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In this review, we discuss a derivation of effective low energy quantum gravitational
dynamics from thermodynamics. The derivation is based on the formalism developed in
semiclassical thermodynamics of spacetime that allows to obtain Einstein equations from
the proportionality of entropy to the area. We first introduce the relevant ingredients of
semiclassical thermodynamics of spacetime, paying special attention to the various con-
cepts of entropy involved and their relations. We then extend the semiclassical formalism
by considering low energy quantum gravity effects which imply a modified entropy for-
mula with an additional term logarithmic in the area. Upon discussing the derivation of
effective gravitational dynamics from this modified entropy, we comment on the most
important features of our proposal. Moreover, we show its physical implications on a
simple cosmological model and show that it suggests the replacement of the Big Bang
singularity by a regular bounce.
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1. Introduction

The search for a consistent theory unifying gravity and quantum physics has been

an important direction of research in the last decades. While promising candidates

have been put forward, none of them presently provides a complete and consistent

final theory. In the absence of a fully developed theoretical framework, quantum

gravitational phenomenology offers a way to gain information about possible low

energy dynamical effects of quantum gravity.1–5 Phenomenological models concern-

ing strong gravitational fields are mainly available for physics in the vicinity of

classical singularities.6–10 However, these models face limitations coming from the

simplicity of the studied geometries and their results cannot be directly applied in

more general settings. Motivated by overcoming these issues, the authors have em-

ployed thermodynamics of spacetime to study quantum gravitational phenomenol-

ogy and propose effective equations of motion applicable in generic spacetimes.11

As we will see, thermodynamic methods allow us to look for model-independent
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low energy phenomenological dynamics of quantum gravity without choosing any

specific background spacetime. One can then particularise the resulting dynamics

to any case of interest. Furthermore, the relevant thermodynamic predictions are

common for most of the candidate theories of quantum gravity and can even be

obtained by model independent considerations.

Thermodynamics of spacetime presents a useful tool for understanding gravita-

tional dynamics. Following the seminal developments of black hole thermodynam-

ics,12–14 the framework has been extended both to more general spacetimes15 and

beyond general relativity.16 A key step forward has been the derivation of Einstein

equations from thermodynamics of local Rindler horizons.17The original approach

has since been improved and generalised to work for different constructions of local

horizons,18–22 certain modified theories of gravity20–26 and even to derive semiclas-

sical gravitational equations of motion.19, 21, 22

Taking a step further, the authors have included quantum gravity effects on

the thermodynamics of local causal horizons, obtaining equations governing low

energy effective dynamics of quantum gravity.11 To get sufficiently robust and gen-

eral results, we concentrated on the leading order quantum correction to Bekenstein

entropy, a term logarithmic in the horizon area. This is advantageous, since its pres-

ence is predicted by many different approaches to quantum gravity, including loop

quantum gravity (LQG),27, 28 string theory29, 30 and AdS/CFT correspondence,31

non-local effective field theory,32 entanglement entropy calculations,33 as well as

model independent considerations based on generalised uncertainty principle (GUP)

phenomenology7 and analysis of statistical fluctuations.34, 35 Thus, the effective dy-

namics we propose is relevant to most of the main approaches to quantum gravity.

While we are chiefly concerned with low energy quantum gravity effects, ther-

modynamics of spacetime provides interesting insights already on the semiclassical

level. Furthermore, a complete understanding of the semiclassical regime is necessary

to extend the thermodynamic formalism to the realm of quantum gravity. There-

fore, we include a detailed review of the concepts considered in semiclassical ther-

modynamics of spacetime, especially various notions of entropy. Since derivations

of gravitational dynamics rely on equilibrium conditions for local causal horizons

which involve Bekenstein, entanglement and Clausius entropy, we further discuss to

what extend are these entropies equivalent.

