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Resumo

Há diversos modelos atuais da F́ısica que pressupõe a existência de dimensões extras

a fim de resolver determinados desafios teóricos enfrentados pelo Modelo Padrão, como o

problema da hierarquia (a descomunal diferença de intensidade da interação gravitacional

comparada com a magnitude das demais forças) e a busca por uma teoria de unificação que

inclua a gravitação. Em geral, uma caracteŕıstica importante dos modelos de dimensões

extras é a previsão de amplificação da intensidade da força gravitacional em curtas

distâncias. Essa peculiaridade tem grande interesse do ponto de vista fenomenológico

porque, em prinćıpio, permite examinar experimentalmente a existência de dimensões

adicionais por meio de testes em laboratório da lei do inverso do quadrado para a força

gravitacional. Neste trabalho, com o propósito de estabelecer v́ınculos experimentais

para o desvio da interação gravitacional em domı́nios subatômicos, analisaremos dados

espectroscópicos de alguns átomos muônicos obtidos recentemente. Mais especificamente,

consideraremos os dados sobre a transição 2P − 2S do hélio-4 muônico, do hélio-

3, do deutério e hidrogênio muônicos. Esses átomos são produzidos em laboratórios,

substituindo-se o elétron pelo múon. Como a massa do múon é mais de duzentas vezes

maior do que a do elétron, os átomos muônicos constituem sistemas apropriados para

testes de modificações da gravitação no domı́nio atômico. Compararemos os nossos

v́ınculos com os limites experimentais determinados previamente a partir de dados

espectroscópicos de outros átomos, como hidrogênio eletrônico e hélio anti-protônico.

Como veremos, os nossos limites são mais fortes na escala de distância abaixo do

picômetro. Analisaremos ainda a transição 2P3/2−2P1/2 do hélio-4 muônico, que depende

da estrutura fina do átomo. Através do estudo da influência do acoplamento spin-

órbita gravitacional nessa transição, determinaremos limites para desvios do potencial

pós-Newtoniano associado ao parâmetro gama do formalismo PPN (Parameterized post-

Newtonian formalism).

Palavras-Chave: Teorias de gravitação modificada, dimensões extras, testes

espectroscópicos, átomos muônicos.
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Abstract

Several current models in Physics assume the existence of extra dimensions in order

to solve certain theoretical challenges faced by the Standard Model, such as the hierarchy

problem (the enormous difference in the intensity of the gravitational interaction compared

to the magnitude of the other forces) and the search for a unification theory that

includes gravity. In general, an important characteristic of extra-dimensional models is

the prediction of amplification of the strength of the gravitational force at short distances.

This peculiarity is of great interest from a phenomenological point of view because, in

principle, it allows experimental examination of the existence of extra dimensions through

laboratory tests of the inverse square law for the gravitational force. In this work, with

the purpose of establishing experimental constraints for deviations of the gravitational

interaction in subatomic domains, we will analyze recent spectroscopic data of muonic

atoms. More specifically, we consider data on the 2P − 2S transition of muonic helium-4,

muonic helium-3, muonic deuterium and muonic hydrogen. These atoms are produced

in laboratories by replacing the electron with the muon. Since the mass of the muon

is more than two hundred times greater than that of the electron, muonic atoms are

suitable for probing modifications of gravitation in the atomic domain. We will compare

our constraints with experimental limits previously determined from spectroscopic data

of other atoms, such as electron hydrogen and antiproton helium. As we will see, our

limits are the most stringent on the sub-picometer distance scale. We will also analyze

the 2P3/2−2P1/2 transition of muonic helium-4, which depends on the fine structure of the

atom. By studying the influence of the gravitational spin-orbit coupling on this transition,

we will determine limits for deviations of the post-Newtonian potential associated with

the gamma parameter of the Parameterized post-Newtonian formalism (PPN formalism).

Keywords: Theories of Modified Gravity, extra dimensions, spectroscopic tests,

muonic atoms.
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9 Desenho esquemático da balança de Torção criada pelo grupo Eöt-Wash
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espectroscópicos. 90% CL - p4He+ (n, L) : (33, 32) → (31, 30),

HD+ (v, L) : (0, 3) → (9, 3), HD+ (v, L) : (0, 0) → (0, 1), r2d − r2p, H(1S−3S)

e µ4He+(2S−2P ). 95% CL - demais experimentos [5, 81, 84, 85]. . . . . . . . . 77
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1 Introdução

Na f́ısica existem quatro forças fundamentais: a força gravitacional, a força

eletromagnética, a força nuclear fraca e a força nuclear forte. As teorias de dimensões

extras surgem para apresentar alternativas para diversos desafios da f́ısica, entre eles a

unificação da força gravitacional com as demais interações. Uma das dificuldades na busca

pela unificação é que em curtas distâncias a intensidade da gravidade difere enormemente

das outras três forças, sendo a mais fraca entre as quatro, várias ordens de magnitude.

Essa caracteŕıstica, conhecida como o problema da hierarquia, pode ser explicada pela

existência das dimensões extras.

Em 1905 uma teoria abalava o mundo f́ısica, trata-se da Teoria da Relatividade

Restrita publicada por Albert Einstein. A partir desta teoria Einstein introduziu o

conceito de que o espaço e o tempo estão interligados, descrevendo ainda o comportamento

da matéria na ausência de campos gravitacionais em referenciais puramente inerciais. Uma

nova f́ısica começava então a engatinhar para o que seria uma grande revolução, a Teoria

da Relatividade Geral. Publicada em 1915, por Einstein, a Relatividade Geral visava

generalizar os conceitos propostos pela Relatividade Restrita, explicando a gravidade

como uma propriedade geométrica, ou seja, a curvatura do espaço-tempo provocada pela

matéria e a radiação presente.

Considerando a teoria do eletromagnetismo, formulada por Maxwell, Einstein tentou

unificar a gravitação ao eletromagnetismo. Em paralelo, durante esse mesmo peŕıodo

Kaluza propôs o que seria o “milagre de Kaluza”, demonstrando que ao adicionar

uma dimensão espacial extra ao cenário quadridimensional era posśıvel então unificar

a Relatividade Geral e o Eletromagnetismo [7].

Alguns anos depois Klein contribuiu para refinar a teoria de Kaluza [8], adicionando

a ideia da compactação da dimensão extras. Depois da Teoria de Kaluza-Klein, diversas

outras teorias de dimensões extras emergiram, como, por exemplo, a Teoria das Cordas,

a Teoria de Mundos Branas, entre outras.

Existem diversas teorias de branas. Aqui daremos especial atenção ao modelo ADD

(Arkani, Dimopoulos, Dvali), que é um modelo pioneiro e paradigmático das chamadas
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teorias de branas de grande escala [87]. O nosso interesse em estudá-las vem do fato de que

nessas teorias existe a possibilidade de amplificar a interação gravitacional em distâncias

muito curtas comparadas com o raio de compactação das dimensões extras, que, por sua

vez, pode ser muito maior do que o comprimento de Planck. De acordo com essas teorias,

vivemos em um espaço tridimensional chamado 3-brana que está imerso em um espaço de

mais dimensões. Toda a matéria e campos existentes estão confinados na 3-brana exceto

o campo gravitacional.

Portanto, considerando esse contexto, é posśıvel conjecturar que a gravitação seria

diretamente afetada pela existência de dimensões extras e dessa forma geraria desvios na

lei do inverso do quadrado na escala de comprimento dessas dimensões.

Motivados por encontrar experimentos que pudessem examinar esses desvios,

cientistas desenvolveram diversos testes de laboratório, entre eles destacamos os testes

espectroscópicos. Neste trabalho usaremos esses experimentos em átomos exóticos, mais

precisamente em átomos muônicos. Nosso interesse especial pelos átomos muônicos se

justifica pelo fato de que o múon é 200 vezes mais pesado que o elétron amplificando

ainda mais a interação gravitacional com o núcleo.

Nosso principal objetivo neste trabalho é obter v́ınculos para desvios da

interação gravitacional a partir de dados espectroscópicos do hélio-4 muônico. Mais

especificamente, utilizaremos medidas da transição 2S1/2 − 2P3/2 obtidas recentemente

[63]. Consideraremos também medidas dessa mesma transição no deutério e hidrogênio

muônicos. A partir dessas medidas é posśıvel determinar o raio de carga do deuteron (rd)

e do próton (rp) com grande precisão. Aliás, devemos ressaltar que essa possibilidade foi

uma das grandes motivações para se estudar os átomos muônicos recentemente. Essas

medidas tiveram grande repercussão porque se mostram em conflito com os resultados

inferidos pela espectroscopia dos átomos tradicionais. Esse conflito ficou conhecido como o

problema do raio do próton. Apesar de raios rd e rp extráıdos a partir dos átomos muônicos

estarem em conflito com os valores inferidos a partir dos átomos eletrônicos, a diferença

dos quadrados (r2d − r2p) concorda com alta precisão. Como os resultados são compat́ıveis,

isso impõe restrições para interações anômalas. Exploraremos esses resultados para
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impor v́ınculos para modificações da gravitação nesse domı́nio. Para isso consideramos

o formalismo de teoria da perturbação em primeira ordem, corrigindo o potencial

gravitacional Newtoniano por meio do potencial de Yukawa, comparando os resultados

obtidos neste trabalho com os limites estabelecidos pelo hélio antiprotônico, hidrogênio

eletrônico e o HD+, que são os v́ınculos espectroscópicos mais fortes atualmente, todavia

verificamos que na faixa de λ < 10−12 m os nossos v́ınculos são um pouco mais fortes.

Além disso, visamos também investigar posśıveis modificações no Potencial Pós-

Newtoniano associado à curvatura das seções espaciais do espaço-tempo. Isso é

importante, porque teorias de gravitação distintas (como a teoria de Brans-Dicke) preveem

diferentes medidas para este potencial. Em longas distâncias esse potencial está associado

ao parâmetro γ do formalismo PPN. Uma maneira de investigar o comportamento

desse potencial na escala atômica é através da análise de medidas recentes da transição

2P1/2−2P3/2 do ı́on hélio-4 muônico [63]. Isso acontece, pois essa transição é influenciada

pelo potencial que descreve o acoplamento spin-órbita gravitacional. Esse potencial, como

veremos, depende do potencial pós-Newtoniano mencionado acima.

Como já mencionamos, a escolha de átomos muônicos é bem simples de ser

compreendida, sabemos que o múon é mais pesado do que o elétron, e como a interação

gravitacional é diretamente proporcional a massa, esta interação é mais forte em átomos

muônicos. Todavia, é importante destacar que medidas realizadas em átomos eletrônicos

têm uma precisão muito maior, ou seja, a taxa de erro entre os dados obtidos nestes

átomos é bem menor. Apesar disso, quando consideramos λ < 10−10 m, os resultados

obtidos neste trabalho são mais fortes.

Para realizar nosso objetivo dividimos este trabalho em quatro caṕıtulos principais.

Na primeira parte faremos uma breve revisão teórica sobre a teoria de Kaluza-Klein e o

modelo ADD, pois ambas utilizam as dimensões extras em seu formalismo, focando no

modelo ADD para apresentar alguns conceitos que motivam a realização desse estudo. No

segundo caṕıtulo, apresentamos alguns testes experimentais visando analisar a gravitação

em curtas distâncias, buscando explicar como funcionam os modelos experimentais que

possuem o objetivo de estudar desvios no comportamento padrão da gravitação. Por fim,
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no terceiro e no quarto caṕıtulos, apresentamos os novos v́ınculos obtidos nesse trabalho

para modificações do potencial gravitacional Newtoniano e do potencial Pós-Newtoniano

usando os dados dos átomos muônicos leves. Essa análise é complementada por

comparações dos nossos v́ınculos com limites experimentais determinados mediante outros

experimentos prévios. Como veremos, nossos resultados, entre os testes espectroscópicos,

estabelecem os v́ınculos mais restritivos na escala de distância inferior ao picômetro.
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2 Revisão Teórica

Neste caṕıtulo, nosso objetivo é contextualizar nosso trabalho discutindo as origens

de sua motivação. Para isso, examinaremos o ińıcio do estudo sobre teorias de dimensões

extras e abordaremos mais detalhadamente um modelo particular das chamadas teorias

de branas.

Dessa forma é natural dividir esta revisão teórica basicamente em duas partes, na

primeira, nosso ponto de partida para o ińıcio desta investigação é a Teoria de Kaluza-

Klein, em que pela primeira vez foi posśıvel realizar a unificação entre eletromagnetismo

e gravitação. Veremos como Kaluza tornou isso posśıvel, e mais tarde, como Klein

complementou seu trabalho, tornando a teoria um pouco mais sólida.

Na segunda parte, abordaremos de maneira mais detalhada outra teoria de dimensões

extras: o Modelo ADD, na qual calcularemos explicitamente a influência das dimensões

extras sobre o potencial gravitacional.

2.1 A Teoria de Kaluza-Klein

Na F́ısica, existem duas forças fundamentais de grande alcance que regem as interações

entre corpos, a Gravitação - que domina o comportamento dos planetas, estrelas e galáxias

- e o Eletromagnetismo que domina o comportamento das part́ıculas no interior da

matéria. Einstein acreditava que as duas teorias deveriam ser unificadas em uma única

teoria geral. Entretanto, falhou em demonstrar isso. Com o mesmo objetivo de Einstein,

Theodor Kaluza foi o responsável por elaborar uma teoria que tentava unificar essas

duas áreas do conhecimento, publicada em 1921 em seu artigo “Zum Unitätsproblem der

Physik”, ou em ĺıngua inglesa “On the Unification Problem in Physics”.

Kaluza observou que existia uma semelhança formal entre o Śımbolo de Christoffel

Γλ
µν e o tensor eletromagnético Fµν . As duas grandezas contêm termos que envolvem

diferenças de derivadas parciais de ’potenciais’ métricos, num caso, e eletromagnéticos,

no outro. Como podemos verificar na expressão a seguir [7, 9]:
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Γλ
µν =

1

2
gλσ(∂µgσν + ∂νgσµ − ∂σgµν), (2.1)

Fµν = ∂µAν − ∂νAµ, (2.2)

onde gµν é o tensor métrico e Aµ é o quadrivetor potencial. Kaluza então teve a ideia

de adicionar uma dimensão extra, dessa forma, construiria um espaço com as quatro

dimensões usuais xµ mais uma quinta dimensão z de caráter espacial. A métrica foi

organizada da seguinte forma:

gAB =



gµν + k2ϕ2AµAν kϕ2Aµ

kϕ2Aν ϕ2


 . (2.3)

Kaluza considerava a condição ciĺındrica dada por:

∂gAB

∂z
= 0, (2.4)

pelo fato de que a existência da dimensão extra não poderia ser observada diretamente.

A Teoria de Kaluza era bem definida. Entretanto, precisamos destacar que a métrica

definida por ele não era covariante sob transformação geral de coordenadas. Motivado por

este problema, o f́ısico sueco Oscar Klein sugeriu algumas correções para estes resultados

mantendo a condição ciĺındrica proposta por Kaluza. Em seu artigo “Quantum Theory

and Five-Dimensional Relativity”, em 1926, Klein fez algumas alterações na Teoria de

Kaluza sugerindo que a quinta dimensão deveria ser compacta, procurando uma maneira

de justificar a condição ciĺındrica proposta por Kaluza [10, 11].

Além disso, Kaluza considerou que em dimensões superiores o Universo era vazio.

Portanto, sua ideia era baseada em descrever o universo 4D como uma manifestação do

Universo em 5D. Considerando esta afirmação, as equações de Einstein no vácuo em 5

dimensões devem ser escritas como:

GAB = 0, (2.5)
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ou,

RAB = 0. (2.6)

Considerando a eq.2.3 temos que o śımbolo de Christoffel e o tensor de Ricci são

escritos de maneira análoga ao sistema 4D. Dessa forma, temos:

RAB = ∂CΓ
C
AB − ∂BΓ

C
AC + ΓC

CDΓ
D
AB − ΓC

BDΓ
D
AC , (2.7)

ΓC
AB =

1

2
gCD(∂AgDB + ∂BgDA − ∂DgAB). (2.8)

As equações de Einstein em cinco dimensões são análogas às equações em 4D, se

considerarmos A = 0, 1, 2, 3, 4 podemos escrevê-las da seguinte maneira:

GAB = RAB − 1

2
RgAB. (2.9)

O próximo passo é resolver estas equações utilizando a condição ciĺındrica prevista na

eq. 2.4. Dessa forma, considerando a métrica dada pela eq. 2.3 obtemos equações para

Gµν e Fµν , que possuem dependência do campo escalar ϕ. Portanto, se considerarmos que

o campo ϕ é uma constante no espaço-tempo podemos finalmente obter que:

Gµν = 8πGϕ2TEM
µν , (2.10)

∇µFµν = 0, (2.11)

tal que Gµν ≡ Rµν−Rgµν/2 é o tensor de Einstein em 4D e TEM
µν ≡ gµνFαβF

αβ/4−F α
µ Fνα

é o tensor de energia-momento eletromagnético. Portanto, podemos concluir que a Teoria

de Kaluza-Klein contém a equação da gravitação quadridimensional acoplada às equações

de Maxwell no vácuo.

19



2.2 Compactação de Klein

Como já citado anteriormente, Oskar Klein fez algumas modificações na Teoria de

Kaluza. É importante destacar que essas mudanças não eliminam a condição ciĺındrica.

Para poder escrever matematicamente uma relação de periodicidade, Klein considerou

que a quinta dimensão teria a topologia de um ćırculo, dessa forma, os pontos devem ser

identificados se suas coordenadas são dadas por:

z → z + 2πR. (2.12)

Consequentemente se um campo escalar ϕ(xµ, z) está definido nesse espaço de 5

dimensões, ele deve satisfazer a seguinte condição:

ϕ(xµ, z) = ϕ(xµ, z + 2πR), (2.13)

onde R é o raio da dimensão extra.

