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Abstract In this paper, we investigate one of the estab-
lished methods for reconstructing modified gravity models
from a dark energy model, with the aim of discovering rela-
tionships between these theories. In this study, we focus
on the f (R, T ) modified gravity theory, where R denotes
the Ricci scalar and T represents the trace of the energy–
momentum tensor. We employ Barrow’s holographic dark
energy model, derived from fractal surfaces of black holes, to
investigate the reconstruction process. The numerical results
are subsequently presented for various infrared cutoffs, such
as the Hubble horizon, future event horizon, and Granda–
Oliveros cutoff.

1 Introduction

One of the most important discoveries in the last few decades
is the late accelerated expansion of the universe, challeng-
ing the theory of general relativity and its extensive tests.
The attempts made to explain this phenomenon have given
birth to a vast set of propositions, many of them seeking
ways to modify or add possibly missing parts to general rel-
ativity. Some consider the possibility of an energy permeat-
ing space, called dark energy, with extraordinary character-
istics such as negative pressure and non-conservation. The
most well-known candidate for dark energy is the cosmo-
logical constant, which induces an exponentially accelerated
expansion. Considering an isotropic and homogeneous uni-
verse filled with this energy and dark matter, one arrives at
the ΛCDM cosmological model. Although general relativ-
ity and the ΛCDM model are adequate to explain most of
the observed phenomena [1], they do not offer a satisfactory
explanation for the universe’s expansion, since it is known
that it does not evolve exponentially and varies over different
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epochs. Since constant dark energy cannot reproduce such
observations, there has been an extensive search for dynamic
forms.

One possibility for dynamic dark energy is adopted from
the holographic principle [2,3], which is used to describe
black hole thermodynamics [4–7]. This theory aims to study
systems based on the characteristics of their boundaries. This
concept can be applied to the universe as a whole, derived
from the dynamics of a defined infrared cutoff. Here, a form
of holographic dark energy is adopted from the idea of event
horizons with fractal structures proposed by Barrow [8–10].
New equations of motion emerge from the presence of this
energy, which we solved numerically for different infrared
(IR) cutoffs: the Hubble radius, the future event horizon, and
the Granda–Oliveros cutoff. Some of the constraints for this
model are discussed in [11,12]. A similar study has been con-
ducted on Tsallis holographic dark energy in [13]. Barrow
dark energy has also been studied in the context of thermo-
dynamics in [14–16].

In addition to considering an unobserved dark entity, some
believe that general relativity needs corrections that would
explain the expansion of the universe and are only relevant
on cosmological scales. One way to achieve such correc-
tions is by modifying the Lagrangian density that describes
general relativity. In general relativity, the Lagrangian is
proportional to the Ricci scalar, R. The most common and
straightforward proposal for modification involves making
the Lagrangian a function f (R) [17], which may include
non-linear terms. Taking it a step further, some theories
introduce an additional level of interaction between curva-
ture and the universe’s components, leading to modifications
such as f (R, T ), where T represents the trace of the energy-
momentum tensor. Reviews on f (R, T ) modified gravity can
be found in [18–24].

Many models of dark energy and modified gravity offer
intriguing results and can solve some observed problems.
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However, they often create new issues such as unrealis-
tic fine-tuning and instabilities. These positive and nega-
tive characteristics can be found across various models, even
among different concepts such as dark energy and modified
gravity. It is possible to relate both concepts through their
equations of state (EoS). A reconstruction of some f (R, T )

models from Bekenstein–Hawking holographic dark energy
is presented in [25]. An analytical solution for the recon-
struction of two f (R, T ) models, relating their effective state
parameters to those of Tsallis holographic dark energy [26],
considering an evolution of the Hubble parameter, is obtained
in [27]. Other reviews on the reconstruction of dark energy
and modified gravity can be found in [28,29]. In this work,
we consider a sufficiently general form for f (R, T ), associ-
ating it with Barrow’s holographic dark energy in a manner
that facilitates plotting and estimation of the terms within
the f (R, T ) model. In this context, we investigate the recon-
struction of f (R, T ) theory based on the Barrow holographic
dark energy, considering three different infrared cutoffs.

