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Abstract
We derived a set of 3+1 formalism of generalized general relativistic magnetohydro-
dynamic (GRMHD) equations to study phenomena of plasmas around rotating black
holes. One of the equations with respect to the generalized Ohm’s law shows elec-
tromotive forces due to gravitation, centrifugal force, and frame-dragging effect in
a plasma around a black hole. In this paper, we summarize the equations briefly,
and also mention the gravitational magnetic reconnection which can be caused by
the gravitational electromotive force and charge separation even in a case of zero
resistivity.

1 Introduction

Numerical simulations of general relativistic magnetohydrodynamics (GRMHD) of plasmas around black
holes have confirmed a mechanism of a magnetically driven relativistic jet from a disk around a black hole
[1, 2]. All of these GRMHD simulations of jet formation showed artificial appearance of magnetic islands,
which are caused through magnetic reconnections due to numerical resistivity. In spite of the numerical
inconsistency, these numerical results clearly suggested spontaneous formation of anti-parallel magnetic
configuration, which means magnetic reconnection is caused easily in the black hole magnetospheres.
The magnetic reconnection would change the global magnetic configuration drastically and influence the
global dynamics of plasmas around the black holes. Thus, calculations including resistivity, the cause
of magnetic reconnection, are highly expected. It is noted that causality is broken and artificial wave
instability is caused when we use the standard Ohm’s law, where an inertia of charge and moment
of current are neglected [3]. To guarantee causality, we have to use generalized GRMHD including
generalized relativistic Ohm’s law [3, 4]. The generalized GRMHD equations were introduced on the
basis of two-fluid approximation of plasma in Kerr metric by Khanna [5]. A more generalized equations
from the general relativistic Vlasov-Boltzmann equation in time-varying space-time were formulated by
Meier [6]. It was proofed that causality is satisfied for plasmas whose plasma parameter is much greater
than unity [3, 7]. In this paper, we summarize the generalized GRMHD equations derived by Koide
[7]. We show the electromotive forces due to gravitation, centrifugal force, and frame-dragging effect
around the black hole, which are indicated by the generalized Ohm’s law of plasmas around rotating
black holes. The gravitational electromotive force can cause the magnetic reconnection even in a case of
zero resistivity.

2 Generalized GRMHD equations

We summarize the generalized GRMHD equations of plasmas in the space-time, xµ = (t, x1, x2, x3)
around a black hole where metric ds2 is given by ds2 = gµνdxµdxν (Equations (18), (24), and (59) with
Equations (25) and (58) of Koide [7]). Throughout this paper, we use the unit system, where light speed
is unity. The generalized GRMHD equations are as follows:

∇ν(ρUν) = 0, (1)
∇νTµν = 0, (2)
1
ne

∇νKµν =
1

2ne
∇µ(∆µp − ∆p) +

(
Uν − ∆µ

ne
Jν

)
Fµ

ν − η [Jµ − ρ′e(1 + Θ)Uµ] , (3)

1Email address: koidesin@sci.kumamoto-u.ac.jp



2 Generalized GRMHD Equations

and Maxwell equations

∇ν
∗Fµν = 0, (4)

∇νFµν = Jµ, (5)

where

Tµν ≡ pgµν + hUµUν +
µh‡

(ne)2
JµJν +

2µ∆h

ne
(UµJν + JµUν) + Fµ

σFµσ − 1
4
gµνFκλFκλ,

Kµν ≡ µh‡

ne
(UµJν + JµUν) +

∆h

2
UµUν − µ∆h]

(ne)2
JµJν .

Here, we used the two-fluid model, where we assumed the plasma consists of positively charged particles
with charge e and mass m+ and negatively charged particles with charge −e and mass m−. We used the
typical mass of plasma particle m = m++m−, normalized reduced mass µ = m+m−/m2, and normalized
mass difference ∆µ = (m+ − m−)/m. The variables ρ, h, p, n ≡ ρ/m, ∆p, and ∆h are mass density,
enthalpy density, pressure, number density, pressure difference of two fluids, and difference of two fluid
enthalpy densities. Furthermore, ∇µ, Uµ, and Jµ are covariant derivative, 4–velocity, and 4–current
density, respectively, and Fµν is the electromagnetic strength tensor and ∗Fµν is dual tensor of Fµν . We
also use the variables related to enthalpy density,

h‡ = h − ∆µh and ∆h] = ∆µh − 1 − 3µ

2µ
∆h.

