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Gauged Linear Sigma Models and Mirror Symmetry

Wei Gu

(ABSTRACT)

This thesis is devoted to the study of gauged linear sigma models (GLSMs) and mirror
symmetry. The first chapter of this thesis aims to introduce some basics of GLSMs and
mirror symmetry. The second chapter contains the author’s contributions to new exact
results for GLSMs obtained by applying supersymmetric localization. The first part of that
chapter concerns supermanifolds. We use supersymmetric localization to show that A-twisted
GLSM correlation functions for certain supermanifolds are equivalent to corresponding A-
twisted GLSM correlation functions for hypersurfaces. The second part of that chapter
defines associated Cartan theories for non-abelian GLSMs by studying partition functions as
well as elliptic genera. The third part of that chapter focuses on N=(0,2) GLSMs. For those
deformed from N=(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-
zero correlation functions in terms of Jeffrey-Kirwan-Grothendieck residues on Coulomb
branches, which generalize the Jeffrey-Kirwan residue prescription relevant for the N=(2,2)
locus. We reproduce known results for abelian GLSMs, and can systematically calculate
more examples with new formulas that render the quantum sheaf cohomology relations and
other properties manifest. We also include unpublished results for counting deformation
parameters. The third chapter is about mirror symmetry. In the first part of the third
chapter, we propose an extension of the Hori-Vafa mirrror construction [25] from abelian
(2,2) GLSMs they considered to non-abelian (2,2) GLSMs with connected gauge groups, a
potential solution to an old problem. We formally show that topological correlation functions
of B-twisted mirror LGs match those of A-twisted gauge theories. In this thesis, we study two
examples, Grassmannians and two-step flag manifolds, verifying in each case that the mirror
correctly reproduces details ranging from the number of vacua and correlations functions to
quantum cohomology relations. In the last part of the third chapter, we propose an extension
of the Hori-Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2)
theories by special tangent bundle deformations. Our ansatz can systematically produce the
(0,2) mirrors of toric varieties and the results are consistent with existing examples which
were produced by laborious guesswork. The last chapter briefly discusses some directions
that the author would like to pursue in the future.



Gauged Linear Sigma Models and Mirror Symmetry

Wei Gu

(GENERAL AUDIENCE ABSTRACT)

In this thesis, I summarize my work on gauged linear sigma models (GLSMs) and mirror
symmetry. We begin by using supersymmetric localization to show that A-twisted GLSM
correlation functions for certain supermanifolds are equivalent to corresponding A-twisted
GLSM correlation functions for hypersurfaces. We also define associated Cartan theories
for non-abelian GLSMs. We then consider N=(0,2) GLSMs. For those deformed from
N=(2,2) GLSMs, we consider A/2-twisted theories and formulate the genus-zero correlation
functions on Coulomb branches. We reproduce known results for abelian GLSMs, and can
systematically compute more examples with new formulas that render the quantum sheaf
cohomology relations and other properties are manifest. We also include unpublished results
for counting deformation parameters. We then turn to mirror symmetry, a duality between
seemingly-different two-dimensional quantum field theories. We propose an extension of the
Hori-Vafa mirrror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs
with connected gauge groups, a potential solution to an old problem. In this thesis, we
study two examples, Grassmannians and two-step flag manifolds, verifying in each case that
the mirror correctly reproduces details ranging from the number of vacua and correlations
functions to quantum cohomology relations. We then propose an extension of the Hori-
Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2) theories
by special tangent bundle deformations. Our ansatz can systematically produce the (0,2)
mirrors of toric varieties and the results are consistent with existing examples. We conclude
with a discussion of directions that we would like to pursue in the future.
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Chapter 1

Introduction

String theory is the leading attempt to unify general relativity and quantum field theory into
one coherent framework. String theory has had made many successes, and also makes some
novel predictions. Perhaps the most novel of those predictions is that spacetime should have
ten dimensions, instead of four. It was proposed in [1] that the four dimensions we observe
should arise after the ten dimensions are rolled up or “compactified” on a six-dimensional
manifold. Demanding four-dimensional spacetime geometry (at high energies) constrains the
properties of that six-dimensional internal space, typically to be a ‘Calabi-Yau’ manifold.

In a compactification, properties of low-energy quantum field theories are determined by the
geometry of the internal six-dimensional space, as shown in [1]. Over the three decades since
that paper was written, the subject of string compactifications has undergone significant
developments. New insights and techniques have led to many developments in this subject.
Methods to study string compactifications can be classified in two broad categories: study
geometries (which are also called target spaces) directly by using mathematical tools with
some constraints from physics; study two-dimensional worldsheet propagating in some target
space. These two methods yield mutually consistent results; however each method has its
own strengths. This thesis is largely devoted to the author’s contributions to this subject by
using the second method, however. it is worth mentioning some new developments from the
first method briefly. I apologize that I can not include all of the developments in this thesis.

Physicists usually start by solving for vacuum configurations of effective theories of string
theory or M theory which preserve some supersymmetry. In simple cases, this requires
that the compacification spaces be Calabi-Yau manifolds [1]. Along with these “physical
tools,” traditional mathematical tools such as algebraic geometry are also necessary for
studying these manifolds. A good review of this can be found at [2]. Surprisingly, string
dualities [3] give new insights into Calabi-Yau manifolds that are not visible from classical
mathematics. For example, mirror symmetry is a duality which relates two different Calabi-
Yau manifolds. A proposal for a geometrical construction of mirrors can be found in [4]. With
these mathematical tools physicists also extend string phenomenology from the perturbative
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regime to nonperturbative physics and more aspects of particle physics can be “derived” from
string theory [5, 6]. It turns out the number of Calabi-Yau manifolds is huge and statistical
methods would be useful in classifying these Calabi-Yau manifolds, such as [7–9]. Recently,
some physicists have applied machine learning to Calabi-Yau manifolds, see [10] for more
about this direction and references therein.

Another approach to the study of Calabi-Yau manifolds is from the worldsheet perspec-
tive [11]. More specifically, one can define two-dimensional worldsheet theories known as
nonlinear sigma models (NLSMs) which describe strings propagating on a space. It is a the-
ory of maps from the worldsheet into the target space. Its topological twists were studied by
Witten [13]. Witten gave a detailed correspondence between operators in the (topologically-
twisted) worldsheet theory and the cohomology of the target space. More generally, such
two-dimensional theories encode the geometry and topology of their target spaces. A d-
ifferent class of two-dimensional theories which also are related to target-space geometries
are known as Landau-Ginzburg (LG) models. Their massless spectra are often similar to
those of nonlinear sigma models [14], which motivated the conjecture [15] that there exists
an equivalence between NLSMs and LG models.

The NLSM/LG correspondence was explained in [16,17]. In [16], Witten constructed gauged
linear sigma models (GLSMs) and noted that NLSMs and LG models are often two differ-
ent phases of the same GLSM. The paper [17] used mirror symmetry to examine the same
problem. Since Witten’s work, there has been a great deal of work on GLSMs. However, for
many years, nonperturabtive effects in GLSMs could be only understood via mirror symme-
try. This problem was solved within last decade due to the development of supersymmetric
localization. Inspired by Pestun’s paper on localization in four-dimensional supersymmetric
theories [18], people extended localization to other cases including two-dimensional gauge
theories with various backgrounds [19]. Many new exact results have been obtained by ap-
plying supersymmetric localization to GLSMs, which are reviewed in chapter 2 of this thesis,
along with some new unpublished results in section 2.2 and section 2.3.6 and some detailed
derivations of one-loop determinants in appendices.

As emphasised by Witten in [16], mirror symmetry can be interpreted in terms of exchang-
ing chiral multiplets annd twisted chiral multiplets of (2,2) supersymmetry. Following this
picture, Morrison and Plesser [20] explained mirror symmetry as a duality between pairs of
GLSMs that generalizes the mathematical picture of Batyrev-Borisov [21–23]. (Some new
progress in this direction [24].) In 2000, Hori-Vafa [25] applied T-duality to abelian gauged
linear sigma models to obtain mirror Landau-Ginzburg theories. This formulation of mirror
symmetry not only includes Calabi-Yau manifolds but also more general toric varieties which
have a GLSM description. However, they did not provide a general ansatz for mirrors to
non-abelian GLSMs at that time. This open problem was solved in [26] last year. We also
extended the Hori-Vafa (2,2) mirror construction to (0,2) cases in [27]. Chapter 3 describes
these new developments, largely followng my work with Eric Sharpe. In addition, several
unpublished detailed computations are also included.
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Despite a vast literature and substantial progress however, many open questions remain
and some other new methods should be involved to understand more fully the dynamics
of gauged linear sigma models and mirror symmetry. The last chapter briefly summarizes
some of these open questions. In the reminder of this chapter we will review some basics of
GLSMs and mirror symmetry which will be used in later chapters.

1.1 Review of Gauged Linear Sigma Models

We will review some basics of (2,2) and (0,2) GLSMs. The material here can also be found
in [16,28].

1.1.1 Review of (2,2) GLSMs

In this section, we briefly review some basics of physical N = (2, 2) GLSMs. In this section,
we assume the worldsheet is flat. Our notation and conventions in this section largely
follow [16,28].

(2, 2) Supersymmetry Algebra

The generators of the (2, 2) supersymmetry algebra are four supercharges Q±, Q±, space-
time translations P , H, and Lorentz rotation M , as well as two R-symmetries U(1)V with
generators FV and U(1)A with generator FA. These satisfy the following algebraic relations:

Q2
+ = Q2

− = Q
2

+ = Q
2

− = 0, (1.1.1){
Q±, Q±

}
= 2 (H ∓ P ) , (1.1.2){

Q+, Q−
}

= 2Z, {Q+, Q−} = 2Z∗, (1.1.3){
Q+, Q−

}
= 2Z̃,

{
Q+, Q−

}
= 2Z̃∗, (1.1.4)

[M,Q±] = ∓Q±,
[
M,Q±

]
= ∓Q±, (1.1.5)

[FV , Q±] = −Q±,
[
FV , Q±

]
= Q±. (1.1.6)

[FA, Q±] = ∓Q±,
[
FA, Q±

]
= ±Q±, (1.1.7)

[M,FV ] = 0, [M,FA] = 0, (1.1.8)

where Z and Z̃ are central charges, and the hermiticity of the generators is dictated by
Q†± = Q±.

To have two U(1) R-symmetries in the theory, we set both Z and Z̃ to zero. This corresponds
to superconformal field theory, and a superconformal nonlinear sigma model typically has
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target spaces that are Calabi-Yau manifolds. In this paper, we consider theories possessing
at least one R-symmetry.

Twisted (2, 2) Supersymmetry Algebra The (2,2) SUSY algebra has a rich structure

and can be topological twisted. We require Z or Z̃ to be vanishing in order to have at least
one R-symmetry. From Eq. (1.1.6), (1.1.7), and (1.1.8), one can observe that the generators
M , FV and FA share similar commutators with other generators while they have vanish-
ing commutators among themselves. From quantum mechanics, one can linearly combine
them to obtain some other new well-defined operators, and two nontrivial and interesting
combinations are the following

M ′
A = M + FV , M ′

B = M + FA. (1.1.9)

We define
QA = Q+ +Q−, QB = Q+ +Q−. (1.1.10)

If we treat M ′
A or M ′

B as a new generator of Lorentz rotations, along with QA or QB, one
can obtain the A or B-model respectively, with BRST operators QA, QB

Q2
A = Q2

B = 0, (1.1.11)

[M ′
A, QA] = 0, [M ′

B, QB] = 0, (1.1.12)

[M ′
A, Q+] = −2Q+, [M ′

B, Q+] = −2Q+, (1.1.13)[
M ′

A, Q−
]

= 2Q−, [M ′
B, Q−] = 2Q−. (1.1.14)

From the above, one can easily see that some supercharges become worldsheet scalars while
the others become worldsheet vectors. Therefore, one can define twisted GLSMs on arbitary
curved worldsheets. These are topological quantum field theories which were studied initially
by Witten [13].

Observables of (2, 2) GLSMs

The language of superspace is convenient to use when studying supersymmetric quantum
field theories. These superspaces can be represented in terms of superspace coordinates x0,

x1, θ±, θ
±

. One can introduces a representation of the supercharges in terms of superspace
coordinates as

Q± =
∂

∂θ±
+ iθ

±
(

∂

∂x0
± ∂

∂x1

)
, Q± = − ∂

∂θ
± − iθ

±
(

∂

∂x0
± ∂

∂x1

)
. (1.1.15)

Then one can introduce covariant derivative in superspace which commute with the super-
charges

D± =
∂

∂θ±
− iθ±

(
∂

∂x0
± ∂

∂x1

)
, D± = − ∂

∂θ
± + iθ±

(
∂

∂x0
± ∂

∂x1

)
. (1.1.16)
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The R-symmetry generators are

FV = θ+ ∂

∂θ+
+θ−

∂

∂θ−
−θ+ ∂

∂θ
+−θ

− ∂

∂θ
− , FA = θ+ ∂

∂θ+
−θ− ∂

∂θ−
−θ+ ∂

∂θ
+ +θ

− ∂

∂θ
− . (1.1.17)

We describe supersymmetric multiplets of fields in terms of a superfield, a function on su-
perspace. Short representations, known as chiral superfields and twisted chiral superfields.
A chiral superfield is defined by

D±Φ = 0, (1.1.18)

and can be expanded as

Φ = φ+
√

2θ+ψ+ +
√

2θ−ψ− + 2θ+θ−F + . . . , (1.1.19)

where F is a complex auxiliary field and +. . . stands for terms only involving the derivatives
of φ and ψ. The conjugate of a superfield Φ, Φ can be defined in a similar fashion as
D±Φ = 0. We call this an anti-chiral superfield. Following the notation of [25], we can
introduce twisted chiral superfields which obey the following constraint

D+Y = D−Y = 0. (1.1.20)

A twisted superfield Y can be expressed

Y = y +
√

2θ+χ+ +
√

2θ
−
χ− + 2θ+θ

−
G+ . . . , (1.1.21)

where G is a complex auxiliary field and +. . . has no extra fields and only involves the
derivatives of the component fields. We can also define the twisted anti-chiral superfield Y
which satisfies D+Y = D−Y = 0. Y is the hermitian conjugate of a twisted chiral superfield
Y .

Gauged linear sigma models have gauge dynamics, therefore we need to introduce vector
superfields. A vector superfield V , in the Wess-Zumino gauge, can be written in terms of
component fields

V = θ−θ
−

(v0 − v1) + θ+θ
+

(v0 + v1)− θ−θ+
σ + θ+θ

−
σ, (1.1.22)

+
√

2iθ
+
θ
− (
θ−λ− + θ+λ+

)
+ 2θ−θ+θ

+
θ
−
D

where vµ is a vector field, the Dirac fermions λ± and its conjugate λ± are superpartners,
and σ and σ are scalars. In a nonabelian gauge theory, all the fields are in the adjoint
representation of the gauge group. The gauge covariant derivatives are defined as

D± = e−VD±e
V , D± = e−VD±e

V . (1.1.23)

One can then define the superfield strength

Σ =
1

2

{
D+,D−

}
(1.1.24)

= σ + i
√

2θ+λ− − i
√

2θ
−
λ− + 2θ+θ

−
(D − iF01) + . . . ,

where F01 is the field strength of the vµ field. One can easily check that the superfield Σ is
a twisted chiral superfield obeying D+Σ = D−Σ = 0.
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Observables of the A-model The BRST transformations of the vector superfield com-
ponents in the A-model are

[QA, v+] =
√

2iλ+, [QA, v−] =
√

2iλ−, (1.1.25)

[QA, σ] = 0, [QA, σ] = −
√

2iλ− −
√

2iλ+,(1.1.26)

{QA, λ+} =
√

2i

[
D + iF01 +

i

2
[σ, σ]

]
,

{
QA, λ+

}
=
√

2D+σ, (1.1.27)

{
QA, λ−

}
= −
√

2i

[
D + iF01 −

i

2
[σ, σ]

]
, {QA, λ−} =

√
2D−σ, (1.1.28)

where v± = v0 ± v1, D± = D0 ±D1. One can easily show that the observables of A-model
GLSM are functions of the σ fields. In a nonabelian gauge groups, one should use gauge
invariant combinations of sigmas such as trace of powers of sigma.

The BRST transformations of the components of a charged chiral superfield in the A-model
are

[QA, φ] =
√

2ψ−, (1.1.29)

{QA, ψ+} =
√

2iD+φ+
√

2F, {QA, ψ−} =
√

2σφ. (1.1.30)

One can assign R-charges for these superfields at the classical level,

RV (Σ) = 0, RV (Φi) = ri, RA(Σ) = 2. (1.1.31)

Note that RA is generally anomalous in quantum field theory for twisted A-twisted theories
unless the theory flows to a nontrivial SCFT, such as a nonlinear sigma model on a Calabi-
Yau.

Observables of the B-model The B models we mainly consider in this thesis are B-
twisted Landau-Ginzburg theories. These theories are functions of the lowest components
field of the chiral superfields Y, which in mirror constructions will typically obey a peri-
odicity condition Y = Y + 2πin. (Note that the chiral superfields in the mirror frame
correspond to twisted chiral superfields in the original frame). The BRST transformations
of the components of a chiral superfield

[QB, y] = 0, (1.1.32)

{QB, χ̄+} =
√

2iD+y, {QB, χ−} = −
√

2iD−y. (1.1.33)

From Eq. (1.1.32) and (1.1.33), one can find that the observables of the B-model are
functions of the lowest component field of the chiral superfields Y.

The R-charge assigned to the Y field is

RA (exp(−Y )) = 2 RV (Y ) = 0, (1.1.34)

Given the Y fields’ periodicities, note that e−y is a well-defined observable in B-model.
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Lagrangian of Landau-Ginzburg Theories The Landau-Ginzburg theories, we con-
sider have k auxiliary fields Σa and N chiral superfields Yi. The general Lagrangian of this
system is given by

L =

∫
d4θ

(
K
(
Yi, Y i

)
−
∑
a

1

2e2
a

ΣaΣa

)
+

(∫
d2θf (Yi,Σa, tb) + c.c

)
, (1.1.35)

where ta = ra − iθa are FI parameters, if Landau Ginzburg theories are mirror to GLSMs.
The Kahler potential can be written as

K
(
Yi, Y i

)
= −1

2

∑
i

(
Yi + Y i

)
log
(
Yi + Y i

)
. (1.1.36)

The superpotential is

f (Yi,Σa, tb) =
k∑
a=1

Σa

(
N∑
i=1

Qa
i Yi − ta

)
+
∑
i

exp(−Yi). (1.1.37)

In [25], the superpotential is split into a “pertubative” piece

k∑
a=1

Σa

(
N∑
i=1

Qa
i Yi − ta

)
, (1.1.38)

and a “nonpertubative” piece ∑
i

exp(−Yi). (1.1.39)

Their nomenclature reflects how their superpotential is derived from a gauged linear sigma
model. We will review the Hori-Vafa mirror construction in section 1.2.

Lagrangians for (2, 2) GLSMs

Abelian Gauged Linear Sigma Models One can consider abelian gauged linear sigma
models for compact simplicial toric varieties [28]. The theory has gauge group U(1)k with
N > k charged chiral superfields Φi, the charge matrix is Qa

i , and vector superfields denoted
by Va. The bare Lagrangian is given by

L =

∫
d4θ

(
N∑
i=1

Φie
2
∑k
a=1Q

a
i VaΦi −

∑
a

1

2e2
a

Σ
a
Σa

)
+

1

2

(
−
∫
d2θ̃
∑
a

ta0Σa + c.c

)
, (1.1.40)

where the ta0 are
ta0 = ra0 − iθa. (1.1.41)
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The bare FI parameters are renormalized to cancel one-loop divergences. The dependence
of the bare parameter r0 on the cutoff ΛUV is

ra0 =
1

2π

N∑
i=1

Qa
i log

(
ΛUV

Λ

)
. (1.1.42)

Λ is a dynamical scale that replaces r as a physical parameter to describe theories with∑N
i=1 Q

a
i 6= 0.

The theory above at least has global symmetry U(1)N−k, thus we can turn on twisted masses
in the theory. It means we can add some extra mass terms in the classical lagrangian as
follows

Lm =

∫
d4θ

N∑
i=1

m̃iΦiΦi, (1.1.43)

where the twisted masses m̃i = −2m̃iθ
−θ

+
have vanishing vector R-charge and axial R-

charge two. Only N − k of them are independent parameters.

To describe a hypersurface in the toric variety, we add a superpotential to the GLSM

LW =

∫
d2θ
∑
m

PmGm (Φi) + c.c., (1.1.44)

where Gm (Φi) are polynomials in Φi, the Pm fields have vector R-charge two and the super-
potential is gauge-invariant.

When the matter fields are heavy, one can integrate them out, leaving a pure Coulomb
branch theory

W̃eff (Σ1, . . . ,Σk) = −
k∑
a=1

(Σa + m̃a)

(
N∑
i=1

Qa
i

(
log

(∑k
b=1Q

b
iΣb + m̃i

µ

)
− 1

)
+ ta

)
(1.1.45)

where we have included twisted masses m̃, and
∑k

a=1 m̃aQ
a
i = m̃i. One can show that the

twisted superpotential above breaks the axial R-symmetry in general except in the special
case that

∑
iQ

a
i = 0. Define ti by ta =

∑N
i=1Q

a
i ti.

From equation (1.1.45), we can obtain the vacua by solving

exp
∂W̃eff (Σ1, . . . ,Σk)

∂Σa

= 1, (1.1.46)

thus, we have
N∏
i=1

(
k∑
a=1

Qa
i σa + m̃i

)Qai

= qa, where qa = e−t
a

(1.1.47)

Eq. (1.1.47) gives the chiral ring relations. We will set µ = 1 in the above equation and
also in the rest of this paper.
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Phases of Gauged Linear Sigma Models In the early literature [15], there were some
heuristic ideas regarding the correspondence between certain Calabi-Yau nonlinear sigma
models and Landau-Ginzburg models. Witten’s paper [16] clarified the relationship by
demonstrating that those nonlinear sigma models and Landau-Ginzburg models are dif-
ferent phases of the same GLSMs. Other evidence for this picture can be found in [17],
which used mirror symmetry in the analysis.

In special cases, some (hybrid) Landau-Ginzburg models can be interpreted geometrically.
In this section we will review an example that appeared in [29].

This gauged linear sigma model has a total of six chiral superfields, four (φi, i ∈ {1, · · · , 4})
of charge 1 corresponding to homogenous coordinates on P3, and two (p1, p2) of charge -2
corresponding to two hypersurfaces in P3.

The D-term of the Lagrangian for this GLSM reads

4∑
i=1

| φi |2 −2 | p1 |2 −2 | p2 |2= r. (1.1.48)

• When r � 0, then we see that not all the φi can vanish, corresponding to their inter-
pretation as homogeneous coordinates on P3. By considering the restriction of the F-terms,
we recover the geometric interpretation of this gauged linear sigma model as a complete
intersection.

• The r � 0 phase is a hybrid Landau-Ginzburg model. The D-term constraint implies that
not all the pa can vanish and they act as homogeneous coordinates on a P1, except that these
homogeneous coordinates have charge 2 rather than charge 1.

Because of these nonminimal charges, the hybrid Landau-Ginzburg model is ultimately going
to describe a (branched) double cover. The superpotential

W = p1G1 + p2G2

(where the G1 and G2 are quadric polynomials) can be rewritten in the form

W =
∑
ij

φiA
ij(p)φj, (1.1.49)

where Aij is a rank 4 symmetric matrix with entries linear in the p’s. Away from the locus
where A drops rank, i.e, away from the hypersurface detA = 0, the φ fields are all massive,
leaving only the p massless, which all have charge -2. A GLSM with nonminimal charges
describes a gerbe [30–33]. Furthermore, in [29], they claimed that this is actually a branched
double cover of P1 which is torus. One can also refer to [34–36] for more examples.
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1.1.2 N = (0, 2) GLSMs

The contents of this section were adapted, with minor modifications, with permission from
JHEP, from our publication [42]. In this section, we review some basics ofN = (0, 2) GLSMs.
Our notation and conventions are slightly different from section 1.1.1 and will instead largely
follow [42]. The physical results we will compute do not rely on the notation.