This paper is organized as follows. In Sect. 2, we introduce
the Barrow holographic dark energy, derive the Friedmann
equation, and calculate the equation of state parameter and
the density parameter for three different infrared cutoffs: the
Hubble horizon, the future event horizon, and the Granda–
Oliveros cutoff. In Sect. 3, we present f (R, T ) gravity, derive
an equation of state parameter, and develop a reconstruction
of f (R, T ) theory considering the Barrow holographic dark
energy. We explore this reconstruction for the Hubble hori-
zon, the future event horizon, and the Granda–Oliveros cut-
off, discussing some numerical results. Finally, in Sect. 4, we
provide some concluding remarks.

2 Holographic dark energy

In this section, the holographic dark energy scenario is briefly
presented. Holographic dark energy is an interesting con-
struct that describes dark energy, originating from the holo-
graphic principle [2,3]. In this context, Barrow holographic
dark energy is introduced [8]. The state parameter and the
density parameter will be investigated for different infrared
(IR) cutoffs, including the Hubble horizon, the future event
horizon, and the Granda–Oliveros cutoff.

Let us consider an isotropic and homogeneous universe
with spacetime geometry defined by the flat Friedmann–
Robertson–Walker (FRW) metric, given as

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2), (1)

where a(t) is the scale factor. This universe is filled with a
perfect fluid whose energy-momentum tensor is given by

Tμν = (ρ + p)uμuν + pgμν (2)

with ρ, p and uμ being the energy density, pressure and
the four-velocity of the fluid, respectively. With these ingre-
dients, the Einstein field equations lead to the Friedmann
equation

3H2 = κ(ρm + ρDE ), (3)

where ρm and ρDE denote the energy density of dark matter
(DM) and dark energy (DE), respectively. We assume that
DM and DE do not interact with each other. Therefore, they
satisfy the standard conservation equations, i.e.,

ρ̇m + 3Hρm = 0, (4)

ρ̇DE + 3H(1 + ωDE )ρDE = 0 (5)

with ωDE = pDE/ρDE being the equation of state (EoS)
parameter of DE.

Taking the time derivative of Eq. (3) and using Eqs. (4)
and (5), we obtain

2Ḣ = −κ(ρm + ρDE + ωDEρDE ). (6)

Defining the density parameter as Ωi ≡ ρi/ρc = κρi
3H2 , where

ρc is the critical energy density and κ = 8πG, Eq. (6) can
be written as

Ḣ

H2 = −3

2
(1 + ωDEΩDE ). (7)

It has been used that Ωm + ΩDE = 1.
Using this relation, it is possible to determine the state

parameter and the density parameter given one or the other.
We can find a solvable equation for the density parameter and
differentiate it with respect to time (t), e-fold number (ln a),
redshift (z), or matter density. Then

dΩ(t)

dt
= H(ln a)

dΩ(ln a)

d ln a

= −H(z)(1 + z)
dΩ(z)

dz

= −3H(ρm)ρm
dΩ(ρm)

dρm
. (8)

In a general form, it can be expressed as

dΩ

dt
= d ln a

dt

dΩ

d ln a
= HΩ ′(ln a). (9)

From the definition of the density parameter, it becomes

HΩ ′
DE (ln a) = ∂t

(κρDE

3H2

)
= k

3
(ρ̇DE H

−2 −2ρDE H
−3 Ḣ)

(10)

with a dot representing the time derivative and a prime denot-
ing the derivative with respect to the function argument. This
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relation can be solved for a given energy density, here taken
from the holographic principle.

The holographic principle postulates that the description
of a system can be based on its surface properties rather
than its volume, suggesting that entropy is bounded to be
proportional to the area of the boundary. As a result, the
energy density, constrained by the entropy as L3ρ

3/4
DE ≤ S3/4,

is also confined to the area, that is,

ρDE ≤ B

L2 , (11)

where B is a parameter to be defined, L is the infrared cutoff
representing the longest distance of the system. We choose
the value of ρDE that saturates the inequality.

In this study, we consider the Barrow holographic dark
energy model [8]. Barrow demonstrated how the boundary
area of a black hole can exhibit significantly different val-
ues when viewed as a fractal. In this scenario, the system’s
entropy becomes S = S1+Δ/2

BH , with Δ representing the intri-
cacy of the surface, where Δ = 0 indicates perfect smooth-
ness and Δ = 1 represents maximum complexity. From
this entropy expression, we derive Barrow holographic dark
energy given as

ρDE = ρBHDE = BLΔ−2. (12)

It is possible to insert this energy density into Eq. (10), but
finding its solution and the state parameter will necessitate
defining an infrared cutoff for the holographic dark energy.
Now, three different IR cutoffs will be considered.

