EPJ Web of Conferences 214, 06026 (2019) https://doi.org/10.1051/epjcont/201921406026
CHEP 2018

Columnar data processing for HEP analysis

Jim Pivarski!, Jaydeep Nandi?, David Lange', and Peter Elmer!

!Princeton University
2National Institute of Technology, Silchar, India

Abstract. In the last stages of data analysis, physicists are often forced
to choose between simplicity and execution speed. In High Energy
Physics (HEP), high-level languages like Python are known for ease of
use but also very slow execution. However, Python is used in speed-
critical data analysis in other fields of science and industry. In those
fields, most operations are performed on Numpy arrays in an array
programming style; this style can be adopted for HEP by introducing
variable-sized, nested data structures. We describe how array program-
ming may be extended for HEP use-cases and an implementation known
as awkward-array. We also present integration with ROOT, Apache
Arrow, and Parquet, as well as preliminary performance results.

1 Introduction

The field of High Energy Physics (HEP) has always dealt with big data, large enough
datasets that finite memory and processing speed cannot be ignored. Traditionally,
physicists have relied on compiled languages like Fortran and C++ to analyze large
datasets in batch, but this limits interactive exploration. Today, data analysts in other
academic fields and industry are developing tools to analyze large datasets in high-
level languages, but these tools treat data as rectangular tables and flat arrays. HEP
analysis requires nested data— arbitrarily many tracks within jets or variable-sized
collections of particle candidates— which do not fit into rectangular data without
padding and truncation.

This paper describes how the concepts of array programming may be extended to
more complex data structures. It also introduces awkward-array [1], an implementa-
tion of these “awkward” data structures as arrays, which is written in pure Python
(depending only on Numpy [2]) for portability.

2 Array programming and its extension to nested data

Array programming is an interface in which individual user commands apply to whole
arrays: each function call performs a regular operation on millions of data points.
Pioneered by APL [3] in 1962, this programming style appears primarily in analyst-
facing data processing languages such as S (1976), MATLAB (1984), S-PLUS (1988),
R (1993), and Numpy (2005). Beyond its succinct syntax, which can be easier to read
than the corresponding for loops, it encourages simple passes over columnar data
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that facilitates CPU cache-prefetching and vectorization. In fact, programs written
in an array programming style are also appropriately organized for Single Instruction
Multiple Data (SIMD) processing, which makes it easier to migrate to GPUs.

Array programming usually includes the following elements (expressed in Numpy
syntax here):

e Multidimensional slices: rgb_pixels[0, 50:100, ::3]

e Elementwise operations: all_pz = all_pt * sinh(all_eta)
e Broadcasting: all_phi - 2*pi

e Array reduction: array.sum() — scalar

e Masking (list compaction): dataltrigger & (pt > 40)]
e Fancy indexing (“gather”): all_etalargsort(all_pt)]

e Row/column commutativity table["column"][7] (row 7 of column array)
table[7] ["column"] (field of row tuple 7)

The semantics of each of these is well established for rectangular tables and flat arrays,
but they can be extended to arbitrarily nested data structures. The examples below
illustrate common cases that are defined in detail later in the text. In these examples,
events["jets"], jetpt, etc., contain lists of arbitrarily many objects or values.

e Multidimensional slices: events["jets"][:, 0] — first jet per event
e Elementwise operations: jetpt * sinh(jeteta) — keep nested structure
e Broadcasting: jetphi - metphi — expand metphi from

one-per-event to one-per-jet before operation
e Array reduction: jetpt.max() — array of max jet pr per event

e Masking (list compaction): dataltrigger] — drop whole events
data[jetpt > 40] — drop jets from events

e Fancy indexing (“gather”): a = argmax(jetpt) — [[21, [1, [11, [41]
jetetalal — [[3.6], [1, [-1.2]1, [0.4]]

e Row/column commutativity events["jets"1["pt"]1[7, 1] is the same as
events["jets"][7]1["pt"1[1] and
events["jets"][7, 1]1["pt"] etc.