N = (0, 2) Curved-Space Supersymmetry

We wish to considerN = (0, 2) supersymmetric gauge theories with an R-symmetry, denoted
U(1)R. In this section, we explain how to preserve supersymmetry on any closed orientable
Riemann surface Σg. We then discuss N = (0, 2) supersymmetric multiplets, Lagrangians
and observables on curved space.

Background Supergravity and the Half-Twist

Consider any N = (0, 2) supersymmetric field theory with an R-symmetry. The theory

possesses a conserved R-symmetry current j
(R)
µ which sits in the N = (0, 2) R-multiplet [48]

together with the right-moving supercurrent Sµ+, S̃µ+ and the energy-momentum tensor Tµν .
Such a theory can be coupled to a (0, 2) background supergravity multiplet containing a

metric gµν , two gravitini ψ−µ, ψ̃−µ and a U(1)R gauge field A
(R)
µ . At first order around flat

space, gµν = δµν + ∆gµν , the supergravity multiplet couples to the R-multiplet according to:

LSUGRA = −1

2
∆gµνT

µν + A(R)
µ jµ(R) −

1

2

(
Sµ+ψ−µ − S̃

µ
+ψ̃−µ

)
. (1.1.50)

Curved-space rigid supersymmetry is best understood in terms of a supersymmetric back-
ground for the metric and its superpartners [45, 50]. A background (Σg, gµν , A

(R)
µ ) is su-

persymmetric if and only if the supersymmetry variations of the gravitini vanish for some
non-trivial supersymmetry parameters. In the present case, we must have:

(∇µ − iA(R)
µ )ζ− = 0 , (∇µ + iA(R)

µ )ζ̃− = 0 . (1.1.51)

Note that the spinors ζ−, ζ̃− have R-charge ±1, respectively. One can derive these equations
by studying linearized supergravity along the lines of [46,47]. (See also [51].) The only way
to solve (1.1.51) on Σg is by setting the gauge field Aµ = ±1

2
ωµ, with ωµ the spin connection.

This preserves either ζ− or ζ̃−. (The only obvious exception is when Σg=1 is a flat torus.)

We choose to preserve ζ̃−:

A(R)
µ =

1

2
ωµ , ζ− = 0 , ∂µζ̃− = 0 . (1.1.52)
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Since ζ̃− is a constant, it is obviously well-defined globally on Σg. This supersymmetric

background is known as the half-twist [16] and it preserves one supercharge Q̃+ on any Σg.
It follows from (1.1.52) that

1

2π

∫
Σ

dA(R) = − 1

8π

∫
Σ

d2x
√
gR = g − 1 , (1.1.53)

where R is the Ricci scalar of gµν , and therefore the R-charge is quantized in units of 1
g−1

.
In particular, the R-charge is integer-quantized on the Riemann sphere.

Supersymmetry Multiplets

Since the supersymmetry parameter ζ̃− is covariantly conserved, the supersymmetry varia-
tions in curved space can be obtained from the flat space expressions by replacing derivatives
by covariant derivatives. Let us denote by δ the supercharge Q̃+ acting on fields. Impor-
tantly, δ is nilpotent:

δ2 = 0 . (1.1.54)

The half-twist effectively assigns to every field a shifted spin

S = S0 +
1

2
R , (1.1.55)

where S0 and R are the flat-space spin and the flat-space R-charge, respectively. It is
convenient to use notation adapted to the twist. We also use the covariant derivatives

Dµϕ(s) = (∂µ − isωµ)ϕ(s) , (1.1.56)

acting on a field of twisted spin s. the curved-space conventions can be found at [41].

General multiplet Let Ss be a general long multiplet of N = (0, 2) supersymmetry with
2 + 2 complex components, with s the spin of the lowest component:

Ss = (C , χ1̄ , χ̃ , v1̄) . (1.1.57)

The four components of (1.1.57) have spin (s, s− 1, s, s− 1), respectively. The curved-space
supersymmetry transformations are:

δC = −iχ̃ , δχ1̄ = 2iv1̄ + 2D1̄C ,

δχ̃ = 0 , δv1̄ = D1̄χ̃ .
(1.1.58)

Note that δ is a scalar—it commutes with the spin operator. All the supersymmetry mul-
tiplets of interest to us are made out of one or two general multiplets subject to some
conditions.
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Chiral multiplets The simplest N = (0, 2) multiplets are the chiral multiplet Φi and the

antichiral multiplet Φ̃i. In flat space, they contains a complex scalar and a spin −1
2

fermion.
After twisting, one has:

Φi = (φi , Ci) , Φ̃i =
(
φ̃i , B̃i

)
. (1.1.59)

If Φi, Φ̃i are assigned integer R-charges ri and −ri, the components (1.1.59) have twisted
spins (ri

2
,
ri
2
− 1
)

(1.1.60)

and (
−ri

2
,−ri

2

)
, (1.1.61)

respectively. The supersymmetry transformations rules are:

δφi = 0 , δφ̃i = B̃i ,
δCi = 2iD1̄φ

i , δB̃i = 0 .
(1.1.62)

Note that Φ and Φ̃ can be understood as a general multiplets (1.1.57) satisfying the con-
straints χ̃ = 0 and χ1̄ = 0, respectively.

Given any holomorphic function F(Φi) of the chiral multiplets Φi, one can construct a new
chiral multiplet as long as F itself has definite R-charge, and similarly with the anti-chiral
multiplets:

(F , CF) =

(
F(φ) ,

∂F
∂φi
Ci
)
, (F̃ , B̃F) =

(
F̃(φ̃) ,

∂F̃
∂φ̃i
B̃i

)
. (1.1.63)

Fermi multiplets Another important multiplet is the Fermi multiplet, whose lowest flat-
space component is a spin +1

2
fermion. For each Fermi multiplet ΛI , we have a function

EI(φ) holomorphic in the chiral fields of the theory. Similarly, an anti-Fermi multiplet Λ̃I

comes with an anti-holomorphic function Ẽ(φ̃). For the elementary Fermi multiplets, these
functions must be specified as part of the data defining the N = (0, 2) theory. In order to
preserve the R-symmetry, they must have R-charges R[EI ] = rI + 1, with rI is the R-charge

of Λ. Similarly, the charge-conjugate multiplet Λ̃ has R-charge −rI and R[ẼI ] = −rI − 1.

A Fermi multiplet ΛI of R-charge rI has components:

ΛI = (ΛI , GI) , EI =
(
EI , CEI

)
, (1.1.64)

where EI is the chiral multiplet of lowest component EI . The spins of (1.1.64) are(
rI
2

+
1

2
,
rI
2
− 1

2

)
(1.1.65)
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and (
rI
2

+
1

2
,
rI
2
− 1

2

)
, (1.1.66)

respectively, and the supersymmetry transformations are given by:

δΛI = 2EI , δEI = 0 ,

δGI = 2CEI − 2iD1̄ΛI , δCEI = 2iD1̄EI .
(1.1.67)

Similarly, for an anti-Fermi multiplet Λ̃I of R-charge −rI , we have the components:

Λ̃I =
(

Λ̃I , G̃I
)
, ẼI =

(
ẼI , B̃EI

)
, (1.1.68)

of spins (
−rI

2
+

1

2
,−rI

2
+

1

2

)
(1.1.69)

and (
−rI

2
− 1

2
,−rI

2
− 1

2

)
, (1.1.70)

respectively, and

δΛ̃I = G̃I , δẼI = B̃EI ,

δG̃I = 0 , δB̃EI = 0 .
(1.1.71)

The product of a chiral multiplet Φi of R-charge ri with a Fermi multiplet ΛI of R-charge
rI gives another Fermi multiplet of R-charge ri + rI , with components:

Λ(ΦΛ) = (φiΛI , φiGI − CiΛI) , E
(ΦΛ)
I =

(
φiEI , φiCEI + CiEI

)
. (1.1.72)

Similarly, for the charge-conjugate multiplet:

Λ̃(ΦΛ) =
(
φ̃iΛ̃I , φ̃iG̃I + B̃iΛ̃I

)
, Ẽ

(ΦΛ)
I =

(
φ̃iẼI , φ̃iB̃EI + B̃iẼEI

)
. (1.1.73)

Vector multiplet Consider a compact Lie group G and its Lie algebra g. The associated
vector multiplet is built out of two g-valued general multiplets (V ,V1) of spins 0 and 1,
subject to the gauge transformations:

δΩV =
i

2
(Ω− Ω̃) +

i

2
[Ω + Ω̃,V ] , δΩV1 =

1

2
∂1(Ω + Ω̃) +

i

2
[Ω + Ω̃,V1] , (1.1.74)

where Ω and Ω̃ are g-valued chiral and antichiral multiplets of vanishing R-charge. 1 One can
use (1.1.74) to fix a Wess-Zumino (WZ) gauge, wherein the vector multiplet has components:

V = (0 , 0 , 0 , a1̄) , V1 =
(
a1 , λ̃ , λ1, D

)
, (1.1.75)

1The addition rules implicit in (1.1.74) are obtained by embedding Ω, Ω̃ into general multiplets.
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The non-zero components have spin −1 and (1, 0, 1, 0), respectively. Under the residual

gauge transformations Ω = Ω̃ = (ω, 0), we have

δωaµ = ∂µω + i[ω, aµ] , δωλ1 = i[ω, λ1] , δωλ̃ = i[ω, λ̃] , δωD = i[ω,D] . (1.1.76)

The supersymmetry transformations are:

δa1̄ = 0 , δa1 = −iλ1 ,

δλ̃ = −i(D − 2if11̄) , δλ1 = 0 , δD = −2D1̄λ1 ,
(1.1.77)

where we defined the field strength

f11̄ = ∂1a1̄ − ∂1̄a1 − i[a1, a1̄] , (1.1.78)

and the covariant derivative Dµ is also gauge-covariant. Here and henceforth, δ denotes the
supersymmetry variation in WZ gauge, which includes a compensating gauge transformation.

Field strength multiplet From the vector multiplet (1.1.75), one can build a Fermi and
an anti-Fermi multiplet:

Y =
(

2λ1 , 2i(2if11̄)
)
, Ỹ =

(
λ̃ , −i(D − 2if11̄)

)
, (1.1.79)

of R-charge 1 (that is, the multiplets Y and Ỹ have twisted spin 1 and 0, respectively), with
EY = 0. These field strength multiplets are g-valued. 2

Charged chiral and Fermi multiplets Consider the chiral multiplets Φi in the repre-
sentations Ri of the gauge algebra g, the Fermi multiplets ΛI in the representations RI of g,
and similarly for the charge conjugate multiplets Φ̃i and Λ̃I . Under a gauge transformation
(1.1.74), we have

δΩΦ = iΩΦ , δΩΦ̃ = −iΦ̃Ω̃ , δΩΛ = iΩΛ , δΩΛ̃ = −iΛ̃Ω̃ , (1.1.80)

with Ω, Ω̃ valued in the corresponding representations. The supersymmetry transformations
in WZ gauge are given by (1.1.62), (1.1.67) and (1.1.71) with the understanding that the
covariant derivative Dµ is also gauge-covariant

2Our definition of Y in (1.1.79) a slightly idiosyncratic. There is a unique definition for Y in flat space,
namely (2λ1 , i(D + 2if11̄)), but in curved space with one supercharge the present choice is also consistent.
The present choice is the same as in [41].
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Supersymmetric Lagrangians

There are four types of supersymmetric Lagrangians we can consider on curved space:

1. v-term. Given a general multiplet S1 of twisted spin s = 1 with components (1.1.57),
we can built the supersymmetric Lagrangian

Lv = v11̄ (1.1.81)

from the top component. It is clear from (1.1.58) that the corresponding action is both
δ-closed and δ-exact.

2. G-term. From a fermi multiplet Λ with s = 1 (that is, R-charge 1
2
) and E = 0, we have

the supersymmetric Lagrangian
LG = G . (1.1.82)

This term is not δ-exact.

3. G̃-term. From an antifermi multiplet Λ̃ with s = 0 (that is, R-charge 1
2
), we can

similarly build
LG = G̃ . (1.1.83)

We see from (1.1.71) that this term is both δ-closed and δ-exact.

4. Improvement Lagrangian. This term is special to curved space. Given a conserved
current multiplet [46], the Lagrangian

LJ = A(R)
µ jµ +

1

4
RJ , (1.1.84)

is supersymmetric upon using (1.1.52).

In the remainder of this section, we spell out the various Lagrangians that we shall need in
this paper.

Kinetic terms All the standard kinetic terms are v-terms and are therefore δ-exact. Con-
sider a g-valued vector multiplet. The standard supersymmetric Yang-Mills Lagrangian
reads:

LYM =
1

e2
0

(
1

2
(2if11̄)2 − 1

2
D2 − 2iλ̃D1̄λ1

)
. (1.1.85)

Here and below, the appropriate trace over g is implicit. The Lagrangian (1.1.85) is δ-exact:

LYM =
1

e2
0

δ

(
1

2i
λ̃(D + 2if11̄)

)
. (1.1.86)
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Consider charged chiral multiplets Φi of R-charges ri, transforming in representation Ri of
g. Their kinetic term reads

LΦ̃Φ = Dµφ̃
iDµφi +

ri
4

Rφ̃iφi + φ̃iDφi + 2iB̃iD1Ci − 2iφ̃iλ1Ci + iB̃iλ̃φi , (1.1.87)

where the vector multiplet fields (aµ, λ̃, λ1, D) are suitably Ri-valued. The Lagrangian
(1.1.87) is more conveniently written as:

LΦ̃Φ = δ
(

2iφ̃iD1Ci + iφ̃iλ̃φi

)
,

= φ̃i (−4D1D1̄ +D − 2if11̄)φi + 2iB̃iD1Ci − 2iφ̃iλ1Ci + iB̃iλ̃φi .
(1.1.88)

Similarly, for charged Fermi multiplets ΛI of R-charges rI in representations RI of g, we
have

LΛ̃Λ = δ

(
−Λ̃IGI +

1

2
ẼIΛI

)
,

= − 2iΛ̃ID1̄ΛI − G̃IGI + ẼIEI + 2Λ̃I ∂EI
∂φi
Ci +

1

2
B̃i∂Ẽ

I

∂φ̃i
ΛI ,

(1.1.89)

including the RI-valued gauge field in the covariant derivatives D1̄. The holomorphic func-
tions EI(φ) transform in the same representations RI as ΛI .

Superpotential terms To each Fermi multiplet ΛI , one can associate a holomorphic
function of the chiral multiplets JI = JI(Φ), transforming in the representation R̄I conjugate
to RI and with R-charge 1− rI . From these N = (0, 2) superpotential terms, one can build
the G-term Lagrangian (1.1.82) according to:

LJI = i
∑
I

G(JI) = iGIJI + iΛI ∂JI
∂φi
Ci . (1.1.90)

Note that this Lagrangian is not δ-exact. Supersymmetry implies that

EIJI = 0 . (1.1.91)

Similarly, from the charge conjugate anti-holomorphic functions J̃I = J̃I(Φ̃) one builds the

G̃-term:

LJ̃I
= −i

∑
I

G̃(J̃I) = −iG̃I J̃I + iΛ̃I ∂J̃I

∂φ̃i
B̃i = δ

(
−iΛ̃I J̃I

)
, (1.1.92)

which is δ-closed and δ-exact.
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Fayet-Iliopoulos terms Consider a gauge theory with Abelian factors U(1)A ⊂ G. From
(1.1.79), we construct the gauge invariant Fermi multiplets

YA = trA(Y) , ỸA = trA(Ỹ) , (1.1.93)

where trA is the projection onto the U(1)A factor. These Fermi multiplet have vanishing
E-potential but they admit J-potentials. In the present work, we restrict ourselves to the
case of a constant JYA = JA in the classical Lagrangian:

JA = τA ≡
θA
2π

+ iξA , J̃A = τ̃A ≡ −2iξA . (1.1.94)

Here ξA and θA are the Fayet-Iliopoulos (FI) and θ-angles, respectively. (The unusual defi-
nition of τ̃ is on par with (1.1.79).) The corresponding supersymmetric Lagrangian reads

LFI =
1

2

(
τGY + τ̃ G̃ τ̃

)
= i

θA

2π
trA(2if11̄)− ξA trA(D) . (1.1.95)

Note that the coupling τ̃ is δ-exact while the coupling τ is not.

GLSM Field Content and Anomalies

Consider a general N = (0, 2) GLSM with a gauge group G, and let g be the Lie algebra
of G. The gauge sector consists of a g-valued vector multiplet (V ,V1). If G contains U(1)
factors,

n∏
A=1

U(1)A ⊂ G , (1.1.96)

we turn the FI parameters (1.1.94). Let us also define the quantity:

qA = exp(2πiτA) . (1.1.97)

The matter sector consists of chiral multiplets Φi of R-charges ri in representations Ri of
g, and of Fermi multiplets ΛI of R-charges rI in representations RI of g. To each ΛI , we
associate two chiral multiplets EI = EI(Φ) and JI = JI(Φ) constructed out of the chiral
multiplets Φi, satisfying EIJI = 0, with R-charges

R[EI ] = rI + 1 , R[JI ] = 1− rI , (1.1.98)

and such that Tr(Λ̃IEI) and Tr(ΛIJI) are gauge invariant.

Anomaly cancelation imposes further constraints on the matter content and on the R-charge
assignment. Let us decompose the gauge algebra g into semi-simple factors gα and Abelian
factors u(1)A, g ∼= (⊕αgα)⊕ (⊕Au(1)A). The vanishing of the non-Abelian gauge anomalies
requires ∑

i

T
R

(α)
i
−
∑
I

T
R

(α)
I
− Tgα = 0 , ∀α , (1.1.99)
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where R(α) denotes the representation of gα obtained by projecting the representation R of
g onto gα, while TR(α) denotes the Dynkin index of R(α) and Tgα stands for the index of the
adjoint representation of gα. For instance, one has Tfund = Tfund = 1

2
and Tsu(N) = N for the

fundamental, antifundamental and adjoint representations of su(N). In order to cancel the
U(1)2 gauge anomalies, we also need∑

i

dimRiQ
A
i Q

B
i −

∑
I

dimRI Q
A
I Q

B
I = 0 , ∀A,B , (1.1.100)

where QA
i and QA

I are the U(1)A charges of the chiral and Fermi multiplets, respectively. In
addition, the U(1)R-gauge anomalies should vanish:∑

i

dimRi (ri − 1)QA
i −

∑
I

dimRI rI Q
A
I = 0 , ∀A . (1.1.101)

Let us also note that the FI parameters ξA often run at one-loop with β-functions:

βA ≡ µ
dτA

dµ
= − bA0

2πi
, bA0 =

∑
i

trRi(tA) , (1.1.102)

due to contributions from the charged chiral multiplets.

Pseudo-Topological Observables

Consider an N = (0, 2) theory in curved space, with a certain twist by the R-symmetry.
The flat-space theory has an R-multiplet [48] that includes the stress-energy tensor Tµν and
the R-symmetry current jµ, and we can define a “twisted” stress-energy tensor:

Tzz = Tzz −
i

2
∂zjz , Tzz̄ = Tzz̄ −

i

2
∂zjz̄ , Tz̄z̄ = Tz̄z̄ +

i

2
∂z̄jz̄ , (1.1.103)

which is conserved because Tµν and jµ are conserved. The operator Tzz is Q̃+-closed, while

Tzz̄ and Tz̄z̄ are also Q̃+-exact. By a standard arguments, it follows that correlation functions
of Q̃+-closed operators are independent of the Hermitian structure on the two-dimensional
manifold Σ, while they may depend holomorphicaly on its complex structure moduli [16].

The supersymmetric observables are also (locally) holomorphic functions of the various cou-
plings. It is clear that they are holomorphic in the superpotential couplings appearing in
JI , and in the FI parameters JA = τA, since the anti-holomorphic couplings J̃I and J̃A are
δ-exact. To understand the dependence on the EI-potential couplings, note that any defor-
mation of ẼI by ∆ẼI(φ̃) deforms the classical Lagrangian (1.1.89) by a δ-exact operator:

∆L = ∆ẼIEI +
1

2
Bi∂i(∆ẼI) ΛI =

1

2
δ
(

∆ẼIΛI

)
. (1.1.104)
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More generally, it follows from (1.1.71) that Ẽ-deformations commute with the supersymme-
try. On the other hands, deformations of the holomorphic potentials EI commute with the
supercharge up to terms holomorphic in ∆EI . Since EI only enters the Lagrangian through
δ-exact terms, this implies that supersymmetric observables depend holomorphically on the
EI-couplings.

We are interested in the special class of δ-closed operators with non-singular OPEs that we
discussed in the introduction, and we would like to consider their correlations functions of
the Riemann sphere:

〈OaOb · · · 〉P1 . (1.1.105)

In the next section, we will further restrict ourselves to the case of the A/2-twisted pseudo-
chiral ring of N = (0, 2) theories with an N = (2, 2) locus. We leave more general studies of
arbitrary N = (0, 2) pseudo-chiral rings for future work.

Supersymmetric Locus and Zero modes on the Sphere

A configuration of bosonic fields from the vector, chiral and Fermi multiplets preserves
the single supercharge on curved space if and only if the fields satisfy the supersymmetry
equations:

D = 2if11̄ , Dz̄φi = 0 , EI(φ) = ẼI(φ̃) = 0 . (1.1.106)

In particular, the chiral field φi is an holomorphic section of an holomorphic vector bundle
determined by its R- and gauge-charges. Such configurations will dominate the path integral.
In the special case of an A/2-twisted GLSM with an N = (2, 2) locus—to be discussed in
the next section—we will argue that the path integral for pseudo-topological supersymmetric
observables can be further localized into Coulomb branch configurations, in which case the
charged chiral multiplets are massive and localize to φi = 0. We still have to sum over all
the topological sectors, with fluxes:

1

2π

∫
d2x
√
g (−2if11̄) ≡ k ∈ ih . (1.1.107)

Note that we generally have fermionic zero modes, in addition to the bosonic zero modes
that solve the second equation in (1.1.106). For future reference, let us summarize the
counting of zero modes on the sphere. (The generalization to any genus is straightforward.)
Consider a charged chiral multiplet Φi of R-charge r and gauge charges ρi (the weights of the
representation Ri), in a particular flux sector (1.1.107), together with its charge conjugate

multiplet Φ̃i. Let us define:
rρi = ri − ρi(k) . (1.1.108)

The scalar field component φ(ρi) is a section of a line bundle O(−rρi) over P1, with first
Chern class −rρi . Its zero-modes are holomorphic sections of O(−rρi), which exist if and

19



only if rρi ≤ 0. The analysis for the other chiral multiplet fields C1̄, φ̃ and B̃ is similar. For
each weight ρi of the representation Ri, one has the following zero-modes:

Φρi →

{
−rρi + 1 zero-modes of (φ , φ̃ , B̃)(ρi) if rρi ≤ 0 ,

rρi − 1 zero-modes of C(ρi)

1̄
if rρi ≥ 1 .

(1.1.109)

Similarly, for a Fermi multiplet ΛI and its charge conjugate Λ̃I , with R-charge rI and gauge
representation RI , one finds:

ΛρI →

{
rρI zero-modes of Λ̃I if rρI ≥ 1 ,

−rρI zero-modes of ΛI if rρI ≤ 0 ,
(1.1.110)

where we defined rρI = rI −ρI(k). The zero-modes (1.1.109)-(1.1.110) are present if we turn
off all interactions, while most of then are generally lifted by the gauge and EI couplings. In
addition, we also have rk(G) gaugino zero modes λ̃a from the vector multiplet (1.1.75).

1.2 Review of the Mirror Construction for Abelian

Gauged Linear Sigma Models

Let us quickly review the mirror ansatz for abelian (2,2) GLSMs for Fano toric varieties
in [25]. The contents of this section were adapted, with minor modifications, with permission
from JHEP, from our publication [27].