É posśıvel generalizar essa condição para qualquer campo, considerando que todos são

periódicos em relação à quinta coordenada. Dessa forma, expandimos todos os campos

usando uma série de Fourier da seguinte maneira [12]:

gµν(x
µ, z) =

+∞X

n=−∞
gnµν(x

µ)einz/R, (2.14)

ϕ(xµ, z) =
+∞X

n=−∞
ϕn(xµ)einz/R, (2.15)

Aµ(x
µ, z) =

+∞X

n=−∞
An

µ(x
µ)einz/R, (2.16)

onde n é o n-ésimo modo de Fourier e cada função ϕn(xµ) é denominada modo de Kaluza-

Klein. Note que cada campo completo só será independente da dimensão extra somente

no caso particular em que o modo zero (n = 0) é o único modo ”excitado”.

Agora, precisamos estudar os efeitos dessa compactação. Para simplificar os cálculos

consideraremos um campo escalar ϕn(xµ, z) sem massa em um espaço com métrica plana.
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Podemos dizer então que este campo satisfaz a equação de Klein-Gordon em 5D dada

por:

□(5)ϕ(x
µ, z) = 0, (2.17)

onde □(5) = □+ ∂2

∂z2
se refere ao operador d’Allambertiano em cinco dimensões.

Para resolver a eq. 2.17 podemos utilizar o método de separação de variáveis. Para

isso escrevemos:

ϕ(xµ, z) = χ(xµ)φ(z). (2.18)

Assim, seguindo a aplicação do método, substitúımos a eq. 2.18 na eq. 2.17,

obtemos:

1

χ(xµ)
□χ(xµ) +

1

φ(z)

∂2φ(z)

∂z2
= 0. (2.19)

Note que a única maneira dessa equação ser satisfeita é considerar que cada termo seja

uma constante e a soma dessas constantes, seja nula. Aqui destacamos que a assinatura

adotada é (−,+,+,+,+). Assim, podemos escrever que:

1

χ(xµ)
□χ(xµ) = C, (2.20)

1

φ(z)

∂2φ(z)

∂z2
= −C. (2.21)

Observe também que a partir da eq. 2.20 é posśıvel obter que:

□χ(xµ) = Cχ(xµ). (2.22)

Como estamos adotando uma assinatura (−,+,+,+,+), sabemos que a equação de

Klein-Gordon que considera a massa será dada por:

(□−m2)ϕ = 0. (2.23)
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Realizando a comparação com eq. 2.22, podemos perceber que a constante C está

relacionada à massa do campo.

O próximo passo é resolver a eq. 2.21, cuja solução será dada por:

ϕ(z) = A sin
�√

Cz
�
+ B cos

�√
Cz

�
. (2.24)

Portanto, considerando as condições de contorno apropriadas para a eq. 2.13, ou

seja, a condição periódica dada por:

ϕ(0) = ϕ(2πR). (2.25)

Devemos ter:

cos(2πR
√
C) = 1. (2.26)

A equação acima então é satisfeita se escrevermos:

C =
n2

R2
, (2.27)

onde n = 0, 1, 2, 3... é um número inteiro.

Assim, conclúımos que C é uma constante não negativa e que devido a este fato

podemos escrever C = m2 1, reforçando ainda mais a ideia de que a constante desempenha

realmente o papel da massa para o campo quadridimensional. De fato, a eq. 2.23 pode

ser reescrita como:

□χ(n)(χµ) = m2
nχ

(n)(xµ), (2.28)

sendo assim, substituindo C = m2 na eq. 2.27 podemos finalmente obter que:

mn =
n

R
. (2.29)

Nesse sentido, temos um campo escalar 4D sem massa apenas para o modo zero, ou

1isto também pode ser visto na comparação entre a equação de Klein-Gordon com massa e a eq. 2.22
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seja, em n = 0. Para qualquer outro valor de n temos o que chamamos de modos de

Kaluza-Klein ou modos KK com massa.

É importante destacar que cada modo possui uma energia de repouso de ordem n/R,

por isso, não podem ser excitados com uma energia inferior a este valor. Observe que se

o raio da dimensão extra for suficientemente pequeno, a energia para excitar um modo

n ̸= 0 será tão grande que não poder ser observado experimentalmente. Devido a este

fato, apenas o modo normal n = 0 seria observado, como proposto pela Teoria de Kaluza.

Podemos então nos questionar sobre o quão grande pode ser o tamanho da escala de uma

quarta dimensão. Para justificar que até os dias atuais não se pode observar as dimensões

extras, teóricos supõem que a escala de compactação seja da ordem do comprimento de

Planck [13], ou seja:

Rp ≡
�
ℏG
c3

�1/2

≈ 1.6× 10−35 m. (2.30)

Consequentemente, admitindo tal escala a massa dos estados excitados seria da ordem

da massa de Planck, ou seja, Mp ≈ 1019 GeV . Portanto, considerando o ńıvel de energia

alcançado pelos aceleradores de part́ıculas da ordem de 1 Tev, a não detecção da quinta

dimensão estaria explicada.

Desse modo, a partir do uso do seu mecanismo de compactação, Klein justificou

fisicamente a hipótese puramente matemática de Kaluza.

2.3 Modelo ADD

O modelo ADD é mais um modelo visando solucionar algum problema f́ısico por meio

das dimensões extras. Foi batizado dessa forma devido aos nomes dos cientistas Nima

Arkani-Hamed, Savas Dimopoulos e Gia Dvali. No caso da Teoria de Kaluza-Klein vimos

que a ideia principal era unificar a gravitação e o eletromagnetismo, já o modelo ADD

visa resolver o chamado problema da hierarquia [14].

Em śıntese, o problema da hierarquia trata-se da grande diferença entre a escala eletro-

fraca e a escala gravitacional, cuja ordem de separação é de 1016. O modelo ADD então

tem o objetivo de explicar o porquê a gravidade ser bem mais fraca em comparação com
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a força eletro-fraca.

Nesse sentido, o modelo ADD considera que a escala eletro-fraca é considerada a única

escala fundamental de curta distância na Natureza. A aparente fraqueza da gravidade

é explicada então pela existência de duas ou mais dimensões extras. Diferentemente

do modelo de Kaluza-Klein, este novo modelo afirma que a escala da dimensão extra

poderia atingir comprimentos submilimétricos e por esse motivo, também é conhecido

como modelo de dimensões extras de grande escala.Além disso, apenas o campo

gravitacional se propaga livremente nas dimensões extras, enquanto todos os outros

campos estão confinados num espaço quadridimensional também conhecido como brana.

O confinamento é uma ideia bastante conhecida na literatura e localizar os campos

do modelo padrão não é uma tarefa trivial, entretanto, realizaremos uma ilustração

considerando o modelo de localização dos férmions no defeito topológico conhecido por

parede de domı́nio, proposto por Rubanov e Shaposhnikov [15, 16, 17], no qual o modo

zero dos férmions está preso à parede e não se propaga nas dimensões extras.

2.3.1 Parede de Domı́nio e Branas

No modelo ADD, supõe-se que o Universo observado, ou seja, aquele com (3 + 1)-

dimensões é uma hipersuperf́ıcie imersa em um espaço de dimensões extras, onde toda

matéria está confinada, portanto, nesta seção devemos estudar de que maneira ocorre este

confinamento. A hipersuperf́ıcie citada anteriormente é conhecida como 3-brana, onde o

3 refere-se ao número de dimensões espaciais da hipersuperf́ıcie. Dessa forma, podemos

então afirmar que uma brana é uma subvariedade em um espaço ambiente maior [14].

Partindo do conhecimento de Teoria de Campos, o confinamento da matéria se

relaciona com o aprisionamento da matéria em uma parede de domı́nio, ou seja,

tentaremos separar duas regiões do espaço em que um certo campo escalar admite

diferentes estados de vácuo, ou seja, estados de mais baixa energia [16, 17]. Para

verificarmos este conceito, consideremos então um campo escalar ϕ = ϕ(xµ, z) que descreve

a parede em um espaço que contém dimensão extra. Dessa forma, podemos escrever a

ação como:
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S =

Z
d4xdz

�
1

2
(∂Aϕ− V (ϕ))

�
, (2.31)

onde A = 0, 1, 2, 3, 4 e V (ϕ) é o potencial escalar. Sabemos ainda, por meio da Teoria

de Campos, que o potencial deve ser constrúıdo de tal modo que pode ter dois ou mais

mı́nimos, uma maneira de realizar esta construção é considerando:

V (ϕ) =
λ2

8
(ϕ2 − ν2)2. (2.32)

O leitor observará que este potencial acima possui dois mı́nimos de energia em ϕ = ±ν,

estes mı́nimos também conhecidos como estados de vácuo. Tal comportamento pode ser

descrito na Fig. 1.

Figura 1: Gráfico do potencial V (ϕ). Figura retirada da referência [5].

Para construirmos a dinâmica de campos, usaremos então a equação de Euler-Lagrange

dada por [18]:

∂L
∂ϕ

− ∂A

�
∂L

∂(∂Aϕ)

�
= 0, (2.33)

onde o termo à esquerda representa justamente δL. Note que considerando a ação do tipo

parede de domı́nio que escrevemos acima temos que:
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L =
1

2
(∂Aϕ− V (ϕ)). (2.34)

Sabemos que ao aplicarmos o prinćıpio da mı́nima ação, obtemos as equações de Euler-

Lagrange descritas acima. Dessa forma, obtemos a seguinte equação de movimento:

□(5)ϕ+
dV

dϕ
= 0, (2.35)

onde □(5) = ηAB∂A∂B.

Por outro lado, procuramos obter uma solução do tipo parede de domı́nio. Para

realizar este feito de uma forma relativamente simples, tomamos a iniciativa de a prinćıpio

considerá-la estacionária, além disso, consideramos que o campo é uma função apenas da

coordenada de dimensão extra (z), fazemos isso porque queremos verificar que a matéria

está confinada na brana, ou seja, a matéria não terá “liberdade” para se propagar pelas

dimensões extras. Podemos reescrever a eq. 2.35 da seguinte maneira:

−d2ϕ0(z)

dz2
+

λ2

2
ϕ0(ϕ

2
0 − ν2) = 0, (2.36)

onde podemos verificar que uma solução posśıvel pode ser dada por meio da expressão:

ϕ0(z) = ν tanh

�
λzν

2

�
. (2.37)

Agora precisamos analisar o resultado que obtivemos, sendo assim, note que podemos

observar o comportamento da função quando z −→ ±∞. Observe então que quando

z −→ +∞, ϕ0 = +ν, por outro lado, se z −→ −∞, temos então que ϕ0 = −ν, portanto, é

posśıvel verificar uma conexão entre os estados fundamentais, visto que, a função separa

os dois menores estados de energia do campo ϕ.

Podemos ainda destacar uma importante discussão relacionada com a densidade de

energia da parede de domı́nio. Utilizando os conceitos da Mecânica Hamiltoniana, temos

que a densidade Hamiltoniana H0 tem unidade de energia por 4-volume sendo dada por

Ĥ0 = Πϕ̇−L, onde Π =
∂L
∂ϕ̇

é chamado de momento canônico conjugado à ϕ, lembrando
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que ϕ̇ = ∂Aϕ. Dessa forma, é posśıvel calcular a densidade Hamiltoniana para o campo

escalar ϕ utilizando as expressões escritas anteriormente. Assim, teremos que:

Ĥ0 =
1

2
(∂Aϕ)

2 +
λ

8
(ϕ2 − ν2)2. (2.38)

Figura 2: Solução para o campo escalar ϕ0 do tipo parede de domı́nio. Figura retirada
da referência [5].

Podemos perceber então que em ϕ = ±ν a energia é zero analisando o termo (ϕ2− ν2)

da expressão anterior. Por outro lado, ao considerarmos a solução de ϕ0 na eq. 2.37

obtemos que:

Ĥ0 =
1

2

�
λν2

2cosh2(u)

�2

− λ2

8


ν2(tanh2(u)− 1)

�2
, (2.39)

aqui, u = λνz/2. Portanto, simplificando a expressão anterior, lembrando de utilizar

tanh2(u)− 1 = −sech2u e sech2(u) = 1/cosh2u obtemos finalmente que:

Ĥ0 =
1

4

λ2ν4

cosh4(λνz
2
)
. (2.40)

A distribuição de energia da densidade Hamiltoniana pode ser vista na Fig. 4.

Podemos ainda mostrar que λ está relacionado à largura de concentração. Além disso,

é posśıvel interpretar λν como uma grandeza que tem unidade de inverso de comprimento.
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Figura 3: Densidade de Energia da parede de domı́nio em torno do centro z = 0. Figura
retirada da referência [5].

Portanto, podemos então concluir que é inversamente proporcional à espessura da parede

de domı́nio.

Para concluirmos a análise podemos então integrar a densidade Hamiltoniana com

respeito à dimensão extra z utilizando substituição de variáveis e então encontramos a

energia da parede por unidade de 3−volume

σ =

Z ∞

−∞

1

4

λ2ν4

cosh4(λνz
2
)
dz =

2λν3

3
. (2.41)

No limite onde λ −→ ∞ a espessura da parede tende a zero. Além disso, mantendo

σ constante neste mesmo limite, podemos dizer que a parede de domı́nio dará origem a

uma 3−brana ideal.

2.3.2 Localização da Matéria

Nosso interesse é estudar o modelo ADD, que visa explicar a diferença entre a força

eletro-fraca e a força gravitacional, teorizando que apenas a gravidade pode transitar em

dimensões superiores e todos os outros campos estão confinados na 3−brana. A partir de

agora, introduziremos os férmions neste modelo.

Os férmions são part́ıculas cujo spin é semi-inteiro, além disso, obedecem ao Prinćıpio

de Exclusão de Pauli e são escritos com espinores (ψ), como, por exemplo, o elétron. É
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posśıvel descrever o movimento destas part́ıculas. Para isto utilizamos a famosa Equação

de Dirac [19].

Análogo ao Universo quadridimensional, no cenário de dimensões extras a equação de

Dirac é dada por:

iΓA∂AΨ−mΨ = 0, (2.42)

onde A = (µ, z), com µ = 0, 1, 2, 3 e z representa a coordenada da dimensão extra. Além

disso, ΓA representa as matrizes de Dirac, que satisfazem a álgebra de Clifford assim como

ocorre nas matrizes γµ em quatro dimensões, ou seja,

ΓAΓB + ΓBΓA = 2gAB1. (2.43)

Se lembrarmos que o ı́ndice µ varia de zero a três, então podemos definir ΓA em função

de γµ da seguinte maneira:

Γµ = γµ, (2.44)

Γz = −iγ(5), (2.45)

onde γ5 = iγ0γ1γ2γ3γ4γ5, ou ainda,

γ5 =




0 12×2

12×2 0


 . (2.46)

A ação que gera a equação de Dirac na eq. 2.42 é dada por:

S1/2 =

Z
d4xdz(iΨΓA∂AΨ−mΨΨ), (2.47)

onde podemos ver que a Lagrangiana possui a seguinte forma:

L = iΨΓA∂AΨ−mΨΨ. (2.48)
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Note então que ao aplicarmos o prinćıpio da mı́nima ação iremos justamente obter a

equação de Dirac. Dito isto, tentaremos entender como os férmions se comportam em uma

parede de domı́nio [15, 16, 17] considerando que a interação entre eles é do tipo Yukawa.

Lembre que os férmions são descritos pelo campo de Dirac Ψ e a parede de domı́nio, por

um campo escalar ϕ. Portanto, a ação será dada por:

Sint = −h

Z
d4xdzϕΨΨ, (2.49)

onde h é uma constante de acoplamento. Dessa forma, podemos então concluir que a

ação total será a soma entre a ação que descreve o campo de Dirac e a ação de interação,

portanto:

S =

Z
d4xdz(iΨΓA∂AΨ−mΨΨ− hϕ0ΨΨ), (2.50)

lembramos que ϕ0 é a solução de ϕ na parede de domı́nio. Considerando então o férmion

sem massa, ou seja, m = 0 temos que a ação total pode ser reescrita como:

S =

Z
d4xdz(iΨΓA∂AΨ− hϕ0ΨΨ), (2.51)

Com isso, aplicando as equações de Euler-Lagrange mais uma vez, obtemos a seguinte

equação de movimento:

iΓz∂zΨ+ iΓµ∂µΨ− hϕ0Ψ = 0, (2.52)

que pode ser resolvida considerando o método de separação de variáveis. Como ψ é

uma função das coordenadas do espaço quadridimensional e da dimensão extra, ψ(x, z),

podemos então realizar uma separação de variáveis escrevendo Ψ5(x, z) = ψ(x)f(z), onde

ψ(x) é um espinor em 4D e f(z) é uma função escalar. Substituindo isto na eq. 2.52 e

dividindo toda a expressão por f(z), obtemos:

iΓzψ(x)
∂zf(z)

f(z)
+ iΓµ∂µψ(x)− hϕ0ψ(x) = 0. (2.53)
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Vamos agora tentar identificar certas condições que sejam suficientes para resolvermos

a eq. 2.53. Primeiro observe que com base na equação de Dirac quadridimensional,

gostaŕıamos de ter:

iΓµ∂µψ(x) = mψ(x). (2.54)

Além disso, considerando que iΓz é obtido da eq. 2.45 e admitindo que o espinor

quadridimensionl é quiral, ou seja, γ(5)ψ(x) = −ψ(x), podemos finalmente escrever:

df(z)

dz
= (m− hϕ0)f(z). (2.55)

Sendo assim, podemos interpretar a constante de separação m a massa do espinor

em 4 dimensões. Dessa forma, para o modo zero (uma part́ıcula sem massa) podemos

reescrever a eq. 2.55 como:

df(z)

dz
= −hϕ0f(z). (2.56)

Agora devemos considerar a condição de contorno na qual f(z) −→ 0 no infinito, assim

podemos solucionar esta equação diferencial da seguinte maneira:

f(z) = exp

�
−h

Z z

0

ϕ0(z)dz

�
, (2.57)

portanto, nossa solução geral pode ser escrita como [16]:

Ψ0 = exp

�
−h

Z
ϕ0(z)dz

�
ψ0, (2.58)

onde ψ0 significa justamente a solução de m = 0, ou seja, representa a função de onda

para o modo zero fermiônico. A partir desta solução, observamos que o modo zero dos

férmions está localizado na parede de domı́nio, ou seja, em z = 0, pois se considerarmos

um z muito grande, f(z) cai exponencialmente ao longo da dimensão extra.

