsmodell schrittweise zu erweitern und zusétzliche Effekte wie die Raumzeitkriimmung zu
integrieren, fithren wir eine kompaktere Notation ein. Diese ermoglicht es uns, die Komple-
xitdt durch relativistische Effekte systematisch zu beriicksichtigen. In dieser neuen Notation
prisentieren wir den aktuellen Forschungsstand auf diesem Gebiet, sodass wir direkt darauf
aufbauen und die neuesten Entwicklungen integrieren konnen. Des Weiteren stellen wir eine
neue Interferometergeometrie vor, die besonders gut zur Detektion gravitativer Kriimmungen
geeignet ist. Wir fithren eine detaillierte Analyse durch, um zu untersuchen, wie sich ein
solches Interferometer in idealisierten Gravitationsfeldern verhilt, und vergleichen dies mit
einer numerischen Simulation desselben Interferometers im VLBAI Hannover, welches
das neueste und groffite Atominterferometer-Experiment in Hannover darstellt. Wir nutzen
dieses Beispiel, da uns in diesem Experiment ein prizises Modell des Gravitationsfeldes zur
Verfiigung steht.

Die durch nicht-triviale Gravitationsfelder und die Relativititstheorie verursachten Kor-
rekturen treten an vielen Stellen in der theoretischen Beschreibung auf. Dies fiihrt dazu,
dass die Endergebnisse, insbesondere bei komplexen Interferometergeometrien, schnell
uniibersichtlich werden. Um das Risiko zu verringern, Terme und Effekte zu iibersehen,
war es ein wesentlicher Teil dieser Arbeit, einen Computer-Algorithmus zu entwickeln, der
die Berechnung dieser Terme automatisiert. Dadurch kénnen wir in kurzer Zeit zuverldssig
Ergebnisse auch fiir sehr komplexe Experimente modellieren. Die Kombination aus einem
Computer-Algorithmus, der uns algebraische Resultate liefert, und einem numerischen Mo-
dell fiir ein explizit gemessenes Gravitationsfeld ermoglicht es uns, Theorie und Experiment
besonders detailliert zu vergleichen. Dariiber hinaus kdnnen wir neue Resultate fiir zukiinftige
Experimente im VLBAI Hannover und in anderen Atominterferometern weltweit ableiten.

Schlagworter: Atominterferometrie, Quantensysteme in Gravitation, Relativistische
Effekte in Atominterferometern, Post-Newton’sche Gravitation
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Abstract

This work is a theoretical investigation of atom interferometers in complex gravitational
fields. The underlying gravitational models include non-trivial corrections in the gravitational
potential within the framework of classical Newtonian mechanics, which go beyond the
assumption of an idealised or even completely homogeneous gravitational field. On the
other hand, the theory of general relativity is used to enable a post-Newtonian description,
particularly in the area of weak gravitational fields. This approach makes it possible to
systematically investigate the main effects of spacetime curvature. The quantum optical
systems discussed in this work are atom interferometers, highly accurate experiments that
cause cold atoms or Bose-Einstein condensates to interfere. This description offers a potential
approach to testing the boundaries of modern physics and explores regions where quantum
gravity may emerge, distinct from the realm of high-energy physics.

We start with an introduction to the theory of (general) relativity and the theory of atomic
interferometers in idealised Newtonian gravitational fields. In order to gradually extend the
gravitational model and integrate additional effects such as spacetime curvature, we introduce
a more compact and versatile notation. This allows us to systematically take into account
the additional complexity due to relativistic effects. With this new notation, we present the
current state of research in this field, enabling us to directly build upon it and seamlessly
incorporate our own developments. Furthermore, we present a new interferometer geometry
that is particularly well suited for the detection of gravitational curvature. We perform a
detailed analysis to investigate how such an interferometer behaves in idealised gravitational
fields and compare this with a numerical simulation of the same interferometer at the VLBAI
facility in Hannover, which is the newest large scale atom interferometer experiment in
Hannover. We use this example because this experiment provides us with a precise model of
the gravitational field.

The corrections caused by non-trivial gravitational fields and the theory of relativity
occur at many levels in the theoretical description. This means that the final results quickly
become unwieldy, especially in the case of more complex interferometer geometries. To
reduce the risk of overlooking terms and effects, an essential part of this work was to develop
a computer algorithm that automates the calculation of this algebra. This enables us to
reliably model results even for very complex experiments in a short time. The combination
of a computer algorithm that provides us with algebraic results and a numerical model for an
explicitly measured gravitational field enables us to compare theory and experiment in great
detail. In addition, we can derive new results for future experiments in the VLBAI Hannover
and in other atom interferometers worldwide.

Key words: Atom interferometry, Quantum systems in gravity, Relativistic effects in
atom interferometers, post-Newtonian gravity



“The best that most of us can hope to achieve in physics
is simply to misunderstand at a deeper level.”

- Wolfgang Pauli to Jagdish Mehra'
Berkeley California in May 1958

'In "The Historical Development of Quantum Theory — Volume 6" by Jagdish Mehra and Helmut Rechenbach.
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Chapter 1

Introduction

"Die im nachfolgenden dargelegte Theorie bildet die denkbar
weitgehendste Verallgemeinerung der heute allgemein als
’Relativititstheorie’ bezeichneten Theorie; die letztere nenne ich im
folgenden zur Unterscheidung von der ersteren ’spezielle
Relativititstheorie’ und setze sie als bekannt voraus."

Albert Einstein, 20.03.1916
Introduction from ,,Die Grundlage der allgemeinen Relativititstheorie®

General Relativity (GR) and Quantum Mechanics (QM) are the foundational theories in
modern physics, providing essential frameworks for understanding the behaviour of matter
and energy at both microscopic and cosmic scales. QM has revolutionised technology, leading
to advancements in electronics, computing, and medical imaging, while GR has reshaped
our understanding of gravity, space, and time, influencing cosmology and astrophysics.
Together, these theories form the basis for much of the contemporary scientific research and
technological innovation, driving progress across multiple disciplines. Both theories will be
introduced in this chapter.

1.1 General Relativity

GR, formulated by Albert Einstein in 1915 [5], revolutionised our understanding of the
universe and profoundly altered the course of modern science and technology. This ground-
breaking theory redefined gravity, not as a force between masses as Newton had described
in the late 17th century in his "Philosophiz Naturalis Principia Mathematica,"' but as a
manifestation of the curvature of spacetime caused by mass and energy. The complexity and
counter intuitive nature of the theory of GR is often masked by the simplistic looking field
equations
1

R, - 5gWR +Ag, = ir—“GTw, (1.1)
which we will elaborate on in the following. GR has produced novel scientific discoveries
for more than a century, none of which gave rise to possible extensions beyond the scope of
the theory. Testing the validity of GR on even broader length and energy scales therefore
becomes ever more interesting.

'Often only referred to as the "Principia”.
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One of the most significant contributions of GR was its impact on our understanding
of cosmology. The theory predicted the expansion of the universe, a concept that was later
confirmed by Edwin Hubble’s observations of distant galaxies [6]. This laid the groundwork
for the Big Bang theory, which describes the origin and evolution of the universe and was
initially proposed by Georges Lemaitre” in 1931. GR also predicted the existence of black
holes, regions of spacetime with gravitational fields so strong that not even light can escape
them [8]. These predictions were initially met with scepticism [9, 10] but have since been
confirmed through numerous observations, including the recent imaging of a black hole by
the Event Horizon Telescope [11]. The influence of GR extends beyond theoretical physics
into practical applications. One of the most notable examples are the Global Navigation
Satellite System (GNSS) and Global Positioning System (GPS). The precise functioning
of GNSS/GPS satellites depends on the accurate consideration of relativistic time dilation
effects predicted by general relativity. Without these corrections, the synchronisation of
satellite clocks would drift, rendering the system ineffective for navigation and timing.

GR has also enhanced our understanding of extreme astrophysical phenomena. The
theory explains the behaviour of light in strong gravitational fields, leading to the prediction
and observation of gravitational lensing, where light from distant stars is bent around massive
objects. This phenomenon has become a crucial tool in astronomy for studying dark matter
and distant galaxies [12]. Furthermore, the detection of gravitational waves in 2015 by the
Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations [13]
provided direct evidence of one of GR’s most remarkable predictions. These ripples in
spacetime, generated by cataclysmic events such as the merger of black holes, have opened
a new window for observing the universe and have initiated the field of gravitational wave
astronomy. GR’s impact on our world-view extends to philosophical and conceptual realms
as well. It has challenged our perceptions of space and time, revealing them to be dynamic
and interwoven entities rather than fixed and separate absolutes. This paradigm shift has
influenced a wide range of disciplines, from philosophy to literature, and has inspired a
deeper appreciation for the intricate and interconnected nature of the universe.

In conclusion, GR has profoundly changed the world by reshaping our understanding
of gravity, the cosmos, and the nature of reality itself. Its theoretical predictions have been
confirmed through groundbreaking observations and experiments, leading to technological
advancements and new scientific fields. The legacy of GR continues to inspire and drive
scientific inquiry, solidifying its place as one of the most important scientific achievements
of the 20th century. In the following we introduce the pillars of GR, namely the equivalence
principle, and introduce the mathematical notation.

1.1.1 Equivalence Principle

The Einstein Equivalence Principle (EEP) encompasses three distinct hypotheses and forms
the cornerstone of GR. In this section, we will briefly explain each of these hypotheses,
drawing on explanations similar to those found in Ref. [14]. Additionally, we will highlight
the various methods and experiments used to test each of these assumptions, illustrating their
critical roles in validating the foundations of GR.

?Lemaitre, who was a Catholic priest and an exceptionally skilled relativist, proposed this theory in response
to the emergence of a new theory at that time, quantum mechanics, quoting "If we go back in the course of time
we must find fewer and fewer quanta, until we find all the energy of the universe packed in a few or even in a
unique quantum." [7]



CHAPTER 1. INTRODUCTION 3

Universality of Free Fall

The Universality of Free Fall (UFF) states that the motion of "test particles" depends solely
on their initial position and velocity in spacetime. This principle implies that gravity couples
universally to matter, irrespective of the mass and internal structure of the objects. A famous
demonstration of this natural law occurred during the Apollo 15 mission in 1971, when
astronaut David Scott simultaneously dropped a hammer and a feather on the Moon. In the
vacuum of space, both objects fell at the same rate and hit the ground simultaneously, vividly
illustrating the validity of UFF to a wide audience. The UFF is also commonly referred
to as the Weak Equivalence Principle (WEP); however, for consistency, we will use the
term UFF throughout this thesis. Nevertheless, when analysing this specific example more
carefully, it is important to emphasise that the UFF explicitly refers to point particles. This
means that higher-order mass moments or spin could alter the actual trajectories, even though
these interactions are purely gravitational. Consequently, a more detailed examination of
the experiment would reveal deviations in the trajectories of the feather and hammer due to
their non-trivial mass moments, which — to emphasise this once more — is in accordance with
UFF.

This peculiar fact raises the question of which substances actually constitute reasonable
candidates for point particles, revealing that the answer is highly context-dependent. On cos-
mological scales, the Earth serves as an excellent test mass, whereas it lacks this qualification
for experiments conducted in its orbit. For Earthbound experiments, the best candidates are
typically atoms, as they are indistinguishable from one another, can be electrically neutral,
and have a trivial mass compared to most experimental setups and the Earth itself.

Deviations from UFF are usually measured using the Eotvos factor, which is defined as

la(A) — a(B)|
a(A) +a(B)’
where A, B are systems made of different materials and a(A), a(B) are the local gravitational
accelerations of them. The current best UFF test was performed using the MICROSCOPE
mission [15] and resulted in a lower bound of n(Pt, Be) < [-1.5 + 2.3 (stat) + 1.5 (syst)] X
10~ for Platinum and Titanium.

nA,B) =2 (1.2)

Local Lorentz Invariance

The Local Lorentz Invariance (LLI) principle states that any local, non-gravitational exper-
iment should exhibit no preferred direction in spacetime. Phrased equivalently: One can
transform the chosen frame of reference using an arbitrary Lorentz transformation and obtain
the same physical observables. A typical example is testing whether the speed of light ¢
varies in different spatial directions [16]. Deviations of LLI are therefore tested by — for
example — measuring the quantity

Ac -

— <32x107'° (1.3)
c

Another approach is to measure potential shifts of atomic spectra over the course of a year

due to Earth’s orbital velocity in different spatial directions around the Sun. Experiments

like those constrain parameters that would describe physics beyond the standard model to

the 1072 level [17].

Local Position Invariance

The Local Position Invariance (LPI) principle states that the outcome of any experiment is
independent of where and when it is performed. This principle is often expressed through
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two equivalent formulations: the Universality of Clock Rates (UCR) and the Universality
of Gravitational Redshift (UGR). The UCR states that two different standard clocks® will
display the same time after travelling along identical worldlines. The UGR states that
standard clocks, travelling along different worldlines and inter-comparing their times using
electromagnetic signals, will exhibit the expected gravitational redshift [18].

A schematic depiction of a UGR experi-
ment can be seen in Fig. 1.1. Each observer \ “
measures the frequency of the light field k in \ ;
their frame of reference and denotes it to be v;. \
This frequency is measured with respect to the \
proper time of each observer on the respective \ \
worldline ;. For details, see the mathematical ‘\ ‘\
formulation of GR in Sec. 1.1.2. The UGR “
can then be expressed as u \ |

N %, (1.4) ‘
2 glun k),

where g denotes the metric tensor and u; are
the respective four-velocities of each observer
Note that, without additional structure, there
is no way to distinguish between a gravita-
tional redshift and a kinematic redshift, i.e.
the Doppler effect, since there is no preferred
frame of reference in GR that can a priori be
called "to be at rest". Eq. (1.4) therefore in-
cludes both effects simultaneously. The UCR, on the other hand, could also be tested by
Eq. (1.4), but using two observers on the same trajectory each carrying a standard clock
composed of different materials. The UCR therefore ensures that all clocks, independent
of their physical realisation, are equivalent and that the concept of time itself is a property
emerging from the geometry of spacetime.

Tests of the UCR/UGR are performed by searching for possible deviations of the value
vi/v, by multiplying Eq. (1.4) with the quantities (1 + ayggr) or (1 + aycr), therefore
parametrising possible deviations of the LPI by test parameters ayggr and aycr. Experiments
like the "Gravity Probe A" [19] compared two identical hydrogen maser clocks — one of
which was at rest on Earth’s surface and the other one being on board of a ballistic rocket,
travelling nearly two hours around Earth with an altitude of up to 10.000 km, resulting in an
upper bound for UGR of

" Figure 1.1: Simplified visualisation of a
setup to test the UGR with two observers
on their respective worldlines y;, v, and
corresponding four-velocities u;, u, inter-
changing a light ray k for the case of a two-
dimensional spacetime.

aygr <7 %107, (1.5)

whereas comparing two clocks based on different atomic species on (nearly) identical
worldlines gave an upper bound for the UCR parameter of

aper < 5.8x107°, (1.6)

see Ref. [20] .

In summary, Einstein’s equivalence principle is a cornerstone of GR, highlighting the
indistinguishability of gravitational and kinematic accelerations and leading to the revolu-
tionary concept of gravity as the curvature of spacetime. Testing these assumptions with

*Viewed as idealised theoretical devices measuring proper time along any timelike curve.
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even greater accuracy is an important task of modern fundamental science and its relevance
cannot be overstated.

1.1.2 Mathematical Formulation

We assume that the reader is familiar with the basic mathematical description of relativity. If
not, one can find a summary of the basic concepts of differential geometry in Appendix A,
which are needed to understand all the mathematics presented in this thesis. We adopt the
following convention: Greek indices range from O to 3, whereas Latin indices range from
1 to 3. Bold letters like x and R will always represent three-dimensional quantities, like
elements in R® or 3-tuples of operators.

In Einstein’s GR the universe is modelled to be a smooth four-dimensional Lorentzian
manifold with metric tensor field, defined as a section in the tensor bundle of degree (0, 2)
that can be written using the canonical co-vector basis fields as

3
g= ) g,d@dx =g, dd = ds’. (1.7)
1,v=0

We shortened the expressions by using abstract index notation with Einstein sum convention
and by omitting the tensor product symbol. Additionally, we have written g as a "line
element” ds® — both conventions will be used interchangeably. The g, are the component
functions of g for the specific choice of coordinates. The metric tensor is assumed to be
symmetric g, = g,,, and has —in our convention — one negative and three positive eigenvalues.
The inverse of the metric tensor will be denoted by g"” and satisfies ¢""g,, = ¢ |, where &,
denotes the Kronecker delta. Using the inverse of the metric tensor one is able to "lift the
index" of tensor components, e.g. X' = g""x,. If spacetime admits a time-independent metric
we call it "stationary" — if it is also irrotational we say that the spacetime is "static".

Having a metric tensor grants the possibility to measure lengths and enables us to describe
GR as a Lagrangian field theory using a corresponding extremisation of an action functional.
A Lagrangian, describing a point particle of mass m, travelling on a worldline x*(7) is defined

as
f dx* dx”
L = — 2 t = — - ) 1
mcd mc 8uy TRET (1.8)

where 7 is the "time coordinate"* and dt is an infinitesimal increment of proper time, i.e.,

the time an ideal clock would tell travelling on the same path through spacetime. In the
description of fields, such as the Electromagnetic (EM) field, one encounters Lagrange
densities £, which connect to a Lagrangian via the square root of the determinant of g, via
L=+gL

Having a notion of lengths and angles one is able to define a new derivative — the
covariant derivative — which generalises directional derivatives and enables to analyse the
"straightness" of curves. Its action on vector fields X = X”d, and covector fields 2l = 2, dx”
is given by

Y| A
VHBEV = (%%V + I“VMBE and VU, =90, -1" 1, (1.9)
with the Christoffel symbols

1

F#VO' = Eg'u/l (arrg/lv + avg/l(r - a/lgwf) . (110)

*For simplicity we refer to the zeroth-coordinate in each chart as the time coordinate.
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This notion of a covariant derivative is canonical to each manifold which admits a metric
tensor and is usually called a Levi-Civita connection. To shorten notation even more we will
from now on use commas to indicate partial differentiation, whereas semicolons abbreviate
covariant derivatives, thatis, A, , = d,A4, and A, = V A . Finally one can define three
different notions of curvature

Riemann curvature: RY%,5 = 0,1 g5 = 0,1, + T4, —T% I (1.11a)
. . . _ ’y

Ricci curvature: Ryp =R, p (1.11b)

Ricci scalar: R= g“ﬂRaﬁ. (1.11¢)

Each of these different curvature definitions plays a different — but equally important — role in
Einstein’s GR, which becomes ultimately apparent in the field equations R, — % guwR+Ag,, =
82G T,,, where A is the cosmological constant and 7, is the energy- momentum tensor that
descrlbes the distribution of energy and matter m spacetlme We say that "spacetime
is curved" if there are non vanishing component functions of the Riemann tensor R Byo-
John Archibald Wheeler’s famous quote "Spacetime tells matter how to move; matter tells
spacetime how to curve" sums up the idea behind GR quite well. So far, we have only
described the second part of this quote. We now describe how matter — or to be more precise,
test particles, move through spacetime.

Which worldline x*(¢) matter takes through spacetime is described by the geodesic
equation

xt A dx
— 4 =0 1.12
di ode de (1.12)

which can be derived from the EEP. A geodesic can be thought of as the "straightest possible
path" in a curved spacetime and is achieved by a worldline whose infinitesimal (four-)
velocity vector is always constant along its path and points in the direction of travel. Note
that this concept can be thought of as the direct generalisation of a vanishing acceleration
into the framework of differential geometry.

We will continue to introduce three different spacetimes, each including more corrections
to describe gravitational interactions with an increasing level of complexity; each step
including more relativistic effects — starting from (empty) Minkowski space.

1.1.3 Flat Spacetime

The cornerstone of Einstein’s theory of relativity is the fact that the speed of light in vacuum
¢ =299.792.458 9, (1.13)
s

is constant, as manifested in the LLI. The sheer amount of trust physicists lay upon this
fundamental aspect becomes evident in the SI-redefinition of the metre in 2019 — making
¢ a defined constant, without any measurement uncertainties. The geometry of spacetime,
even in the absence of matter, therefore inherits a causal structure, which is defined using
the speed of light and results in the framework of Special Relativity (SR). To see how this
structure arises we need to set some notation.

For flat, Minkowski spacetime5 M= (R4, 1), we can define a trivial global chart with

>The notions of "flat spacetime", "Minkowski spacetime", and "Minkowski space" are often used syn-
onymously. The latter name is justified because this spacetime is additionally equipped with a vector space
structure.
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ct,

absolute absolute
elsewhere elsewhere

Figure 1.2: Two-dimensional depiction of a spacetime diagram of an observer travelling
along the timelike curve y in Minkowski space (blue) with indicated light cone structure
(yellow) and corresponding regions of future, past and the absolute elsewhere.

domain U = M = {(ct, X,V, z)' -0 <X, Y,2< oo} and metric tensor

4 4 . . .
n:R"XR"— R, with component functions Ny = diag(-1,1,1,1). (1.14)

The line element can then be written as
ds® = i, dx'dx” = —2dr* + do + dy? + dz”. (1.15)

Note that the four components of an event do not constitute a four-vector in the sense that it
transforms covariantly under Lorentz transformations. The difference between two events
X1, X,, called a "displacement four-vector”, on the other hand, is a four-vector and the sign of
its length carries information about the possibility of a causal connection of both events. By
defining

ds* = Nydx{dx; <0 &  x; and x, are timelike separated, (1.16a)
ds* = nyd¥{d; =0 &  x and x, are lightlike separated, (1.16b)
ds® = My dx¥{dx; >0 & x; and x, are spacelike separated, (1.16¢)

one can divide Minkowski space into three distinct regions as shown in Fig. 1.2, where the
region of spacelike separated events is commonly called the "absolute elsewhere"

Alternatively one can also define a spherical coordinate system with chart domain
U= {(ct,r,@,go)’ —0<t<oo,r>0,0<0<m0<p< 271}, such that one leaves out a
single half-great circle of infinitesimal thickness between the poles in this chart. Most
non-trivial, but spherically symmetric, spacetimes use this chart domain, however, one has to
keep in mind to use a second chart to describe the whole spacetime. The Minkowski metric
takes the following form in these coordinates

T = diag(~1, 1,77, sin*(®)), (1.17)
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such that the line element reads
ds® = 7j,, d¥d¥" = —*dr* + dr’ + 17d6” + 1’ sin’(6) dy’. (1.18)

Next, we examine the dominant gravitational effects that can be added onto Minkowski
spacetime to develop a theory similar to Newtonian gravity.

1.1.4 Newtonian Spacetime

We have now seen how gravity arises in GR as the geodetic motion of particles in curved
spacetimes. One can ask how Newtonian gravity would fit into this description, or more
general "Can we interpret Newton’s axioms also in a geometrical framework via a space
curvature?" The following description is based on Frederic Schuller’s introduction to GR [21].
To do this, let us summarise the axioms of Newtonian gravity

e Axiom 1: A body on which no force acts moves uniformly along a straight line.

e Axiom 2: Deviation of a body’s motion from such uniform straight motion is effected
by a force, reduced by a factor of the body’s reciprocal mass.

We now introduce a mathematical framework to formalise those concepts.

Letx :R — R¥bea particle’s trajectory with mass m and F = mg : R® — R the
(time independent) gravitational force field. Let ¢(x) be the corresponding gravitational
potential, i.e., g(x) = —V@(x), which satisfies Poisson’s equation

, p(x)
|x —-x'

Ap(x) = 4nGp(x) = ¢(x)= —Gfdx , (1.19)

where p(x) is the gravitational mass density. Newton’s second axiom can now be rewritten as
L1 ca_ 1 ra
¥X=—Fx) & I-—F'(x=0 (1.20)
m m

and we continue to ask whether this formula can be written as a (three-dimensional) geodesic
equation, i.e.,

4T =0 (1.21)

for a suitable choice of Christoffel symbols. Unfortunately one cannot choose Christoffel
symbols r ji for a given force field F, such that Eq. (1.21) holds, because of the non-trivial
dependence on &/3*. We can, nevertheless, lift the description from three to four dimensions
by defining a worldline as

X:R—RY s (ct,x() (1.22)

and see that (?tXO = X% = ¢. We can then trivially rewrite Eq. (1.20) by multiplying twice
with X°/c = 1 to obtain

., .. 1 0w
¥'=0, X'- —=F'@®x°’X"=0 (1.23)
mc
and one might ask what the point in the whole derivation was, since we get the same equation
as before, but trivially rewritten and with the additional constraint X" = 0. However, since
X% = ¢, one can now — in this four-dimensional description — actually choose Christoffel
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symbols Fojk = ijk = 0 Vi, jk € {1,2,3} and ', = —ﬁF“, such that the geodesic
equation

X"+ F‘I#VX”XV =0 (1.24)
holds and one can interpret Newton’s first axiom to be satisfied.

From the knowledge of all Christoffel symbols one can deduce the form of the metric
tensor and its inverse

—1-240 ¢ ~1+2%40 ¢
8y = ¢ , g = ¢ : (1.25)
0 1, 0 1,

where 15 denotes the three-dimensional unity matrix and we assumed — for simplicity — that
the frame of reference does not move with respect to the matter distribution, resulting in a
static spacetime.

A spacetime which admits a metric tensor defined by Eq. (1.25) will be called "Newtonian
spacetime". Note that this nomenclature should be taken with a few additional thoughts, i.e.,
if a universe is modelled to be a Newtonian spacetime this is not equivalent to Newton’s
classical theory of gravity, because the notions of "absolute space" and "absolute time" are
replaced by a four-dimensional description on spacetime and is — by definition — Lorentz
covariant. A better picture would be to see this spacetime as a first order Newtonian extension
to special relativity, which can also be motivated by calculating the Lagrangian, defined in
Eq. (1.8), corresponding to the metric tensor in Eq. (1.25)

)
L(r, i) = —mc* + % — m(r) + O(c72), (1.26)

where we used a Taylor expansion of the square root. This is the usual, non-relativistic,
Lagrangian for a point particle, up to post-Newtonian corrections of O(c™?) that we will
discuss in the next section. The Newtonian spacetime therefore combines the framework
of (special) relativity with the dominant effects of Newtonian gravity and will be a helpful
intermediate step in the transition from Minkowski to post-Newtonian spacetimes.

An important point we want to highlight is that even this Newtonian spacetime has
non-vanishing spacetime curvature. One can calculate Riemann curvature Eq. (1.11a) whose
only non-vanishing components are

1 0
R p0(x) = ——z—bF“(x). (1.27)
mc” 0x
From here one can calculate the Ricci curvature Eq. (1.11b) as
0 1 4nG
Ryp(x) = R40(x) = —— 3 2 F(x) = —0,0"9(x) = ——p(x), (1.28)
mc- 0X C c

which is non-zero by Poisson’s law in the presence of matter. Note that this is not a curvature
of space, but a curvature of spacetime.

The notion of spacetime curvature is often used in experiments using Atom Interfer-
ometers (AIFs) [22] — but its definition may vary. Often, spacetime curvature is defined to
be a non-vanishing second order derivative of ¢(r), i.e., a gravity gradient. Relativistically,
however, the mere existence of a non-vanishing gravitational potential manifests as spacetime
curvature, independent of whether this potential admits non-trivial second order derivatives,
making the above mentioned alternative definition of spacetime curvature not wrong, but
potentially ambiguous.
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1.1.5 Post-Newtonian Spacetime

We are going to model gravity by a metric theory in which test bodies follow geodesics
with respect to the corresponding Levi-Civita connection and to which matter couples by
the standard minimal scheme. This scheme may be extended to scalar-tensor [23] and
vector-tensor theories [24], which we will not consider here.

To perform a Newtonian weak-field and slow-motion expansion of the physics in a
relativistic spacetime, one first has to introduce a background structure with respect to which
these notions can be defined [25, Sec. 16.2.1]. This background structure consists of a
Minkowskian metric and the worldline of a preferred observer. Then one can implement
the Newtonian expansion by a power series expansion in small parameters: The Newtonian
gravitational potential ¢/ > < 1andv?/c® < 1, where vis a typical velocity of the matter
sourcing gravity. With respect to the background structure, the metric tensor g then splits
into the sum of a Newtonian spacetime and post-Newtonian corrections, special to each
metric theory. This approach gives rise to a 10-parameter class of different metric theories
and is described in the Parametrised Post-Newtonian (PPN) formalism [26] . The low-order
post-Newtonian behaviour of each metric theory is then uniquely determined by those ten
PPN parameters.

In the following, we only consider two out of those ten possible parameters, namely, the
Eddington-Robertson (ER) parameters 5,y € R, that correspond to the biggest relativistic
corrections of static spacetimes. In a local coordinate system x* = {ct, r} the covariant PPN
metric tensor components can be written using the line element

2

ds® = g, dx'dx” = — (02 +2¢(r) + 2/3@)(1;2 + (1 - 2yﬁ2r))dr2 +0(c™), (1.29)
c c

and ¢ is, again, the gravitational potential that arises from solving Poisson’s equation6 in

Eq. (1.19) for a given matter distribution p(r). The coefficient functions of the inverse metric
take the form

14220 4 28— 42 L 06 o)
o p ; (1.30)

o(c™) (1+2y%2) 15+ 0™

In standard GR, the ER parameters are unity. Upper bounds for the ER parameters
are long known to be on the orders |y - 1| = |[B-1] < 10~ obtained by tracking, e.g.,
the trajectory of the Cassini mission or measuring perihelion shifts of Mercury and Mars
(cf. [28-31]). For now we model Earth as a point source at the origin with mass M, such
that the Newtonian gravitational potential takes the form

GMg,
p(r)=Mgzo(r)y =  ¢(r)=- E (1.31)
A consideration of more complex gravitational potentials can be found in Sec. 2.4.1 and
Sec. 2.4.2. Notice that the metric tensor is asymptotically flat in these coordinates, since
¢(r) — 0 for |r| — oo, which means that metric tensor is not Minkowskian at the point of
an earthbound experiment.

%See, e.g., the discussion in Chapter 6 of Ref. [27] and Eq. (6.2.14) therein.
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One can now calculate the Lagrangian as defined in Eq. (1.8), similarly to the case of the
Newtonian spacetime before, to obtain

L(r, i) = - \/c +2¢(r)+2[3¢() (1 ‘W))r + O™

C

2 .4
28 —
= —mc® + mro_ me(r) + mr_
2 8¢?

4 21m¢(r)i'2 + O, (132)

C

which shows three additional (general) relativistic corrections of order ¢~2. The first novel
contribution is the special relativistic correction to the kinetic energy, the second term is a
quadratic correction to the gravitational potential and the last term is a mixture of kinetic and
potential contributions.

For the most part of this thesis we will deal with the Newtonian (Chapter 2) and the post-
Newtonian (Chapter 3) spacetimes and explain how AIF experiments should be theoretically
modelled in such gravitational backgrounds. Nevertheless, as an outlook we will analyse the
next order post-Newtonian corrections that describe rotations and the relativistic effect of
"gravitomagnetism" in Sec. 3.8. For now we will conclude with the introduction of GR and
continue with a short introduction to QM and the interferometry of matter waves.

1.2 Quantum Mechanics and Atom Interferometry

QM, developed in the early 20th century has transformed our understanding of the physical
world and led to technological innovations that have reshaped modern society. This branch
of physics, which describes the behaviour of particles on the atomic and subatomic scales,
challenged classical notions of reality and introduced concepts that have revolutionised
science and technology. One of the most significant impacts of QM is its role in the
development of modern electronics. The principles of QM are foundational to the design and
function of semiconductors, the essential components of transistors and integrated circuits.
These components form the backbone of all modern electronic devices, including computers,
smartphones, and digital cameras. The miniaturisation and performance improvements in
electronics, driven by an understanding of QM, have catalysed the digital revolution and
transformed communication, entertainment, and information processing.

QM has also led to profound changes in our philosophical understanding of reality.
Concepts such as wave-particle duality, superposition, and entanglement challenge clas-
sical intuitions about the nature of matter and energy. The famous thought experiment
"Schrodinger’s cat" [32] and the Heisenberg uncertainty principle [33] illustrate the counter-
intuitive nature of quantum phenomena and have sparked debates in philosophy regarding
the nature of reality, observation, and information [34].

Matter waves, the concept integral to the experiments described in this thesis, describe
the wave-like behaviour of particles such as electrons, protons, and atoms. This phenomenon
was first proposed by Louis de Broglie in 1924 [35], who postulated that every particle with
mass also exhibits wave-like properties, characterised by a wavelength inversely proportional
to its momentum. This groundbreaking idea was experimentally confirmed by the electron
diffraction experiments of Davisson and Germer in 1927 [36], which showed that electrons
can produce interference patterns, akin to light waves, and was further improved by Colella,
Overhauser and Werner with neutrons in 1975 [37]. Matter waves also play a crucial role in
the development of technologies such as electron microscopy and — integral to this thesis
— atom interferometry. These applications leverage the wave nature of particles to achieve
high-precision measurements and imaging at atomic and subatomic scales. By understanding
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and utilising matter waves, scientists can probe the fundamental properties of matter and
explore the quantum realm with unprecedented accuracy, as recently demonstrated in the
measurement of the fine-structure constant [38, 39].

In an AIF, neutral atoms are first cooled and slowed down to reduce thermal noise and
improve coherence. The particles are then split into two or more paths using techniques
such as diffraction through a grating or interaction with laser beams. These wave packets
travel in coherent spatial superposition and are subsequently recombined. At the point of
recombination, the overlapping waves interfere with each other, creating an interference
pattern. The nature of this pattern — constructive or destructive interference — depends on the
relative phase difference accumulated by the waves along their different paths. By precisely
measuring this interference pattern, information about the environment through which the
particles travelled, such as gravitational fields, rotation rates, or electromagnetic fields, can
be extracted with high sensitivity.

We continue to describe the physics behind an AIF mathematically and introduce the
necessary notation. An atom is modelled to be a system of two electromagnetically bound
spinless point particles with masses m,, m,, positions r, r, and charges ¢q,, g,, coupled to an
external EM field. The corresponding Hamilton operator H consists of the Hamiltonian for
Centre of Mass (COM) motion Hcqy;, the Hamiltonian for the internal degrees of freedom
Hj, the Hamiltonian for the external EM field Ay, and the interaction Hamiltonian of the
atom with the EM field H, ; , i.e.,

The external EM field is assumed to be a classical solution to the source-free Maxwell
equations and will therefore not exhibit any Quantum Electrodynamics (QED) effects. In
the following the canonical position and momentum operators of COM and relative motion
will be denoted by R, P and 7, p, respectively, whereas the total mass of the atom will be
denoted by m = m; + m,, and the reduced mass by y = m;m,/m.

Given an initial state [¢(0)) one can calculate the time evolved state of the system via
(1)) = e A [¥(0)), if the external potentials affecting the atom are time independent,
which we assume for now. This can be calculated directly from the Schrodinger equation

.. 0 N
ih= W) = Hy). (1.34)

Upon recombination of the atomic paths, interference between both wavefunctions will occur.
The probability of the atom to be in a certain state at the end of the experiment, either defined
by the amount of photon momenta imparted to the COM or the internal state, is given by

1
P@) = W@lp®) = 51 + C1) cos(AD())). (1.35)

where C(7) is the contrast and AD(¢) is the phase difference between the two arms of the
interferometer.’” The main objective of this thesis is to obtain formulas for the phase difference
AD(¢) in complex gravitational fields, including general relativistic effects. We continue by
analysing each of the terms in the Hamiltonian in Eq. (1.33) separately in more detail.