1.2.1 General Aspects

First, we consider a GLSM with gauge group U(1)k and N chiral superfields, with charges
encoded in charge matrix (Qa

i ).

Following [25], the mirror is a theory with k superfields Σa, as many as U(1)s in the original
GLSM, and N twisted chiral fields Yi, as many as chiral multiplets in the original GLSM, of
periodicity 2πi, with superpotential

W =
k∑
a=1

Σa

(
N∑
i=1

Qa
i Yi − ta

)
+ µ

N∑
i=1

exp(−Yi), (1.2.1)

where µ is a scale factor.

In the expression above, the Σa act effectively as Lagrange multipliers, generating constraints

N∑
i=1

Qa
i Yi = ta (1.2.2)
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originating with the D terms of the original theory. We can solve these constraints formally3

by writing

Yi =
N−k∑
A=1

V A
i θA + t̃i (1.2.3)

where θA are the surviving physical degrees of freedom, t̃i are solutions of

N∑
i=1

Qa
i t̃i = ta, (1.2.4)

and V A
i is a rank-(N − k) matrix solving

N∑
i=1

Qa
i V

A
i = 0. (1.2.5)

(The rank requirement goes hand-in-hand with the statement that there are N − k inde-
pendent θA’s.) The periodicity of the Yi’s will lead to interpretations of the space of θA’s in
terms of LG orbifolds and character-valued fields, as we shall review later. Note that for ti,
V A
i satisfying the equation above,

N∑
i=1

Qa
i Yi =

∑
i

Qa
i

(∑
A

V A
i θA + t̃i

)
= ta,

and so the V A
i encode a solution of the D-term constraints.

After integrating out the Lagrange multipliers, the superpotential can be rewritten as

W = µ
N∑
i=1

(
et̃i

N−k∏
A=1

exp(−V A
i θA)

)
. (1.2.6)

In this language, the (2,2) mirror map between A- and B-model operators is (partially)
defined by

k∑
a=1

Qa
i σa ↔ µ exp(−Yi) = µet̃i

N−k∏
A=1

exp(−V A
i θA), (1.2.7)

which can be derived by differentiating (1.2.1) with respect to Yi. (See for example [25][sec-
tion 3.2], where this is derived as the equations of motion of the mirror theory. In the next
section, we will also see that this map is consistent with axial R symmetries.) In fact, this
overdetermines the map – only a subset of the Yi’s will be independent variables solving the
constraints (1.2.2). As we will see explicitly later, the redundant equations are equivalent to

3 The expressions given here are entirely formal, and there can be subtleties. For example, if the entries
in V Ai are fractional, then as is well-known, the mirror may have orbifolds.
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chiral ring relations (as must follow since they all arise as the same equations of motion in the
mirror), and are also specified by the equations of motion derived from the superpotential
W above.

In appendix B we will briefly outline a variation on the usual GLSM-based mirror derivation.
Regardless of how the B-model mirror superpotential is obtained, it can be checked by
comparing closed-string A model correlation functions between the mirror and the original
A-twisted GLSM using supersymmetric localization. For (2,2) theories, this can be done at
arbitrary genus using the methods of [52, 53], whereas for (0,2) theories, we can only apply
analogous tests at genus zero. We will perform such correlation function checks later in this
paper.

R Charges

Let us take a moment to consider R charges. In the A-twisted theory, the axial R-charge is in
general broken by nonperturbative effects, so that under an axial symmetry transformation,
anomalies induce a shift in the theta angle4 by

θa 7→ θa + 2α
∑
i

Qa
i , ta 7→ ta + 2iα

∑
i

Qa
i ,

for α parametrizing axial R symmetry rotations. The shift above can formally be described
as

t̃i 7→ t̃i + 2iα,

(using the relation between t̃i and ta in (1.2.4)). In the same vein, under the same axial R
symmetry, the mirror field Yi transforms as

Yi 7→ Yi + 2iα,

so that exp(−Yi) has axial R-charge 2. If we take Σa to also have axial R-charge 2, then
it is easy to verify that the entire mirror superpotential (1.2.1) has axial R-charge 2, as
desired, taking the t’s to have nonzero R-charge as described. In addition, the operator
mirror map (1.2.7) is also consistent with axial R-charges in that case.

Twisted Masses

One can also consider adding twisted masses. Recall that a twisted mass can be thought of
as the vev of a vector multiplet, gauging some flavor symmetry. Taking the vev removes the
gauge field, gauginos, and auxiliary field, and replaces them with a single mass parameter
m̃, corresponding to the vev of the σ field. In the notation of [16][equ’n (2.19)], this means,

4 This should not be confused with the fundamental field θA defined earlier.
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for a single U(1) flavor symmetry that acts on a field φi with charge QF,i, we add terms to
the action of the form

−2|m̃|2
∑
i

Q2
F,i|φi|2 −

√
2
∑
i

QF,i

(
m̃ψ+,iψ−,i + m̃ψ−,iψ+,i

)
.

In the present case, for a toric variety with no superpotential, there are at least as many
flavor symmetries as chiral superfields modulo gauged U(1)s, i.e. at least N − k U(1) flavor
symmetries. (There can also be nonabelian components.) For simplicity, we will simply allow
for a twisted mass m̃i associated to each chiral superfield, and will not try to distinguish
between those related by gauge U(1)s.

Including twisted masses m̃i, the full mirror superpotential (before integrating out Σ’s) takes
the form

W =
N∑
i=1

(
k∑
a=1

ΣaQ
a
i + m̃i

)(
Yi − t̃i

)
+ µ

N∑
i=1

exp(−Yi). (1.2.8)

This expression manifestly has consistent axial R-charge 2 (using the ‘modified’ R-charge
that acts on t̃i). It differs from the more traditional expression [25][equ’n (3.86)]

W =
k∑
a=1

Σa

(∑
i

Qa
i Yi − ta

)
+

N∑
i=1

m̃iYi + µ
N∑
i=1

exp(−Yi), (1.2.9)

by a constant term (proportional to
∑N

i=1 m̃it̃i), and so defines the same physics.

After including twisted masses, the operator mirror map becomes

k∑
a=1

Qa
i σa + m̃i ↔ µ exp(−Yi).

Note that both sides of this expression are consistent with the (modified) R-charge assign-
ments described above.

Generically in this paper we will absorb µ into a redefinition of the Yi’s, and so not write it
explicitly, but we mention it here for completeness.

Finally, we should remind the reader that in addition to the superpotential above, one may
also need to take an orbifold to define the theory, as is well-known. This will happen if, for
example, some of the entries in (V A

i ) are fractions, in order to reflect ambiguities in taking
the roots implicit in resulting expressions such as exp(−V A

i θA).

1.2.2 Example with Twisted Masses

To give another perspective, in this section we will review the (2,2) mirror to the GLSM for
Tot(O(−n)→ P2), for n ≤ 3 (and no superpotential), and to make this interesting, we will
include twisted masses m̃i, correspnding to phase rotations of each field.
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The charge matrix for this GLSM is

Q = (1, 1, 1,−n),

and following the usual procedure, the D terms constrain the dual (twisted) chiral superfields
as

Y1 + Y2 + Y3 − nYp = t.

The standard procedure at this point is to eliminate Yp, and write the dual potential in
terms of Y1−3, taking a Zn orbifold to account for the fractional coefficients of the Yi and its
periodicity. In other words,

Yp =
1

n
(Y1 + Y2 + Y3 − t) ,

hence the (2,2) superpotential is given by

W =
∑
i

m̃iYi + exp(−Y1) + exp(−Y2) + exp(−Y3) + exp(−Yp),

=
∑
i

m̃iYi + (exp(−Y1/n))n + (exp(−Y2/n))n + (exp(−Y3/n))n

+ exp(−t/n) exp(−Y1/n) exp(−Y2/n) exp(−Y3/n).

Phrased more simply, if we define Zi = exp(−Yi/n), then the (2,2) mirror theory is, as
expected, a Zn orbifold with superpotential

W = −
∑
i

m̃in lnZi + Zn
1 + Zn

2 + Zn
3 + exp(−t/n)Z1Z2Z3,

with the understanding that the fundamental fields are Yis not Zis. (For hypersurfaces, the
fundamental fields will change.)

Later, we will use the matrices (V A
i ) extensively, so in that language, the change of variables

above is encoded in

(V A
i ) =

 1 0 0 1/n
0 1 0 1/n
0 0 1 1/n

 .
Then, we write Yi = V A

i θA, and so

Y1 = θ1, Y2 = θ2, Y3 = θ3, Yp = (1/n)(θ1 + θ2 + θ3 − t).

Let us next discuss the operator mirror map. This is given by

exp(−Y1) = Zn
1 ↔ σ,

exp(−Y2) = Zn
2 ↔ σ,

exp(−Y3) = Zn
3 ↔ σ,

exp(−Yp) = Z1Z2Z3 exp(−t/n) ↔ −nσ.
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1.2.3 (2,2) in (0,2) Language

Now, let us describe (2,2) mirrors in (0,2) language, as preparation for describing more
general (0,2) mirrors. Let (Σa,Υa) be the (0,2) chiral and Fermi components of Σa, and
(Yi, Fi) the (0,2) chiral and Fermi components of Yi. Then, the (2,2) superpotential (1.2.8)
is given in (0,2) superspace by

W =
k∑
a=1

[
Υa

(
N∑
i=1

Qa
i Yi − ta

)
+

N∑
i=1

ΣaQ
a
iFi

]
− µ

N∑
i=1

Fi exp(−Yi) +
N∑
i=1

m̃iFi. (1.2.10)

We integrate out Σa, Υa to get the constraints

N∑
i=1

Qa
i Yi = ta,

N∑
i=1

Qa
iFi = 0,

which we solve with the V A
i by writing

Yi =
N−k∑
A=1

V A
i θA + t̃i, Fi =

N−k∑
A=1

V A
i GA,

where (θA, GA) are the chiral and Fermi components of the (2,2) chiral superfields θA. After
integrating out the constraints, the (0,2) superpotential becomes

W =
N∑
i=1

N−k∑
A=1

GAV
A
i (m̃i − µ exp(−Yi)) =

N∑
i=1

N−k∑
A=1

GAV
A
i

(
m̃i − µet̃i

N−k∏
B=1

exp(−V B
i θB)

)
.

(1.2.11)
As is standard, we remind that reader that depending upon the entries in (V A

i ), the mirror
may be a LG orbifold, which are required to leave W invariant.

In this language, the (2,2) mirror map between A- and B-model operators is (partially)
defined by

k∑
a=1

Qa
i σa + m̃i ↔ µ exp(−Yi) = µet̃i

N−k∏
A=1

exp(−V A
i θA), (1.2.12)

which can be derived by differentiating (1.2.10) with respect to Fi.

In most of the rest of this paper, we will absorb µ into a field redefinition of the Yis for
simplicity, but we include it here for completeness.

25



Chapter 2

Some New Developments in Gauged
Linear Sigma Models

This chapter contains some of our results on properties of gauged linear sigma models. The
contents of this chapter were adapted, with minor modifications, with permission from JHEP
and arXiv, from our publication [42] in JHEP and our paper [65] on the arXiv. Section 2.1
is from [65] while section 2.3 is in [42]. We also include unpublished results in section 2.2.

2.1 Exact Results in (2,2) GLSMs and Applications

In this section, we apply supersymmetric localization to study gauged linear sigma models
(GLSMs) describing supermanifold target spaces. We use the localization method to show
that A-twisted GLSM correlation functions for certain supermanifolds are equivalent to
A-twisted GLSM correlation functions for hypersurfaces in ordinary spaces under certain
conditions. We also argue that physical two-sphere partition functions are the same for
these two types of target spaces. Therefore, we reproduce the claim of [49, 55] that A-
twisted NLSM correlation functions for certain supermanifolds are equivalent to A-twisted
NLSM correlation functions for hypersurfaces in ordinary spaces under certain conditions.

2.1.1 Review of GLSMs for Toric Varieties

We will briefly review some aspects of GLSMs for toric varieties and how to compute cor-
relation functions via supersymmetric localization on the Coulomb branch in some concrete
examples.

Consider a GLSM with gauge group U(1)k and N chiral superfield Φi of gauge charges Qa
i
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and vector R charges1 Ri, where a = 1, . . . k and i = 1, . . . , N . The lowest component of
Φi is a bosonic scalar φi, and we call this Φi an even chiral superfield. The Lagrangian and
general discussions of this model can be found in the literature, see e.g. [16, 28].

In this GLSM, the global symmetry is of the form

×α U(Nα), (2.1.1)

where all Nα ≥ 0 and
∑

αNα = N , and we do not include the R-symmetries. However,
if we have a superpotential, the global symmetry will be smaller [54]. For example, in the
GLSM for the quintic, the global symmetry is U(1). Another similar example can be found
in appendix A in Hori’s paper [39] 2.

The correlation function for a general operator O(σ) can be calculated via localization on
the Coulomb branch as [41]

〈O(σ)〉 = (−1)N∗
∑
m

∮
JK−Res

k∏
a=1

(
dσa
2πi

)
O(σ)Z1−loop

m qm, (2.1.2)

where qm = e−t
ama , in which:

ta = ra + iθa,

ra = ra0 +
∑
i

Qa
i ln

µ

Λ
,

and Z1−loop
m is the one loop determinant. For abelian gauge theories, it is known that

Z1−loop
m =

∏
i

(Qa
i σa + m̃i)

Ri−1−Qi(m),

in which
Qi(m) = Qa

ima,

and m̃i are the twisted masses associated to the global symmetry. The overall factor (−1)N∗ ,
where N∗ is the number of p fields, comes from the assignment for the fields with R-charge 2
[28,41]. We will later see this overall factor would automatically show up from the redefinition
of q’s in the supermanifold case in following sections. The special case N∗ = 0, corresponds
to a toric space without a superpotential.

Next, we will apply the above formula to calculate several concrete examples.

GLSM for CP4

1 In order to make this GLSM to be A-twistable on a two-sphere, the vector R-charges, denoted as RV ,
should be integers [89,123].

2To clarify, here when we speak of ‘global symmetry,’ we include gauge symmetries as a special case,
which is a somewhat nonstandard choice.
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In this model, we have five chiral superfields with U(1) charges and RV -charges given by

Q 1 1 1 1 1

RV 0 0 0 0 0

and it has a SU(5) flavor symmetry. For simplicity, we set twisted masses to zero.

Then from the formula (2.1.2), we obtain:

〈O(σ)〉 =
∑
k≥0

∮
dσ

2πi

O(σ)

σ5+5k
qk.

If take O(σ) = σ5k+4, we could immediately obtain〈
σ5k+4

〉
= qk,

and this equation encodes the chiral ring relation as

σ5 = q.

GSLM for Tot (O(−d)→ CP4)

Tot (O(−d)→ CP4) is the total space of the bundle O(−d) → CP4. For the special case
when d = 5, it is also called V + model as in [28]. In this example, we have six chiral
superfields with U(1) charges and RV -charges given by

Q 1 1 1 1 1 −d
RV 0 0 0 0 0 0

This model has flavor symmetry SU(5)× U(1). We require
∑

iQi ≥ 0 so this system has a
geometric phase corresponding to a weak coupling limit. Then we have

〈O(σ)〉 =
∑
k

∮
JK−Res

dσ

2πi

O(σ)

σ5+5k(−dσ)1−dk q
k,

=
∑
k≥0

∮
dσ

2πi

O(σ)

σ6+(5−d)k(−d)1−dk q
k.

For the special case d = 5, we can further obtain the following chiral ring relation:〈
σ5
〉

= −1

5

1

1 + 55q
.

GLSM for Hypersurface in CP4
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This model is defined by six chiral superfields with U(1) charges and RV -charges given by:

Q 1 1 1 1 1 −d
RV 0 0 0 0 0 2

which we also require
∑

iQi ≥ 0. It has no flavor symmetry. We have

〈O(σ)〉 = (−1)1
∑
k

∮
JK−Res

dσ

2πi

O(σ)(−dσ)2

σ5+5k(−dσ)1−dk q
k,

= −
∑
k≥0

∮
dσ

2πi

O(σ)(−d)1+dk

σ4+(5−d)k
qk.

In particular, if d = 5, then it satisfies the Calabi-Yau condition. Then,

〈O(σ)〉 = −
∑
k≥0

∮
dσ

2πi

O(σ)(−5)1+5k

σ4
qk.

Take O(σ) = σ3, then we can obtain 〈
σ3
〉

=
5

1 + 55q
.

This correlation function is in agreement with 〈σ3 (−(−5σ)2)〉 in the previous V +-model [28].

2.1.2 GLSMs for Complex Kähler Supermanifolds

A supermanifold X of dimension N |M is locally described by N even coordinates and M
odd coordinates together with compatible transition functions. If it is further a split super-
manifold, then it can be viewed as the total space of an odd vector bundle V of rank M over
a N -dimensional manifold, which is along the even directions and denoted Xred:

X ' Tot(V → Xred).

For more rigorous definitions of supermanifolds and split supermanifolds, we recommend [56].
According to the fundamental structure theorem [56], every smooth supermanifold can be
split, so even the split case is still considerable.

To build up a (2, 2) GLSM as a UV-complete theory of a NLSM for a complex Kähler super-
manifold M, we only consider those toric supermanifolds [55] obeying certain constraints,
which we will give later as Eq. (2.1.4). We obtain this from the GLSM perspective, but it can
be derived from NLSMs [49]. By toric supermanifold, we mean that M has a complexified
symmetry group (C∗)k and can be obtained as a symplectic reduction of a super vector space
by an abelian gauge group, which is realized in a GLSM by gauging a group action on a
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super vector space (corresponding to matter fields). It was pointed out in [55] that this kind
of supermanifold is also split. Therefore, we can still take advantage of the bundle structure
of split supermanifolds in our construction. One example of these toric supermanifolds is
CP4|1, which is defined by{

[x1, x2, x3, x4, x5, θ] | (x1, x2, x3, x4, x5, θ) ∼ (λx1, λx2, λx3, λx4, λx5, λ
dθ)
}
. (2.1.3)

This is a different geometry than CP4. For example, on CP4|1 we can choose a patch where
{x1, . . . , x5} all vanish, while the odd coordinate is nonzero.

The Model

In order to construct the GLSM for a toric supermanifold described by a U(1)k gauge theory,
we can follow the construction of V+-model [28] but change the statistical properties along
the bundle directions. In other words, we view fields along bundle direction as ghosts. In [57],
there is a formal discussion about building GLSM for supermanifolds. Here we only focus
on toric supermanifolds. More specifically, we have two sets of chiral superfields:

• N + 1 (Grassmann) even chiral superfields Φi with U(1)k gauge charges Qa
i and R-

charges Ri, whose lowest components are bosonic scalars;

• M (Grassmann) odd chiral superfields Φ̃µ with gauge U(1)k charges Q̃a
µ and R-charges

R̃µ, whose lowest components are fermionic scalars. 3

In the above, we impose an analogue of a Fano requirement for the supermanifold, requiring
that for each index a ∑

i

Qa
i −

∑
µ

Q̃a
µ ≥ 0, (2.1.4)

and in later sections we impose this condition implicitly. (We will derive this condition from
the worldsheet beta function later in this section.)

Associated to the gauge group U(1)k, there are k vector superfields: Va, a = 1, . . . , k. The
total Lagrangian consists of five parts4:

L = Leven
kin + Lodd

kin + Lgauge + LW + LW̃ .

As advertised in the introduction, we will consider vanishing superpotential in this paper,
i.e. W = 0. Take the classical twisted superpotential to be a linear function5

W̃ = −
∑
a

taΣa. (2.1.5)

3For general discussions, we use tilde ‘∼’ to indicate the odd chiral superfields and their charges.
4 For a comprehensive expression for the Lagrangian, please refer to [57][section 2].
5 We use notations of [12].
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In the above Lagrangian, the even kinetic part, the gauge part and the twisted superpotential
part share the same form as in a GLSM for an ordinary target space. The odd kinetic part
is defined in the same fashion as the even part [57]:

Lodd
kin =

∫
d4θ
∑
µ

¯̃Φµe
2QaµVaΦ̃µ. (2.1.6)

The equations of motion for the auxiliary fields Da inside vector superfields are

Da = −e2
(∑

i

Qa
i |φi|2 +

∑
µ

Q̃a
µφ̃µφ̃µ − ra

)
, (2.1.7)

where ra are the FI parameters. Since W = 0, the equations of motion for the auxiliary
fields Fi/µ inside even/odd chiral superfields are

Fi = 0, Fµ = 0.

The potential energy is

U =
1

2e2
D2 + 2|σ|2

(∑
i

Q2
i |φi|2 +

∑
µ

Q̃2
µφ̃µφ̃µ

)
.

Semiclassically, we can discuss low energy physics by requiring U = 0, i.e. σ = 0 and D = 0,
which is ∑

i

Qa
i |φi|2 +

∑
µ

Q̃a
µφ̃µφ̃µ − ra = 0.

In the case with one U(1), we often require a geometric phase where r � 0 defined by
(CN+1|M−Z)/C∗. 6 Returning to the general case, in the phase ra � 0 for all a ∈ {1, . . . , k},
the above condition requires that not all φi or φµ can vanish, then the target space is a super-
version of toric variety, X, which we will call a super toric variety:

X ' CN+1|M − Z
(C∗)k

, (2.1.8)

where the torus action (C∗)k is defined as, for each a,(
. . . , φi, . . . , φ̃µ, . . .

)
7→
(
. . . , λQ

a
i φi, . . . , λ

Q̃aµφ̃µ, . . .
)
, λ ∈ C∗.

As in the case for ordinary toric varieties, we have global symmetry for GLSM for super toric
variety. For the general case, (2.1.8), the maximum torus of the global symmetry would be:

U(1)N+1 × U(1)M .

6 To be thorough, we also need to define theory at other phases. For example, there exists another phase
called nongeometric phase corresponding to r ≤ 0 [101]. However, supersymmetric localization are calculated
at UV, which corresponds to a geometric phase in this paper under the condition Eq. (2.1.4).
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Since we are not considering superpotentials in our models, this symmetry will not break.

The one-loop correction to the D-terms can be calculated as in [57]:〈
−D

a

e2

〉
1−loop

=
1

2

∑
i

Qa
i ln

(
Λ2

Qb
iQ

c
i σ̄bσc

)
− 1

2

∑
µ

Q̃a
µ ln

(
Λ2

Q̃b
µQ̃

c
µσ̄bσc

)
. (2.1.9)

Therefore, the effective FI-parameters are given as

raeff = ra − 1

2

∑
i

Qa
i ln

(
Λ2

Qb
iQ

c
i σ̄bσc

)
− 1

2

∑
µ

Q̃a
µ ln

(
Λ2

Q̃b
µQ̃

c
µσ̄bσc

)
,

= ra +
1

2

[∑
i

Qa
i ln
(
Qb
iQ

c
i σ̄bσc

)
−
∑
µ

Q̃a
µ ln

(
Q̃b
µQ̃

c
µσ̄bσc

)]

−

(∑
i

Qa
i −

∑
µ

Q̃a
µ

)
ln Λ,

where a = 1, . . . , k. Introduce the physical scale µ and from dimensional analysis,

Q̃b
µQ̃

c
µσ̄bσc = Cµ2, Q̃b

µQ̃
c
µσ̄bσc = C̃µ2,

where C and C̃ are nonzero constants. Then from the definition of the beta function, we
have

βa = µ
∂raeff

∂µ
=
∑
i

Qa
i −

∑
µ

Q̃a
µ.