Objetivando então determinar os posśıveis valores de m usamos a eq. 2.55, neste

sentido, cada solução pode ser interpretada como uma espécie de massa dos modos KK,
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representados na Fig. 4

Figura 4: Espectro de massa dos férmions preso a brana. Figura retirada da referência
[82]

.

Note que a principal caracteŕıstica do espectro apresentado é que ele possui uma

distância entre o modo zero e os demais modos, proporcional a m(5) = hν, pois lembre

que ϕ0(z) = νtanh(λνz/2). Portanto, observe que quando ν tiver um valor muito grande,

os modos massivos se tornariam inacesśıveis no contexto experimental, pois a energia

para acessá-los seria muito grande [15, 16], e por consequência, temos então uma teoria

compat́ıvel com as observações solidificando ainda mais o argumento do confinamento da

matéria.

2.3.3 Potencial Gravitacional em Dimensões Extras

Considerando um modelo quadridimensional, temos o comportamento do campo

gravitacional muito bem definido, então nosso objetivo agora é entender que efeitos as

dimensões extras causam a este campo, visto que ele é o único que não está preso na

brana. Para iniciarmos a discussão consideremos o campo gravitacional Newtoniano. No

contexto clássico o campo g⃗ satisfaz a equação:

∇⃗ · g⃗ = −4πGρ, (2.59)

onde ρ representa a densidade de matéria e G é a constante gravitacional universal
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considerando (3 + 1) dimensões. Se observamos bem, esta equação nada mais é do que o

equivalente gravitacional para as equações de Maxwell.

Consideramos então uma 3−bola B3(r) cujo contorno é uma 2−esfera. Podemos

integrar a eq. 2.59 na região correspondente a B3(r). Dessa forma, obtemos:

Z

B3(r)

∇⃗ · g⃗dV = −4πG

Z

B3(r)

ρdV. (2.60)

Mas, note que:

Z

B3(r)

ρdV = m. (2.61)

Por outro lado, podemos ainda usar o Teorema da divergência no lado esquerdo da

eq. 2.60 e então obter o seguinte resultado:

Z

S2(r)

g⃗ · dA⃗ = −4πGm. (2.62)

Suponha agora que estamos considerando um corpo massivo esférico. Podemos dizer

que g⃗ depende apenas da direção radial logo, g⃗(r) = g(r)êr onde g(r) representa a

componente radial e êr é o versor na direção radial. Além disso, perceba que quando

realizamos o produto interno reescreveremos a eq. 2.62 da seguinte maneira:

g(R)

Z

S2(r)

dA = −4πGm. (2.63)

Substituindo a integral de superf́ıcie pela área da esfera S2(r) obtemos:

g(R)4πr2 = −4πGm. (2.64)

Por fim, obtemos a equação para o campo gravitacional dada por:

g(r) = −Gm

r2
ou g⃗(r) = −Gm

r2
êr. (2.65)

É bem conhecido que este é o campo gravitacional usual com três dimensões espaciais,

descrito por Isaac Newton. Para encontrarmos o potencial relacionado a este campo basta
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fazer:

g⃗(r) = −∇ϕ, (2.66)

dessa maneira, temos:

ϕ = −Gm

r
. (2.67)

Nosso objetivo agora é generalizar este cálculo considerando agora n dimensões

espaciais. Para isso, considere agora um corpo de massam e uma bola Bn(r) cujo contorno

é uma esfera Sn−1(r). Seguindo o mesmo procedimento anterior obteremos:

Z

Bn

∇⃗ · g⃗dV = −4πG(n)

Z

Bn

ρdV, (2.68)

I

Sn−1

g⃗ · d⃗A = −4πG(n)m. (2.69)

Além disso, temos que o fluxo do campo gravitacional através da superf́ıcie será:
H
Sn−1 g⃗·d⃗A = Φm. Observe que, como antes, g⃗ depende apenas da direção radial. Portanto,

podemos dizer que:

Φm = g(r)A(Sn−1(r)), (2.70)

onde A(Sn−1(r)) é a hiper-área da hipersuperf́ıcie Sn−1(r). Formalmente, a eq. 2.70 é

uma generalização do caso tridimensional analisado anteriormente. Além disso, pode-se

mostrar que A(Sn−1(r)) = rn−1 2π
n
2

Γ(n
2
)
.

Dessa forma, podemos escrever a seguinte expressão:

−4πG(n)m = g(r)rn−1 2π
n
2

Γ(n
2
)
, (2.71)

isolando g(r), obtemos que:
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g(r) = −2G(n)mΓ(n
2
)

π
n
2
−1rn−1

. (2.72)

Assim, podemos dizer que:

g⃗(r) = −2G(n)mΓ(n
2
)

π
n
2
−1rn−1

êr. (2.73)

Note que, podemos reobter o resultado clássico fazendo n = 3 (número de dimensões

espaciais). Sabemos que g⃗ pode ser escrito como o gradiente de uma função escalar da

seguinte maneira:

g⃗ = −∇⃗Φ, (2.74)

tal que ∇Φ =
dΦ

dr
êr = −g⃗(r), portanto:

dΦ

dr
=

2Γ(n
2
)G(n)m

π
n
2
−1rn−1

. (2.75)

Integrando em relação a r, obtemos finalmente que:

Φ =
2Γ(n

2
)G(n)m

π
n
2
−1(n− 2)rn−2

. (2.76)

Perceba então que este resultado nos fornece o potencial gravitacional gerado por uma

massa m em um espaço com n dimensões espaciais não compactas. Note ainda que se

fizermos n = 3 é posśıvel recuperar o potencial Newtoniano.

2.3.4 Potencial Gravitacional com uma dimensão extra compacta

Nesta seção, nosso objetivo é investigar o potencial gerado por uma massa m em um

Universo multidimensional considerando uma dimensão extra compacta. Considere um

observador O que observa uma massa localizada em um ponto do Universo. Como a

nossa hipótese inicial é de que a dimensão extra é compacta, esta possui a topologia de

um ćırculo, portanto as linhas de força/campo com origem em m darão voltas em torno

do espaço até chegar ao observador.
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Imagine então que cortamos o cilindro de tal modo que obtemos um plano onde a

massa m encontra-se no centro. Note agora que, do ponto de vista do observador, ele não

está sofrendo a ação de uma única massa, mas sim de várias imagens da mesma massa (m1,

m2, m3. . . ) espalhadas por uma linha que passa pelo centro de massa. A este conjunto de

massas “observadas” por O daremos o nome de Imagens Topológicas. Como a topologia

da dimensão extra é um ćırculo, teremos então que a distância entre cada imagem

topológica é o comprimento do ćırculo, ou seja, 2πR. Usando essa representação do

espaço compacto, podemos agora calcular o campo gravitacional produzido pela massa m.

Primeiro, verificaremos que para longas distâncias a lei do inverso quadrado é recuperada.

Suponha que o ponto de observação está bem afastado de m, isto é, r >> R. Neste caso,

o conjunto das imagens topológicas podem ser idealizadas como uma linha cont́ınua que

se estende na direção extra, como indica a Fig. 5.

Figura 5: Na figura mais a esquerda temos a representação de uma dimensão extra
compacta, enquanto na figura a direita, há um “corte” realizado no cilindro, logo sua
representação é dada por um espaço “aberto” identificando ainda as massas topológicas.
Figura retirada da referência [83].

Para determinarmos o campo, vamos mais uma vez usar a Lei de Gauss. Com esta

finalidade escolhemos uma hipersuperf́ıcie Gaussiana adaptada à simetria ciĺındrica da

fonte. Portanto, a nossa hipersuperf́ıcie Gaussiana será um hipercilindro de altura h ao

longo da linha cont́ınua de imagens topológicas como mostra a Figura 6. Entretanto,

note que como estamos em um espaço de quatro dimensões, a base do cilindro é uma
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2-esfera (esfera em 3 dimensões) ao invés de um ćırculo.

Figura 6: Superf́ıcie Gaussiana em torno da linha de imagens topológicas. Figura retirada
da referência [6].

Dessa forma, considerando apenas uma dimensão extra e aplicando a Lei de Gauss

teremos:

I

SL

g⃗ · dA⃗ = −4πG5MT , (2.77)

onde MT representa a soma das massas das imagens repetidas de m contidas no interior

do hipercilindro e SL representa a superf́ıcie lateral do hipercilindro. Note que a distância

de separação das massas topológicas é 2πR, portanto, o número de massas topológicas no

interior da superf́ıcie Gaussiana será igual a h/2πR. Assim, podemos concluir que:

MT =
h

2πR
m. (2.78)

A partir da distribuição da matéria, é posśıvel ver que g⃗ terá uma simetria ciĺındrica,

ou seja, a direção do campo resultante será perpendicular à dimensão extra, então não

haverá fluxo gravitacional nas bases do hipercilindro apenas em sua superf́ıcie lateral.

Além disso, g⃗ depende apenas da direção radial r da hipersuperf́ıcie Gaussiana. Dessa

forma, obteremos que:

g(r)

Z

SL

dA = −4πG5

�
h

2πR
m

�
. (2.79)

Para resolvermos este problema, basta então lembrar que a base do hipercilindro é
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uma 2-esfera, que por sua vez, tem área 4πR2. Assim segue que:

g(r)4πr2h = −4πG5

�
h

2πR
m

�
. (2.80)

Assim, podemos concluir que:

g⃗(r) = −G5m

2πR

1

r2
êr. (2.81)

Integrando em relação a r podemos obter o potencial gravitacional. Dessa forma,

obtemos:

V (r) = −
�
G5m

2πR

�
1

r
. (2.82)

Portanto, podemos comparar esta equação ao potencial gravitacional em quatro

dimensões se admitirmos que:

G4 =
G5

2πR
, (2.83)

o potencial gravitacional é recuperado:

V (r) = −G4m

r
. (2.84)

Conclúımos então que para grandes distâncias, ou seja, para r >> R é posśıvel

recuperar a Lei do inverso do quadrado de Newton.

2.3.5 Potencial Gravitacional em várias dimensões extras compactas

Generalizando a Lei de Gauss para δ-dimensões, considerando ainda o hipercilindro C

como superf́ıcie Gaussiana, podemos escrever:

I

SL

g⃗ · dA⃗ = −4πG(4+δ)MT , (2.85)

Note ainda que agora a superf́ıcie Gaussiana se estende em todas as direções extras por

um comprimento h. Assim, a hiperárea da parte lateral dessa hipersuperf́ıcie Gaussiana
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será proporcional a hδ multiplicada pela área da superf́ıcie esférica, presente na base desse

hipercilindro. Com base nesses argumentos, podemos finalmente escrever:

g · (4πr2) · hδ = −4πG4+δ
hδ

(2πR)δ
m. (2.86)

Portanto, para longas distâncias, isto é, para r >> R, o campo gravitacional, nesse

espaço compacto, se comporta conforme a lei do inverso do quadrado:

g = −G(4+δ)m

Vδr2
, (2.87)

onde,

Vδ = (2πR)δ, (2.88)

representa o volume do espaço suplementar.

Note que para recuperar, em termos quantitativos, o comportamento observado do

campo gravitacional é necessário identificarmos a constante gravitacional do espaço maior

com a constante Newtoniana conforme a expressão:

G(4) =
G(4+δ)

Vδ

. (2.89)

Conclúımos então que em regiões distantes da fonte a Lei do Inverso do Quadrado

é recuperada. Em regiões próximas à fonte podemos usar a simetria esférica ao invés

da ciĺındrica, dessa forma é posśıvel escrever o potencial gerado pela fonte de maneira

aproximada da seguinte forma:

V = −G(4)
m

r
, (r >> R) (2.90)

V = −4πG(4+δ)Γ(
δ+3
2
)

2π
δ+3
2 (δ + 1)

m

r(δ+1)
, (r << R), (2.91)

onde S(d) = πd/2/Γ(d/2). Note que a eq. 2.91 representa um desvio na lei do inverso

do quadrado, uma vez que o potencial produzido pela massa m sofre uma amplificação
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no modelo de branas ADD. Portanto, nesse cenário de dimensões extras, dependendo do

valor da constante gravitacional do espaço maior, é posśıvel especular sobre detecção de

efeitos mensuráveis das dimensões extras sobre os experimentos que buscam desvios na

força gravitacional.

2.3.6 Compactação Toroidal

Tentaremos agora determinar o potencial gravitacional produzido por uma massa em

ponto qualquer desse espaço compacto. Para sermos mais espećıficos, vamos considerar

um espaço-tempo (δ + 4)-dimensional, onde as dimensões extras xi, i = 1, 2, ..., δ, estão

compactadas em ćırculos, cada ćırculo com raio R. Assim, considerando que o potencial

gravitacional produzido satisfaz a equação de Poisson, podemos então escrever o potencial

gravitacional gerado por uma massa M a uma distância R = (r2 + x2
1 + x2

2 + ...+ x2
δ)

1/2,

onde r2 = x2 + y2 + z2 (Fig. 7)

Figura 7: Simplificação de um potencial gerado por uma massa M em um espaço extra-

dimensional. Figura retirada da referência [6].

Assim, em um espaço com topologia do Rδ+3, temos:

VM = −G(δ+4)M

|R|δ+1
= − G(δ+4)M

(r2 +
Pn

i=1 x
2
i )

δ+1
2

. (2.92)

Como vimos anteriormente, os efeitos do espaço compacto podem ser implementados

por meio das chamadas imagens topológicas. Para simplificar a nossa descrição

identificaremos cada imagem topológica como uma sequência de δ números inteiros
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(m1,m2, ...,mδ), que nos fornece a localização de cada massa no espaço suplementar.

Considerando então um vetor T⃗1 que localiza a imagem topológica m1 (Fig. 8).

Figura 8: Representação da influência de uma imagem topológica sobre um ponto no

espaço extra-dimensional. Figura retirada da referência [6].

Podemos escrever T⃗1 em termos de suas componentes da seguinte maneira:

T⃗1 = (0, 0, 0, x1 = 2πR, 0, ..., 0). (2.93)

Generalizando a forma escrita anteriormente para um T⃗m (imagem topológica

qualquer):

T⃗m = l(0,m1,m2, ...,mδ) = l(0,m), m ∈ Z e, l = 2πR. (2.94)

Além disso, generalizando também a forma do potencial obtemos a seguinte expressão:

VM = −G4+δM

|r⃗m|δ+1
= − G4+δM

|R⃗− T⃗m|δ+1
= − G4+δM

(r2 +
Pn

i=1(xi − 2πRmi)2)
δ+1
2

. (2.95)

O potencial para todas as imagens topológicas então pode ser escrito com um

somatório, dessa forma teremos:

V4+δ = −
X

m⃗

G4+δM
�
r2 +

Pδ
i=1(xi − 2πRmi)2

� δ+1
2

. (2.96)
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Observe que para distâncias curtas, ou seja, r << R o termo correspondente à m = 0

irá dominar a soma, pois os outros termos irão fornecer um valor maior para os seus

respectivos denominadores [3]. Portanto:

V4+δ = − G4+δM

(r2 + x2)
δ+1
2

, (2.97)

Dessa forma, é posśıvel então recuperar o comportamento em (δ + 1)-dimensões que

obtemos anteriormente, ou seja, próximo da massa-fonte os efeitos da compactação não

são dominantes.

Considerando agora r >> R, as massas topológicas estariam relativamente muito

próximas, formando então aproximadamente uma linha de distribuição cont́ınua de

imagens topológicas. Nessa idealização, podemos calcular o potencial gerado substituindo

a soma das expressões acima por uma integral. Para simplificar nossa análise, considere

que x⃗m = x⃗ − 2πR⃗m, onde R⃗m = R(m1,m2, ...,mδ) na eq. 2.96. Note que o vetor x⃗m

localiza pontos de uma rede, cujo volume de cada célula é ξ = (2πR)δ, que é justamente

o volume do toro n-dimensional. Portanto, a fração de imagens topológicas no interior de

um elemento de volume do espaço suplementar seria dada por:

dN =
dδx

ξδ
. (2.98)

O potencial gerado por esse grupo de imagens seria, então, infinitesimal e seria dado

por:

dV4+δ = −G4+δM

ξδ

1

(r2 + x2)
δ+1
2

dδx. (2.99)

Dessa forma, considerando todas as imagens topológicas, o potencial gerado será:

V4+δ ≃ −G4+δM

ξδ

Z

Rn

1

(r2 + x2)
δ+1
2

dδx. (2.100)

Aqui é posśıvel calcular a integral no espaço suplementar fazendo uma mudança

de coordenadas para coordenadas esféricas, uma vez que a função integrada depende
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de x2. Usando a superf́ıcie de uma esfera unitária (δ − 1)-dimensional, A(Sδ−1(1)) =

2πδ/2

Γ

δ
2

��−1
. Assim:

V4+δ ≃
−G4+δM

ξδ

Z ∞

0

A(Sδ−1(1))xδ−1

(r2 + x2)
δ+1
2

dx (2.101)

=
−G4+δMA(Sδ−1(1))

ξδ

Z ∞

0

xδ−1

(r2 + x2)
δ+1
2

dx (2.102)

=
−G4+δMA(Sδ−1(1))

ξδ

 √
πΓ


δ
2

�

2Γ

δ+1
2

� 1
r

!
=

−G4+δA(S
δ(1))M

2ξδr
. (2.103)

Como esperado, o comportamento ordinário do potencial em três dimensões é

recuperado. Esse resultado havia sido deduzido na seção anterior usando a Lei de Gauss.

Aqui, obtivemos diretamente a partir da expressão eq. 2.96, que corresponde ao valor

exato do potencial gravitacional produzido por uma massa nesse espaço com topologia

R3 × T δ.