"We omit the time dependence of the phase shift from now on, since the time intervals of the interferometers
of interest will be fixed anyway, such that the time instance where the phase shift is measured is clear by context.
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1.2.1 Motional Hamiltonian

The motional Hamiltonian A¢gyy, i.., the Hamiltonian for the COM degree of freedom R, P,
is given by

Pz
Heom = ot m¢(R), (1.36)

with the gravitational potential #(R). To solve the Schrodinger equation we follow the
introduction to atom interferometry from Ref. [40], which makes use of the stationary phase
approximation and assumes that the atoms can be attributed with the notion of a well-defined
worldline, which can be motivated by a narrow wave packet size using cold atoms, or
potentially Bose Einstein Condensates (BECs) [41-46]. The stationary phase approximation
states that the wavefunction of an atom, initialised as a wave packet at a time #,, can be
approximated at ¢, > ¢, using the classical path of the atom R(#), which minimises the action

Iy

S(R(t),R(1)) = f L(R(?), R(?)) dt, (1.37)

Iq

where L(R, R) is the Lagrangian corresponding to the Hamiltonian in Eq. (1.36). Note that
L(R, R) coincides with the Lagrangian of Newtonian spacetime from Eq. (1.26) that we have
seen in the introduction, up to order 0(0_2), ie.,

L(R,R) = %Rz — mé(R). (1.38)
A solution R(¥) to the corresponding Euler-Lagrange Equation (ELE)
d . .
d_tVRL(R’ R) - VLL(R,R) =0, (1.39)

minimises the action functional in Eq. (1.37) and can be interpreted as the classical trajectory
of a point-particle of mass m moving freely in the potential ¢(R), provided two initial
conditions: the position R(t,) = R, and the velocity R(t,) = R, at the initial time #,. The
ELE in the Newtonian case evaluates to R(f) = —V¢(R) and can analytically be solved, given
an explicit form of ¢>(R).8 The COM wavefunction at the time 7, is then given by

lo(R,, 1)) = f f f IR, K(R,, 1, Ry t,) [W(R,, 1)), (1.40a)

where R, is the position of the atomic wave packet at #,. This position is acquired using the
solution of the ELE from Eq. (1.39), and

Ty
iS(R(1).R(1)

K(R,,1,:R,.1,) = f e T DX(t) DY) DZ(®), (1.40b)

t

a

is a propagator between the spacetime events A = (¢,, R,) and B = (t;, R,). The abstract
differentials DX (¢) DY (r) DZ(t) indicate a Feynman path integral and should be taken with
respect to all paths connecting A and B. Note that the stationary phase approximation is
exact for Lagrangians, which depend at most quadratically on position and velocity, therefore
limiting the number of gravitational potentials that can be described by this approach without
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Figure 1.3: Schematic depiction of an interferometer consisting of two atomic paths, which
are the solutions to the ELE for the different initial conditions set by the spacetime events
A,B|,B, and C. The upper path A — B; — C is depicted in blue and the lower path
A — B, — C in orange.

any perturbation. To ease up notation we will always align the local z-axis e, with the atomic
trajectory, such that we essentially describe a one-dimensional system for the COM motion.’

The explicit form of the wavefunction will not be needed, but only the accumulated
phase along the atom’s path. Considering an interferometer consisting of two distinct atomic
paths that start and end at the same position, as depicted in Fig. 1.3, one can calculate the
relative phase A® acquired between both paths as

Here the phase between two spacetime events AD,_, » is the (one-dimensional) action
functional evaluated along the classical path Z,_, () connecting the initial and final heights
Z,,Z,,1e.,

)

1

1 .
Aq)AHB = %Sz(zh’ tb;Za’ ta) = ﬁ fdt L(ZAHB(I) e, ZA—)B(I) ez)- (142)

t

a

A phase contribution like this will be called a propagation phase and is a key element for the
upcoming analysis. We continue by setting some notation for the internal degrees of freedom
and the external EM fields.

1.2.2 Internal Hamiltonian

The internal Hamiltonian is of lesser importance for this analysis, as the interactions with
the EM field are modelled to be instantaneous and perfect, ensuring that no additional phase
shifts arise from internal dynamics. Nevertheless, we need to establish some notation for

8#(R) is assumed to be well behaved enough to guarantee analytical solutions of the ELE.
?Corrections to this assumption are discussed in Sec. 2.2.4, where rotating reference frames and Coriolis
corrections are included into the analysis.
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the atom-light interactions, so we will briefly discuss the form of the Hamiltonian and its
eigenstates. The internal Hamiltonian is assumed to have the form of a hydrogen-like system

a2
a P 99

= 1.43
"7 2u  4ne? (1.43)

and is solved by the known electronic orbitals. Depending on the atom-light interaction of
interest we define an excited state |e) and a single ground state |g) for the case of Bragg
interactions and single photon transitions, see Sec. 1.2.4. For Raman interactions, we define
the excited state |e) and two ground states | g1)» |&2)- The internal Hamiltonian can then be
written in the corresponding eigenbasis as

Bragg & Single photon: 1‘:1I = hcug lgXgl + hiw, leXel, (1.44a)
Raman: H; = how, ’gl)(g1| + hw, |g2><g2| + hw, leXel, (1.44b)

depending on the interaction process of interest. We also define the transition frequencies

W,oy = W, — W, and Wy, = wW; — w,, which will become important in the following discussions.

1.2.3 Light Hamiltonian

Classical EM fields can be described by the Hamilton function
Hgy = % f ECRIER) + *BRY], (1.45)

whose equations of motion (EOM) are equivalent to Maxwell’s equations of electrodynamics.
Canonically quantising Eq. (1.45) results in a full QED description of light fields and the
interactions with matter. The vacuum eigenfunctions of this quantised Hamiltonian are plane
waves and we are going to expand each solution of the EM field in this eigenbasis. For
the sake of simplicity we focus, for now, on the electric field E(R), one could, however,
equivalently analyse the magnetic flux density B(R). The general solution for the electric
field is then given by

. L n
ER=) f d3ki8w[&e(k)e5(k)e'kR—H.c. with &, = Y. (146)

oy (27)°2¢,

where a_(k), &Z(k) are the bosonic creation and annihilation operators for a photon with
wave vector k, polarisation € and frequency w = c|k|. The set {e,(k), e,(k), k} constitutes
an orthonormal basis of R® for each k. As indicated before, we always assume propagation
of the EM field parallel to the atomic trajectory, i.e., along the z-axis. Furthermore we only
consider a single mode, i.e., k = +ke, and choose to align the transverse directions with
the x and y axes (e; = e,, e, = e,). The whole description can be extended to multiple
frequencies in a straightforward manner, because of the linearity of Maxwell’s equations.
Evolving the field in Eq. (1.46) in time with respect to the free field Hamiltonian and
applying the aforementioned assumptions results in an electric field operator
BEz.n=3 ig,|akne M) —He| with alkn=abe™. (147

e=1,2

The quantum properties of the EM field are encoded in the creation and annihilation operators,
allowing to create non-classical light fields and enabling effects like entanglement and
squeezing [47-50]. Nevertheless, since we assume the light fields of interest to be classical,
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we omit the creation and annihilation operators, treating them as C-numbers. We furthermore
combine the polarisation vector e, with the field amplitude &, to a vector-valued amplitude
and define two distinct light fields, which will be important for the different atom-light
interactions: firstly a Single Frequency (SF) field

Eg(Z.1) = 80 ™) _He., (1.48)

used for interaction processes using single photon transitions and secondly a Dual Frequency
(DF) field with counter propagating light fields

Epp2.0) = |&,(0) %) 4 &, (1) 7| _Hc., (1.49)

used to describe Raman and Bragg interactions, which rely on two-photon transitions. We
take a closer look at these interaction processes in the next section.

1.2.4 Atom-Light Hamiltonian

In order to create an interferometer using atoms, we need to coherently split and recombine
atomic wave packets with high accuracy. Essentially, every AIF experiment can be broken
down into a sequence of beam splitting operations, which coherently split a single wave
packet into a 50 : 50 superposition of momentum states, and mirror operations, which
completely flip the momentum of a single wave packet. We describe four of these operations,
which can be efficiently performed with classical light fields: Bragg diffraction, Raman
transitions, single-photon transitions, and Bloch oscillations. Each of those processes, apart
from the Bloch oscillations, can be described using the interaction Hamiltonian between an
(external) light field and an atom given by

Ay =-d-EQ2,0 with d= ) g, =) d;liXijl. (1.50)
=12 ij

The electric field E(Z, t) in Eq. (1.50) is either the SF field from Eq. (1.48) or the DF field
from Eq. (1.49). Furthermore, the internal states |i) in the dipole operator d depend on the
atomic species and desired interaction process, as in Egs. (1.44). In most modern experiments
either Alkali, or Earth-Alkali metals are used, see Refs. [51-55].

Consider a Bragg interaction as an example, i.e., we have a dipole operator corresponding
to the internal Hamiltonian in Eq. (1.44a)

;lBragg = deg leXgl + H.c., (1.51)
and the DF light field from Eq. (1.49). The interaction Hamiltonian can then be written as
Ay = —dyge - Epp(Z.1) = (ma(t) k=) L 50y (1) ei("‘bz‘“’bf)) leXg| + Hee., (1.52)

with individual Rabi frequencies for each light field i = a, b of

1.
Q1) =~ (elpragy - E(Dl8) (1.53)

The exponential of the position operator Z acts as a momentum translation, i.e.,

A2 f dP |P + hkXP|, (1.54)

—00
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Figure 1.4: Schematic depiction of Bragg diffraction using an effective two-level atom with
states |g), le) and two counter propagating light fields with frequencies w,, (red) and w,, (blue),
namely a DF field Epp. The resonant two photon transition (thick red and blue arrows)
results in an effective momentum transfer of 7k = #i(k, + k;,), where wy = % =w, —w,
denotes the corresponding recoil frequency. The dashed lines correspond to off resonant
transitions. Both laser frequencies w,, w, are detuned by A to |e), such that there is no

coupling to the excited state.

where |P) denotes a momentum eigenstate of the COM motion. One can therefore see
how it is possible to construct a resonant two-photon process inducing a momentum kick
of ik = h(k, + k), as depicted in Fig. 1.4. In a nutshell, the atom absorbs a photon
with frequency w, gaining momentum 7k, in the process and directly emits a photon with
frequency wj, in the other light field, losing a momentum of —7k;,, therefore gaining a total
amount of %(k, + k). Note that we have depicted the transition process in Fig. 1.4 for the
case of an atom initially at rest, i.e., initialised in the momentum state |0). For moving atoms,
the Doppler effect needs to be taken care of, one can, however, always transform into the
atomic rest frame and interpret the laser frequencies accordingly.

The quantity distinguishing between a beam splitter and a mirror operation is given by
the effective Rabi frequency Q. 4(?), which is defined as

Q, (N (1)

Qeff(t) =2 A

) (1.55)

where we neglected the Doppler and AC-Stark effect. Choosing the amplitudes of the light
fields and pulse length ¢¢ such that the pulse area 6, defined as the time integral over the
effective Rabi frequency, evaluates to be multiples of 7/2 or & distinguishes a beam splitter
from a mirror, i.e., more formally

ot

5 +nm, Beam splitter
0= | dtQu(0) = forn € N. (1.56)

nm, Mirror
0

Equivalently one can describe the interaction process as a unitary scattering matrix, written
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Figure 1.5: Level scheme of a two-photon Raman diffraction for an effective three-level
atom and two counter propagating light fields with frequencies w,, (red) and w,, (blue). The
resonant transition (g1> - le) — |g2) is indicated with thick arrows. The dashed lines
correspond to off resonant transitions. Both light fields are far detuned from the excited state

le).
in a basis of momentum states |0), |ik), as

» 1 cos(6) i sin(g) ¢'L?
000 = L , (1.57)

V2 i sin(g) L cos(6)

W) is the laser phase of the two-photon process, imparted to the

where @ (t) = arg(
atom [56-62]. The time dependence of the effective Rabi frequency and the laser phase are
usually omitted. If one includes a second set of counter propagating lasers and adjusts the
polarisations cleverly one can also infer momentum into the positive and negative z-direction
simultaneously, which is known as "double Bragg diffraction", see Refs. [63—-67].

Similarly to the case of Bragg scattering one can perform Raman transitions, which make
use of two ground states as indicated in Eq. (1.44b) and Fig. 1.5. One therefore includes an
additional degree of freedom, namely the atom’s internal state |g1) ,|g,) in each path segment
of the interferometry sequence. Compared to fully elastic scattering processes, where any
excited state is only virtually populated, such a system exhibits far more possibilities for
interferometer geometries. Raman transitions are famously used to describe so called clock
interferometers, where the atoms are travelling in an internal superposition — additional to
their spatial superposition — and can therefore be thought of a quantum mechanical analogue
of a clock on two worldlines, see Sec. 1.1.1. The definition of clock is here taken very
abstractly as an oscillating two-level system and should not be confused with an atomic clock
in the frequency metrological sense.

Clock interferometers that utilise Raman transitions have therefore gained interest as po-
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Figure 1.6: Level scheme of a single photon transition for an effective two-level atom and a
single light field (red) with frequency w and wave vector |k| = w/c.

tential measurement devices for UCR and UGR [68-70] by extracting the "clock frequency"
wi, as a potential measurement signal. Due to this fact, clock interferometers could be
feasible to rule out certain dark matter models or even measure gravitational waves in a much
needed mid-frequency band [71-73]. Since many contributions have already been published
in this field and extensions of gravity by dark matter have also been considered [74], we will
focus in the following on interferometers with elastic scattering processes such as the Bragg
scattering described above. To complete the picture, we continue to mention the last two
light field interactions, that can be used to build large scale AIF experiments.

Single photon transitions only use a one mode of the EM field, i.e., a field as in Eq. (1.48)
and the internal atomic structure from Eq. (1.44a). The corresponding level scheme and
transition is shown in Fig. 1.6. One positive and straightforward aspect of this process
is that only a single light field is required, potentially minimizing error sources due to a
reduced experimental setup. On the other hand, however, is the flight time of the atom in the
excited state |e) limited by its lifetime, which rules out a certain number of atomic species
capable for long flight times. Additionally, there is the necessity to find a suitable excited
state with good availability for stable and powerful lasers in the corresponding frequency
regime of w = w,, + wg. Note that single photon transitions can also be utilised for clock
interferometry [75-77].

The last atom-light interaction which is commonly used in AIF experiments are ac-
celerated optical lattices, utilizing Bloch oscillations, used to manipulate the trajectories
of atoms with unprecedented speed and accuracy. Bloch oscillations are not based on the
dipole Hamiltonian in Eq. (1.50), but rather trap the atoms in a standing EM wave, i.e., an
optical lattice, and accelerate it [38, 39,78, 79] — together with the trapped atoms — in the
spatial direction of interest. The COM Hamiltonian for Bloch oscillations can be written in a
position basis as

52
N P . .
Heom = o + me(R) + 2hQ cos’(kR), (1.58)

Optical lattice
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where the |k| = k = 27” defines the width of the lattice 4. A detailed analysis of how
Bloch oscillations are implemented in experiments and more details about their theoretical
description can be found in Refs. [80,81]. In the context of this thesis, we will only consider
Bloch oscillations in a highly idealised manner, assuming that they instantaneously impart a
momentum of %k, corresponding to the frequency of the light field and add their phase to the
atoms.

We have now summarised the essential tools used for modern AIF experiments and
introduced the notation of its mathematical framework. With this, one is now able to calculate
phase shifts for a variety of different interferometer geometries, interaction processes and
gravitational backgrounds, as we will analyse in the rest of this thesis.
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Chapter 2

Atom Interferometers in Newtonian
Spacetime

"We physicists are always checking to see if there is something the
matter with the theory. That’s the game, because if there is something the
matter, it’s interesting! But so far, we have found nothing wrong with the
theory of quantum electrodynamics. It is, therefore, I would say, the
jewel of physics — our proudest possession."

Richard Feynman, 1985
From "QED - The strange theory of light and matter"

We now analyse various explicit interferometer geometries within the context of a
Newtonian spacetime gravitational background, i.e. a metric tensor from Eq. (1.25). Initially,
we make several key assumptions to simplify the analysis and establish a foundational
understanding of basic interferometers in Sec. 2.1 and discuss more advanced topics in
Sec. 2.2. The basic interferometers and the theoretical description behind this has been
known before, however, we are going to present it in the dimensionless form we introduced
in Werner et al., Atom interferometers in weakly curved spacetimes using Bragg diffraction
and Bloch oscillations [2]. We continue in Sec. 2.3 with a novel interferometer geometry that
we introduced in Werner et al., Local Measurement Scheme of Gravitational Curvature using
Atom Interferometers [4] to measure gravitational curvature. In Sec. 2.4, we systematically
revisit these assumptions to evaluate their validity and impact on our results. By refining or
modifying the initial assumptions, we aim to achieve a more accurate and comprehensive
understanding of the interferometer geometries in relation to the gravitational background.

The assumptions we are going to include initially are:

1. We start by modelling the mass density of Earth to be spherically symmetric. A more
accurate model, known as the "Geopotential model" is discussed in Sec. 2.4.1.

2. We omit local masses, which alter the gravitational background, given by Earth in a
non trivial way. Masses disturbing the experiment can be either time independent, like
the gravitational acceleration of the building and the lab equipment, or time varying
like ground water, air density fluctuations and seismic waves. We discuss an AIF
experiment in the vicinity of an experimentally measured gravitational field, including
non trivial gravitational gradients in Sec. 2.4.2.

We start to analyse the most basic interferometer geometries, because they produce interesting
phase shift signals in their own regard and more elaborate AIF geometries can be thought of
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as combinations of those basic interferometers.

2.1 Basic Interferometer Geometries

The most prominent example of an AIF geometry is the Mach-Zehnder Interferometer (MZI).
The MZI consists of a beam-splitter pulse to create a coherent spatial superposition, followed
by a mirror pulse that inverts the momentum states, and concludes with a final beam splitter
that closes the interferometer. Between these pulses, the atoms propagate freely for a duration
denoted as Ramsey time, 7. A graphical depiction of the MZI within the freely falling
frame is presented in Fig. 2.1a, where we introduce the pictorial conventions that will be
employed throughout this thesis. The freely falling frame is defined as a reference frame that
is initially aligned with the atoms before the first beam splitter and subsequently follows a
geodesic, behaving as if it were a point particle. In our diagrams, we represent beam splitter
and mirror pulses with red dashed lines, atom-light interactions with black dots, and Bloch
oscillations with thick purple bars.

It is important to note that in these schematic illustrations, we assume the speed of light
to be infinite. This assumption serves two purposes: it allows for clearer and more intuitively
understandable graphical representations, and it enables faster identification of symmetry
axes. Furthermore, it permits us to depict single and two-photon transitions within the same
framework. Despite this illustrative simplification, phase shift contributions resulting from
the Finite Speed of Light (FSL) are incorporated into our calculations. The type of atom-light
interaction cannot be determined solely from the pictorial representation of the interferometer.
However, the resulting phase shift is strongly dependent on the specific interaction process
chosen. Therefore, simply defining an interferometer geometry, as shown in Fig. 2.1, does
not suffice for accurate phase shift calculations. From this point forward, unless otherwise
specified, we will assume the use of Bragg interactions for the beam splitter and mirror
operations. These interactions imprint a momentum of +#k, and a recoil frequency of
wg. Additionally, we consider optional intermediate Bloch oscillations, which impart a
momentum transfer of 7ikp.

By splitting the mirror pulse of a MZI into two consecutive beam splitter pulses and
inserting Bloch oscillations between them, one creates a Symmetric Ramsey-Bordé Interfer-
ometer (SRBI), as shown in Fig. 2.1b. Maintaining the overall structure of the laser pulses but
altering the direction of the induced momentum kicks results in the creation of a Symmetric
Double Diffraction Interferometer (SDDI) and an Asymmetric Ramsey-Bordé Interferome-
ter (ARBI), depicted in Figs. 2.1c and 2.1d, respectively. We always assume that the atoms
are initialised in a wave packet localised at a coordinate height z, with a vertical velocity v.
The free propagation time before and after the Bloch oscillations is denoted as 75, which
we refer to as the Bloch time. We opt for a symmetrical time decomposition (T, Ty, Tg) to
achieve compact final results, although it is straightforward to describe asymmetrical pulse
sequences as well. These fundamental AIF geometries can be regarded as representatives
of different AIF classes, each exhibiting distinct symmetry axes. It is important to note
that Bloch oscillations are optional within these setups. The defining characteristic of an
interferometer geometry lies in the arrangement of beam splitters and mirrors.

We now proceed to solve the Schrodinger equation for these fundamental AIF geometries,
depicted in Fig. 2.1, assuming Bragg interactions for the beam splitter and mirror pulses. Our
analysis will focus on the COM motion along the vertical direction. Henceforth, we denote
the vertical coordinate — i.e., the direction pointing radially upwards in Earth’s gravitational
field — as Z. For the Earth-bound interferometer geometries considered here, we assume
height differences AZ on the order of 10 metres, as demonstrated in previous studies [82—84].
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Figure 2.1: Schematic pictures of atomic trajectories (green lines) for four different AIF
geometries in the freely falling frame. Interferometry laser (beam splitter/mirror) pulses are
depicted in red dashed with a momentum transfer of +7ky, and Bloch oscillations in violet
with a momentum transfer of 7ik;. The speed of light is set to infinity for this picture. (a)
Mach-Zehnder interferometer (MZI) (b) Symmetric Ramsey-Bordé¢ interferometer (SRBI),
(c) Symmetric Double Diffraction interferometer (SDDI), (d) Antisymmetric Ramsey-Bordé
interferometer (ARBI). For the case of Bragg scattering (a), (b) and (d) can be realised using
single Bragg diffraction, whereas (c) relies on double Bragg diffraction.

Note that 100-metre baselines are also in construction [85, 86]. Therefore, the gravitational
potential at a height Z above the ground can be expressed as

¢(Ry+Ze)=dy+87Z - %rz2 + 002 9). (2.1)

Here, ¢, =~ 60 MJ/kg represents the constant offset of the gravitational potential. This value
corresponds to the energy required for a test object with a mass of 1kg to escape Earth’s
gravitational field, equivalent to half of the squared escape velocity for the object. The linear
gravitational acceleration is g = 9.81 m/ s%, and the gravity gradient I' = 2.7 X 107 HZ?.
To clarify this quantity: the gravity gradient I describes the spatial change of g and can be
defined asT ~ 2.7x 107’ %, or alternatively as I' = 2.7 X 10°E. Here, we use the unit Eotvos
(E), defined as 1 E = 107" HZ".

We choose to expand the gravitational potential ¢(r) to second order to enable a com-
parison of our results with those in Refs. [87-89]. This expansion also prepares us for the
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analysis of relativistic effects in Chapter 3, where we will incorporate the third order of the
potential. With this expansion, the Hamiltonian for COM motion along the vertical z-axis in
Eq. (1.36) becomes

2 P 5 Mo 5 3, -2

Heom = m +mgZ — EFZ +0(3;¢,c7), 2.2)

with position and momentum operators 7 W(Z)y =Z - |W(2)), P Y (Z)) = —ihd, W(Z)).

2.1.1 Phase Shifts of Free Propagation

We begin solving the motional Schrodinger equation by calculating the accumulated phase
shift that the atoms acquire between interactions with the light fields. Since we focus on
the free propagation of wave packets in a well-defined internal state, and since interactions
with the light field can be effectively modelled using a scattering matrix, we can neglect the
internal dynamics of the atoms. Focussing on this allows us to concentrate on the external
motion and the resulting phase shifts without the complexity of internal state dynamics. For
convenience and readability, we will denote the trajectory of the atoms using lowercase
symbols, such as z(¢) instead of Z(¥).

To solve the Schrédinger equation with the Hamiltonian from Eq. (2.2) for the COM
wavefunction [i/(z, f)) — as indicated in Sec. 1.2.1. — we consider wave packets that remain
localised around the classical trajectories corresponding to the paths of the AIFs depicted
in Fig. 2.1. It is important to evaluate these atomic paths in the lab frame, rather than the
freely falling frame shown in the figure. For such localised wave packets, it is sufficient to
determine the propagation phase, which is the relative phase accumulated along the two
paths. This approach was employed in studies like those conducted by Kasevich and Chu, as
well as Storey and Cohen-Tannoudji [40,90]. The propagation phase takes the form

1
A(I)Prop = ﬁ f [L(Zup(t)s Zup(t)) - L(Zlow(t)s Zlow(t)):l dt’ (233)
with the Lagrangian of Newtonian spacetime (cf. Eq. (1.26))
L(z.2) = gzz — mgz + %rf OB, 2. (2.3b)

By focusing on the propagation phase, we can effectively describe the interference pattern
resulting from the two paths of the interferometer, providing insights into the underlying
physical processes and gravitational effects. In the following analysis, we will systematically
expand the propagation phase with respect to small, quadratic terms in the Lagrangian. Cor-
rections beyond the stationary phase approximation are expected to contribute only at higher
orders, which are negligibly small for our purposes. We will discuss these contributions in
more detail at a later stage to ensure a comprehensive understanding of their impact and
relevance to the overall analysis.

To determine the classical trajectories of the upper and lower arms of the AIF, we need
to solve the geodesic equation or, equivalently, the ELE corresponding to Eq. (2.3b). Instead
of deriving the exact trajectories, we focus on constructing approximate solutions to the ELE,
which are accurate in the leading orders of the gravity gradient I'. This approach provides a
balance between computational simplicity and the ability to capture essential physical effects,
enabling us to analyse the interferometer’s behaviour under typical experimental conditions
while factoring in the influence of the gravity gradient. To begin, we calculate the derivatives
of the Lagrangian as follows:

oL _ 2 doL -2
pri ma,p(z) + O(c™), e mz+O(c ). (2.4a)
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The ELE then evaluates to
—— - =0 & i) =-0.6G1)+0Cc).

We now incorporate the approximation of the gravitational potential to the relevant order
from Eq. (2.1) into the Lagrangian of Newtonian spacetime Eq. (1.26), which results in the
Ordinary Differential Equation (ODE)

(1) = —g + T z(t) + O3, ). (2.5)
This ODE is accompanied by two initial conditions z(0) = z, and z(0) = v, + N, R% +N B%,
where z, and v, are the initial position and velocity of the wave packet, respectively. N
and Ny denote the number of imprinted Bragg and Bloch momenta in the corresponding
laser interaction. Solving this ODE subject to the given initial conditions will yield the
approximate classical trajectories for the atoms in the interferometer’s arms, incorporating
the leading effects of the gravity gradient.

2.1.2 Dimensionless Parameters

Before proceeding to solve the ELE, we would like to express the major steps of the
upcoming calculation in a dimensionless form, as introduced in [2]. We start by introducing
a dimensionless position and time as

t (1)

=7 )= == (2.6)

T .
cTp

In this context, we select T, # 0 as the natural time scale of the AIF sequences under
consideration. In doing so, we obtain dimensionless terms in the atomic trajectory &(7),
such as Z, = LZTOR and V, = V‘—O for the two initial conditions. Additionally, we identify

recoil-related dimensionless parameters Ry = % and Ry = % for the Bragg and Bloch
momenta, respectively. Similarly, a dimensionless parameter related to the recoil frequency,

Fr = hi’f, can be defined.! Finally, we derive two dimensionless parameters related to the
mc

gravitational potential, namely G, g = % and G g = FT,%, which will become evident after

solving the ELE below.”

One might wonder why it is worthwhile to rewrite everything in dimensionless form.
However, as we will demonstrate in Chapter 4, this formalism allows for the systematic and
efficient programming of an algorithm that incorporates these parameters. The main advan-
tage of this formalism is that each phase shift contribution possible in an atom interferometer
can be expressed as a product of these dimensionless parameters and the term w7, where
wc represents the atomic Compton frequency

we =1 .7

In typical AIF experiments, the latter term is quite large, on the order of 10% for inter-
ferometer times of a second, while the other dimensionless parameters are several orders
of magnitude smaller than one. For typical values in 10 m interferometers, we have com-
piled these parameters in Table 2.1 and illustrated their relative sizes for the cases of Bragg

'This becomes particularly relevant in the context of the Doppler effect discussed below in Sec. 2.1.4.
2 Analogously, one can also define those gravitational dimensionless parameters using the Bloch time T and
denote them as G, g and G, .
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Parameter | Definition Magnitude for 10 m baseline AIF
i = R (Bragg) i = B (Bloch)

Z = 0
Vo o 43x107°
Fr oy 8.1x 1072
G &% 42x1078 13x1078
G 7} 52%x107° 49%107
R, &, 3.9%x 107" 12x107°

Table 2.1: Definitions of dimensionless parameters for an AIF. As a case study, we give
the magnitudes for a 10 m baseline Rubidium AIF assuming the following values: Ty =
135, T = 045,29 = 0, vy = 13m/s, m = 87u, wg = 10’ Hz, kp = 16 x 10°m™",
ky=5x10°m™" g =9.81m/s*and T = 2.7 x 10 °Hz* = 2.7 x 10’ E.

transitions and Bloch oscillations. The magnitude of each phase shift contribution is thus
determined by the number of parameters listed in Table 2.1, allowing for a systematic and
algebraic description using a computer algorithm.

We now continue with solving the ELE in this dimensionless form. Expressed in terms
of the dimensionless variables 7 and £(7), and the dimensionless parameters from Table 2.1,
the ELE from Eq. (2.5) becomes

§(1) = =G g + GorE(M) + 003, (2.8)

with initial conditions &(1) = Z,, &(7y) = V) + NxRg + NzRy. Here, the notation O(n) is
used to represent terms that are of at least n-th order in the small dimensionless parameters
listed in Table 2.1. Using the example of a drop tower with a height of 10 m, we demonstrate
in Table 2.1 that the dimensionless parameters are small for the AIFs depicted in Fig. 2.1. We
exploit this fact to consistently construct an approximate solution of the ELE. For instance,
the trajectory of the path segment beginning at 7, = 0 can be expressed, up to the fourth
order in these small parameters, as

) 1 1 1. 1
E(7) = £(0) + £(0)7 - 591,}%72 + gz,R(Ef(O)TQ + 55(0)73 - ﬁgl,Rr“) +0(3). (29

We obtain an expression for the propagation phase integral in terms of dimensionless param-
eters as

. 3 2
[a OO (B g+ Bheier) 0w 10

If we denote each time instance of light-matter interactions along the paths by 7; with
i € N, as indicated by the black dots in Fig. 2.1, we can define &£(7) piecewise by a set of
functions &,(7) on the time intervals [7;, 7, ;). Note that due to the FSL one has to actively
calculate the 7;, as shown in Fig. 2.2, for two-photon transitions. A unique solution therefore
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requires the knowledge of two initial conditions for each segment of propagation. The initial
conditions can be constructed iteratively for i > 0 via

&i(T) = & (1), Elr) =&(t) + NS)RR + Ng)RB’ (2.11)
whereas the first two initial conditions are
&o(to) = Zos &y(tg) = Vo + NY'Rg + NORy,. (2.12)

NI(;) and Ng) represent the number of photon recoils imprinted at the time 7; as a result of
Bragg or Bloch interactions, respectively. The dot in Eq. (2.11) indicates differentiation
with respect to 7. The Z, parameter can play a significant in differential measurements
between different AIFs, such as those conducted in tests of the UFF. In these experiments,
an uncertainty in the relative difference in initial height between the interferometers can lead
to non-negligible phase contributions, potentially affecting the precision of the results [91].

Using this solution strategy, we calculate each of the AIF paths, specifically &,,(7) and
&1ow(7) for all AIF geometries depicted in Fig. 2.1. Once these trajectories are determined, the
propagation phase in Eq. (2.3a) can be computed in dimensionless form, which is achieved
by

L(fup (T)’ S&up (T)) _ L(f]ow (T), é:low (T))

- : 2.13)
mc mc

ADp,, = f drwcTy

The propagation phase has to be consistently expanded in terms of the small dimensionless
parameters up to the desired order. If the trajectory is known to O(2) one can calculate the
propagation phase to O(3), since the Lagrangian depends on the velocity to second order and
on the trajectory to first order after multiplication with G, g and additional higher-order terms.
Similarly, to evaluate the propagation phase to O(4), the trajectory should first be determined
to O(3). Although the required integrals over the segments of the full AIF sequence are
conceptually straightforward, they often lead to tedious and error-prone calculations. This
complexity arises from managing the intricacies of higher-order expansions while ensuring
accuracy in the resulting phase contributions.

Thus far, our focus has been solely on the propagation phase described in Eq. (2.13).
However, when considering the effects of the gravity gradient, I', and the FSL on the
trajectory, a complication arises: the AIF will not perfectly close at the output port without
implementing specific mitigation strategies [92-95]. In this context, it is also crucial to
consider the separation phase, typically calculated as the product of the spatial separation
at the output port and the average momentum of the two atomic paths [87,89]. Expressed
directly in terms of the previously defined dimensionless trajectory, we can define the
output port separa'[ion3 as A& = &4y (Tr) — &p(71) and the average output velocity as Epver. =

% (f'low (tp) + f'up(‘rf)). Consequently, the separation phase can be expressed as
ADsge, = WeTRAS - Eyyer. (2.14)

To calculate the separation phase, the quantities A¢ and &,,,, must be evaluated to the desired
order of precision. Trajectory separations arise from non-linear gravitational and FSL effects,
which become significant at second order in the trajectory. Consequently, A¢ is, at minimum,
a O(2) quantity in the absence of any mitigation strategies [92-95]. Meanwhile, &, is a
O(1)-term, Therefore, the separation phase, as a result, is at least of order O(3).

3Note the sign convention in this expression, as it is defined as the lower path position minus the upper path
position, which might seem counter-intuitive initially.
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Due to the FSL, the interaction times between the upper and lower paths of the interfer-
ometer will differ slightly, consequently affecting the integration times in the propagation
phase. These FSL effects naturally occur at o™, meaning any supplementary gravitational
effects would appear at o). Additionally, FSL-related effects are highly dependent on
the specific experimental setup. They are particularly influenced by factors such as the initial
laser positions and the presence of additional mirrors or other optical components. As a
result, these effects will be described using various assumptions about the experimental
configuration. We analyse this effect in the following section.

2.1.3 Interaction Times

As previously mentioned, the timing of the atom-light interactions is more complex than
what is illustrated in Fig. 2.1, being influenced by the FSL. An accurate — but, for clarity,
somewhat exaggerated — representation of a MZI using two-photon transitions is displayed
in Fig. 2.2. The key point is that the light field emission times, denoted as g, fg,, fg3, dO
not coincide with the interaction times at the beam splitters gg;, g5 1, fggn o and the mirrors,
tum» tim- These need to be accurately computed to correctly determine the atomic trajectory
and the imprinted laser phase. It is important to note that for the laser phase, it is irrelevant
whether the laser source is positioned at height z;; and reflected by a mirror on z; , or if it
is placed directly at z; . To enhance clarity and readability, we will present the following
equations in their dimensional form, which facilitates a clearer understanding of each effect.

To derive analytical expressions for the interaction times, we need to iteratively solve
the atomic ELE alongside considering the light propagation dynamics. The process begins
with atoms that are released at the "launch time" #,, starting from position z, with an initial
velocity vg. At time #g;, the light fields propagate along the interferometer baseline. It takes a
time L/c for the light to reach the mirror at z;; and reverse its direction. To find the interaction
time of the first beam splitter, fzq;, one needs to solve

- 1
y t C(tBSI — (tEl + AtL)) + O(C 1) =7yt VOUBSl - to) - Eg(tBSl - to)z + O(F) (215)

with the constraint tgzg; > %, 5. A solution to Eq. (2.15), expressed as a function of the
experimentally controllable parameters #g, ¢, zyy, L and z; is given by

20— % V, L
C C C

_8
2c

L
tgs1(tg1» tos 2us Lo 2g) = g + - +

L 2 1 -3
(tEl + Z - to) + O(FC ,C ). (216)

It is important to note that, depending on the specific sequence of launch and emission times,
one must select the appropriate solution to Eq. (2.15). This equation is quadratic, resulting
in two potential solutions, of which only one is physically meaningful. Selecting the correct
solution ensures that the calculations accurately reflect the physical interactions occurring in
the setup.

The beam splitter pulse creates a coherent superposition of the atomic wave packets,
forming what we refer to as the lower and upper paths. Our current focus is on the upper path,
although the same principles and processes apply analogously to the lower path. The height
at which the interaction occurs is given by the expression z,,(fgs;) = ¢Tgé(7gs;), Where
Tgs1 = Igs1/ Tk, and &(7) is the dimensionless solution to the ELE from Eq. (2.9). This point
acts as the initial condition for the ELE that governs the next segment of free propagation.
At this instance, the velocity is altered on the upper path by the beam splitter, resulting in
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Figure 2.2: Schematic picture of how the finite light speed effects a MZI, which uses two-
photon transitions (black dots). The atomic trajectory (green) interacts with two light fields
(red, orange), originating by a light sourced at height z;; and retroreflected at z;. The picture
is not to scale in order to highlight the FSL effect. The atoms are launched out of a trap
at a time #, from a height z, with an initial velocity v,. At the time fgg, the atomic wave
packet is split into a coherent spatial superposition. The mirror interactions happen for the
upper path at i and for the lower path at # ;. Since gravitational gradients can result in a
non-vanishing separation at the output port one can have two distinct time instances fgg, |
and tgg, 5 for each atomic path to interact with the light fields.

a velocity change expressed as Z,,(fgg;) + Nghkg/m. This modification distinguishes the
initial conditions of the ELE for both interferometer paths, enabling differentiation of the
trajectories.

Analogous to Eq. (2.16), the time at which the upper mirror interaction occurs, denoted
as . can be calculated via

L Zupllgs) —2 Zup(fBs1)  Nghk, L
+ up\/BS1 U+(up BS1 + DR R)(IEZ )

tum = g + — +—=—t
UM E2 c c BS1

C C mc

§ (r g )2+O(r -1y (217)
- = - - c ,c .

2 \E2 T 7 7 IBsi

By performing this procedure iteratively for each laser interaction on both the upper and
lower paths, we define the set 77, containing all interaction times of the upper path, and 7
analogously for the lower path.4 In Chapter 4, we demonstrate how this iterative process can
be automated using computer algebraic methods. The interaction times calculated in this way,
together with the atomic initial conditions, are then utilised to determine the propagation
phase, as given by Eq. (2.13), and the separation phase, according to Eq. (2.14). This

*We use the dimensionless form of the time instances interchangeably with the dimensional quantities, as the
notation of 7 and 7 provides sufficient clarity.
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approach ensures precise and efficient computation of the phases relevant to the system’s
dynamics.