This is where we get the constraints Eq. (2.1.4). In particular, if the charges satisfy∑
i

Qa
i −

∑
µ

Q̃a
µ = 0, (2.1.10)

β = 0 and the correction will be Λ independent, and it will give us a conformal field theory.
When we compare GLSMs for supermanifolds to related GLSMs for hypersurfaces (or com-
plete intersections) in the next section, we will see that this condition corresponds to the
Calabi-Yau condition for the hypersurfaces (or complete intersections):∑

i

Qa
i =

∑
µ

Q̃a
µ. (2.1.11)

For convenience, we will refer to both conditions, (2.1.10) and (2.1.11), as the Calabi-Yau
condition. This is also a hint that indicates there exists a close relationship between those
two models [49, 55].
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Chiral Ring Relation

From the effective value of r, we could also write down the effective twisted superpotential:

W̃eff(Σa) = −taΣa − Σa

[∑
i

Qa
i ln

(
Qb
iΣb

Λ

)
−
∑
µ

Q̃a
µ ln

(
Q̃b
µΣb

Λ

)]
. (2.1.12)

The above one-loop corrected effective twisted potential (2.1.12) can be rewritten in terms
of physical scale [12], µ, as

W̃eff(Σa) = −taΣa − Σa

[∑
i

Qa
i

(
ln
Qb
iΣb

µ
− 1

)
−
∑
ν

Q̃a
ν

(
ln
Q̃b
νΣb

µ
− 1

)]
.

The Coulomb branch vacua are found by solving

exp

(
∂W̃eff

∂σa

)
= 1,

and we can read off the chiral ring relations as

qa ≡ e−ta =
∏
i

(
Qb
iσb
µ

)Qai ∏
ν

(
Q̃b
νσb
µ

)−Q̃aν
.

This is an exact relation where all the σ’s satisfy. Usually, we set the physical scale µ = 1,
then the above relation can be simply written as

qa =
∏
i

(
Qb
iσb
)Qai ∏

ν

(
Q̃b
νσb

)−Q̃aν
. (2.1.13)

We will see in the next section that the GLSM for the hypersurface corresponding to this
supermanifold has the chiral ring relation:

q̃a =
∏
i

(
Qb
iσb
)Qai ∏

ν

(
−Q̃b

νσb

)−Q̃aν
. (2.1.14)

It is easy to see that the two chiral ring relations are related by

qa = (−1)
∑
ν Q̃

a
ν q̃a.

Actually, the factor (−1)
∑
ν Q̃

a
ν will show up repeatedly in next section, and we will call

this the map connecting the GLSM for a supermainfold to the corresponding GLSM for a
hypersurface (or complete intersection).
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Supersymmetric Localization for Supermanifolds

In this section, we want to focus on calculations of correlation functions for supermanifolds.
Here we only list results of GLSM for supermanifolds on S2 and it can be generalized to
higher genus cases (at fixed complex structure) as in [41, 52, 58]. Similar to the calculations
given in section 2.1.1, we could also use supersymmetric localization on the Coulomb branch
for supermanifolds. However, here we have several Grassmann odd chiral superfields, and it
will also contribute to the one-loop determinants. As we are considering the abelian case in
this paper, the one-loop determinants for the gauge fields is trivial by the same argument as
in [41,53]. The one-loop determinant for chiral superfields can be written as the product of
even and odd parts:

Z1−loop
k = Z1−loop

k,even · Z
1−loop
k,odd ,

where

Z1−loop
k,even =

∏
i

(Qa
i σa + m̃i)

Ri−1−Qi(k) , (2.1.15a)

Z1−loop
k,odd =

∏
µ

(
Q̃a
µσa + m̃µ

)−R̃µ+1+Q̃µ(k)

. (2.1.15b)

In the above, Ri and R̃µ are the RV charges for even chiral superfields and odd chiral
superfields, respectively, and they are all integers. In appendix A.7, we have discussed the
assignments of RV -charges. Roughly speaking, except for the P-fields, RV -charges for odd
chiral superfields should be proportional to those for even chiral superfields. Since we are
considering twisted models without superpotential in this paper, specifically without the
P -fields arising in descriptions of hypersurfaces, RV -charges for both even and odd chiral
superfields should all be assigned to be zero in twisted models. This RV -charge assignment
is also consistent with the large volume limit requirement [59].

Before we get to the one-loop determinant for odd chiral superfields, (2.1.15b), let us briefly
review the derivation of (2.1.15a) following [41, 53]. For Grassmann even superfields Φi =
(φi, ψi, . . . ), the one loop determinant from supersymmetric localization is given by

Z1−loop
even =

∏
i

det ∆ψi

det ∆φi

,

where det ∆φ in the denominator comes from a Gaussian integral while det ∆ψ in the nu-
merator comes from a Grassmann integral. Because of supersymmetry, the only thing that
will survive from the ratio above is the zero modes of ψ, which determine (2.1.15a). It is
straightforward to generalize above story for Grassmann odd chiral superfields. For odd
chiral superfields Φµ = (φµ, ψµ, . . . ), the statistical properties of the components φµ and ψµ

are changed, φµ becomes Grassmann odd while φµ becomes Grassmann even. At the same
time, the operators, ∆ψ and ∆φ, have the same form as those for even chiral superfields [57].
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Therefore, we can use [41,53] to compute the one-loop determinant for odd chiral superfields:

Z1−loop
odd =

∏
µ

det ∆φµ

det ∆ψµ
,

which leads to (2.1.15b).

Once we have the one-loop determinant for both even and odd chiral superfields, (2.1.15a)
and (2.1.15b), the correlation function for a general operator O(σ) can also be obtained by

〈O(σ)〉 =
∑
k

∮
JK−Res

k∏
a=1

(
dσa
2πi

)
O(σ)Z1−loop

k,even Z
1−loop
k,odd qk. (2.1.16)

Here, the JK-residue calculation is also done at the geometric phase.

Elliptic Genera

The elliptic genus is a powerful tool to extract physical quantities of target spaces, such as
Witten indices. It is the partition function on a torus with twisted boundary conditions,
which reduces to the Witten index in a certain parameter limit [60,61,63]. There are many
discussions of elliptic genera in the literature. In this section we will follow the localization
computations in [60, 62] and generalize their discussions to supermanifolds7. In the next
section, we will use our generalizations for supermanifolds to compare with the hypersurface
case, which should provide a consistency check that those two models are indeed equivalent
to each other under certain conditions.

In [60,62], the elliptic genus was computed from supersymmetric localization to be

ZT 2(τ, z) = −
∑

uj∈M+
sing

∮
u=uj

du
iη(q)3

θ1(q, y−1)

∏
Φi

θ1(q, yRi/2−1xQi)

θ1(q, yRi/2xQi)
.

Here, we turn off the holonomy of the global symmetry on torus. In the above,

y = e2πiz and xa = e2πiua (2.1.17)

come from the R symmetry and gauge symmetry.

The idea is to use supersymmetric localization to transform the path integral of a torus
partition function into a residue integral over zero-modes of vector chiral superfields. In
the integrand, the elliptic genus consists of three parts: one-loop determinant for (even)
chiral superfields, non-zero modes of vector superfields and twisted chiral superfields. For
supermanifolds, we need to include the one-loop determinant for odd chiral superfields with

7We expect that one can also follow a different approach as in [63] to get a similar result for supermanifolds.
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the same twisted boundary conditions on the torus. From supersymmetric localization, the
one-loop determinant for odd chiral superfields are almost the same as that for even chiral
superfields, except it should have an overall −1 exponent.

Now we argue that we would have a very similar formula for elliptic genera for supermani-
folds, and the only difference is to include the one-loop determinant for odd chiral superfields.
The result is

ZT 2(τ, z) = −
∑

uj∈M+
sing

∮
u=uj

du
iη(q)3

θ1(q, y−1)

∏
Φi

θ1(q, yRi/2−1xQi)

θ1(q, yRi/2xQi)

∏
Φ̃µ

θ1(q, yRµ/2xQ̃µ)

θ1(q, yRµ/2−1xQ̃µ)
.

(2.1.18)

Our argument mainly follows [60], and we follow the notation of that reference. First, we
shall note that with twisted boundary condition on torus, the one-loop determinant for odd
chiral superfields can be calculated from localization:

ZΦ̃µ,Q̃µ
=
∏
m,n

∣∣∣m+ nτ + Rµ
2
z + Q̃µu

∣∣∣2 + iQ̃µD(
m+ nτ + (1− Rµ

2
)z − Q̃µu

)(
m+ nτ̄ + Rµ

2
z̄ + Q̃µū

) ,
and when D = 0, it can be written in terms of theta functions as inside the integral above.

The starting point is

ZT 2 =

∫
R

dD

∫
M

d2ufe,g(u, ū,D) exp

[
− 1

2e2
D2 − iζD

]
,

but with a different D-term here, which is given in Eq. (2.1.7). Following the procedure
in [60], we want to integrate over D and simplify the integral over u. After introducing odd
chiral superfields, we can still take certain parameter limits to reduce the integral above to
M \∆ε and then obtain the residue integral formula. Integrating out D, we have

ZT 2 =

∫
M

d2uFe,g(u, ū),

with

Fe,0 =Cu,e

∫
CM∗|N∗

d2M∗φid
2N∗φ̃µ exp

[
−1

g

∑
i

|Qi(u− u∗)|2|φi|2 −
1

g

∑
µ

|Q̃µ(u− u∗)|2|φ̃µ|2
]

× exp

[
−e

2

2
(
∑
i

Qi|φi|2 +
∑
µ

Q̃µ|φ̃µ|2 − ζ)2

]
.

Here we use N∗ to denote the number of odd chiral superfields which has a zero-mode φ̃µ
at u∗. It is easy to see that the odd chiral superfields do not affect arguments in [60] as we
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can expand those odd chiral superfields in the exponent up to linear terms, and the integrals
over them are just finite constants before taking the limit e → 0. Therefore, we shall take
ε→ 0 and then e→ 0, also denoted as lime,ε→0, and then the integral will reduce to

ZT 2 = lim
e,ε→0

∫
M\∆ε

d2uFe,0(u, ū).

Once we have the relation above, then other derivations are the same as in [60] and we obtain
the formula, Eq. (2.1.18), for elliptic genera of supermanifolds.

In principle, we can also turn on the holonomy of global symmetry for supermanifolds on
torus. We will return to this point later. Before going to the next section, we shall men-
tion that the elliptic genus we calculate here has a natural generalization by including odd
chiral superfields. The authors are not aware of a corresponding mathematical notion for
supermanifolds, and leave that for future work.

2.1.3 Comparison with GLSMs for Hypersurfaces

The main goal of this section is to reproduce the claim of [49,55], namely that an A-twisted
NLSM on a supermanifold is equivalent to an A-twisted NLSM on a hypersurface (or a com-
plete intersection). Instead of discussing these two NLSMs, we consider the corresponding
GLSMs, namely GLSMs for supermanifolds and GLSMs for hypersurfaces (or complete in-
tersections). However, here is a subtlety: the GLSM FI parameter t is different from the
NLSM parameter τ , reflecting the difference between algebraic and flat coordinates. They
are related by the mirror map [16, 28]. Therefore, we need to show the mirror map for
supermanifolds is the same as the mirror map for the corresponding hypersurfaces. This is
indicated by matching the physical two-sphere partition functions [64].

Before working through concrete calculations, let us argue that our calculations are plausible.
As mentioned in section 2.1.1 and 2.1.2, the GLSM for supermanifolds we considered in
this paper has no superpotential and so the global symmetry for target space is all kept,
while the GLSM for a hypersurface will have fewer global symmetries. Therefore, there
are more global parameters for the supermanifold case. Further, the statement we want
to reproduce was proposed for NLSMs, which correspond to the Higgs branch of a GLSM.
However, in this section our calculations are all done on Coulomb branches, for example the
correlation functions, (2.1.2) and (2.1.16). To probe properties of correlation functions on
a Higgs branch, those real twisted masses, m̃, shall be set to zero. This can be achieved as
correlation functions are holomorphic function in m̃ [41]. Following above logic, our results
can be used to derive the statement in [49,55].

In the last section, when we calculated the one-loop correction, the antisymmetric property
for odd chiral superfields leads to a minus sign in front of the correction even though we
assign positive charges to both even and odd chiral superfields at first. This minus sign is
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essential to demonstrate equivalent relations between a GLSM for a supermanifold and for
a corresponding hypersurface (or complete intersection).

In the following, we will study some concrete examples. In those examples, it is not necessary
to impose the Calabi-Yau condition (2.1.10). In this sense, we also generalize the statement
in [49, 55] to non-Calabi-Yau cases. What we will use to compare are mainly chiral ring
relations, correlation functions and elliptic genera.

Hypersurface in CPN vs. CPN |1

First, let us recall the chiral ring relations for the GLSM for the hypersurface case. In this
model, we introduce the superpotential:

W = PG(Φ),

where G(Φ) is a degree d polynomial of Φ’s, and P is a chiral superfield with U(1) charge
−d and R-charge 2. Then the twisted superpotential with one-loop correction is:

W̃ = −tΣ− Σ

[
(N + 1)

(
ln

Σ

µ
− 1

)
− d

(
ln
−dΣ

µ
− 1

)]
.

From

exp

(
∂W̃

∂σ

)
= 1,

we obtain

q ≡ e−t =

(
−dσ
µ

)−d(
σ

µ

)N+1

= (−1)d
(
dσ

µ

)−d(
σ

µ

)N+1

.

Setting µ = 1, we would get
q = (−1)d (dσ)−d σN+1.

Let us compare to the analogous result for the supermanifold CPN |1. We can read the chiral
ring relation from Eq. (2.1.13) with one U(1) and only one odd chiral superfield with U(1)
charge d,

q = σN+1 (dσ)−d .

Comparing above two chiral ring relations, they are the same up to a factor (−1)d.

Without loss of generality, we can take N = 4. We will look at the relation between the
correlation functions for GLSMs for hypersurfaces of degree d in CP4 and those on CP4|1,
which is defined as in Eq. (2.1.3). In the supermanifold case, we shall have fields with U(1)
charges: (1, 1, 1, 1, 1, d). Using Eq. (2.1.16), we obtain

〈O(σ)〉 =
∑
k≥0

∮
dσ

2πi

O(σ)(dσ)1+dk

σ5+5k
qk. (2.1.19)
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Comparing with the hypersurface case, if we redefine q as

q̃ = (−1)dq,

then the correlation functions for the supermanifold are exactly the same as those for the
hypersurface.

In particular, if we take d = 5, the hypersurface will be the quintic. Correlation functions
are

〈O(σ)〉 = −
∑
k≥0

∮
dσ

2πi

O(σ)(−5σ)2

σ5+5k(−5σ)1−5k
q̃k = −

∑
k≥0

∮
dσ

2πi

O(σ)(−5)1+5k

σ4
q̃k.

Then, correspondingly, correlation functions for the supermanifold are:

〈O(σ)〉 =
∑
k≥0

∮
dσ

2πi

O(σ)(5σ)1+5k

σ5+5k
qk =

∑
k≥0

∮
dσ

2πi

O(σ)51+5k

σ4
qk.

We shall see that the q̃ and q are related by

q̃ = (−1)5q,

then it is easy to observe that those correlation functions on both models are exactly the
same. It is in this sense that we claim we have reproduced the statement in [49,55].

Further, we can compare their elliptic genera. The quintic example is already calculated
in [60], which is

ZT 2(τ, z) = − iη(q)3

θ1(q, y−1)

∮
u=0

du
θ1(q, x−5)

θ1(q, yx−5)

(
θ1(q, y−1x)

θ1(q, x)

)5

,

and we can generalize it to a more general hypersurface of degree d:

ZT 2(τ, z) = − iη(q)3

θ1(q, y−1)

∮
u=0

du
θ1(q, x−d)

θ1(q, yx−d)

(
θ1(q, y−1x)

θ1(q, x)

)5

.

For the supermanifold CP4|1, from the formula (2.1.18), the elliptic genus is

ZT 2(τ, z) = − iη(q)3

θ1(q, y−1)

∮
u=0

du
θ1(q, xd)

θ1(q, y−1xd)

(
θ1(q, y−1x)

θ1(q, x)

)5

.

Using the following property of theta functions:

θ1(τ, x) = −θ1(τ, x−1), (2.1.20)

we conclude that the elliptic genera for both models are exactly the same without turning
on the holonomy of global symmetry on torus.

As the first example, we have shown the equivalent relations between GLSM for hypersurface
in CPN and on supermanifold CPN |1. For elliptic genera, the R charge assignment can be
more general which is discussed in appendix A.7. We also show in appendix A.3 that the
equivalent relation for their elliptic genera is still valid. One can extend to more general
cases and details can be found in [65].
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2.2 Non-abelian GLSMs and Their Associated Cartan

Theories

Supersymmetric localization can also be applied to non-abelian gauged linear sigma models,
and the exact results one obtains give us more insight into these theories. In [66], the two-
sphere partition function was utilized to argue that the physics of the nonabelian theory
corresponds to an abelian theory which they called the associated Cartan theory. This
observation was first made by mathematicians in [67] from a different point of view, and
resonated with an early proposal by Hori and Vafa [25] for mirror symmetry. The paper [66]
also demonstrated that the phase boundaries of non-abelian GLSMs can be obtained from
the secondary fan of the associated Cartan theory.

2.2.1 Matching Two-Sphere Partition Functions

The two-sphere partition function in the Coulomb branch representation is

ZS2(qa, q̄a) =
1

| W |
∑

m∈Zrank(G)

∫ (rankG∏
a=1

dτa

)
ZclassZgauge

∏
i

ZΦi , (2.2.1)

where the classical factor Zclass and the one-loop determinants ZΦ and Zgauge are given by

Zclass = exp(−r · τ − iθ), (2.2.2)

Zgauge =
∏

α∈roots(G)

(
(αµmµ)2

4
− (αµτµ)2

)
, (2.2.3)

ZΦi =
∏
ρi∈Ri

Γ
(
qi
2
− ρia(τa + ma

2
)
)

Γ
(

1−qi
2

+ ρia(τa − ma
2

)
) . (2.2.4)

The ρia denote the weights of the representation R of G. Note that αµ and ρia are vectors in
the weight lattice ∼= Zrank(G). W denotes the Weyl group of G and | W |, its cardinality.
The qi denote the R charges of the matter fields.

One can easily find that the partition function of a non-abelian GLSM is closely related to
the partition function of an abelian-like GLSM from the structure of 2.2.1. The maximal
torus of G is the abelian gauge group U(1)rank(G) which is the abelian group for the associated
Cartan theory. The chiral matter fields of the GLSM correspond to dim(Ri) chiral superfields
with charges specified by the weights of the representation which are the vectors ρia. Notice
that we can rewrite Zgauge as

Zgauge =
∏

α∈roots

(
(αµmµ)2

4
− (αµτµ)2

)
=

( ∏
α∈roots

eiπ
∑
µmµ

)( ∏
α∈roots

Γ
(
1− αµ

(
τµ + mµ

2

))
Γ
(
αµ
(
τµ − mµ

2

)) )
.

(2.2.5)
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This suggests that one needs to include additional dim(G)− rank(G) chiral multiplets with
gauge charge (αµ) and R-charge 2 in the associated Cartan theory. The paper [66] also
suggests that the central charges of the IR limits of the non-abelian theory and its associated
Cartan match. The central charges are encoded in the modular transformations of the elliptic
genera, and in the next section we will show that the elliptic genus of the non-abelian theory
is the same as the associated Cartan theory, which is a stronger assertion than equality of
central charges.

2.2.2 Matching Elliptic Genera

In this section, which contains unpublished new results, we show that non-abelian GLSMs
have the same elliptic genera as their associated Cartan theories. We define both theories in
the UV and do the calculation by localization. The main difference between a non-abelian
GLSM and its associated abelian GLSM is that the one-loop determinant in the non-abelian
GLSM has off-diagonal terms in the vector multiplet corresponding to the W-bosons. The
associated abelian Cartan theory has dim(G)−rank(G) chiral matter fields with gauge charge
α and vector R-charge 2. Here we prove their elliptic genera are the same.

Following [60, 62] and [63], we find that in the non-abelian theory, the off-diagonal terms
contribute

Zoff (τ, z, u) =
∏

α:roots

θ1 (q, xα)

θ1 (q, y−1xα)
. (2.2.6)

By contrast, in associated abelian theory, the one-loop determinant of the corresponding
dim(G)− rank(G) chiral matter fields is

ZΦ,α (τ, z, u) =
∏

α:roots

θ1 (q, xα)

θ1 (q, yxα)
, (2.2.7)

where we have used the fact that θ1 (q|z) = −θ1 (q| − z) and the structure of the roots α.
Thus, we will have

ZΦ,α (τ, z, u) =

∏
α:roots θ1 (q, xα)∏

−α:roots θ1 (q, yx−α)
= (−1)

∑
α
∏

α:roots

θ1 (q, xα)

θ1 (q, y−1xα)
. (2.2.8)

This is exactly the off-diagonal one-loop determinant term. We have not considered twisted
sectors of the Weyl obrifolds in the elliptic genus computations above. This is because the
locus on which the supersymmetric theory localizes does not intersect the Weyl orbifold fixed
points.
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2.3 Exact Results: A/2-Twisted GLSM with a N =

(2, 2) Locus

In this section, we consider a N = (0, 2) GLSM with a N = (2, 2) locus. We compute A/2-
twisted correlation functions exactly using supersymmetric localization, and then compare
to previous results in [111,117,118,120]. In terms of (0, 2) multiplets, the theory contains a
g-valued vector multiplet, a chiral multiplet Σ in the adjoint representation of g, and pairs
of chiral and Fermi multiplets (Φi,ΛI), with i = I, transforming in representations Ri of g.
On the N = (2, 2) locus, the EI and JI potentials read

EI = ΣΦi , JI = ∂ΦiW (Φ) , (I = i) , (2.3.1)

where Σ acts on Φi in the representation Ri, and W is the N = (2, 2) superpotential. More
generally, any properly gauge-covariant holomorphic functions EI , JI are allowed as long as
(1.1.91) is satisfied. (On the N = (2, 2) locus, EIJI = 0 follows from the gauge invariance of
W .)

We choose to assign the following R-charges to the matter fields: 8

R[Σ] = 0 , R[Φi] = ri , R[Λi] = ri − 1 , ri ∈ Z . (2.3.2)

This assignment automatically satisfies (1.1.101). The corresponding curved-space theory
realizes the so-called A/2-twist, generalizing the A-twist off the N = (2, 2) locus. The
potential functions EI and JI must have R-charges ri and 2 − ri, respectively. On the
N = (2, 2) locus, there also exists an axial-like R-symmetry U(1)A at the classical level. In
N = (0, 2) language, it corresponds to an alternative R-charge assignment

Rax[Σ] = 2 , Rax[Φi] = 0 , Rax[Λi] = 1 . (2.3.3)

We restrict ourselves to theories that preserve that Rax off the (2, 2) locus as well. This
means that EI remains linear in Σ while JI cannot depend on Σ at all. Note that Rax is
generally anomalous at one-loop.

We would like to compute the correlation functions

〈O(σ)〉(A/2)

P1 (2.3.4)

in the A/2-twisted theory on the sphere, where O(σ) is any gauge invariant polynomial in
the scalar σ in the (0, 2) chiral multiplet Σ. These are the simplest operators in the A/2-
type pseudo-chiral ring. The presence of the Rax symmetry leads to simple selection rules
for (2.3.4). The gauge anomaly of Rax assigns Rax charge

Rax[qA] = 2bA0 , (2.3.5)

8 In the examples we will consider, the R-charges ri will all be either 0 or 2.
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to the abelian gauge couplings (1.1.97), where bA0 equals the β-function coefficient (1.1.102).
Moreover, Rax suffers from a “gravitational” anomaly upon twisting. Due to the presence of
zero-modes on the sphere, the path integral measure picks up a non-zero RA charge:

Rax[Z
(A/2)

P1 ] = −2dgrav , dgrav = −dim(g)−
∑
i

(ri − 1)dim(Ri) . (2.3.6)

Therefore, the standard ghost number selection rules of the A-model remain valid away
from the (2, 2) locus. Note that the coefficient bA0 in (2.3.5) also controls the FI parameter
β-function (1.1.102).

The A/2-twisted correlation functions (2.3.4) can be computed by supersymmetric localiza-
tion on the “Coulomb branch” spanned by the scalar field σ in the chiral multiplet Σ. As
we will show, the recent results of [41] can be extended to the N = (0, 2) theory, provided
some genericity condition is satisfied.