3 High-level types and array programming interface

Arrays introduce a degree of static typing to dynamically typed programming lan-
guages, in the sense that all elements of an array have the same type and an opera-
tion only needs to perform a type-check once per array, rather than once per element.
Conventional array processing environments like Numpy only support primitive types:
numbers, booleans, and other fixed-size values (including records of fixed-size values).
Fixed-size subarrays are presented as an array’s multidimensional “shape,” and may
be considered part of the type. Introducing nested data requires more data types.
(Below, bold keywords correspond to the bulleted lists of the previous section.)
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The type of a flat array with length n can be denoted [0,n) — P, as a function
signature that takes integers between 0 (inclusive) and n (exclusive) to a primitive type
P. An array of length n with variable-sized subarrays would be [0,n) — [0,00) — P,
as any non-negative integer can be in the second domain. This is known as a jagged,
or ragged, array. Jagged arrays may be nested: [0,n) — [0,00) — [0,00) — P.

Extending the concept of multidimensional slices from subintervals of [0,n) to
subintervals of [0, 0o) is straightforward, though the result is itself jagged because some
subarrays may be smaller than the slice and are clipped. Elementwise operations
also have a straightforward extension to jagged arrays, but not only must the total
array lengths match among operands, their subarray lengths must match as well.

Conventional broadcasting allows scalar P data to be an operand in elementwise
operations with arrays [0,n) — P by duplicating the one scalar to n array elements.
Jagged broadcasting duplicates each element of a flat array [0,n) — P to the cor-
responding jagged array elements [0,n) — [0,00) — P. The same applies for any
depth of jaggedness: broadcasting increases the jaggedness of operands to match the
jaggedness of the most deeply nested array.

Reducing a flat [0,n) — P array, such as computing its sum, min, or max,
returns a scalar P. Reducing a jagged [0,n) — [0,00) — P array, such as computing
the sum of each subarray, retuns [0,n) — P, decreasing its jaggedness by one.

When masking a jagged array, we may want to remove subarrays (representing
events) or we may want to remove subarray elements (representing particles). We
can make that distinction by contrasting a boolean mask [0,n) — bool with a jagged
boolean mask [0,n) — [0,00) — bool. In keeping with the rules of conventional
array programming, a boolean mask would remove subarrays from a jagged array
[0,n) — [0,00) — P. Extending these rules, a jagged boolean mask can remove
subarray elements if they have the same jagged structure.

Similarly, an integer array [0,m) — int selects m subarrays from a jagged array
by the conventional rules, but a jagged integer array [0,n) — [0,00) — int can select
subarray elements. Since this gather feature is often used with functions like argmaz
and argmin to identify important indexes in one array and select elements at those
indexes from another array, the jagged argmaz and argmin should return jagged arrays
with zero or one-element subarrays— the max or min if any elements exist.

Tables with named, differently typed columns can be included in this type system
as a mapping from names to types. For instance, a table with three columns is
[0,n) — {"one" — P;, "two" — P, "three" — P3}.

In our extension of array programming, tables and jaggedness can be composed.
This is useful in HEP for describing event records that contain variable-sized lists
of particles, each with a different multiplicity, each containing attributes of various
types. In some cases, it’s useful for the particle attributes to be variable-sized lists as
well. Type descriptions may then be arbitrary trees, like the following:

"t = [0,00) = Py

"one" — [O,m) — { ”y" N P2

[0777,) - [O’ OO) - "two" — P3

"three" — Pj.

Rectangular tables can be sliced by row (integer index) or column (string index).
So can jagged tables. A table described by [0,n) — [0,00) — {"one" — T7, "two" —
T} sliced by a string index "one" returns a jagged array [0,n) — [0,00) — T1. In
general, this means that integer indexes commute with string indexes, though integer
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indexes do not commute with other integer indexes, nor do string indexes commute
with other strings.