2.1.4 Atom-Light Interactions

As previously discussed, we are analysing Bragg interactions and Bloch oscillations in
greater detail. We begin with an in-depth examination of the Bragg processes. These
processes involve the coherent scattering of atoms by a light field, resulting in a change in
momentum that is central to their interaction dynamics. By studying Bragg processes first,
we can establish a foundation for understanding more complex phenomena such as Bloch
oscillations.

Bragg Interactions

Starting from Eq. (1.57) we can express the scattering matrix for a series of N, Bragg
diffraction processes that transfer a total momentum of Nyhky as

. 1 cos(6) i sin(@) e™Mx®L®
v = —

V2

i sin(@) e NrPL® cos(6)

This matrix is expressed in the basis of the momentum eigenstates ‘OhkR> and |N Rhkg).
Here, ®@; represents the phase imprinted during each two-photon process. This formulation
captures the cumulative effect of multiple Bragg processes and the corresponding momentum
transfer and phase transformation involved in these interactions. The phase of each individual
light field is given by

D, (1) = k,2(t) — w,t and  Dy(f) = —ky2(t) — wyt 2.18)

and is either added or subtracted to the phase of the atom, depending on whether a photon is
absorbed from the corresponding field or emitted into it. The effective laser phase imprinted
on the atoms in a two-photon process is then given by

D, (1) = £(D, (1) — By(1)) = £(kga(t) — wph), (2.19)

where we used that k, = k, +k;, and wy = w, —w,, for Bragg scattering. The sign corresponds
to a net gain or loss in momentum, respectively. Before proceeding with a deeper analysis
of the laser phase, it is essential to include the Doppler effect and its implications into the
description. The Doppler effect, which arises from the relative motion between the light
source and the atoms, can significantly influence the observed frequency and, consequently,
the phase of the laser field.

Doppler effect

To transfer the momentum 7k, = i(k, + k;,) = fi(w, + w,,)/c, it is necessary to account for
the (first orderS) Doppler effect, as the light fields generally interact with moving atoms.
Assuming the atoms have a velocity of v;,, (or written dimensionless as &, = v;,,/c) when
interacting with the light fields, they experience a first-order Doppler shift, as illustrated in
Fig. 2.3. By transforming the interaction Hamiltonian from Eq. (1.52) into the interaction

SWe are going to include the second order Doppler effect in Chapter 3, when we include relativistic effects.
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Figure 2.3: Schematic picture of how the Doppler effect is perceived by an atomic trajectory
(green line) for two counter propagating light fields (red, orange). Left: Depicted in the lab
frame, where the laser sources rest and the atoms move non-trivially. Right: Atomic rest
frame, which is co-accelerated with the atoms are each time instance.

picture with respect to the motional Hamiltonian given in Eq. (1.36), the frequencies of the
light fields become first-order Doppler shifted by

&, = (1 - %)w +0(&) = (1 + ‘%)wb +0(&). (2.20)

This means that, to transfer the momentum 7%kj, one must shift the frequency of each light
field in opposite directions to compensate for the Doppler shift, i.e., one tunes each light
field, prior to the interaction with a frequency chirp according to

w, — (1 N D)w +0B), o (1 - @)wb ro(&) e
c c

Note that the imparted momentum is often altered by additional frequency chirps, e.g. for
the case of gravity gradient mitigation schemes [92,94], as we elaborate further in Sec. 2.2.3.
Even though the Doppler detuning in Eq. (2.21) ensures that the atomic trajectories
align with the descriptions provided earlier, it is crucial to account for changes in the
imprinted laser phase. This consideration is necessary because the Doppler effect modifies
the frequency and, consequently, the phase evolution of the light interacting with the atoms.
The imprinted phase, originally described by Eq. (2.19), will additionally experience a

Doppler shift, resulting in an adjusted expression given by

©,(1) = =(((1+ &k, + (1 = Enky) 20 = (1 + Enw, — (1= &)y ) 1) + O (€7
= i((ka + kh + éim(ka - kb)) Z(t) - (wa Wyt éint(wa + wb)) t) + O(f?nt)
- i((kR + fint%)z(t) ~ (wp + Vinkg) z) +0(&) (2.22)

The recoil frequency wy appears in this formula due to the Doppler effect affecting each
light field with opposite signs. Since this is the only part of the theoretical model, at least
for two-photon Bragg transitions, where this occurs, one can infer from the phase shift’s
dependence on wy, or more precisely i from Table 2.1, that this term originates from the
first-order Doppler effect.
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For later reference, we rewrite this laser phase contribution in a dimensionless form,
similar to the propagation phase Eq. (2.13) and the separation phase Eq. (2.14) as

®,(7) = 20T ((Rp + €nr) £0) — (Fr + & Re)T) + O4). (2.23)

One can also choose not to actively detune the light fields, assuming that each atom-light
interaction is resonant, as described in Refs. [87,89]. In this scenario, the laser phase remains
undetuned, but each interaction process imparts a momentum kick with a different effective
wave vector. This changes the atomic trajectory in such a way that the resulting overall
phase shift remains unchanged. If the light fields are not detuned, the imprinted laser phase
would indeed change. However, this change would be exactly offset by corresponding
alterations in the propagation and separation phases, effectively leaving the sum of the phase
shifts unchanged. This balance ensures that the overall phase contribution to the system is
consistent, regardless of whether active detuning is used to address the Doppler effect. To
elaborate further, assume that the laser frequency is not detuned at all, yet the interaction
process of interest still occurs resonantly. In this scenario, atoms will interact with Doppler-
shifted light fields in their respective rest frames, as described by Eq. (2.20). Given that this
process is assumed to be resonant, the effective momentum transferred to the atoms will
be Doppler-shifted, although the laser phase will not be. This results in Doppler-shifted
trajectories due to the altered imparted momentum, but not in Doppler-shifted wave vectors
in the kick phase. In our formalism, the situation is reversed, ultimately leading to the same
net phase. Whether one chooses to actively detune the light fields for Doppler effects in the
theoretical framework is optional and varies across different descriptions in the literature.

In summary, the overall relative laser phase accumulated from the two-photon Bragg
interactions along the upper and lower AIF paths, commonly referred to as the kick phase [96],
is given by

Aq)Bragg = Z (DL(Ti) - Z (DL(Ti)a (224)

T,€Ty T,€T,

with @, (1) from Eq. (2.23). Here, the sums extend over the time instances 7; of all Bragg
pulses transferring momenta along the two paths, see Fig. 2.1.

Bloch Oscillations

For completeness, we also allow for accelerations of the atomic ensemble common to both
AIF arms using Bloch oscillations. In the experiment, the atoms are initially loaded into
an optical lattice which is then accelerated. After unloading the atoms they have gained
an effective momentum, which we will denote by +7iky the sign of the momentum transfer
depends on whether momentum was gained in the positive or negative z-direction. We
adopt here a highly simplified description by assuming that Bloch oscillations only impart
the desired momentum of +7ikp, that the interaction is infinitely short, i.e., negligibly short
compared to the time scale of the AIF, and that the whole process is lossless. A microscopic
description of the underlying physics [80,97] and its relativistic corrections are beyond
the scope of this thesis. Indeed, for the regime of large-momentum transfer [59, 60], the
theoretical description of Bloch oscillations is the subject of current investigations [81].
In analogy to the case of Bragg pulses treated before, we will denote the imprinted laser
phase during one Bloch interaction as @, (f) = +kgz(f), or written dimensionless, as ®; (1) =
+wcTrRé(T). Hence, the relative Bloch laser phase can be written in terms of dimensionless
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quantities as

ADgioe, = wcTrRy Z Eup(Ti) — Z Elow(T) |, (2.25)

€Ty T,€T

where the summation is taken over all interaction times 7; that imprint a Bloch momentum.
The overall kick phase is defined as the sum of the phases contributed by each individual
process, i.e.,

A(I)Kick = Aq)Bragg + A(I)Bloch' (226)

2.1.5 Phase Shift Summary

We are now prepared to summarise the various phase shifts associated with the interferometer
geometries illustrated in Fig. 2.1. These include the propagation phase from Eq. (2.13),
the separation phase shown in Eq. (2.14), and the laser phases described by Egs. (2.24)
and (2.25), corresponding to Bragg and Bloch pulses, respectively. Presenting the results for
the MZI separately is unnecessary, as its phase contributions can be inferred from the SRBI
by considering the scenario in which Bloch oscillations are absent. This can be achieved by
setting the parameters 75 and kj to zero.

We devise a computer algorithm specifically designed for this task, as detailed in Chap-
ter 4, with several objectives in mind: (i) The phase should be determined algebraically,
similar to the results for the MZI presented by Dimopoulos et al. [87] and Hogan et al. [89].
(i1) The algebraic expressions should maintain accuracy to a specified order® in the small
parameters from Table 3.1. (iii) The phase calculation routine should be adaptable to a
broad class of AlFs, including arbitrary sequences of Bragg and Bloch pulses. Table 2.2
summarises the 23 phase shift contributions of orders O(2) and O(3) for the SRBI, SDDI,
and ARBI. The three O(2)-terms are the well known non-relativistic phases due to linear
gravitational acceleration and Bragg as well as Bloch recoils, see rows # 1 —#3 in Table 2.2.
The 20 remaining O(3) terms can be categorised into two primary sources: i) Terms #4 —# 11
originate from the gravity gradient, as indicated by their dependence on the parameters
Gyr Or Gy . 1i) Terms # 12 —#23 stem from the Doppler effect, as is evident form the
dependence on . The only remaining phase shifts of order O(3) are the FSL terms, which
we will analyse below. Higher-order derivatives of the gravitational potential, such as phases
proportional to a§f¢(z), naturally emerge at the O(4) level. These are similar to relativistic
effects and will be discussed in detail in Chapter 3.

Comparing the phases across the three AIF geometries, it becomes evident that most
terms are identical between the SRBI and ARBI, while they differ from the SDDI by a factor
of two. This difference arises because the enclosed spacetime area in the SDDI is twice as
large as that in the other two AIFs. The relationship between the enclosed spacetime area
and the AIF phases has been thoroughly examined by McDonald et al. [98]. Terms like #2
and # 8, however, differ quite significantly between the different AIF geometries. The first
of those terms was described in Ref. [96] via a special relativistic proper time difference,
whereas the latter was phrased as a "1st gradient recoil” effect in Ref. [87] and was explained
in the Appendix F of Ref. [69]. We will give a more detailed description of both terms in the
context of differential measurement setups in the Sec. 3.1.1 and Sec. 2.3. Phases # 18 to # 23,
associated with the Doppler effect resulting from the transferred Bragg momentum Ry, also

®In this chapter, this means up to order O(3). When we include relativistic effects in Chapter 3, the accuracy
will be increased to include order O(4).
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Phases in units of w¢

# Order | Proportionality | SRBI SDDI ARBI a Origin

1 0Q2) G1rRr Tg+Tg 2T + 2T Tp+Tp 2 Non-relativistic
2 Ra 0 0 Ty 1

3 ReRp ~Tg —2Tg —Ty 1

4 0@3) RrZoGor Ty —Tg 2Ty — 2T -Tg—Tg 2 Gravity gradient
5 ReVoGar -3 - Ty 3Ty 2Ty | —3T5-Ty 3

6 ReReGor ATy - LTy | “3Tp- 3T | —4T5- 11, 4

7 RrG1rRG2R iTy+5Th | 3Tp+ iTk §Tp+ HTr 4

8 RaGar -yt | o A1yt | 3

9 ReVoGap 1Ty ~Tg -1Tg 3

10 ReRp G2 —3Tg —1Tg —LTg 3

11 RpG1rG2 B i1+ 3T 1Tp+ 3T T+ 3T, 4

12 FRG1R 3Ty 3Ty | 9Tz~ 6Tg | —3T5~3Tg | 3 | Dopplereffect
13 FrG1r Vo 3T + 3T 6T + 6T 3Ty + 3T 2

14 FG1rGis | —37T5 3Ty -3Ty 3

15 FrReGir ST+ 1T 5Ty + 7T STg+ 1Tg 2

16 FrRE ~Ty 2T, ~Th 1

17 FrRe Vo —2Tg 4Ty 2T, 1

18 TFrRa 0 2T Ty 1

19 FrReG1 1Ty 0 -1y 2
20 FrRrG1r 3T5 - 3T 0 —3Tg + 3Tg 2
21 FrReRs —iTg+2T; | O 15— 2Ty 1
22 FrRr Vo ~Tp—Tg 0 Ty + 5T 1
23 FrReZo 0 0 2Tk 1

Table 2.2: List of phases of the SRBI, SDDI, ARBI geometries written in terms of dimen-
sionless parameters of order O(2) (#1 —#3) and O(3) (#4 — #23), excluding FSL terms.
To extract this phase for one of the AIF geometries, one has to multiply the factor in the
column "proportionality" by the time given in the column of the respective AIF and the
atomic Compton frequency w¢ in Eq. (2.7). For example, phase shift #1 for the SRBI
RrG1 rwc(Tg + Tp) which translates into gkR(T,% + TxTp), see Table 2.1. Written out in
terms of dimensionful quantities, each contribution is a polynomial in T and Tp, i.e., is
proportional to T;R TIO;B . The overall exponent & = ay + a determines the scaling of each
phase with AIF time.
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Parameter | Definition Magnitude for 10 m baseline AIF
-9
Z fTLR 2.6 x 10
-8
Zy ZTUR 2.8 x 10
H s 3.1x107°
IR

Table 2.3: Definitions of additional dimensionless parameters connected to the FSL effect.
The magnitude is calculated using the following numerical values: T, = 1.3s,z; = —1m
and z;; = 11 m. Note that only two of those parameters are linearly independent.

exhibit non-trivial differences among the AIF geometries. In particular, the phases that are
linear in Ry cancel out in the SDDI due to its inherent symmetry; nevertheless, they remain
non-zero in the ARBI and SRBI.

To analyse the FSL phases, we need to introduce a few additional dimensionless parame-
ters related to the heights of the light sources. These parameters are detailed in Table 2.3.
With these additional parameters defined, the FSL phases of orders O(2) and O(3) can be
calculated. These phases are summarised in Table 2.4, based on the specific experimental
setup illustrated in Fig. 2.2, where Bloch oscillations are disregarded. To extract phase
shifts, that solely arise from the FSL effect, we compare the output of our first computer
algorithm [1] with the latter one [3], where this effect was included. Similar to the case
of the Doppler effect, one can see how phases resulting from the FSL effect sometimes
scale linear with the enclosed spacetime area (terms # 24,29, 30 — 34, 36, 37), whereas other
terms change non-trivially between the interferometer geometries. It is important to note
that, unlike previous cases, there are now phase shift contributions with @ = 0, meaning
they remain constant in time. These constant terms are in contrast to other phase shifts that
typically depend on the interferometer’s temporal parameters and highlight specific effects
intrinsic to the experimental setup. Furthermore, phases #40 — # 44 arise from the FSL effect,
as well as from the Doppler effect, which can lead to ambiguities in naming those terms.

In Fig. 2.4, we plot the phase shifts of O(2) and the leading contributions of O(3)
evaluated for a 10 m baseline AIF. The resulting list of phase shifts can be grouped into
two: Figs. 2.4 (a), (c), (e) show phases that are maximal for 75 = 0 and therefore would
preferably be analysed in an AIF without Bloch pulses (vanishing Bloch time 7). Figs. 2.4
(b), (d), (f) display phases that are functions of the Bloch recoil and therefore are maximal
for a non-trivial combination of T}, and 7', since the corresponding phase shift will vanish
in both limiting cases, i.e., Tz = 0 and T = 0. It can be observed that the curves of O(2)
and O(3), respectively, cluster with a gap of several orders of magnitude between them.

2.2 Advanced Description of Interferometers

After considering a theoretical model for the phase shift calculation in basic interferometers,
we can now compare it to alternative approaches described in the literature, as we do in
Sec. 2.2.1 and Sec. 2.2.2. We then proceed to explore more advanced topics. These include
the mitigation of unwanted gravity gradient effects, discussed in Sec. 2.2.3, and the effects of
rotating reference frames, with a particular focus on the Coriolis effect, in Sec. 2.2.4.
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Figure 2.4: Phase shift contributions in the three AIF geometries SRBI, SDDI, ARBI for a
10 m baseline. Solid curves correspond to phase shifts of order O(2) and dashed curves to
0(3). (a) (c), (e): The Bloch time T’y is set to zero and all non-zero phase shift contributions
above 1 urad are plotted w.r.t. time 7" = 2T. (b), (d), (f): Coloured phase shift contributions
depend non-trivially on T and are plotted against T for fixed time T = 2T, + T of 3
seconds; the grey curves correspond to the Bloch-time independent phase contributions from
(a), (c), (e). Assumed numerical values can be found in Table 2.1.
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FSL phases in units of w¢ — without Bloch oscillations

# Order | Proportionality | SRBI SDDI ARBI a Comment

24 | 0@ FrG1r Ty 2T Ty 2

25 FrRr 0 0 2Ty 1

26 | 0(3) HRE -1, 0 1T, 0

27 ZoRa -1y 0 1Tk 0

28 Z,R: 1Ty 0 -11p 0

29 HRRG 1 r 2T 2T 2Ty 1

30 G1rRrZo 2T 4Ty 2T 1

31 GirRRZ1 —2Tg —4T, 2T, 1

32 HRV, —Ty —2Tg ~Tx 0

33 ReZoVo —Ty 2Ty T 0

34 ReZ1 Vo Ty 2Ty Ty 0

35 ReG1 R —6T, —12T, —6T, 3

36 ReG1 Vo 6T 12T, 6T 2

37 Rey 0 4Ty 2T 1

38 RaG1r 4T 0 —8T, 2

39 RV —Tg 0 9Ty 1

40 TG R 2Ty 6T 5T 3 | Addsto#12.
41 FrRa 0 2Tk Ty 1 | Addsto#18.
42 FrRrG1r TTg 0 -1, 2 | Adds to #20.
43 FrReVo 0 0 5Ty 1 | Addsto#22.

Table 2.4: List of FSL phases of the SRBI, SDDI, ARBI geometries written in terms of
dimensionless parameters. Here, we set Tz = 0, since the FSL-effect won’t affect the Bloch
oscillations in our idealised treatment of this process. a denotes again the exponent of the
overall time scaling of each phase.

2.2.1 Comparison to Hamiltonian Approach

An alternative theoretical framework for calculating phase shifts in AIFs is provided in
Ref. [99]. This approach is rooted in a Hamiltonian description utilising perturbation theory.
In Ref. [99] an AIF was modelled using a Hamiltonian

H=H,+ V@), (2.27)

where ﬁo represents the dominant Hamiltonian, comprised of the kinetic energy, linear gravi-
tational acceleration, and electromagnetic field interactions, while V(¢) denotes a perturbation
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potential, such as one that might arise from the gravitational gradient, I.” The key takeaway
is that both the laser phase and the propagation phase of the AIF can be calculated using the
unperturbed atomic paths. Specifically, for the propagation phase, this implies that the action
functional corresponding to the full Hamiltonian H must be evaluated along the atomic
paths that are classically determined by the dynamics of FIO. This approach might appear to
contrast with Eq. (2.13), where the propagation integral is calculated — encompassing what
Ufrecht et al. would describe as a perturbation — and the functional is evaluated along the
perturbed atomic paths.

To further analyse this, we must express the perturbative approach in the Lagrangian
framework introduced earlier. Consider a Lagrangian L = L, + €L, where L, represents
the dominant contribution and €L, is the perturbation term, with € < 1. We denote the
solution of the ELE for the complete Lagrangian L over the time interval [7,, f,] as x(f) and
the solution from L, as x(#). Without loss of generality, we can express x(f) = x(¢) + x,(?),
where x,(¢,) = 0. However, we have that x(z,) # 0, since the perturbation non-trivially
influences the atomic motion. In the specific case where the perturbation is the gravitational
gradient,8 i.e., € =T, these quantities become

Ly = %x(z)2 — mgx(7), el = %Fx(t)z (2.28a)
xo() = x(0) + x(0)t — %gt2, ex,(f) = F(%x(O)tZ + éx(O)ﬁ - %gt“). (2.28b)

The action functional corresponding to this Lagrangian then splits into two contributions:
one from the dominant part of the Lagrangian, S, and another from the perturbative part, S,,
i.e.,

Iy Iy Iy

Sty ty) = f dr L(x(1), 1(1)) = f dr Loy(x(0), X(t)) + & f dr L, (x(0), (1))

t

" t

a

t

a

Iy Iy

= f dr Loy(x(1), X(D) + & f dr Ly (xo (1), %o(1)) + O(&)

t t

a a

= So(t,. 1) + S,(t,.1,) + O(&D). (2.29)
Further analysis of the first action functional, S, reveals

Iy

Solt,, 1) = f dt Ly(x(t), x(1)) = f dt Ly(xo (1) + ex(1), %o(1) + £x,(1))

t

a

I

= f dr (Lo(xo(t), Xo(0) +

t

a

OLy(xo(1), Xo(1)) c

N OLo(x(1), Xy(2))
6)60

Xl(t) axo 8x1(t))

(2.30)

"In [99], the perturbation potential V(¢) is considered to potentially be branch-dependent, meaning that it can
have different effects on the upper and lower atomic paths.
¥To be precise: One should set & = G»r- because a perturbation variable should be dimensionless.
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Pert. trajectory | Unpert. trajectory | Pert. trajectory | Unpert. trajectory

RrG1rRG2R RrZoG2r

ADp,,, -2 -5 0 1

ADg,, 2 0 0 0

ADyei -5 0 1 0
ReVoGak RiGak

ADp,,, 1 1 ! !

A, -1 0 0 0

ADy; i 1 0 0 0

Table 2.5: Comparison of phase shifts contributions using the elaborated procedure with
perturbed atomic trajectories and the description presented by Ufrecht et al., which uses the
unperturbed atomic trajectories. FSL phases are omitted, as they also not included in [99].
One can see how the sum of propagation, separation and Kick phases are the same in each
description, which was also expected, since the stationary phase approximation is exact for
quadratic potentials, such as the gravitational gradient.

We now perform partial integration on the latter two terms to obtain

So(ty, 1) = Lo(xo(1), %(1)) (2.31a)

v e f drx, (,)(5Lo(x%(2, K1) % 8L0(x(:9()2), )'co(t)))

(2.31b)
t(l

[3Lo(xo(f), Xo(1))
te| —— 22
5)60

Ty

% (,)] , 2.31c)

t(l

where the contribution from Eq. (2.31b) vanishes, since x(() is a solution of the ELE of L.
The last part, namely the boundary terms, can be rewritten as

. aLo(x%(t), %o(D) X1(f)r _ SaLo(xo(tb),)'co(tb)) (1) - 8(’)L0(x0(ta),x0(ta)) (1)
X0 t, axO (9)60
= 8m560(tb)x1 (tb)’ (232)

where the last term vanishes, since x;(f,) = 0. These boundary terms include a non-vanishing
contribution from x,(#,), which contrasts with the approach in Ref. [99].

It is evident that only phase shifts that involve the perturbation € are influenced by the two
different descriptions. In the case of the MZI, there are four such phase shift terms: these are
the products of RgG, r With G| r, Zy, Vy, and Rg. A comprehensive comparison of these
terms, as calculated using the two different methods, is provided in Table 2.5. The table shows
that the final result remains unchanged, irrespective of the theoretical framework employed,
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Figure 2.5: Upper and lower atomic trajectories of a MZI zup(z‘), Zow(®) (green) in the lab
frame and unpopulated midpoint trajectory z,,;4(#) (purple), which is used in the midpoint
theorem.

which is anticipated in the case of a constant gravity gradient where the stationary phase
approximation is exact. However, differences between the two descriptions are expected
to emerge when dealing with cubic and higher-order perturbation potentials. Even though
the stationary phase approximation loses its exact validity in this case, we do not see why
this description should lose its accuracy. The Hamiltonian approach also encounters the
problem that the interferometer will not close, necessitating the application of a non-trivial
shift operator to maintain the formalism. Determining which description proves correct
will be an intriguing question to explore. Testing this idealised model will, however, be
complicated, as other effects are likely to arise at such high levels of accuracy [100]. The
leading order differences will be explored in the comparison to Dimopoulos et al. [88] in
Sec. 3.7.

2.2.2 Comparison to Bordé’s Midpoint Theorem

Another theoretical framework for phase shift calculations is provided by Borde’s midpoint
theorem [101]. This approach approximates the phase shift of an AIF by considering the
(unpopulated) midpoint trajectory

1
Zmia ) = 5 (2up(®) + 2100 1) (2.33)

This method offers a distinct perspective by focusing on the central path of the interferometer
system, potentially simplifying the evaluation of phase shifts under certain conditions. A
schematic depiction of such a midpoint trajectory can be found in Fig. 2.5. This approach
has been validated for second-order gravitational potentials, such as constant gravitational
gradients, as demonstrated in Ref. [102]. Bordé’s midpoint theorem has the advantage
of being easily applicable. However, it lacks the ability to straightforwardly incorporate
imperfections and more complex gravitational treatments, as the midpoint trajectory lacks a
direct physical interpretation. Therefore, we prefer the Lagrangian approach, particularly
for novel gravitational backgrounds that have not been previously analysed, as it provides a
more flexible and comprehensive framework for such investigations.
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The midpoint theorem can be stated as follows: The phase shift of an interferometer,
AD = AQp,, + ADy; + Ay, is approximately given by

AD ~ ADyp = Z [Kefr Zmia (%) — wepr 1;] = Z [Kefr Zmia (%) — wegr 1;]- (2.34)

LETy teT,

In this formulation, the sums extend over the instances of atom-light interactions, allowing
the phase shift to be perceived as a Kick phase calculation along the hypothetical midpoint
trajectory. This approach simplifies the phase shift evaluation by focusing on a central,
though hypothetical, path that theoretically experiences all relevant phase contributions. For
the case of an MZI based on Bragg transitions, and under the assumption of infinite light
speed, this expression can be rewritten as

Aq)MP = kRZmid(O) - 2kRZmid(TR) + kRzmid(2TR). (235)

This theorem is an approximation and is sufficient when both arms of the interferometer
experience similar external forces. Consider a scenario where one of the interferometer arms
comes into close proximity to an external potential, which is spatially localised on the scale
of the separation between the interferometer arms, as demonstrated in Ref. [103] with a lead
block. To first order, the lead block will predominantly affect one of the interferometer arms,
with atoms moving in its gravitational potential, thus imprinting a non-trivial propagation
phase. Despite this, the atomic trajectory along the affected path will remain nearly un-
changed because the gravitational acceleration affecting the atoms is much smaller compared
to the potential’s effect, as noted in Ref. [102].° Note that FSL effects are only averaged in
Eq. (2.34), which is itself an approximation. This is because the actual photon paths can
become quite complex in long-baseline interferometers, especially when multiple atomic
sources and differential measurements are involved. Consequently, the midpoint theorem
may not fully capture the intricate effects that arise from these complications.

2.2.3 Gravity Gradient Mitigation Schemes

The presence of a gravitational gradient, indicated by I' # 0, introduces phase shifts to an AIF
that are dependent on the initial conditions z; and v, as shown in Table 2.2, particularly in
terms #4 and #5. Due to thermal fluctuations and suboptimal initialisation, these parameters
can carry significant measurement uncertainty, which contributes to the overall estimation
uncertainty of the desired signal. Another consequence is a loss of contrast, as the atoms’
wavefunctions no longer overlap perfectly at the output port, resulting from the differing
local accelerations experienced on the upper and lower paths of the interferometer.

For the example of an MZI and the light-field configuration shown in Fig. 2.2, the
separation at the output port can be calculated as

Zup(tBS2.2) - ZlOW(tBSZl) = AZF + AZDOp + 0(3) (2363)

The first contribution is due to the gravity gradient

Az = I, (2.36b)

°This is primarily due to the fact that the atomic trajectory is largely governed by Newton’s law, 7 = —V¢(2).
Consequently, any change in gravitational acceleration is only manifested in the atomic trajectory through the
derivative of the additional gravitational potential. Alternatively, larger signals can be obtained by positioning an
atom for an extended period of time (several seconds) near this gravitational perturbation potential, which allows
for the accumulation of a significantly larger phase shift.
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and the latter term contains contributions related to the Doppler effect

N,%h2kaRT B 2NRha)RgT1%
R .

R s (2.36¢)
m c mc

AZDop =

Assuming the numerical values from Table 2.1, we find that |Azr| ~ 4.3nm - Ny and

Azpop = 7.7 X 10 m- N,% -27x10%m-. Ng. Due to the relatively high magnitude of
Azp, it is often necessary to mitigate this separation in modern AIF experiments. Techniques
for addressing this issue are described in [92-94, 104].

The main idea involves applying a frequency chirp to one or more of the interferometry
lasers. This technique alters the momentum imparted to the atoms, enabling them to recom-
bine perfectly at the output port. By carefully tuning the frequency of the laser chirps, the
differential phase shifts caused by gravitational gradients can be effectively compensated,
ensuring that the atomic wavefunctions overlap as intended. This approach helps maintain
the contrast and accuracy in the measurements of modern AIF experiments. In theory, this
can be achieved by altering the mirror pulse in a conventional three-pulse interferometer by

kg — kg + Akp  with  Akp = ?k,e (2.37)
to cancel Az = 0, thereby achieving high contrast. In a nutshell, it is not essential to
know the exact frequency chirp a priori. Instead, one can scan through different frequencies
experimentally, measuring the resulting contrast at each setting. By identifying the frequency
chirp that produces the highest contrast, the interferometer can be optimised to operate
effectively, compensating for the gravitational gradient effect without requiring precise

pre-calculations of the ideal chirp settings.

2.2.4 Rotating Reference Frames — Coriolis and Centrifugal Forces

In the next section, we will incorporate rotating reference frames into our analysis and
examine the potential challenges that may arise. We will use Earth’s rotation as our primary
example, disregarding any additional rotations to avoid added complexity. Defining rotation
itself necessitates establishing what it means to be at rest, which we do in relation to the fixed
star background. We align Earth’s rotation axis with the North-South axis. In this context,
we represent a vector in the co-rotating frame of reference on Earth’s surface, denoted as Z,
using r(f). Similarly, we denote a vector in the fixed rotating frame of the AIF experiment on
Earth’s surface, denoted as X', by r'(¢). The setup is depicted in Fig. 2.6(a).
The transformation law between the two frames of reference is given by

r' (1) ¥ r(t) = R (—wgh)r (1) i (1) — 1) = P (1) + wg X ¥ (1), (2.38)

where wg = (0,0, w@)T represents the angular velocity vector of Earth’s rotation, and R, is
the rotation matrix about the North-South axis. Applying this transformation results in a
Lagrangian expressed in the rotating frame as

L(r,i) = % P mi (g X 1)+ g@@ x )% —me(r), (2.39)
—_———
Coriolis Centrifugal

where the wé—dependent centrifugal term is frequently omitted for simplicity [40]. Since we
assumed constant rotations, i.e., wg = 0, the Euler force does not appear; this force would be



CHAPTER 2. ATOM INTERFEROMETERS IN NEWTONIAN SPACETIME 43
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Figure 2.6: (a) Illustration of a reference frame, Z (blue), which is fixed to Earth’s surface,
thus rotating with the planet, alongside a stationary reference frame, X’ (red), which does not
rotate relative to the distant stars. Relative to each other, the origins of these two reference
frames trace a circle of latitude 6; ,;, (purple). (b) A two-dimensional cross-section of a
vertical AIF within the Earth-fixed reference frame X. Laser pulses, depicted by the red
shaded region, are associated with light fields k,, k;, and are aligned with the z-axis. The
Earth’s rotation causes the initially vertical atomic trajectories (black dashed arrow) to deviate
due to fictitious forces (grey arrows), resulting in a curved path that may lead the atoms out
of the laser beam. The effect is exaggerated for illustrative purposes.

the third and final fictitious force in classical physics. When rewriting the Lagrangian from
Eq. (2.39) in spherical coordinates {r, 6, ¢}, it transforms to

L(r#) = 57 + 2174 sin’(6) + mawgr’ - m(r) (2.40)
and gives rise to the ELE
7= —r0® — r¢*sin’(0) — 9,6(r) (2.41a)
6= —229 — ¢ sin(6) cos() — Apd(r) (2.41b)
b= —2§¢ — 20¢ cot(6) — ,6(r), (2.41¢)

which are now three coupled ODEs. A complete analytical solution of these equations is
typically unnecessary because the primary motion of the atomic ensemble remains predom-
inantly vertical (i.e., along the radial trajectory). Any deviations are generally minor and
are corrected or compensated for. However, the Coriolis and centrifugal forces introduce
perturbative corrections to this motion. These corrections are more effectively described
using a local Cartesian coordinate system {x, y, z}, which rotates with an effective frequency
We = Wg SIN(f ,), specific to the latitude of the experiment, 6; ,,. The action functional,
still, depends solely on the initial conditions of the atomic trajectory, such that the propagation
phase evaluates to

RADp, (P, 13 T s 1) = S1(2ps 1y 2 1) + Sy (Xps Vs T3 Xgs Y 1) (2.42)
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see Ref. [40]. Here, the first component represents the propagation phase shift from
Eq. (1.42), calculated between the initial height z, and the final height z,. The second
part accounts for the transverse motion of the atoms and can be explicitly evaluated as

m
Sy (Xps Yo 3 Xas Yar 1) = m[(xb - x,)" + (o — ya)z] + mwe(X,yp = XpY,). (2.43)
a

Given the initial conditions x, and y, at time ¢,, it is only necessary to determine the
corresponding positions of the atomic ensemble at time # = #,. Assuming an initially vertical
upward motion with velocity v,, the Coriolis force will cause a westward acceleration (as
depicted in Fig. 2.6, in the positive y-direction) given by a, = 2w.v,. Motion in the
East-West plane, when considered to second order of wg, leads to what is known as the
Eotvos effect. This effect causes a subtle alteration in the vertical acceleration, represented
as a, = —2w,gv,. Specifically, this results in an increased effective gravitational acceleration
for particles moving eastward, and a reduced gravitational acceleration for those moving
westward. Both of these fictitious accelerations are represented by grey arrows in Fig. 2.6(b).
Moreover, any residual velocity components in the transverse directions will lead to further
perturbations in the trajectories, caused by the Coriolis and centrifugal effects.

In summary, rotating reference frames do not pose significant theoretical challenges
in describing the interferometer, as the propagation integral remains quadratic and can be
solved analytically. Determining the classical trajectories of the atoms, while more complex
due to the coupled nature of the equations of motion, is still manageable. Experimentally
it is crucial to consider that such effects can cause atoms to drift out of the laser beam’s
focus, leading to a significant loss of contrast. Even when the beam waist is broad enough
to ensure the atoms remain within its diameter, various mitigation strategies are typically
employed. This is because transverse positional shifts of the atoms within a beam can result
in unwanted phase shifts due to wavefront aberrations. Mitigating the Coriolis effect is most
effectively achieved by rotating the lasers with Earth, ensuring that the local z-axis — and
consequently the beam waist — remains aligned with the vertical motion of the atoms. This
is conveniently accomplished using rotating tip-tilt mirrors placed at the start of the atomic
baseline [51, 82, 105-107]. For higher baselines extending beyond 10 meters, an additional
consideration is required: the rotation of the interferometry laser around a single pivot point
can result in a significant transverse offset of the lasers, potentially causing them to collide
with the walls of the baseline confinement. For such expansive baselines, more sophisticated
laser geometries must be considered [107].

We have now completed an overview of the theoretical framework of AIFs, including
some advanced topics that have emerged in recent years. We will now proceed to discuss
novel findings, unless states otherwise. We focus mostly on the analyses that were made in
Refs. [2,4].

2.3 Interferometer Geometries to Measure Gravitational Curva-
ture

The most widespread application of AIFs is in the precise measurement of the gravitational
field using gravimeters, which provide information about the linear gravitational acceleration,
g, along the atomic trajectory. To measure the gravitational gradient, a gradiometric setup
is employed, where g-measurements from two spatially separated AIFs are compared. One
can see in Table 2.2 how the SRBI and the SDDI share roughly the same phase shifts, only
differing by an overall factor of two, related to the smaller spacetime area of the SRBI,
apart from term #8 and some smaller FSL and Doppler/FSL related terms. The idea of
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doubling the area of the SRBI and taking the differential signal with the SDDI appears to
be promising for extracting the differing phase shift # 8. For the sake of simplicity we will
omit the Bloch oscillations.'® An illustration of the resulting interferometer geometry can be
found in Fig. 2.7. In the context of the idealised gravitational potential described in Eq. (2.1),

ZA

10)

20 T

Y

Figure 2.7: A schematic illustration of an interferometer’s geometry, designed to isolate
phases related to gravity gradients [4]. The atomic paths of the SDDI are depicted in green,
while those of the MZI, with a doubled amount of imprinted momenta, are shown in blue.
FSL effects are neglected in the picture for illustrative purposes.

the differential phase shift of this novel AIF geometry is expressed by
A® = ADyy; — ADgpp; = AQcyry + ADggp poppler + O(4), (2.44a)

including a contribution denoted as A®,,,, which we refer to as the "curvature phase" or
"tidal phase" for reasons that will become clear later and is essentially a rescaled version of
term # 8 from Table 2.2.