2.3.1 The N = (0, 2) Coulomb Branch

Consider the Coulomb branch consisting of diagonal VEVs σ:

σ = diag(σa) , a = 1, · · · , rk(G) , (2.3.7)

and similarly for the charge-conjugate field σ̃. The Coulomb branch has the form M ∼= hC/W ,
with h the Cartan subalgebra of g and W the Weyl group of G. Let us also denote by
M̃ ∼= hC ∼= Crk(G) the covering space of M. At a generic point on M, the gauge group is
Higgsed to its Cartan subgroup H,

G→ H =

rank(G)∏
a=1

U(1)a , (2.3.8)

with Lie algebra h. Consider the holomorphic potentials EI = EI(σ, φ), linear in σ, of R-
charge rI = ri − 1 with I = i, which transform in the same representations RI of g as ΛI .
Here and in the rest of this section, we identify the indices i = I, j = J , etc. On the Coulomb
branch, we have

EI = σaE
a
I (φ) , (2.3.9)

and the matter multiplets ΦI ,ΛI acquire masses

MIJ = ∂JEI
∣∣
φ=0

= σa ∂JE
a
I

∣∣
φ=0

. (2.3.10)

Note that (2.3.10) transforms in the representation RI ⊗ R̄J of g. Gauge- and U(1)R-
invariance implies that the mass matrix (2.3.10) is block-diagonal (up to a relabeling of the
indices), with each block consisting of fields transforming in the same gauge representation
and having the same R-charge. Let us denote by γ = {Iγ} ⊂ {I} the subset of indices
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corresponding to each of these blocks, so that we can partition the indices as {I} = ∪γ{Iγ},
and let Rγ = RIγ be the corresponding gauge representations. We also denote by rγ the
corresponding R-charge. (That is, the chiral and Fermi multiplets ΦIγ and ΛIγ have R-
charges rγ and rγ − 1, respectively.) Each block is diagonal in representation space, and we
introduce the notation:

MIγJγ
ργρ′γ = δργρ

′
γ
(
M(γ, ργ)

)
IγJγ

, (2.3.11)

for each block. In (2.3.11), ργ, ρ
′
γ are indices running over the weights of the representation

Rγ. We also write
detM(γ, ργ) = det

IγJγ

(
M(γ, ργ)

)
IγJγ

. (2.3.12)

In the following, we shall assume that

detM(γ, ργ) 6= 0 , ∀(γ, ργ) , (2.3.13)

at any generic point on the Coulomb branch. This ensures that all the matter fields are
massive on M̃ except at special loci of positive codimensions. In particular, the condition
(2.3.13) rules out theories with EI = 0.

At a generic point on the Coulomb branch, we can integrate out the matter fields to obtain
an effective Ja-potential:

Jeff
a = τa − 1

2πi

∑
γ

∑
ργ∈Rγ

ρaγ log
(
detM(γ, ργ)

)
− 1

2

∑
α>0

αa , (2.3.14)

where ργ are the weights of Rγ and α are the positive simples roots of g. The classical cou-
plings (τa) ∈ h∗C are the complexified parameters of the effective theory, which are obtained
from the parameters τA by embedding the central sub-algebra c∗C ⊂ h∗C ⊂ g∗C of the dual of g
into h∗C. The second set of terms in (2.3.14) arises from integrating out the chiral and Fermi
multiplets [115], and the last term is the contribution from the W -bosons multiplets. From
(2.3.14), we read off the effective FI parameter on the Coulomb branch. In particular, we
are interested in the effective FI parameter at infinity on the Coulomb branch. Denoting by
R the overall radius of M̃ ∼= Cr, we define:

ξUV
eff = ξ +

1

2π
b0 lim

R→∞
logR , b0 =

∑
i

∑
ρi∈Ri

ρi , (2.3.15)

where b0 ∈ ih∗ is equivalent to (bA0 ) ∈ ic∗ defined in (1.1.102).

2.3.2 A/2-Twisted Correlation Functions

The correlation functions (2.3.4) can be computed explicitly as a sum over flux sectors
on the sphere, with each summand given by a generalized Jeffrey-Kirwan (JK) residue on
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M̃ ∼= Crk(G). We find:

〈O(σ)〉(A/2)

P1 =
(−1)N∗

|W |
∑
k∈ΓG∨

qk JKG-Res
[
ξUV

eff

]
Z1-loop
k (σ)O(σ) dσ1 ∧ · · · ∧ dσrk(G) , (2.3.16)

with

Z1-loop
k (σ) = (−1)

∑
α>0(α(k)+1)

∏
α>0

α(σ)2
∏
γ

∏
ργ∈Rγ

(
detM(γ, ργ)

)rγ−1−ργ(k)
. (2.3.17)

Here and in the next subsection, we explain the notation used in (2.3.16)-(2.3.17). The
derivation of the formula is discussed in subsection 2.3.4.

The overall factor in (2.3.16) is Weyl symmetry factor, with |W | the order of the Weyl group
of G. The sign factor (−1)N∗ is a sign ambiguity. In the examples we shall consider with
chiral multiplets of R-charges 0 and 2 only, we should take N∗ to be the number of chiral
multiplets of R-charge 2 [41].

The sum in (2.3.16) is over the GNO-quantized magnetic fluxes k ∈ ΓG∨ ⊂ ih. The integral
lattice ΓG∨

∼= Zrk(G) can be obtained from ΓG, the weight lattice of electric charges of G
within the vector space ih∗, by

ΓG∨ = { k : ρ(k) ∈ Z ∀ρ ∈ ΓG } , (2.3.18)

where ρ(k) =
∑

a ρ
aka is given by the canonical pairing of the dual vector spaces. Let us

also introduce the notation ~k ∈ Zn to denote the fluxes in the free part (1.1.96) of the center
of G. We define

qk ≡ exp(2πi
n∑

A=1

(~τ)A(~k)A) = exp(2πiτ(k)) . (2.3.19)

Here ~τ ∈ Cn denotes the complexified FI parameter, while τ is the same FI parameter viewed
as an element of h∗C.

Each summand in (2.3.16) is given by a (conjectured) generalization of the JK residue, the
JKG residue, upon which we elaborate shortly. That residue depends on the argument ξUV

eff

in (2.3.16), the effective FI parameter in the UV defined in (2.3.15).

The integrand is a rk(G)-form on M̃ ∼= Crk(G) written in the coordinates σa. The expression
(2.3.17) is the contribution from the massive fields on the Coulomb branch. The first product
in (2.3.17) runs over all the positive simple roots α > 0 of g and corresponds to the W -bosons.
The second product in (2.3.17) is the contribution from the matter multiplets ΦI ,ΛI , with
the partition of indices {I} = ∪γ{Iγ} as explained above (2.3.11), and another product over
all the weights ργ of the representation Rγ of g, for each γ. The polynomials detM(γ, ργ)

were defined in (2.3.11)-(2.3.12).
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2.3.3 The Jeffrey-Kirwan-Grothendiek Residue

Let us introduce the collective label Iγ = (γ, ργ) for the field components in each block
γ. In any given flux sector, the integrand in (2.3.16) is a meromorphic (0, r)-form on 9

M̃ ∼= hC ∼= Cr with potential singularities at:

∪γ HIγ ⊂ Cr , HIγ ∼= {σ ∈ Cr | detMIγ = 0} . (2.3.20)

Each HIγ is a divisor (codimension-one subvariety 10) of Cr and all these divisors intersect
at σ = 0. Let us denote by

PIγ (σ) = detMIγ (σ) ∈ C[σ1, · · · , σr] (2.3.21)

the homogeneous polynomials of degree dγ associated to (2.3.20). (For each γ, every PIγ has
the same degree.) To each PIγ , we associate the charge vector QIγ ∈ ih∗, which is the U(1)r

gauge charge of the field component Iγ under the Cartan subalgebra h—that is:

Qa
Iγ = ρaγ , (2.3.22)

if Iγ = (γ, ργ). In any flux sector with flux k, the actual singularities consist of the subset
of the potentials singularities (2.3.20) at PIγ such that

ργ(k)− rγ ≥ 0 . (2.3.23)

We shall assume that, in any given flux sector, the set of charge vectors Q ⊂ {QIγ} associated
to the actual singularities is projective—that is, the vectors Q are contained within a half-
space of ih∗. Note that a non-projective Q signals the presence of dangerous gauge invariant
operators which may take an arbitrarily large VEV [41].

We define a “Jeffrey-Kirwan-Grothendieck” (JKG) residue as a simple generalization of the
Jeffrey-Kirwan residue. Let us first recall the definition of the Grothendieck residue [104]
specialized to our case. Given r homogeneous polynomials Pb, b = 1, · · · , r, in C[σ1, · · · , σr],
of degrees db, such that P1 = · · · = Pr = 0 if and only if σ1 = · · · = σr = 0, let us define a
(r, 0)-form on Cr:

ω(P ) =
dσ1 ∧ · · · ∧ dσr
P1(σ) · · ·Pr(σ)

. (2.3.24)

Let Db be the divisor in Cr corresponding to Pb = 0, and let DP = ∪bDb. The form (2.3.24)
is holomorphic on Cr\DP . The Grothendieck residue of f ω(P ) at σ = 0, with f = f(σ) any
holomorphic function, is given by:

Res(0) f ω
(P ) =

1

(2πi)r

∮
Γε

f ω(P ) , (2.3.25)

9Here and in the rest of this section, we write r = rk(G) to avoid clutter.
10We use the terms “divisor” and “codimension-one variety” interchangeably. That is, all our divisors are

effective.

46



with a real r-dimensional contour:

Γε =
{
σ ∈ Cr

∣∣ |Plb| = εb , b = 1, · · · , r
}
, (2.3.26)

oriented by d(arg(Pl1)) ∧ · · · ∧ d(arg(Plr)) ≥ 0, with εb > 0, ∀b. The residue (2.3.25) only
depends on the homology class of Γε in Hn(Cr\DP ). Note that, if f is an homogenous
polynomial of degree d0, the residue (2.3.25) vanishes unless d0 =

∑r
b=1(db − 1).

Consider an arrangement of s ≥ r distinct irreducible divisors HIγ ∼= {σ |PIγ = 0} of
hC ∼= Cr, intersecting at σ = 0, and denote by DP their union. To each Iγ is associated the
charge QIγ ∈ ih∗. We denote this data by:

P = {PIγ} , Q = {QIγ} , (2.3.27)

with Q projective. Let RP be the space of rational holomorphic (r, 0)-forms with poles on
DP, and let SP ⊂ RP be the linear span of

ωS,P0 = dσ1 ∧ · · · ∧ dσr
∏
Pb∈PS

P0

Pb
, (2.3.28)

where PS = {P1, · · · , Pr} ⊂ P denotes any subset of r distinct polynomials in P associated
to r distinct charges QS = {Q1, · · · , Qr} ⊂ Q, while P0 is any homogeneous polynomial of
degree d0 =

∑r
b=1(db − 1), with db the degree of Pb. The JKG-residue on SP is defined by

JKG-Res[η] ωS =

{
sign (det(QS)) Res(0) ωS if η ∈ Cone(QS) ,
0 if η /∈ Cone(QS) ,

(2.3.29)

in terms of a vector η ∈ h∗. Here, Cone(QS) denotes the positive span of the r linearly
independent vectors QS in h∗. In (2.3.16), we have this same JKG-residue with η = ξUV

eff .

On the N = (2, 2) locus, the divisors HIγ are hyperplanes perpendicular to QIγ , with

PIγ =
(
QIγ (σ)

)dIγ , (2.3.30)

and the JKG-residue reduces to an ordinary Jeffrey-Kirwan residue, reproducing previous
results for the A-twisted GLSM.

2.3.4 Derivation of the JKG Residue Formula

In this subsection, we sketch a derivation of the residue formula (2.3.16), closely following
previous works [41, 62], to which we refer for more details. We shall leave one important
technical step—the proper cell decomposition of the Coulomb branch—as a conjecture. More
generally, we would like to stress that the JKG residue has not yet been defined satisfactorily
at the mathematical level. We hope that the present work will lead to further investigation
of this new conjectured residue.
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Generalities

We use the kinetic terms of section 1.1.2 in the localizing action:

Lloc =
1

e2

(
LYM + LΣ̃Σ

)
+

1

g2

(
LΦ̃Φ + LΛ̃Λ

)
, (2.3.31)

with e and g some dimensionless parameters that we can take arbitrarily small. With the
standard reality condition σ̃ = σ̄, the kinetic term for the chiral multiplet Σ localizes to

∂µσ = 0 , [σ, σ̃] = 0 . (2.3.32)

We therefore localize onto the Coulomb branch discussed in subsection 2.3.1. We also have
a sum over gauge fluxes,

k =
1

2π

∫
P1

da , (2.3.33)

with k in the flux lattice (2.3.18). In each topological sector, let us define

D̂ = −i (D − 2if11̄) , (2.3.34)

with D̂ a real field corresponding to fluctuations around the supersymmetric value D̂ = 0.
At a generic points on the Coulomb branch, all the other matter field are massive, while for
special values of σ corresponding to

PIγ (σ) = 0 , (2.3.35)

with PIγ defined in (2.3.21), we have additional bosonic zero modes and the localized path
integral would be singular. To regularize these singularities, it is useful to keep the constant
mode of D̂ in intermediate computations [62].

We also have the fermionic zero modes λ̃ from the Coulomb branch vector multiplets, and
the fermionic zero modes B̃Σ from Σ—corresponding to (1.1.109) with r = 0. The path
integral localizes to:

ZGLSM =
1

|W |
∑
k

qk
∫ rk(G)∏

a

[
d2σa dD̂a dλ̃a dB̃Σ

a

]
Zk(σ, σ̃, λ̃, B̃Σ, D̂) , (2.3.36)

where Zk(σ, σ̃, λ̃, B̃Σ, D̂) is the result of integrating out the matter fields and W-bosons in
the supersymmetric background:

V0 = (λ̃a , D̂a) , Σ0 = (σa , σ̃a , B̃Σ
a ) . (2.3.37)

Supersymmetry implies the relation:

δZk =

(
D̂a

∂

∂λ̃a
+ B̃Σ

a

∂

∂σ̃a

)
Zk = 0 . (2.3.38)
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In the limit e, g → 0, we have

Zk(σ, σ̃, D̂) ≡ Zk(σ, σ̃, 0, 0, D̂) = lim
e→0

e−S0 Zmassive
k (σ, σ̃, D̂)Z1-loop

k (σ, σ̃, D̂) . (2.3.39)

Here, e−S0 is the classical contribution, with

S0 = vol(S2)

(
1

2e2
D̂2 − 1

2
τ̃(D̂)

)
, (2.3.40)

(setting e0 = 1 in (1.1.85)), while Zmassive
k is the contribution from non-zero modes, which

is trivial when D̂ = 0, and Z1-loop
k is the zero-mode contribution, which reduces to (2.3.17)

when D̂ = 0. These one-loop contributions are derived and discussed in Appendix A.4.

The insertion of any pseudo-chiral operator O(σ) does not modify the derivation. It simply
corresponds to inserting the same factor O(σ) with constant σ in the integrand (2.3.45).

The Rank-One Case

Consider first the case of a rank-one gauge group. We choose G = U(1) for simplicity, but
the generalization is straightforward. We have matter fields Φi,Λi with gauge charges Qi

and R-charges ri and ri − 1, organized in blocks Φγ. We have the one-loop contributions

Zmassive
k (σ, σ̃, D̂) =

∏
γ

∏
λ(γ,k)

det(λ(γ,k) + |Mγ|2)

det(λ(γ,k) + |Mγ|2 + iQγD̂)
(2.3.41)

with λ(γ,k) > 0, and

Z1-loop
k (σ, σ̃, D̂) =

∏
γ

Z1-loop
k,γ (2.3.42)

with

Z1-loop
k,γ =


(detMγ)

rγ−1−Qγk if rγ −Qγk ≥ 1 ,(
det M̄γ

det(|Mγ |2+iQγD̂)

)1−rγ+Qγk

if rγ −Qγk < 1 ,
(2.3.43)

from the zero modes. The singular locus on the Coulomb branch corresponds to detMγ = 0,
for each γ. This is simply σ = 0 in the present case, but it is useful to suppose that detMγ

have more general roots.

In each flux sector, we remove a small neighborhood ∆ε,k of the singular locus, of size ε > 0,
and we decompose this neighborhood as

∆ε,k = ∆
(+)
ε,k ∪∆

(−)
ε,k ∪∆

(∞)
ε,k , (2.3.44)

where ∆
(±)
ε,k corresponds to the neighborhood of the singularities the positively and negatively

charged matter fields (Qγ > 0 and Qγ < 0, respectively), as well as the neighborhood of
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σ = ∞. We assume that our theory is such that we can always separate the singularities
from positively and negatively charged fields, for any given k. (Such singularities “projective
singularities” in the sense defined below (2.3.23).)

Using (2.3.38), one can perform the integration over the fermionic zero modes in (2.3.45), to
obtain:

ZGLSM =
∑
k

qk
∫

Γ

dD̂

D̂

∮
∂∆ε,k

dσZk(σ, σ̃, D̂) . (2.3.45)

For each γ block, the Hermitian matrix |Mγ|2 can be diagonalized with eigenvalues m2
γ > 0.

The absence of chiral multiplet tachyonic modes requires that

Im(QγD̂) < m2
γ , ∀γ, ∀m2

γ . (2.3.46)

This determines the D̂ contour of integration Γ exactly like in [41]. There is an important
contribution from infinity, which is controlled by the effective FI parameter (2.3.15). We
have a twofold freedom in choosing Γ (corresponding to the sign of η in (2.3.29)) and we can

choose η = ξUV
eff so that the contribution from ∂∆

(∞)
ε,k vanishes [41]. In that case, performing

the D̂ integral picks the contributions from ∂∆
(+)
ε,k or ∂∆

(−)
ε,k according to the sign of ξUV

eff :

Z
(+)
GLSM =

∑
k

qk
∮
∂∆

(+)
ε,k

dσZ1-loop
k (σ) , Z

(−)
GLSM = −

∑
k

qk
∮
∂∆

(−)
ε,k

dσZ1-loop
k (σ) . (2.3.47)

The first equality corresponds to η = ξUV
eff > 0 and the second equality corresponds to

η = ξUV
eff < 0. When b0 = 0, ξUV

eff can be tuned to be of either sign and the two formulas
(2.3.47) are equal as formal series [41]. The result (2.3.47) can be written as the JKG residue
(2.3.29).

The General Case

In the general case, one can perform the fermionic integral in (2.3.45) explicitly to obtain:

ZGLSM =
1

|W |
∑
k

qk
∫ rk(G)∏

a

[
dσa dσ̃a dD̂a

]
det
ab

(hab)Zk(σ, σ̃, D̂) , (2.3.48)

with hab a two-tensor on M̃ that satisfies

∂σ̃ahbc − ∂σ̃chba = 0 , ∂σ̃aZk(σ, σ̃, D̂) = D̂bhbaZk(σ, σ̃, D̂) , (2.3.49)

with Zk(σ, σ̃, D̂) given in (2.3.39). The only difference with the discussion in [41] is that
hab need not be symmetric. One way to motivate this result is to note that the low-energy
effective action on the Coulomb branch should take the form

Seff ∝ −D̂aJ̃eff
a + λ̃a

∂J̃eff
a

∂σb
B̃Σ
b , (2.3.50)
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with J̃eff
a the anti-holomorphic effective superpotential. Therefore, we have hab = ∂J̃a

∂σb
and

the properties (2.3.49) follow. More generally, the hab in (2.3.48) may depend on D̂a but the
above properties are preserved and follow from supersymmetry. We may define a form

ν(V ) = V ahabdσ̃
b (2.3.51)

for any V valued in hC, in terms of which (2.3.49) reads

∂̄ν = 0 , ∂̄Zk = ν(D)Zk , (2.3.52)

with ∂̄ the Dolbeault operator on M̃. In any flux sector, we define ∆ε,k to be the union
of the small neighborhoods of size ε around the divisors HIγ in (2.3.20) such that (2.3.23)
holds, and of the neighborhood of σ =∞. We have

ZGLSM =
1

|W |
lim
e,ε→0

∑
k

qk
∫

ΓnM̃\∆ε,k

µ(k) , (2.3.53)

where r = rk(G) and µ(k) is a top-form:

µ(k) =
1

r!
Zk(σ, σ̃, D̂) drσ ∧ ν(dD̂)∧r . (2.3.54)

From here onward, one may follow [41] almost verbatim. The main difficulty lies in dealing
with the boundaries of ∆ε,k, the tubular neighborhood of the singular locus that should be

excised from M̃. We conjecture that a sufficiently good cell decomposition exists, such that
the manipulations of [41, 62] can be repeated while replacing the singular hyperplanes by
singular divisors. This would establish the JKG residue prescription in the regular case, that
is when the number s of singular divisors equals r. (The prescription for the non-regular
case, s > r, is a further conjecture, motivated by examples.)

2.3.5 Abelian Examples and Quantum Sheaf Cohomology

For abelian (0,2) supersymmetric gauged linear sigma models which are deformations of (2,2)
theories, there are already extensive results in the literature (see e.g. [68–70]). For example,
for models describing toric varieties with a deformation of the tangent bundle, both the
quantum sheaf cohomology rings and expressions for correlation functions are known.

However, the methods of supersymmetric localization give new and much simplified deriva-
tions of those expressions. In this section, we will outline several examples in this new
language.

Projective Spaces PN−1

In this section, we will discuss PN−1. Now, the tangent bundle of PN−1 is rigid, it admits
no deformations. We can formally try to deform it, which will act as a warm-up example
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for more general toric varieties, but in this special case, field redefinitions can remove our
deformations.

The tangent bundle of PN−1 is defined by the sequence

0 −→ O ∗−→ O(1)N −→ TPN−1 −→ 0

where ∗ is given by multiplication by homogeneous coordinates, and is encoded in

D+Λi = ΣΦi

where the Λ are the Fermi superfields corresponding to the O(1) line bundle elements, and
Φi the chiral superfields corresponding to homogeneous coordinates. Formally, we could try
to deform the bundle by taking

D+Λi = AijΣΦj,

where A is an invertible N ×N matrix. Physically, we can use field redefinitions of the Φ’s
to remove the A dependence, so physically these A’s have no meaning, agreeing with the
mathematical fact that the tangent bundle of PN−1 has no deformations. However, we can
formally use this as a test case to develop the technology.

Using earlier results, the contribution from the deformed chiral and Fermi superfields above
has the form (

1

detE

)m+1

where
Ei
j = Aijσ,

so we get the following expression for correlation functions:

〈σ1 · · ·σn〉 =
∑
m∈Z

∫
dσ

2πi

1

(detE)m+1
qmσn, (2.3.55)

=

{
(detA)−1q(n+1−N)/N if n+ 1 = N(k + 1) for some k

0 otherwise.
. (2.3.56)

Note in particular that the OPE’s detE = q are obeyed, as expected in this example [70].
Also note that if we make the (2,2) locus completely explicit by taking A to be the identity
matrix, then the result above reproduces that in e.g. [53][section 5.1], as

detE = (detA)σN .

P1 × P1

The toric variety P1 × P1 is the simplest example of a toric variety with nontrivial tangent
bundle deformations, and so is often used as a prototype for many discussions of quantum
sheaf cohomology.
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Mathematically, we can describe a deformation of the tangent bundle of P1 × P1 as the
cokernel E below:

0 −→ O2 ∗−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

where

∗ =

[
Ax Bx
Cy Dy

]
,

for x and y vectors of homogeneous coordinates on the two projective space factors.

Now, following the methods we have described so far, correlation functions in the A/2 twist
of this theory are of the form

〈f(σ, σ̃)〉 =
∑
m1∈Z

∑
m2∈Z

JKG− Resσ=σ̃=0

(
1

detE

)m1+1(
1

det Ẽ

)m2+1

f(σ, σ̃)qm1 q̃m2 , (2.3.57)

for
E = Aσ +Bσ̃, Ẽ = Cσ +Dσ̃.