The variable η indicates resistivity and Θ is the rate of equipartition with respect to the thermalized
energy due to friction (for detail, see Appendix A of Koide [4]). It is noted that Equation (5) yields the
equation of continuity with respect to the current,

∇νJν = 0. (6)

In addition, we assume the plasma consists of two perfect fluids with the equal specific heat ratio, Γ.
The equations of states are

h = n2

[
m+

n+
+

m−

n−
+

Γ
2(Γ − 1)

{(
1

n2
+

+
1

n2
−

)
p +

(
1

n2
+

− 1
n2
−

)
∆p

}]
, (7)

∆h = 2µmn2

[
1

n+
− 1

n−
+

Γ
2(Γ − 1)

{(
1

m+n2
+

− 1
m−n2

−

)
p +

(
1

m+n2
+

+
1

m−n2
−

)
∆p

}]
, (8)

where

n± ≡
[
n2 ∓ 2m∓n

em
UνJν −

(m∓

em

)2

JνJν

]1/2

(9)

corresponds to the particle number density of each charged fluid (see Equations (74) – (78) of Koide [7]).
In the generalized GRMHD equations and the Maxwell equations, there are three types of terms

including covariant derivatives: (i) contravariant vector like ρUµ and Jµ, (ii) anti-symmetric 2nd rank
tensor like Fµν and ∗Fµν , and (iii) symmetric 2nd rank tensor like Tµν and Kµν . With respect to any
contravariant vector Aµ and any anti-symmetric 2nd rank tensor Aµν , we have

∇νAν =
1√
−g

∂ν

(√
−gAν

)
, (10)

∇νAµν = − 1√
−g

∂ν

(√
−gAµν

)
, (11)

where g is the determinant of the metric (gµν). As for an arbitrary symmetric 2nd rank tensor Sµν , the
derivative is written by the Christoffel symbol, Γλ

µν = 1
2gλσ(−∂σgµν + ∂µgνσ + ∂νgσµ) as

∇νSµν =
1√
−g

∂ν

(√
−gSµν

)
+ Γµ

σνSσν . (12)
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We assume that off-diagonal spatial elements of the metric gµν vanish, gij = 0 (i 6= j). Writing
non-zero components by

g00 = −h2
0, gii = h2

i , gi0 = g0i = −h2
i ωi, (13)

we have

ds2 = gµνdxµdxν = −h2
0dt2 +

3∑
i=1

[
h2

i (dxi)2 − 2h2
i ωidtdxi

]
. (14)

When we define the lapse function α and shift vector βi by

α =

[
h2

0 +
3∑

i=1

(hiωi)
2

]1/2

, βi =
hiωi

α
, (15)

the line element ds is written by

ds2 = −α2dt2 +
3∑

i=1

(hidxi − αβidt)2. (16)

Using “zero-angular-momentum observer (ZAMO) frame” x̂µ, where the line element is ds2 = −dt̂2 +∑
i(x̂

i)2 = ηµνdxµdxν , we have the 3+1 formalism of the generalized GRMHD and the Maxwell equations.
As for equations including only derivatives with respect to contravariant vector or anti-symmetric 2nd
rank tensor, we obtain their 3+1 formalism easily using Equations (10) and (11). With respect to an
equation including terms of derivative of symmetric 2nd rank tensor like Equation (12),

∇νSµν = Hµ, (17)

the 3+1 formalism is given by

∂

∂t
Ŝ00 +

1
h1h2h3

∑
j

∂

∂xj

[
αh1h2h3

hj

(
Ŝ0j + βjŜ00

)]
+

∑
j

1
hj

∂α

∂xj
Ŝj0

+
∑
j,k

αβk(GkjŜ
kj − GjkŜjj) +

∑
j,k

σjkŜjk = αĤ0, (18)