2.1 Hubble horizon

In this subsection, the Hubble horizon cutoff is introduced
[30–32], followed by an analysis of the cosmological behav-
ior of the universe. The Hubble horizon cutoff is defined as
L = H−1. Then, the energy density of DE becomes

ρDE = BH2−Δ. (13)

Taking its time derivative and using the energy conservation
relation Eq. (5), we obtain

ωDE = − (2 − Δ)Ḣ

3H2 − 1. (14)

From Eq. (7), the state parameter can be expressed as a func-
tion of the density parameter, i.e.,

ωDE = Δ

(2 − Δ)ΩDE − 2
. (15)

Considering Eqs. (10) and (7), the following relation for the
density parameter is obtained

Ω ′
DE = 3ΔΩDE

(
ΩDE − 1

(2 − Δ)ΩDE − 2

)
. (16)

From here, we can numerically find the solution. We can
also change the dependency of the density parameter to ρm ,
resulting in the following differential equation:

Ω ′
DE = −ΔΩDE

ρm

(
ΩDE − 1

(2 − Δ)ΩDE − 2

)
. (17)

This will later allow the calculation of a solution for f (R, T )

models in scenarios involving dust matter. In Fig. 1, the
numerical solutions for the density parameter and state
parameter as a function of energy density are shown, con-
sidering the Hubble horizon as the IR cutoff. In this con-
text, our results indicate that an accelerating expansion of
the universe is permitted when the Hubble cutoff is consid-
ered. Furthermore, for the Hubble cutoff, acceleration can
only be achieved with non-zero delta Δ values. In all these
scenarios, exponential expansion occurs in the distant future.
Delta values below 2/3 lead to a transition from deceleration
to acceleration at some point in the past.

2.2 Future event horizon

Since the Hubble radius is not a suitable event horizon given
that we can observe objects beyond it, many prefer to explore
holographic theories using other distances, such as the future
event horizon [33]. In this case, the infrared cutoff is defined
as

L = Rh = a(t)
∫ ∞

t

dt

a(t)
(18)

with Ṙh = HRh − 1.
Using the future event horizon as the infrared cutoff, the

Barrow holographic dark energy density becomes ρDE =
BRΔ−2

h , and its time derivative is given by

ρ̇DE = ρDE (Δ − 2)H(1 − F), (19)

where

F =
(

3ΩDE HΔ

κB

) 1
2−Δ

(20)

with ΩDE = κ
3H2 ρDE . From the energy conservation equa-

tion, i.e. ρ̇DE + 3H(1 + ωDE )ρDE = 0, and using Eq. (19),
the EoS parameter is written as

ωDE = −1 − Δ − 2

3
(1 − F). (21)
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Fig. 1 Plot of numeric solutions for the density parameter (left) and EoS parameter (right), using ΩDE0 = 0.7, with different values of the Δ

parameter. The vertical lines in the plots represent ρ = ρm0, i.e. the present time

Substituting these ingredients into Eq. (10) and using Eq.
(7), the differential equation for the density parameter is given
as

Ω ′
DE = ΩDE (1 − ΩDE )[1 − F(Δ − 2) + Δ]. (22)

To accurately calculate the above equation, it is neces-
sary to address the Hubble parameter within F . This can be
achieved by using the Friedmann equation and expressing it
as follows:

H2 = κ

3
(ρm0(1 + z)3 + ρDE )

= H2
0 Ωm0(1 + z)3 + H2ΩDE

= H2
0

1 − ΩDE0

1 − ΩDE
(1 + z)3, (23)

where the suffixes 0, such as m0 and DE0 refer to values at
the current epoch.

The numeric solutions for ΩDE and ωDE , considering
the future event horizon as the infrared cutoff, are shown
in Fig. 2. For the future event horizon cutoff, acceleration
always occurs regardless of the value of delta. In contrast to
the Hubble case, this parameter significantly influences the
behavior in the distant future.

It is important to note that employing the method of first
solving H(z), differentiating the Friedmann equation, and
then calculating the density and EoS parameter yields the
same results as presented above.