The quantum sheaf cohomology ring relations (OPE’s in the A/2 twist) of this model were
derived in e.g. [68–70] and take the form

detE = q, det Ẽ = q̃.

These relations can be more or less immediately read off from the result (2.3.57) for the
correlation functions in terms of residues. Specifically, note that inserting a factor of e.g.
detE in the correlator is equivalent to shifting m1 by 1, which in turn is equivalent to
shifting the exponent of q by 1. Thus, formally in the correlation function, inserting detE
is equivalent to inserting q, and similarly inserting det Ẽ is equivalent to inserting q̃.

Results for correlation functions are also straightforward to derive. We can evaluate the
residue above as iterated residues, first computed at the zeroes of detE, namely,

σ = (2 detA)−1 (detA+ detB − det(A+B)

±
[
(detA)2 − 2(detA)(det(A+B)) + (det(A+B))2 − 2(detA)(detB)

−2(det(A+B))(detB) + (detB)2
]1/2)

σ̃

and then taking residues at σ̃ = 0. For this model, two- and four-point functions were
independently computed using Cech cohomology techniques, and the results of the residue
computation match the results of Cech cohomology perfectly.

For completeness, let us summarize the form of the two-point functions. These are given by

〈σσ〉 = −α−1Γ1, 〈σσ̃〉 = α−1∆, 〈σ̃σ̃〉 = −α−1Γ2,
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where

γAB = det(A+B)− detA− detB, γCD = det(C +D)− detC − detD,

Γ1 = γAB detD − γCD detB,

Γ2 = γCD detA − γAB detC,

∆ = (detA)(detD) − (detB)(detC),

α = ∆2 − Γ1Γ2.

It was argued in [91] that the singular locus of these correlation functions, i.e. the locus
{α = 0}, coincides with the locus on which the bundle degenerates. Indeed, in general, the
standard lore is that singularities in (0,2) theories are determined by singularities in the
bundle, not in the base, so this result matches expectations.

2.3.6 Comments on Deformations

In this section, we study the relevant deformations of the effective theory, and suggest the
number of deformation parameters of the A/2 theory may be smaller than the number of
physical moduli. Some previous work on this matter can be found in [116,119]. We will not
give a complete analysis, rather, we only give some heuristic arguments.

P1 × P1

The formula for correlation functions of (0,2) theories suggests that there are fewer moduli
in the topological theory than in the physical theory We will use the quantum sheaf coho-
mology relations to see the basic idea. The quantum sheaf cohomology relations for a (0,2)
deformation of P1 × P1 are

det (Aσ +Bσ̃) = q1, det (Cσ +Dσ̃) = q2. (2.3.58)

To count the deformations, we factor the determinants in the form

det (Aσ +Bσ̃) ∼ (a1σ + b1σ̃) (a2σ + b2σ̃) , det (Cσ +Dσ̃) ∼ (c1σ + d1σ̃) (c2σ + d2σ̃) ,
(2.3.59)

We can perform the following field redefinitions

σ → σ + xσ̃, σ̃ → σ̃ + yσ. (2.3.60)

When we choose x = − b1
a1

and y = − c1
d1

, the quantum sheaf cohomology relations above
become (

a1 −
b1c1

d1

)
σ

((
a2 −

b2c1

d1

)
σ +

(
b2 −

b1a2

a1

)
σ̃

)
= q1, (2.3.61)
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(
d1 −

b1c1

a1

)
σ̃

((
d2 −

b1c2

a1

)
σ̃ +

(
c2 −

c1d2

d1

)
σ

)
= q2. (2.3.62)

If we redefine q1 as q1(a1 − b1c1
d1

)(a2 − b2c1
d1

) and similarly for q2, we obtain

σ (σ + λσ̃) = q1, σ̃ (σ̃ + ωσ) = q2. (2.3.63)

Thus we see that quantum sheaf cohomology ring relations only depend upon two parameters
(λ, ω) instead of six determinants [106]. Therefore, we suggest that the number of moduli of
the A/2 theory is two rather than six.

Hirzebruch surface Fn

The charge matrix for target fields is different with the P1×P1 except for the n=0 case, but
they share a common submatrix which is(

1 0
0 1

)
. (2.3.64)

For Hirzebruch surface there are three matrices, one has rank two while the others have rank
one. They are the following

MX = σA+ σ̃B, MW = σγ1 + σ̃β1, MS = σγ2 + σ̃β2. (2.3.65)

On the (2,2) locus, A = I, B = 0, β1 = β2 = 1, γ1 = n and γ2 = 0. We have omitted
the nonlinear deformations as they do not contribute to the correlation functions. As for
P1 × P1, we can factorize the determinants as follows:

detMX = (a1σ + b1σ̃) (a2σ + b2σ̃) , MW = c1 (nσ + σ̃) + d1σ̃, MS = c2σ̃ + d2σ.
(2.3.66)

The coefficients above can be expressed in terms of the original parameters, for example we
have c2 = γ2 and so on. The detailed expression of the coefficient are not important. Again,
we perform a linear field redefinition

σ → σ + xσ̃, σ̃ → σ̃ + yσ. (2.3.67)

When x = − b1
a1

and y = −d2

c2
, the above matrices become the following

detMX =

(
a1 −

b1d2

c2

)
σ

((
a2 −

b2d2

c2

)
σ +

(
b2 −

a2b1

a1

)
σ̃

)
,

MW =

(
c1n− d2

c2
− d1d2

c2

)
n

(nσ + σ̃) +

c1

1− nb1

a1

+ d1 −

(
c1n− d2

c2
− d1d2

c2

)
n

 σ̃,
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MS =

(
c2 −

d2b1

a1

)
σ̃.

Again we can redefine q to write the determinants as follows

detMX = σ (σ + ω1σ̃) , MW = (nσ + σ̃) + ω2σ, MS = σ̃. (2.3.68)

Thus, for Hirzebruch surfaces, the number of moduli of the A/2 theory is two.
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Chapter 3

Some New Progress in Mirror
Symmetry

This chapter contains some of our results on mirror symmetry. The contents of this chapter
were adapted, with minor modifications, with permission from JHEP and arXiv, from our
publication [27] and article [26] on the arXiv.

Many aspects of ordinary mirror symmetry are well understood. For example, the Batyrev-
Borisov construction [23] describes mirrors to complete intersections in projective spaces, and
the Hori-Vafa construction [25] describes Landau-Ginzburg mirrors to abelian gage theories.
One open problem has been to understand non-abelian versions of these constructions: there
is no known analogue of Batyrev-Borisov for complete intersections in Grassmannians, and
the Hori-Vafa construction was only known for abelian theories. In section 3.1 we will
describe a proposal for a non-abelian extension of the Hori-Vafa construction (adapted here
from our work [26]).

Another open problem has been (0,2) analogues of these constructions. In section 3.2, we
will discuss a proposal for an extension of Hori-Vafa [25] to (0,2) theories, for certain families
of deformations of (2,2) theories. This work was previously published in [27].

3.1 A Proposal for Nonabelian Mirror Symmetry

3.1.1 The Proposal Itself

In [26], we made a proposal for a non-abelian of Hori-Vafa’s work [25], which can be described
as follows. Consider an A-twisted (2,2) GLSM with gauge group G (of dimension n and rank
r) and matter in some representation R (of dimension N). For simplicity, in this paper we
will assume G is connected. For the moment, we will assume that the A-twisted gauge theory
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has no superpotential, and we will consider generalizations later in this section. We propose
that the mirror is an orbifold of a Landau-Ginzburg model. We will describe the Landau-
Ginzburg model first, then the orbifold. The Landau-Ginzburg model has the following
matter fields:

• r (twisted) chiral superfields σa, corresponding to a choice of Cartan subalgebra of the
Lie algebra of G,

• N (twisted) chiral superfields Yi, each of imaginary periodicity 2πi as in [25][section
3.1], which we will discuss further in a few paragraphs,

• n− r (twisted) chiral superfields Xµ̃,

with superpotential1

W =
r∑

a=1

Σa

(
N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αaµ̃ lnXµ̃ − ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃, (3.1.1)

where the ρai are the weight vectors for the representation R, and the αaµ̃ are root vectors for
the Lie algebra of G. (We will sometimes write2 Xµ̃ in terms of Zµ̃ = − lnXµ̃ for convenience,
but Xµ̃ is the fundamental3 field.) (In passing, in later sections, we will slightly modify our
index notation: i will be broken into flavor and color components, and µ̃ will more explicitly

1 If we want to be careful about QFT scales, the second line should be written

N∑
i=1

µ exp (−Yi) +

n−r∑
µ̃=1

µXµ̃,

where µ is a pertinent mass scale.
2 Taking into account QFT mass scales, Zµ̃ = − ln (µXµ̃).
3 We use the term ‘fundamental field’ to implicitly indicate the form of the path integral integration

measure. In the present case, in the B model, the integration measure (over constant zero modes) has the
form ∫ (∏

a

d2σa

)(∏
i

d2Yi

)∏
µ̃

d2Xµ̃

 .

Similarly, the holomorphic top-form takes the form

∧adσa ∧i dYi ∧µ̃ dXµ̃.

Later in this section when we discuss mirrors to fields with R-charges, we will say that different fields are
‘fundamental’, for example, for a mirror to a field of R-charge two, the fundamental field would be exp(−Y ).
In such a case, instead of d2Y , one would have d2 exp(−Y ).
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reflect the adjoint representation, in the form of µ̃ 7→ µν, for µ, ν ranging over the same
values as a.. However, for the moment, this convention is very efficient for outlining the
proposal.) For reasons we will discuss in section 3.1.3, we believe that the loci {Xµ̃ = 0} are
dynamically excluded by e.g. diverging potentials. (This will lead to an algebraic derivation
of the excluded locus in A model Coulomb branch computations.) Finally, for reasons of
brevity, we will often omit the term ‘twisted’ when describing the Σ, Y , and X superfields;
the reader should add it as needed from context.

Strictly speaking, the σa should be understood as curvatures of vector multiplets of the
original A-twisted gauge theory: σa ∝ D+D−Va for vector multiplets Va, just as in [25].
This means the σ terms in the superpotential above encode theta angle terms such as θFzz,
which tie into periodicities of the Y fields (to which we will return next). The reader should
also note that our notation is slightly nonstandard: whereas other papers use Σ, we use σ to
denote both the twisted chiral superfield (the curvature of V ) as well as the lowest component
of the superfield. (As these σ’s often occur inside and next to summation symbols, we feel our
slightly nonstandard notation will improve readability.) In the limit that the gauge coupling
of the original theory becomes infinite, the σa become Lagrange multipliers, from the form
of the kinetic terms [25][equ’n (3.69)]. As a result, we will often speak of integrating them
out. (On occasion, we will utilize the fact that we are in a TFT to integrate out other fields
as well.)

We have not carefully specified to which two-dimensional (2,2) supersymmetric theories the
ansatz above should apply. Certainly we feel it should apply to theories with isolated vacua
and theories describing compact CFTs, and we have checked numerous examples of this
form. In addition, later we will also see it reproduces results for non-regular theories (in the
sense of [39]), as well as results for theories that flow to free twisted chiral multiplets. In
any event, as we have not provided a proof of the ansatz above, we can not completely nail
down a range of validity.

To clarify the Y periodicities,
Yi ∼ Yi + 2πi,

so that the Y ’s take values in a torus of the form CdimR/2πiZ, and the superpotential terms
exp(−Yi) are well-defined. Then, schematically, the contraction ρY has periodicity 2πiM
for M the weight lattice. For abelian cases, this is merely the usual affine shift by 2πi
that appeared in [25], independently for each Y , but may be a little more complicated in
nonabelian cases. Furthermore, in our conventions, the weight lattice is normalized so that
the theta angle periodicities of the original gauge theory are of the form 2πM , since phases
picked up by ρY are absorbed into theta angles. Finally, note that in the first line of the
superpotential above, the log branch cut ambiguity effective generates shifts of weight lattice
periodicities by roots.

So far we have described the Landau-Ginzburg model. The proposed mirror is an orbifold
of the theory above, by the Weyl group W , acting on the Σa, Yi, and Xµ. (The action can
be essentially inferred from the quantum numbers, and we will describe it in explicit detail
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in examples.)

The superpotential above, written in terms of root and weight vectors, is invariant under
this Weyl group action simply because the Weyl group permutes root vectors into other root
vectors and weight vectors into other weight vectors for any finite-dimensional representation,
see e.g. [71][chapter VIII.1], [72][chapter 14.1]. As a result, the Weyl group maps Zµ̃’s to
other Zµ̃’s, and Yi’s to other Yi’s, consistently with changes in ρai and αaµ̃. Furthermore, we
take each Weyl group reflection to also act in the same way on the Σ’s as on the root and
weight lattices, so that the combinations∑

a

Σaα
a
µ̃,
∑
a

Σaρ
a
i

are permuted at the same time and in the same way as the Xµ̃ and Yi. This guarantees
that the superpotential remains invariant under the Weyl group, a fact we shall also check
explicitly in examples.

In practice, in the examples in this paper, the Weyl group will act by permutations and sign
flips, and so it will be straightforward to check that, so long as the Σ’s are also permuted
and sign-flipped, the superpotential is invariant. In addition, in some of the examples we
shall compute, we shall also see alternate representations of the superpotential above, in
which the Σa terms above involve nontrivial matrix multiplications, rather than just root
and weight vectors. In such cases, we will check explicitly that the superpotential is again
invariant under the Weyl group action.

We require the mirror Landau-Ginzburg model admit a B twist, which constrains the orbifold.
After all, to define the B twist in a closed string theory, the orbifold must be such that the
square of the holomorphic top-form is invariant [113]. (It is sometimes said that the B
model is only defined for Calabi-Yau’s, but as discussed in [113], the Calabi-Yau condition
for existence of the closed string B model can be slightly weakened.) In the present case,
each element of the Weyl group acts by exchanging some of the fields, possibly with signs.
Under such (signed) interchanges, a holomorphic top-form will change by at most a sign;
a square of the holomorphic top-form will be invariant. Therefore, this Weyl orbifold will
always be compatible with the B twist.

In our proposal, we have deliberately not specified the Kähler potential. As we are working
with topologically-twisted theories, and the space of σs, Y s, and Xs is topologically trivial,
the Kähler potential is essentially irrelevant. One suspects that in a physical, untwisted,
nonabelian mirror, the Kähler potential terms would reflect nonabelian T-duality, just as
the kinetic terms in the Hori-Vafa proposal [25] reflected abelian duality. We do briefly
outline an idea of how one might go about proving this proposal in section 3.1.2, we make a
few tentative suggestions for a possible form of the Kähler potential. It would be interesting
to pursue this in future work.

Our proposal only refers to the Lie algebra of the A model gauge theory, not the gauge
group. Different gauge groups with the same Lie algebra can encode different nonperturbative
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physics, see e.g. [29–31, 33, 88]. Here, we conjecture that the different Lie groups with the
same Lie algebra (and matter content) are described in the mirror by rescalings of the
mirror roots αaµ̃ and matter weights ρai . Integrating out the Σ’s would then result in gerbe
structures as discussed in analogous abelian cases in [31]. (See e.g. [74][section 4.5] for related
observations in other theories.)

By computing the critical locus along Y ’s and Z’s, we also find the operator mirror map, in
the sense of [27]:

exp(−Yi) =
r∑

a=1

Σaρ
a
i , (3.1.2)

Xµ̃ =
r∑

a=1

Σaα
a
µ̃. (3.1.3)

We interpret the right-hand side as defining A model Coulomb branch operators, which this
map shows us how to relate to B model operators.

In principle, to make the ansatz above useful for general cases, one would like to be able
to evaluate Landau-Ginzburg correlation functions on general orbifolds. Many Landau-
Ginzburg computations are known, especially massless spectrum computations in conformal
models [34, 75, 76], and more recently [35], but correlation function computations on orb-
ifolds are not, to our knowledge, understood in complete generality. On the other hand, in
many simple cases we can get by with less. In particular, in the examples in this paper,
the critical points of the superpotential are not located at orbifold fixed points. (This is
essentially because of the assumption that Xµ̃ 6= 0 mentioned earlier. One of the effects of
this assumption is to make the superpotential well-defined – although it has poles where any
Xµ̃ vanishes, it becomes ill-defined when multiple Xµ̃ vanish, an issue which we will return to
in the discussion about “excluded loci,” where we will discuss this as a regularization issue.)
In any event, since the Weyl group will interchange the Σa, the orbifold fixed-point locus
will lie where some Xµ̃ vanish. Rescaling the worldsheet metric in the B-twisted theory, one
quickly finds that the bosonic contribution to the path integral is of the form [123][section
2.2], [78]

lim
λ→∞

∫
X

dφ exp

(
−
∑
i

|λ∂iW |2
)
,

and so vanishes unless the critical locus intersects the fixed-point locus. As a result, since
in this paper we are computing e.g. correlation functions of untwisted operators on genus
zero worldsheets, we are able to consistently omit contributions from twisted sectors in the
computations presented here.

As a consistency check, let us specialize to the case that G = U(1)r. In this case, there is no
Weyl orbifold, there are no fields Xµ̃, and the mirror is defined by the fields Σa and Yi with
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superpotential

W =
r∑

a=1

σa

(
N∑
i=1

Qa
i Yi − ta

)
+

N∑
i=1

exp (−Yi) ,

since the weight vectors ρai reduce to the charge matrix Qa
i . This is precisely the mirror of

an abelian GLSM discussed in [25], as expected.

Let us now return to the nonabelian theory. If the fields φi of the original A model have
twisted masses m̃i, then the mirror proposal is the same orbifold but with a different super-
potential, given by

W =
r∑

a=1

Σa

(
N∑
i=1

ρai Yi +
n−r∑
µ̃=1

αaµ̃Zµ̃ − ta

)

−
N∑
i=1

m̃i

(
Yi −

∑
a

ρai ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃. (3.1.4)

Computing the critical locus along the Y ’s and X’s yields the operator mirror map including
twisted masses and R-charges:

exp(−Yi) = −m̃i +
r∑

a=1

Σaρ
a
i , (3.1.5)

Xµ̃ =
r∑

a=1

Σaα
a
µ̃. (3.1.6)

We can also formally derive quantum cohomology relations in a similar fashion. The critical
locus for σa is

N∑
i=1

ρai Yi +
n−r∑
µ̃=1

αaµ̃Zµ̃ = ta, (3.1.7)

and exponentiating gives [∏
i

(exp(−Yi))ρ
a
i

][∏
µ̃

(Xµ̃)α
a
µ̃

]
= qa. (3.1.8)

Applying the operator mirror map equations above, this becomes∏
i

(∑
b

σbρ
b
i − m̃i

)ρai
∏

µ̃

(∑
b

σbα
b
µ̃

)αaµ̃
 = qa. (3.1.9)
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In practice, we will see later in section 3.1.2 that∏
µ̃

(∑
b

σbα
b
µ̃

)αaµ̃


is a Σ-independent constant matching that discussed in [89][setion 10], so we can write the
quantum cohomology relations as either

∏
i

(∑
b

σbρ
b
i − m̃i

)ρai

= q̃a, (3.1.10)

or equivalently in the mirror ∏
i

exp (−ρai Yi) = q̃a, (3.1.11)

where q̃a differs from qa by the constant discussed above.

As written above, our proposal is for the mirror to an A-twisted gauge theory with no
superpotential. Let us now consider the case that the A-twisted theory has a superpotential.
In this case, one must specify nonzero R charges for the fields, so that the superpotential
has R charge two. Furthermore, in order for the A twist to exist, those R charges must be
integral (see e.g. [123], [89][section 3.4], [42][section 2.1]). (Technically, on Riemann surfaces
of nonzero genus, this requirement can be slightly relaxed, but in order to have results valid
for all genera, we will assume the most restrictive form, namely the genus zero result that R
charges are integral.)

Given an A-twisted gauge theory with superpotential and suitable R charges, we can now
define the mirror. Both the A-twisted theory and its mirror will be independent of the details
of the (A model) superpotential (which is BRST exact in the A model, see e.g. [123][section
3.1]), though not independent of the R charges of the fields. Our proposal is that the
B-twisted mirror has exactly the same form as discussed above – same number of fields,
same mirror superpotential – but with one minor quirk, that the choice of fundamental
field changes. Specifically, if a field φi of the A model has nonzero R-charge ri, then the
fundamental field in the mirror is

Xi ≡ exp(−(ri/2)Yi),

and in the expressions above, we take Yi to mean

Yi = − 2

ri
lnXi.

Furthermore, in this case, ultimately because of the periodicity of Yi, the mirror theory with
field Xi has a cyclic orbifold of order 2/ri (which we assume to be an integer), for the same
reasons as discussed elsewhere in Hori-Vafa [25] mirrors. (Of course, if the original field
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has ri = 0, then there is no change in fundamental field, and so no orbifold in the mirror.)
The reader should also note that field redefinitions in the mirror may introduce additional
orbifolds, which is essentially what happens in the Hori-Vafa mirror to the quintic, for
example.

Note that for the A-twisted theory to exist, every ri must be an integer, and for the orbifold
in the B model mirror to be well-defined, we must require 2/ri (for nonzero ri) to also be
an integer. Also taking into account a positivity condition discussed in [89][section 3.4], this
means we are effectively restricted to the choices ri ∈ {0, 1, 2} in our proposal. If a gauge
theory has a superpotential that is incompatible with such choices of R charges, then either
the A twist does not exist or our proposed mirror does not apply.

In principle, in the language of the dictionary above, mirrors to the W bosons act like mirrors
to fields of R charge two, and are the fields Xµ̃ rather than the Zµ̃. Also, since 2/2 = 1,
there is no orbifold (beyond the Weyl group orbifold) associated with the Xµ̃ specifically.

Finally, we should mention that the axial R symmetry of the A model theory appears here
following the same pattern as in [25][equ’n (3.30)]. Specifically, under Raxial,

Yi 7→ Yi − 2iα, (3.1.12)

and
Xµ̃ 7→ Xµ̃ exp (+2iα) , (3.1.13)

so that for example the superpotential terms∑
i

exp (−Yi) +
∑
µ̃

Xµ̃

have charge 2, as one would expect. In that vein, note that

exp (−(ri/2)Yi) 7→ exp (−(ri/2)Yi) exp (+iriα) , (3.1.14)

as one would expect for a field of R charge ri. Similarly, the effect of the R charge on the σ
terms is to generate a term

(−2iα)
∑
a

σa

(∑
i

ρai +
∑
µ̃

αaµ̃

)
= (−2iα)

∑
a

σa

(∑
i

ρai

)
(3.1.15)

(since the sum over αaµ̃ will vanish), reflecting the fact that if the A model theory has an
axial anomaly, then an Raxial rotation will shift theta angles.

3.1.2 Justification for the Proposal

The bulk of this paper will be spent checking examples, which to our minds will be the
best verification of the proposal, but before working through those examples, we wanted to
briefly describe the origin of some of the details of the proposal above, as well as perform
some consistency tests, such as a general comparison of correlation functions.
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General remarks

At least for the authors, one of the motivations for this work was to find a UV realization of
factors of the form ∏

a<b

(σa − σb)

appearing in integration measures, such as the Hori-Vafa conjecture for nonabelian mirrors
in [25][appendix A], and later in expressions for supersymmetric partition functions of non-
abelian gauge theories in [43, 44]. Later, [83] studied S2 partition functions of Hori-Vafa
mirrors, and in section 4 of that paper, applied the same methods to predict the form of
partition functions of the mirror of a U(k) gauge theory (with k > 1) corresponding to a
Grassmannian, where again they found factors in the integration measure of the same form
(albeit squared4), a result we will duplicate later.