In this context, AQgg; poppler Tepresents the combined FSL and Doppler phases. As
we will show below, sizeable contributions to AQgg; poppler €an be mitigated, while other
phase shift contributions can be effectively neglected due to their relatively small magnitudes
compared to the curvature phase.l1 Consequently, we will first concentrate on this dominant
phase shift, given by

ONhKATS

2 2 .
Aq)Curv = _2NRg2,RRR = fidealr with fideal == m

(2.44b)
Here, we introduce an idealised scale factor, f;4.,, Which translates the phase shift to the
(idealised) gravity gradient. Consequently, the phase resulting in Eq. (2.44a) depends solely
on the gravity gradient I" and f;.,;,. This scale factor is known with high precision due to its
dependence on the effective wave vector kg, the interferometer time 7, and the atomic recoil

'%The SRBI without Bloch oscillations corresponds to the MZI. However, the SDDI without Bloch oscillations
will still be referred to as a SDDI.

" As already indicated in Table 2.4, there is an ambiguity in naming terms # 40 — #44. To address this, and in
comparison to Ref. [4], we have collected all Doppler and FSL-related terms into a single contribution.
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fi/m, making this interferometer geometry a promising candidate for measuring gravitational
fields beyond linear acceleration.

Since this phase shift is directly proportional to the gravitational gradient G, , it can
be used to extract a gradiometric signal directly, thereby eliminating the need to conduct
two consecutive experiments at different heights to compare their g-measurements. Due
to this co-located setup, we refer to the geometry depicted in Fig. 2.7 as a Co-located
Gradiometric Interferometer (CGI) [4]. Consequently, the measurement resolution of such a
CGl is determined solely by the signal magnitude and is not limited by the spatial separation
between the constituent AIFs. A phase of a similar form to A®,,,, arising from a different
experimental setup, was referred to as a "tidal phase" in the work of Asenbaum et al. [108].
In that study, the gravitational gradient, denoted as T, referred to a lead block acting as a
gravitational test mass. In Hogan et al. [89], [Table 1, Term 9], this phase also appears within
a Mach-Zehnder configuration, where the gravity gradient T, refers to Earth’s gravitational
field. The different factor of —4 in comparison to [89, 108] arises from the doubled amount
of imprinted momentum used in the MZI, combined with the quadratic scaling of Nzky and
a distinct overall sign factor. In Ref. [87, Table I, Term 6], this term is also present and
phrased as a "1st gradient recoil". One can also aim to interpret the tidal phase as a "gradient
correction” of the dimensionless quantity G, g = FT,% to the recoil phase

ANk Ty

AD _——
Recoil m

(2.45)

which is used in measurements of the fine-structure constant [38,39], see Sec. 3.1.1. Conse-
quently, this geometry may be ideally suited for calibrating complex gravitational potentials
in novel experimental setups. For this purpose, we also simulate this AIF in gravitational
fields that extend beyond the idealised model described in Eq. (2.1). An example of such an
application is the Very Long Baseline Atom Inteferometer (VLBAI) facility in Hannover,
where we utilise its accurately characterised gravitational field [83, 109], as detailed in
Sec. 2.4.2.

With the analytic form of this phase shift provided in Eq. (2.44b), one can estimate
the magnitude of an (idealised) output signal.12 Assuming typical values of a launch
mode 10 metre interferometer of T, = 14s, Ny = 1, kp = 10°m™", and a mass of
m = 87u (for Rubidium), the resulting atomic wave-packet separation is approximately
NghkpTr/m ~ 4mm. In comparison, the CGI setup will result in a dominant phase shift
of approximately |A<I>Curv| ~ 0.16rad. To put this in perspective, consider a MZI using

the same numerical values as above to measure the phase AD = gN, RkRT,%. Given that the

gravitational acceleration g decreases by roughly 6g = 2.7 um/ s? per metre, this would result

in a differential — gradiometric — signal between two MZIs separated by 6k, of approximately
6O 6gNgkpTh rad

=200 —. 2.4
oh oh 00 m (246)

A height difference of 64 = 4 mm would result in a phase difference of approximately
0® =~ 0.8rad. One can therefore observe that the geometry depicted in Fig. 2.7 produces
phase shifts of the same order of magnitude as a gradiometric measurement with a height
separation equivalent to the path separation of typical AIFs. However, this approach also
introduces challenges related to co-location [91] and the fact that both §® and 64 are subject
to measurement uncertainties.

Note that we did not implement any gravity gradient mitigation techniques [92-95], so
each constituent AIF will exhibit a non-trivial wave-packet separation at the output port,

"2Excluding the FSL and Doppler phases, for the moment.
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Figure 2.8: A schematic representation of the experimental implementation of the first beam
splitter pulse (shown in purple), which is based on an initial MZI. It uses the output ports
of this initial system as the inputs for the desired interferometer. Traditional beam splitter
pulses are depicted in red.

similar to that described in Eq. (2.36a). Applying the same frequency shift to the mirror
pulse in both interferometers will not alter the differential phase shift. As long as both the
MZI and SDDI experience the same pulse detuning at the mirror, the measurement setup
will continue to function correctly.

Experimental Realisation

An experimental implementation of the first beam splitter of the CGI, as illustrated in Fig. 2.7,
could involve preparing an atomic cloud that contains a mixture of two different hyperfine
states. This strategy would enable the individual addressing of both atomic subsystems
in the MZI and SDDI geometries. Nevertheless, it may also introduce a risk of unwanted
effects due to fluctuations in the (then needed) magnetic field. Another approach could be to
perform a short Mach-Zehnder sequence just before the first beam splitter and use its output
ports as Doppler-selective inputs for the new interferometer geometry. This configuration
would allow one to perform the operations

10y — —=(10) + [-Ng)), |NR>|—>%('NR)+|2NR>) (2.47)

1
V2
within a composite pulse setup, as illustrated in Fig. 2.8. The first setup offers the advantage
of ideal "co-location" control [91], as the atoms in each AIF exhibit very narrow uncertainties
in their initial conditions due to being initialised in a common trap. On the other hand, the
latter setup benefits from excellent coherence between the two input states.

Given that Bragg scattering is inherently a multi-port process, composite pulses can be
utilised to produce an effective four-way beam splitter as required in this context. Such
generalised beam splitters are developed in the laboratory by applying analytical methods [56]
as outlined in Ref. [110], or by employing optimal quantum control techniques [111,112].
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Interpretation of the Phase

To gain a better understanding of the curvature, or tidal, phase, it is beneficial to analyse
the origins of this phase contribution. We proceed by reviewing the propagation, separation,
and kick phases in the context of the idealised gravitational potential described by Eq. (2.1).
Subsequently, we compile all terms, excluding the FSL phases, in Table 2.6.

In an AIF, most phase shifts scale with the enclosed spacetime area, which is identical
in both the MZI and SDDI configurations depicted in Fig. 2.7. However, the phase shift
A®c,,, arises exclusively from the MZI and is absent in the SDDI. This indicates that this
specific phase contribution remains uncancelled in the differential setup. Solving the ELE in
the context of the potential from Eq. (2.1) yields an expression for the atomic trajectory of

r

1 1
—(z0t2 + §v0t3 - —gt* (2.48)

1 5
1) =2zy+ vyt — =gt —
At =z +vo & =3 12

2
with initial conditions z, and v,, as we have seen in Eq. (2.9). The I'-dependent part of the
trajectory is not essential for interpreting the curvature phase. Therefore, we will subsume
those contributions into O(I).

Evaluating these solutions at the time of the mirror pulse (¢ = T},) for the upper and lower
AIF paths of the MZI and SDDI yields atomic heights of

hkRR 1

2w (Tg) = 29+ voT + 2Ng - 5gT,% +0(), (2.49a)
Zlow (TR) = 20 + voTg = égT & +O), (2.49b)
zon N(T) = 29+ voTg + Ng kel _ %gT,% +0(I), (2.49¢)
2oD(TR) = 2 + voTg — Ny hkRTR ;gT,% +O(I). (2.49d)

Calculating the propagation phases for each AIF leads to the following statement

2Tp
20328t = 2 [ [L(5"0) - L ()] ar, (2502
0
2Tp ik 5
mF T
ADYS ~ - (2N & R) dt + ADpL, (2.50b)
TR

where the additional phase in the MZI arises from the propagation phase during the time
interval [T, 2TR]. This occurs along the %l"z(t)2 part of the Lagrangian, particularly due to
a non-vanishing photon-recoil asymmetry in the initial heights of z(¢), as seen in Eq. (2.49).
Note that this contribution vanishes in the SDDI, as both zlslg Pl(T)? and 2P (Tx)? exhibit
identical photon-recoil dependent phase contributions, thereby nullifying any output signal.
In a differential measurement setup one is therefore left with the idealised tidal phase
MZI SDDI 2 o 2TNghkgTi

AQpyy, — ADp )y ~ ADqyy = —2NgGHpRg = —————. (2.51)
We will now examine each phase shift contribution in detail to identify the origins of the
other terms.



CHAPTER 2. ATOM INTERFEROMETERS IN NEWTONIAN SPACETIME 49

Separation phase

We begin with examining the separation phase of each AIF, which can be calculated using

AQg,,, = Zazv

h aver?

(2.52)

where Az is the separation at the output port, and v, is the average output velocity of the
two output ports. For the MZI and SDDI, we obtain the separation phases of

A(D?,i%l = Aq)gerDl = 2NRRR(V0g2,R — 4NRG 1,Rg2,RRR + SNRTRQ%,R — AN FrG 1,R(VO’
(2.53)

which result in no relative phase shift at this level. A differential phase shift between the
separation phases will only arise through the FSL effect, which we will include into the
analysis below.

Kick phase

The spatial par'[13 of Kick phase can be calculated by the weighted sum of light field phases
+®(#,,, Z;) at each interaction time f;,, and height z;,, counted positively if a photon is

absorbed in the process and negatively if a photon is emitted. Calculating this for the MZI
and SDDI yields

7
A(I)I\K/Ii%lI( = Aq)i?c'ﬁl = 2NgRrG IR~ ZNRRRZOQQ,R - 2NRRR(VOQZ,R + ENRRRQ l,Rgz,R

- 6NR7:RQ%,R + ONRFR VoG 1 r> (2.54)

therefore given a vanishing differential phase shift. Similar to before, there will be FSL phase
contributions, that break this symmetry, as discussed below.

Propagation phase

The most interesting contribution to the phase shift is the propagation phase, as introduced in
Eq. (2.3a). We will now demonstrate in greater detail how all phases, including those due to
linear gravitational acceleration, cancel out, thereby proving Eq. (2.50). The evaluation of
the propagation phases yields

A@IS,E)EI = 4ANpG1 RGorRR — 2NgRrVoGar — SNpFRGir + 4NgFRrG1x Ve  (2.559)

ADRZ = ADRLY! — 2NZG) R Ri (2.55b)

leading to a differential signal that is equivalent to the discussed phase. It is noteworthy
that this phase was observed in several previous studies of the MZI [88, 89]. However, the
remarkable aspect is that the symmetric momentum imprint of the SDDI effectively nullifies
this phase contribution. We have reproduced all the terms in Table 2.2 and demonstrated
their respective origins. In Table 2.6, we, again, collect all the non-zero phase contributions
relevant to the analysis presented above. For the moment, we have disregarded the FSL terms
to simplify the analysis and focus on understanding the origin of this tidal phase. However,
FSL phases are also present in the CGI. We will elaborate more on this in the context of
two-photon Bragg transitions in the following.

3The temporal component of the Kick phase is directly influenced by the FSL effect, as it requires the explicit
consideration of the atom’s emission and absorption times, as discussed below. Since all the terms presented
here are several orders of magnitude below any measurable signal, these contributions will be omitted anyway.
The interested reader can find a comprehensive list of the phases affecting both interferometers in a different way
in Table 2.7.
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Phase comparison of a MZI and a SDDI in a CGI configuration (no FSL phases)
MZI | SDDI Phase Phase Magnitude [rad] | Differential signal

2 2 NekpgThr NrRrG1 R 1.4 %10’ 0

2 | =2 | NgkpzoITg | NpZoGorRr 20 0

~2 | =2 | NgkgvoITp | NgVoGrrRe 14 0

% % NRkRgFTlé NrG1rRG2rRRR 14 0

2| 0 w N3G xRy 1.5x 107 -2
-12 | -12 NRLfZT; NrG1rTr 23%x107° 0

12 | 12 NR“’R—ioT'% NeFrG1xVo 24%107 0

Table 2.6: Comparison of phases in the MZI and SDDI used for a CGI, as depicted in Fig. 2.7,
split into different proportionalities. Pure FSL phases are discarded in this list. The first
two columns describe the prefactor of phase shift contributions given in the third and fourth
column, which is present in each AIF phase output. The magnitude denotes the absolute
value of the expression in the "Phase" columns with assumed numerical values: N = 1,
wg=10"Hz, kg =4x10°m™", m = 87u, Ty = 0.65,7y = 5m, v, = 6m/s, g = 9.81 m/s
and T = 2.7 x 10° E. The last column comprises the prefactor of the phase expression in a
differential measurement setup between MZI and SDDI.

2.3.1 FSL Effect and Mitigation Scheme

Up to this point, we have assumed infinitely fast laser beams and perfectly simultaneous
interactions occurring at times ¢ = 0, T, 2T for each AIF path. Nevertheless, as previously
mentioned, the FSL phases are influenced by various experimental conditions, including
photon path lengths, mirror positions, and, most importantly, the type of laser interaction
used for beam splitting and reflection. Therefore, we will consider a specific experimental
setup and choose again the setup depicted in Fig. 2.2. In the case of two-photon Bragg
transitions, this phase shift evaluates to

Apg = 4N;Ri (4G, & — Vo — R) + A

_ ARNRKRTy Nglikg
B mc

(4gTR - Vo — ) + AD,, (2.56)

along with an additional time-independent component

A, = 2N12€R122(2~ZL -Zy- 'ZU) = 2N12€72122(ZL -H - Zo)
_ 2hNgkg
B mc

(22, — 20 — 2v) (2.57)

and some other phase shift contributions of similar magnitude to those previously neglected.
The time-independent part is not inherently problematic, as it remains constant across each
AIF and can be used to precisely calculate the desired quantities from the output phase shift,
provided its magnitude is known. The T dependence of the first part can pose challenges,
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1—2NRkR(1 — Apet)

Figure 2.9: A schematic illustration that presents the mitigation scheme, which involves
applying a detuning Ap,, to the final interferometry pulse. By precisely adjusting the
frequency of the last pulse in the AIF, a carefully calculated detuning is introduced to cancel
out unwanted phases related to the FSL effect.

since Ty (as well as v,) are variable parameters within the experiment. We summarised
how each phase shift contribution of the MZI and SDDI are altered due to the FSL effect in
Table 2.7. We therefore only consider phase shifts with a magnitude bigger than 2 X 107" rad.
Note that we only show phase shifts, that not appear universally in the MZI and SDDI.

Mitigation of FSL terms If one modifies the last AIF laser pulse according to Nyhik, —
(1 4+ Ape)NgTikg, where Ap,, is a dimensionless detuning parameter with Ap,, < 1, this
results in an additional dominant phase shift at the output port of

Nghk
RIKR gTR).
m

AD s gditional = ZNRkRTRADet(VO + (2.58)
It is crucial to emphasise that this detuning parameter, Ap,, must be kept small to ensure
a significant overlap at the final output ports of each constituent AIF. Maintaining a small
detuning parameter helps preserve the fidelity and coherence of the system’s output. An
illustration of this process is given in Fig. 2.9.

Note that the term in the brackets in Eq. (2.58) is usually small, as setting this term to
zero corresponds to the constraint equation involving T, and v, for achieving optimal motion
in a launch-mode AIF. This happens because the apex of the atomic trajectory ideally occurs
after half of the interferometer’s duration, at ¢ = T. If the initial velocity is v, + NR,ZkR, this
precisely leads to the equation

Niphk
V0+ RR

— gTx = 0. (2.59)

When applying this mitigation strategy, it is essential to ensure that v, and T are selected in
such a way that Eq. (2.59) is not satisfied. Otherwise, there would be no additional phase
shift that could be tuned to cancel the unwanted phase contributions.
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Figure 2.10: Optimal detuning frequency vpe(vy, Tr) = ckrApe(Vo, Tx) as a function of Tp
for fixed values of v,. Notably, the optimal detuning approaches infinity for pairs (v, Tx)
that satisfy Eq. (2.59).

The described detuning enables the calculation of an appropriate form of Ap such that
the additional phase cancels out the time-dependent part of A®gg; . This cancellation occurs
if we choose

Nilikg
Vo + - 4gTR Nphk
Ape(Ng» vo, Tg) =2 thk ;c K. (2.60)
Yo m gTR

In Fig. 2.10, the optimal detuning frequency vp,, = ckrAp, Of the last AIF pulse is depicted
as a function of T for a given initial velocity and number of imprinted photon momenta. One
can see that the detuning frequency is approximately on the order of hundreds of MHz for
usual 10 m interferometers, which is achievable in the laboratory without significant problems.
It is worth noting that instead of detuning only the last interferometry pulse, one could also
apply a small detuning to each pulse individually. By carefully selecting the corresponding
detuning parameters for each pulse, along with adjusting the other relevant variables, one can
achieve a more flexible and potentially more effective mitigation of unwanted phase shifts.
Another approach to mitigate FSL effects is to adjust the photonic path lengths in such a way
that additional FSL phase shifts are introduced, ideally cancelling out the unwanted phase
shifts. In our calculations of the various FSL effects, we have assumed that all laser sources
are positioned at the same, fixed, heights z; and z; . By altering the height of certain lasers
for specific pulses, or by combining two-photon and single-photon transitions, it may be
possible to mitigate the FSL effects. However, this strategy relies on the specific capabilities
and flexibility available within the experimental setup. Such adjustments would need to be
carefully considered in the context of the experimental conditions and apparatus constraints.

In conclusion, there are numerous strategies available to mitigate unwanted FSL phases
in the CGI. These strategies enable us to safely disregard these effects in our theoretical
description. This is particularly crucial for the more detailed analysis presented in Sec. 2.4.2.



Detailed analysis of FSL phases in the CGI in units of w:T5
Interferometer MZI1 SDDI CGI
Origin Propagation | Separation | Temporal Kick | Spatial Kick | Propagation | Separation | Temporal Kick | Spatial Kick Phase Magnitude of CGI phase (with prefactor)
FrRrG1r 12 -8 8 6 0 0 0 0 18 2x 107!
FrRr Vo -4 4 0 -4 0 0 0 0 -4 5% 10712
RRG1 R -2 0 10 8 0 0 0 0 16 2% 107
RaH 2 0 0 -4 0 0 0 0 ) 1x1073
RaZo 2 0 0 —4 0 0 0 0 -2 4x107*
RRZ: -2 0 0 4 0 0 0 0 2 8x107°
FaRa 0 0 0 0 4 0 0 0 -4 2x 1071
FRG1r 0 0 -4 0 0 0 0 0 -4 4x1072
FrRH 0 0 —4 0 0 0 0 0 -4 2x 107!
FrRe Zo 0 0 -4 0 0 0 0 0 -4 7x10712
FrRrZL 0 0 4 0 0 0 0 0 4 1x10712
RV, 0 0 -4 0 0 0 0 0 -4 6x107
R 0 0 0 0 0 0 4 0 -4 3%1077
FaRr 0 0 0 0 0 0 -4 0 4 2x 1075

Table 2.7: FSL phases in the CGI, assuming the setup in Fig. 2.2. The first column collects the phase shift contributions. The next eight columns denote

the origin of this phase shift contribution for the MZI and SDDI, respectively. The last two columns denote the prefactor in the CGI and its magnitude.

Numerical values: Ny = 1, wp = 10’ Hz, kp =4 % 106m_1, m=87u,Tp =0.65,zp=5m, vy =6m/s, g = 9.81m/s2, 7z, =—Ilmand z; = 11m.

HNILIOVAS NVINOLMAN NI SYALANOIHIIAINI WOLV T dd1dVHD

€<



54 CHAPTER 2. ATOM INTERFEROMETERS IN NEWTONIAN SPACETIME

2.4 Revisiting Assumptions

In this section, we will revisit the assumptions about the gravitational field discussed in the
introduction of this chapter. Adopting a top-down approach, we first analyse the deviations
of the gravitational field from the idealised model on a global scale, which is crucial for AIF
experiments conducted on satellites. Subsequently, we examine gravitational anharmonicities
on a local scale, using a 10 metre interferometer facility in Hannover as an example.

2.4.1 Global Gravitational Variations: Geopotential Model

Initially, the analysis assumed a spherically symmetric Earth as the source of the gravitational
background field. However, acknowledging the limitations of this simplification, we have
now incorporated a more realistic geopotential model. By adopting this approach, we aim to
capture the complexities and irregularities of Earth’s gravitational field, on a global scale,
providing deeper insights into potential experiments with AIF in Earth’s orbit [42, 113-115].
On one hand, experimental setups of this nature can be viewed as supporting missions like
GRACE Follow-On for purposes of relativistic geodesy. On the other hand, they are utilised
to measure gravitational waves and investigate dark matter. Since our goal is to incorporate
and understand effects arising from GR, particularly spacetime curvature, it is essential
to know Earth’s static gravitational field with high precision. This accuracy allows us to
distinguish inhomogeneities in the gravitational field from potential signals of new physics.

Figure 2.11: Deviation of the local gravitational acceleration from the mean, based on
the JGM-3 model. The figure was created using the open source 3D visualisation tool of
the International Centre for Global Earth Models (ICGEM) at the GFZ in Potsdam, see
Ref. [116]. The legend has been adapted for better readability.

To begin, it is important to consider that Earth’s radius is not constant; instead, it varies
depending on the observer’s latitude. This results in a deviation of approximately 0.3 % from
the average, or about +£10.5 km. We use the radius formula for a spheroid

J R? cos’(6) + R sin’(6)
R®) = 2.61)

Rg cosz(G) + RI% sinz(Q),
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where R, and R, represent the equatorial and polar radii of the Earth, respectively. For all
calculations, we select the Earth’s radius at the laboratory to be R, while keeping in mind
that this value implicitly depends on the latitude. In the second step, a multipole expansion
of the gravitational potential is performed, expressed in the following form

! T, n|m c s

n n

21 1.75%x10%km’/s? | 2| 1 5638 km" /s> —26518km’ /s’

3| -2.62x 10" km®/s? 2

—2.55% 10" km®/s?

1.46 x 10" km? /s>

~1.07 x 10" km/s?

227 x 10" km®/s?

-2.77 x 10" km®/s*

-9.58 x 10" km®/s?

~3.20 x 10" km®/s?

2.19 x 10" km®/s?

1.45 x 10> km®/s?

~1.04 x 10" km®/s?

-2.05 x 10" km®/s?

Table 2.8: Table of the first zonal and tesseral coefficients according to the JGM-3 model.

CMy & SR
6r,0,) = ===+ > Zi(r,O+ Y > T,u(r:6.6) (2.62a)
r =2 n=2 m=1
with
J,P) (sin(6))
Z(r,0) = ——7—, (2.62b)
r

C,' cos(mp) + S, sin(mep)

+1
rl’l

(2.62¢)

Ty (1,0, 9) = P,/(sin(6))

Here Z, are "zonal" and T, ,, are "tesseral" corrections. The J;,C,', S} are constants, with the
most significant ones listed in Table 2.8. The P, (x) are the associated Legendre polynomials.
To maintain axial symmetry, the tesseral terms would need to be disregarded, meaning one
would set C;' = S} = 0V [,m. In this model, the Newtonian gravitational potential would

take the form

GM,. ] J: sin(@
61,60, 0) = ———2 + 22 (3sin’(0) - 1) + 35”:( )(5 sin’(6) — 3)
r 2r 2r
J
+ 4 (35sin*(0) — 30sin’(@) + 3) + O(C™, 8™, J.). (2.63
.

Explicit values for the correction constants can be found, for example, in the Joint Earth
Gravity Model (JGM), such as the JGM-3 catalogue (see Ref. [117]). Because water and
other liquids are continually moving on Earth, the matter distribution is inherently a dynamic
quantity. A graphical representation of the anomaly in local gravitational acceleration, as
described by the JGM-3 model, can be seen in Fig. 2.11. This figure uses colour codes to
represent deviations from the mean gravitational acceleration. Figure 2.12 illustrates the
significant effect of the zonal coefficients compared to the dominant (constant) contribution
of the gravitational potential on Earth’s surface. The zonal coefficient Z, has the largest
impact, being roughly three orders of magnitude greater than Z, for n > 3. The effects
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of the tesseral contributions are of the same order of magnitude as the higher-order zonal
coefficients, as demonstrated in Figure 2.13. This is shown at Earth’s surface and a fixed
latitude of 8 = m/4, which corresponds approximately to the regions of North America,
Southern Europe, or Central Asia.

1078 \
r=Rgl||— i—ﬁfﬁ
®
1070 1 |22(Re. 00|/
|Z3(Rs, 0)| /¢
10712 | 1 |Z®e. 0|/
) |Z5(R4, 0)|/ ¢
107 A |Z6(Re, 0)]/
16 |/ |z, 0)|
10 — |Z(Re, 0/
10718
| | |
0 Z-T g %Tﬂ T
Latitude 6

Figure 2.12: Comparison of the (dimensionless) magnitudes of several components of the
effective gravitational potential as functions of latitude 6 from O (north pole) to 7 (south
pole): i) constant gravitational potential of a sphere (black) and ii) zonal correction terms
from Eq. (2.62b) for different / > 2 (coloured).

In earthbound experiments, this analysis is not crucial for local setups because the local
value of g remains constant across the transverse dimensions. The movement in the local
x and y directions is too small to detect any inhomogeneities at this scale. However, for
such locally confined experiments, the analysis in the next section becomes important as it
incorporates local inhomogeneities in the radial direction. For space borne AIF experiments,
the scenario differs. Zonal and tesseral corrections decrease with higher orders of r, reducing
their impact on AIF experiments conducted in Earth’s orbit. This topic is further explored in
the outlook of Chapter 3, particularly in Sec. 3.8.

2.4.2 Local Gravitational Variations: VLBAI Hannover

State-of-the-art AIF are being developed with increasingly longer baselines [85,86,118,119]
and more efficient Large Momentum Transfer (LMT) techniques [60, 120, 121] all over the
world. These advancements are pushing the potential wave packet separation beyond the
region where the assumption of an idealised local gravitational field as in Eq. (2.1) remains
valid. The transition to non-trivial fields presents not only a challenge for large baseline
interferometers but also an opportunity for experiments utilising gravitational test masses.
By deliberately introducing non-trivial gravitational fields, researchers can measure phases
along the atomic trajectory to probe this non-linearity. This approach has been exploited in
studies such as [108,122], leading to the proposed gravitational Aharonov-Bohm effect [103].
Measuring anomalies in the gravitational gradient is also employed to detect inhomogeneities
in the gravitational field [123] and is becoming increasingly important for applications in
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Figure 2.13: Comparison of the (dimensionless) magnitudes of several components of the
effective gravitational potential as functions of colatitude ¢ for fixed 6 = n/4: i) constant
gravitational potential of a sphere (black) and ii) summed tesseral correction terms 7, =
Ym=1 Ty from Eq. (2.62c) (coloured).

civil engineering and quantum metrology. Resolving a spatially varying gravity gradient with
high accuracy using a gradiometric AIF setup involves comparing g-measurements in close
proximity. This process is prone to increasing errors due to the relative uncertainty in the
positions of the atomic ensembles compared to the separation between the two constituent
AlFs.

At the VLBALI facility in Hannover, a high-precision measurement campaign was con-
ducted to understand the gravitational background and its fluctuations along the 10 metre
baseline of the interferometer [83, 109], particularly within its Region of Interest (ROI). As
shown in Fig. 2.14, the gravitational gradient’s non-linearity varies with height, ranging
around 1077 572, or equivalently 10_6g /m. This variation appears to correlate with the large
masses of concrete and steel in the ground and first floors. Given that the newly proposed
CGI was shown to be especially sensitive to gravitational curvature — terms beyond linear
acceleration — we will use this interferometer geometry to analyse the VLBAI in Hannover
in greater detail. We simulate the CGI scheme for the VLBAI facility in Hannover, using
its precisely known gravitational field from Refs. [83,109], as depicted in Fig. 2.14. The
measured values of g have been interpolated with a polynomial of degree 10, which results
in a gravitational potential represented by a polynomial of degree 11 after integration. The
measurement data was collected before the magnetic shielding of the VLBAI was in place.
Since the shielding is a spherically symmetric and homogeneous mass, significant deviations
from the presented model would only be expected at the top and bottom of the shielding.

Throughout this analysis, we will assume one-dimensional movement of the AIF atoms
along the z-axis of a local coordinate system originating at a fixed height of the experiment,
while disregarding Earth’s rotation. By expanding the gravitational potential, ¢(z), in the
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Figure 2.14: Gravitational acceleration g(z) and gravitational gradient I'(z) as functions of
height in the ROI of the VLBAI Hannover with a reference acceleration of g = 9.812m/ s,
g(2) is interpolated by a polynomial fit. Building cross-section taken from Ref. [83] and
adapted.

vicinity of the origin of this local coordinate system using a Taylor series, we obtain
) 6"
$(2) = po+ g2+ Z; =7 (2.64)
n=

Note that, in comparison to Eq. (2.1), we have ¢(2) = —I" and we define gravitational curvature
as

8 ¢(2)
622 '

I'(z) = (2.65)
The summation in Eq. (2.64) must be carried out to a considerable order, depending on
the complexity of the gravitational environment. In our case, this extends to order 11, as
described above. To highlight this once more: we refer to all terms in I'(z) as gravitational
curvature, including the gravity gradient and higher-order derivatives of the potential. In
a general relativistic context, curvature is defined through components of the Riemann
curvature tensor, which — at first order — are second derivatives of the gravitational potential,
as is the case here.'* We will focus on the CGI depicted in Fig. 2.7, which consists of a MZI
with a 2Nphkp momentum transfer and a SDDI with an initial photon kick of Nghkp in each
direction.

To address the challenge of inferring gravitational curvature at a specific height from a
measured phase shift, given that atoms sample a substantial section of the gravitational field
during their flight, effectively averaging it, we begin by analysing multiple CGI sequences as
shown in Fig. 2.7. Each sequence spans a height difference of Ah with varying initial heights
Zp, as illustrated in Fig. 2.15. The apex of each atomic trajectory occurs at time ¢ = T, which

Geodesists refer to gravitational curvature as third-order derivatives of the gravitational potential, i.e., the
spatial variation of the gravity gradient.
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is achieved by setting

2Ah

Note that each atomic sub-trajectory experiences different momentum kicks and therefore
will not reach its apex at exactly the same time. However, since the atomic recoils are small
compared to the initial launch velocity, this intricacy can be safely ignored for the moment.
For simplicity, in this section, we will always illustrate trajectories in this way, such that Ak
and T can be viewed interchangeably.

(a) ®) =
-

0 Tn 2Tt

Figure 2.15: (a) Graphical depiction of a CGI within the baseline of a large-scale interferom-
etry facility, where the initial height z;, can be chosen freely. (b) Detailed depiction of the
CGI in the laboratory frame. (c) Illustration of the CGI in the freely falling frame, with the
current momentum state of each interferometer arm indicated.

Numerical Simulation of the CGI in Non-trivial Gravitational Fields

Having developed a numerical model of the gravitational field at VLBAI Hannover, we can
now simulate any AIF interferometer by implementing the preceding theoretical model. We
simulate the CGI from Fig. 2.7 in the gravitational field of the VLBAI from Fig. 2.14. The
numerics are done in Python [3] and use a time discretisation of the interval [0,27%] into a
certain number of sub-intervals. For the VLBAI gravity profile we have seen that a number
of 20.000 time steps is sufficient for convergence. By simulating the CGI as outlined in
Fig. 2.15, we demonstrate the link between gravitational curvature and the phase shift, as
illustrated in Fig. 2.16. It is intriguing to observe that the gravitational curvature depicted in
Fig. 2.14 directly correlates with the CGI phase A®, after a shift along the horizontal axis, as
shown in Fig. 2.16.

In fact, this behaviour is logical because the atoms effectively explore the gravitational
curvature along their entire trajectory, which changes non-trivially from its initial value.
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Figure 2.16: Comparison of the measured phase shift A® (black) and the gravitational
curvature I' from Fig. 2.14 (orange), as a function of the initial height z;, in the ROI for three
different values of T, (and therefore Ah), i.e., different choices of measurement resolution.
The pink line highlights the offset between the phase shift and the gravitational curvature.

Consequently, the output signal of the interferometer is based on a carefully chosen average
value of ['(z). This implies that the phase shift, along with the information it contains about
I'(z), can be correlated to a precisely averaged height within the interval [z, zo + A#], i.e., the
phase shift directly reflects the gravitational curvature at that specific height. This raises the
question of the magnitude of this shift and, more importantly, whether there is any underlying
systematic or universality that could be discovered. A reasonable ansatz for this shift stems
from the aforementioned thought, that the atoms average gravity along their trajectory. Thus,
we define the n-th mean of the atomic position along its trajectory using

2T 1/n

1 .
IOl = | 57 f o)~ 2o | . (2.67)
R

0

where the trajectory z(¢) is adjusted to exclude the initial height z,. A collection of various
different for the trajectory means and their connection to the interferometer baseline can be
found in Table 2.9.
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n 1 2 3 4 5

lz®ll, | 0.66 AR | 0.73Ah | 0.77Ah | 0.79 AR | 0.82 Ah

Table 2.9: Comparison of different trajectory means, ||z(#)||,,, for the first five of values for
n. Here, we assumed an initial height of z, = 0, a baseline Ak = 10 m, and corresponding
values of v, and T, given by Eq. (2.66).

Consequently, we define a shifted version of the phase shift using the n-th trajectory
mean as

AD i (29, 1) = AD(zg — llz(Dl,,)- (2.68)

Furthermore, we introduce a series of exact scale factors, f,, analogous to the idealised scale
factor fig.q> €stablished in Eq. (2.44b), as

Jo - T(z) = ADypi5 (2, 1). (2.69)

For small baselines, the exact scale factors f, should naturally align with the idealised
scale factor. Comparing the shifted phase A® . (zy,n) for various values of n with the
gravitational curvature — each as a function of height — results in the finding, that the case
n = 3 exhibits particularly good agreement. This can also be physically motivated, as the
tidal phase, in its idealised form, is cubic in the interferometer time 7. In the following, we
examine the connection between the shifted phase and the gravitational curvature for n = 3,
and we define an estimator for the gravitational curvature, as demonstrated in Ref. [4].

Defining an Estimator for Gravitational Curvature

We begin by comparing the scale factor f; with the idealised one fi4., in Fig. 2.18(a),
and indeed, observe that they coincide in the limit as Ak — 0, as anticipated. However,
even as the baseline increases beyond 2 metres, the idealised scale factor continues to
approximate the exact one with an accuracy better than one per mill. Although we lack an
analytical expression for f3, we observe that the idealised scale factor provides a promising
approximation. Thus, we define an estimator for the gravity curvature by

AD i (29, 3)

(zy) =
0 fIdeal

(2.70)

Fig. 2.17 demonstrates that this estimator is in excellent agreement with the exact gravi-
tational curvature I'(z,) for small baselines A#, corresponding to high spatial resolutions. It
is noteworthy that this averaging process appears to be universal for this particular geometric
configuration. Increasing the baseline results in a noticeable reduction in estimation accuracy.
This aspect requires more detailed quantification. For this we define the root mean-square
erTor as

2Ty
~ 1 p A~ 2
Al = T f dz (F(z) —r(z)) . (2.71)
0

Fig. 2.18(b) illustrates that increasing the baseline — and consequently the average phase
shift — leads to a higher root mean square error, Al", in the estimation of the gravitational
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Figure 2.17: Comparison of the gravitational curvature I" from Fig. 2.14 (orange) and the
estimator for the gravity gradient " from Eq.(2.70) (red dashed) for three different values of
Ty (and therefore Ah), i.e., different choices of measurement resolution.

curvature. These findings underscore the critical importance of thoroughly understanding
the gravitational environment in VLBAI facilities, as the link between measured phases and
their corresponding heights was previously unclear. This knowledge is particularly crucial
when aiming to detect signals from additional test masses or even gravitational waves. Given
that the tidal phase remains robust when transitioning to complex gravitational fields, our
objective is to derive an approximate expression for the dominant phase shift in a CGI under
these conditions.