In the present work, we review the main features of our proposal, paying special

attention to the various concepts of entropy involved as well as to the unimodular

nature of the resulting gravitational dynamics.36 Section 2 introduces the necessary

entropy definitions and discusses their relations both in the semiclassical and low

energy quantum gravity settings. In section 3, we first briefly recap derivation of

the effective equations. Then we discuss their properties and illustrate their physical

implications on a simple cosmological toy model (finding that the Big Bang singu-

larity can be resolved). Lastly, section 4 sums up our results and presents possible

directions for future research.
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Throughout the paper, we work in four spacetime dimensions and use metric

signature (−,+,+,+). Definitions of the curvature-related quantities follow.37 We

use lower case Greek letters to denote abstract spacetime indices and lower case

Latin letters for spatial indices with respect to a (local) Cartesian basis. Unless

otherwise explicitly stated, we use the SI units.

2. Entropy in thermodynamics of spacetime

Thermodynamic derivations of gravitational dynamics are based on the observation

that gravitational dynamic are encoded in the horizon area equilibrium condition

for maximal entropy, δS = 0, if it holds for all local causal horizons. This condi-

tion sums together variations of entropy of the horizon, often interpreted in terms

of entanglement (von Neumann) entropy due to quantum correlations across the

horizon,17, 19, 26 and of entropy of the matter. Since the latter is usually described in

terms of thermodynamic Clausius entropy,17, 18 it is not obvious that one can com-

bine both entropies to define a meaningful equilibrium condition (it has actually

been suggested that this fails in the case of local Rindler wedges38). This combina-

tion requires that fluxes of Clausius and von Neumann entropy of matter across the

horizon are equal with sufficient precission. In the following, we first introduce our

implementation of local causal horizons: geodesic local causal diamonds (GLCD).

Then we present the definitions of all the relevant entropies associated with GLCD’s

and review our previous argument for the interchangeability of Clausius and von

Neumann entropy.36

2.1. Geodesic local causal diamonds

We begin by briefly introducing the construction and most important properties of

GLCD’s. More detailed description of GLCD’s can be found, e.g. in.39–42

In an arbitrary spacetime point P choose any unit timelike vector n(P ). In every

direction orthogonal to n send out of P geodesics of parameter length l. These form

a spatial geodesic 3-ball, Σ0, and the region causally determined by Σ0 constitutes

a GLCD (see figure 1). The boundary, B, of Σ0 is approximately a 2-sphere. Its area

reads19

A = 4πl2 − 4π

9
l4G00 (P ) +O

(
l5
)
, (1)

where G00 = Gμνn
μnν . The GLCD possesses an approximate (up to O

(
l3
)

curva-

ture dependent terms) conformal Killing vector19

ζ = C

((
l2 − t2 − r2) ∂

∂t
− 2rt

∂

∂r

)
, (2)

where C denotes an arbitrary normalisation constant. It has been argued that

one can assign Hawking temperature to the GLCD’s conformal horizon, TH =

�κ/2πkBc, where κ = C/2l is the surface gravity corresponding to ζ.19, 42
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Fig. 1. A sketch of a GLCD with the origin in point P (the angular coordinate θ is suppressed).
Σ0 is a spatial geodesic ball of radius l (several of the geodesics forming it are depicted as grey
lines), its boundary an approximate 2-sphere B. Unit timelike vector nµ is a normal of Σ0. The
tilted lines from the past apex Ap (t = −l/c) to the future apex Af (t = l/c) represent the null
geodesic generators of the GLCD boundary. The diamond’s base Σ0 is the spatial cross-section of
both the future domain of dependence of Ap and the past domain of dependence of Af at t = 0.

2.2. Bekenstein entropy

To derive the Einstein equations from thermodynamics of GLCD’s (or, conversely,

to interpret the first law of GLCD dynamics implied by Einstein equations in ther-

modynamic terms42), one must assume that entropy associated with its horizon

obeys the Bekenstein formula19, 22

SBH =
kBA
4l2P

, (3)

where A denotes the horizon area. However, it is far from clear to what types of

horizons can one assign Bekenstein entropy. Since its interpretation in terms of

quantum entanglement allows a natural extension of the Bekenstein formula to any

causal horizon, it is often assumed in the context of thermodynamics of spacetime

(although it was originally proposed in a different context43, 44). To understand the

entanglement interpretation of Bekenstein entropy, consider two causally separated

spacetime regions. An observer in one region cannot measure vacuum fluctuations

in the other one. Since the fluctuations are correlated between regions, some infor-

mation is inaccessible to the observer and non-zero entanglement entropy appears.