2.3 Granda–Oliveros cutoff

The future event horizon represents a potential causality vio-
lation, since its calculation requires knowledge of the scale
factor value in the future [34]. Granda and Oliveros pro-
posed a purely mathematical approach as a cutoff to avoid
this issue [35,36]. The Barrow holographic dark energy with
the Granda–Oliveros (GO) cutoff has been investigated in

[37]. With this cutoff, L = (
αH2 + β Ḣ

)−1/2
, we can read-

ily determine the energy density of dark energy as follows

ρDE = B
(
αH2 + β Ḣ

) 2−Δ
2

(24)

which leads to

Ḣ

H2 = 1

β

(
(ΩDE H

Δ)
2

2−Δ − α
)

≡ F. (25)

Here, B = 3m2
p has been chosen, and this expression is

denoted as F for simplicity. Inserting this result into Eq.
(10) and substituting ρ̇DE = 3m2

p(2H Ḣ + 3H3Ωm) from
Friedmann and energy conservation equations, we obtain

Ω ′
DE = (1 − ΩDE )(3 + 2F). (26)

Using Eq. (7) the EoS parameter is given as

ωDE = −2F + 3

3ΩDE
. (27)

Similar to the previous cases, the density parameter and
EoS parameter are numerically determined, as shown in
Fig. 3. The GO cutoff preserves the characteristics of the
future event horizon case for both the current and distant
future epochs. However, in all scenarios, it induces the tran-
sition from deceleration to acceleration more prominently
than the Hubble case.

3 Reconstructing an f (R, T )model from Barrow
holographic dark energy

In this section, the main objective is to reconstruct the
f (R, T ) gravity within the Barrow holographic dark energy
model. First, a brief introduction to the standard f (R, T )
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Fig. 2 Plot of numeric solutions for the density parameter (left) and EoS parameter (right), using ΩDE0 = 0.7 and H0 = 67, with different values
of Δ

Fig. 3 Plot of numeric solutions for the density parameter (left) and EoS parameter (right), using ΩDE0 = 0.7, H0 = 67, α = 0.93 and β = 0.45,
with different values of Δ

gravity is provided. Then, it is proposed to reconstruct the
theory considering different event horizons.

This gravitational theory consists of a generalization of
the Einstein–Hilbert action of general relativity. In this case,
the Ricci scalar R in the general relativity action is replaced
by a function f that depends on both the Ricci scalar R and
the trace of the energy–momentum tensor T . The action that
describes f (R, T ) gravity is given by

S =
∫

[ f (R, T ) + Lm]
√−gd4x, (28)

where g represents the determinant of the metric and Lm

is the Lagrangian describing the matter content. A review
on f (R, T ) gravity can be found in [38,39]. Several stud-
ies have been developed considering this theory of gravity.
For example, reconstructions of cosmological models within
f (R, T ) theory have been investigated in [25,40,41], while
perturbations, constraints, and the Palatini formulation are
presented in [42–44].

Varying the action (28) with respect to the metric and
considering a perfect fluid as the matter content, with a
Lagrangian defined by Lm = −p, the field equations are

given as

fR(R, T )Rμν − 1

2
f (R, T )gμν

+(gμν� − ∇μ∇ν) fR(R, T )

= Tμν + fT (R, T )Tμν + p fT (R, T )gμν, (29)

where fR(R, T ) = ∂ f (R,T )
∂R , fT (R, T ) = ∂ f (R,T )

∂T and Tμν is
the energy-momentum tensor which is defined as

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (30)

Here, let’s choose one of the simplest models of f (R, T )

gravity, which consists of the usual general relativity term,
the Ricci scalar R, plus an f (T ) correction, i.e., f (R, T ) =
R + 2 f (T ). Then, the field equations become

Rμν − 1

2
Rgμν = Tμν + 2 fT (T )Tμν + 2p fT (T )gμν + f (T )gμν.(31)

Taking an isotropic and homogeneous universe described
by the FRW metric Eq. (1) filled with a perfect fluid whose
energy-momentum tensor is given in Eq. (2), leads to the
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Fig. 4 Plot of numeric solutions for f (ρm) (left) and its derivative (right), using ΩDE0 = 0.7

modified Friedmann equations

3H2 = ρ + 2(ρ + p) fT (T ) + f (T ) ≡ ρ + ρ f (T )

(32)

−2Ḣ − 3H2 = p − f (T ) ≡ p + p f (T ). (33)

Here, ρ f (T ) and p f (T ) represent the modified energy density
and pressure associated with the f (T ) contribution. These
quantities are defined as follows

ρ f (T ) = 2(ρ + p) fT (T ) + f (T ), (34)

p f (T ) = − f (T ). (35)

It is important to note that from these elements, the equa-
tion of state parameter induced by the function f (T ) is
defined as

ω f (T ) ≡ p f (T )

ρ f (T )

= − f (T )

2(ρ + p) fT + f (T )
(36)

and the deceleration parameter is given by

q ≡ −1 − Ḣ

H2 = ρ + 3p + (ρ + p)2 fT − 2 f (T )

2ρ + 4(ρ + p) fT + 2 f (T )
.