Defining a Formula for the Tidal Phase in Complex Gravitational Fields

Utilising the Taylor series expansion of the gravitational potential in Eq. (2.64), we can
deduce the dominant phase shift contribution in the CGI. We find that the tidal/curvature
phase can be reformulated as

(n)
AD¢yy, = _% Z q;_'[ﬂMZI(n) — Asppr(m)]. (2.72)
n=2

Here Ay (n), Agppr(n) are geometry dependent quantities. Denoting the classical solutions

of the atomic trajectories on the upper and lower AIF path of the MZI as zuMp%lLW(t) respectively,
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Figure 2.18: (a) Difference between the exact scale factor f; and the idealised one, fij.a
as a function of the interferometer baseline Ah. (b) Phase shift magnitude for CGIs with
varying baselines Ak and corresponding root mean-square error in the estimation of the
gravity gradient. Al is averaged over all possible initial heights in the ROI obtainable with a
baseline of Ak and (I') = 2.75 x 10° E is the magnitude of the mean gravitational gradient of
the facility.

one can write Ay;(n) as

2Ty
Fnizi(n) = f (MA@ = o) dt, (2.73)
0

which coincides with the spacetime area of the MZI for n = 1. The formula for the SDDI is
completely analogous. Note that there is no n = 1 contribution of A®,, i.e., phase shifts
resulting from linear gravitational acceleration g, cancel to leading order.

In a nutshell: It has been previously demonstrated how the tidal phase emerges from
the propagation integral involving the higher-order potential terms of the Lagrangian and
the macroscopic height difference at the mirror pulse of the MZI of 2NyhkgTx/m. For a
non-trivial gravitational potential, the propagation phase will consequently always take the
form

@ (DN ik Tr @ (ON ik Tr \>
A@%ﬁﬁzm"j ( R RR)+m¢ ( R RR) .

2h m 6h m

whereas ACI)EB)S "Jacks those kind of terms. However, the kick phase depends only on the

atomic positions, and both paths of the CGI are influenced by gravity in a similar manner due
to the small spatial separation between the two arms, which is on the order of 2Nk, T /m.
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Figure 2.19: Numerical phase shift simulation (blue) of the CGI in the gravitational field of
the VLBAI from Fig. 2.14 as a function of T for fixed Np = 1, z5 = 0, and v, = 13.8 m/s.
A polynomial of fourth order (orange) is fitted to the phase shift. One can observe that the
phase shift is primarily dominated by the propagation and separation phases, with the kick
phase contributing at most one order of magnitude lower.

The expression for the tidal phase in Eq. (2.72) is essentially given by the propagation phase,
where the kinetic and the linear gravitational part of the Lagrangian drop out, as we have
seen for the case of the idealised potential.

We support this theoretical argument with a numerical analysis. Figure 2.19 illustrates
how the total phase shift — and its constituent phase shifts, namely the propagation, separation
and kick phase15 —scale as a function of T. FSL phases are excluded from this simulation,
meaning all atom-light interactions occur at time instances ¢ = 0, T, 2T ». This simplification
avoids the additional complexity introduced by the FSL effect, which can be mitigated in
any case. The approximation in Eq. (2.44a) fails under certain conditions. First, in a rather
unique scenario, if the separation phase becomes excessively large, it may grow larger than
the propagation integral from Eq. (2.44a). This situation is experimentally trivial, as a large
separation phase would result in zero contrast anyway. Second, if the gravitational potential
is conﬁgured16 to accelerate one interferometer arm significantly differently from the other,
this would yield non-trivial effects in both the propagation and kick phases. Of course, this
scenario is also quite artificial, as the atomic paths are required to interfere at the output port
regardless.

2.5 Summary and Outlook

We introduced a novel AIF geometry designed to exhibit high sensitivity in the measure-
ment of gravitational curvature [4]. In addition, we performed numerical simulations to
analyse the behaviour of this AIF sequence in the gravitational field of the VLBAI facility
in Hannover, Germany. Our results provide new insights into the interpretation of phase
shift data in complex gravitational environments. This analysis serves as a case study for
VLBALI, highlighting the critical role of accurate gravitational models in state-of-the-art atom
interferometry experiments with baselines longer than 10 metres. It should be noted that we
idealised the atom-light interaction by assuming instantaneous and lossless processes. Here,
we also disregarded Earth’s rotation, which was analysed in Sec. 2.2.4.

15Tt was shown in Ref. [87] how the separation phase can be viewed as the "missing part" of the closed
propagation phase integral. Whenever we have a substantial separation at the output port it will therefore make
sense to analyse the sum of the propagation and separation phase, since they arise from the same intrinsic
mechanism.

"Potentially, by using cleverly positioned macroscopic test masses.
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Figure 2.20: Schematic depiction of a measurement sequence to obtain a time resolved
model of the gravitational curvature. Here, the separation between the initial heights of each
CGlI, Al are shown equally spaced, in order to achieve a higher spatial resolution, one can
decrease the separation between neighbouring interferometers in certain areas.

An additional strategy to measure the gravity gradient involves the gradient mitigation
techniques, see Sec. 2.2.3. By scanning through different pulse detunings and identifying
the highest contrast of the interference signal, one can infer the value of the (dominant)
gravitational curvature from the optimal detuning frequency. This approach is experimentally
simple but requires multiple AIF experiments to scan various detuning frequencies. The
repetition poses a challenge, particularly for time-varying gravitational fields. Additionally,
one must further analyse the appropriate estimator for I'(z) for a non-trivial gravitational field
based on the optimal detuning of the AIF laser, possibly similar to this analysis, i.e., one
needs to analyse which averaging procedure for I'(z) is involved for the detuning parameter
that results in the highest contrast.

Until now, we have assumed the gravitational background near the interferometric
baseline to be constant in time. This assumption, however, is not valid, especially for large
experimental setups with baselines of 100 metres or more [124,125]. Variations in ground
and surface water pyy,.. (%), seismic activity pg,.,(f), and even air pressure differentials p,;,(?)
can significantly impact the experimental outcomes. It could therefore be beneficial to
include an array of these newly described AIFs with an extension of Ak and separation Al
along the baseline of a large scale experiment, as depicted in Fig. 2.7. Ideally, this array
would be located in a parallel shaft, measuring the gravitational field in real time, while other
interferometric experiments are done in the main experimental facility. This array of CGls
should be seen as an integral part of the experimental setup and would be used to gauge and
interpret the phase shifts of the other measurements.

Depending on the frequency of variations in the gravitational potential, Ak and Al can
be adjusted suitably to obtain a time- and height-resolved measurement of the gravitational
field along the baseline. The temporal fluctuations of the gravitational field can — a priori —
span a broad frequency domain. Consider, for the moment, that one wants to resolve changes
in the gravitational field with a frequency centred around v, and that each AIF run takes a



66 CHAPTER 2. ATOM INTERFEROMETERS IN NEWTONIAN SPACETIME

time 27T, = 2 4/2Ah/g. Firstly, we know that vis 2Tx, which constrains T, i.e., Ah. This
can be challenging for very high frequencies v, as a smaller T results in a smaller phase
shift, which must still be greater than the measurement uncertainty. Assuming a minimal
phase resolution of 1 mrad, N = 4, and the phase output of the CGI being dominantly
given by Eq. (2.44b), this would require a minimal interferometer time of 7 > 0.3s,
corresponding to a maximum variation frequency of the gravitational field of v < 3.3 Hz.
Secondly, the choice of Al depends on the complexity of the (static) gravitational potential
and the measurement uncertainties of g(z) and I'(z) given by the previously determined value
of Ah. The separation between each interferometer height should be chosen such that it
resolves the spatial and temporal changes, possibly by choosing non-uniform separations
between each interferometer, i.e., tighter spacing, when the gravitational field is especially
non-trivial in space or time.

Extending this concept, one could strategically position gravitational inhomogeneities,
such as test masses, near the AIF baseline to explore the intricate interplay between quan-
tum mechanics and gravity with greater precision. Phenomena such as the "gravitational
Aharonov-Bohm" effect [103] and the fundamental interaction between quantum matter and
(classical) gravitational fields require a precise interpretation of phase shifts, possibly reach-
ing sub-mrad scales. Therefore, the analysis presented here serves as a crucial preliminary
step towards achieving such goals.
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Chapter 3

Atom Interferometers in Curved
Spacetimes

"Die Quantenmechanik ist sehr achtung-gebietend. [...] Die Theorie
liefert viel, aber dem Geheimnis des Alten bringt sie uns kaum niher.
Jedenfalls bin ich tiberzeugt, dal der nicht wiirfelt."

Albert Einstein, 04.12.1926
in a letter to Max Born

It is now time to incorporate the effects of relativity into quantum mechanics, focusing on
at least its first-order effects. By doing so, we aim to address higher order kinematic effects
or effects arising from a post-Newtonian and non-linear description of gravity. Integrating
relativity into quantum mechanics allows us to develop a more comprehensive framework that
accounts for both the principles of quantum systems and the constraints imposed by relativity.
Theories such as SR and classical mechanics rely on a class of preferred reference frames,
specifically inertial frames. In these frames, the laws of motion can be expressed without
the need for fictitious forces, and particles will continue to move uniformly unless subjected
to an external force. In contrast, GR does not have any preferred frames of reference. For
instance, it is entirely valid to select a local Cartesian coordinate system within a spatial
hypersurfac&-‘:1 of spacetime that contracts over time. In such a frame, the spatial coordinates
of a particle considered to be at rest can diverge. This scenario exemplifies a coordinate
singularity, which can occur quite frequently in GR. The takeaway here is that while tensors
themselves remain invariant across all reference frames, their components — such as k#, 2, or
R, — are frame-dependent and do not inherently represent physically observable quantities.

Relativity and its often perplexing implications, such as gravitational time dilation and
redshift, pose significant challenges when integrating into QM. This complexity can lead
to intense debates about the possibility of measuring relativistic quantities using quantum
sensors. An example of this is the proposed measurement schemes for gravitational redshift
using matter wave interference [14, 126-130]. These discussions highlight the intricate
interplay between relativity and quantum mechanics and underscore the ongoing efforts
to develop methods that bridge the gap between these two foundational pillars of modern
physics.

'In a stationary spacetime with a timelike Killing vector field k, this would involve choosing three vectors
that are mutually orthonormal to k and to each other.
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3.1 Naive Approach: Fine-Structure Experiments

We will now show how a simplistic or unrefined integration of relativity into the phase
calculation framework of AIFs, as discussed in the previous chapter, can easily lead to
incorrect results of a potentially significant order of magnitude. This simplified argument
stems from a particular observation: In non-relativistic quantum optics, the Hamiltonian
uses metres and seconds to measure length and time coordinates, respectively. However, in
the post-Newtonian Hamiltonian derived from the Lagrangian in Eq. (1.32) for the motional
case, these variables are no longer restricted to metres and seconds. This is evident when we
calculate the metric tensor from Eq. (1.29) at the Earth’s surface, which reveals a spacetime
modified by the gravitational potential at that height, ¢y, rather than a flat Minkowski
spacetime. In simpler terms, an AIF experiment defines length and time scales using a laser
that is locally at rest in the vicinity of the experiment. However, the time and length variables
in the metric tensor, and hence in the Hamiltonian and Schrodinger equation of Egs. (1.33)
and (1.34), correspond to the time and lengths measured for an observer at spatial infinity.

To construct a Hamiltonian description that accurately represents these local length and
time variables as operators, we must adjust our coordinate system so that the spacetime near
the laser is Minkowskian in this reference frame. To show how much error can result from
not transforming into adapted coordinates and not including all relativistic effects in the
phase calculation, we (erroneously!) apply the framework of Chapter 2 to the relativistic
motional Hamiltonian and see how large the resulting phase shifts become. To achieve this,
we apply the aforementioned formalism to the currently most precise set of experiments
utilising AlFs, specifically the measurements of the fine-structure constant using atomic
recoils. We begin by introducing the underlying experimental geometries.

3.1.1 Interferometer Geometries to Measure the Fine-Structure Constant

Measurements of the fine-structure constant, @, using matter wave interferometers rely
on determining the atomic recoil, % where m,, is the mass of the atom used in the
. Co

interferometer. The fine-structure constant is defined as

4nR
. \/ 7R oo M A \/i 3.1)
cmyg My

where R, is the Rydberg constant and m, is the mass of an electron. By measuring the
factor mim, one can derive a value for the fine-structure constant «. This is possible because
the Rydberg constant R, is known with a 6 parts-per-trillion (ppt) accuracy [131], and
the mass ratios m,/m, are determined with less than parts-per-billion (ppb) accuracy for
various atomic species through mass spectrometry [38]. With such precise knowledge of
these constants, it allows for an accurate calculation of @. The official Committee on Data
for Science and Technology (CODATA) value from 2018 of the fine-structure constant is
QCODATAIS = 137.035999084 . We continue with a more detailed explanation of how this
recoil can be measured using AIFs, analysing the two most recent experiments of this kind.

We start by discussing the experiment conducted at Berkeley, which employed two
ARBISs using Bragg interactions with Caesium-133 atoms. These interferometers are distin-
guished by the differing directions of the momentum imprinted by the Bloch oscillations and
Bragg pulses, as illustrated in Fig. 3.1. This configuration results in a dominant phase shift

2

Tik
ADpeyetey (W) = 16NR(Ng + Np) 0, Tg = 2Ngw, Ty, with @, = 5 R (3.2)
Mcy
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Figure 3.1: A simplified configuration for a double differential measurement involving two
ARBI is illustrated in a freely falling reference frame, as similarly presented in Ref. [38].
The illustration includes atomic trajectories (orange and blue), Bloch oscillations (purple),
and Bragg lasers (red, dashed). In this setup, the last two Bragg pulses are frequency-detuned
by w,,. The notation used has been adapted for our analysis.

which can be converted into a highly accurate dark-fringe measurement by adjusting the
frequency w,, to the point where ADg ey (w,,) = 0. This occurs when w,, = 8(Ng + Np)w,.
By inverting this equation, one can infer information about 7/mc,, and consequently «,
resulting in the expression 7i/m¢cg = w,,/4(Np + N B)klze.

Two years later, a comparable experiment was conducted at Laboratoire Kastler Brossel
(LKB) [39], utilising two-photon Raman transitions and Bloch oscillations with Rubidium-87
atoms, as illustrated in Fig. 3.2. The distinct internal levels are represented by solid and
dashed lines. Based on the direction of the momentum kicks, four distinct versions of an
SRBI can be created, classified by the signs of the parameters £; and 5. The resulting phase
shift is given by

2eghik

AD; xg(eg, €p,0w,) = Tg (ZstR ( - gTR) - 6a)R) + D, (3.3)
where dwy, is the difference between the Raman laser frequencies of the first and third
pulses, and @; ¢ denotes the phases originating from parasitic level shifts that cancel out in
differential measurements. Similarly to the other fine-structure measurement, the value of
Owp, 1s adjusted so that the overall phase shift becomes zero. This specific detuning frequency
is denoted as dwp, o(€g, €p). The atomic recoil can then be determined by summing over all
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Figure 3.2: Illustration of the interferometer setup described in Ref. [39]. Atomic trajectories
are shown in orange and blue, Bloch oscillations in purple, and Raman lasers in red, dashed.
The notation has been adapted to suit our analysis. Depending on the orientations of the
Bloch and Raman lasers, up to four different interferometer configurations can be realised.
In the two depicted AIF configurations, the Raman pulses impart momentum downward to
the initial wave packet, indicated by &, = —1, while the Bloch oscillations are presented in
both orientations, €5 = £1.

four interferometer configurations
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These two experiments were conducted with unprecedented accuracy at the 10710 level,
underscoring the significance of this burgeoning field of quantum optics and its potential
applications. However, the two values obtained for « differ with a statistical significance of
5.4 o, and the cause of this discrepancy remains unknown.

3.1.2 Relativistic motional correction

We will now demonstrate how including relativistic effects solely based on the previously
established manner into the theoretical framework can easily result in incomplete outcomes.
These errors can reach a potentially measurable magnitude in the setups measuring the
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fine-structure constant, underscoring the importance of a comprehensive and simultaneous
consideration of these effects in the analysis.

Relativistic motional correction

Since the entire analysis in the previous chapter centred on the concept of a Lagrangian, we
now explore what would occur if we extend this description to the next level, namely the
post-Newtonian level. When considering the relativistically correct motional Lagrangian with
respect to the metric tensor given by Eq. (1.29) for the previously mentioned description — in
particular, Eq. (1.32) in one spatial dimension — one arrives at

)
L(z,2) = —mc? + ng) — mp(z(1))
L4 2 L2
LG 1 L) 2 VI UL U NS
8c 2 2 2 ¢

which was also analysed in Ref. [132]. By performing a Legendre transformation on

this Lagrangian to obtain the corresponding Hamiltonian, the final term in the expression
mi()’*

introduces, to lowest order, a relativistic correction to the kinetic energy of the form =5~ +—

s 2
(1 + 2y + 1)¢—§) @ This is because the constant contribution of the gravitational potential
C

would give a non-vanishing term to the kinetic energy. In the ARBI setup depicted in Fig. 2.1,
KnT,

m

where the leading order phase shift is proportional to , this relativistic correction would

appear to induce an additional phase shift

K hT

ADyy o +0(g/c), (3.6)

2
— ADy,, (1 + 2y + 1)¢—§) KT
¢ m

when calculating the propagation phase using the action functional. In the Berkeley experi-
ment, the wave vector contribution k” is represented as k,ze, while in the LKB experiment, it
is kpkg. To keep the expressions short in this gedankenexperiment, we will denote it simply
as k*. A change of the phase shift would, in turn, correspond to the following shift in the
estimation of the fine-structure constant:

@Qlg F UNew X ol |1 = 2y + 1)¢—§ +0(g/c?)
C
2y +1
~ o (1 - 72 %) +0(g/ch). (3.7)

Assuming y = 1, this results in a systematic offset of ;ig ~107 =1 ppb. This offset is
significant because it falls within the measurement accuraf:y of the current state-of-the-art
fine-structure constant measurements [38,39]. Coincidentally, it is also of the same order as
the observed discrepancy.

Note that similar effects have been suggested as a potential resolution for a measurement
anomaly in the anomalous magnetic moment of the muon [133]. This proposal was corrected
by subsequent analyses [134—136]. Essentially, the error in the original proposal stemmed
from two main issues: a miscalculation and an incorrect implementation of GR into QM. The
arguments presented in [134] regarding why the constant part of the gravitational potential
cannot influence any measurable phase shift are largely correct and provide valuable insight
into the logical framework of GR. Nevertheless, there is one aspect of his reasoning that is
somewhat incomplete. The claim is made that if an experiment generates a measurement
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outcome dependent on Earth’s ¢, then by the same reasoning, one would expect the constant
contributions of the gravitational potentials from the Sun, the Milky Way, the local group,
and so on — which progressively increase — to also affect the final phase shift. In contrast, we
argue that there is a flaw in this reasoning. The key issue is that in an AIF experiment, both
the atoms and lasers are in free fall relative to the Sun and all other large-scale structures in
the universe, making it impossible to locally detect their gravitational influence. Nevertheless,
the situation is different with respect to the Earth. While the atoms are in free fall relative
to the Earth, the lasers are continuously accelerated at Earth’s surface. This breaks the
symmetry between Earth’s gravitational influence and that of other gravitational sources.

Since the apparent ¢,-dependent phase shift emerged from the relativistically modified
Lagrangian in Eq. (3.5), we must consider whether this approach to incorporating relativity
into the quantum mechanical framework is valid or if we failed to account for all sources of
gravitational influence. Fortunately, it is the latter, and we will elaborate on this further in
this chapter. The primary reason the conventional approach in quantum optics leads to this
incorrect term is due to the different — and, in certain respects, more flexible — role of space
and time in GR, as already mentioned in the introduction of this chapter. A simpler, and
possibly more easy to grasp, illustration of this concept would involve altering the spatial
basis vectors to be twice their original length, thereby defining a new "coordinate metre".
Since the phase shift is a dimensionless quantity, changing the units should not affect any
measurable outcomes, as each "coordinate metre" will cancel with its corresponding inverse,
similar to how the spatial kick phase is calculated using & - z. This underscores the necessity
of adjusting the wave vectors, measured in m_l, to account for the new basis vectors and
their lengths. In GR, a similar process occurs; however, it is not only the length scales that
change but also time, and the coordinate deviation arises from gravity itself.” The additional
sources of gravity, therefore, arise from the "gravitational redefinition" of length and time.
We will briefly illustrate the implications of this before proceeding with an in-depth analysis
of a relativistic treatment.

Wave vector correction

By solving Maxwell’s equations in the curved PPN spacetime, we will observe how a wave
vector k must be replaced by k — (1 - y%) k. As k appears quadratically in the phase shift
expression, this replacement results in a modification of the entire phase shift of

KhT .

2
)k Mk, O(g/c?). (3.8)

m

— ACI)New & (1 - 2y¢_§)
C

The corresponding correction to the fine-structure constant would be

o)

¢
C C
such that it partially mitigates the apparent shift described in Eq. (3.6).

Proper time correction

Lastly, gravity affects the rate at which clocks run. If one wishes to rewrite every expression
not in terms of "coordinate time" ¢ but in terms of the proper time 7 of a (nearby) resting

*Note that the definitions of the metre and the second are operationally set by the SI-system.
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clock, the time coordinate is transformed as t — 7 = (1 + %) t+O0(g/ cz). This transfor-
mation reflects how gravitational potential ¢, influences the passing of time, converting the
coordinate time ¢ into the proper time 7 experienced by the clock at rest in the gravitational
field. This would, similarly to before, induce a phase shift

K*hT
m

KhT g

ADyy o +0(g/c), (3.10)

P
— ADy,, oc( — C—2

which would then alter the @-measurement by

@010 F— Unew € Xoid A /1 + ¢—§ +0(g/c) ~ agy (1 + %) +0(g/cP). (3.11)
C C

If one combines all three of the presented relativistic corrections, the phase expressions given
in this section are restored, meaning there are no ¢,/ ¢? contributions left. This indicates that
the combined effect of these corrections effectively cancels the influence of the gravitational
potential on the phase shift when considered together, aligning the results with the expected
outcomes in the absence of such corrections. As is evident, a more sophisticated approach is
necessary to accurately calculate phase shifts in relativistic settings. We will undertake this
task for the remainder of the chapter.

3.2 Transformation to Adapted Coordinates

As we have seen, using coordinates where the metric tensor approximates Minkowskian
values at spatial infinity highlights asymptotic flatness. However, these coordinates cannot
be used directly to represent local measurements of spacetime distances through simple
coordinate expressions. Local measurements rely on co-located clocks and spatial length
references established by light signals, such as those provided by a laser. These measurements
would need to be described by a Hamiltonian operator, with the corresponding clock signal
reflecting the metric at the experiment’s location. To enable a simpler and more direct
interpretation of coordinates as quantities measurable with a local clock and length scale, it
is advantageous to transform to coordinates in which the metric components at the reference
point of the experiment (set by the clock and laser) simplify to the Minkowski metric. This
transformation facilitates clearer and more meaningful measurements by aligning the local
coordinate system with the natural geometry of flat spacetime.

To clarify the notation: we denote our previous set of coordinates, introduced in
Eq. (1.29), as (ct, 1), with the components of the metric tensor represented as g,,. We
are now going to transform to a new set of coordinates (ct,r), where the metric tensor
components are denoted as g,,,. We will stick to this notation and this choice of coordinates
for the remainder of this thesis.

We want to construct a coordinate transformation (xX*) = (ct,r) — (xX*) = (ct, r) that
brings the metric tensor to Minkowskian form at the point of the experiment, which we
will generically denote by p,. Since the asymptotic coordinates in which the metric was
originally expressed in Eq. (1.29) are already orthogonal to our order of approximation, in
order to bring the metric to Minkowskian form at p,, we only have to perform a coordinate
transformation such as to normalise the new coordinate basis vectors at this point. This can
most easily be realised by globally rescaling the coordinates by the corresponding (constant)
normalisation factor: defining the new coordinates according to

= g (o)X (3.12)



74 CHAPTER 3. ATOM INTERFEROMETERS IN CURVED SPACETIMES

(no summation over u), the new coordinate basis vectors are given by

0 1 0

0 figuponl %

which are normalised at p,. Explicitly, defining ¢, = ¢(p,), the metric length of the timelike

o1 = 18| of the asymptotic coordinates is given by
ox” Ip, Po

(3.13)

c ot

C

V=900(Po) = \/1+2—+2ﬁ +O0(c ‘6)_1+ %o Zﬂz 1¢° +0(c%, (3.14a)

i

while the metric length of the spacelike coordinate basis vector (% of the asymptotic
Po

coordinates is (without summation over i)

V9i(py) = \/1 - +O( =1 —7¢—° +0(c™. (3.14b)

Therefore, we may take the constantly rescaled new coordinates expressed in terms of the
old coordinates as

_ ¢  28-1 ¢0 _ b
t_(1+cz+ > C4 t, r= 1—76—2 r. (3.15a)
The inverse transformation is then given by
2
23-3
t= (1 - ¢_§ - ﬁTﬂg + O(c_6)] t,or= (1 + y¢0 + 0(c‘4)) r, (3.16a)
c c
which enables us to compute the components of the metric tensor in the new coordinates via
ox* ax”
g;u/ = ng/w.. (317)
It will be convenient to define a shifted version of the gravitational potential as
¢(r) = ¢(r) = ¢y (3.18)
that vanishes at Earth’s radius. With this we obtain the new spatial components
gi;(r) = (1 -2 @)5 +0(c™h (3.19)
c
and the new temporal component
(r) )’ ¢ ¢( ) -
goo(r) = — 2¢— - 2B¢ 4B - D=+ 0 (3.20)

of the metric tensor. The line element in the new coordinates reads accordingly as

- 0
s ( o(r ) R 1)¢o¢( )] (1 2y¢(2))dr2 +0E™), (3.21)
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which is Minkowskian at the reference point r = Rg. Note that there are only residual
¢o-dependencies in this metric tensor, if 8 # 1, which can be interpreted as an additional
non-linearity of gravity. The components of the inverse metric are then

o 14280 4 08— 92 48— 1B 4 () o)
o) (1 +2722) 1, + 0™
(3.22)

where 15 = diag(1, 1, 1) denotes the 3 X 3-identity matrix. Using these expressions, we
can calculate the Christoffel symbols by applying Eq. (1.10). Given the assumption that
the Newtonian gravitational potential is time-independent, i.e., d,¢ = 0, we can identify
the trivial and non-trivial Christoffel symbols in the chosen coordinate system. The trivial
Christoffel symbols are

Fp=0c"), T%=0c), ThH=0c"). (3.23)

The non-vanishing Christoffel symbols, which have significant contributions, would typi-
cally depend on the spatial derivatives of the gravitational potential and the metric tensor
components and are given by

°0(r) = T0(r) = (1 +2(8 - 1)@) ¢’i(2r) +0(c™%), (3.24a)
C C
. 5 .
Coo(r) = (1 +2(6+ 7)@ -2y + 1)¢—§) ¢—2’(r) +0(c™), (3.24b)
C C C
[ ) = -y LD DT 700 0D |ty (3.240)

c

Using this new set of coordinates, we can derive a relativistic Hamiltonian that incorpo-
rates the effects of spacetime curvature on the dynamics of the system. With this Hamiltonian,
it is possible to solve the Schrodinger equation for the case of AIFs. In this context, the
relativistic Hamiltonian would include terms reflecting the gravitational potential and its
derivatives, as well as corrections stemming from relativistic effects encoded in the met-
ric tensor. These contributions would modify the usual quantum mechanical Hamiltonian,
typically altering kinetic and potential energy terms to account for relativistic influences.

3.3 Relativistically Corrected Hamiltonian

In our model, similar to the introduction, we consider the Hamiltonian for an atom as a
system comprising two electromagnetically bound and spinless point charges. These charges
interact with an external electromagnetic field and operate within the weakly curved PPN
spacetime metric described in Eq. (1.29). This setup has been detailed in the work by
Schwartz et al. [132] within the original asymptotic coordinate system. Here, we aim to
replicate this derivation using the new set of coordinates introduced in Eq. (3.15a), where the
metric tensor is provided by Eq. (3.21). To zeroth order in 1/ ¢, the Hamiltonian reflects the
standard non-relativistic quantum optics description of an atom, as analysed in Section 1.2.
However, the terms of order 1/c* represent the leading relativistic corrections. These
corrections influence the energies associated with the COM and the internal (electronic)
degrees of freedom of the atom. They also affect the interactions between these energies
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and the coupling with the external electromagnetic field. This refined approach allows for a
more precise representation of the atom’s behaviour under both, relativistic and quantum
mechanical influences, providing additional insights into atom interferometry applications
within a relativistically influenced environment.

This novel Hamiltonian can then be grouped into the distinct components

where Hgoy, is the Hamiltonian for COM motion, the Hamiltonian for the internal degrees
of freedom is Hj, their relativistic coupling is described by Hy,;, and the relativistically
corrected dipole interaction of the atom with the external EM field is contained in A, ,
as before. The external EM field, being a classical solution to the source-free Maxwell
equations in our curved spacetime, and the gravitational field itself provide the background
interaction fields for the atom’s dynamics. To recap, the relativistically corrected canonical
position and momentum operators of COM and internal degrees of freedom will be denoted
by R, P and 7, p, respectively. The total (rest) mass of the atom will be denoted by m, and
the reduced mass of the internal degree of freedom by p. The Hamiltonian for COM motion
in the adapted (locally Minkowskian) coordinates is given by

)

. — . P
Aoy = m(R) + L (3.26a)
A4
L b~ L+ L LaaR + 208 - Vg | + O,
me? 8m* 2

(3.26b)

The terms in the square brackets, i.e., Eq. (3.26b), comprise the relativistic corrections of
the COM energy, and will be the most relevant for our analysis. The first of those terms
corresponds to the metric correction of the length of the vector P determining the kinetic
energy, written in symmetric ordering. The second term is the special relativistic correction
to the kinetic energy, the third term describes the relativistic non-linear correction to the
Newtonian potential, and the last term corresponds to non-linear GR effects.

The internal Hamiltonian,

N ﬁz ¢ N

S S 3.27
""ou dnelr  THS (3.27)

consists of the non-relativistic kinetic energy and Coulomb interaction. Additional relativistic
corrections are subsumed in the fine-structure Hamiltonian Hyg, which contains the special
relativistic corrections of kinetic and Coulomb energy, as well as spin-orbit interaction etc.,
if spin was included. We refer to Ref. [132] for the explicit form of Agg. In the following,
we take these corrections to be accounted for in the internal stationary states and energies,
e.g. the ground state FII lg) = E, g)-

The relativistic coupling of COM and internal degrees of freedom has the form

Y5~ >
mc2 c2 2u 4r €o|" |

52 2 ~2 2
N 1 . P N R
Ay = —(m¢(R) - %}@;Hl L) ®(2 r_, ¢ ) (3.28)
The first part of this equation can be interpreted as arising from the correction of the mass
of the atom due to internal binding energy, as can be seen by replacing m — m + H;/ ?
in Eq. (3.26a) and expanding in 1/ ¢*. The second part describes the metric corrections of
the internal kinetic and Coulomb energy, similar to Eq. (3.26b), cf. Ref. [25]. For AIFs
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involving elastic scattering processes only, the atom remains in its internal ground state |g)
at all times. In this case the terms in Eq. (3.28) contribute only trivially to the dynamics of
the problem: As explained above, the effect of the first term can be absorbed in a rescaling
of the atomic mass m +— m + E, /cz. The second term does not contribute at all since
it has vanishing matrix elements for stationary states [137] as a consequence of the virial
theorem®. However, they can be the main contribution to the phase in quantum clock AIFs
with inelastic scattering processes [18,69, 74, 138].
Finally, the Hamiltonian for the interaction of the atom with the external light field is

Ay, =-d-E*(R) + %@ [P-(ax B@®))+hel], (3.29)

where d, E, and B denote the dipole moment operator and the electric and magnetic fields,
respectively. The atom-light interaction in Eq. (3.29) is written in the dipole approximation
and includes the Rontgen term as the dominant relativistic correction®. In comparison to
the Hamiltonian from Ref. [132], only the last term in the motional Hamiltonian is a new
contribution. Apart from this new term, the only difference is the dependence on ¢ instead of

®.

3.4 Motional Hamiltonian

In this section, we solve the Schrddinger equation for the basic interferometer geometries
outlined in Sec. 2.1, this time considering the gravitational background within the PPN
formalism. The previous analysis was accurate up to order O(3). GR effects appear at order
O(4), except for a single contribution at order O(3). As a result, we will also incorporate
the subsequent Taylor coeflicient in the series expansion of the gravitational potential into
our formalism. Specifically, we will include the spatial derivative of the gravity gradient,
denoted by A, into our description by setting

$(2) =@ —py=gz- %rf + %A 2 +00%). (3.30)

The corresponding Hamiltonian from Eq. (3.26) for COM motion along the vertical axis
then becomes

N P? N M_sn M a3 2y + 1 g Aan
H =—+mgl—-=-IZ"+ -AZ" + —PZP
coMm ~ 5 mg ) 3 )
P 2p-1mg* . R -
— s 18 22428 1)m¢2(’g2+0(rc 2 (331
8m’c 2 ¢ c

The relativistically corrected Lagrangian for a trajectory in the z-direction, which corre-
sponds to the Hamiltonian given in Eq. (3.31), can be expressed as

) -4
N v L
Hed =5 —mpD+ s
. 2 Y 2 b
_ mzﬂ -1 ¢(Z2) 3 2y + 1 ¢(2)2 ~2(8- l)m(ﬁ()@ + ()(c_4), (3.32)
2 c 2 c? ¢

. N 22
3This follows from 5 [f - P, Hl] = 212’_H A1, O(c™?), and taking the matrix element with respect to |g).

T ey A
*We disregard further relativistic corrections relevant in strong magnetic fields, cf. Eq. (5.9) in Schwartz et
al. [132].
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Parameter | Definition Magnitude for 10 m baseline AIF
i = R (Bragg) i = B (Bloch)

Z = 0
Vo o 43x107°
Fr oy 8.1x 1072
Go & 7% 10710
Z - 2.6%x107°
Zy A 2.8x107°
H . 3.1%x1078
G ¢L 42x107° 1.3x107*
G, 7} 52%x107° 49x1077
G, AcT? 48x107* 1.4%107
R % 3.9x 107" 12%107°

Table 3.1: Complete list of dimensionless parameters for an AIF, including FSL and rela-
tivistic effects.

where we deliberately did not expand the gravitational potential to keep the following
formulas short. As before, we need to determine the classical trajectories of the upper
and lower arms of the AIF, which are derived from the ELE associated with Eq. (3.32).
Conducting the analysis in a dimensionless form, as done previously, introduces two new
dimensionless parameters: ¢0/6‘2 and AcTi3 for i = R, B. These new parameters can be
combined with the ones previously defined in Table 2.1 and the ones corresponding to
FSL contribution from Table 2.3 and are summarised in Table 3.1. First, we calculate the
derivatives of the Lagrangian as

oL 2y + 1

" -méd,(z) — %625(2) [(2/3 —Do(z) + 3 Z4208- Dol +0c™  (3.33a)
C
.3
O e+ - {Z— - 2y + Dg2)z| + O(c™) (3.33b)
0z 212
ga_g L S Qy + DZ20.6(z) — Qy + Dg)z| + O(c™), (3.33¢)
dr 9z A2

where we have used that E(z)z' = 226Z$(z), which holds because %a(z(t)) = % %. The ELE
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d JL
T a_z = 0 can then be expressed recursively in terms of Z as

- 1 — 3 — — _
= ~0.0(0) + | @y + DF0.9(@) = 57+ 2y + DI = (28~ DFIH)
C

27+ 20.4(2) - 2(B - Dgyd.$(2)| + O(c™).

Inserting the ®-contribution into the ?-term on the right-hand side results in

B+

222@5(@ +0(c™. (3.34)

(1 +2(8 - 1)—)¢( ) +

¢()

We now use the approximation of the gravitational potential to relevant order, i.e., Eq. (3.30),
which gives the ELE

() = (1 +2(6 - 1)¢—)g+(1 +2(8 - 1)@)1“2@) Az(t)?

2B yz(t)+(y+2)—z(t) +0(d}¢. A, cY), (3.35)

with the same initial conditions as before: z(0) = zy, 2(0) = vy + Ny~ Me 4 N B th.
Rewriting the ELE in a dimensionless form yields

£1) = =G g + Goré(®) = Ga €D = 2B +7)G1 €M)
+ (v + G RED) + 2(8 - DGo[ -G r + Garé()| + O4), (3.36)

with £0) = Z,, £(0) =V + NgRg + NgRy defined as before. The ELE is, up to third order
in the dimensionless parameters from Table 3.1, given by

; 1
£(1) = £(0) + £(0)T - EQI,RTZ +&(1) +&(1) + 0(4) (3.37a)

with the two contributions
2 1 2 1, 3 1 4
&H(T) = —(B-DGG g7+ Gor 55(0)7 + 8§(O)T - ﬂgl,Rgz,RT ) (3.37b)
Cs 1.2 2 Ln2).2
&) = (Tgogz,Rf(o) - 55(0) g3,R - C4g1,Rf(0) + C5§1’R§(0) )T
1{C; . ) ) 3
+ g(jgogz,Rf (0) = £(0)6(0)G5 g — CaG1RE (0))‘1'

1/(1 )
+ E(Ef(o)g%x — G3RE(0) + E0)G g Gsr + CégiR - C3QOQ1,RQ2,R)T4

+ %(%é«»g%ﬁ + f’<0>gl,Rg3,R)rs - %g( cGor+ g],Rgg,R)r? (3.37¢)

Here we used the constants
C, = ? C, = 27; L Ci=2B-1), (3.37d)
C,=B+7, Cs = yr2 Co=p-2 (3.37¢)
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in order to denote the trajectories as compact as possible. We obtain an expression for the
propagation phase integral in terms of dimensionless parameters as

1 : 1 1 1,
3 [ariEw.éo) = ocTy [ dr( - 61060 + 560807 - 36306 + 3607

26 -1 2 1 ;
LG e - L6 iy

= 2(8- 1Go(G réE() - gz,Rf(r)z)) +0(5), (3.38)

1,
+360" -

which is correct to order O(4).