Its value is proportional to the area of causal horizon, Se = ηA.33, 43, 44 The pro-

portionality constant η is infinite unless one introduces a cutoff. Then η becomes

finite and depends on the cutoff length, the number and type of quantum fields

considered in the theory and even on the position in spacetime.26, 33 To recover the

Bekenstein entropy, a universal value η = kB/4l
2
P is necessary (see, e.g.33, 45 for

discussions of feasibility and shortcomings of this assumption). Let us stress that
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the entanglement interpretation of Bekenstein entropy is in no way necessary to

derive gravitational dynamics from thermodynamics. Any microscopic interpreta-

tion of black hole entropy which also applies to observer-dependent causal horizons

would work just as well. Nevertheless, here we focus on the entanglement entropy

as it is currently the most developed proposal with this property.

Beyond this semiclassical picture, many different models indicate that the lead-

ing order quantum gravity correction to Bekenstein entropy is a non-local term

logarithmic in horizon area7, 9, 27–35, 46–49

S =
kBA
4l2P

+ kBC ln

( A
A0

)
, (4)

where C is a real number and A0 a constant with dimensions of area. The values of C
and A0 are model dependent. Considering the entanglement entropy interpretation

allows us to calculate modified entropy even for causal horizons in a flat spacetime.33

Interestingly, a logarithmic term then appears for spherical horizons,50 but not for

planar ones33 (due to different Euler characteristics). This is the reason we consider

GLCD’s rather than local Rindler wedges to find effective low energy dynamics of

quantum gravity from thermodynamics11 (for arguments against the Rindler wedges

even in the semiclassical setting see, e.g.20, 38).

While the presence of a logarithmic term seems to be a very general prediction of

quantum gravity, the value and even the sign of C differ in various approaches. Gen-

erally speaking, two types of corrections to Bekenstein entropy have been studied in

the literature. On one hand, microcanonical corrections appear due to more precise

counting of the microstates at fixed horizon area, which reduces our uncertainty,

leading to negative contribution to entropy. On the other hand, canonical correc-

tions stem from thermal fluctuations at fixed temperature, which are an additional

source of uncertainty increasing the entropy. As we discuss in section 3, the sign of C
determines the physical implications of the modified dynamics we propose, allowing

the avoidance of spacetime singularities only for C > 0. Therefore, the presently

unknown overall sign of C is crucial for the interpretation of our results.

2.3. Clausius entropy of the matter

Apart from Bekenstein entropy, derivation of gravitational dynamics from thermo-

dynamics also requires a way to account for the entropy of matter. The simplest

approach is to consider the thermodynamic Clausius entropy, dSC = δQ/T . The

heat flux δQ across an arbitrary timelike hypersurface Σ reads18

δQ = −
∫
Σ

TμνV
νNμd3Σ, (5)

where V ν and Nμ are timelike and spacelike unit normals of Σ. If V ν corresponds

to velocity of an eternal, uniformly accelerating observer with acceleration a, we

can define the corresponding Unruh temperature, TU = �a/2πkBc. This definition

holds with sufficient precission even for observers with slowly varying acceleration
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or finite lifetime, as long as the proper length λ of the trajectory with an approxi-

mately constant acceleration is large enough, i.e. λ � c2/a.51 For the special case

of uniformly accelerated observers travelling inside causal diamonds one also finds

an equivalent result due to conformal mapping of a Rindler wedge to a causal dia-

mond.52, 53 Therefore, as long as we consider a sufficiently large a, we can use the

standard Unruh temperature together with the expression for heat flux to define

Clausius entropy flux across a timelike hypersurface

SC ≡ δQ

TU
= −

∫
Σ

2πkBc

�a
TμνV

νNμd3Σ. (6)