2.3.7 Cálculo das Correções de Potencial devido às Dimensões Extras

Para melhorarmos a aproximação do nosso resultado para longas distâncias, vamos

mais uma vez utilizar o potencial produzido por todas as massas topológicas, dado na

eq. 2.96. A nossa ideia é tentar simplificar aquela expressão ao máximo, e aplicar

aproximações apenas no estágio final do procedimento.

Podemos reescrever a eq. 2.96 da seguinte maneira:

V4+δ = −G4+δM
X

m⃗

1
�
r2 +

Pδ
i=1(xi − 2πRmi)2

� δ+1
2

. (2.104)

Da expressão acima, podemos verificar que o potencial resultante é periódico nas

dimensões extras, devido a sua topologia toroidal. O peŕıodo será igual ao comprimento

2πR, em cada direção. Como sabemos, as funções periódicas podem ser expandidas em

série de Fourier. Podemos mostrar (ver detalhes no Apêndice A), que a série de Fourier
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do potencial escrito na eq. 2.104 pode ser escrita como:

V4+δ = −G4+δM

(2πR)δ

X

m⃗

eim⃗·x/R
Z +∞

−∞

e−im⃗·x′/R

(r2 + x′2)
δ+1
2

dx′. (2.105)

A integral acima é conhecida e pode ser calculada explicitamente (ver Apêndice B).

Após algumas manipulações encontramos:

V4+δ = −G4M

r

X

m⃗

e−r|m⃗/R|e−im⃗·x/R. (2.106)

Considerando que a matéria e os campos (exceto o gravitacional) estão presos a brana

tomamos x = 0, pois o observador também está confinado na brana. Assim, teremos que

a uma distância r da massa m, o potencial produzido será dado por:

V4+δ = −G4M

r

X

m⃗

e−r|m⃗/R|. (2.107)

Esse resultado acima é exato, porém pouco prático porque é dado em termos de

uma série. No entanto, se r ≫ R, os termos da série são exponenciais que decrescem

rapidamente. Assim, sob tais condições, podemos truncar a série. Uma primeira

aproximação tomando apenas os maiores termos [3, 4], ou seja, |m| = 0 e |m| = 1,

encontramos:

V4+δ ≃
G4M

r
(1 + αe−r/R), (2.108)

onde α será igual a duas vezes o número de dimensões compactas com o mesmo raio de

compactação R. Essa relação entre α e o número de dimensões extras segue do seguinte

resultado. O vetor m⃗ pode ter módulo unitário de diferentes maneiras. A componente

m1 pode valer +1 ou −1, e as demais nulas, por exemplo. Ou, apenas a componente m2

valeria +1 ou −1. Portanto, como há δ componentes, conclúımos que α = 2δ.

A eq. 2.108 mostra que para longas distâncias o comportamento do potencial

gravitacional tridimensional é recuperado, mas há correções devido às dimensões extras.

Essa correção que tem a forma αe−r/R é conhecida como correção do tipo Yukawa. Esse
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tipo de correção é muito importante porque ela pode ter diferentes origens teóricas.

Há teorias do tipo F (R) que também preveem correções desse tipo. No caṕıtulo 4,

utilizaremos essa parametrização de Yukawa para impor v́ınculos para as modificações

do potencial gravitacional.

2.3.8 Gravitação e Comprimento de Planck

Em algumas situações é um pouco mais simples trabalharmos a gravitação utilizando

o sistema de unidades de Planck, onde fazemos a substituição das três unidades básicas:

segundo, grama e cent́ımetro, por outras unidades de tempo, massa e comprimento de tal

forma que as constantes fundamentais (G, ℏ, c) sejam unitárias. Podemos escrever essas

novas unidades em termos das constantes fundamentais da seguinte maneira:

lp =

r
Gℏ
c3

= 1, 61 · 10−33cm, (2.109)

tp =
lp
c
=

r
Gℏ
c5

= 5, 4 · 10−44s (2.110)

mp =

r
cℏ
G

= 2, 12 · 10−5g, (2.111)

onde lp, tp e mp são respectivamente o comprimento de Planck, o tempo de Planck e

a massa de Planck. Teoricamente espera-se que esses valores sejam a representação do

cenário (escala) em que os efeitos causados pela gravidade quântica desempenham um

papel relevante [21].

Como estamos trabalhando com a hipótese da existência de dimensões extras, devemos

generalizar estas unidades para η dimensões. Para isso nos baseamos na eq. 2.109 e

na análise dimensional do comprimento Planck [21]. Supondo que Gη seja a constante

gravitacional fundamental do espaço-tempo com η dimensões, podemos, baseado na

definição acima, escrever:

(l(η)p )η−2 =
G(η)ℏ
c3

. (2.112)
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Portanto, multiplicando e dividindo a equação eq. 2.112 por G e usando a eq. 2.109

obtemos a seguinte relação entre o comprimento de Planck do espaço maior e comprimento

de Planck no espaço-tempo quadrimensional.

(l(η)p )η−2 = l2p
G(η)

G
, (2.113)

Além disso, observe que a eq. 2.113estabelece uma relação entre uma constante

gravitacional G(η) em dimensões extras, utilizando algum valor do comprimento de Planck

l
(η)
p neste universo. Isto nos leva a concluir que o valor efetivo do comprimento de Planck

no espaço quadridimensional é dado por lp = 10−33 cm e o valor fundamental l
(η)
p deve ser

medido no espaço ambiente.

Sabendo que o comprimento da dimensão extra compacta é dado por 2πR, vimos que

a eq. 2.83 estabelece uma relação entre G(4) e G(5). Podemos fazer uma generalização

desta equação escrevendo:

G(η)

G(4)
= lη−4

c . (2.114)

Neste caso, consideramos que lc = 2πR se trata do comprimento da dimensão extra

com a topologia associada a uma pequena circunferência.

Prosseguindo nosso estudo, devemos agora tentar entender como o comprimento

fundamental de Planck em uma teoria de dimensões extras com compactação se relaciona

com o comprimento de Planck efetivo da teoria quadridimensional. Para isto, observe que

já encontramos uma relação entre lp e G(η) por meio da eq. 2.113, além disso, usando a

eq. 2.114 determinamos como as constantes gravitacionais se relacionam. Dessa forma,

aplicando a eq. 2.114 na eq. 2.113 e usando que η − 2 = η − 4 + 2 teremos a seguinte

relação:

lc = l(η)p

l
(η)
p

lp
. (2.115)

Se considerarmos que o comprimento de Planck no espaço de η dimensões é da

mesma ordem da escala eletro-fraca ( 10−18cm) e como já visto, temos que no espaço
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quadrimensional lp = 10−33cm, podemos substituir estes valores na equação anterior

obtendo:

lc = 10−18(1015)
2

η−4 . (2.116)

Considerando ainda um espaço com uma única dimensão extra, ou seja, com cinco

dimensões totais, temos que o tamanho desta dimensão seria da ordem de 1012 cm ou

107 km, o que não faz sentido do ponto de vista f́ısico visto que, se houvesse uma

dimensão extra desse tamanho ela já teria sido detectada. Por outro lado, considerando

duas dimensões extras, ou seja, seis dimensões totais, obtemos que [21]:

lc ≈ 0, 01 mm. (2.117)

Este cenário é extremamente motivador do ponto de vista fenomenológico, uma vez

que nesta escala posśıveis desvios da gravitação começariam a aparecer. A partir dessa

hipótese vários cientistas experimentais partiram em uma jornada para tentar identificar

estas supostas modificações.
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3 Testes Experimentais:
Gravitação em Curtas Distâncias

Neste caṕıtulo, como o próprio t́ıtulo sugere, o objetivo é abordar alguns testes

experimentais no domı́nio de curtas distâncias, visto que abaixo de uma certa escala de

comprimento os efeitos da gravitação, segundo algumas teorias da gravitação modificada

a exemplo das teorias de dimensões extras de grande escala, seriam amplificados.

Como veremos, a ausência de traços experimentais desses supostos desvios, nos permite

identificar alguns v́ınculos emṕıricos para parâmetros de Yukawa α e λ. No caso do

modelo ADD, como vimos no caṕıtulo anterior, esses v́ınculos podem ser traduzidos em

termos de limites experimentais sobre o raio da dimensão extra e do número de dimensões

escondidas.

De maneira geral, na ciência é muito importante que tenhamos experimentos que

comprovem a teoria apresentada. Como vimos anteriormente, o modelo ADD prevê uma

correção na Lei do Inverso do Quadrado, portanto, fica claro que nosso objetivo principal

é investigar experimentos que possam evidenciar esse desvio, para que assim, tenhamos

uma teoria mais sólida.

3.1 A Parametrização de Yukawa e a Parametrização da Lei das

Potências

Antes de abordarmos alguns experimentos é extremamente importante que possamos

procurar comprovações experimentais de desvios na lei do inverso do quadrado, ou de

maneira equivalente, uma correção do potencial gravitacional. Os desvios são descritos

por meio de parametrizações e as mais conhecidas são: a parametrização de Yukawa e a

parametrização da lei das potências.

Iniciamos então com a parametrização de Yukawa, dada pela soma entre o potencial

gravitacional usual e o potencial de Yukawa. Portanto, considere duas part́ıculas com

massa m1 e m2 respectivamente, utilizando esta parametrização teremos que:
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V (r) = −Gm1m2

r
(1 + αe−

r
λ ). (3.1)

Lembre-se que, quando realizamos cálculos considerando as correções devido à

existência de dimensões extras, podemos perceber que α está relacionado ao número

de dimensões extras com o mesmo raio de compactação, enquanto o parâmetro λ está

relacionado ao próprio raio de compactação da dimensão extra.Agora, considerando a

parametrização da Lei das Potências, e considerando as mesmas duas part́ıculas que

analisamos anteriormente, podemos escrever o potencial da seguinte maneira [14, 37]:

V (r) = −Gm1m2

r

�
1 +

�r0
r

�δ
�
, (3.2)

onde r0 tem dimensão de comprimento e δ é o número de dimensões extras.

Deste ponto em diante, estudaremos diversos testes experimentais da lei do inverso

do quadrado, e analisaremos os diversos v́ınculos determinados por eles com base na

parametrização de Yukawa.

3.2 Balança de Torção: Teste da Lei do Inverso do Quadrado

A Teoria da Relatividade Geral é um dos pilares que regem a f́ısica contemporânea

e trata-se de uma teoria muito bem estabelecida cientificamente. Apesar disso, certos

problemas, como o da matéria e da energia escura, motivaram o surgimento de diversas

teorias de gravitação e com isto, novas especulações acerca da lei do inverso do quadrado,

o que motivou cientistas do mundo inteiro a procurarem desvios no comportamento

da gravitação. Além disso, como já estudamos anteriormente, estes desvios revelam a

possibilidade da existência de dimensões extras. Por outro lado, é importante deixar claro

que esta é apenas uma das motivações para a realização destes experimentos. Também

é importante dizer que existem extensões do modelo padrão da f́ısica de part́ıculas que

preveem a existência de bósons adicionais que poderiam interferir indiretamente na lei

do inverso do quadrado em determinados domı́nios [39, 40] e algumas teorias de F (R)

também fazem previsões semelhantes [40].
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A balança de torção é uma máquina capaz de realizar medições de torques

extremamente fracos, por isso, historicamente, podemos dizer que, na maioria dos

experimentos senśıveis à gravidade, foi usado este aparelho. Portanto, é natural que

se tente encontrar desvios na lei do inverso do quadrado utilizando este instrumento. Um

dos grupos que obtiveram bastante destaque na realização destes experimentos foi o de

Eöt-Wash da Universidade de Washington [42].

3.2.1 O Experimento de Eöt-Wash 2004

O grupo de Eöt-Wash utilizou um pêndulo de torção de baixas frequências para medir

a gravidade em curtas distâncias conforme mostra a figura abaixo.

Figura 9: Desenho esquemático da balança de Torção criada pelo grupo Eöt-Wash
composta por um pêndulo de torção e uma base atrativa giratória. Figura retirada da
referência [43].

O dispositivo utilizado pelo grupo consiste em um anel de alumı́nio (chamado de

detector) com dez orif́ıcios, igualmente espaçados, suspensos por uma fina camada de

Tungstênio e logo abaixo, temos dois discos coaxiais giratórios de cobre, com dez orif́ıcios

semelhantes que atuam como a massa atratora do dispositivo e por este motivo são

chamados de atratores. Os discos então atraem o pêndulo gravitacionalmente. Se os

orif́ıcios do anel e dos discos estivessem perfeitamente alinhados, a força gravitacional
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sobre o anel exercida pelos discos seria para baixo, e, portanto, não provocaria nenhum

torque. Mas, como os discos giram, os seus orif́ıcios ora estarão mais à direita, ora

deslocados mais à esquerda em relação à posição dos furos do anel. Esse movimento

relativo, provoca um torque no anel, que faz o pêndulo girar num sentido e no outro.

A frequência de oscilação do pêndulo será proporcional à frequência de giro do disco.

Para melhorar a precisão do instrumento, o disco inferior não está alinhado com o disco

superior, mas deslocado azimutalmente por um ângulo de 18 graus. Esta geometria foi

utilizada para que o sinal da gravidade newtoniana fosse reduzido, enquanto possui pouco

efeito sobre um sinal de curto alcance. O espelho montado acima do anel funcionava como

um autocolimador e media o torque do pêndulo através do laser emitido [42].

Portanto, caso não haja nenhum desvio na lei do inverso do quadrado, os orif́ıcios

inferiores (massas faltantes) irão produzir um torque no anel do pêndulo que diminui a

torção induzida pelo disco superior em uma certa magnitude. Por outro lado, se a força

gravitacional for alterada para curtas distâncias, então será posśıvel observar um sinal de

torção, pois torque induzido pelo disco não cancelará a torção do disco superior.

Para realização deste experimento o potencial utilizado foi parametrizado por meio

da parametrização de Yukawa. A melhor sensibilidade atingida por este teste foi para

λ = 1, 5mm, onde se restringi |α| < 0.0079 com 95% de confiança. Além disso, também

foi posśıvel restringir o raio da dimensão extra como sendo R < 160µm. Para o caso

particular em que temos duas dimensões extras, houve a imposição de um limite inferior

para a massa de unificação: M ≥ 1.7TeV/c2. Como vimos, os parâmetros de Yukawa e o

raio da dimensão extra se relacionam por meio da equação [44]:

V4+δ ≃
G4M

r
(1 + 2δe−r/R). (3.3)

3.2.2 O Experimento de Eöt-Wash 2006

Da mesma forma que foi realizado o experimento de 2004, o grupo Eöt-Wash

utilizou a balança de torção para realizar o experimento de 2006. Esta também possúıa

baixa frequência, entretanto a maquinaria utilizada anteriormente sofreu uma evolução
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considerável permitindo aos cientistas realizar o teste gravitacional em uma escala ainda

menor. Neste novo experimento, os corpos testes apresentavam 42 orif́ıcios (ao invés de

10) feitos no detector e na fonte (como mostrado detalhadamente na Fig. [10]. Além

do maior número de orif́ıcios que a balança de torção utilizada em 2004, o aparelho deste

experimento também teve ajustes no tamanho relativo dos orif́ıcios permitindo o aumento

do torque de interação de curto alcance e a diminuição do torque Newtoniano. Da mesma

maneira que em 2004, a medição deste torque era feita por um autocolimador. É válido

destacar que o autocolimador também foi melhorado [38, 42, 45].

Figura 10: Desenho esquemático da balança de Torção utilizada pelo grupo Eöt Wash
em 2006. Foram utilizados quatro espelhos planos retangulares são utilizados para o
monitoramento da torção. Figura retirada da referência [45].

Utilizando o mesmo método que o utilizado em 2004, colocou-se um disco abaixo do

primeiro disco da balança para cancelar a interação gravitacional Newtoniana. A ideia é

que o disco inferior cancelaria aproximadamente o torque se a Lei do Inverso do Quadrado

fosse mantida. Considerando então o número bastante superior de orif́ıcios utilizados, o

cancelamento do efeito gravitacional Newtoniano foi feito com um grau de precisão maior.

Foram realizados três experimentos explorando variações na espessura do disco

compensador, no ângulo de suspensão e na frequência de rotação. Dessa forma, o melhor

resultado obtido foi para λ ≈ 600µm, fazendo uma restrição para α tal que |α| < 0.0037
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para um ńıvel de confiança de 95%. É posśıvel concluir então que houve uma restrição

ainda maior do v́ınculo sobre a escala da dimensão extra como mostra a Fig. 11.

Figura 11: Limites para as violações de Yukawa para a Lei do Inverso do Quadrado.

As linhas rotuladas por Eöt-Wash 2004, Eöt-Wash 2006, Irvine, Colorado e Stanford

mostram os limites experimentais obtidos por estes grupos. A região acima das linhas

sólidas apresenta limites sobre violações do tipo Yukawa para o potencial gravitacional e

descarta qualquer desvio na Lei do Inverso do Quadrado. Figura retirada da referência

[45].

3.2.3 O Experimento de Eöt-Wash 2020

A procura por desvios na lei do inverso do quadrado é extremamente relevante no

estudo sobre gravitação modificada. Por outro lado, experimentos em pequenas escalas

(abaixo de 100 µm) são extremamente dif́ıceis de ser realizados.

Nos testes realizados utilizando a balança de torção, os torques harmônicos exercidos

por um atrator rotativo em um pêndulo detector são estudados como funções de separação

entre as superf́ıcies de revestimento do detector e dos corpos de teste do atrator. A

diferença para as gerações de experimentos anteriores é justamente o dispositivo utilizado
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para a realização do experimento. O novo dispositivo possui uma série de melhoramentos

que permitiram o aumento da precisão do experimento. Na figura 12, temos um gráfico

que compara os v́ınculos obtidos mais recentemente (2020) com os v́ınculos passados [84].

Figura 12: Vı́nculos utilizando a parametrização de Yukawa para testes na Lei do Inverso

do Quadrado. As linhas descrevem experimentos do Grupo Eöt-Wash, além de descrever

outros resultados como o de IUPUI (2016), HUST (2012, 2016 e 2020), entre outros.

Figura retirada da referência [84].