3.5 Relativistic Light Hamiltonian

Following Refs. [87, 139], our focus so far has been on the relativistic corrections to the
atomic degrees of freedom. Next, we will analyse the EM field and its interaction with
atoms in the context of PPN curved spacetime. Our approach will be to first determine the
eigenmodes of the wave equation for the light field, incorporating relativistic corrections.
In the subsequent section, these eigenmodes will then be used to describe the interaction
between atoms and a coherent laser field, using a semi-classical approximation. Specifically,
we will consider a coherent laser field expressed in these eigenfunctions, coupled to an
atom via the interaction Hamiltonian A, ; as presented in Eq. (3.29). A similar approach is
described in Ref. [74] and will be mentioned below.

The most straightforward way to obtain the Maxwell equations in general coordinates is
to start from the Lagrangian and use the variational principle. The Lagrangian for an EM
field in vacuum with EM field strength tensor F,, is given by

Loy = f TﬁFﬂvF’”d%, (3.39)

where g is the determinant of the matrix of spacetime metric components, and the field
strength tensor is taken as derived from a vector potential A, via F,,, = A, —A,., = A, ,—A,,
(thus, the homogeneous Maxwell equations dF" = 0, or in components Fy,,.,; = F,,, = 0,
are automatically satisfied). The variational principle, varying with respect to A, then

directly leads to the inhomogeneous Maxwell equations (in our case with vanishing source)
af B _ B B —
FP = VPP = Vg (VAP - VPA?) = 0, (3.40)

where we have expressed the field strength tensor in terms of the four-vector potential A”.
Next we commute the covariant derivatives in the first term at the expense of introducing a
curvature term, i.e.,
B i _ a AB _

AT = AT+ ROpAT = 0. (3.41)
The non-commutativity of covariant derivatives therefore introduces curvature terms and
deviates from the usual rule of interchanging partial derivatives with covariant ones,’ c.f.
Ref [140][Box 16.1]. In order to see which magnitude such curvature terms will have we
need to calculate the non-zero Christoftel symbols of the PPN spacetime, as already done in

SSometimes referred to as the comma goes to semicolon rule.
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Eq. (3.24), combined with the assumption ¢(¢, r) = ¢(z), which yields

r,=1%= (1 +2(8 - 1);%) % +0(c), (3.42a)
Iy = (1 +2(8+ y)c% 2y + 1)%) % +0(%), (3.42b)
e, =TI, = yi—’; +0(c™), (3.42¢)
[, =T, =T",=0,_=0I_= —yi—’; +0@c™. (3.42d)

From those Christoffel symbols one can calculate the non-vanishing components of the Ricci
tensor using

R, =0 Arﬂw - aﬂrﬂ S ﬂrﬂw -17, To=4 Arﬂﬂv - aﬂrﬂy L+OE,  (3.43)

which gives rise to the only components of the Ricci curvature at order O(c™?) of

e e
Ry = azrzoo = Z¢2(Z)’ R, = azrzxx =Y Z¢2(Z)’ (3.44a)
C C
929(2) 929(2)
Ry =0T =y Zcz , R,=-20T°, -01% =Qy-1) Zcz . (3.44b)

The Ricci curvature therefore only contributes at the order O(T c_z), which we have previously
neglected. The curvature contribution in Eq. (3.41) is therefore beyond our approximation
level and will be omitted.

For the upcoming calculations it will turn out beneficial to rewrite Maxwell’s equations
with respect to a covariant EM potential, such that we rather work with

B _ _ —
F5° =VPF,5 =V (V,A5-V,4,) =0, (3.45)

where we now need to imply a gauge condition. Three different choices arise canonically
at this stage, due to the (3 + 1)-split of the metric, namely the fully relativistic Lorenz
Gauge (LG) and two additional versions of the Coulomb gauge, i.e., the Geometric Coulomb
Gauge (GCG) and Background Coulomb Gauge (BCG), formulated as

. B_aB _p P _
LG: VoA = Ay = 4,0 =0, (3.462)
GCG: VA, = A =0, (3.46b)
BCG: dA; =A" =0. (3.46¢)

The BCG refers to the "usual" Coulomb gauge, commonly employed in quantum optics.

3.5.1 Wave Equations in the Geometric Coulomb Gauge:
The gauge condition, when incorporating the expanded covariant derivative, is expressed as
0=VA, =g"V,A =04, - ¢"T7 ;A (3.47)

Ai‘too

to allow for Maxwell’s equations to be expanded in a manner that directly contains this term.
Starting with Maxwell’s equations from Eq. (3.45) we begin to expand all differential terms.
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We then colour-code the terms that appear in the gauge condition specified in Eq. (3.47) in
order to derive
0= FV#;“ — A,jﬂ;y _ Av;,f”
= ¢"0,0,A, - 0,0'A, — 8"T7,,(0,A, +0,A,) - ¢"'T7,.(0,A, - 0,A,)
=g"0,0,A, - 8,0°A, — 7,054, +0,8"'T7 A, +
— (0,81 Ay — & (0,171, )Ay — &T71,0,A, + 8T 10,4,
= ¢"(019,A, = T71,0,A, = (0,07, )4y —T71,0,4, +T7,0,A,)
- 6y(60A0 - 80/1F010Acr) - (avgy A)FJAon
= goo(a(z)Av —T7000,4, = (0,17 09)A; = T70,00A, + FO-OVaO'AO)
- 5v(50A0 - goorgovo) - (angO)FUOOA(r - (8vgij)ro-i A
+87(0,0,A, - T7,,0,A, = (0,07))A, = T7 ,0A, +T7 ,0,4A,). (3.48)

vYitto Yot

Note that the only non-zero Christoffel symbol I'?y, is FZOO (as referenced in Eq. (3.42)).
Using this, we proceed to calculate the last remaining non-trivial term in Eq. (3.48) that
requires the application of the Leibniz rule, namely

8,8" T oA, = (0,8" )T gA, + 8%(8,I 0 A, + 8T (8,4, )-
Using this identity, one obtains
0 = g"(3pA, — Tpd.A, = (8,T0)A, = T70,00A, +T70,0,4)
- goo(avavo - ((‘)VFZOO)AZ -r Zoo(avAz)) - (aygij)r ' A
+8(0,0,4, - T7,0,A, = (0,07))A, = T7 ,0iA, + T ,0,A;)
= ¢"(35A, - T0,A, = T70,00A, +T70,0,A — 8,00A¢ + T (0,4,))
+8(0:0,4, = T7,;0,A, = (8,17, ))A, + T7 (3,4, - 9,A,)) - (0,8")T7,/A, .

Inserting the explicit formulas for the metric tensor components from Eq. (3.21), we see that

0= (_1 + 2%)[63141/ - FZOOaZAV + 1—‘O-Ov(aO'AO - aOAa') - (81/80‘40 - 1—‘ZOO(avAZ))]

+ (5‘7 + 2y;ﬁ25"f)(aia A, =T70,A, = (0,074, —T7 ,0,A, +T7,0,A))

[y}

2
Cc

o0\ ..
-2y (—¢) 6T A, + 0.

If we denote the flat Laplace operator by Ag,, = S 0,0; = (9)26 + 63 + 65, we find the relativistic
corrections to the flat wave equation to be

AqyA, = (1 ~ 2y + 1)%)(53AV + (8,4, = 0.A,) = T70,00A, +T70,0,4) — 8,0pA,)
C
3
+ > (70,4, + 0T )A, + T, 0,4, =T7,0,A) + O(c™). (3.49)
i=1

In this context, considering relativistic corrections, one typically extends the flat wave
equation, which involves the flat Laplace operator, by incorporating terms that arise due to
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curvature or relativistic effects as described by the metric. Written out explicitly for the four
values of v, this yields

3
AgaAg = (¥ + 1) Z¢a Ay — Zf BpA, +O(c™), (3.50a)
AggA, = (1 ~ 2y + 1)%)@%Ax Z¢a A+ 2y + 1) 99 = (0,A,-0.A,)
C
_ (1 — 2y + 1)2—-f]aanAo +0(c™h, (3.50b)
C

_ 53
AgaAy = (1 —2(y + 1)%)@3Ay + ycifaZAy +Qy + 1)qu (6,4,-0.4,)

_ (1 —2(y + 1)4)@50% +0(c™, (3.50c)

AgA, = (1 ~2(y + 1)%)@@1Z + Yy Z¢a A+ ycz—(pA

1-2 20 -
— |1 -2y + D=5 [0,8p4¢ + O(c ™). (3.50d)
Cc

Before solving these gravitationally modified wave equations, we examine whether the BCG,
which is a common gauge condition in quantum optics, results in a set of simpler differential
equations.

Comparison to background Coulomb gauge: The BCG condition reads afA,. = (0 and
differs from the GCG in Maxwell’s equations Eq. (3.48) by the term
avgmra = 3vgurg Ay = (avgii)ro—iiAa' + gii(avrgii)Aa + giiro—ii(avAo-)

- zy&r” A, + (1 +2y— )[((9 I7)A, +T7:(0,A,)]

/110'

= (avro—ii)A(r +T7,0,4,) + O(c™)
= (0, DA, +(0,17,)A, + (6,1%)A,
+T7(0,A) +T7,(0,A4,) + T7(8,A,) + O(c™
= (0,1 + 0,1, +0,T° A, + (7 + T° +T°)(0,4,) + O™

- ¢”A +7¢Z(8VAZ) +0(c™
C

K N
_ ¢_2(a A )+O(6Z—2¢,c_4). (351)

c
This contribution is non-zero, leading to an additional term in the wave equations. Since the
term in Eq. (3.51) does not cancel out any other contributions in Eq. (3.50) for v € {0, ..., 3},
it results in even more complex wave equations. The LG, turns out to be equivalent to the

GCQG, as we will demonstrate after solving the wave equations. To achieve this, we introduce
the following plane wave approximation scheme.
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3.5.2 Geometric Optics Approximation

When solving Maxwell’s equations, we set aside issues related to self-interactions (see,
for example, Ref. [141]) and focus on geometric optics and plane wave-like solutions. To
perform a geometric optics approximation, we follow a method similar to that presented in
the textbook by Misner et al. [140][§22.5.]. A similar technique was recently employed by
Di Pumpo et al. [74] (within a different coordinate system) to describe light propagation
in atom interferometers, including the effects of a non-vanishing Dilaton field. We will
compare our approach to that of Di Pumpo et al. at the conclusion of this section. By
denoting the wavelength of the light field as A, we can identify two crucial length scales for
the approximation to be

D=

[S1E

typical component of R”,, . as

™ 8
measured in a local Lorentz frame ~ 10°m

X =

~
=~

r

¢
62

_ |radius of curvature| ~
Z = ’ of a wave front | ~ Imm.

We then define the small expansion parameter
€ =A/Qamin(Z%Z, L)) = 1/2nL),

which can be conceptualised as the ratio of the wavelength of the light field to the character-
istic length scale .Z over which the slowly varying envelope of the field changes, divided by
2. We now make the ansatz that the four-potential to be given by

A, = (a# +eb, + ezc# + 0(63)) eve, (3.52)

where a,, b, c,: M — C are complex-valued functions on spacetime and ®: M — R is

the real-valued phase. Following Ref. [140, §22.5.], we refer to terms of order up to e as
"geometric optics", meaning we focus on these leading-order contributions and disregard
"post-geometric optics" orders, such as €’ and higher. This approach simplifies our analysis
to include only those components that dominate under this approximation. Given that we
impose a gauge condition aligned with the Coulomb gauge to order O(c%), we further assume
that the time component A of the four-potential contributes only at O(c_z) (in vacuum).

Calculating the wave vector and phase

The relativistic (four-) wave vector is defined as the covariant derivative of the phase
k,=V,®=9,0. (3.53)

Note that here the partial and covariant derivative coincide, since ® maps into R and is
therefore seen as a (0, 0)-tensor field. In this context, the spatial wave vector k consists of
the spatial components of the four-wave vector

k, = (koo k) = (ko kys Ky k). (3.54)

By grouping terms according to their order in €, a condition for the wave vector emerges at
the order 6_2, ie.,

K'a,

2
€

g;l/l

0=-5 + 0. (3.55)
€

-1\ _ _kll
0,D)0,D)a, + O(€™) =
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This occurs because the only way to derive terms of order €’is through the term involving
two partial derivatives in Maxwell’s equations.6 We observe that geometric optics dictates
that the wave vector k, must be light-like. This means it must satisfy the condition kyk“ =
g ﬂkﬂk 1 = 0. We will disregard the k, and k, components and concentrate solely on the
behaviour of k and k,, as we are limiting our analysis to EM propagating exclusively in the
z-direction. Therefore, we need to solve

( 1+ 2¢(Z) +(28- 4)¢(Z) +4(8 - 1)¢0¢(f) +0(c ‘6)) 12(2)
(1 + 2y¢(§) + O(c“‘)) k2(z) = 0, (3.56)
which subsequently leads to a dispersion relation for the free propagation’ of
kK (z) = ( ~ 2y + 1)M + 0(c‘4)) k5 (2) (3.57a)
@@=+(—w+n“ﬁ%@+afﬁ (3.57b)

where the two solutions reflect the possible propagation directions of the light field. If we
express this in the form of a vector in a (1 + 1)-dimensional spacetime — considering only k,
and k, — we obtain the wave vector

1
k(2) = k@ + 0. (3.58)

£(1-0+ %)
C
Taking the covariant derivative of k#k” = 0, we obtain
kK =0 = (kW) =0 = 2k, =2#%,, =0. (3.59)

In the final step, we applied the Leibniz rule and used the fact that k, = @ , is the derivative
of a scalar function. The expression k. ., = 0 s the propagation equation for the relativistic
wave vector, essentially providing a geometric optics analogue of the geodesic equation for
light rays. Since we have assumed spacetime to be stationary with a timelike Killing vector
field 9, = c_lc')t, we know that, at the level of approximation we are considering, the wave
vector’s corresponding timelike component k, = kﬂ(ao)" = c_16,CD remains constant along
each geodesic or light ray, which are integral curves of the vector field k. If we write out
Eq. (3.59) for a = 0, k" ko.,,» one can derive that this is equivalent to

Z¢>(Z) 6,¢(z)

0 = k" 9gke + k0 kg — Ky — 69 =22 (3.60)

We now choose the ansatz ky(z) = + 1@ (Z) , as we know that, to order ¢°, the frequency of the
light field remains constant. Substltutlng thls ansatz into Eq. (3.60), we find that d_f(z) =

8Specifically, this condition arises from the first term in Eq. (3.48), namely g"'d 10,A,. The other term that
contains two derivatives only involves A,, which, as we will show in the upcoming calculations, is zero to at
least order O(€?).

"Note how this coincides with Eq. (9) from Ref. [142] with y = 1, when one expands the Schwarzschild
solution to small heights and uses the original choice of coordinates.
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indicating that k(z) is constant to order ¢*. To determine whether this solution aligns with
Eq. (3.59) for @ = z, i.e. k'k,.,, we calculate

o
Z¢5() Oy + D ¢()

= +(y + Dk, +0c™ = 0™, (3.61)
which holds to the same order of accuracy. This is in agreement with Ref. [142], where
the connection was made between the quantity &, and the photon energy E = cky, which is
constant throughout its path.8 Consequently, we derive a relativistic wave vector

1
k,(2) = |k + o™, (3.62)

+ (1 ~(y+ 1)@)
Since k, = @ ,, we can deduce that the phase of the EM field, to the order of approxima-
tion we are considering, is given by

1
D(z, 1) = By + koct + (1 - %g—z)ko + 0T ), (3.63)
C

where @ is an arbitrary offset, which we will set to zero. The contravariant components of
the wave vector, defined as k" = g"""k,, are given by

—1 4220
K (z) = < kg + 0. (3.64)

i(1+(y—1)%)

Note that k is still a coordinate-dependent object and is, a priori, not an observable
frequency. It is possible to express the light field in terms of its actually measurable frequency.
However, any relativistic concept of measurable frequency necessitates the notion of an
observer, whose worldline intersects the photon’s path and who measures the frequency of
the light field in their own rest frame. To achieve this, we define a family of observers who are
at rest (with respect to the laser source) at various heights. The corresponding four-velocities
of these observers, denoted as #*(z), must satisfy the condition (Du,(2) = —cz, as this is
a fundamental requirement for four-velocities. Let’s make an ansatz involving an arbitrary
function a(z) to determine the form of u*(z):

" (2) = a(2) I = u"(z)=(
0

—4 ¢
Lo Hll | (3.65)
0

¢(z)

From this, we can express the frequency of the light field as it would be perceived by an
observer at rest at a height z as

w(z) = —k,(Qu'(2) = - (1—M 0(c‘4))ck0. (3.66)

C

If we assume that the photon is emitted from the laser, positioned at a height z = 0 with a
frequency of w,,; := w(0) = —ck, then this can be rewritten as

w(z) = (1 - ¢(Z) +O(c ‘4)) Wemit- (3.67)

C

8In their notation: k, = p, and k. =p,.
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The frequency of a photon "climbing out of the gravitational well" is thus shifted as perceived
by observers at rest at different heights. This shift arises from the fact that observers at
varying heights experience different rates of time passage due to gravitational time dilation.
However, for simplicity, we will continue using the quantity k, and assume that the reader is
aware of this subtlety.

Calculating the amplitude

To find analytic expressions for the leading-order amplitudes a,,, we proceed by substituting
the ansatz from Eq. (3.52) into the wave equations given in the GCG in Eq. (3.50). By first
calculating the second-order partial derivative, we obtain

(??Ay = 8]2[(a# +eb, + ezc# + 0(63)) e@/e]
i9.0)
|

= [Zie_ (0,a,)(0,0) + i€ 'a, (3;0) - (¢ *a, + € 'b,)0,0)" + O(e")]ei‘l’/ (368

(ay +eb, + ezcﬂ + 0(63))

+ ((ajaﬂ) + e(ajby) + 62(61'0,1) + 0(63))]ei®/6]

This results in a left-hand side of Eq. (3.50) of
AgaiA, = [ZiG_I(Va ) k+ie! a,V k- (E a,+€ “1p #)kz +O(EO)]ei(D/E, (3.69)

where we used the notation V = (V,V - V). The right-hand side of Eq. (3.50) varies for
each value of y; we start with the temporal case.

Temporal wave equation (u = 0): The temporal equation is given in Eq. (3.50a) and its
right-hand side reads

53
Eq. (3.502) = (y + 1) Z¢a Ay — Zf 9pA, +O(c™
_ 03 |
=|{(y+1) ¢1k € lay - Lj’ikoe‘laz € v o). (3.70)
c

This implies that at order O(e_z), ap = 0(0_4), since neither the exponential nor k? can be
zero. Subsequently, at order O(e™") one finds that by = 0. Consequently, A, is zero to order
O(c™*, é), as previously indicated.

Spatial wave equation in z-direction (1« = z): Next, we consider Eq. (3.50d) for the case
1 = z. By directly applying that A, = O(c™*, €%), we obtain

9.9 &6

Eq.(3.50d)=(1—2(y+1)¢)60A *r— S-0.A, Sy A+ 0T
C

= (1 —2(y + 1)—2) [Zikoe_l(aoaz) + i(@oko)e_laz —ky(e Pa, + € 'b)|e
C

d.¢ . )
+ )/CLf)ikze_latzel(D/E +0 (6_4, e, cz_j)] (3.71)

Splitting this equation according to the corresponding powers of € yields, at leading order,

O€?: -ak*e®c= —(1 —2y + 1)%) kga.e' '€+ O(c™H. (3.72a)
C
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Note that this is equivalent to

K = (1 — 2y + 1)%)1% +0(c™ = ki =0, (3.72b)
C

as discussed in Eq. (3.57b). At the next geometric optics order, O(e™"), one obtains

O€"): 2i(Va) k+ia,V k- bzk2 = yﬁlk a,

23
( 2y + 15 )[21k0(60a)+1(60k0)a kob]+0[ ¢ c_4). (3.73a)

The b,-dependent part drops out because its prefactor is k#k”. The resulting equation is

2 z¢ 5 635 —4
(Va,)-k+aV-k= y—k a, +[1-20y + 1) |2k, + Boko)a,] + O =-.c7*|.
C

(3.73b)

Given that the time derivatives of a, and k, vanish by construction and due to spacetime
being static, one is left with

)
(Va,) - k + laV k= yzz—¢ka O(Z—f,c“‘]. (3.73¢)
C

The left-hand side of this equation is the z-component of the propagation law of the EM
amplitudes, given by V,a, = —%(V - k)a, (cf. Ref. [140]). The right-hand side contains the
relativistic corrections to this identity.

Spatial wave equation in transverse-directions (4 = x,y): The transverse wave equations
in Egs. (3.50b) and (3.50c) are completely symmetric. Therefore, we will only show the
solution in the x-direction, which is

0.9

Eq. (3.50b):(1—2(y+1)¢)80A oy <-0.A, +(2y+1) 5.9 (6,4,-0.4,)
C

[1 ~2(y+1) Z¢)8x60A0 +0(c™

( — 2y + 1)2)(90A + oy Z¢a Act Qr+ D= o9 = (0,4, -9.A,) + O™
(3.74a)

Inserting the geometric optics ansatz then leads to

2

1 o\ i ko
Eq. (3.50b) = — (1 — 20y + 1)—2) 2-ky(Bya,) + =(Ooko)a, — = (a, + €b,)
c c € € €

+ 2y + 1)(@25)2@% —(y+ 1)(aza)iekzax]e@/ “+0(™*,€%.  (3.74b)
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The 0(6_2) condition is, once more, equivalent to kﬂk" =0. The O(¢ ") equation is given by
2(Va) - k+aV k= Cl [(1 e e )(2k0(60a ) + Boko)ay)
+ 2y + D@.pka. — (v + D@.pk.a,
=2 o D, - ;l(aza)kzax. (3.740)

For the y-direction, the process and results work analogously.
To summarise, we arrive at a set of differential equations

1 2y +1 1 -
D (Va) k+5aV k= Z“L @.9)k,a, - +2 @.Pk.a, + O, ™), (3.75a)
C 2c

. 1 2y + 1 +1 —

i) (Vay)-k+5a,V k= 2 0.pka. - 727(az¢)kzay + 0, ™), (3.75b)

i)  (Va) k+ %aZV k= F(az(p)kzaz + 0, 7. (3.75¢)
C

We further impose the boundary conditions a,(z = 0) = A; fori = x,yand a,(z = 0) = 0
indicating that we begin with a transverse wave. We continue by rewriting the ODE for a, in

Eq. (3.75¢). By using the relation d_k, = —(y + 1)%—2¢k0 + O(c_4), we obtain

0.k _ B
aZaZ + zzkzaz = Lz(az(ﬁ)az + O(C 4) (376a)
4 2c
+10,9 _ ~
= d.a, - YTZ—'ZaZ = X (0.9)a.+0c™ (3.76b)
c 2c
2y +1 926
= d.a, = 7; %az + o(cz—f,c“‘), (3.76¢)
which is solved by
2y+1 gz
a@=Ae’? = a(z=0=0 = A=0 = a(=0. (377

The amplitude in the z-direction therefore identically vanishes, meaning that the EM wave
remains transverse. Substituting this solution into the remaining equations, we obtain (using
the example of the x-direction)

aZkZ
d,a, + T (3.78a)
= d.a, - @ (3.78b)
= d,a, = O, c™, (3.78¢)

which is trivially solved by the constant amplitude a,(z) = A,. In conclusion, at the chosen
level of approximation, there are no general relativistic corrections to the amplitudes of EM
waves.

Combining this with the phase expression from Eq. (3.63), we arrive at an EM vector
potential in the geometric optics approximation, expressed as

(A)= A = ﬂei(kocti(l_)’ +1 g«)koz) +or C_z), (3.79)
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where we introduced A = (A,, A,,0). It is important to highlight that we have absorbed

the factor € ' from the exponent in the ansatz, Eq. (3.52), into the normalisation of k.
Consequently, the angular frequency of the light, as measured by a stationary observer at rest
at the origin, is given by w, = —ck.

Comparison to Lorenz gauge Note also that the LG condition is, at our level of approxi-
mation, equivalent to the GCG. This can be more clearly seen if we calculate the difference
between the two gauge conditions, i.e.,

0 i 0 0 0 00
VA = VA, - VA, = 0'A) - g7 T A, = 8"A, - T A,

=84y - g% A, = "4y + g(’o(p—’z"'AZ +0(c™. (3.80)
C

Both contributions vanish at our level of approximation, as A, and A, are also zero. Conse-
quently, both gauge conditions align in this gravitational model.

Comparison to an approach in Fermi normal coordinates Following Ref. [140][§13.6],
one can express any metric tensor in the Fermi normal coordinates’ of an accelerated observer
as

N
a'x’ -
800 = _(1 0 ) = Roio /% + O, (3.81a)
c
2 ik 3
20i = —§R0jikx X+ O0(|xI), (3.81b)
1

3

where d' represents the local spatial acceleration that the reference frame experiences to
maintain the observer’s position at the origin of the reference frame. In the case of linear
gravitational acceleration in the z-direction, this would imply that d = —-g.

In Di Pumpo et al. [74], these coordinates, along with the assumption of a linear gravita-
tional potential, were employed to derive a metric tensor

00282 4
g'uv = npv + 6#51/_2 + O(C )’ (382)
c
where no contributions from the Riemann curvature tensor arise, since all of its component
functions identically vanish.'” Following the same steps as before, one then derives a

relativistic wave vector

1
k,(2) = ko™, (3.83)
+ (1 - ﬂf))
c

which differs from Eq. (3.62) in the prefactor of the spatial part. The underlying physics
remain unchanged, as the positions of atoms and photons also shift in this frame of reference
compared to the aforementioned approach, thereby exactly cancelling any differences in
the calculation of scalar quantities. This example serves to illustrate the importance of
consistently tracking all coordinate systems used throughout the analysis and avoiding the

comparison of quantities that are dependent on these coordinate choices.

?Sometimes also referred to as a proper reference frame.
'“The components of the Riemann tensor, at least at the ¢~ level, always involve a second derivative of the
gravitational potential, which is by definition zero, assuming only a linear gravitational potential.
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3.6 Atom-Light Hamiltonian

We are now prepared to analyse the atom-light interaction to describe beam splitter and mirror
pulses, including relativistic corrections. Revisiting the interaction Hamiltonian in Eq. (3.29),
we observe no direct gravitational effects at the level of the Hamiltonian. However, since the
electromagnetic fields are themselves influenced by gravity, it is essential to examine how
these gravitational effects might impact the operations of beam splitter and mirror pulses.

Bragg interactions: Two Counter-propagating Light Fields

In principle, determining the dynamics during a light pulse involves solving the Schrédinger
equation using the Hamiltonian from Eq. (3.29), which in its one-dimensional form is
expressed as

Ay =-d-EQ)+ %1 [ﬁ (ax B2) + h.c.] (3.84)

with position and momentum operators Z, P. We begin by discussing the case of atoms at rest
and will incorporate effects due to Doppler shifts in a subsequent step. The Z-dependence
of the electromagnetic fields, which arise from the vector potential in Eq. (3.79), leads to
Z-dependent corrections in the electromagnetic phases. This height dependence of the phase
is significant for the net interferometric phase and will be the primary focus of the following
discussion.

To derive expressions for the electric and magnetic fields, we begin with the vector poten-
tial given in Eq. (3.79). We incorporate a time dependence into the amplitudes to facilitate
the creation of specific pulse shapes during the experiment. Each of the corresponding vector
potentials can then be expressed as

Az 1) = AL + OT 72, (3.85)
where the phase expression is given by

y+lgz

Oz.1) = —wit + (1 - . ) kiz+OT c2), (3.86)
C

with i = a, b respectively. Using canonical quantisation, we express every motional variable
in terms of the position and momentum operators Z and P. Utilising the vector potential,
we obtain expressions for the electric and magnetic fields via Ei(Z, 1 = —étAi(Z, ) and
B;(Z,1) = V x A,(Z,t). Writing both EM fields explicitly yields

E (2.1 = &™) + 0T ), (3.87a)
B(2.1) = B, ™) + O ¢, (3.87b)
where the amplitudes are given by

&) = —iw;A(t) — A1),
B,(1) = ik;e, x A 1).

The interaction Hamiltonian Eq. (3.29) then takes the form

Ay =-d-E(Z,0)+ ﬁ |2 (dx B(Z.1) +he]. (3.88)
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We now transform into the interaction picture corresponding to the internal Hamiltonian A,
as given in Eq. (3.27). This transformation modifies the dipole operator d according to

ar) = M/ g = g ey gl e, (3.89)

with d, = (el d|g). To move the Z-dependent phase of the magnetic field in the Réntgen

term past the P, we utilise the relation AP — (f’ F hk) etk (cf. [143]). Additionally, we
employ the GraBmann identity to simplify

(deg X (e x A})). = dey - A;. (3.90)

The full Hamiltonian, expressed within the rotating wave approximation and in the
interaction picture with respect to Hj, takes the form

A hQ.(Z, P, t (r (o
= oo + 37 G0 el P feen) (3.91)

i=a,b
where the Rabi frequency exhibits an additional dependency on the momentum

hQ,(P, 1)
2

hk\de, - €
) = 8.,
m

and the coordinate wave vector is given by
k(Z) = (1 —(y+ 1)%2)1@. +0(c™h. (3.92)
¢

This leads to a quadratic dependence of the position operator in the exponential, which
requires further analysis to understand its implications. The non-relativistic part of the
Z-dependent exponential of Hamiltonian Eq. (3.91) is just the momentum translation

etk - f dp |p = hk:Xp|, (3.93)

whereas we now also have an additional contribution exp(iiakizz) with @ = —(y + l)f2 in
the interaction Hamiltonian in Eq. (3.91).

Let’s further analyse the form of the interaction Hamiltonian when we also transform
into the interaction picture with respect to the COM Hamiltonian. It is important to note that
the light fields are only activated for a very short period of time. Therefore, it is sufficient to
focus on the dominant contribution, which is given by P?/2m. Bach position operator Z will
then be transformed according to

o LR P
Zvr— Z(t)=e?i Le 2 =7 + —f, (3.94)
m

resulting in an interaction Hamiltonian

. KQ.(Z(1), P, t il 20— v 1 2002 Vel o
A=) - ! (2) B0 lexe e i{20-0e0 5207 il (3.95)

i=a,b

Now the question arises, how to deal with the operator Z(t)* in this exponential. For this, we
introduce the following theorem.
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Theorem: Consider a set of three operators K, K_, and K5, which satisfy the commu-
tation relations

(K K] = K., [K. K] = 2K, (3.962)

As shown in Barnett et al. [144], the following identity holds:

ey+‘7(++y_7(_+y37(3 _ er+7(+eln(r3)7(3€r_7<_’ (3.96b)
where we have defined
Y. cosi)(/;)m—n};fs)inh(ﬁ)’ (3:96c)
I; = (cosh(ﬁ) - ;/—[33 sinh(ﬁ))_2 , (3.964)
B = %7% ~y,7. (3.96¢)

In our case we define K, = @22,7(_ = ﬁf’z, and K5 = 21_71 (ZIAJ + 132). We use

that [Z, Pz] = 2ihP and [22, f’] = 2ihZ in order to show that the commutation relations in
Eq. (3.96a) are satisfied, i.e.,

(%, K, ] = ﬁ([zp 22| +|p2,2%)) = Ezz =K., (3.97a)
[, K] = 5 x/lihZ([ZP’ P*|+|P2,P?)) = —Ezﬂ e (3.97b)
[, %] = #(2[132,2] [P, 2]2) = -2, (3.970)

2
We therefore have the prefactors y, = 1ha—\g y_ = ih% and y; = ih%, which lead to the
definition of the S parameter

3(y+1gk\ 7 \/§ k; t
2 _ (YT I8k T _ 2 8k T
B = 4( > c2) 3 = f 4()/+ 1§)/ Zm (3.98)

Using this approach, one can determine the values of the I'’s to the required order of accuracy
using

_ 27+ sinh() _ 27+ -4\ _ @ -4
L = o s i) = By FOC D =i O (3.99a)
_ 2ysinh® 2y, Sy akie
T " o) —yysmh(p) - @y O T g YA O
-2 )
r, = (cosh(ﬁ) - ;—; sinh(ﬂ)) ~ (1 - %) ~ 147, (3.99¢)

such that we have In(I';) = ah%"t +0(c™.
Applying the theorem and including the definitions given above, we obtain

Wy 2P P2 ﬁ%ﬁ) 5 s 22

- N 2P +P 7 o P
itakl(Z + - J_riozk,-ZZ siak, —E 2y xiak, 5
=e e e m

+0(c ™. (3.100)

m

e
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Since the time span of interest, ¢, corresponds to the photon flight time and is itself on
the order of Ah/c, we can neglect the latter two exponentials. Consequently, we are left
with an operator of the form eﬂkzz/ 62. Since this operator will act on spatially well-defined
Gaussian wave packets, it becomes evident that the full operator exp(ii(l + a/Z)k,Z) will
map a momentum eigenstate |p) to | p + Tk;(1 + az)), where z represents the expectation
value of Z with respect to the initial wave packet.

The wave vector of each laser (i = a, b), as depicted in Fig. 1.4, will be gravitationally
altered according to

K(2) = (1 ~(y+ 1)%)@ +0T ). (3.101)
C

To achieve a resonant transition, the goal is to transfer precisely the desired momentum k;
upon interaction. To accomplish this, each laser pulse must be detuned so that the effective
wave number k;(z;,,) equals k;, where z;,, represents the height at which the light pulse
interacts with (a component of) the atomic wave packet along the respective path. This
condition is fulfilled by mapping the wave vector k; to (1 +(y+ 1)%)&. Using such a
frequency chirp, one achieves an effective laser phase imprinted on the atoms during a
two-photon process at the interaction height z;,, given by

+1 gz _
D, (zy) = £ (1 + Yr§ ‘;‘)kRzim + ADpg; +O(T ¢ 2), (3.102)
c

2

where the sign corresponds to a net gain or loss in momentum, respectively. We absorb the
temporal part in AQgg; , since it directly depends on the FSL effect.

As shown in Eq. (1.58), the scattering matrix for Bragg diffraction, which transfers a
momentum of Nyfikp, can be represented as

g 1 cos(6) 1 Sin(@)eiNR(DL(Zim)
UG = : (3.103)
V2 isin(@)e_iNR‘DL(Zim) cos(6)

in the basis of the momentum eigenstates |OhkR> and |N wlkg). In the experiment, the angle
6 is precisely controlled through the manipulation of pulse intensities and durations, as
discussed in the works by Miiller et al. [145] and Kirsten-Siem8 et al. [56]. It is fine-tuned to
/2 + nr for a beam splitter and 7 + 2nsr for a mirror pulse with n € Z. It is important to note
that, because of various relativistic effects that influence the Rabi frequency and the detuning,
the angle 6 can, in principle, also have dependencies on position and momentum. These
dependencies are expected to appear at an insignificant level and will likely be overshadowed
by factors such as the uncertainty in the electric field magnitude. Thus, while the relativistic
corrections can theoretically affect 6, their practical impact on the outcomes of the Bragg
diffraction process remains negligible, allowing the angle to be treated as effectively constant
for the purposes of high-precision experiments.

3.6.1 Doppler Effect and Kick Phase

In the non-relativistic scenario, as previously discussed, we need to consider the Doppler
effect. However, when incorporating relativistic effects, we must account for both, the
first-order Doppler shift — which influences the light fields as shown in Eq. (2.20) — and
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the second-order Doppler shift. Consequently, the necessary frequency chirp, analogous to
Eq. (2.21), is given by

2 2
Vinek Vi Vine Vi
w, — (1 + le - zl—g)wa, wp (1 - %t - 2‘—;}6%. (3.104)

From this point onward, consider the frequencies w,, w,, as already detuned as described in
Eq. (3.104). The imprinted phase Eq. (3.102) will then be additionally Doppler shifted, and
is given by

2
_ Vint WR Vint Y+ 1 8Zint
(DL(t) = i(kR + TT — 2—c2kR + > cz kR) Zint
T U ore? 3.105
i G R s Te™). (3.105)

For later reference, we rewrite each laser phase contribution in Eq. (3.105) in a dimensionless
form, similar to the propagation phase in Eq. (2.13) and the separation phase in Eq. (2.14) as

52 v+1 .
Q. (1) = i“’CTR([I - ITM + Tg 1,R§im]RR + fint(f~R]§int
+ (‘)CTR(TR — &R + f?ntTR)T +0(5). (3.106)

In this context, the first-order Doppler term, which is proportional to 7, contributes to
the laser phase at order O(3). On the other hand, both the second-order Doppler term and
the recoil term, proportional to Ry, contribute at order O(4). Additionally, the terms of
OT ¢ ?) in Eq. (3.105) translate to an even higher order, specifically O(5). Given these
scaling behaviours, our goal is to consistently determine each phase shift contribution with
accuracy up to O(4).