The timelike surface Σ coincides with the causal horizon perceived by the uniformly

accelerating observer in the limit a → ∞. Notably, this limit is well defined both

for arbitrary causal horizons in flat spacetime and for sufficiently small horizons in

curved spacetimes18 (in that case, one simply considers Riemann normal coordinate

expansion to the leading order). Before moving on to the special case of causal

diamonds, several further remarks are in order. First, the definition of Clausius

entropy flux across null surfaces is completely independent of gravitational dynamics

or any requirements on symmetries of the spacetime. Second, the construction of the

entropy is semiclassical as it explicitly depends on quantum field theory by invoking

the Unruh effect. And, lastly, in contrast with the nature of Clausius entropy in non-

relativistic thermodynamics, the entropy flux is manifestly observer dependent.18

For a GLCD, the resulting expression for Clausius entropy flux from t = 0

(geodesic ball Σ0) to t = l/c (future apex Af ) takes form36

ΔSC =

∫ l/c

0

2πkBc

�
t

(∫
S(t)

Tμνk
μkνd2A

)
dt+O

(
l5
)
, (7)

where kμ denotes the future pointing null normal to the GLCD’s boundary. Per-

forming the integration and some straightforward manipulations then yields

ΔSC = −8π2kB l
4

9�c

(
T00 (P ) +

1

4
T (P )

)
+O

(
l5
)
, (8)

where we explicitly stress that the energy momentum tensor is evaluated at the

diamond’s origin, P .

When one wishes to take into account low energy quantum gravity effects, defin-

ing the Clausius entropy flux becomes more complicated. The subtleties in its def-

inition come from the need to consider the Unruh effect, which requires that the

ground state of quantum fields is locally well approximated by Minkowski vac-

uum. This amounts to invoking Einstein equivalence principle:26 “Fundamental

non-gravitational test physics is not affected, locally and at any point of spacetime,

by the presence of a gravitational field”.54 However, the status of the equivalence

principle in the low energy quantum gravity regime is far from clear. For instance,

possible violations of weak equivalence principle resulting from GUP phenomenol-

ogy have been explored in a number of works with very different conclusions.55–58
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A simple way to deal with possible influence of the equivalence principle violations

on the Unruh effect is to consider heuristic modifications to Unruh temperature due

to GUP, previously suggested in the literature.59, 60 All the proposals for modified

Unruh temperature obey

Tmod =
�a
(

1 + ψ
l2P
c4 a

2
)

2πkBc
+O

(
l4Pa

5

c8

)
, (9)

where ψ denotes a model dependent real number that is expected to be of the or-

der of unity.59, 60 A similar prescription has also been earlier proposed for modified

Hawking temperature.7, 9, 33 To our best knowledge, these modifications to tem-

perature have not been confirmed by any rigorous method. However, since GUP

phenomenologically implements effects of a minimal resolvable length that arises in

a number of approaches to quantum gravity,1, 2 the idea of modified Unruh tem-

perature is worth considering. Hence, to incorporate leading order quantum gravity

corrections in thermodynamics of spacetime, we need to show that the previously

outlined construction of Clausius entropy flux works with this modified tempera-

ture. Note that the previous reasoning does not apply directly, since in the limit

a → ∞ correction terms in the modified temperature formula become dominant.

Instead, one must consider acceleration much larger than c2/l but much smaller

than c2/
√
ψlP (this can be satisfied for l � lP , i.e., whenever the GLCD is much

larger than the Planck scale). The construction of Clausius entropy flux under this

assumption has been carried out by the authors,11 yielding

ΔSC,mod = −
(

1− ψ l
2
Pa

2

c4

)
2πkBc

�

∫ l/c

0

t

(∫
S(t)

Tμνk
μkνd2A

)
dt+O

(
l5,

l4Pa
4

c8
,

1

a2

)
.