3.3 Vı́nculos do Efeito Casimir

Nesta seção veremos outro fenômeno utilizado com bastante frequência em testes de

gravitação de curta distância, o Efeito Casimir [46, 47]. É posśıvel realizar a observação do

Efeito Casimir colocando duas placas metálicas condutoras, porém eletricamente neutras,

paralelas entre si e separadas por uma distância da ordem de micrômetros no interior de

uma câmara selada com vácuo no seu interior. Classicamente, espera-se que não haja

nenhuma força de natureza elétrica entre as placas visto que estão eletricamente neutras,

mas as medidas indicam a existência de uma força atrativa entre as placas, este fenômeno

é conhecido como Efeito Casimir que recebe este nome em homenagem ao f́ısico holandês
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Hendrik Brugt Gerhard Casimir [46, 47, 48].

Casimir foi o responsável por mostrar que a força de atração das placas deveria ser

inversamente proporcional à quarta potência da distância a de separação entre elas:

F = −A
π2ℏc
240a4

, (3.4)

onde A representa a área de cada placa. Portanto, temos que nos perguntar o que justifica

este efeito. Do ponto de vista clássico, a palavra vácuo remete a ausência completa de

matéria. Por outro lado, no domı́nio quântico temos um novo conceito denominado energia

do ponto zero, que se refere a uma energia ocasionada por flutuações quânticas que não

podem ser eliminadas por nenhum processo f́ısico. Em um certo sentido, podemos realizar

uma associação entre essa energia e a energia mı́nima do oscilador harmônico quântico

que não é nula, mas E = hν/2. Assim, através desse novo conceito, é posśıvel justificar o

Efeito Casimir, considerando-o como uma consequência da energia do ponto zero.

Consideremos agora um campo eletromagnético em uma região extensa, ou seja,

temos a presença do vácuo, além disso, as oscilações deste campo se apresentam com

todas as frequências posśıveis (de zero a infinito). Ao realizar o confinamento deste

campo eletromagnético em uma região espacial limitada, o espectro de frequência torna-se

discreto devido às condições de contorno impostas. É posśıvel ver isso no exemplo do poço

quadrado infinito da mecânica quântica. Portanto, podemos entender o Efeito Casimir

como uma alteração do espectro da frequência de vibração do campo eletromagnético

devido ao confinamento gerado por placas metálicas, por exemplo.

A energia do vácuo, excluindo as placas, tem um valor infinito. Por outro lado,

o mesmo ocorre quando calculamos a energia considerando as placas. Entretanto, ao

calcularmos a diferença entre esses valores nas duas situações mencionadas, o resultado

obtido é um valor finito e possui um significado f́ısico (é válido destacar que para obtermos

este resultado é necessário realizar um procedimento de renormalização). Podemos

interpretar a diferença finita de energia como a energia necessária para introduzir as placas

no vácuo. Portanto, por meio de toda essa análise é posśıvel concluir que o Efeito Casimir

é uma manifestação macroscópica das propriedades microscópicas do vácuo quântico.

55



Podemos descrever o Efeito Casimir como um efeito puramente quântico resultante das

oscilações do campo eletromagnético, devido à presença de fronteiras materiais, ou seja,

as placas, quando comparadas em um espaço sem fronteiras [46, 47].

Além da força de Casimir, as placas sofrem uma atração gravitacional. Considerando

que esta interação está conforme a Lei do Inverso do Quadrado de Newton, então a

força gravitacional entre elas será bem pequena. Por outro lado, pensando em um

cenário que considera a existência de dimensões extras, o esperado haja a amplificação

da força gravitacional entre as placas. Como do ponto de vista experimental, esta

hipotética força anômala não foi detectada, é posśıvel impor v́ınculos para o parâmetro

de Yukawa. Portanto, os testes realizados com o Efeito Casimir podem ser utilizados com

esta finalidade também.

Lembre que, ao levarmos em consideração a parametrização de Yukawa, o parâmetro

λ mede a escala onde ocorreria a modificação da gravitação. Além disso, temos ainda

que para cada valor de λ teremos um v́ınculo diferente para α e, quanto menor λ for,

menor será o v́ınculo imposto por α. Esta é a explicação do porquê existe uma diferença

enorme entre os v́ınculos impostos pelos experimentos utilizando a balança de torção e os

v́ınculos impostos pelo Efeito Casimir, pois eles vinculam o parâmetro α em escalas de

comprimento diferentes. Na Fig. 13, mostramos os v́ınculos mais recentes obtidos por

meio de experimentos que exploram o efeito de Casimir em laboratórios.
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Figura 13: Vı́nculos utilizando interações do tipo Yukawa.A figura mostra: Casimir 1, 2

e 3 obtidos medindo as forças de Casimir laterais e normais entre superf́ıcies corrugadas

sinusoidalmente, pressão efetiva de Casimir e Casimir-less (experimentos que ocorrem a

minimização do efeito Casimir). Figura baseada na imagem da referência [85].

3.4 Hélio Antiprotônico

O hélio antiprotônico é um átomo exótico composto por 3 corpos, um antipróton e

um elétron que orbitam o núcleo de hélio. Pode ser produzido em laboratório a partir da

mistura entre antipróton e o hélio comum. Este átomo é formado quando um anti-próton

remove um dos dois elétrons que orbitam o átomo de hélio, portanto ocorre a substituição

de um elétron por um antipróton. Este átomo, foi descoberto nas instalações do acelerador

KEK, no Japão, bombardeando antiprótons em um alvo de hélio ĺıquido [49]. Torna-se

extremamente interessante estudar o caso do hélio antiprotônico, porque ao substituirmos

um elétron por um antipróton, a interação gravitacional entre núcleo e antipróton é cerca

de 2000 vezes mais forte que a interação gravitacional elétron-núcleo, uma vez que o

antipróton tem uma massa por volta de 1836 maior que a massa do elétron. Portanto,

estudar o hélio antiprotônico se torna uma alternativa extremamente interessante para

investigarmos posśıveis desvios na gravitação.

Apesar dessa vantagem, precisamos destacar que existem grandes dificuldades técnicas
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para se investigar esse átomo exótico em laboratório. Uma delas é que o peŕıodo de vida

deste tipo de átomo é de picossegundos, porque são destrúıdos por meio da aniquilação

matéria-antimatéria dos antiprótons com o núcleo, quando estes estão muito próximos.

Por isso, apenas os átomos de hélio antiprotônico sintetizados em laboratório nos

estados de Rydberg2 podem ser investigados experimentalmente, considerando o estágio

atual da nossa tecnologia [50]. Nesses estados de Rydberg observados, a distância média

entre antipróton e núcleo é aproximadamente o raio de Bohr a0. Nesse caso, os antiprótons

quase não irão sobrepor-se ao núcleo e consequentemente seu peŕıodo de vida é aumentado

para microssegundos, possibilitando estudar os estados de Rydberg do hélio antiprotônico

por meio da espectroscopia a laser.

Dessa forma, ao utilizar uma frequência óptica de femtossegundos em conjunto com

um laser amplificado por pulso de uma onda cont́ınua pelo Desacelerador Antiprotônico

do CERN 3. Seguindo a eletrodinâmica quântica é posśıvel comparar os resultados

experimentais obtidos com alguns cálculos teóricos e obter uma relação bem precisa entre

os dois [52, 53].

A referência [81] aborda um estudo realizado no hélio antiprotônico, utilizando a

parametrização de Yukawa para vincular a ação de uma quinta força adicional semelhante

ao que fazemos, a diferença é que não consideramos outra força, e sim, uma modificação

na força gravitacional.

De maneira resumida, para obtermos os v́ınculos, descreveremos a ação de uma quinta

força utilizando o método perturbativo em primeira ordem. Usando a parametrização de

Yukawa, o potencial associado à força anômala será:

V5 = ℏcα5A1A2
e−r/λ

r
, (3.5)

onde A1 e A2 são considerados as “cargas” da interação anômala. Assim, considerando

dois estados do hélio antiprotônico Ψn1,l1 e Ψn2,l2 é posśıvel obter v́ınculos utilizando dados

da transição entre os dois estados. Explicitamente temos que:

2o estado de Rydberg é caracterizado por uma distância entre o antipróton e o núcleo é muito grande,
de tal forma que caberia outro átomo entre eles

3O CERN é a Organização Europeia para Pesquisa Nuclear
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⟨∆f⟩ = ⟨Ψn1,l1 |V5|Ψn1,l1⟩ − ⟨Ψn2,l2 |V5|Ψn2,l2⟩
2πℏ

. (3.6)

Por outro lado, veremos na próxima seção que a correção do potencial gravitacional

utilizando a parametrização de Yukawa é dada por |VG| = GM1M2αe
−r/λ/r, e nosso

interesse é comparar os limites estabelecidos por estas correções. Para isto, observe que

se a força anômala for devido à interação gravitacional A1 e A2 serão os números de massa

atômica dos núcleos 1 e 2 respectivamente. Dessa forma:

M1 = mpA1, (3.7)

M2 = mpA2. (3.8)

Portanto, o potencial associado poderá ser reescrito da seguinte maneira:

V5 = α5ℏc
M1M2e

−r/λ

m2
pr

. (3.9)

Dessa forma, fazendo |V5| = |VG| podemos obter a seguinte relação:

α = α5
ℏc

Gm2
p

(3.10)

É importante dizer ainda que a energia de cada estado do átomo antiprotônico

é calculada com grande grau de precisão, usando-se a QED. Os dados experimentais

concordam com essas previsões dentro da incerteza das medidas da frequência de transição.

Essa concordância, portanto, impõe v́ınculos para forças anômalas, uma vez que seus

efeitos não podem exceder o erro experimental. Usando a eq. 3.6 podemos calcular os

efeitos da força anômala sobre a transição dos ńıveis. A magnitude desses efeitos será uma

função de α e lambda. Impondo a condição de que o efeito não pode ser maior do que

o erro, encontramos restrições para α em função de lambda. Os v́ınculos obtidos estão

na Fig. 144. Por fim podemos finalmente descrever os v́ınculos obtidos de forma gráfica

4Este cálculo é descrito com uma maior riqueza de detalhes em [81]
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como mostra a Fig. 14. É importante destacar ainda que a referência [81] traz v́ınculos

obtidos para o HD+ vibracional e rotacional além dos ı́ons hélio-3 antiprotônico e hélio-4

antiprotônico.

Figura 14: Vı́nculos impostos utilizando o HD+ vibracional e rotacional, além do hélio

antiprotônico destacando a melhora entre medições antigas. Para obter esses v́ınculos, foi

usada a parametrização de Yukawa. Aqui foi usada a constante de estrutura fina αEM .

Lembrando que, para realizarmos comparações com os v́ınculos obtidos no nosso trabalho,

usaremos a relação α = α5
ℏc

Gm2
p
[81].

3.5 Vı́nculos Espectroscópicos usando Hidrogênio Eletrônico na

Transição 1S − 3S

Ao considerarmos o átomo de hidrogênio, por exemplo, a maior precisão para testes

que procuram por desvios na gravitação em curtas distâncias está na frequência de

transição 1S − 3S. Isto ocorre porque o valor experimental obtido por meio da transição

1S−2S é utilizado para calcular algumas constantes espectroscópicas fundamentais, como

a constante de Rydberg, por exemplo, portanto apesar de teoricamente a transição 1S−2S

tenha uma medida mais precisa ela não pode ser utilizada para testar uma nova teoria.

Como o objetivo aqui é realizar uma comparação com os v́ınculos obtidos por meio
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do hélio antiprotônico, estabeleceremos os v́ınculos fazendo a utilização dos parâmetros

de Yukawa. Apesar da interação elétron-próton ser bem mais fraca que a interação

antipróton-núcleo do hélio 5, os dados espectroscópicos do hidrogênio eletrônico que estão

dispońıveis são muito mais precisos que os dados do hélio antiprotônico. Para a transição

1S − 3S temos os seguintes dados teóricos e experimentais [57, 58]:

f th
1S−3S = 2922743278671.6(1.4)kHz, (3.11)

f exp
1S−3S = 2922743278671.5(2.6)kHz. (3.12)

É importante deixar claro que o valor entre parênteses nesses dados representam a

incerteza. Considerando que as incertezas teórica e experimental são independentes entre

si podemos calcular a incerteza total utilizando a seguinte expressão:

δf =
q
δ2th + δ2exp. (3.13)

Fazendo a substituição dos valores apresentados na eq. 3.11 e na eq. 3.12 obteremos

então que:

δf =
p
(1.6)2 + (2.4)2 ≈ 3.0kHz. (3.14)

Portanto, dentro do erro total combinado, as frequências teóricas e experimentais

concordam entre si. Dessa forma, podemos concluir que qualquer nova interação que for

considerada, como a gravitacional, por exemplo, não deve produzir novas correções para a

frequência de transição em uma quantidade ∆f maior que o erro total calculado, ou seja,

∆f < δ. Essa condição, estabelece assim alguns limites experimentais para os parâmetros

de Yukawa.

Para calcular a nova correção ∆f utilizaremos o método perturbativo. A interação

próton-elétron pode ser descrita por meio da Hamiltoniana H
(0)
G = mφ, de tal forma que φ

representa o potencial gravitacional modificado, descrito pela parametrização de Yukawa

dada na eq. 3.1

5ρ̄He+
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Seguindo então o método de perturbação em primeira ordem, temos que ao

considerarmos esta nova interação, a energia de cada estado ψ será diminúıda por uma

quantidade ⟨H0
G⟩, que é justamente o valor médio da Hamiltoniana H0

G no estado ψ,

note ainda, que como queremos encontrar o efeito da gravitação modificada na energia

consideramos apenas o termo de correção do potencial gravitacional. Portanto, perceba

que a alteração provocada pela ação gravitacional nos estados 1S e 3S será diferente,

ocasionando então em um aumento da diferença de energia entre eles. Isto nos possibilita

escrever a correção nesta frequência de transição como:

∆f =
⟨H0

G⟩3S − ⟨H0
G⟩1S

h
, (3.15)

onde h = 6.62607015×10−34J/Hz é a constante de Planck. Sendo assim, para calcular as

quantidades requisitadas pela equação eq. 3.15 temos que considerar a função de onda

ψ em cada um destes estados. Note que funções dependem de uma parte radial e uma

parte angular. Como estamos considerando os estados 3S (onde n = 1; l = 0) e 1S (onde

n = 3; l = 0) temos as seguintes expressões radiais já normalizadas:

R30 =
2

3
p

3a30

�
1− 2r

3a0
+

2r2

27a20

�
, (3.16)

R10 =
2p
a3o

e
− r

a0 . (3.17)

Fazendo o uso destas expressões podemos estabelecer os nossos v́ınculos considerando

a condição ∆f < δf . Considerando estas funções radiais e o fato de a parte angular

da função de onda para os estados 1S e 3S será dada pelo harmônico Y 0
0 = 1/(

√
4π).

Dessa forma, podemos escrever as seguintes expressões integrais para os valores médios

das Hamiltonianas nos estados 1S e 3S, dados por:



H0

G

�
1S

=

Z  
2p
3a30

e
− r

a0
1√
4π

!2

H0
Gd

3r, (3.18)
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H0

G

�
3S

= −
Z "

2

3
p
3a30

�
1− 2r

3a0
+

2r2

27a20

�
e
− r

3a0
1√
4π

#2
Gmempα

r
e−

r
λd3r. (3.19)

Dessa forma, ao realizarmos uma mudança de coordenadas para coordenadas esféricas

para resolver as equações integrais acima teremos que:



H0

G

�
1S

= −4Gmempα

a0

λ2

(2λ+ a0)
2 , (3.20)



H0

G

�
3S

= −4Gmempα

a0

�
λ2

3(2λ+ 3a0)2
− 8λ3

3(2λ+ 3a0)3

+
32λ4

3(2λ+ 3a0)4
− 64λ5

3(2λ+ 3a0)5
+

160λ6

9(2λ+ 3a0)6

�
.

(3.21)

Substituindo os resultados obtidos para ⟨H0
G⟩1S e ⟨H0

G⟩3S na eq. 3.15 encontramos

v́ınculos para o parâmetro α (que mede o fator de amplificação do força gravitacional) em

função do comprimento λ:

α <
δfha0

4Gmemp

�
− λ2

3(2λ+ 3a0)2
+

8λ3

3(2λ+ 3a0)3
− 32λ4

3(2λ+ 3a0)4

+
64λ5

3(2λ+ 3a0)5
− 160λ6

9(2λ+ 3a0)6
+

λ2

(2λ+ ao)2

�−1

.

(3.22)

A partir da expressão obtida então, podemos plotar o seguinte gráfico:
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Figura 15: Vı́nculos estabelecidos para o hidrogênio eletrônico na transição 1S− 3S para

os ńıveis de confiança 1σ (68%), 2σ (95%) e 3σ (99%). Figura baseada nos resultados

obtidos na referência [5].

3.6 O Problema do Raio do Próton

Para concluir toda nossa revisão teórica, abordaremos um problema que veremos que

poderia ser explicado em um cenário com dimensões extras, o problema do raio do próton.

Este problema, na verdade, trata-se da discrepância entre as medidas do raio obtidas por

meio da interação elétron-próton no átomo de hidrogênio (CODATA-2010) e medidas

do raio feitas com base na interação múon-próton no hidrogênio muônico. Estudando

o deslocamento de Lamb na transição 2S − 2P do hidrogênio muônico, verificou-se um

excesso de energia de aproximadamente 0.3meV em relação ao valor esperado, baseado no

raio próton estimado com os átomos eletrônicos. Este excesso inesperado implica um novo

valor para o raio do próton. Essa incompatibilidade na medida do raio próton, poderia ser

sanada se pudéssemos atribuir o excesso de energia a alguma interação (não prevista pelo

Modelo Padrão) entre o múon e o próton. Para analisar esta questão, precisamos estar

atentos a principal diferença entre múon e elétron que é justamente o valor da massa, pois

a massa do múon é cerca de 207 vezes maior que a massa do elétron. Com base nessa
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observação, podeŕıamos pensar que a interação gravitacional entre múon e próton é mais

forte, portanto uma boa candidata para solucionar este problema é a teoria de dimensões

extras, pois, nesse cenário, a força gravitacional é amplificada em curtas distâncias [22].