In summary, the overall relative laser phase accumulated along the upper and lower AIF
paths &,,(7) and &, (7), due to Bragg interactions, is given by

A(I)Bragg = Z (DL(T{) - Z (DL(TI')- (3107)

T,€Ty T,€T,

Atomic Velocity After a Photon Interaction

Understanding how the Doppler effect and spacetime curvature affect the photon momentum
transferred to the atoms undergoing Bragg transitions is necessary to calculate the boundary
conditions of the atomic trajectories in Eq. (2.11). Note that calculating the momentum
kicks bears a subtlety: The light field’s momentum 7k, is a covector, whereas the atomic
four-velocity u" is a (contravariant) vector. Therefore, in order to compute the atomic velocity
after the momentum kick, we need to raise the index of 7ik,, using the metric.!

As an example, consider a Bragg pulse interacting with a wave packet at a height z;,,, as
before. The additional velocity after the kick will then be given by

Nghkg 1 +2782im
m

VKick = -
C

) +Oc7>). (3.108)

"'"This is also evident from the upper index in Eq. (63) in Dimopoulos et al. [87].
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3.7 Relativistic Phase Shifts in Interferometers

Similar to the presentation of phase shifts in Table 2.2 and Table 2.4, we now compile the
phase shifts resulting from relativistic effects for the SRBI, SDDI, and ARBI as shown in
Fig. 2.1. With one exception, all of these terms will be at least of order O(4). Listing all terms
of order O(4) is impractical due to their sheer number, but they can be explicitly obtained
from Ref. [1].

Even if we ignore the Bloch oscillations for a moment, we still have seven small pa-

rameters from Table 2.1: Z,, V, Gy, G r» Gor» Rr»> and Fr. These parameters lead to

(7+i_1) = (140) = 210 possible distinct terms at order O(4), since the order of parameters

does not matter. However, since observable phase shifts are constituted only by products of
these parameters that include at least one recoil-associated factor'? Ry or Fr, the number
of potential phase shifts at order O(4) can be bounded by 2 - (6+§_]) = 112. Therefore, we
present a limited selection of these phase shifts in Table 3.3 and refer the readers to extract
any other desired terms from Ref. [1] that are not included in the table. The only relativistic
term of order O(3), labelled as number #44, can be seen as a correction to the well known
phase shift o TRRrG| g = gkRT,%. This term scales with the constant gravitational potential
at Earth’s surface, ¢, and (8 — 1), which would identically vanish in GR. Note that terms
#56, 57 are not diverging for T — 0, since G5 is cubic in T.

For the specific case of a MZI (equivalent to the SRBI with kz = 0, T = 0) we can
compare the results of our treatment to the one of Dimopoulos et al. [87, 88], and find good,
although not exact, agreement. A detailed comparison of the terms up to O(4) can be found
below. There, we also summarise where our approach differs from that of Refs. [87,88] in
methodology and notation and discuss how these differences affect the final results.

The papers by Dimopoulos et al. [87,88] discuss a Raman AIF of the Mach-Zehnder
type within the PPN spacetime framework. To effectively compare our results with their
findings, we need to adapt their notation and sign conventions to match ours. We list all
needed differences in sign conventions and notation in Table 3.2. Notably, due to a different
sign convention in the phases of the EM waves, it is necessary to redefine the wave vector
and frequency as follows: k; — —k; and w; — —w; for i = a, b, which gives an overall sign
change in wpg, but not in k.

Dim. et al. g 0.8 G%g T |w, | Keg | Wer | VL

Our notation | —=(1+2yGy)g | (1 +3yG)T | =AA | T | 0 | kg | —wg | vo

Table 3.2: Comparison of notation between the analysis by Dimopoulos et al. [87, 88] and
this work.

12Because there is no atomic recoil, no enclosed spacetime area is generated, which means there are no resulting
phase shifts. This scenario would differ in the context of clock interferometry, since there a superposition of
internal states can lead to non-vanishing phase shifts even when the atoms travel on the same trajectory.



Phases in units of w¢
# Order | Proportionality | SRBI SDDI ARBI Origin
4“0 GoG 1 RRx 28T +Tg) 4B-D(Tp+Tg) 2B - 1)(Tp +Tg) Post-Newtonian
45 | ow) ReG 1 VoRe l"ﬂy+20 Ty 20y+41 Ty —(13y + 20)T5 — 20y + 41)T, 1'3}/+2() Ty 20y+41 T, Post-Newtonian
46 ReGixVo | 5Ty - SRy ~(10y + 1) = 8y + 1Ty oy, Sy
47 ReG1rVo PelyiSly, 4 BB (8B+48y + 51)Tp + (48 + 30y +38)T, | Lrtridly, | B3y,
48 RrG: R Rp 12/3”?;7*2‘)4 y 112y|;242 Tq 12ﬂ+16§7+264 Ty+ 112«/6+242 Ty 12ﬂ+l?;)'+264 Ty+ 1121{;242 T,
49 Re g?,R _ 36ﬁ+2%gy+278 Ty 4ﬁ+9?¥+151 Tp | - 36,B+226Oy+278 Ty 4ﬁ+9367+151 T, _ 36,3+2%27+278 Ty 4ﬁ+9?;+151 T
50 RrG1rRE /Ay R L I iy, BT, iy lBp
51 RRg,,Rng MTB w T, w I
52 RRQ%,RQI,B —WTB —WTB _WTB
53 RrG1RG13V0 M%BTB B+ 13y +13)Ty MTB
54 RrG1rG18RB 8y+11 Ty 8y + 11)Ty 8y+11 T,
55 ReGoG1rGor | BTy + 22T, 2T, Lo BEDB T SISTy, ) BB
56 Q3,R‘RR'V(2) %ﬁ;’%mm %@j’%mm %@j’%mm 3rd order grav. potential
57 G3x RV %2;3% 0 %ZRTB”R)

Table 3.3: Post-Newtonian list of phases of the SRBI, SDDI, ARBI geometries. The list starts with term number # 44 and should be seen as a continuation of
the previous tables. There was no selection method at place to specifically show theses phase contributions, compared to all other terms of order O(4).
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Despite aligning the notation between our study and that of Dimopoulos et al., some
differences persist. Dimopoulos et al. selected an initial height of z; = 0. We assumed
that the gravitational parameters g,I" and A were obtained by evaluating the gravitational
potential and their derivatives in the original (asymptotically flat) coordinate system. This
assumption follows the standard practice of using coordinate lengths for such evaluations.
It could also be the case that Dimopoulos et al. chose to evaluate those parameters using
"metric lengths" and not "coordinate lengths", which would shift those definitions by some
factors of Gy = ¢/ ¢*. We therefore expect deviations of our results in comparison to [87] at
order O(4).

The comparison of our results to Refs. [87, 88] can be found in Table 3.4. To orders
O(2) and O(3) all terms except #8, #9 are reproduced. Term # 8 can result from a different
definition of g by Dimopoulos et al., as discussed before. Term #9 an be reproduced if we
omit the contribution of the final interferometry laser when calculating the dominant FSL
phase. Setting the imprinted recoil in the last pulse to zero, in this step of the calculation,
yields the same output for term #9 as in Dimopoulos et al. It therefore appears like this
contribution might have been omitted in Refs. [87, 88]. For more details, we refer to
the analysis in Chapter 4. We have also reproduced all non-zero terms for our system
from [89, Table 1]. However, term #9 was not included in their results. On the other hand,
they did include Coriolis and centrifugal terms in their phase shift calculations, as well as the
fourth-order differential of the gravitational potential. Another notable set of terms consists
of numbers # 10 and # 15. The prefactors in these terms are intentionally expressed in this
form because the primary contribution of % arises from including the A-dependent part of
the gravitational potential into the Lagrangian, which influences the propagation phase. The
additional contribution'® of —% results from considering this part of the potential in the ELE,
leading to the modified atomic trajectories described in Eq. (3.37c). It appears that this latter
effect was omitted in Refs. [87, 88].

3.8 Outlook: Relativistic Description of Stationary Spacetimes

So far, we only considered static spacetimes, which are characterised by time-independent
metrics with no cross-terms between space and time. Spacetimes like those offer a straight-
forward description of gravitational systems in equilibrium, such as a non-rotating star.
Transitioning from a static to a stationary spacetime involves accounting for systems where
time invariance is maintained, but rotational or additional dynamic effects are present, such
as in the case of rotating gravitating objects. This transition requires the introduction of
off-diagonal metric components, specifically terms that couple time and angular components,
capturing the essence of frame dragging and rotational dynamics introduced by angular
momentum. This transition can be viewed as the first step towards understanding even more
complex, i.e., non-stationary spacetimes, which are necessary for describing phenomena
such as gravitational waves.

3Note that we originally wrote that this additional factor is —31—6 in Ref. [2], which was a typo.
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Comparison to the MZI from Refs. [87,88]

# Term from [87] in our notation [87] in dim. param. mod w¢ Our result O(n)
1 xzgTx RrG1rTR RrG1rTR 2
2 —kgl'vo T13e “RrGarVoTr —RrG2rVoTr 3
3 %rgKRTIé %'RRgl,Rgz,RTR %RRQI,RQZRTR 4
4 3t T; ~3RpG1r TR ~3RpG1 R TR 3
5 3% 72 3G, VoRrTr 3G R VoRe Tk 2
6 —%‘FT; ~1RRG R Tk ~IRRGrr Tk 3
7 WR T FrG1rTR FRG1RTR 2
8 2-26+ )/)M 2 -28+%GoG 1 rRrTr 2 -28+2y)GyG xR Tr 2
9 %gﬁe $RRG R TR 3RRG1 R TR 2
10 LkgvoATR IR V3Gsr (% - H)ReViGar 4
11 2 wrory R RVoG1rG2r TR ZRVoG1rG2r TR 4
12 —4ﬂT,§ ~4Ry V3G Tr ~4Re V5 Gor T 3
15 g%ﬁvOAT;\‘, IRV Gsr (2 - H)ReVoGsr 4
16419 | —(14 = 28 — sk ~(14-28-YReGi g VoTx | (19+28+200ReGi g VoTr | 3
17423 | B(14-2p—psil 514 - 28 - PR Gl kT - S Re G kT 4
18 5885 72 5RRG1 R VoTr Y R G R VETR 2
20 54 —-4p- 37)MT§ 54 =48 -3y)G,G RGrrRr WQOQI.RQZ,RRR 4
21 —WgR M —7‘-R§2,R(V0TR _TRQZ,R(VOTR 3
22 Wk LTl BIRG1RG2RTR BIRG1RG R TR 4
24 72rs; IvoT IRRG 2R VoTr ~RR G2 VoTx 3
25 _2;:% TgTx _%Régl,Rgz,RTR %Zﬂlzzgmgz,RTR 4
27| 6@ -2p- T 6(2 - 28 - V)ReGoG1r 6(4 — 4B +7)ReGoG1 3
28 Bwp €7k -37:G1r TR -37RG1r TR 3
29 3wg M 3FRG1RVoTr 3FRG1RVoTr 2
30 -6(1 —ﬁ)mkﬁf =6(1 = B)GoG1 R VoRr =6(2 =28+ 7)GoG 1 R VoRr 2

Table 3.4: Comparison of phase shifts for a MZI of our results and Dimopoulos et al. Factors
of 7 and c are restored and highlighted in orange. One can see that all terms of orders O(2)
and O(3) are reproduced apart from terms # 8 and #9. Terms # 13, # 14 and # 26 are zero for
Bragg interferometers and therefore not shown. 7, *: Terms # 16 + # 19 and # 17 + #23 can
be combined and therefore share a row.
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Stationary Case

Based on Ref. [146][Box 13.1], we express the rotating PPN metric of interest using a
(3, 1)-decomposition as

—1-280 g0 L oty ey T o)
S = ‘ ¢ 2 , (3.109)

LAV + 0T (1-2922) 15+ 0

including an additional PPN parameter @, which vanishes in GR. The novel rotational PPN
vector-potential V(r) can be constructed from the gravitational mass density p(r) by

, / ’ ) d
V(r) = Gfd3r PEIVE) it v = I (3.110)
V—r| dr
For nearly spherical bodies, the PPN vector potential V(r) can be determined as (see
Ref. [147][Eq. (9.4)])
GM, GrxJg

Veom~ —-3 T o), (3.111)
2r

V(r) =

where vy its COM motion, which we’ll neglect for the case of the Earth as the gravitating
body. We therefore obtain off-diagonal metric components

4 +4y +a

80;(r) = —————LVi() + O(c™)
2c
4 +4y + 3 s
ST 8 G(rXJea)j+0<r e (3.112)

Calculating the Lagrangian LR(r, ) from the metric tensor, in a manner similar to
Eq. (1.8), one derives the non-rotating PPN Lagrangian L(r, ) as seen in Eq. (1.32). This
result includes contributions from the two fictitious forces, detailed in Sec. 2.2.4, and
additional terms related to the so-called Lense-Thirring effect, leading to

LRUr, #) = L(r, ) + m i - (g X 1) + %(% x 1)’

4+4y+a; mG

B 4 JEgF)

The Lense-Thirring effect, also known as frame dragging, is a relativistic phenomenon

predicted by GR. It occurs when a massive rotating object, like a planet or a star, drags the

spacetime around it as it rotates. This effect results in the precession of the orbit of nearby

particles and gyroscopes. The ELE in their vector form, %ViLROt(r, i) — V,LROt(r, i) =0,
can be calculated to be

(rxi)-Jg+0c™. (3.113)

3 2 1 28 -1
= =Votr - e+ L - =L oryvoe
C C
4+ 4y + G Jg-r -
Mhha %r%ﬂx{@-s o e+ 0. Gty

Substituting the solution for # back into itself on the right-hand side yields

)
P = Vo) + 2y + DD g4y
C

P(r)Ve(r)
2

4 +4y+ G
+ YT .

J@'r
4 r3C2rx|:J®_3 r2

+ 0™, 3.115)

r
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The gravitomagnetic field B; can now be defined through its vector potential A, which is

given by A = M%%J o X r. This definition leads to
4+4y+a, G Jg-r
BG=VxAG:#E[J$—3 6;2 r}. (3.116)

The Lense-Thirring term in the ELE then reads f X B, completely analogous to the magnetic
component of the conventional Lorentz force. The gravitomagnetic field is therefore an exact
dipole field, allowing it to be treated similarly to standard magnetic fields.

The stationary PPN metric can also be viewed as a post-Newtonian approximation of
another well-known rotational solution of Einstein’s field equations: the Kerr metric. To
illustrate this, we express the triple product in Eq. (3.113) using spherical coordinates, as-
suming that the mass density p(r) is primarily rotating with an angular velocity ¢. Assuming
a "right handed" cross product convention one obtains

(rx#) - Jg=—r"Jgysin’(6) ¢,

By inserting a trivial identity of the form Mg /Mg, and the Kerr parameter of Earth, a = J /Mg,
we can rewrite the Lagrangian

LRr, #) = L(r, i) + mi - (wg X 1) + %(% x 1)’

.\ 4 + 4y + a; mag(r) sin®(6) @

T - +0(c™, (3.117)
C

which includes the Newtonian gravitational potential. This form is also evident in the
Lagrangian of a Kerr black hole.

Ground Based Interferometers

We will now consider the scenario where the interferometric experiment of interest is

2
conducted in an Earth-based interferometer. The Kerr parameter of the Earth is a = 109”’7.
Let us return to the Lagrangian expressed in spherical coordinates, considering a non-
corotating frame of reference'*

4 + 4y + ay mag sin”(0)
4
mr 28-1

¢(r)

LR, i) = %rz — me(r) +

: —me(r)’ - @mw)ﬂ +0(c™) (3.118)
8c 2c 2c

The velocity in this frame of reference, #, can be split into three contributions via i =
Vv vi. Here, v, corresponds to the final velocity, vy is the transverse velocity, and
v, & 500 % is, essentially, the rotational velocity of the Earth, resulting from its angular
velocity wg,. In order to analyse the Lense-Thirring effect further, we define

4+ 4y + ay agsin®(0) GMy

LT(r0.9) = ———, 3 .
C

(3.119)

The respective orders of magnitude for the gravitational potential, its zonal and tesseral
corrections, and the Lense-Thirring effect are illustrated graphically in Figs. 3.3 and 3.4.
These figures represent the perspective of a ground-based observer, i.e., where r = Ry,
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Figure 3.3: Comparison of the (dimensionless) magnitudes of several components of the
effective gravitational potential as functions of latitude € from O (north pole) to 7 (south
pole): i) constant gravitational potential of a sphere (black), ii) zonal correction terms from
Eq. (2.62b) for different [ > 2 (coloured), and iii) the Lense-Thirring term for an observer
fixed on Earth’s surface (red dashed). This figure builds upon Fig. 2.12.

Choosing a cut-off for the geopotential corrections in the Lagrangian that allows for the
analysis of Lense-Thirring contributions would ultimately require including more than a
dozen of gravitational correction terms, rendering any analytical calculation impractical.
To effectively measure the Lense-Thirring effect in a ground-based laboratory, seems to be
impossible with modern day technology, as even the tesseral correction terms to the potential
are considerably larger compared to the frame-dragging effects.

Measuring frame dragging using AIF setups is a challenging task, as indicated by the
orders of magnitude shown in Figs. 3.3 and 3.4. Given that the Lense-Thirring contribution
depends on r, 8 and ¢, atomic trajectories must be selected to differ in at least one of these
degrees of freedom to achieve a non-zero phase shift. If only a radial split of the wavefunction
is considered, as is commonly desired in interferometric schemes, the Lense-Thirring term
would contribute in a manner similar to gravitational acceleration. This occurs because the

Newtonian contribution of the gravitational potential, d,¢(r) in Eq. (3.120a), would be shifted

s 2
by a factor 4+4Z+a‘ e (90), where 6, represents the latitude of the experiment. This factor
Cc

is approximately 12 orders of magnitude smaller than g.15 Since this effect scales identically
with g, it is not possible to distinguish between frame dragging and variations in g, through
radial separation alone. Therefore, a different approach or additional measurements would
be necessary to differentiate between the two effects. Therefore, to measure frame-dragging
effects, a more sophisticated experimental geometry is required. This involves constructing
spatial superpositions of the atomic wave packets in transverse directions, too. To achieve
this, we examine the equations of motion in greater detail. Building on the Newtonian
spacetime scenario described in Eq. (2.41), we can express the complete ELE in spherical

"“Thereby, omitting the fictitious forces.
'SEvaluated at the equator, where the Lense-Thirring effect is maximal.
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Figure 3.4: Comparison of the (dimensionless) magnitudes of several components of the
effective gravitational potential as functions of colatitude ¢ for fixed 8 = 7/4: 1) constant grav-
itational potential of a sphere (black), ii) summed tesseral correction terms 7, = 3. _1 T,
from Eq. (2.62c) (coloured), and iii) the Lense-Thirring term for an observer fixed on Earth’s
surface (red dashed). This figure builds upon Fig. 2.13.

coordinates, now incorporating additional relativistic effects, as given by

4+ 4y + a; aGMgpsin®(@) ¢t sin*(6)

P = —rl’ — rg” sin*(6) — 0,4(r) —

4 A 2
G*M2 2y +1GMyg* sin*(6)
-(28-1)—5° - , (3.120a)
rc 2 C2
. - 4+ 4y + p sin(6) cos(8)GM,
5= =250 g sin(0) cos(6) — d,p(r) + TN 2ESNO) CONOGH
r 2 cr
5 3 Y . )
0 ) GMg sin(6) cos(d
_ S @OcosOF o, 1) Masi <>2 O (3.120b)
2c rc
. . 4 + 4y + a; aGMg 2rf) cot(6) — i
b= 225~ 20pcot(®) — 0,0(r) + Y XN L0 2O 7
r 4 C r
(0 _ GM,iq
B rSII;( ) (F¢ sin(@) + rdgcos(@)) + 2y + 1) 2@2’"‘”_ (3.120c)
c rc

It becomes evident that finding an exact solution for this set of ODEs is complicated when
considering more than just radial motion. The complexity arises from the added degrees of
freedom and the interplay between different directions of motion.

The question remains whether the Lense-Thirring effect can even be measured using a
ground based interferometer. Since both the dominant component of the gravitational poten-
tial and the Lense-Thirring term scale with r~!, while the zonal and tesseral contributions
diminish with r~ for [ > 3, the idea of a satellite mission with an onboard AIF presents itself
as a promising alternative. Such a mission could benefit from being situated far from Earth’s
surface, potentially in a highly elliptical orbit, where the Lense-Thirring contribution could
be of comparable size to or even larger than the largest zonal correction. From Fig. 3.5, we
observe that a radial distance from Earth’s centre of at least 10* Rg — 10° Ry, is necessary for
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Figure 3.5: Comparison of the dominant zonal correction term (green) to the Lense-Thirring
contribution (red) over the radial distance at the equator

the Lense-Thirring contribution to exceed the magnitude of the largest correction terms of
the gravitational potential.

In summary, the first significant effect of rotating spacetimes, the Lense-Thirring effect,
is unlikely to be measurable with earthbound AIF experiments. However, future setups,
which may be designed to measure gravitational waves — a distinct topic on its own — could
possess the necessary sensitivity to detect such signals from Earth’s orbit.
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Chapter 4

Computer Algorithm for Phase
Calculations

"Not only does God definitely play dice, but He sometimes confuses us
by throwing them where they can’t be seen."

Stephen Hawking in his 1999 lecture "Does God play dice?"

The use of computational tools and programming languages has become an essential
component of modern scientific research. In the previous chapters, we analysed how phase
shifts in general atomic interferometry frameworks can be calculated and demonstrated that
these shifts are always expressed as polynomial functions of time and integrals — both of
which can be easily implemented analytically. Previous theoretical descriptions have utilised
computer algebra systems, such as Mathematica, as referenced in [87,88]. However, these
programs are proprietary and often require expensive software licenses. Moreover, their
algorithms can quickly become outdated and are not openly accessible. We believe that
modern science should be free and open source, which is why we chose to implement our
logic in Python.

Python is known for its versatility, user-friendliness, and extensive library ecosystem
that supports various scientific disciplines. However, one area where Python is typically not
renowned is analytical and symbolic algebra, a domain where software like Mathematica
excels. To address this, we employed two significant approaches: 1) the use of the library
sympy, which enables symbolic algebra, and ii) the expansion of phases based on dimension-
less parameters from Table 3.1 and the resulting systematic size estimation. Implementing
such an algorithm allows us not only to easily compute partial results, but also to trace the
origins of certain phase shifts. This is facilitated by the transparency of Python, which is
not a black box and provides plenty of opportunities for debugging. Given these innovative
methods, we present the essential code snippets and the foundational logic in this dedicated
chapter. We hope that the benefits of this approach inspire other researchers to adopt similar
phase calculation automation techniques.

The following chapter offers a comprehensive walk-through of the logic behind the
Python codes [1] and [3], detailing each important module and function. It will cover the
algorithmic approaches, data structures, and libraries utilised, along with examples of input
and output. This thorough analysis aims not only to explain how the code functions but also
to provide insights into the rationale behind certain aspects of the algorithm. To enhance
readability, line breaks will be indicated with a grey hooked arrow "<—".
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4.1 Code Structure and Preliminaries

The algorithm is organised into the following files:

e main . py: The main file is responsible for calling all relevant functions and initializ-
ing the desired plots.

e interferometer_geometry .py: This file defines the geometry of the AIF by
specifying the number and strength of photon recoils, as well as the time intervals.

e latex_attributes .py: This file contains the structure and predefined text
blocks used for automatic IAIEX file creation. It is only included in the PPN analysis
of Ref. [1].

e parameters_and_functions .py: This file contains all the definitions of sym-
bols and functions used to obtain partial results in the algorithm. They are organised
here to enhance readability.

e gravity_model.py: This file reads the numerical model of the gravitational
field, if available. It includes all the necessary tools to create a polynomial fit of the
measurement data and save it for later use. It is only included in the VLBAI analysis
of Ref. [3].

Let’s proceed by analysing key code snippets one at a time, in order to gain a deeper
understanding of how this algorithm functions internally.

As mentioned above, we aim to perform algebraic operations on purely symbolic ex-
pressions and use the Python library sympy. This library allows us to define symbols with
optional attributes, such as the constant offset of the gravitational field ¢,, which is real and
negative.

phi_O=symbols("phi_0" ,negative=True, real=True)

Similarly, one can define real but positive constants via:
t,hbar ,m,c, beta ,gamma, g=symbols("t,hbar ,m,c,beta ,gamma,g",positive=True,real=

< True)

Next, we define the global parameters of the interferometer setup, focusing primarily on the
effective recoil momentum, frequency, mass of the atomic species used, and baseline length.

# Either 10 or 100

interferometer_height = 10

# in Hz

bragg_recoil_frequency = 10 xx 7

# in I/m

effective_bragg_k_vector = 16 % 10 xx 6

effective_bloch_k_vector = 5 % 10 =% 8

# in amu

mass_of_atom = 87

# in m/s

# 10m baseline: 15 m/s and 100m baseline: 45 m/s

if interferometer_height == 10:
initial_velocity = 15

elif interferometer_height == 100:
initial_velocity = 45

# Complete time of the interferometric sequence (in seconds)
# 10m baseline: full_time = 3 and bragg_time = 1.3
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# 100m baseline: full_time = 9 and bragg_time = 4
if interferometer_height == 10:

full_time = 3

bragg_time = 1.3

elif interferometer_height == 100:
full_time = 9
bragg_time = 4

else:

full_time = 9

bragg_time = 4

print ("Choose an interferometer height of 10m or 100m.")
quit ()

bloch_time = full_time — 2 x bragg_time

A key aspect of the phase calculation is the manipulation of dimensionless parameters,
which are defined in Table 3.1. As previously discussed, every phase shift of an arbitrary
AIF can be expressed as a linear combination of these terms. The algorithm leverages this
principle, which is reflected in its structure and processes as follows. The main object in the
algorithm is based on the newly defined class DimPar. This class consists of a prefactor,
the name of the dimensionless parameter, a time-order, and a magnitude. It is initialised as
follows:

class DimPar:
def init__ (self ,prefactor ,parameter ,time_order:int , magnitude:int):

self .pre = prefactor
self.param = parameter
self.order = time_order
self .mag = magnitude

This implies that a dimensionless parameter, DimPar, possesses four properties: i) A
prefactor, which can be an integer, rational, symbolic (such as § or y), or a float number. ii)
A symbol, for example, Ry or G| gFg. iii) The time order, which is zero for all parameters in
Table 3.1, but would be one for a dimensionless time 7 = ¢/7. This time order is necessary
for the time integrals in the propagation phase. iv) A magnitude, which is an integer that
counts the number of small parameters from Table 3.1 present in the symbolic part. The set of
dimensionless parameters thus inherits an algebraic structure, as the product of dimensionless
parameters with numbers or other dimensionless parameters preserves this structure. When
multiplying two such DimPar objects, their prefactors and symbols are multiplied, and their
time orders and magnitudes are added.

Within this class definition, you can specify how basic algebraic operations interact
with this newly defined class. For example, consider the expression —Ry, which represents
the multiplication of a DimPar object by —1. This operation would map self . pre to
—self . pre, while leaving all other attributes unchanged. This is defined within the class
definition using:
def neg__(self):

return DimPar(—self.pre,self.param, self.order, self.mag)

Another, more complicated, operation on this class is given by multiplication, since one
needs to define how an operation acts on this class, depending on the object type one wants
to multiply the class object to.

def __mul__(self ,other):
if isinstance (other ,DimPar):
return DimPar(self.prexother.pre, self.param=xother.param,self.order+other.order
— ,self .mag+other .mag)
else:

return DimPar(otherxself.pre,self.param, self.order,self.mag)

When Python attempts to multiply two quantities it calls the left object’s __mul__ ()
method. However, if this is not explicitly defined, Python will attempt to determine if the
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Generic class object: DimPar(pre, param, order, mag)

Muliplication:
DimPar(pre_1, param 1, order 1, mag 1) * DimPar(pre 2, param 2, order 2, mag 2)

= DimPar(pre_1 % pre 2, param 1 % param_ 2, order 1 + order 2, mag 1 + mag 2)

—> DimPar-class is stable under multiplication

Addition:

DimPar (pre 1, param 1, order 1, mag 1)+ DimPar(pre 2, param 2, order 2, mag 2)

= [DimPar(pre 1, param 1, order 1, mag 1),DimPar(pre 2, param 2, order 2, mag 2)]

= DimPar-class addition is defined via list concatenation

Figure 4.1: Summary of the algebraic structure within the DimPar-class.

right-hand object has a valid multiplication operation. Since multiplication is not inherently
commutative, you must also specify a "right multiplication" procedure using __rmul__ ().
In the case of dimensionless parameters, multiplication is commutative, meaning that the left
and right multiplications yield the same result.

def __rmul__(self ,other):
return self.__mul__ (other)

Division is defined in a similar manner, with the additional step of checking to ensure that
division by zero does not occur.

def __div__(self ,other):
if other != 0:
return DimPar(self.pre/other,self.param, self.order, self.mag)
else:
print (" Attempt to divide by zero")
quit ()

Lastly, we define how to raise DimPar objects to a certain power, specifying the behaviour
of exponentiation for these objects.

def __pow__(self, power, modulo=None):

if power ==
return DimPar(self.pre, 1, 0, 0)
if isinstance(power, int) and power != O:
return DimPar(self.presxpower, self.paramsxpower, self.orderspower, self.magsx
— power)

The DimPar class, however, is not closed under addition. To address this, we define the
sum of two DimPar objects by placing them into a list. Consequently, addition is handled
through list concatenation. We summarise this algebraic structure once more in Fig. 4.1. To
keep the lists of terms concise, we define a function that removes all DimPar objects with a
magnitude greater than the threshold value, number_of_small_parameters_kept
defined in the beginning of main . py.

def mag_cutoff(parameter: DimPar,cutoff: int):
if cutoff <=0:
return 0
if parameter.mag<cutoff:
return parameter
else:
return 0

def delete_zeros_list(list_of_things):
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new_list = list ()
for i_index in range(len(list_of_things)):
if list_of_things[i_index] != O:

new_list.append(list_of_things[i_index])
return new_list

def mag_cutoff_list(list_of_parameters , cutoff: int):

new_list = list ()

try:

len(list_of_parameters)
for i_index in range(len(list_of_parameters)):

new_list.append(mag_cutoff(list_of_parameters[i_index], cutoff))

return delete_zeros_list(new_list)

except TypeError:
return mag_cutoff(list_of_parameters , cutoff)

With the class now defined, we proceed with the definition of an interferometer geometry.

4.2 Initialisation

Initialisation involves defining time segments and their durations, along with specifying the
number of imprinted (desired) Bragg and Bloch momenta. We also assign a name to the
geometry, which will be used as an abbreviation in the generated files.

interferometer_name = "MZI"

time_decomposition = [0,TR,TR]

bragg_quanta_upper_path = [0,1,0,0]
bloch_quanta_upper_path = [0,0,0,0]
bragg_quanta_lower_path = [0,0,1,0]
bloch_quanta_lower_path [0,0,0,0]

From this we define the number of transferred momenta.

trans_bragg_upper_path = list ()
trans_bragg_lower_path = list ()
trans_bloch_upper_path = list ()
trans_bloch_lower_path = list ()

for i in range(len(time_decomposition)):

trans_bragg_upper_path.append(bragg_quanta_upper_path[i+1]-
— bragg_quanta_upper_path[i])

trans_bragg_lower_path.append(bragg_quanta_lower_path[i+1]-
— bragg_quanta_lower_path[i])

trans_bloch_upper_path.append(bloch_quanta_upper_path[i+1]-
< bloch_quanta_upper_path[i])

trans_bloch_lower_path.append(bloch_quanta_lower_path[i+1]-
— bloch_quanta_lower_path[i])

The initial conditions are always set to be Z0 and V0. We define a set of abstract initial
conditions for each AIF path via

abstract_init_pos_upper_path
abstract_init_vel_upper_path [VO,VU1,VU2,VU3,VU4]
abstract_init_pos_lower_path [720,711,71.2 ,71.3,71.4]
abstract_init_vel_lower_path = [VO0,VL1,VL2,VL3,VL4]

[Z20,ZU1,7U2,7ZU3,7ZU4]

and will be filled with analytic expressions later. To elaborate further: We allow the algorithm
to compute abstract phase expressions, such as the propagation phase, starting from a time
segment with initial conditions ZU3 and VU3. At a subsequent stage, we substitute this
analytical expression, with the given initial conditions, into the final phase expression.
Figure 4.2 illustrates how the code progresses from this point, beginning with the calculation
of the true atomic trajectories, which include Doppler and gravitational corrections. In this
discussion, we have set aside the automatic implementation of the FSL as detailed in Ref. [3].
In that reference, an intermediate step calculates the intersection point between the light rays
(in this case, two) and the atomic ensemble, as described in Eq. (2.16).
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Figure 4.2: Schematic and simplified overview of the algorithm after initialisation.

4.3 Atomic Trajectories

To simplify the calculations, a non-relativistic version of the atomic trajectory and velocity is
defined, as relativistic corrections to atomic trajectories, phases, and various intermediate
results often depend on the atoms’ height or velocity. In that context, only the non-relativistic

trajectory is necessary. We start with a purely symbolic definition, which will be needed to
visualise the results.

def non_relativistic_trajectory_piece (height,velocity ,k,time):
return height + velocitysxtime + hbarxkstime/m — Rational (1,2)xgxtimex=2

def non_relativistic_velocity_piece(velocity ,k,time):
return velocity + hbarxk/m — gxtime

We continue with a version consisting of DimPar-objects.

def nr_trajectory_dim_param (ramsey_quanta:
< init_height , init_velocity ,
time_factor DimPar (1,

int , bloch_quanta:
initial_time):
time/initial_time , 1, 0)

int , time,

next_init_height = list ()

next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.

return next_init_

append (init_height)

append (time_factorxinit_velocity)

append (time_factorsramsey_quanta=RR)
append (time_factorsbloch_quanta=RB)
append(—Rational (1,2)«GlRxtime_factor %2)

height

The first line defines a dimensionless time variable, therefore having a magnitude of zero, but
a time order of one. We demonstrate the concept behind this construction with an example,
shown in Fig. 4.3.

One of the key functions is the atomic trajectory that incorporates all the corrections
elaborated in previous chapters. It will be introduced in multiple steps. We begin with the
non-relativistic component of order O(1).
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[DimPar (1, Z0, 0, 1),DimPar(1, VO % tau, 1, 1),
DimPar(— Rational (1, 2), GIR % tau x*x 2, 2, 1)]

Dimensionless form:

Computer form:

Figure 4.3: Example of the transition between an analytic expression and the computer form
in terms of DimPar-class arguments.

def trajectory_dim_param(ramsey_quanta: int, bloch_quanta: int, time, init_height,
< init_vel , nr_init_height, nr_init_vel, init_time , cutoff: int,
— third_order_gravity: bool, second_order_gravity: bool):

time_factor = DimPar(1l, time/init_time , 1, 0)

# Initial conditions

next_init_height
next_init_height.
next_init_height.

# Trajectory due
next_init_height.
next_init_height.

# Trajectory due
next_init_height.

list ()
append (init_height)
append (time_factor=init_vel)

to momentum kicks
append (time_factorsramsey_quanta=RR)
append (time_factorsbloch_quantaxRB)

to linear gravity
append(—Rational (1,2)«GIR«time_factor «x2)

Next, we include the corrections to the trajectory at order O(2), as defined in Eq. (3.37b).

# General second order corrections to the trajectory
next_init_height.append(—C3+G0+GlR«time_factor «x2)

# Second order corrections due to
if

the gravity gradient

second_order_gravity :

next_init_height

next_init_height.
next_init_height.
next_init_height.
next_init_height.

.append (Rational (1,2)«G2R«time_factor=«+2«nr_init_height)
append (Rational (1,6)«nr_init_vel*G2Rxtime_factor xx3)
append (Rational (1,6)*ramsey_quantaxRR+«G2Rxtime_factorxx3)
append (Rational (1,6)xbloch_quantaxRBxG2Rxtime_factor xx3)
append(—Rational (1,24)*GIR+«G2R«time_factor xx4)

At third order, O(3), we include the effects described in Eq. (3.37¢). It is important to note
that we also include the contribution from Eq. (3.108), which is the first one. We added
multiple Boolean variables to the definition to allow for the easy inclusion or exclusion of
certain effects. We begin with the general contributions at third order.