It is important to highlight that the interpretation of the decel-
eration parameter aligns with that of the state parameter.

With these results, the main objective now is to reconstruct
the f (R, T ) theory from Barrow holographic dark energy.
For this, let’s assume that the equation of state (EoS) param-
eter given in Eq. (36) is equal to the EoS parameter of dark
energy (ωDE ) in a context where the matter content is dust.
The trace of the energy-momentum tensor for this matter
content is T = ρ. Then, by taking ω f (T ) = ωDE , we obtain

fρ = − f (ρ)

2ρ

(
1 + 1

ωDE

)
. (37)

It is worth noting that in the specific case of ωDE = −1, this
derivative vanishes, leading to a constant f (ρ). Substituting
this into Eq. (32) recovers the well-known de Sitter evolution.

Fig. 5 Plot of numeric solution for f (z), using ΩDE0 = 0.7

To correctly calculate the solution of f (ρ), we need an
initial condition. From the modified Friedmann equations
(32), we find

fρ(ρ0) = 3H2
0 ΩDE0

2ρ0
− f (ρ0)

2ρ0
. (38)

Using this result in Eq. (37) at the current time leads to

f (ρ0) = −3H2
0 ΩDE0ωDE0. (39)

In order to continue the reconstruction of f (R, T ) theory
using Eq. (37), different IR cutoffs will be considered, namely
the Hubble horizon, the future event horizon, and the Granda–
Oliveros cutoff.

3.1 Hubble horizon

As a first case, the Hubble cutoff is considered. For this cutoff,
the EoS parameter is given in Eq. (15). Using this result, Eq.
(37) becomes

fρ = − f (ρ)

2ρ

(
1 + (2 − Δ)ΩDE − 2

Δ

)
, (40)
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Fig. 6 Plot of numeric solutions for f (ρm) (left) and its derivative (right), using ΩDE0 = 0.7, H0 = 67

with initial condition given by

f (ρm0) = − 3H2
0 ΩDE0Δ

(2 − Δ)ΩDE0 − 2
. (41)

We can immediately see that for Δ = 0, it is not possible
to compute f (ρ). However, for Δ = 2, we obtain the cos-
mological constant scenario with f (ρ) = ρDE0. For other
values of Δ, using the results of Ω , we calculate the solution
for f (ρm). This solution for different values of Δ is shown
in Figs. 4 and 5.

At first glance, the early component of the function
( fE (ρ)) appears to follow a power law, i.e.,

fE (ρ) = αρg(Δ), (42)

where α is a constant and g(Δ) a function of Δ. For Δ values
close to zero, the slope of the function increases dramatically
and begins to resemble an exponential.

Values of Δ were chosen based on their effect on the func-
tion in the past. In this case, f (ρ) appears to be a square
root for Δ = 1, linear for Δ = 2/3, and quadratic for
Δ = 2/5. This can also be verified by solving the equa-
tions for ΩDE � 1, providing a hint of the form the func-
tion should take. In the far future (ΩDE ≈ 1), the function
becomes constant. But in all situations, there is a change
in behavior from the near past to the future, with a signifi-
cant positive change in the slope of f in the future and its
derivative always being positive. This indicates the presence
of other term(s) in the f (ρ) function that dominate at lower
ρm values. As of now, our best guess for the late component
( fL(ρ)) is something like

fL(ρ) = a ln(ρh(Δ) + c) or fL(ρ) = b ρh(Δ), (43)

where a, b and c are constants and 0 < h(Δ) < 1.
In the next subsection, we investigate f (ρ) considering

a different horizon cutoff, thus reconstructing the f (R, T )

theory from a different perspective.

Fig. 7 Plot of numeric solution for f (z), using ΩDE0 = 0.7, H0 = 67

3.2 Future event horizon

Here, the future event horizon cutoff is considered. Using the
EoS parameter given in Eq. (21), we can express Eq. (37),
which determines the function fρ , as

fρ = − f (ρ)

2ρ

(
1 − 3

3 + (Δ − 2)(1 − F)

)
. (44)

The initial condition is given by

f (ρm0) = −3H2
0 ΩDE0

(
−1 − Δ − 2

3
(1 − F0)

)
. (45)

Using the results of Ω , we calculate the solution for
f (ρm). These results are shown in Figs. 6 and 7, considering
different values of Δ.