A expressão para o raio de carga do próton é dada por:



r2p
�
=

Z
r2ρEd

3r. (3.23)

É posśıvel prever os efeitos da estrutura interna dos prótons no espectro de energia

atômica usando o modelo padrão da teoria dos estados ligados da eletrodinâmica quântica

(QED). Por exemplo, para o hidrogênio muônico analisado na transição 2S1/2 − 2P1/2 é

esperado um deslocamento de Lamb dado por [24, 36],

∆Eth
L =

�
206.0668(25)− 5.2775(10)

r2p
fm2

�
meV. (3.24)

A partir desta equação podemos obter que ∆Eth
L (rCD

p ) = 202.0416(469) meV ,

quando usamos o raio de próton recomendado pelo CODATA-2010. Por outro lado,

o valor experimental do desvio de Lamb é obtido a partir das medidas das transições

(2P F=1
3/2 −2SF=0

1/2 ) e (2P F=2
3/2 −2SF=1

1/2 ). O valor experimental encontrado para o deslocamento

de Lamb é ∆Eexp
L = 202.3706(23) meV . Observe então que há uma diferença de

0.3290(469) meV entre o desvio de Lamb teórico e o experimental, o que pode indicar

justamente que a eq. 3.24 possui um termo ausente devido à interação próton-múon.

Podeŕıamos especular que esse termo ausente seria a interação gravitacional entre o próton

e múon no cenário de dimensões extras.

Para calcular a influência do potencial gravitacional no espectro de energia do

hidrogênio muônico, podemos desprezar as imagens topológicas, pois suas contribuições

são menores que o erro experimental nessa análise. Podemos então calcular o potencial ϕ

usando a expressão −GM/Rn+1. Considerando então que a massa do próton é distribúıda

na extensão espacial do núcleo podemos então escrever que [22],

ϕ(R) = −Gn

Z
ρM(R′)

|R−R′|2d
3+nR′, (3.25)
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onde ρM = |ΨP |2mp é a densidade de massa e Ψp = χ(p)ψp(r) é a função de onda próton

no espaço com dimensões extras.

O desvio no ńıvel de energia do átomo muônico provocado pela interação gravitacional

entre o próton e o múon pode ser calculado utilizando o desvio de energia utilizando a

Hamiltoniana HG = mµϕ através do método perturbativo. Em primeira ordem, teremos

que este desvio será dado por ⟨mµϕ⟩ψ. Dessa forma, usando a eq. 3.25 teremos que:

δEg
ψ = −Gnmpmµ

Z |Ψp|2|Ψµ|2
|R−R′|n+1

d3+nRd3+nR′, (3.26)

É posśıvel mostrar então que resolvendo a integral na eq. 3.26 obtemos [22]:

δEg
nS = −γn

Gnmpmµ

σn−2
|ΨS(0)|2

�
1− 3

2

rp
a0

�
, (3.27)

onde rp é o raio do próton, ΨS é a função de onda do múon em um estado S calculado

na origem, γn é um valor numérico que depende do número de dimensões extras e a0

representa o raio de Bohr do hidrogênio muônico, e σ é um parâmetro relacionado a

espessura da brana. A eq. 3.27 é válida apenas quando o número de dimensões extras δ

é maior que 2.

3.6.1 Contribuição para o desvio de Lamb

Analisamos anteriormente uma diferença de 0.3290(469) meV entre o valor teórico

∆Eth
L e o valor experimental ∆Eexp

L . Dessa forma, ao considerarmos o estado 2S na eq.

3.27, temos que a diferença no ńıvel de energia decresce por meio da expressão:

δEg
2S = −γδ

G4+δmpmµ

8πa30σ
δ−2

�
1− 3

2

rp
a0

�
. (3.28)

Como o efeito gravitacional sobre o estado P é suprimido, a interação gravitacional é

responsável por determinar uma separação adicional entre os ńıveis 2S−2P [22]. Isto nos

permite resolver o problema do raio do próton caso |δEg
2S| = 0.3290(469). Essa condição

estabelece uma relação entre G4+δ e σ que podemos escrever em termos de MD da seguinte

maneira:
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"
(ℏ/c)δℏc
δ + 2

Γ

δ+3
2

�

2π(δ+3)/2

(2π)δ

M δ+2
D

#
γδ
8π

mpmµ

a30σ
δ−2

�
1− 3rp

2a0

�
= 0.3290(469) meV, (3.29)

onde G4+δ corresponde ao termo entre colchetes. É posśıvel realizar uma análise numérica

da eq. 3.29 considerando que o parâmetro de confinamento satisfaz 10−35m ≤ σ ≤

10−20m, dessa forma, é posśıvel estabelecer v́ınculos sobre MD que solucionam o problema

do raio do próton mostrados na figura abaixo [22].

Figura 16: relação entre a massa de Planck MD do espaço de dimensões extras em função

do parâmetro σ. Figura retida da referência [22].
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4 Novos Limites Experimentais
Extráıdos da Espectroscopia de
Átomos Muônicos

Como vimos anteriormente, num cenário de dimensões extras ocorre a amplificação da

gravitação em curtas distâncias, ou mais especificamente, para r ≪ R, ondeR representa o

raio de compactação da dimensão extra. Nesta seção, analisando dados espectroscópicos

recentes do Hélion muônico, determinaremos novos limites experimentais do desvio da

gravidade padrão.

Nossa intenção neste caṕıtulo é utilizar os dados experimentais fornecidos pela medida

da espectroscopia do ı́on hélio-4 muônico na transição 2S − 2P [63]. Além disso, iremos

também estudar a influência da gravitação modificada na diferença entre o quadrado dos

raios de carga do próton e do deuteron. A razão do nosso interesse por esta medida está

relacionada ao fato de que o valor dessa grandeza inferido com base nos átomos eletrônicos

coincide com valor determinado a partir do hidrogênio e deutério muônicos. Sendo assim,

essa concordância estabelece um novo e independente limite experimental para desvios da

gravitação nessa escala subatômica, que encontraremos nesse caṕıtulo.

Posteriormente visamos abordar os limites experimentais estabelecidos a partir da

transição 2P1/2−2P3/2 do hélio muônico. Nessa análise temos que considerar o formalismo

pós-newtoniano, visto que a influência da gravitação nessa transição se dá através

do acoplamento spin-órbita gravitacional, que depende do potencial pós-newtoniano

associado à curvatura das seções espaciais do espaço-tempo.

4.1 Vı́nculos Espectroscópicos para o Potencial Newtoniano

4.1.1 Calculando Vı́nculos usando a Transição 2S − 2P no Hélio-4 Muônico

O sistema do ı́on hélio muônico é composto pelo núcleo do hélio e um múon que

substitui um dos elétrons do átomo enquanto o outro é retirado. Desta forma, observe que

nesta análise, o hélio muônico terá um sistema similar ao hidrogênio eletrônico, entretanto

a interação gravitacional será bem mais forte, visto que o múon é bem mais pesado que o
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elétron. Por outro lado, sabemos que a precisão das medidas de transição entre ńıveis de

energia do hélio muônico são menores do que no hidrogênio eletrônico. Nesta seção, nosso

objetivo é estudar os v́ınculos estabelecidos pela espectroscopia do ı́on hélio muônico para

desvios do potencial utilizando também a parametrização de Yukawa, de maneira quase

análoga ao que foi feito anteriormente para o hidrogênio eletrônico.

Neste ı́on muônico leve, um único múon orbita o núcleo. Sabemos que a massa do

múon é 200 vezes a massa do elétron, além disso, a expressão do raio de Bohr para

átomos do tipo hidrogênio considerando dois corpos de massa m1 e m2 é dada em termos

da massa reduzida µ = m1m2/(m1 + m2), da massa do elétron me, do número Z de

prótons do núcleo e do raio de Bohr do átomo de hidrogênio a0 da seguinte maneira:

a∗0 =
me

Zµ
a0. (4.1)

Portanto, o raio de Bohr de um átomo muônico será bem menor que o raio de

Bohr da versão eletrônica do mesmo átomo. Este fato resultará em aproximadamente

2003 ≈ 8 milhões de vezes maior sobreposição da função de onda do múon com o núcleo

do átomo, e um aumento correspondente de sensibilidade das propriedades nucleares do

átomo muônico em relação às caracteŕısticas nucleares. Um exemplo disso, é o efeito mais

forte da extensão finita do núcleo no desvio Lamb em átomos muônicos comparado aos

átomos tradicionais. Por esse motivo, medidas do desvio Lamb (a diferença de energia

entre os ńıveis 2S e 2P ) nesses átomos exóticos tem sido usadas com o propósito de medir

os raios de carga do núcleo com maior precisão.

Com base na QED e no modelo padrão da f́ısica, é posśıvel calcular a diferença de

energia 2P1/2−2S. Para o ı́on do hélio muônico, conforme a referência [63], o valor teórico

para o desvio Lamb é dado pela expressão:

∆Etheo
2P1/2−2S =1, 668.489(14) meV

− 106.220(8) meV fm−2 × r2α + 0.0112 meV

+ 9.340(250) meV − 0.150(150) meV,

(4.2)

o primeiro termo é o valor calculado pela QED modelando o núcleo como uma carga
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puntiforme. Os outros termos podem ser vistos como correções. O segundo termo

representa o efeito do tamanho do núcleo, e por esse motivo ele é proporcional raio de

carga do núcleo de Hélio, denotado aqui por rα - uma vez que o núcleo de hélio-4 é uma

part́ıcula α. Os demais termos são correções determinadas por caracteŕısticas internas

do núcleo. Considerando então que os erros presentes em cada termo desta equação são

independentes entre si, a incerteza teórica total será [63]:

δEthe = ±0.292meV. (4.3)

Recentemente, o desvio Lamb do µHe+ foi medido [63]. O valor experimental

encontrado foi:

Eexp
L = 1, 378.521± 0.048meV. (4.4)

Portanto, podemos considerar que os erros são independentes entre si e calcular a

incerteza total, dessa forma obteremos:

δE =
√
0.2922 + 0.0482 = 0.296 meV. (4.5)

A partir da expressão teórica para o desvio Lamb e do seu valor experimental, podemos

inferir que o valor do raio da part́ıcula alfa é rα = 1.67824(13)exp(82)theo. Essa estimativa

é compat́ıvel com medidas do raio da part́ıcula alfa obtidas por outros métodos. De

fato, em experimentos de espalhamento de elétrons por núcleos de hélio, encontra-se

que rα = 1.681(4) [63]. Os valores coincidem na margem de erro. Portanto, interações

anômalas não podem produzir efeitos que sejam superiores ao erro. Em outras palavras,

essa concordância entre as medidas do raio da part́ıcula alfa por meio do hélio muônico

e do hélio eletrônico impõe v́ınculos experimentais para qualquer nova interação fora

do modelo padrão. Em particular, estes limites se aplicam a versões modificadas da

interação gravitacional, previstas por algumas teorias, como a teoria de dimensões extras

de grande escala, discutida no Caṕıtulo 2. Para extrairmos novos v́ınculos sobre desvios

gravitacionais, vamos mais uma vez utilizar a parametrização de Yukawa. Assim, a
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Hamiltoniana da interação gravitacional entre o múon e o núcleo de hélio-4 será, H = mµφ

onde o potencial gravitacional modificado é φ = −GMα/r(1+αe−r/λ), ondemµ representa

a massa do múon eMα é a massa do núcleo de Hélio-4. Essa interação gravitacional produz

correções nas energias dos estados do átomo. O efeito sobre a energia de transição 2S−2P

será dado por:

∆EG =


H0

G

�
2P

−


H0

G

�
2S

. (4.6)

É importante ressaltar que, apesar de eq. 4.6 ser uma equação bastante parecida com

o que foi visto anteriormente, existem algumas nuanças. Devemos estar atentos de que o

múon é cerca de 200 vezes mais pesado que o elétron, assim, a distância entre o núcleo e

o múon será menor, caracterizando justamente um raio de Bohr também menor. Dessa

forma, em relação aos átomos eletrônicos, a intensificação da força gravitacional ocorre

não só devido às massas das part́ıculas interagentes, mas, indiretamente, através do raio

de Bohr dos átomos muônicos, que é menor. Como sabemos, o raio de Bohr do ı́on de

hélio muônico depende da massa reduzida desse átomo dada por µ = Mαmµ/(Mα +mµ),

onde Mα representa a massa do núcleo do hélio e mµ é a massa do múon. Dessa forma,

o raio de Bohr para o hélio muônico é igual a a∗0 = 1.3039422757× 10−13 m.

O cálculo para obtermos os v́ınculos para o ı́on hélio muônico será análogo ao que

fizemos para o átomo de hidrogênio, primeiramente calculamos os valores esperados

utilizando as seguintes funções radiais:

R20 =

�
2− r

a∗0

��
e−r/2a∗0

(2a∗0)
3/2

�
, (4.7)

R21(r) =
1p

24(a∗0)
3

r

a∗0
e−r/2a0 . (4.8)

Dessa forma, obtemos:



H0

G

�
2S

= −GMαmµα

4a∗0

�
2λ2

(λ+ a∗0)
2
− 4λ3

(λ+ a∗0)
3
+

3λ4

(λ+ a∗0)
4

�
, (4.9)
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H0

G

�
2P

= −GMαmµα

4a∗0

λ4

(a∗0 + λ)4
. (4.10)

Como o efeito da interação anômala sobre a diferença de energia da transição 2S−2P

não pode ser maior do que o erro total na medida do desvio Lamb, então, o termo de

Yukawa não pode ser arbitrário, mas deve respeitar a condição ∆EG < δE. Segue dessa

condição, a seguinte restrição para o fator de amplificação da gravitação:

α <
4a∗0δE

GMαmµ

�
2λ2

(λ+ a∗0)
2
− 4λ3

(λ+ a∗0)
3
+

2λ4

(λ+ a∗0)
4

�−1

. (4.11)

Para cada valor de λ, o parâmetro não pode ser superior ao valor dado do lado direito

da eq. 4.11, sem incorrer em contradições com a medida do desvio Lamb do hélio

muônico. Na Fig. 17 esse v́ınculo é representado pela linha azul pontilhada6.

4.1.2 Calculando Vı́nculos usando Deutério e Hidrogênio Muônicos

A medição do raio de carga do próton rp já foi alvo de diversas discussões, visto que

sua medida usando o hidrogênio muônico não correspondia ao valor teórico recomendado

pelo CODATA-2010 que estava baseado em dados espectroscópicos de átomos eletrônicos.

Esta diferença gerou uma grande discussão entre os f́ısicos de todas as partes do mundo,

e ficou conhecida como “problema do raio do próton”. Entretanto, medições recentes

reduziram a tensão entre essas medidas, levando muitos a acreditarem que o problema

deve estar relacionado a eqúıvocos em atribuições de erros experimentais [75].

Sabemos, como já discutimos na seção anterior, que o deslocamento de Lamb está

presente em todos os átomos, ou seja, que as alterações nos ńıveis de energia geradas

por flutuações quânticas existem independentemente do átomo analisado. É fato que

ao considerarmos modificações no modelo gravitacional, estas modificam a diferença de

energia medida pelo deslocamento Lamb. Desta maneira precisamos entender de que

maneira ocorre a previsão teórica para a medição da energia do EL do deslocamento de

Lamb. Considerando a transição 2S − 2P e utilizando o modelo padrão temos a seguinte

6É válido destacar ainda que α é um parâmetro adimensional, portanto as constantes devem ser
substitúıdas visando satisfazer esta condição.
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equação [75]:

ELS = EQED + Cr2 + ENS. (4.12)

onde o termo EQED representa a correção considerando o núcleo atômico como um ponto,

o termo Cr2 representa a contribuição devido ao tamanho finito do núcleo e o último

termo ENS refere-se a contribuição da estrutura nuclear do átomo. Essas são as três

contribuições previstas pelo modelo padrão para o deslocamento Lamb. Entretanto, em

cenários com teorias modificadas da gravitação, como a teoria de dimensões extras de

larga escala, que preveem a intensificação da interação gravitacional em curtas distâncias,

devemos considerar o efeito gravitacional no desvio Lamb. Portanto, devemos adicionar

mais termos à eq. 4.12 relativo à contribuição dessa nova interação. Como o efeito da

gravitação no ńıvel atômico 2P é menor do que o efeito sobre o estado 2S é modificado, a

diferença de energia entre os ńıveis atômicos aumentará. Portanto, o termo EG relacionado

a contribuição da energia devido à gravitação modificada entrará na eq. 4.12 de forma

positiva. Portanto, poderemos obter uma nova equação dada por:

Etheo
LS = EQED + Cr2 + ENS + EG. (4.13)

A referência [75] nos fornece medições precisas da diferença r2d−r2p, onde rd representa

o raio de carga do deuteron e rp o raio de carga do próton. É válido destacar que estas

medidas podem ser obtidas a partir da eq. 4.12 e igualando Etheo
LS = Eexp

LS , desta maneira,

utilizando o modelo padrão conseguimos obter [75]:

(r2d − r2p)|muonic = 3.8200(7)theo(30)exp fm2. (4.14)

Considerando que o erro teórico e o erro experimental são independentes entre si,

podemos escrever uma expressão para o erro total dado por:

δtotal =
√
0.00072 + 0.0032 ≈ 0.003 fm2. (4.15)
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Observe que, interações gravitacionais anômalas entre o múon e núcleo do átomo

muônico afetarão o deslocamento de Lamb nos ńıveis de energia nos átomos muônicos, e

consequentemente, influenciarão a estimativa sobre o raio de cargas dos núcleos. Podemos

verificar isso explicitamente, isolando r2 na expressão eq. 4.13. Isto pode ser feito para

todos os átomos. Considerando as medidas do deslocamento de Lamb do átomo muônico

pode-se inferir qual o raio de carga do próton. De fato, temos:

r2p|muonic =
Eexp

LS |µH
CµH

− ENS|µH
CµH

− EQED|µH
CµH

− EG|µH
CµH

. (4.16)

Note aqui, que os três primeiros termos nesta equação referem-se ao modelo padrão e

apenas o último representa a correção dos ńıveis de energia devido a desvios na interação

gravitacional, portanto podemos reescrever a eq. 4.16 como:

r2p|muonic = r2p|standard −
EG|µH
CµH

. (4.17)

De maneira análoga, podemos obter uma expressão similar para o raio de carga do

deuteron rd e dessa forma escrever a seguinte expressão geral:

(r2d − r2p)|muonic = (r2d − r2p)|standard −
�
EG|µD
CµD

− EG|µH
CµH

�
. (4.18)

A contribuição da interação gravitacional no desvio Lamb pode ser calculado para

cada átomo muônico a partir da expressão:

EG = ⟨Ψ2P |Hµ|Ψ2P ⟩ − ⟨Ψ2S|Hµ|Ψ2S⟩ , (4.19)

onde a Hamiltoniana é dada pela expressão:

Hµ = Mφ = −GMmµαe
−r/λ

r
, (4.20)

onde M é a massa do núcleo do átomo muônico. Aqui é importante fazer uma observação,

é ńıtido que a parametrização utilizada para modificar o potencial gravitacional foi a de

Yukawa dada pela expressão φ = −GM/r(1+er/λ), entretanto como queremos o potencial
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modificado, consideramos apenas a parte responsável pela alteração.