# Third order corrections to the
if cutoff >= 5:
# Third order correction to the momentum kick

next_init_height.append(2xgammaxtime_factorxGIR«+init_heightxramsey_quantaxRR)

trajectory

# General third order corrections
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
— x%2)
next_init_height.
next_init_height.
> x%3)

to the trajectory
append(—C4xGIR**2xnr_init_heightxtime_factorxx2)

append (C5+GlRxnr_init_velxx2xtime_factor xx2)

append (C5xGlRxramsey_quanta=#2xRRx+2«time_factor x%2)

append (C5xGlRxbloch_quantax%2+RB##2xtime_factor xx2)

append (2xC5+GIR«nr_init_velxbloch_quantaxRBxtime_factor x=2)
append (2xC5+GIRsnr_init_velxramsey_quantasxRRxtime_factor x=2)
append (2xC5+GIR«ramsey_quanta*RRs«bloch_quanta«RB«time_factor

append(—Rational (1,3)*C4xnr_init_vel +*GlRx%2xtime_factor %3)
append(—Rational (1,3)xC4xramsey_quantas=RR+«GlR*%2xtime_factor
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next_init_height.append(—Rational (1,3)%C4xbloch_quantasRB+xGlRx%2xtime_factor «x%3)
next_init_height.append(Rational (1,12)+C6+GIR**3xtime_factor «x4)

Next, we include third order corrections resulting from the gravity gradient.

# Third order corrections due to

if second_order_gravity:

the gravity gradient

next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.

append (Rational (1,2)*C3xG0+G2R+nr_init_heightxtime_factor %2)
append (Rational (1,6)*C3xG0+G2Rxnr_init_velxtime_factor xx3)
append (Rational (1,6)*C3xG0xG2Rxramsey_quantaxRRxtime_factor x=3)
append (Rational (1,6)*C3xG0+G2Rxbloch_quanta«RB«time_factor «x3)
append (Rational (1,24)xnr_init_height+G2Rx%2xtime_factor xx4)
append(—Rational (1,12)%C3+G0+GIR+G2R«time_factor xx4)

append (Rational (1,120)+nr_init_vel*G2Rx+2xtime_factor x=5)
append (Rational (1,120)*ramsey_quanta+RR«G2Rx*x2xtime_factor x=5)
append (Rational (1,120)«bloch_quanta«RBxG2Rx*%2xtime_factor =x5)
append(—Rational (1,720)*GIR+*G2R*%2xtime_factor x%6)

Lastly, we include corrections to the trajectory that result from the second-order gravity
gradient, denoted as A. This allows for comparison between our approach and that of
Dimopoulos et al. [87, 88], as they appear to have integrated this contribution into the
Lagrangian but not into the trajectory.

# Third order corrections due to
if third_order_gravity:
next_init_height.append(—Rational (1,2)*G3Rxtime_factor=*2xnr_init_heightx%2)
next_init_height.append(—Rational (1,3)«nr_init_heightxnr_init_vel«G3Rx
< time_factor x%3)
next_init_height.append(—Rational (1,3)snr_init_heightxramsey_quanta*RR+G3Rx
< time_factor x%3)
next_init_height.append(—Rational (1,3)*nr_init_heightxbloch_quanta*RBxG3Rx
< time_factor x%3)
next_init_height.append(—Rational (1,12)*nr_init_vel**2xG3R«time_factor xx4)
next_init_height.append(—Rational (1,12)«ramsey_quantas+2+RR++2+G3R«time_factor
— xxd)
next_init_height.append(—Rational (1,12)xbloch_quanta*%*2«RB%%2xG3R«time_factor
— xx4)
next_init_height.append(—Rational (1,6)*nr_init_velsxramsey_quanta«RR+G3Rx
< time_factor x%4)
next_init_height.append(—Rational (1,6)xramsey_quantasRRx+bloch_quanta«RBxG3Rx
< time_factor x%4)
next_init_height.append(—Rational (1,6)*nr_init_velxbloch_quanta*RBxG3Rx
< time_factor xx%4)

the second gravity gradient

next_init_height.
next_init_height.
next_init_height.
next_init_height.
next_init_height.

append (Rational (1,12)xnr_init_height+GIR+G3Rxtime_factor xx4)
append (Rational (1,20)*nr_init_vel*GIR+G3Rxtime_factor xx5)
append (Rational (1,20)x«ramsey_quanta+*RR«G1R+G3Rx«time_factor «x5)
append (Rational (1,20)xbloch_quanta*RB+GIR+G3Rxtime_factor x%5)
append(—Rational (1,120)*GIR%%2+G3Rxtime_factor x%6)

return next_init_height

Here, we utilised the definitions of the constants C; to C¢ from Eqgs. (3.37d) and (3.37¢). We
also define a list of substitutions to eliminate these constants in the final phase calculations.

c_substitution=[(Cl, Rational (1,2)«(2«beta—1)) ,(C2, Rational (1,2) «(2«xgamma+1)) ,(C3

— ,2x(beta—1)),(C4,beta+gamma) ,(C5, Rational (1,2) x(gamma+2)) ,(C6, beta —2)]
The velocity is defined in a completely analogous manner and will be omitted here for the
sake of readability. With all the necessary components in place, we can now determine
the exact atomic trajectories. We begin with the initial conditions and iterate over all time
instances. For simplicity, we will present only the trajectories, omitting the velocities, which
will be required for calculating the Doppler effect later on.

[Z0]
[VO]

init_pos_upper_path_dim_param =
init_vel_upper_path_dim_param =

for i in range(number_of_time_intervals):
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upper_end_pos_list=trajectory_dim_param (trans_bragg_upper_path[i],
trans_bloch_upper_path[i],time_decomposition[i+1],
abstract_init_pos_upper_path[i],abstract_init_vel_upper_path[i],
abstract_nr_init_pos_upper_path[i],abstract_nr_init_vel_upper_path[i],
time_decomposition[1],order_cutoff ,
include_3rd_order_gravity_in_trajectory ,
include_2nd_order_gravity_in_trajectory)
init_pos_upper_path_dim_param.append(upper_end_pos_list)

rrrelly

lower_end_pos_list=trajectory_dim_param (trans_bragg_lower_path[i],
trans_bloch_lower_path[i], time_decomposition[i+1],
abstract_init_pos_lower_path[i],abstract_init_vel_lower_path[i],
abstract_nr_init_pos_lower_path[i],abstract_nr_init_vel_lower_path[i],
time_decomposition[1],order_cutoff ,
include_3rd_order_gravity_in_trajectory ,
include_2nd_order_gravity_in_trajectory)
init_pos_lower_path_dim_param.append(lower_end_pos_list)

rrerelly

As previously mentioned, we will substitute the abstract symbolic expressions ZU1 through
ZU4 with a simplified version of the calculated initial heights. To achieve this, we define a
substitution list as follows:

list_of_substitutions = list ()
for i in range(number_of_time_intervals —1):
substitutes = list ()
substitutes .append ((abstract_init_pos_upper_path[i+1].parameter,
< simp_init_pos_upper_path_symbol[i+1]))
substitutes .append ((abstract_init_pos_lower_path[i+1].parameter,
— simp_init_pos_lower_path_symbol[i+1]))
list_of_substitutions .append(substitutes)

We now have all the relevant data to define the three phase shift contributions individually.

4.4 Phase Calculation

4.4.1 Propagation Phase

To calculate the propagation phase, we need to perform time integrals, as demonstrated in
Eq. (2.13). This requires defining the action of an integral on DimPar objects. Thankfully,
this is straightforward, as all these objects are polynomials in time. We define the indefinite
integral of a single DimPar object via:

def custom_integral (parameter: DimPar):
if parameter == O:
return 0
else:
time_order = parameter.order
if time_order == -1:
return Zero
else :
return Rational (1, time_order+1)xparameter

Using this we define the Lagrangian in two steps: First, we initialise

def lagrangian_list(ramsey_quanta:int, bloch_quanta:int, time,init_height ,init_vel,
< nr_init_height ,nr_init_vel ,cutoff:int,init_time ,third_order_grav_pot:bool,
— second_order_grav_traj:bool, third_order_grav_traj:bool):
lagrangian = list ()

traj_3rd_order=trajectory_dim_param (ramsey_quanta ,bloch_quanta ,time ,init_height ,
— init_vel ,nr_init_height ,nr_init_vel ,init_time ,4,third_order_grav_traj ,
— second_order_grav_traj)
vel_3rd_order=velocity_dim_param (ramsey_quanta ,bloch_quanta ,time ,init_height ,
— init_vel ,nr_init_height ,nr_init_vel ,init_time ,4,third_order_grav_traj ,
< second_order_grav_traj)
traj_2nd_order=delete_zeros_from_list(trajectory_dim_param (ramsey_quanta ,
< bloch_quanta ,time , init_height ,init_vel ,nr_init_height ,nr_init_vel ,
— init_time ,3,third_order_grav_traj ,second_order_grav_traj))



114 CHAPTER 4. COMPUTER ALGORITHM FOR PHASE CALCULATIONS

traj_1lst_order=delete_zeros_from_list(nr_trajectory_dim_param (ramsey_quanta,
— bloch_quanta ,time ,nr_init_height ,nr_init_vel ,init_time))
vel_Ist_order=delete_zeros_from_list(nr_velocity_dim_param (ramsey_quanta ,
— bloch_quanta ,time ,nr_init_vel ,init_time))

since the relativistic corrections to the Lagrangian at order O(3) do not require dependence
on the fully relativistic (also O(3)) trajectory. They only need the O(1) trajectory. Similarly,
the O(2) contributions to the Lagrangian only require a trajectory that is accurate to the
same order (O(2)) to achieve an overall accuracy of O(4). The Lagrangian is completed by
appending the following contributions to the lagrangian-list:

#Potential

lagrangian.append (mul_param_to_list(—1+«GIR, magnitude_cutoff_list(traj_3rd_order,
< cutoff —1)))

lagrangian.append (mul_param_to_list(Rational (1,2)*G2R, magnitude_cutoff_list(
— mult_list_with_itself(2,traj_2nd_order),cutoff —-1)))

if third_order_grav_pot:

lagrangian .append(mul_param_to_list(—Rational (1,3)*G3R, mult_list_with_itself (3,
— traj_Ilst_order)))

#Kinetic
lagrangian .append(magnitude_cutoff_list(mul_param_to_list(Rational (1,2),
<~ mult_list_with_itself(2,vel_3rd_order)),cutoff))

#Relativistic

lagrangian .append(magnitude_cutoff_list(mul_param_to_list(Rational (1,8),
<~ mult_list_with_itself (4,vel_1st_order)),cutoff))

lagrangian .append(mul_param_to_list(—Cl*GIR*%2, mult_list_with_itself (2,
< traj_lst_order)))

lagrangian .append(mul_param_to_list(—C2xGIR, multiply _two_lists (traj_Ist_order ,
< mult_list_with_itself(2,vel_Ist_order))))

lagrangian .append(mul_param_to_list(-C3xG0xGIR, traj_2nd_order))

return flatten (lagrangian)

Building on this, we can define the action by applying the integration procedure followed by
multiplication with w Tp.

def action_list(number_of_ramsey_quanta:int ,number_of_bloch_quanta:int, time,
< initial_height ,initial_velocity ,non_rel_initial_height,
— non_rel_initial_velocity ,cutoff:int,initial_time:TimeParameter,
< third_order_gravity_in_potential :bool,second_order_gravity_in_trajectory:
< bool, third_order_gravity_in_trajectory :bool):
action_list_of_terms = list ()
prefactor=time. prefactors«time.symbolxomegaC

lagrangian=lagrangian_list (number_of_ramsey_quanta ,number_of_bloch_quanta , time ,

— initial_height ,initial_velocity ,non_rel_initial_height,

< non_rel_initial_velocity ,cutoff ,initial_time ,

— third_order_gravity_in_potential ,second_order_gravity_in_trajectory ,

— third_order_gravity_in_trajectory)
lagrangian_with_prefactor=multiply_parameter_to_list(prefactor ,lagrangian)
action_list_of_terms .append(list (map(custom_integral ,lagrangian_with_prefactor))

—

)

return flatten (action_list_of_terms)

The propagation phase is then determined iteratively by summing this action functional
across all interferometry segments.

prop_phase_upper_path_symbol = 0
prop_phase_lower_path_symbol = 0
for i in range(number_of_time_intervals):
prop_phase_upper_path_symbol=prop_phase_upper_path_symbol+action_list(
— trans_bragg_upper_path[i],trans_bloch_upper_path[i],time_decomposition[i
< +1],abstract_init_pos_upper_path[i],abstract_init_vel_upper_path[i],
> abstract_nr_init_pos_upper_path[i],abstract_nr_init_vel_upper_path[i],
— order_cutoff ,time_decomposition[1],include_3rd_order_gravity_in_potential
— ,include_2nd_order_gravity_in_trajectory ,
— include_3rd_order_gravity_in_trajectory)
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prop_phase_lower_path_symbol=prop_phase_lower_path_symbol+action_list(
trans_bragg_lower_path[i],trans_bloch_lower_path[i],time_decomposition[i
+1],abstract_init_pos_lower_path[i],abstract_init_vel_lower_path[i],
abstract_nr_init_pos_lower_path[i],abstract_nr_init_vel_lower_path[i],
order_cutoff ,time_decomposition[1],include_3rd_order_gravity_in_potential
,include_2nd_order_gravity_in_trajectory ,
include_3rd_order_gravity_in_trajectory)

rrrelte

prop_diff_phase = cutoff_symbolic_expression ((prop_phase_upper_path_symbol—
— prop_phase_lower_path_symbol).expand () ,order_cutoff)
prop_phase_after_substitution = prop_diff_phase
for i in range(number_of_time_intervals —1):
prop_phase_after_substitution = cutoff_symbolic_expression (
— prop_phase_after_substitution.subs(list_of_substitutions [
< number_of_time_intervals -2—i]) .expand (), order_cutoff)

propagation_phase_parameter = prop_phase_after_substitution.subs(c_substitution)

Note that we applied various substitutions in the final steps. We continue with the separation
phase, which is quite straightforward.

4.4.2 Separation Phase

The separation phase can be easily calculated using the symbolic representations of the final
positions and velocities of the atomic ensemble, specifically right after the last interferometry
pulse, cf. Eq. (2.14).

separation=simp_init_pos_lower_path_symbol[-1]—simp_init_pos_upper_path_symbol[—-1]
average_velocity_mod_c_at_output_port=Rational (1,2)*(final_nr_upper_vel+
— final_nr_upper_vel)

try:

separation_phase_parameter=time_decomposition[]]+omegaCxseparation x

— average_velocity_mod_c_at_output_port.expand()).subs(c_substitution)

except AttributeError:

separation_phase_parameter = 0

The last step is necessary because if the gravity gradient is disregarded, the separation phase

might be zero. Attempting to perform a substitution procedure on an integer is not defined,
which canresultinan AttributeError.

4.4.3 Kick Phase

We define the kick phase contribution in a single function, but include a string argument
bragg_or_bloch to modify the corresponding contribution based on the selected interac-
tion type. Similar to the propagation phase, we start by initialising the atomic heights and
velocities at various levels of accuracy. We then determine how the laser phase should be
adjusted due to the Doppler effect and gravitational correction, as explained in Eq. (3.106),
for interactions of the Bragg type. If the interaction process is not of Bragg type, the simpler
Bloch kick phase is returned.

def kick_phase_contribution(bragg_or_bloch:str ,number_of_upper_quanta:int,
< number_of_lower_quanta:int,time_step:int,cutoff_number:int):

upper_position=magnitude_cutoff_list(init_pos_upper_path_dim_param[time_step],

< cutoff_number)
lower_position=magnitude_cutoff_list(init_pos_lower_path_dim_param/[time_step],

< cutoff_number)
nr_upper_position=magnitude_cutoff_list(nr_init_pos_upper_path_dim_param|[

— time_step],cutoff_number)
nr_lower_position=magnitude_cutoff_list(nr_init_pos_lower_path_dim_param[

< time_step],cutoff_number)
nr_upper_velocity=magnitude_cutoff_list(nr_init_vel_upper_path_dim_param[

< time_step],cutoff_number)



116 CHAPTER 4. COMPUTER ALGORITHM FOR PHASE CALCULATIONS

nr_lower_velocity=magnitude_cutoff_list(nr_init_vel_lower_path_dim_param[
— time_step],cutoff_number)

if bragg_or_bloch.lower() == "bragg":
upper_momentum=number_of_upper_quantazRR. parameter
lower_momentum=number_of_lower_quantaxRR. parameter
upper_frequency=number_of_upper_quantaxFR.parameter
lower_frequency=number_of_lower_quantaxFR.parameter

upper_phase_mod_height=upper_momentum=(1 — Rational(1,2)«nr_upper_velocity 2 +
< gammax Rational (1,2)%GIR. parametersnr_upper_position + Rational (1,2)x*GIR.
< parametersnr_upper_position) + nr_upper_velocityxupper_frequency

lower_phase_mod_height=lower_momentum=(1 — Rational(1,2)snr_lower_velocity 2 +
< gammax Rational (1,2)%GIR. parametersnr_lower_position+Rational (1, 2)=GIR.
— parametersnr_lower_position)+nr_lower_velocity«xlower_frequency

if number_of_upper_quanta != 0:
upper_phase = upper_phase_mod_heightxupper_positionxinitial_time
else:

upper_phase = 0

if number_of_lower_quanta != O:
lower_phase = lower_phase_mod_heightxlower_positionxinitial_time
else:
lower_phase = 0
elif bragg_or_bloch.lower() == "bloch":
upper_momentum = number_of_upper_quantaxRB. parameter

lower_momentum = number_of_lower_quantaxRB. parameter

if number_of_upper_quanta != O:
upper_phase = upper_momentumsupper_positionsinitial_time
else:

upper_phase = 0

if number_of_lower_quanta != O:
lower_phase = lower_momentumslower_positionsinitial_time
else:
lower_phase = 0
else:
print ("There is a typo in the Kick phase formula!")
quit ()
return omegaC x (upper_phase — lower_phase)

We then sum over all interaction processes that transfer momentum and use the same
substitutions as before.

kick_phase_contribution_list = list ()
for i in range(number_of_time_intervals+1):
kick_phase_contribution_list.append(kick_phase_contribution ("bragg",
< trans_bragg_upper_path[i],trans_bragg_lower_path[i],i,order_cutoff))
kick_phase_contribution_list.append(kick_phase_contribution ("bloch",
< trans_bloch_upper_path[i],trans_bloch_lower_path[i],i,order_cutoff))

kick_phase_after_substitution = cutoff_symbolic_expression (sum(
< kick_phase_contribution_list).expand() ,order_cutoff)
for i in range(number_of_time_intervals —1):
kick_phase_after_substitution = kick_phase_after_substitution.subs(
< list_of_substitutions [ number_of_time_intervals —-2—i])

kick_phase_parameter = cutoff_symbolic_expression(kick_phase_after_substitution.
— expand (), order_cutoff).subs(c_substitution)
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4.4.4 Simplified FSL Phase

Lastly, we aim to analyse a simplified version of the FSL phase used for comparing our
relativistic findings with those of Dimopoulos et al. [87,88], as shown in Table 3.4. Instead
of computing all the exact time instances detailed in Fig. 2.2 and implemented in Ref. [3],
we focus on the temporal component of the Kick phase, which serves as the leading-order
contribution. Specifically, this involves the latter part of Eq. (3.106), where 7 is set to the
laser emission times 0, Ty, 2T%. It is worth mentioning that this can also be described as
a pure kick phase contribution, given the inherent ambiguity in term nomenclature. The
implementation is as follows:

upper_FSL_phase = list ()
lower_FSL_phase = list ()
for index in range(number_of_time_intervals + 1):
# If the comment is removed the resulting phase shift will coincide with number
— #9 in Dim. et al.
fsl_upper_position=mag_cutoff_list(init_pos_upper_path_dim_param[index],
< order_cutoff —-1) #.subs(RR.param, 0)
fsl_lower_position=mag_cutoff_list(init_pos_lower_path_dim_param[index],
< order_cutoff —1) #.subs(RR.param, 0)
fsl_upper_velocity=mag_cutoff_list(init_vel_upper_path_dim_param[index],
< order_cutoff —1)
fsl_lower_velocity=mag_cutoff_list(init_vel_lower_path_dim_param[index],
< order_cutoff —1)

omega_1_upper=Rational (1,2)xtrans_bragg_upper_path[index ]*(FR.param+RR. param)
omega_2_upper=—Rational (1,2)«trans_bragg_upper_path[index ]« (FR.param-RR. param)
omega_1_lower=Rational (1,2)«trans_bragg_lower_path[index ]*(FR.param+RR. param)
omega_2_lower=—Rational (1,2)=«trans_bragg_lower_path[index ]« (FR.param-RR. param)

# These shifted values are then the Doppler/GR compensation needed, in order for

< the interferometer to operate on resonance
shifted_omega_1_upper=(1+fsl_upper_velocity —Rational (1,2)«fsl_upper_velocity

> xx2+(gamma+1)«GIR. param«fsl_upper_position)xomega_1_upper
shifted_omega_2_upper=(1—-fsl_upper_velocity —Rational (1,2)«fsl_upper_velocity

— xx2+(gamma+1)xGIR. param=fsl_upper_position)xomega_2_upper
shifted_omega_1_lower=(1+fsl_lower_velocity —Rational (1,2)«fsl_lower_velocity

— xx2+(gamma+1)*GIR. param=fsl_lower_position)xomega_I1_lower
shifted_omega_2_lower=(1—-fsl_lower_velocity —Rational (1,2)«fsl_lower_velocity

— xx2+(gamma+1)*GIR. param=fsl_lower_position)+xomega_2_lower

# Create lists of upper and lower FSL phases.

upper_FSL_phase.append(shifted_omega_1_upperxfsl_upper_position+TR-
— shifted_omega_2_upperxfsl_upper_position=TR)

lower_FSL_phase.append (shifted_omega_1_lower=fsl_lower_position«TR—
— shifted_omega_2_lowerxfsl_lower_position*TR)

# Full FSL phase gets an overall minus sign, since this is also added in the full
— phase (see below). This is done to fit most literatures’ convention.
fsl_phase=cutoff_symbolic_expression(—omegaCx(sum(upper_FSL_phase )—sum(
— lower_FSL_phase)).expand () ,order_cutoff)

for i in range(number_of_time_intervals — 1):
fsl_phase=fsl_phase.subs(list_of_substitutions [number_of_time_intervals -2—i]) .
< subs(c_substitution)

Here, we provide a more detailed explanation of why term #9 in [87, 88] differs, as outlined
in Sec. 3.7. By neglecting the atomic recoil transferred by AIF pulses — specifically, setting
Rgi to zero in fsl_upper_position and fsl_lower_position, as noted in the

comments — one arrives at the same term #9 as in [87,88]. Apparently, in that work, only the
atomic parabola without any recoils was considered.
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4.5 Visualisation

In the following, we will focus on the most basic visualisation of the phase shifts. This
involves generating a .txt file and an automatically compiled .tex file, which can then be used
to produce a PDF. The algorithm is also capable of creating images of the interferometer in
both the lab frame and the freely falling frame, which are included in the PDF as well. We
won’t delve into the details of this process, as our focus is on the algebraic calculation of
phase shifts. We defined the full interferometer phase with a global minus sign, as indicated
in the first line. Note that, whenever we analyse partial results — for instance, to understand
how the full phase shift is divided into its components — we comment out the corresponding
phase shifts at this stage. The extract_term_from_list function returns all phase
shift terms in an expression that involve the specified powers of dimensionless parameters
and is defined in parameters_and_functions . py. We illustrate this process using
the O(2) terms as an example.

full_phase_parameter=—(kick_phase_parameter+separation_phase_parameter+
< propagation_phase_parameter).expand ()

second_order_phase=cutoff_symbolic_expression (full_phase_parameter ,3).expand()

list_of_second_order_terms = list ()

second_order_RR_GI1R=simplify (extract_term_from_list(second_order_phase ,[(GIR,1) ,(
— RR,1) 1))

list_of_second_order_terms.append(second_order_RR_GIR)

second_order_RR_RR=simplify (extract_term_from_list(second_order_phase ,[(RR,2)]))
list_of_second_order_terms.append (second_order_RR_RR)

second_order_RR_RB=simplify (extract_term_from_list(second_order_phase ,[(RB,1) ,(RR
= ,1)1))

list_of_second_order_terms.append(second_order_RR_RB)

# REST terms of order 2
second_order_REST=simplify (second_order_phase —sum(list_of_second_order_terms))

with open("phases/"+interferometer_name+"_phase_shift.txt","w") as file:
file . write (interferometer_name+": Phase shift contributions :\n
) s~~~ \n\n")
file . write ("Second order small parameters (non—relativistic phases):\n
s e e \n")

file . write (" 1.:\n" + str(second_order_RR_GIR) + "\n\n")
file . write (" 2.:\n" + str(second_order_RR_RR) + "\n\n")
file . write("3.:\n" + str(second_order_RR_RB) + "\n\n")
file . write ("x. Second order rest:\n" + str(second_order_REST) + "\n\n")

file .close ()

All of these terms are then written into a .txt file, with the corresponding abbreviation,
interferometer_name, included in the title. We proceed to create a .tex file. For this
task, we utilise the previously created pictures of the interferometer and the hard-coded
text from the latex_attributes .py file. Inthe latex_attributes .py file, a
preamble and some macros for the dimensionless parameters are defined. These are then
written into the .tex file. Similar to the .txt file process, we write each non-zero' phase shift
into the .tex file. We use the defined IZTEX macro substitutions and the built-in latex ()
command for formatting. Finally, we run pdf-IZTEX to generate a PDF file containing all the
results.

"'Since else the substitution would not work.
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latex_macros_substitution =[(FR. parameter ,FreqR) ,(GO. parameter , GZero) ,(GIR.
— parameter ,GOneR) ,(GIB. parameter ,GOneB) ,(G2R. parameter ,GTwoR) ,(G2B. parameter
— ,GTwoB) ,(G3R. parameter , GThreeR) ,(G3B. parameter , GThreeB) ,(Z0.parameter ,ZZero
<~ ),(VO.parameter ,VZero), (RR.parameter ,RBragg) ,(RB.parameter ,RBloch)]

with open("phases/"+interferometer_name+"_result.tex","w") as file:

if include_bloch_time:
file . write (1tx .preamble+Itx .latex_text+Itx.include_geometry_pictures+Itx .
— include_numerical_pictures_without_Bloch_order_3+Itx.
— include_numerical_pictures_with_Bloch_order_3)
else:
file . write (1tx . preamble+Itx .latex_text+Itx.include_geometry_pictures+Itx.
— include_numerical_pictures_without_Bloch_order_3)

file . write("\section«{Non—zero phase contributions:} \n\\vspace{lcm}\\underline {\\
— textbf{Second order small parameters:}} \n\\vspace{0.5cm}")

if second_order_RR_GIR != 0:
file . write ("\\begin{flalign«}\n")
file . write ("\\text{No. 1:} \qquad="+str(latex (second_order_RR_GIR . subs (
< latex_macros_substitution))))
file . write("\\end{flalign =}\n")

if second_order_RR_RR != 0:
file . write("\\begin{flalignx=}\n")
file . write ("\\text{No. 2:} \qquad="+str(latex (second_order_RR_RR.subs(
< latex_macros_substitution))))
file . write("\\end{flalign=}\n")

if second_order_RR_RB != 0:
file . write("\\begin{flalignx=}\n")
file . write ("\\text{No. 3:} \qquad="+str (latex (second_order_RR_RB . subs(
< latex_macros_substitution))))
file . write("\\end{flalign «}\n")

file.close ()
if compile_latex_file:

subprocess.check_call (["pdflatex", "phases/" + interferometer_name +
— tex"], stderr=subprocess .DEVNULL, stdout=subprocess.DEVNULL)

_result.

try:
os.remove(interferometer_name + " _result.aux")
os.remove(interferometer_name + "_result.log")

except FileNotFoundError:
print("Could not delete result.aux and result.log!")
[e)lrslflt ("Everything completed. Live long and prosper.")

The presented algorithm is highly flexible and allows for a variety of different visuali-
sation procedures, such as those used to automatically create figures like Figs. 2.1. For the
algorithm in Ref. [3], we neglected the O(4) phase contributions and focussed on the O(3)
order, with automatised FSL calculations and a numerical simulation of the gravitational
field of the VLBAI. The basic code structure is, however, exactly the same as outlined here.
The numerical simulation of an interferometer in that reference is also completely analogous
to the analytical description provided here and does not require additional explanation. Each
code is thoroughly commented and written in a transparent manner, facilitating understanding
and use. Potential extensions of this code are discussed in the following outlook.
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Chapter 5

Summary and Outlook

"Meine Versuche, den Quanten greifbare Gestalt zu geben, sind
allerdings immer wieder gescheitert, aber die Hoffnung gebe ich noch
lange nicht auf. Und wenns garnicht gehen will, dann bleibt doch der
Trost, dal der Miflerfolg nur an mir liegt."

Albert Einstein in a letter to Max Born

The accuracy of AlIFs is improving at an exceptional rate, especially considering how
relatively new this field of research is. Most notably, one should highlight once again that the
two most recent measurements of the fine-structure constant, a, have achieved an accuracy
of parts per trillion [38,39]. Future experiments aim to detect gravitational waves and rule
out certain dark matter models [71-74]. To pursue this path and achieve these goals, a highly
accurate theoretical model, including (general) relativistic effects, is essential. This thesis
provides the necessary models and considerations for several of the upcoming tasks in this
field.

Starting from a post-Newtonian approximation of the Schrédinger equation in a curved
spacetime, described by a metric theory of gravity, we have presented a calculation of the
phase contributions of a whole class of light-pulse AIFs. The phases are derived from
a relativistically-corrected, quantum-optical Hamiltonian for atoms and light in a PPN
spacetime and applied to the specific case of AIFs that use elastic scattering processes.
After following the standard procedure for calculating phases in AIFs in the presence of
relativistic corrections we have expressed all the resulting phase contributions as functions
of dimensionless parameters that arise naturally from this description. The computation
of all phase contributions up to a desired order in those dimensionless parameters for any
AIF geometry consisting of Bragg and Bloch pulses is automated in Python. Using this
code one can try to find a suitable interferometer geometry, that may be possible to create
new measurement strategies similar to the CGI and its novel implementation. Additionally,
we defined a new interferometer geometry capable of measuring gravitational curvature
and simulated it numerically within the gravitational field of the VLBAI in Hannover. We
discussed how to mitigate unwanted phase shift contributions arising from the finite speed
of light and analysed how to interpret the phase shift results. In this process, we defined an
estimator for gravitational curvature that shows excellent agreement with the model data.

This analysis can be extended to AIFs that use inelastic scattering processes, e.g., Raman
or single photon transitions [68,69,90,148], as it was partially already done in Ref. [3]. There
might also be interesting combinations between the CGI and clock interferometry, leveraging
the advantages of both methods. In general, the application of CGI will be intriguing to
observe, particularly for large-scale interferometer setups worldwide, where gravitational
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fields are subject to temporal fluctuations. Designing a gravitational field using cleverly
positioned test masses, as proposed and observed in Ref. [103], is likely to yield fascinating
new insights into the intricate interplay between gravity and quantum mechanics. These
setups may be efficiently described using the processes outlined here, or, even better, they
might reveal the limitations of using atoms as "test particles" and show how quantum matter
gravitates.

The presented analysis would also be sufficient to describe stationary spacetimes, which
could include effects of Earth’s rotation and describe gravitomagnetic phenomena such as the
Lense-Thirring effect [139], as already indicated in Sec. 3.8. Another interesting approach
one could pursue is to start from a Hamiltonian that describes fermionic particles in curved
spacetime, cf. Ref. [149], and investigate whether spin-related interactions with gravity
might give rise to interesting tests of GR in light-pulse AIFs. In such setups, one could
also test whether the vanishing torsion axiom of GR holds true, as spin might break this
symmetry, since spin couples to energy and has no classical counterpart.

An interesting extension of the computer algorithm would be to automatically solve the
motional ELE for any arbitrary gravitational potential, given as a Taylor series, to any desired
order — all while remaining entirely analytical. Currently, the atomic trajectories are hard-
coded into the algorithm up to order O(3), and calculating any higher orders manually could
introduce errors. This approach would be particularly useful when a numerical model of the
gravitational field, such as in the case of the VLBAI in Hannover, is available [83, 109]. This
would allow modelling the data to any desired accuracy, within measurement uncertainty,
and directly utilising analytical data. By implementing all of our findings in a freely available
computer language and making it open source, we enable the community to incorporate
additional systematics and improve the code as needed.
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Appendix A

Differential Geometry

In the following, we gather the key concepts of differential geometry necessary to understand
the mathematics of GR. A four-dimensional manifold M is a topological space with charts,
which are continuous invertible maps ¢; : M 2 U, — ¢,(U;) C R*, where U, ; are open
subsets of M, as depicted in Fig. A.1. Here, / is an arbitrary index set. If the chart transition
maps

Yii=d;00 R'2¢,U;) — ¢,U;) cR* (A.1)

are smooth functions on the common domain U;; = U; N U, for all i and j, we call the
manifold smooth , see Fig. A.1. A collection of maps {¢,},.; that cover the whole manifold,
ie, M= UI U, is called an atlas of M.
1€

For now consider only one chart (U, ¢) and denote the canonical basis of R* as le.), =
{eg. e}, ey, e3}. If we denote x¥ : M 2 U — R as the component functions of the chart
¢o:U — R?, p — ¢(p) = x*(p)e,, one can define the notion of differentiability on a
manifold, both for functions mapping from and onto a manifold. Let f : U — R", then we
say that f is a smooth function on U, denoted C*(U, R"), if the function fo ¢~ : R* — R"
is smooth. If this holds for every chart in the atlas of M we say that f € C*(M,R). Note
that this works analogously for functions mapping from R" onto M. A geometric depiction
of the concept of tangent spaces for two-dimensional manifolds can be seen in Fig. A.2.

Building upon this one can define the differential operators on the manifold. Let y :
(—€,€) — M with y(0) = p be a smooth curve on M, e.g., the world line of an observer.
We can use this to define a tangent vector ¥, which maps a function f € C”(M,R) into the
directional derivative of f in the direction of y at p by

d

=g enmer (A2)

Note that there is a different, commonly used, way to define a world line on a manifold if one
has chosen a chart: Given a smooth curve y : (—€, €) — M, one can equivalently describe
the curve using the four-tuple of coordinate functions x*'(r) = y o . We will use both notions
interchangeably. The collection of all such tangent vectors through p is the tangent space
will be denoted by 7, M and is often depicted geometrically as a vector space attached to
the manifold as illustrated in Fig. A.2. Algebraically, however, one views a tangent vector
¥, € 7,M as a linear function that maps functions on M to real numbers. One can show that
this 7, M is also a four-dimensional vector space and has a canonical basis given by

0 0
—| :C"M,R) — R, fr— —
ox”lp

o Foo (@p)+ie,) (A3
X

t=0

d
f=—

, dt
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Figure A.1: Schematic depiction of charts (U, ¢;) and (U}, ¢;) and a chart transition map ¢;;
of a manifold M.

Analogously one can define the cotangent space 7;*M as the dual space of 7, M and define
its basis via

0
al . (02 — s
dx |p M — R, dx |P(_axﬁ ',,) = 6%. (A.4)
The notions of the tangent space and its dual are crucial for GR. We will now extend

this concept to bundles and fields in the sense that we collect all the (co-) tangent spaces to
vector bundles (7M, r, M) and (7'M, &, M) consisting of

TM= | JT,Mx(pl,  7:TM— M with TM>%,—#(X,)=p  (ASa)
PEM

TM= | JTMx(p),  7: TM— M with M3, — #(2,) = p. (ASb)
PeEM

(V)

f R D (-€,€)

Figure A.2: Schematic depiction of functions on manifolds and visualisation of a tangent
space 7, M using a path y through p € M.
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Figure A.3: Schematic depiction the tangent bundle (7 M, 7, M) and a section X therein, i.e.,
a vector field. Atevery point p € M in the manifold X(p) = X, € 7, M is a tangent vector in
the corresponding tangent space.

A section , which generalises the notion of a field, is a map which assigns an element in
the (co-) tangent space to each point of the manifold. A vector field X is then a section in
TM, denoted by X € S(TM), and is amap X : p — X, € 7,M. The example of a tangent
bundle and section therein is depicted schematically in Fig. A.3.

The four basis (co-) vector fields d, € S(TM) and dx* € S(7 M) are given by

d,: M>3pr— €T M, dx* : M3 p+—s dx“|p € T, M. (A.6)

P
ox* 1,
One can use (co-) tangent bundles to construct higher order multilinear maps using the tensor

product to obtain "tensors of degree (/,m)" as elements in
TIM=TM @TM®" with TgM=TM and TOM=TM, (A7)

and sections therein being corresponding "tensor fields". These fields are the primary focus
of Einstein’s GR and describe both spacetime curvature and the energy and momentum of
gravitating matter.
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