(10)

The only difference with respect to the semiclassical formula are the a-dependent

sub-leading terms. We can recover it by setting ψ = 0 and then taking the limit a→
∞. Let us note that while we assumed finite acceleration simply for mathematical

convenience, the limit a � c2/
√
ψlP agrees quite well with the proposal of an upper

limit to acceleration aM set by quantum gravity effects, aM = c2/lP .61

2.4. Von Neumann entropy of the matter

To be consistent with the entanglement interpretation of the entropy of GLCD’s

horizon, one should consider quantum von Neumann entropy of the matter rather

than the thermodynamic Clausius one. For small variations from vacuum, this en-

tropy can be obtained from the vacuum state density operator, ρ = e−K/kBTζ/Z,

where Z is the partition function, Tζ denotes the previously defined temperature

associated with conformal Killing vector ζμ and K is known as the modular Hamil-

tonian.42 While variations of K can in general be non-local, for conformal fields

they correspond to variations of the local matter Hamiltonian42

δH =

∫
Σ0

δ〈Tμν〉ξμnνd2Ωdr, (11)
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where n = ∂/∂t. Then, the variation of entropy reads

δSm =
1

T
δK =

2πkB
�c

4πl4

15
δ〈T00〉+O

(
l5
)
. (12)

For non-conformal field theories with a UV fixed point, the von Neumann entropy

variation is modified only by the presence of an additional l-dependent spacetime

scalar, δX ,19, 62, 63

δSm =
2πkB
�c

4πl4

15
(δ〈T00〉+ δX) . (13)

In our study concerning the quantum gravity corrections, we have gone beyond

the semiclassical case just by including modifications to the temperature11 (in a

future work we plan to analyse possible corrections to the modular Hamiltonian).

Implementing the leading order quantum gravity modification to temperature gives

rise to the following modified variation of matter von Neumann entropy

δSm,mod =
2πkBc

�

4π

15
l4 (δ〈T00〉+ δX)

(
1− ψl2Pκ2

)
+O

(
l5
)
. (14)

Note that for the particular case ψ = 0 we straightforwardly recover the semiclassical

expression.

2.5. Entropy equivalence

Assuming the entanglement interpretation of Bekenstein entropy, the natural equi-

librium condition for the GLCD involves von Neumann entropy of the matter. To

consider the Clausius entropy instead, its equivalence with the von Neumann en-

tropy is necessary. This condition requires that fluxes of Clausius and von Neumann

entropy of matter across the horizon are equal with sufficient precission. Since the

von Neumann entropy is defined for the geodesic ball Σ0 corresponding to t = 0, the

meaningful quantities to compare are time derivatives of both entropies evaluated

at t 	 l/c (at precisely t = 0 the entropy fluxes vanish). We start by considering

conformal fields. For the time derivative Clausius entropy we have36

dSC
dt

(t) ≈ −32π2kBc

3�
tl2T00, (15)

while the time derivative of the von Neumann entropy reads36

dSm
dt
≈ −32π2kBc

3�
tl2δ〈T00〉. (16)

Both expressions are indeed equivalent, making the use of Clausius entropy in ther-

modynamics of spacetime justified for conformal fields. Note that the argument in

no way involves gravitational dynamics.

The situation becomes more complicated for non-conformal matter as the previ-

ously outlined approach cannot be directly applied to formulas for the von Neumann
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entropy.62, 63 Nevertheless, semiclassical gravitational dynamics derived from Clau-

sius and von Neumann entropy are equivalent even in this case,17, 19, 36 suggesting

that both entropies are at least strongly related.

When low energy quantum gravity effects on the temperature are taken into

account, we find for conformal fields

dSC
dt

(t) ≈ −32π2kBc

3�

(
1− ψ l

2
P

c4
a2
)
tl2T00, (17)

and

dSm
dt
≈ −32π2kBc

3�

(
1− ψl2Pκ2

)
tl2δ〈T00〉. (18)

Both formulas are equivalent only for a special value of the surface gravity, κ = a/c2.

Since we are not aware of any way to motivate a specific choice of κ, and a needs to

be very large, a � c2/l, we cannot say anything conclusive about the equivalence

of both entropies. We will return to this question after we introduce the modified

gravitational dynamics.