∂

∂t
Ŝi0 +

1
h1h2h3

∑
j

∂

∂xj

[
αh1h2h3

hj

(
Ŝij + βjŜi0

)]
+

1
hi

∂α

∂xi
Ŝ00

−
∑

j

α
[
GijŜ

ij − GjiŜ
jj + βj(GijŜ

0i − GjiŜ
0j)

]
+

∑
j

σjiŜ
0j = αĤi, (19)

where the alphabetic index (i, j, and k) runs from 1 to 3, Gij ≡ − 1
hihj

∂hi

∂xj , and σij ≡ 1
hj

∂
∂xj (αβi) (see

Appendix A of Koide [7]).

3 Discussion

Using Equations (3) and (19), we obtain the intuitive 3+1 form of spatial part of the generalized general
relativistic Ohm’s law,

1
ne

∂

∂t

(
µh‡

ne
Ĵ†j

)
= − 1

ne

 1
h1h2h3

∑
j

∂

∂xj

[
αh1h2h3

hj
(K̂ij + βj µh‡

ne
Ĵ†i)

]

+
2µh‡

ne

1
hi

∂α

∂xi
ρ†e −

∑
j

α

{
GijK̂

ij − GjiK̂
jj + βj µh‡

ne

(
Gij Ĵ

†i − GjiĴ
†j

)}
+

∑
j

µh‡

ne
σjiĴ

†j


+α

[
1

2ne

1
hi

∂

∂xi
(∆µp − ∆p) +

(
Ûν − ∆µ

ne
Ĵν

)
F̂iν − η[Ĵ i − ρ′e(1 + Θ)Û i]

]
, (20)
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where we defined the modified current density and modified charge density as,

Ĵ†i ≡ ne

µh‡ K̂i0 = γĴ i + ρ̂eÛ
i − ∆h]

neh‡ ρ̂eĴ
i +

ne∆h

2µh‡ γU i ≈ γJ̃ i + (ρ̃e − γρ̃′e)U
i, (21)

ρ̂†e ≡ ne

2µh‡ K̂00 = ρ̂e

(
γ − ∆h]

2neh‡ ρ̂e

)
+

ne∆h

4µh‡ γ̂2 ≈ γ(ρ̃e − γρ̃′e/2). (22)

The last three terms in the last bracket of the right-hand side of Equation (20) correspond the electro-
motive forces due to gravity, centrifugal force, and frame-dragging effect, respectively. The gravitational
electromotive 3-force,

Egrv =
2µh

(ne)2
∇(lnα)ρ†e

1
γ

(23)

may cause the magnetic reconnection, while frame dragging and centrifugal electromotive forces never
change the topology of the magnetic field configuration. The magnetic reconnection will be induced by
the gravitational electromotive force in the following situation as an example. Let us consider a current
sheet in an accretion disk around a black hole, which is thin and localized near the equatorial plane
and whose current is directed radially. When the net electric charge is distributed at the equatorial
current sheet locally, the local radial electric field is induced by the gravitational electromotive force
E = Egrv. When the direction of the gravitational electromotive force Egrv is the same as that of the
current density J of the current sheet, we can define the positive effective resistivity ηgrv, which satisfies
Egrv = ηgrvJ . We recognize that this effective resistivity induces the magnetic reconnection. The sign
of ηgrv depends on the charge separation ρ†e and the directions of current and gravity. This process
shows that the charge causes the magnetic reconnection in the gravity. It is natural to consider that
the charge separation is not kept stationary because of plasma oscillation and the gravitational magnetic
reconnection is transient. With respect to the charge separation of plasmas around black holes, we found
an new instability of charge separation using linear analysis of the generalized GRMHD equations [8].
This instability causes the charge separation with small-scale length in a disk around a black hole. Thus,
the gravitational electromotive force due to the small-scale charge separation is expected to induce the
magnetic reconnection in average.

I am grateful to Mika Koide for her helpful comments on this paper. I thank Kunihito Ioka for his
fruitful discussion during the conference.
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