Os raios de carga do próton e do deuteron podem ser extráıdos a partir dos dados

espectroscópicos dos átomos convencionais. Os valores inferidos através dos átomos

muônicos e eletrônicos não coincidem individualmente. No entanto, a diferença entre o

quadrado dos raios concordam com grande precisão. De fato, de acordo com [75], temos:

(r2d − r2p)|eletronic = 3.8207(3) fm2, (4.21)

portanto, comparando com o valor dado pela eq. 4.14, temos uma concordância entre

os resultados no limite estabelecido pelo erro.

Considerando que os desvios da interação gravitacional podem ser parametrizado pelo

termo de Yukawa, podemos determinar os novos v́ınculos demandando que seus efeitos

sobre a diferença do quadrado do raio não pode ser maior do que o erro da medida

dessa quantidade. Matematicamente, essa exigência experimental se traduz na seguinte

condição:

����
EG|µD
CµD

− EG|µH
CµH

���� < δtotal. (4.22)

Utilizando esta expressão podemos finalmente escrever o v́ınculo pretendido, como:

α <
2δtotal
Gmµ

ξ(λ)−1, (4.23)

onde CµD = −6.1074 meV/fm2, CµH = −5.2259 meV/fm2, δtotal = 0.003 fm2. É

necessário, ainda, destacar que:

ξ(λ) =

 
−md · aµD0

CµD

�
λ2

(λ+ aµD0 )4

�
+

mp · aµH0
CµH

�
λ2

(λ+ aµH0 )4

�!
, (4.24)

onde aµD0 e aµH0 representam os raios de Bohr do deutério e hidrogênio muônicos

respectivamente. Destacamos o v́ınculo para a diferença r2d − r2p|muonic na Fig. 17 por

meio da linha verde pontilhada. Além disso, comparamos os resultados obtidos neste

trabalho com os v́ınculos espectroscópicos que usam dados do hidrogênio eletrônico, além
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do hélio antiprotônico e do HD+ vibracional.

Figura 17: 90% CL - Gráfico relacionado a alguns testes espectroscópicos, são eles:

p4He+(n, l) : (33, 32) → (31, 30) (curva marrom), HD+(ν, l) : (0, 3) → (9, 3) (curva

azul claro), HD+(ν, l) : (0, 0) → (0, 1) (curva laranja), H(1S−3S) (curva rosa), r2d −

r2p|(muonic:2S−2P (curva verde pontilhada) e µ4He+(2S−2P ). [5, 81].

Note ainda que a Fig. 17 mostra que para λ < 10−12 m os v́ınculos que obtemos

utilizando o ı́on hélio-4, hidrogênio e deutério muônicos são mais fortes que os limites

estabelecidos pelo hidrogênio eletrônico. Na Fig. 18 comparamos os resultados obtidos

por meio de testes espectroscópicos, com outros limites de diferentes naturezas como

o Efeito Casimir, a Balança de Torção, Interferometria de Nêutrons, entre outros

[5, 81, 84, 85].
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Figura 18: Comparação dos resultados obtidos nesse trabalho (́ıon hélio-4, hidrogênio e

deutério muônicos - linhas pontilhadas) com alguns outros testes espectroscópicos. 90%

CL - p4He+ (n, L) : (33, 32) → (31, 30), HD+ (v, L) : (0, 3) → (9, 3), HD+ (v, L) :

(0, 0) → (0, 1), r2d − r2p, H(1S−3S) e µ4He+(2S−2P ). 95% CL - demais experimentos

[5, 81, 84, 85].
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5 Vı́nculos Espectroscópicos para os
Potenciais Pós-Newtonianos

Ao considerarmos o regime de campo fraco, as teorias métricas alternativas podem

ser distinguidas a partir dos valores de parâmetros definidos no chamado formalismo

PPN (parametrized Post-Newtonian). Entre estes parâmetros podemos destacar o fator

γ associado a curvatura da seção espacial do espaço-tempo. Conforme a Teoria da

Relatividade Geral γ = 1, mas outras teorias da gravitação, como a teoria de Brans-

Dicke, preveem um valor diferente para esse parâmetro γ. Além deste parâmetro, existem

outros parâmetros PPN responsáveis por medir diversos efeitos, como a diferença entre o

potencial gravitacional gerado por várias espécies de fontes (energias internas de natureza

diversa) ou pela pressão em relação ao potencial produzido pela massa bariônica.

Neste caṕıtulo, primeiramente analisamos alguns resultados conhecidos que

estabelecem v́ınculos para potenciais pós-newtonianos em curtas distâncias. Esses

v́ınculos são extráıdos da interferometria de nêutrons, da análise do acoplamento spin-

órbita no experimento MTV-G e da espectroscopia do hidrogênio para a transição

2P1/2 − 2P3/2. Em seguida, estabelecemos v́ınculos derivados da transição 2P1/2 − 2P3/2

do hélio muônico [63]. Para finalizar comparamos graficamente todos os limites obtidos e

verificamos que no limite λ < 10−10m os nossos resultados são um pouco mais fortes.

5.1 Interferometria de Nêutrons

5.1.1 O Experimento COW

A busca por um desvio no potencial gravitacional Newtoniano, utiliza-se de diversos

fenômenos f́ısicos, um deles é a interferometria de nêutrons. Aqui, discutiremos o

experimento COW [54, 55]. Este experimento revolucionou a área de estudo da

interferometria de nêutrons, visto que a partir dele foi posśıvel mostrar que a fase quântica

do nêutron é afetada pelo potencial gravitacional da Terra.

O experimento COW recebe este nome devido aos seus idealizadores Collela,

Overhauser e Werner. Nele, utiliza-se um interferômetro de Nêutrons visando avaliar
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a influência gravitacional da Terra sobre a fase da função de onda do nêutron [54, 55].

Este experimento divide coerentemente as ondas dos nêutrons e as separa no potencial

gravitacional, estas amplitudes são divididas por meio da difração de Braggs7 a partir de

cristais de siĺıcio perfeitos.

A ideia é fazer um feixe de nêutrons monocromáticos com comprimento de onda λ

entrar em um interferômetro de placa tripla ao longo de uma linha horizontal com um

certo momento inicial conhecido.

Figura 19: Representação de um interferômetro de Nêutrons e detectores de 3He. Figura

retirada da referência [54].

Figura 20: Representação geométrica do interferômetro de Nêutrons inclinado na direção

do feixe incidente. Figura retirada da referência [6].

O nêutron que incide no interferômetro é dividido em dois pacotes de onda no ponto A

criando dois caminhos de sub-feixes ABD e ACD. Após esse processo, os dois pacotes de

7ocorre quando a radiação eletromagnética ou ondas de matéria de comprimento de onda comparável
à distância entre dois planos de átomos é refletida especularmente por planos consecutivos
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onda se unem novamente na terceira placa de cristal no ponto D. Quando o interferômetro

está inclinado, o ponto D fica a uma altura H em relação à base. Portanto, em D, a

energia potencial do nêutron será maior do que em A (Fig. 19, Fig. 20). Por causa

desse diferença de potencial, o feixe percorre o trecho S (ver Fig. 20) mais lentamente

do que o trecho I. Isso provoca uma diferença de fase entre os feixes, que pode ser medida

pelos detectores C2 e C3.

Esquematicamente, o interferômetro de nêutrons utilizado no experimento COW é

equivalente a um anel, como mostrado na Fig. 21. Considerando o ponto A no anel,

temos que uma onda incidente entra sendo dividida coerentemente em duas partes: uma

propagando-se no caminho I e a outra que se propaga no caminho II do anel. Ao

percorrerem seus respectivos caminhos, as duas ondas se recombinam no ponto B podendo

ser então detectadas por um instrumento. A contagem de nêutrons no detector dependerá

da interferência entre os feixes. Por sua vez, a interferência será determinada pelo desvio

de fase provocado pela interação a qual apenas o feixe II é submetido. Obviamente só

existe um padrão quando vários nêutrons são detectados, visto que o observador detecta

um nêutron por vez.

Figura 21: Representação esquemática geral do interferômetro. Figura retirada da

referência [62].

A diferença de fase acumulada depende da velocidade com que os nêutrons percorrem

os dois caminhos e pode ser calculada através da integral de caminho:

∆Φ =

I
p⃗ · ds⃗. (5.1)
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5.1.2 Vı́nculos Extráıdos da Interferometria de Nêutrons

Existe um Experimento [86] inicialmente utilizado para medir o efeito Aharonov-

Casher [74] cujo funcionamento baseia-se em feixes de nêutrons atravessando o interior

de um capacitor, causando acúmulos de desvios de fase devido à interação entre o

campo elétrico e o momento magnético do nêutron. Essa interação acontece por meio

do acoplamento spin-órbita do nêutron mediado pelo campo elétrico, descrita pela

Hamiltoniana:

µn

mc
σ⃗ ·

�
E⃗ × p⃗

�
, (5.2)

onde σ representa as matrizes de Pauli, µ⃗n representa o momento magnético do nêutron

e E⃗ representa o campo elétrico. Considere que apenas um dos feixes parciais interage

com o campo elétrico. Isso provoca, como discutimos na seção anterior, um desvio de fase

entre os feixes, que pode ser medido. Esse experimento foi realizado e os resultados se

mostram compat́ıveis com as previsões teóricas.

Com base nos resultados desse experimento, posteriormente investigou-se [6]

hipotéticos desvios do comportamento de um potencial pós-Newtoniano. Conforme a

Teoria da Relatividade Geral, toda forma de energia pode curvar o espaço-tempo. Assim,

a energia do campo elétrico também provoca um campo gravitacional. Desse modo, nesse

experimento haverá uma interação gravitacional entre o campo elétrico com os nêutrons do

feixe que atravessa a câmara eletrostática. Essa interação será descrita por um potencial

pós-newtoniano, pois a teoria newtoniana não prevê esse tipo de interação. Outro ponto a

destacar é que, devido à equação de estado da radiação, a pressão e a densidade de energia

do campo elétrico produzem efeitos gravitacionais de mesma magnitude. Portanto, esse

potencial pós-newtoniano também mede a capacidade da pressão produzir gravitação.

Descrevendo os desvios desse potencial pós-newtoniano por meio da parametrização

de Yukawa e admitindo que λ é muito pequeno comparado com o comprimento L do

capacitor, pode-se mostrar [6] que a diferença de fase entre os feixes será dada por:
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∆ϕ =
Gαλ2m2ϵ0E

2λnL

h2c2
(5.3)

onde a intensidade do campo é dada por E = 30kV/mm, L = 2, 53cm, o comprimento de

onda do nêutron incidente é λn = 1.477Å [86] e ε0 representa a permissividade elétrica no

vácuo. No experimento, como já mencionamos, a diferença de fase medida está consoante

as previsões teóricas do modelo padrão, na precisão dos instrumentos, que é da ordem 10−3.

Assim, interações anômalas não podem produzir efeitos superiores ao erro da medida.

Sendo assim, segue dessa condição que o fator α de ampliação da interação gravitacional

deve obedecer à seguinte restrição:

αλ2 < 0, 26× 1020 m2 (5.4)

Este v́ınculo pode ser visto mais detalhadamente na Fig. 23.

5.2 O Experimento MTV-G

O experimento MTV-G foi realizado em TRIUMF no ano de 2011, visando investigar

a possibilidade da existência de um campo gravitacional muito forte ao redor do núcleo

atômico. Esse experimento estava baseado na ideia de medir a precessão do spin de

elétrons que atravessam um meio material utilizando a abordagem de dimensões extras.

Usando a parametrização de Yukawa para descrever os desvios gravitacionais é posśıvel

encontrar um novo v́ınculo para o parâmetro α como mostraremos posteriormente. O

nome deste experimento vem da sigla em inglês “Mott Polarimetry for T-Violation-

Gravity”8 [64].

O polaŕımetro Mott utiliza a mesma ideia que o espalhamento de Rutherford, a

mudança é que, em vez de part́ıculas alfa, usamos elétrons. Esse aparelho consegue

medir a precessão do spin do elétron após um processo de espalhamento, baseando-se na

assimetria esquerda-direita provocada pelo efeito do acoplamento spin-órbita. Sabemos

que o acoplamento spin-órbita é proporcional ao produto interno entre o spin (S⃗) e o

8o Polaŕımetro Mott é um dispositivo utilizado para realizar medições na polarização do elétron e a
“T-Violação” trata-se da inversão da simetria temporal
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momento angular orbital (L⃗). Portanto, a Hamiltoniana que descreve o espalhamento do

elétron será proporcional a S⃗ · L⃗. Se considerarmos um elétron em um estado no qual seu

spin está para cima, por exemplo, então o resultado do espalhamento dependerá do lado

pelo qual o elétron incide no núcleo, alterando então o sinal de HS0.

No experimento MTV-G o aparato experimental utilizado consiste em uma fonte

de radiação Sr90, uma folha de espalhamento primário, uma folha de espalhamento

secundário, um polaŕımetro Mott e uma câmara de rastreamento de elétrons [64]. A

ideia principal é que o spin do elétron sofre uma precessão que ocorre devido à precessão

geodésica gravitacional e da precessão eletromagnética dominante, esta precessão do spin

ocorre na folha primária. O experimento MTV-G então verifica a assimetria na folha de

espalhamento secundária examinando a precessão que ocorre no espalhamento primário.

Os v́ınculos obtidos estão representados na Fig. 23.

Figura 22: Representação da precessão do spin do elétron, após este interagir com o
núcleo. Figura retirada da referência [88].

5.3 Calculando Vı́nculos para o Hidrogênio Eletrônico na

Transição 2P1/2 − 2P3/2

Segundo a Teoria da Relatividade Geral, ao considerarmos uma part́ıcula elementar

em movimento sob a influência de um campo gravitacional, seu spin sofrerá uma

precessão. Esse efeito foi investigada pelo experimento MTV-G, por exemplo, como

citamos anteriormente.
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Assim como no experimento MTV-G, nesta seção investigaremos os efeitos

gravitacionais na precessão do spin de part́ıculas elementares. Para conseguirmos alcançar

este objetivo, consideraremos a influência do acoplamento spin-órbita gravitacional na

separação fina entre os estados 2P1/2 e 2P3/2 do hidrogênio eletrônico.

Para estudarmos a precessão do spin causada pela interação gravitacional, precisamos

adotar o formalismo da mecânica quântica. Para isto precisamos usar a equação de Dirac

no espaço curvo. Considerando então uma primeira aproximação, podemos assumir que o

próton produz um campo gravitacional estático e esfericamente simétrico. Neste contexto,

podemos escrever a métrica deste espaço-tempo da seguinte maneira:

ds2 = −c2
�
1 +

2φ

c2

�
dt2 +

�
1− 2φ̃

c2

�
(dx2 + dy2 + dz2), (5.5)

onde φ e φ̃ são potenciais produzidos pelo próton. A Teoria da Relatividade Geral prevê

que φ = φ̃, entretanto, como estamos estudando desvios no campo gravitacional no

domı́nio atômico, consideramos a possibilidade de termos φ ̸= φ̃.

Ao observar a eq. 5.5, é posśıvel verificar que o potencial φ̃ está associado a curvatura

da seção puramente espacial do espaço-tempo. A possibilidade deste potencial diferir do

potencial Newtoniano é contemplada pelo formalismo de parametrização Pós-Newtoniano

(PPN) utilizando o parâmetro γ.

Dessa forma, considerando a parametrização de Yukawa podemos escrever φ̃ =

(1 + α̃e−r/λ)GM/r. No limite em que λ ≫ r, vemos que o potencial φ̃ ficaria igual a

(1 + α̃)GM/r. Portanto, (1 + α̃) está associado ao parâmetro γ do formalismo PPN.

Limites emṕıricos para este parâmetro γ podem ser extráıdos, por exemplo, no domı́nio

astrof́ısico por meio de experimentos de deflexão da luz e de atraso temporal [66].

Aqui, pretendemos examinar desvios desse potencial em curtas distâncias,

considerando a transição 2P1/2 − 2P3/2 do hélio muônico, medida recentemente. O

potencial φ̃ influência essa transição através do acoplamento spin-órbita gravitacional.