Primitives, variable-sized lists, and tables of records would be sufficient for most
HEP cases, but sometimes polymorphic types and cross-references (pointers) are
needed. Polymorphic types can be included with unions 7' = T; | T (elements
may be type T; or type T5) and optional types ?T (elements may be type T or null).
Since the possibilities of a polymorphic type are enumerated, operations must be legal
on all enumerated possibilities, and operations on an optional type are only applied
to non-null elements.

For cross-references, such as tagging jets with their associated leptons, we allow
type trees to be arbitrary graphs. A list may contain elements of a list elsewhere in
the graph or its own ancestors. As an example of the latter case,

[0,n) = T = (int | [0,00) — T)

is an array that may contain integers, lists of integers, or any depth of lists of integers.
This set of types is as inclusive as most high-level programming languages, and it
can be constructed entirely from columnar arrays.

4 Low-level data structures and their uses

The fundamental construct for variable-sized, nested structure is the jagged array.
To represent a list of unequal-length sublists with the following logical structure, we
store the flattened content in one array and the structure in either an “offsets” or a
“parents” array.

Logical structure: [fo, 1, 21, 1, [3, 41, [5, 6, 7, 81, [1 ]
Content: [ o, 1, 2, 3, 4, 5, 6, 7, 8]

Offsets: [0, 3, 3, 5, 10, 10]
Parents: [0, 0, 0 2, 2, ]

The offsets array may be constructed as the content index after every opening
bracket (the “starts” array) appended by the total length, or it may be constructed as
the content index after every closing bracket (the “stops” array) prepended by zero.
It is useful for descending from outer levels to inner levels of structure.

The parents array has the same length as the contents array; it associates each
content element with the index of the subarray that contains it. A parents array is
incapable of expressing empty sublists at the end of a list (as in the above example),
but it can specify empty lists in a sequence by skipping integers. Offsets are therefore
more general than parents, but parents are useful in reducer operations that ascend
from inner levels to outer levels of structure.

The awkward-array library has a JaggedArray implementation that allows arbi-
trary contents— nesting a JaggedArray within a JaggedArray constructs [0,n) —
[0,00) — [0,00) — P. The JaggedArray.__getitem__ method overrides square brack-
ets in Python to provide slicing, masking, and fancy indexing with all the features
described in the previous section. Elementwise operations and broadcasting are im-
plemented in __array_ufunc__, which overrides the behavior of all universal functions
in Numpy [4].

Tables of records are implemented as a Table class that maps column names to

Yo L

arrays. This is like Numpy’s “record arrays,” except that a Numpy record array must

4

https://doi.org/10.1051/epjconf/201921406026



EPJ Web of Conferences 214, 06026 (2019) https://doi.org/10.1051/epjcont/201921406026
CHEP 2018

be a contiguous array of structs, while awkward-array’s Table may be non-contiguous
or a struct of arrays. JaggedArray and Table interact to let integer and string valued
indexes commute, which hides the arrays-of-structs/structs-of-arrays distinction.

UnionArray and MaskedArray implement polymorphism and optional types. Numpy
has a masked array type, but MaskedArray shares conventions with the rest of awkward-
array’s suite and additionally has a BitMaskedArray variant for compatibility with
Apache Arrow [5] (next section).

In HEP applications, it is useful to have datasets representing arrays of objects,
such as [0,n) — LorentzVector, which returns LorentzVector objects when given an
index. Numpy has an “object array” type, which stores pointers to Python objects in
memory, but awkward-array’s ObjectArray constructs a Python object when given an
index. This allows us to represent such data with 12 x less memory, as we will see in
the section on performance below.

In the same spirit as integer/string index commutivity, methods of objects returned
by ObjectArray may be applied to the entire array for vectorized HEP calculations.
For instance, an ObjectArray of LorentzVectors may be boosted en masse:

subleading_jets.boost (leading_jets)

which works equally well if subleading_jets is a jagged array (several per event) and
leading_jets is a flat array (one per event), thanks to jagged broadcasting. An array
of strings is an ObjectArray of a JaggedArray, converting subarrays of characters into
str objects on demand.