3. Effective low energy quantum gravity dynamics

Upon presenting the various notions of entropy involved, we proceed to discuss

our proposal for the effective low energy quantum gravitational dynamics. Details

of the derivation can be found in the original paper of the authors;11 here we just

briefly recall the main points. For the sake of comparison, we employed two different

thermodynamic derivations. The first one, known as the physical process approach,

keeps track of the Clausius entropy flux across the horizon and the correspond-

ing changes in its Bekenstein entropy. Equilibrium condition for this process reads

ΔSe,q+ΔSC = 0, where the Clausius entropy flux contribution, ΔSC , was discussed

in the previous section. The Bekenstein entropy part, ΔSe,q, can be evaluated from

the formula for area of GLCD’s boundary cross-section introduced in subsection 2.1.

After a series of calculations (see11 for details), we obtain the modified equations of

motion

Sμν − Cl
2
P

18π
SμλS

λ
ν +
Cl2P
72π

(
RκλR

κλ − 1

4
R2

)
gμν =

8πG

c4

(
Tμν − 1

4
Tgμν

)
, (19)

where Sμν = Rμν−Rgμν/4 denotes the traceless part of Ricci tensor. The derivation

works for GLCD’s length scale l much larger than the Planck length but much

smaller than the curvature length scale (square root of the inverse of the largest

eigenvalue of the Riemann tensor).

The second method to derive the modified equations of motion starts from the

entanglement equilibrium hypothesis: “When the geometry and quantum fields are

simultaneously varied from maximal symmetry, the entanglement entropy in a small

geodesic ball is maximal at fixed volume”.19 For a small variation from a maximally

symmetric spacetime the hypothesis implies δSe,q+δSm = 0, where δSm denotes the
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variation of matter von Neumann entropy. From here, calculations proceed similarly

as for the physical process approach, yielding11

Sμν − Cl
2
Pl

30π
SμλS

λ
ν +
Cl2Pl
120π

(
RκλR

κλ − 1

4
R2

)
gμν =

8πG

c4

(
δ〈Tμν〉 − 1

4
δ〈T 〉gμν

)
.

(20)

Notably, in neither derivation does the form of modified temperature affect the

resulting equations. This is expected as definitions of both Hawking and Unruh

temperature (even modified ones) are purely kinematic with no dependence on

gravitational dynamics.64 The correction terms are thus fully determined by the log-

arithmic contribution to Bekenstein entropy and they depend only on one presently

unknown parameter, C.
Comparing the results of both approaches, we can see that the equations have

the same form, although coefficients in front of the terms quadratic in curvature

differ. We can write both equations in a common form

Sμν−Dl2PSμλSλν+
D

4
l2P

(
RκλR

κλ − 1

4
R2

)
gμν =

8πG

c4

(
〈Tμν〉 − 1

4
〈T 〉gμν

)
, (21)

with D = C/18π for the physical process approach and D = C/30π for the entangle-

ment equilibrium hypothesis one. In both cases, the coefficient D has the same sign

and differs only by a factor 3/5. The difference might be due to the details of the

variation considered in the entanglement equilibrium hypothesis derivation, which

is performed at fixed spatial volume.11, 19 Since, for modified theories of gravity,

a more complicated quantity known as generalised volume needs to be held fixed

instead,21 finding the appropriate generalised volume in our case could account for

the difference in D between both approaches. Alternatively, it might indicate a fail-

ure on the equivalence between Clausius and von Neumann entropy of the matter

at this level (although, given the similarity of the results, both entropies would have

to remain closely related).

Upon reviewing the two derivations of the modified equations of motion, we

proceed to discus their properties (for a more detailed treatment, see11). First, note

that while the value and even the sign of C is model dependent, any possible value

can be viewed as being of the order of unity compared to the squared Planck length,

l2P ≈ 2.6 × 10−70 m2. Therefore, the correction terms become relevant only when

the curvature length scale nears the Planck length (although it needs to remain

significantly larger than lP , otherwise the assumptions of our derivation will break

down).