O acoplamento spin-órbita provocará uma separação adicional entre os estados 2P1/2

e 2P3/2, que pode ser calculada tomando-se o valor médio da Hamiltonian HGS0, que

descreve esse acoplamento, nos dois estados, conforme a expressão abaixo:
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∆fSO =
∆EGSO

h
=

⟨HGSO⟩2P3/2
− ⟨HGSO⟩2P1/2

h
, (5.6)

onde HGS0 é a Hamiltoniana que descreve o acoplamento spin-órbita gravitacional. Essa

Hamiltoniana pode ser deduzida a partir da equação de Dirac escrita no espaço-tempo

curvo. Sabemos que o espinor na equação de Dirac possui quatro componentes, duas delas

relacionadas com a part́ıcula considerando spin up e spin down e as outras duas referentes

à antipart́ıcula também considerando spin up e spin down. Note que, se tivermos uma

energia muito grande, part́ıculas e antipart́ıculas podem ser criadas e sofrerem processo

de aniquilação, tornando inviável a separação dos termos associados a elas na equação

de Dirac. Por outro lado, ao considerarmos uma energia pequena, podemos utilizar o

formalismo de Foldy-Wothuysen para separar esses termos e então conseguirmos encontrar

correções quânticas e relativ́ısticas para a Hamiltoniana. Dessa forma, é posśıvel mostrar

que 9:

H = β̂

�
mc2 +mφ+

p⃗2

2m
+

1

mc2

�φ
2
+ φ̃

�
p⃗2 − iℏ

mc2

�
∇⃗φ̃+

1

2
∇⃗φ

�
· p⃗

+
ℏ

2mc2

�
Σ̂ ·

�
∇⃗φ̃× p⃗

�
+

1

2
Σ̂ ·

�
∇⃗φ× p⃗

���
.

(5.7)

É posśıvel perceber que o primeiro termo corresponde a energia de repouso do lépton, o

segundo termo representa a energia potencial usual da interação próton-lépton e os demais

termos são responsáveis por correções quânticas e relativ́ısticas. Podemos reescrever o

último termo da eq. 5.7 considerando S⃗ = ℏ
2
σ⃗ e Σ⃗ = 1σ⃗. Esse termo depende do spin da

part́ıcula e o acopla, por meio do campo gravitacional, ao movimento de translação dessa

part́ıcula. Admitindo que os potenciais φ e φ̃ são radiais e possuem simetria esférica,

podemos mostrar que a Hamiltonian do acoplamento pode ser escrita em termos do

produto do spin e do momento angular por meio da expressão:

⟨HGSO⟩n,l =
1

mc2

�
1

r

d

dr

�φ
2
+ φ̃

��D
S⃗ · L⃗

E
. (5.8)

9Uma demonstração um pouco mais detalhada pode ser encontrada em [5]
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É válido destacar ainda que o valor esperado ⟨⟩n,l está relacionado com a função de

onda ψn,l, onde n é o número quântico principal e l especifica o momento angular do

estado. Além disso, sabemos que por propriedades de ortonormalidade de Y m
l (θ,φ) só

precisaremos nos preocupar com a integral radial Rn,l. Dessa forma, trabalhando na

transição 2P1/2 − 2P3/2, para qual temos n = 2 e l = 1, a função radial será:

R21(r) =
1p
24a30

r

a0
e−r/2a0 . (5.9)

Observe que temos as seguintes expressões para φ e φ̃:

φ = −GM

r
(1 + αe−r/λ), (5.10)

φ̃ = −GM

r
(1 + α̃e−r/λ). (5.11)

Portanto, utilizando estas expressões podemos escrever que:

d

dr

�φ
2
+ φ̃

�
= GM

�α
2
+ α̃

�
e−r/λ

� r
λ
+ 1

r2

�
. (5.12)

Nos resta agora calcular o primeiro valor esperado da eq. 5.8 utilizando a função

radial descrita na eq. 5.9. Dessa forma, escrevemos então que:

�
1

r

d

dr

�φ
2
+ φ̃

��

21

=
GM

24a50

�α
2
+ α̃

� Z ∞

0

re−
r
λ e

− r
a0

�
1 +

r

λ

�
dr, (5.13)

aqui já transferimos para coordenadas esféricos e usamos a ortonormalidade dos

harmônicos esféricos. Para resolvermos esta integral usamos a expressão:

I(k, p) =

Z +∞

0

rke
pr
a0 dr = k!

�
a0
p

�k+1

. (5.14)

Sabemos que o momento angular toral J é dado pela expressão J = L + S, onde L

é o momento angular orbital e S é o momento angular de spin. Portanto, utilizando a

expressão de J dada anteriormente podemos calcular
D
S⃗ · L⃗

E
para obtermos:

86



S⃗ · L⃗ = J2 − L2 − S2. (5.15)

Dessa forma podemos concluir que:

D
S⃗ · L⃗

E
=

1

2
[j(j + 1)− l(l + 1)− s(s− 1)]ℏ2. (5.16)

Substituindo então os valores j = 1/2, l = 1 e s = 1/2 para o estado 2P1/2 e j = 3/2,

l = 1 e s = 1/2 para o estado 2P3/2 na expressão de
D
S⃗ · L⃗

E
obtemos que:

D
S⃗ · L⃗

E
2P3/2−2P1/2

=
3

2
ℏ2. (5.17)

Por fim, unindo os resultados dos dois valores esperados obtemos que:

∆fSO =
GM

hmc2

�α
2
+ α̃

��
1

24a30

λ2

(a0 + λ)2
+

1

12a20

λ2

(a0 + λ)3

�
3

2
ℏ2. (5.18)

Para obtermos o v́ınculo para a transição 2P1/2 − 2P3/2 do hidrogênio eletrônico,

precisamos aplicar a condição ∆fS0 < δf , onde δf = 15 kHz. Além disso, é necessário

isolar o parâmetro misto (α
2
+ α̃) como podemos ver detalhadamente na referência [5]. Os

limites estabelecidos podem ser vistos na Fig. 23.

5.4 Calculando Vı́nculos para o ı́on Hélio-4 Muônico na

transição 2P1/2 − 2P3/2

Nesta seção, visamos analisar o parâmetro misto na transição 2P1/2−2P3/2 para o hélio

muônico. Apesar de nesta transição o hidrogênio eletrônico possuir dados espectroscópicos

bem mais precisos, a interação gravitacional entre o múon e o núcleo do hélio é bem

mais forte que a interação próton-elétron, então tentaremos verificar se em alguma região

conseguimos encontrar um v́ınculo mais forte.

Por meio da referência [63] é posśıvel obter o erro experimental e o erro teórico

associado da energia de transição. Sendo assim, temos:
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δEexp = ±0.096 meV, (5.19)

δEthe = ±0.0003 meV. (5.20)

Considerando que os erros são independentes entre si podemos calcular δE da seguinte

maneira:

δE =
q
δ2th + δ2exp ≈ 0.096 meV. (5.21)

Note que a eq. 5.18 é semelhante à expressão eq. 5.22 válida para o hidrogênio

eletrônico. No entanto, há algumas diferenças que devemos destacar: o raio de Bohr na

eq. 5.22 se refere ao raio de Bohr do hélio muônico, além disso, a massa do núcleo é a

massa do núcleo do hélio e a massa do elétron é substitúıda pela massa do múon, por fim,

é importante destacar que como neste caso estamos analisando uma variação de energia

e não de frequência, substitúımos ∆fS0 por ∆ES0 e retiramos o h na eq. 5.6. Para

destacar esses aspectos, vamos reescrever a eq. 5.18 da seguinte forma:

∆ESO =
GMα

mµc2

�α
2
+ α̃

��
1

24(a∗0)
3

λ2

(a∗0 + λ)2
+

1

12(a∗0)
2

λ2

(a∗0 + λ)3

�
3

2
ℏ2, (5.22)

onde a∗0 representa o raio de Bohr para o hélio muônico cujo valor é a∗0 = 1.303942757×

10−13 m. O v́ınculo sobre o parâmetro α/2 + α̃ é determinado impondo que a influência

do acoplamento spin-orbita gravitacional na transição 2P1/2 − 2P3/2 não pode ser maior

do que o erro da transição, ou seja, ∆E < δE. Na Fig. 23, mostramos as novas restrições

obtidas com base no hélio muônico em comparação com outros v́ınculos sobre desvios dos

potenciais pós-newtonianos.

88



Figura 23: 68% CL - Vı́nculos impostos por diferentes testes de desvios de potenciais

pós-newtonianos. [5, 6].

A partir da Fig. 23 podemos perceber que para λ < 10−10 m, os v́ınculos obtidos

neste trabalho a partir do ı́on hélio-4 muônico sobre o parâmetro misto (α
2
+ α̃), que se

relaciona com o parâmetro γ do formalismo PPN (pós-newtoniano), são mais fortes em

comparação com o hidrogênio eletrônico e o experimento MTV-G.
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6 Conclusões

O estudo de dimensões extras é motivado pela busca de soluções para problemas

que, até o momento, não podem ser totalmente respondidos apenas com a utilização da

f́ısica padrão. Questionamentos sobre a unificação da gravitação e das demais forças

fundamentais, por exemplo, motivam a elaboração de novas teorias f́ısicas, como a

teoria de cordas, a teoria de branas, entre outras. Além da unificação entre as forças

fundamentais, vimos que a hipótese da existência de dimensões extras pode solucionar

outras indagações da f́ısica contemporânea, como o problema da hierarquia, explicando a

diferença entre a escala da energia da gravidade e das outras forças fundamentais.

Vimos alguns modelos de teorias que supõem a presença de dimensões extras, como o

modelo de Kaluza-Klein e o Modelo ADD, ao qual demos especial atenção nesse trabalho

devido às suas instigantes implicações fenomenológicas. De acordo com o modelo ADD,

todos os campos do modelo padrão estão confinados em uma 3-Brana, que, por sua vez,

está imersa em um espaço de dimensão superior, que só pode ser acessado pela gravidade.

Assim, esperamos efeitos de uma “f́ısica nova” em uma escala de distância definida pelo

raio de compactação das dimensões extras, enquanto, a “f́ısica padrão” é recuperada

para distâncias maiores. Como a gravitação pode se propagar em todas as direções, o

comportamento dessa interação será modificado em curtas distâncias, ou seja, haverá

uma alteração no potencial gravitacional. Para descrever os desvios do potencial, usamos

a parametrização de Yukawa, pois assim, podeŕıamos comparar os v́ınculos obtidos com

limites estabelecidos em outros trabalhos que utilizam a mesma parametrização.

Neste trabalho, procuramos estabelecer restrições para o comportamento anômalo da

gravitação em curtas distâncias usando dados espectroscópicos de átomos exóticos, mais

precisamente de átomos muônicos. Nossa escolha por esses átomos se justifica pelo fato

de que, em relação à força gravitacional, a interação múon-núcleo, é bem mais forte que a

interação elétron-núcleo, devido ao fato do múon possuir uma massa de aproximadamente

200 vezes a massa do elétron. Desta forma, buscamos primeiramente por correções que a

interação gravitacional, na sua versão modificada, poderia provocar na transição 2S− 2P

para o ı́on hélio-4 muônico. Para garantir que a nova teoria não esteja em conflito com
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as observações experimentais, essas hipotéticas correções não podem ser maiores do que

o erro da medida. A partir dessa condição, conseguimos obter v́ınculos mais restritivos

do que os extráıdos do hidrogênio eletrônico e dos dados do hélio anti-protônico, numa

escala de distância menor do que o picômetro.

Além de estudar o ı́on hélio-4 muônico, consideramos também dados experimentais do

raio de carga do deuteron e do próton, inferidos a partir de medidas da espectroscopia

do deutério e do hidrogênio muônicos. Observamos que um empecilho inicial para

estudar a interação entre múon-próton era justamente o problema do raio do próton, pois

medições realizadas com base no hidrogênio muônico não batiam com o valor estabelecido

pelo CODATA-2010, utilizando o hidrogênio eletrônico. Entretanto, a diferença entre

o quadrado dos raios do deutério e do próton medido por meio dos átomos muônicos

coincide com o valor dessa grandeza inferido a partir dos átomos eletrônicos. Usamos essa

concordância para impor novas restrições para os desvios do potencial gravitacional na

escala abaixo do angstrom.

Ainda seguindo esta linha de investigação, consideramos a transição entre os

estado 2P1/2 − 2P3/2. Esta transição depende da estrutura fina do átomo. A

interação gravitacional pode influenciar essa transição através do acoplamento spin-órbita

gravitacional. Como vimos, esse acoplamento depende de um potencial pós-newtoniano,

associado ao parâmetro γ do formalismo PPN. Como os dados experimentais dessa

transição concordam com as previsões teóricas, feitas pelo modelo padrão, usamos os

dados dessa transição no hélio muônico para determinar novos limites para desvios no

comportamento daquele potencial pós-newtoniano.

Além disso, para o potencial pós-newtoniano foram realizadas comparações com o

experimento MTV-G, interferometria de nêutrons e dados espectroscópicos da transição

2P1/2 − 2P3/2 do hidrogênio eletrônico. Dessa forma, conseguimos estabelecer v́ınculos

teóricos e compará-los com diversos outros resultados e verificamos que para λ < 10−10 m

os nossos resultados são mais fortes.

Para trabalhos futuros, esperamos por dados experimentais um pouco mais precisos,

pois assim, podemos tornar os v́ınculos mais fortes. Em especial, medidas para a transição
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1S − 2S no µ4H+ seriam muito apropriadas para o nosso objetivo, pois nessa transição a

interação gravitacional seria mais forte, e, portanto, podeŕıamos determinar v́ınculos ainda

mais restritivos para desvios da gravitação. É interesse destacar que neste momento essa

transição está sendo examinada por dois grupos [77, 78].
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7 Apêndices

7.1 Apêndice A

Sabemos que a Fórmula do Somatório de Poisson pode ser escrita como:

+∞X

n=−∞
f(t+ nT ) =

1

T

+∞X

k=−∞
g

�
k

T

�
e

2πikt
T , (7.1)

onde,

g

�
k

T

�
=

Z +∞

−∞
e

−2πikτ
T f(τ)dτ. (7.2)

Dessa forma, usando identificando t = xi e T = 2πR podemos escrever que:

f

 
nX

i=1

xi − 2πRmi

!
=

1

(r2 +
Pn

i=1(xi − 2πRmi)2)
n+1
2

. (7.3)

Assim, utilizando a Fórmula de Poisson na eq. 2.104 obteremos a expressão desejada,

dada por:

V4+δ = −G4+δM

(2πR)δ

X

m⃗

eim⃗·x/R
Z +∞

−∞

e−im⃗·x′/R

(r2 + x′2)
δ+1
2

dx′. (7.4)
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7.2 Apêndice B

Para simplificarmos a integração, escolheremos uma direção preferencial fixando nosso

m
R
= m̃ em uma direção î1, assim o produto interno da integral será dado pela expressão

m̃ · x = m̃x1. Assim,

Vn+4 = −Gn+4M

(2πR)n

X

m

eim̃x1

Z

Rn

eim̃x1

(r2 + x2)
n+1
2

dnx. (7.5)

Como escolhemos uma direção preferencial, realizaremos a nossa integração em todas

as outras direções exceto em dx1, então, o nosso elemento de ”volume”10 poderá ser escrito

como:

dnx = V ol(Sn−2(ρ))dρdx1, (7.6)

portanto, podemos reescrever a equação acima da seguinte maneira:

dnx = V ol(Sn−2)ρn−2dρdx1, (7.7)

mas 11,

V ol(Sn−2) =
2π

n−1
2

Γ

n−1
2

� . (7.8)

Portanto,

Vn+4 = −Gn+4M

(2πR)n
2π

n−1
2

Γ

n−1
2

�
X

m

e−im̃x1

Z Z
ρn−2

(r2 + x2)
n+1
2

eim̃x1dx1dρ. (7.9)

Mudando então para coordenadas esféricas, em que

x1 = x cos θ, (7.10)

ρ = x sin θ, (7.11)

10entre aspas porque temos n dimensões
11A eq. 7.8 é bastante conhecida e denota o hipervolume de uma esfera com n− 2 dimensões
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Podemos então calcular o Jacobiano dessa transformação e encontrar que ele será x

portanto, a mudança de coordenada será dada por xdxdθ. Substituindo este resultado na

equação 7.9 obtemos:

Vn+4 = −Gn+4M

(2πR)n
2π

n−1
2

Γ

n−1
2

�
X

m

e−im̃x cos θ

Z Z
(x sin θ)n−2

(r2 + x2)
n+1
2

eim̃x cos θxdxdθ, (7.12)

podemos ainda reorganizar a expressão acima da seguinte maneira:

Vn+4 = −Gn+4M

(2πR)n
2π

n−1
2

Γ

n−1
2

�
X

m

e−im̃x cos θ

Z ∞

0

xn−1

(r2 + x2)
n+1
2

dx

Z π

0

eim̃x cos θ(sin θ)n−2dθ.

(7.13)

Usando a expressão 12 dada por:

Jν(z) =


z
2

�ν

Γ

ν + 1

2

�
Z π

0

e±izcosφsen2νφdφ, (7.14)

podemos resolver a segunda integral ao lado direito para obter que:

Z π

0

ei|m̃|x cos θ(sin θ)n−2dθ =
2

n
2 π

n
2Γ


n+1
2

�

2π
n−1
2 |m̃|n2−1

Jn
2
−1(x|m̃|)x1−n

2 . (7.15)

Dessa forma, temos,

Vn+4 = −Gn+4Mπ
n
2 2

n
2

χn

X

m

e−im̃x cos θ

|m̃|n2−1

Z ∞

0

x
n
2 Jn

2
−1(x|m̃|)

(r2 + x2)
n+1
2

dx. (7.16)

Podemos resolver a integral restante usando a fórmula 13 dada pela expressão:

Z ∞

0

xν+1(x2 + a2)−ν− 3
2Jν(bx)dx =

√
πbν

2ν+1aeabΓ

ν + 3

2

� . (7.17)

Assim,

12esta fórmula pode ser encontrada na referência [2] na fórmula 8.411(7)
13expressão descrita na referência [2] na fórmula 6.565(3)
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Z ∞

0

dx
x

n
2 Jn

2
−1(x|m̃|)

(r2 + x2)
n+1
2

=
|m̃|n2−1

√
πe−r|m̃|

2
n
2Γ


n+1
2

� 1

r
. (7.18)

Dessa forma temos finalmente que:

V4+δ = −G4M

r

X

m⃗

e−r|m⃗/R|. (7.19)
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do t́ıtulo de doutora em f́ısica) - Departamento de F́ısica da Universidade Federal da
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