In addition, awkward-array provides some array classes for dealing with data struc-
tures without affecting their high-level data types. Some file formats provide data
in discontiguous chunks, such as ROOT’s baskets [6] or Parquet’s pages and row
groups [7]. ChunkedArray lets us view discontiguous chunks of data as a single logi-
cal array without copying. VirtualArray uses a given function to generate an array
on demand, rather than holding it in memory (optionally passing it to a temporary
cache). A chunked, virtual array corresponds to Dask’s concept of a delayed array [8].

Any of these can be cross-referenced in Python, as the implementation is careful
to avoid infinite recursion. To cross-reference array elements, to associate a single
lepton with a jet for instance, IndexedArray represents a deferred indirection. An
index array stores locations j[i] to look up in a content array: given i, it returns
content[j[i]]. JaggedArray is like IndexedArray except that it represents ranges of
content indexes, rather than individual indexes.

SparselArray is the conceptual opposite of IndexedArray: its index and content must
be the same length and each index is the logical position of the corresponding content.
Other indexes are presumed to be zero or some default value. As a sparse matrix, this
is known as the COOrdinate format [9]. Whereas an IndexedArray represents a smaller
logical array than its content (or one with duplicates), a SparseArray represents a
larger logical array than its content. It is useful in HEP for looking up indexes in a
table that is far too large to fit in memory, such as a mapping from ten-digit detector
id numbers to measurement corrections.

5 ROOT /Arrow/Parquet compatibility and persistence

The awkward-array classes were not designed to be a new format, but to give existing
formats new behaviors, so that they can be used in an array programming style. As
such, they are configurable to fit a variety of representations.
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The scope of awkward-array was chosen such that ROOT, Apache Arrow, and
Parquet data may be viewed through configurations of the awkward classes. Numpy
natively supports the full range of numeric types, big and little endian byte orders,
and fixed-size subarrays, which awkward-array inherits. ByteJaggedArray can use
ROOT’s basket format directly, which specifies the positions of variable-sized entries
by byte index. All the baskets in a branch may be viewed as a ChunkedArray, while
lazy loading and decompression are provided by VirtualArray. A ROOT TTree is a
(possibly jagged) Table, and pointer references can be emulated with IndexedArray.
Arbitrary C++ types are encoded in ROOT’s streamers, which uproot [10] translates
to Python classes. Data with this general type are then presented as ObjectArrays
with TLorentzVector being the primary example.

Apache Arrow has a simpler data model consisting only of primitives, arbitrary-
length lists, records, unions, strings, date/time types, and “dictionary encodings,”
in which a small set of large values, such as the names of categories (strings), are
represented by fixed-width integers for efficiency. All of these arrays are bit-masked
to allow missing (null) data anywhere. JaggedArrays represent the lists, Tables the
records, UnionArrays the unions, StringArrays (which are just JaggedArrays of char-
acters) represent the strings, and ObjectArrays represent the date/time types. Dictio-
nary encodings are IndexedArrays without cross-references. The Parquet file format is
wildly different, beyond the scope of awkward-array to wrap directly, but pyarrow (the
Python front-end for Arrow-C++ and Parquet-C++) converts Parquet into Arrow.

Although most data would be drawn from a standard format like ROOT (in HEP)
or Parquet (beyond HEP), it is often necessary to save derived quantities after some
analysis. Derived quantities might use features not available in the source format.
Therefore, awkward-array has its own persistence format: a JSON string describing
how awkward-array classes are nested with cross-references and a binary blob for each
array. These may be placed in any container of named binary blobs, such as a ZIP file,
an HDFS5 file, or a distributed object store. By default, VirtualArrays representing
data from ROOT or Parquet are saved as instructions for reading from the original
file, rather than the data themselves. Thus, an analyst can read ROOT or Parquet
data, add or replace fields in its Tables, and save the ensemble in a file representing
only the changes, which can be considerably smaller than the original data.