There is clearly a functional transition to Δ 
= 0. In the
past, it behaves as a power law, fE (ρ) ∝ ρg(Δ), with g(Δ) <

1 inversely proportional to Δ. Toward the present and future,
it transitions to fL(ρ) ∝ ρ−h(Δ), with h(Δ) also inversely
proportional to Δ and disappearing into Δ = 0. The first
derivative f ′(ρ) appears to be a function like

f ′(ρ) ∝ ρ−g′(Δ) − ρ−h′(Δ) (46)
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Fig. 8 Plot of numeric solutions for f (ρm) (left) and its derivative (right), using ΩDE0 = 0.7, H0 = 67, α = 0.93 and β = 0.45

Fig. 9 Plot of numeric solution for f (z), using ΩDE0 = 0.7, H0 = 67,
α = 0.93 and β = 0.45

where h′(Δ) > g′(Δ), and h′(Δ) vanishes for Δ = 0. This
result is largely similar to the one obtained with the Hub-
ble cutoff during the early stages of expansion but deviates
significantly as we approach the current era.

3.3 Granda–Oliveros cutoff

The third IR cutoff being considered is the Granda–Oliveros
cutoff. For this cutoff, the EoS parameter is defined in (27).
Then, for this case, Eq. (37) is expressed as

fρ = − f (ρ)

2ρ

(
1 − 3ΩDE

3 + 2F

)
(47)

and its initial condition is

f (ρm0) = −3H2
0 ΩDE0

(
−3 + 2F0

3ΩDE0

)
(48)

with F0 = 1
β

(
(ΩDE0HΔ

0 )
2

2−Δ − α
)

. Using the results of Ω ,

the solution for f (ρm) is found, as exhibited in Figs. 8 and 9.

From the function and its derivatives, we can observe that
it is exponential in the past for any values of Δ, given by

f (ρ) ∝ eg(Δ)ρ or f (ρ) ∝ eρg(Δ)

, (49)

where g(Δ) ∝ Δ. There is a transition in the present and
future that appears to become an inverse power law, f (ρ) ∝
ρ−g(Δ), with g(Δ) ∝ 1/Δ, similar to the one proposed for
the future event horizon. These approximated solutions have
been studied in the context of f (R, T ) and f (R, Lm) gravity
[45,46].

For both the future event horizon and Granda–Oliveros
cutoffs, we obtain f (ρ) solutions where its influence in later
eras is significantly larger than ρm , implying that the Hubble
parameter, as derived from the modified Friedmann equa-
tions (32), will resemble these solutions. This behavior aligns
with the expected trends observed in the state parameters, as
discussed in the previous section, showing a transition from
power-law expansion to exponential growth and beyond.

4 Conclusion

The late-time accelerated expansion of the universe remains
one of the most challenging problems of the last few decades.
To address this problem, various attempts have been made.
These include the proposal of alternative gravity theories and
the consideration of exotic forms of matter or energy. This
work investigates a dark energy model based on the holo-
graphic principle, known as Barrow holographic dark energy.
In this context, we calculate the equation of state parameter
and the density parameter of dark energy under three different
cutoff conditions: the Hubble horizon, the future event hori-
zon, and the Granda–Oliveros cutoff, with the latter exhibit-
ing the expected behavior while avoiding some of the theoret-
ical issues associated with the other two. Our findings reveal
distinct scenarios that describe the accelerated expansion of
the universe in the present epoch. Additionally, the Barrow
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holographic dark energy model is utilized to reconstruct the
f (R, T ) theory. This reconstruction is analyzed across var-
ious infrared cutoffs. The results demonstrate that it is pos-
sible to determine the function f (ρ) from the equation of
state parameter associated with certain infrared cutoffs. The
analysis presented here focuses on a specific f (R, T ) model,
namely f (R, T ) = R + 2 f (T ), under the assumption that
the universe’s matter content is dust. We obtain numerical
results and utilize them to estimate the behavior of the func-
tion f (ρ) across various periods of the universe’s evolution.
Moreover, our results, which demonstrate the reconstruction
of a f (R, T ) theory, align with observational data indicating
a late acceleration of the universe’s expansion.
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