As a second property, it is easy to check that the modified equations are trace-

less. Hence, they do not imply local energy-momentum conservation. If we want to

assume it, we must impose divergence-free energy-momentum tensor, 〈T ν
μ 〉;ν = 0,

as an additional condition. Satisfying it requires

1

4
R;μ −Dl2P

(
SλνSμλ

)
;ν

+
Dl2P

2

(
RκλRκλ;μ − 1

4
RR;μ

)
= −2πG

c4
〈T 〉;μ. (22)
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This condition does not have a general solution for T . Therefore, in general, the

equations of motion cannot be recast in a form directly implying a divergence-free

energy-momentum tensor. Nevertheless, the condition can be solved for spacetimes

with a vanishing Weyl tensor. In that case, the cosmological constant, absent in the

traceless equations of motion, appears as an arbitrary integration constant.

Third, while any terms containing higher than fourth derivatives of the metric

or more than quadratic in curvature tensors are likely suppressed by higher powers

of lP , the higher derivative terms known from quadratic gravity should appear at

the same order as the corrections we propose. They implicitly appear on the right

hand side of modified equations in the quantum expectation value of the energy-

momentum tensor.65 In principle, one might also find higher derivative contributions

to the left hand side by considering higher orders in the Riemann normal coordinate

expansion of the metric. However, these corrections are ambiguous as they depend

on shape deformations of the GLCD’s horizon.40 Without a physically motivated

way to resolve these ambiguities, it is not possible to determine higher derivative

terms contributing to the left hand side of the equations. Since these terms are

anyway contained with undetermined coefficients on the right hand side, in the

energy-momentum tensor expectation value, their omission on the left hand side

does not change the resulting dynamics in any significant way.

Traceless equations of motion and the status of cosmological constant as an ar-

bitrary integration constant both point out to the modified dynamics being a gen-

eralisation of unimodular gravity (or, more precisely, Weyl transverse gravity66). In

fact, even the semiclassical gravitational dynamics derived from thermodynamics

has more in common with unimodular gravity than general relativity.25, 36, 67 We

can partially understand the emergence of unimodular gravity from thermodynam-

ics by noting that only the difference between entropy of two states is relevant for

deriving the gravitational dynamics. In other words, vacuum contribution to mat-

ter entanglement entropy does not affect the conditions for thermodynamic equi-

librium. Consequently, vacuum energy naturally does not couple to gravity, leading

to the behaviour of the cosmological constant characteristic for unimodular gravity.

Furthermore, thermodynamics of spacetime do not imply local energy-momentum

conservation, which always needs to be postulated as an additional condition, again

in agreement with unimodular gravity.

3.1. Application to a cosmological toy model

To illustrate the physical consequences of the modified dynamics, we examine a

simple cosmological toy model, a homogeneous, isotropic, spatially flat universe

filled with a perfect fluid with the equation of state p = (γ − 1) c2ρ for some γ ∈ [1, 2]

(the limits correspond to dust and stiff matter, respectively). Due to previously

noted unimodular character of the equations, we consider a unimodular form of the
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Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = − c2

a (t)
6 dt2 + a (t)

2 (
dr2 + r2dΩ2

)
, (23)

where a (t) denotes the scale factor. Because of the symmetries of the metric, the

modified equations of the motion yield only one non-trivial condition

Ḣ −Dl
2
P Ḣ

2

c2
= −4πγGρ, (24)

where H = ȧ/a is the Hubble parameter and the dot denotes a time derivative. This

condition corresponds to a modified Raychaudhuri equation, with a correction term,

−Dl2P Ḣ2/c2, non-linear in second time derivatives of the scale factor. To simplify

it, we assume that the Hubble parameter corresponds to its classical value H0 up

to O
(
l2P
)

terms (validity of this assumption is extensively discussed in11),

H = H0 + l2PH1 +O
(
l4P
)
, (25)

and rewrite the modified Raychaudhuri equations in the following way

Ḣ = −4πγGρ

(
1− 4πDγ

ρ

ρP

)
, (26)

where ρP =
√
c5/G2� denotes the Planck density. If we further assume local energy-

momentum conservation, we can integrate the modified Raychaudhuri equation to

obtain the modified Friedmann equation

H2 =
8πGρ

3

(
1− 2πDγρ

ρP

)
+ Λ̃, (27)

where Λ̃ is an arbitrary integration constant corresponding to the cosmological

term (Λ̃ = Λc2/3). We see that the appearance of cosmological constant is indeed

consistent with unimodular gravity.