We reproduce such factors via the fields Xµ̃, the mirrors to the W bosons. The basic
idea originates in an observation in [66][section 2], which relates the partition function of
a nonabelian theory to that of an associated ‘Cartan theory,’ an abelian gauge theory in
which the nonabelian gauge group is replaced by its Cartan torus, and in addition to the
chiral multiplets of the nonabelian theory, one adds an additional set of chiral multiplets of
R charge two corresponding to the nonzero roots of the Lie algebra. It is briefly argued that
the S2 partition function of the original nonabelian theory matches the S2 partition function
of the associated Cartan theory. In effect, we are taking this observation a step further,
by dualizing the associated Cartan theory in the sense of [25] to construct this proposal for
nonabelian mirrors.

We take the Weyl orbifold to get the right moduli space: the Coulomb branch moduli space is
not quite just the moduli space of a U(1)r gauge theory, as one should also identify σ fields
related by the Weyl group. Note the Weyl group does not survive the adjoint Higgsing;
instead, we taking the orbifold so as to reproduce the correct Coulomb branch. This is
analogous5 to the c = 1 boson at self-dual radius: as one moves away from the self-dual
point, the SU(2) is broken to U(1) on both sides, and the Weyl orbifold allows one to forget
about radii that are smaller, since they are all Weyl equivalent to larger radii. Another
example is the construction of the u plane in four-dimensional N = 2 Seiberg-Witten theory.
In the present case, we will see for example in the case of Grassmannians that to get the
correct number of vacua, one has to quotient by the Weyl group.

4 In open string computations, one gets factors of
∏
a<b(σa− σb), whereas in closed string computations,

one typically gets factors of
∏
a<b(σa−σb)2. As this paper is focused on closed string computations, we will

see the latter.
5 We would like to thank I. Melnikov for providing this analogy.
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Suggestions of a route towards a proof

We do not claim to have a rigorous proof of the proposal of this paper, but there is a simple
idea for a proof. Given a (2,2) supersymmetric GLSM, imagine moving to a generic point on
the Coulomb branch, described by a Weyl-group orbifold of an abelian gauge theory, with
gauge group equal to the Cartan of the original theory. Now, apply abelian duality to this
abelian gauge theory6. One will T-dualize the original matter fields (which become the Yi)
as well as the W bosons (which become the Xµν).

For later purposes, it will be instructive to fill in a few steps. That said, we emphasize that
we are not claiming we have a rigorous demonstration. Our goal here is merely to suggest
a program, and to investigate the form of a possible Kähler potential to justify certain
plausibility arguments elsewhere.

For ordinary matter fields Φ, of charge ρa under the ath U(1), T-duality in this context
[20, 25] says that the field should be described by an ‘intermediate’ Lagrangian density of
the form [25][equ’n (3.9)]

LΦ =

∫
d4θ

(
exp

(
2
∑
a

ρaVa + B

)
− 1

2

(
Y + Y

)
B

)
. (3.1.16)

Reviewing the analysis of [25][section 3.1], if one integrates over Y , one gets constraints

D+D−B = 0 = D+D−B, (3.1.17)

which are solved by taking
B = Ψ + Ψ. (3.1.18)

Plugging back in, one finds

LΦ =

∫
d4θ exp

(
2
∑
a

ρaVa + Ψ + Ψ

)
=

∫
d4θΦ exp

(
2
∑
a

ρaVa

)
Φ, (3.1.19)

the original Lagrangian, for Φ = exp(Ψ).

If one instead integrates over B first, then one recovers the dual theory, as follows. Integrating
out B first yields

B = −2
∑
a

ρaVa + ln

(
Y + Y

2

)
, (3.1.20)

6 In other words, to any nonabelian gauge theory we can associate a toric variety or stack, defined by
matter fields plus W bosons at a generic point on the Coulomb branch. Our proposal seems consistent with
abelian duality for that toric variety.
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and plugging this in we find

LΦ =

∫
d4θ

(
Y + Y

2
+
(
Y + Y

)∑
a

ρaVa −
1

2

(
Y + Y

)
ln

(
Y + Y

2

))
, (3.1.21)

=

∫
d4θ

((
Y + Y

)∑
a

ρaVa −
(
Y + Y

2

)
ln

(
Y + Y

2

))
. (3.1.22)

Since Y is a twisted chiral superfield, the first term can be written∫
d4θ

(
Y
∑
a

ρaVa

)
=

∫
d2θ

∑
a

σaρ
aY, (3.1.23)

where σa = D+D−Va, and so this term contributes to the superpotential.

Equating the two forms (3.1.18), (3.1.20) for B, one finds

Y + Y = 2Φ exp

(
2
∑
a

ρaVa

)
Φ, (3.1.24)

and from the Kähler potential term above, we see that the metric seen by the kinetic terms
for Y components is

ds2 =
|dy|2

2(y + y)
, (3.1.25)

where y is the scalar part of Y .

So far this analysis is entirely standard. Now, let us think about the analogous analysis for
T-duals of the W bosons. Here, we take the W bosons to be described by7 chiral superfields
Wµ̃ and the Lagrangian density

LW =

∫
d4θW µ̃ exp

(
2
∑
a

αaµ̃Va

)
Wµ̃. (3.1.26)

7 We emphasize that the W bosons are described by ordinary chiral superfields and not twisted chiral
superfields, unlike the Σ superfield. A recent technical discussion of this is in [41][appendix C.4], which
observes that the W bosons are in ordinary chirals (with nonzero R charge), not twisted chirals. In addition,
this phenomenon can be understood very simply as follows. Consider for example a two-dimensional SU(2)
gauge theory. Use the (adjoint-valued) σ’s to Higgs the SU(2) to a U(1). The W bosons must be charged
under that U(1). However, only an ordinary chiral multiplet can be charged under an (ordinary) vector
multiplet. If the W bosons were twisted chirals, then under a gauge transformation, they would be multiplied
by factors of the form exp Λ for Λ an ordinary chiral multiplet, hence gauge transformations would mix
twisted chirals (the W bosons) with ordinary chirals (the gauge transformation parameter). Since only
ordinary chirals can be charged under the remaining U(1), the W bosons are in fact in ordinary chiral
multiplets, not twisted chiral multiplets.
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Proceeding as before, we can consider the intermediate Lagrangian density

LW =

∫
d4θ

(
exp

(
2
∑
a

αaµ̃Va + Bµ̃

)
− 1

2

(
Zµ̃ + Z µ̃

)
Bµ̃

)
. (3.1.27)

Our analysis will closely follow the pattern for Φ, Y . Integrating over the Zµ̃ recovers the
original Lagrangian density (3.1.26). Integrating out the Bµ̃, one finds

LW =

∫
d4θ

((
Zµ̃ + Z µ̃

)∑
a

αaµ̃Va −
(
Zµ̃ + Z µ̃

2

)
ln

(
Zµ̃ + Z µ̃

2

))
. (3.1.28)

The first term can be rewritten as a superpotential contribution. The primary difference
here is that we take the fundamental field to be Xµ̃ = exp(−Zµ̃). In terms of Xµ̃, the kinetic
term takes the form ∫

d4θ

(
lnXµ̃ + lnX µ̃

2

)
ln

(
− lnXµ̃ + lnX µ̃

2

)
, (3.1.29)

and from this Kähler potential it is straightforward to compute that the metric for the kinetic
terms has the form

ds2 =
|dx|2

2|x|2 ln |x|2
. (3.1.30)

To resolve subtleties in renormalization, in [25], it was noted that the kinetic terms were
written in terms of a bare field Y0 related to a renormalized field by [25][equ’n (3.23)]

Y0 = ln(ΛUV /µ) + Y, (3.1.31)

and then in a suitable limit, the metric on the Y ’s becomes flat. The analogue here is to
write X0 = (µ/ΛUV )X, so that the metric for the kinetic term becomes

|dx|2

|x|2 (−2 ln(ΛUV /µ) + ln |x|2)
. (3.1.32)

Even in the analogous scaling limit however, this metric diverges as x→ 0, suggesting that
the kinetic terms dynamically forbid x = 0.

The take-away observation from the computation above is that the proposed kinetic terms
for the W-boson mirrors have singularities at X = 0. Now, granted, a more rigorous analysis
of duality might well work along the lines of nonabelian T-duality rather than abelian T-
duality in a Cartan, and so yield different kinetic terms still, see e.g. [90] for a pertinent
discussion of nonabelian T-duality. Furthermore, these kinetic terms will receive quantum
corrections, that could even smooth out singularities of the form above, see e.g. [25, 87].

In passing, let us point out a few other consistency checks. As observed in [41][appendic
C.4], in the A-twisted gauge theory, supersymmetric W bosons contribute to supersymmetric
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localization as chiral multiplets of R-charge two, so that the mirror should be a twisted chiral
multiplet (same as the X fields), and the R charge dictates that the mirror fields should
appear linearly in the superpotential (as the fundamental field is exp(−(r/2)Y )). The mass
of the X fields themselves is a bit off:

∂2W

∂Xµ̃∂Xν̃

= δµ̃ν̃

∑
a σaα

a
µ̃

X2
µ̃

= δµ̃ν̃
1∑

a σaα
a
µ̃

(3.1.33)

after applying the mirror map, whereas the mass of a W boson is instead
∑

a σaα
a
µ̃. On the

other hand,
∂2W

∂ lnXµ̃∂ lnXν̃

= δµ̃ν̃Xµ̃ = δµ̃ν̃
∑
a

σaα
a
µ̃, (3.1.34)

after applying the mirror map, exactly right to match the mass of the W bosons, suggesting
that the W boson mirrors are lnXµ̃.

Comparison of correlation functions

In this section, we will give a formal outline of how (some) A model correlation functions
match B model correlation functions in the proposed nonabelian mirror, by in the mirror
formally integrating out the mirrors to the W bosons and the matter fields, yielding a theory
of σ’s only. We will give several versions of this comparison, of varying levels of rigour.
We will focus exclusively on correlation functions of Weyl-group-invariant untwisted-sector
operators, which together with the fact that the Weyl group orbifold fixed points do not
intersect superpotential critical points in the examples in this paper, will enable us to largely
gloss over the Weyl group orbifold.

First argument – iterated integrations out

Begin with the basic mirror proposal, the Landau-Ginzburg orbifold described in section 3.1,
with superpotential W given in (3.1.4). If none of the critical points intersect fixed points
of the Weyl group orbifold, then we can integrate out the Xµ̃, as we shall outline next.

First, it is straightforward to compute from the superpotential (3.1.4) that

∂W

∂Xµ̃

= 1 −
∑

a σaα
a
µ̃

Xµ̃

, (3.1.35)

∂2W

∂Xµ̃∂Xν̃

= δµ̃ν̃

∑
a σaα

a
µ̃

X2
µ̃

, (3.1.36)

a diagonal matrix of second derivatives. Evaluating on the critical locus (and identifying the
field σa with the mirror field σa, reflecting their common origin),

∂2W

∂X2
µ̃

=
1∑

a σaα
a
µ̃

. (3.1.37)

69



So long as the determinant of the matrix of second derivatives is nonvanishing, the Xµ̃

are massive, so it is consistent to integrate them out. (If the matrix of second derivatives
were to have a zero eigenvalue somewhere, integrating out the Xµ̃ would, of course, not be
consistent.)

To integrate them out, we follow the same logic as [123][section 2.2], [78]. Briefly, the
pertinent terms in the Lagrangian are of the form∑

µ̃

|∂µ̃W |2 + ψµ̃+ψ
ν̃
−∂µ̃∂ν̃W + c.c. (3.1.38)

Expanding the purely bosonic term about the critical locus Xo
µ̃, given by

Xo
µ̃ =

∑
a

σaα
a
µ̃,

we write ∑
µ̃

|∂µ̃W |2 = 0 + |∂ν̃∂µ̃W |2
∣∣
Xo |δXν̃ |2, (3.1.39)

suppressing higher-order terms as in [123][section 2.2]. Performing the Gaussian integral
over δXν̃ yields a factor

1

HXHX

,

for HX the determinant of the matrix of second derivatives with respect to the Xµ̃, meaning

HX =
∏
µ̃

1∑
a σaα

a
µ̃

. (3.1.40)

Repeating the same for the Yukawa interactions

ψµ̃+ψ
ν̃
−∂µ̃∂ν̃W + c.c.

as in [123][section 2.2], [78] yields another factor of HXH
g
X at genus g. Putting these factors

together results in a net factor of 1/H1−g
X in correlation functions on a genus g worldsheet.

Another effect of integrating out the Xµ̃ should be to modify the superpotential (3.1.4),
evaluating the Xµ̃ on the critical loci:

W0 =
r∑

a=1

σa

(
N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αaµ̃ ln

(∑
b

σbα
b
µ̃

)
− ta

)

+
N∑
i=1

exp (−Yi) −
N∑
i=1

m̃iYi +
∑
µ̃

∑
a

σaα
a
µ̃, (3.1.41)

=
r∑

a=1

σa

[
N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αaµ̃

(
ln

(∑
b

σbα
b
µ̃

)
− 1

)
− ta

]

+
N∑
i=1

exp (−Yi) −
N∑
i=1

m̃iYi (3.1.42)
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(up to constant terms we have omitted). The σ(ln(σ) − 1) term in the σa constraint, orig-
inating from integrating out the Xµ̃ fields, reflects the shift of the FI parameter described
in [89][section 10]. We can simplify this constant by rewriting it as a sum over positive roots:

n−r∑
µ̃=1

αaµ̃

(
ln

(∑
b

σbα
b
µ̃

)
− 1

)

=
∑
pos′

αaµ̃ ln

(∑
b

σbα
b
µ̃

)
−
∑
pos′

αaµ̃

(
ln

(∑
b

σbα
b
µ̃

)
− πi

)
, (3.1.43)

=
∑
pos′

iπαaµ̃, (3.1.44)

giving a shift of the theta angle matching that given in [89][equ’n (10.9)].

Altogether, the effect of integrating out the Xµ̃ is to add a factor of HXH
g
X/(HXHX) =

1/H1−g
X to correlation functions (at genus g):

〈O〉 =

∫
[DYi][Dσa]O

(∏
µ̃

(∑
a

σaα
a
µ̃

))1−g

exp(−S0), (3.1.45)

or more simply, for the case of isolated vacua (and no contributions from orbifold twisted
sectors),

〈O〉 =
1

|W |
∑
vacua

O
(det ∂2W0)1−g

(∏
µ̃

(∑
a

σaα
a
µ̃

))1−g

. (3.1.46)

Note that we can rewrite the new factor above solely in terms of the positive roots:

∏
µ̃

(∑
a

σaα
a
µ̃

)
∝

∏
pos′roots

(∑
a

σaα
a
µ̃

)2

. (3.1.47)

So far, we have glossed over the fact that there is a Weyl-group orbifold present. For genus
zero computations, since det ∂2W0 and

∏
µ̃

(∑
a

σaα
a
µ̃

)

are both invariant under the Weyl group, so long as O itself is also Weyl group invariant,
the effect of the Weyl group orbifold is solely to contribute the overall factor of 1/|W |,
where |W | is the order of the Weyl group. For genus g > 0, one should be more careful, as
partition functions now contain sums over twisted sectors. However, the B model localizes
on constant maps, so therefore so long as no critical points of the superpotential intersect
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the fixed point locus of the orbifold, we do not expect any twisted sector contributions to
correlation functions of Weyl-group-invariant operators, even at genus g > 0.

Our analysis so far has been rather formal, but in fact, we will see in later that the results
are consistent with concrete computations in the case of Grassmannians.

To review, so far we have argued that correlation functions (on a genus g worldsheet of fixed
complex structure) take the form

〈O〉 =
1

|W |
∑
vacua

O
(det ∂2W0)1−g

(∏
µ̃

(∑
a

σaα
a
µ̃

))1−g

(3.1.48)

(for isolated vacua), where W0 is the superpotential (3.1.42).

Next, we integrate out the Yi fields, in the same fashion. It is straightforward to compute

∂W0

∂Yi
=

∑
a

σaρ
a
i − exp (−Yi) − m̃i,

∂2W0

∂Yi∂Yj
= +δij exp (−Yi) .

The critical points Y o
i for Yi follow from the derivative above as

exp (−Y o
i ) =

∑
a

σaρ
a
i − m̃i. (3.1.49)

Integrating out the superfield δYi = Yi − Y o
i results in correlation functions with an extra

factor of 1/H1−g
Y for HY the determinant of the matrix of second derivatives with respect to

Y ’s, namely

HY =
N∏
i=1

exp (−Yi) ,

and superpotential W00 given by evaluating W0 at Y o
i , meaning

W00 = −
∑
a

∑
i

σaρ
a
i ln

(∑
b

σbρ
b
i − m̃i

)
+
∑
a

∑
i

σaρ
a
i −

∑
a

σata

−
∑
a

∑
µ̃

σaα
a
µ̃ ln

(∑
b

σbα
b
µ̃

)
+
∑
µ̃

∑
a

σaα
a
µ̃

+
∑
i

m̃i ln

(∑
b

σbρ
b
i − m̃i

)
, (3.1.50)

= −
∑
a

∑
i

σaρ
a
i ln

(∑
b

σbρ
b
i − m̃i

)
+
∑
a

∑
i

σaρ
a
i −

∑
a

σata

−
∑
pos′

iπαaµ̃σa +
∑
i

m̃i ln

(∑
b

σbρ
b
i − m̃i

)
, (3.1.51)
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where we have used the simplification (3.1.44).

Concretely, this means correlation functions (for isolated vacua, away from fixed points of
the orbifold) on a worldsheet of genus g (and fixed complex structure) are given by

〈O〉 =
1

|W |
∑
vacua

O
(det ∂2W00)1−g

[∏
µ̃

(∑
a

σaα
a
µ̃

)]1−g [ N∏
i=1

(∑
a

σaρ
a
i − m̃i

)]g−1

,

(3.1.52)
where the matrix of second derivatives ∂2W00 now consists solely of derivatives with respect
to σ’s. We deal with the Weyl-group-orbifold in the same fashion as in the previous section:
since the B model localizes on constant maps, and we assume that the critical points of the
superpotential do not intersect the fixed points of the orbifold, there are no twisted sector
contributions at any worldsheet genus.

Up to overall factors, the expression (3.1.52) B model correlation function for the mirror to
the A-twisted gauge theory, matches [52][section 4], with ∆2(σ) reproducing

∏
µ̃

(∑
a

σaα
a
µ̃

)

and exp(−2U0) reproducing
N∏
i=1

(∑
a

σaρ
a
i − m̃i

)
,

and W00 matches the “W0” given in [52][equ’ns (2.17), (2.19)]. Also up to factors, for genus
zero worldsheets, the expression (3.1.52) also matches [41][equ’n (4.77)] for an A-twisted
(2,2) supersymmetric gauge theory in two dimensions, where Z1−loop

0 encodes [41][∏
µ̃

(∑
a

σaα
a
µ̃

)][
N∏
i=1

(∑
a

σaρ
a
i − m̃i

)]−1

.

In passing, a (0,2) supersymmetric version of the same A model result is given in [42][equ’n
(3.63)].

There is another formal argument to demonstrate that correlation functions should match.
If we integrate out the mirrors to the W bosons, but not other fields, then as shown in
[27][section 4.1], det ∂2W0 matches the product of Z1−loop and the Hessian that arise in A
model computations, which together with the factor of

∏
pos′roots

(∑
a

σaα
a
µ̃

)2

in correlation functions arising from integrating out the X fields, implies that B model
correlation functions match their A model counterparts, as expected.
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Our computation of B model correlation functions glossed over cross-terms in the superpo-
tential such as ∂2W/∂Xµ̃∂σa. In the next subsection, we shall revisit this computation from
another perspective, taking into account those cross-terms, and derive the same result for
correlation functions that we have derived in this subsection.

Second argument

In this section, we will give a different formal derivation of the correlation functions, that
will give the same result – the correlation functions in our B-twisted proposed mirror (of
untwisted sector states) will match conventional computations on Coulomb branches of A-
twisted gauge theories. Instead of sequentially integrating out the Xµ̃, then the Yi, let
us formally consider instead a direct computation of correlation functions, assuming that
critical loci are isolated (and distinct from fixed points of the orbifold). (If critical loci are
not isolated, one could suitably deform the superpotential to make them isolated.)

Correlation functions are then of the form

〈O〉 =
∑
vacua

O
H1−g ,

where H is the determinant of the matrix of second derivatives. Write

H = det

[
A B
C D

]
, (3.1.53)

where A is the submatrix of derivatives with respect to Xµ̃ and Yi,

∂2W

∂Xµ̃∂Xν̃

= δµ̃ν̃

(∑
c

σcα
c
µ̃

)−1

,

∂2W

∂Yi∂Yj
= δij

(∑
c

σcρ
c
i − m̃i

)
,

∂2W

∂Xµ̃∂Yi
= 0,

(on the critical locus,) B = CT are the matrices of derivatives of the form

∂2W

∂Xµ̃∂σa
= −αaµ̃

(∑
c

σcα
c
µ̃

)−1

,

∂2W

∂Yi∂σa
= ρai ,

and D is the matrix of second derivatives with respect to σ’s. Since σ only appears linearly
in the superpotential, D = 0.
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Putting this together, from [92], we can write

H = (detA) det
(
D − CA−1B

)
. (3.1.54)

The factor detA we have seen previously: since A is diagonal, it is straightforward to see
that

detA =

[∏
µ̃

(∑
c

σcα
c
µ̃

)]−1 [∏
i

(∑
c

σcρ
c
i − m̃i

)]
. (3.1.55)

Note first that (
1

detA

)1−g

(3.1.56)

is the same factor that appears multiplying operators in correlation functions in our previous
expression (3.1.52); we have duplicated it without any extra factors, despite the fact that
our previous analysis omitted cross-terms such as ∂2W/∂Xµ̃∂σa. The remaining factor,

det
(
D − CA−1B

)
,

can be interpreted as the usual Hessian from some superpotential we shall label Weff , which
we shall see next will coincide with the W00 of the previous subsection.

Proceeding carefully, since C = BT , D − 0, and A is symmetric, the quantity CA−1B is a
symmetric matrix, so we can define a function Weff as follows:(

−CA−1B
)
ab

=
∂2Weff

∂σa∂σb
. (3.1.57)

Computing the matrix multiplication, we find

(
−CA−1B

)
ab

= −
∑
µ̃

αaµ̃α
b
µ̃∑

c σcα
c
µ̃

−
∑
i

ρai ρ
b
i∑

c σcρ
c
i − m̃i

. (3.1.58)

Curiously, it can be shown that for the superpotential W00 computed in the previous sub-
section,

∂2W00

∂σa∂σb
= −

∑
µ̃

αaµ̃α
b
µ̃∑

c σcα
c
µ̃

−
∑
i

ρai ρ
b
i∑

c σcρ
c
i − m̃i

, (3.1.59)

the same as the result above, hence we can identify

Weff = W00 (3.1.60)

(up to irrelevant terms annihilated by the second derivative).

Phrased more simply, by more carefully taking into account all fields and cross-terms, we
reproduce the same result for correlation functions derived in the previous subsection, which
itself matches results in the literature for A model correlation functions.
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In fact, there is a more general statement of this form that can be made, that for B mod-
el correlation functions, sequential ‘integrations-out’ are equivalent to correlation function
computations. Consider for simplicity a superpotential W = W (x, y), a function of two
variables. Assuming isolated critical points, correlation functions are weighted by a factor of

det

[
∂2W
∂x2

∂2W
∂x∂y

∂2W
∂y∂x

∂2W
∂y2

]
=

(
∂2W

∂x2

)(
∂2W

∂y2

)
−
(
∂2W

∂x∂y

)2

,

=

(
∂2W

∂x2

)[
∂2W

∂y2
−
(
∂2W

∂x∂y

)2(
∂2W

∂x2

)−1
]
,

(mimicking the form of the result in [92]). We claim, as an elementary result, that

∂2W

∂y2
−
(
∂2W

∂x∂y

)2(
∂2W

∂x2

)−1

=
∂2W0

∂y2
, (3.1.61)

where W0 = W (x0(y), y), for x0 the critical loci of W defined by

∂W

∂x

∣∣∣∣
x=x0(y)

= 0. (3.1.62)

The trivial generalization to multiple variables establishes the equivalence of the two argu-
ments described in this section.