6 Performance measurements

The data structures and operations described here were designed for performance,
but a full study has not yet been carried out. Such a study would require a tar-
get HEP analysis, since performance differs in detail from one analysis to the next.
However, arrays have a natural order parameter: their size, which should be chosen
to significantly exceed any metadata in the awkward-array classes. It also has an
obvious hotspot: stepping through Python instructions is significantly slower than
any numerical operations. This prescribes a simple rule— Python code should never
iterate over all elements of an array; any operation that scales with the number of
elements in an array must be performed in compiled code (i.e. Numpy).

As a rough indicator of performance trade-offs, we studied one operation in a
variety of contexts, the jagged elementwise calculation

Pz = pt * numpy.sinh(eta)

where pt and eta are jagged arrays with the same structure: 552,056 muons in
701,716 events. These tests were performed on CERN’s SWAN service and all files to



EPJ Web of Conferences 214, 06026 (2019) https://doi.org/10.1051/epjcont/201921406026
CHEP 2018

Table 1. Horizontal study of pz = pt * numpy.sinh(eta) in many types of systems.

MB RAM memory occupied by data time to complete load, compute, or both sec
311.95  Python list of lists of dicts PyROOT load and compute  45.9
215.11 root__numpy’s array of arrays JaggedArray compute in Python for loops 13.4
139.79 Python list of lists of __slots__ classes

root _numpy compute in loop over ufuncs 1.96
37.19 serialized JSON text Python list of lists of dicts in Python for loops 1.24
Python list of lists of __slots__ classes in Python for loops 1.23
22.38 std::vector<std::vector<struct» root numpy load 0.635
11.67  JaggedArray of Table of pt, eta, phi ROOT RDataFrame load and compute 0.163

ROOT TTreeReader load and compute 0.091

ROOT TBranch::GetEntry load and compute 0.046

uproot load 0.031

JaggedArray compute as Numpy-like ufunc 0.023

JaggedArray compute in Numba-accelerated Python for loops 0.023

reproduce the study are shared publicly on CERNBox [11]. Table 1 shows the memory
used to store these data before calculation and the time to compute in awkward-array,
ROOT, pure Python, and instrumented Python like awkward-array and PyROOT in
which Python code is iterating over all elements of the arrays. The differences span
orders of magnitude.

If this style of programming is adopted for HEP analysis, it presents an opportunity
to optimize the array primitives independently of the analysis code. Array-centric
data structures are ripe for vectorization, but some of the naive algorithms, such as
jagged reduction, have loop-carried dependencies that prevent vectorization. One of
us (Nandi) developed vectorized algorithms for jagged operations [12], such as this
CUDA implementation of jagged reduction (fully described in a notebook [13]):

int i = threadIdx.x;
for (int d = 1; d < blockSize.x; d *= 2) {
if (i >= d && parents[i] == parents[i - d]) {
content[i] += content[i - d];
}
__syncthreads () ;
}
The rate of this algorithm on a Tesla P100 GPU and vector instructions on a Xeon
Silver 4110 CPU are shown in Figure 1 as a function of the Poisson average number
of items per group. For comparison, two sequential algorithms (nested for loops with
all compiler optimizations, same CPU) are overlaid.
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Figure 1. Jagged reduction jaggedarray.sum() (left) and jaggedarray.max() (right) for
two sequential algorithms (CPU) and our vectorized algorithm on CPU and GPU.



EPJ Web of Conferences 214, 06026 (2019) https://doi.org/10.1051/epjconf/201921406026
CHEP 2018

7 Future directions

Numpy arrays are the common language of Python’s scientific ecosystem. Now that
structures necessary for HEP have been cast as arrays, they can be more easily in-
tegrated into this ecosystem. As a next step, awkward-arrays will be added as a
Pandas [14] extension type, so that columns in a Pandas DataFrame may be struc-
tured. Following that, ChunkedArrays of VirtualArrays will be wrapped as Dask de-
layed arrays so that calculations can be distributed without moving data. Prob-
lems that require conventional loops and conditionals can be optimized by wrapping
awkward-arrays as Numba extensions. Finally, awkward-array’s exclusive dependence
on Numpy should make it transparently portable to GPUs with CuPy [15], but that
remains to be tested.
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