Notably, for D > 0, our results correspond to the effective description of loop

quantum cosmology (LQC).68 Since effective dynamics of LQC replaces the Big

Bang singularity by a non-singular quantum bounce, the same conclusion holds for

our modified equations of motion assuming D > 0. The bounce corresponds to

a critical density, ρcrit = ρP /2πDγ. In other words, if the logarithmic correction

to Bekenstein entropy of a GLCD is positive, the resulting modifications of the

dynamics are already sufficient to remove the cosmological singularity. On the other

hand, the case of D < 0 appears to not only preserve the singularity, but actually

strengthen the gravitational attraction responsible for it. These preliminary results

warrant a more detailed analysis of cosmological models and possible values for

parameter D.
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4. Discussion

In the present work we have first reviewed the issue of entropy equivalence in ther-

modynamics of spacetime. For conformal fields in the semiclassical regime, Clausius

and von Neumann entropy turn out to be equivalent in the semiclassical regime

independently of the gravitational dynamics, although a similar clear result is not

available for non-conformal fields.

Then, we proceeded to review our proposal for a new phenomenological per-

spective on the effects of quantum gravity at low energies. The effective low energy

quantum gravitational dynamics we have proposed is based on a single assump-

tion: leading order quantum gravity correction to entropy associated with spherical

local causal horizons is logarithmic in the horizon area. Since a number of concep-

tually different approaches predict such a logarithmic term (at the very least in

the case of black hole entropy), our conclusions are fairly robust and relevant to

many candidate theories of quantum gravity, e.g. LQG, string theory, AdS/CFT

correspondence and GUP phenomenology.

Let us remark that the equations we found are a generalisation of the clas-

sical equations of motion of unimodular gravity and cannot even be restated as

some generalised Einstein equations. This agrees with our previous results concern-

ing the relation between thermodynamics of spacetime and unimodular gravity in

the semiclassical setting. It does appear that the corrections we propose break the

equivalence of unimodular gravity and general relativity that holds on the level of

classical dynamics.

Our results also extend the semiclassical equivalence between Clausius and en-

tanglement entropies. While they suggest a possible breaking of the exact equiva-

lence on the quantum level, both entropies remain strongly related. Their precise

relation should be analysed carefully in a future work. Importantly, a more sys-

tematic inclusion of quantum gravity effects on matter entropy will be necessary to

completely resolve this issue.

Note that our approach still requires further development. First, issues of dif-

feomorphism invariance, equivalence principle and locality of the modified dynam-

ics previously discussed by the authors11 need to be addressed in greater detail.

Moreover, the apparent breaking of local energy conservation requires a physically

motivated explanation. Relating our proposal to other modified gravity theories

might shed some light on all these questions. In particular, our effective equations

of motion resemble the 4-dimensional version of Einstein-Gauss-Bonnet gravity69, 70

and non-local effective field theory of gravity.71 The latter approach even leads to

logarithmic term in Bekenstein entropy consistent with our assumptions.32

Another possible further development of our results lies in a careful inclusion

of higher order Riemann normal coordinate corrections in the analysis in order to

obtain higher derivative terms on the left hand side. Similarly, accounting for low

energy quantum gravity effects on the entropy of matter might lead to interesting

conclusions.
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Furthermore, we have seen that the modified dynamics resolve the Big Bang

singularity only if the logarithmic correction to entropy of a GLCD is positive, i.e.,

D > 0. To find which approaches to quantum gravity support this sign and what are

the bounds on the magnitude of D they imply would help to constrain the physical

implications of our proposal.

Lastly, the emergence of unimodular (Weyl transverse) gravity from thermo-

dynamics needs to be better understood even in the semiclassical case. The first

steps in this direction include developing rigorous formalism for thermodynamics of

spacetime in the Weyl transverse gravity and connecting Weyl invariance of gravi-

tational dynamics with properties of entropy. All these issues will be addressed in

future works.
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