To demonstrate this, we compute:

∂W0

∂y
=

∂W (x0, y)

∂x0

∂x0

∂y
+

∂W (x0, y)

∂y
,

∂2W0

∂y2
=

∂2W (x0, y)

∂y2
+ 2

∂2W

∂x0∂y

∂x0

∂y
+

∂2W

∂x2
0

(
∂x0

∂y

)2

.

From the fact that ∂W (x0, y)/∂x0 = 0, we have that

∂

∂y

∂W (x0, y)

∂x0

=
∂2W

∂x2
0

∂x0

∂y
+

∂2W

∂x0∂y
= 0, (3.1.63)

and plugging into the equation above we find

∂2W0

∂y2
=

∂2W

∂y2
+ 2

∂2W

∂x0∂y

(
− ∂2W

∂x0∂y

)(
∂2W

∂x2
0

)−1

+
∂2W

∂x2
0

(
− ∂2W

∂x0∂y

)2(
∂2W

∂x2
0

)−2

, (3.1.64)

=
∂2W

∂y2
−
(
∂2W (x0, y)

∂x0∂y

)2(
∂2W (x0, y)

∂x2
0

)−1

, (3.1.65)

as claimed, establishing the desired equivalence.

In passing, note in the argument above that since ∂W0/∂y = 0, since ∂W (x0, y)/∂x0 = 0,
we also have that ∂W (x0, y)/∂y = 0.
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3.1.3 Example: Grassmannian G(k, n)

For our first example, we will compute the prediction for the mirror to a Grassmannian.
Other proposals for this case also exist in the literature, see e.g. [25, 79–83].

Predicted mirror

Here, the A-twisted gauge theory is a U(k) gauge theory with n chiral superfields in the
fundamental representation. The resulting GLSM describes the Grassmannian G(k, n) [37].

The mirror is predicted to be an Sk-orbifold of a Landau-Ginzburg model with matter fields
Yia (i ∈ {1, · · ·n}, a ∈ {1, · · · k}), Xµν = exp(−Zµν), µ, ν ∈ {1, · · · , k}, and superpotential

W =
∑
a

σa

(∑
ib

ρaibYib +
∑
µν

αaµνZµν − t

)
+
∑
ia

exp (−Yia) +
∑
µ6=ν

Xµν , (3.1.66)

where8

ρaib = δab , αaµν = −δaµ + δaν ,

Xµν = exp(−Zµν) is a fundamental field, and the Xµν , Zµν need not be (anti)symmetric but
are only defined for µ 6= ν, as the diagonal entries would correspond to the elements of the
Cartan subalgebra that we use to define constraints via σ’s. Between Xµν and Zµν , Xµν is
the fundamental field, but it will sometimes be convenient to work with its logarithm, so we
retain Zµν ≡ − lnXµν .

We orbifold the space of fields σa, Yia, and Zµν by the Weyl group of the gauge group. Now,
the Weyl group of U(k) is the symmetric group on k entries. It acts on a Cartan torus by

8 Let us illustrate the α’s explicitly for the case of U(3). Begin by describing the Cartan subalgebra of
U(3) as  a 0 0

0 b 0
0 0 c

 .
Describe the W bosons as  0 A12 A13

A21 0 A23

A31 A32 0

 .
Under a gauge transformation in the Cartan, a−1 0 0

0 b−1 0
0 0 c−1

 0 A12 A13

A21 0 A23

A31 A32 0

 a 0 0
0 b 0
0 0 c

 =

 0 a−1A12b a−1A13c
b−1A21a 0 b−1A23c
c−1A31a c−1A32b 0

 .
Thus, we see that

αaµν = −δaµ + δaν .

77



permuting U(1) elements. In the present case, that means the orbifold acts by permuting
the σa, by making corresponding permutations of the Yia (acting on the a index, leaving the
i fixed), and correspondingly on the Xµν (associated with root vectors). We will see concrete
examples in the next subsections.

In passing, the Weyl group Sk acts by interchanging fields, which will leave a holomorphic
top-form on the space of fields σa, Yia, and Xµν invariant up to a sign. (For example,
for (two-dimensional) Calabi-Yau surfaces M , namely T 4 and K3, Sk leaves invariant the
holomorphic top-form on Mk [93].) As discussed earlier and in [113], this is sufficient for the
B twist to exist. A more general orbifold might not be compatible with the B twist, but as
previously discussed, the Weyl orbifold is always compatible with the B twist.

We begin working in the untwisted sector of the orbifold. (Later we will observe that only
the untwisted sector is relevant.) Integrating out the σa, we get constraints∑

i

Yia −
∑
ν 6=a

(Zaν − Zνa) − t = 0,

which we use to eliminate Yna:

Yna = −
n−1∑
i=1

Yia +
∑
ν 6=a

(Zaν − Zνa) + t.

Define

Πa = exp(−Yna), (3.1.67)

= q

(
n−1∏
i=1

exp(+Yia)

)(∏
µ6=a

Xaµ

Xµa

)
, (3.1.68)

for q = exp(−t), then the superpotential for the remaining fields, after applying the con-
straint, reduces to

W =
n−1∑
i=1

k∑
a=1

exp (−Yia) +
∑
µ6=ν

Xµν +
k∑
a=1

Πa. (3.1.69)

Note that since Πa contains factors of the form 1/X, the superpotential above has poles where
Xµν = 0. Such structures can arise after integrating out fields in more nearly conventional
Landau-Ginzburg theories, as we shall review in later, and have also appeared in other
discussions of two-dimensional (2,2) supersymmetric theories e.g. [84–86]. In the next section,
we shall argue that physics excludes the loci where Xµν = 0, and so at least insofar as our
semiclassical analysis of the B-twisted theory is concerned, the presence of poles will not be
an issue.
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So far we have discussed the untwisted sector of the Weyl orbifold. However, since none of
the critical loci land at fixed points of the orbifold, we do not expect any e.g. twisted sector
contributions, and so for the purposes of this paper, we will omit the possibility of twisted
sector contributions.

Excluded loci

We saw in section 3.1.2 that when the X fields are integrated out, the integration measure
is multiplied by a factor proportional to

∏
µ̃

〈Σ, αµ̃〉 =
∏
µ̃

(∑
a

Σaα
a
µ̃

)
, (3.1.70)

which therefore suppresses contributions from vacua such that any 〈Σ, αµ̃〉 vanish.

Thus, points where 〈Σ, αµν〉 vanish, necessarily do not contribute. In (A-twisted) gauge
theories in two dimensions, this is a standard and well-known effect: in Coulomb branch
computations, one must exclude certain loci. For the case of the Grassmannian, one excludes
the loci where any σas collide, corresponding to the same loci discussed here, and also to loci
where there is semiclassically an enhanced nonabelian gauge symmetry. In supersymmetric
localization computations, the excluded loci appear in the same fashion – as the vanishing
locus of a measure factor in correlation functions (see e.g. [94][section 2.2]).

Thus, the loci {〈σ, αµ̃〉 = 0} must be excluded. It remains to understand this excluded locus
phenomenon from the perspective of the theory containing the Xµ̃ fields, before they are
integrated out.

It turns out that a nearly identical argument applies to the theory containing Xµ̃ fields. To
understand this fact, we first need to utilize the operator mirror map (3.1.3), which says

Xµ̃ =
∑
a

Σaα
a
µ̃ = 〈Σ, αµ̃〉. (3.1.71)

Thus, the locus where 〈Σ, αµ̃〉 vanishes is the same as the locus where Xµ̃ vanishes.

If one tracks through the integration-out, one can begin to see a purely mechanical reason
for the zeroes of the measure: the mass of Xµ̃ is proportional to

1

〈σ, αµ̃〉
, (3.1.72)

and so the Xµ̃ become infinitely massive at the excluded loci. When one computes Hessian
factors H = ∂2W weighting critical loci in correlation function computations, it turns out
that, just as the mass becomes infinite, so too does the Hessian, to which the mass con-
tributes. (Indeed, it is difficult to see how the Hessian could fail to become infinite in such
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cases.) For example, in section 3.1.3 we will see that the Hessian for the mirror to G(2, n)
has a factor

1

(Π1 − Π2)2 , (3.1.73)

where Πa is mirror to σa. The critical loci where Xµ̃ vanish correspond in this case to the
locus where Π1 → Π2, so we see that the Hessian diverges. Since correlation functions
are weighted by factors of 1/H, if H diverges, then the critical locus in question cannot
contribute to correlation functions.

More generally, the result above is related by the operator mirror map to results in super-
symmetric localizations for Coulomb branch computations with σ’s. Specifically, we will see
later that the operator mirror map relates Πa to σa, so the Hessian above is mirror to

H ↔ 1

(σ1 − σ2)2 =
1

〈σ, α12〉2
, (3.1.74)

hence 1/H is mirror to the measure factor

1

H
↔ (σ1 − σ2)2 = 〈σ, α12〉2. (3.1.75)

More generally, the operator mirror map directly relates the vanishing measure factors to
vanishing 1/H factors, and so we see that critical loci along the excluded locus cannot
contribute to correlation functions, in both A-twisted theories of σ’s as well as the proposed
mirror, for essentially identical reasons in each case.

So far we have established at a mechanical level that critical loci along the excluded locus
(where the Xµ̃ vanish) cannot contribute. Next, we shall outline less mechanical reasons in
the physics of the proposed mirror for why this exclusion should take place. This matter
will be somewhat subtle, as we shall see, but nevertheless even without computing Hessians
one can see several issues with the excluded locus in the mirror theory that would suggest
these loci should be excluded.

First, focusing on the X fields, the bosonic potential diverges where any one Xµ̃ vanishes – so
generically these points are excluded dynamically. One has to be slightly careful about higher
codimension loci, however. Because the superpotential contains ratios of the form Xµν/Xνµ,
if multiple Xµ̃ vanish, then the superpotential has 0/0 factors, which are ill-defined (as we
shall discuss further in later section). Since the critical loci are defined as the loci where
∇W vanishes, formally the bosonic potential

U = |∇W |2 (3.1.76)

also vanishes along critical loci, which appears to say that at higher codimension loci such as
critical loci, the bosonic potential will be finite, not infinite, where enough Xµ̃ vanish. That
said, in typical examples in this paper, the critical locus consists of isolated points, not a
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continuum, so working just in critical loci themselves one cannot continuously approach a
point where all Xµ̃ vanish, so one cannot reach such points through a limit of critical loci.

The fact that the bosonic potential diverges when any one Xµ̃ vanishes means that the
bosonic potential diverges generically when Xµ̃ vanish. As noted above, there are higher-
codimension loci where the superpotential and bosonic potential are ambiguous. It is natural
to suspect that some regularization of the quantum field theory may effectively ’smooth over’
these higher-codimension ambiguities, so that the quantum field theory sees a continuous
(and infinite) potential. We will elaborate on this suspicion later.

As this matter is extremely subtle, let us examine it from another perspective. The super-
potential is ambiguous at points where all Xµ̃ vanish, but we can still consider limits as one
approaches such points. Consider for example the mirror superpotential (3.1.69) for the case
of G(2, n). The critical locus equations are

∂W

∂Yi1
= − exp (−Yi1) + q

(
n−1∏
j=1

exp (+Yj1)

)
X12

X21

, (3.1.77)

∂W

∂Yi2
= − exp (−Yi2) + q

(
n−1∏
j=1

exp (+Yj2)

)
X21

X12

, (3.1.78)

∂W

∂X12

= 1 + q

(
n−1∏
j=1

exp (+Yj1)

)
1

X21

− q

(
n−1∏
j=1

exp (+Yj2)

)
X21

X2
12

, (3.1.79)

∂W

∂X21

= 1 − q

(
n−1∏
j=1

exp (+Yj1)

)
X12

X2
21

+ q

(
n−1∏
j=1

exp (+Yj2)

)
1

X12

. (3.1.80)

Because of the ratios in the last two equations, the limit of these equations as one approaches
a critical locus point can be a little subtle. Assuming that the first two derivatives vanish,
we can rewrite the last two equations in a more convenient form:

∂W

∂X12

= 1 +
exp (−Yi1)− exp (−Yi2)

X12

, (3.1.81)

∂W

∂X21

= 1 − exp (−Yi1)− exp (−Yi2)

X21

, (3.1.82)

for any i. If we are approaching a ‘typical’ critical locus point, not on the proposed excluded
locus, then X12,21 6= 0 and exp(−Yi1) 6= exp(−Yi2), so the limits of the derivatives above are
well-defined and vanish unambiguously at the critical point, consistent with supersymmetry.
Now, consider instead a critical point on the excluded locus, where Xµν vanish and (as we
shall see later from e.g. the operator mirror map) exp(−Yi1) = exp(−Yi2). Strictly speaking,
the derivatives above are not uniquely defined at this point, as they have a term of the form
0/0. Suppose we approach this point along a path such that

exp (−Yi1)− exp (−Yi2) = αX12 = −αX21, (3.1.83)
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for some constant α. Then the limit of the derivatives along this path is easily computed to
be

lim
∂W

∂X12

= 1 + α = lim
∂W

∂X21

. (3.1.84)

For most paths of this form, so long as α 6= −1, the limit of the derivatives is nonzero, and
so appears incompatible with supersymmetry. This is an artifact of the critical locus in the
proposed excluded locus; for other critical loci, not in the excluded locus, the limits of these
derivatives are well-defined and vanish.

More globally, understanding these excluded loci is one of the motivating factors behind this
proposed mirror construction. After all, a condition such as σa 6= σb for a 6= b is an example
of an open condition, in the sense that it specifies an open set, rather than a closed set. To
specify an open condition in physics would seem to require either an integration measure
that vanishes at the excluded points, or a potential function that excludes those points. In
effect, both arise here: the proposed mirror superpotential describes a bosonic potential that
excludes these points, and if we integrate out the pertinent fields to get a theory of just σ’s,
then as we have already seen, the result is an integration measure which vanishes at the
points.

In fact, one of the strengths of this proposed mirror is that it gives a purely algebraic way
to determine those excluded loci – as the points where the Xµν vanish. Sometimes these
A model exclusions have been empirical, see for example [95][footnote 4, p. 26], so in such
cases, the analysis here gives one a more systematic means of understanding the A model
excluded loci.

Later in this paper we will check in numerous examples beyond Grassmannians that the
excluded loci predicted in this fashion by the proposed mirror superpotential, match the
excluded loci that are believed to arise on the A model side. In fact, in every example we
could find in the literature, the excluded loci determined in gauge theory Coulomb branch
analyses match those determined by the loci {Xµ̃ = 0}.

Check: Number of vacua

The Euler characteristic of the Grassmannian G(k, n) is(
n
k

)
.

In this section we will check that the proposed B model mirror has this number of vacua.

The critical locus of the superpotential (3.1.69) is defined by

∂W

∂Yia
: exp (−Yia) = Πa, (3.1.85)

∂W

∂Xµν

: Xµν = −Πµ + Πν . (3.1.86)
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Plugging into the definition (3.1.68) of Πa, we find

Πa = q

(
1

Πa

)n−1
(∏
µ6=a

−Πa + Πµ

−Πµ + Πa

)
= q(−)k−1(Πa)

1−n,

hence
(Πa)

n = (−)k−1q. (3.1.87)

As discussed in section 3.1.3, the Xµν do not vanish, which means that the Πa are all distinct.

Since the Πa are distinct, and from (3.1.87), each is an nth root of (−)k−1q, there are therefore

n(n− 1) · · · (n− k + 1)

different vacua, before taking into account the Weyl group orbifold.

Finally, we need to take into account the Sk orbifold. The Weyl group orbifold acts by
exchanging Yia with different values of a, hence exchanges different Πa. (It also exchanges
the σa’s with one another, and interrelates the Xµν , though for the moment that is less
relevant.) Thus, in the untwisted sector, there are

n(n− 1) · · · (n− k + 1)

k!
=

(
n
k

)
critical loci or vacua.

The fixed-point locus of the Weyl orbifold lies along loci where some of the Πa coincide; since
the critical locus requires all Πa distinct, we see that none of the critical loci can lie at fixed
points of the Weyl orbifold group action. As a result, we do not expect any contributions
from twisted sectors, as discussed previously in section of “excluded loci.”

Thus, we find that the proposed mirror has(
n
k

)
vacua, matching the number of vacua of the original A-twisted GLSM for G(k, n).

In passing, the details of this computation closely match the details of the analogous com-
putation in the A-twisted GLSM for G(k, n), where one counts solutions of (σa)

n = (−)k−1q,
subject to the excluded-locus constraint that σa 6= σb if a 6= b. If one did try to include
vacua where the Πa are not distinct, including vacua on the excluded loci, then at minimum
the computation would no longer closely match the A model computation, and furthermore
(modulo the possibility of extra twisted sector vacua contributing with sufficient signs), it is
not at all clear that the resulting Witten index would necessarily match that of the Grass-
mannian.
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Compare B ring to A ring

Let us first compare against the operator mirror maps (3.1.2), (3.1.3). For the case of the
Grassmannian, these operator mirror maps predict

exp (−Yia) =
∑
b

σbρ
a
ib = σa,

Xµν =
∑
a

σaα
a
µν = −σµ + σν .

On the critical locus, we computed

exp (−Yia) = Πa,

Xµν = −Πµ + Πν .

Thus, we see the operator mirror map is completely consistent with our computations for
the critical locus, and in particular, the mirror map identifies

σa ↔ Πa. (3.1.88)

The equation (3.1.87) above is the mirror of the A model Coulomb branch statement

(σa)
n = (−)k−1q, (3.1.89)

which determines the quantum cohomology ring of the Grassmannian, which is of the form
(see e.g. [37, 38,96–100])

C[x1, · · · , xn−k]/〈Dk+1, · · · , Dn−1, Dn + (−)nq̃〉, (3.1.90)

for some constant q̃ ∝ q, where

Dm = det (x1+j−i)1≤i,j≤m ,

in conventions in which xm = 0 if m < 0 or m > n− k, and x0 = 1.

In particular, the chiral ring of this B model theory is finite-dimensional, and matches that
of the A-twisted theory. Although the superpotential has poles, in this instance (and for the
other theories in this paper), the chiral ring remains finite.

For an explicit derivation of the quantum cohomology ring of the Grassmannian from the
Coulomb branch relations (3.1.87), see e.g. [94][section 3.3]. In fact, at this point we could
stop and observe that the critical loci, defined by the equation above, satisfy the same form
as the critical loci of the one-loop effective twisted superpotential on the Coulomb branch in
the original A-twisted GLSM, including the orbifold by the Weyl group action, hence the B
model shares the quantum cohomology ring of the A model.
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Let us briefly outline the idea of how the quantum cohomology ring is derived from the
Coulomb branch relations, sketching [94][section 3.3]. First, we identify each xi with a
Schur polynomial sλ(σ) in the variables σ1, · · · , σk, associated to a Young tableau λ with
i horizontal boxes. These are symmetric polynomials, invariant under the (Weyl-)orbifold
group. For example, for k = 2,

x1 = s (σ) = σ1 + σ2,

x2 = s (σ) = σ2
1 + σ1σ2 + σ2

2,

x3 = s (σ) = σ3
1 + σ2

1σ2 + σ1σ
2
2 + σ3

2.

Without using the relation (3.1.89), it is straightforward to verify that Dm = 0 for m > k,
simply as an algebraic consequence of the expressions for xi in terms of σa’s, and this is the
origin of most of the relations in the quantum cohomology ring (3.1.90) in this language.

The relation (3.1.89) modifies relations involving nth powers of σ’s. For example, for k = 2,
it is straightforward to check that

x4 − x3σ1 = (σ2)4, (3.1.91)

again using algebraic properties of the expansions in terms of σa’s. Consider the case n = 4,
for which we know x3 = 0. The algebraic relation above then implies x4 = (σ2)4 ∝ q, giving
the desired relation. Other cases follow similarly.

Correlation functions in G(2, n)

As another consistency test, we will now outline correlation function computations in the
proposed B-twisted Landau-Ginzburg orbifold mirror to G(2, n) for various values of n, and
compare them to results for correlation functions in the original A-twisted gauge theory.

Before wading into the details of the computations, it may be helpful to first very briefly re-
view the analogous computations for the B-twisted mirror to Pn. This is a Landau-Ginzburg
model with superpotential of the form

W = exp(−Y1) + · · ·+ exp(−Yn) + q
n∏
i=1

exp(+Yi). (3.1.92)

The critical locus is defined by exp(−Yi)n+1 = q for all i. Genus zero correlation functions
have the form

〈f〉 =
∑
vacua

f

H
, (3.1.93)

where H is the determinant of the matrix of second derivatives of the superpotential W , and
we identify vacua with the critical locus. In the present case, if we define X = exp(−Yi), so
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that the critical locus is Xn+1 = q, then H = det ∂2W = (n + 1)Xn. Correlation functions
then take the form of a sum over (n+ 1)th roots of unity:

〈Xk〉 ∝
∑
vacua

Xk

Xn
, (3.1.94)

and so will be nonzero if k = n+m(n+ 1), corresponding to cases in which the summand is
a multiple of Xn+1 = q. For other values of k, the sum vanishes, as the corresponding sum
over roots of unity vanishes. This result matches the form of genus zero A model correlation
functions on Pn, and we will see that computations in the mirror to G(2, n) have a similar
flavor.

Now, let us return to the mirror of G(2, n). As stressed previously, since we are computing
correlation functions of untwisted sector operators, and critical loci do not overlap orbifold
fixed points, the sole effect of the orbifold will be to multiply the correlation function by a
factor of 1/|W |, for |W | the order of the Weyl group.

From the superpotential (3.1.69) (after integrating out σ1), we have the following derivatives:

∂W

∂Yia
= − exp (−Yia) + Πa for i < n,

∂W

∂Xµν

= 1 +
Πµ

Xµν

− Πν

Xµν

for µ 6= ν,

∂2W

∂Yjb∂Yia
= δijδab exp (−Yia) + δabΠa,

∂2W

∂Xµν∂Yia
= δaµ

Πµ

Xµν

− δaν
Πν

Xµν

,

∂2W

∂Xρσ∂Xµν

= δµρδνσ
−Πµ + Πν

XρσXµν

+ (δρµ − δσµ)
Πµ

XρσXµν

− (δρν − δσν)
Πν

XρσXµν

.

Clearly, correlation functions will be nontrivial. Let us now specialize to Grassmannians
G(2, n). It is straightforward to compute9:

• for G(2, 3),

H ≡ det
(
∂2W

)
= −9

(Π1)2(Π2)2

(Π1 − Π2)2
,

9 Some potentially useful identities can be found in e.g. [92].
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• for G(2, 4),

H ≡ det
(
∂2W

)
= −16

(Π1)3(Π2)3

(Π1 − Π2)2
,

• for G(2, 5),

H ≡ det
(
∂2W

)
= −25

(Π1)4(Π2)4

(Π1 − Π2)2
.

All derivatives above are evaluated on the critical locus. From the results above, we conjec-
ture that for G(2, n) for general n ≥ 3,

H ≡ det
(
∂2W

)
= −n2 (Π1)n−1(Π2)n−1

(Π1 − Π2)2
. (3.1.95)

Let us compute correlation functions in the mirrors to G(2, n) for 3 ≤ n ≤ 5, and compare to
the correlation functions computed for the corresponding A-twisted gauge theories in [94].
Note that given the quantum cohomology relations, once we establish that the classical
correlation functions match (up to an overall scale), all the remaining correlation functions
are guaranteed to match.

Reference [94] considers correlation functions A-twisted gauge theories corresponding to
G(2, 3) (see [94][section 4.2]), G(2, 4) (see [94][section 4.3]), and G(2, 5) (see [94][section
4.4]). In each case, for G(2, n), the nonzero classical (q = 0) correlation functions are

〈σn−1
1 σn−3

2 〉, 〈σn−2
1 σn−2

2 〉, 〈σn−3
1 σn−1

2 〉. (3.1.96)

All other correlation functions of products of σ’s of degree 2n− 4 vanish. The three nonzero
classical correlation functions are related as

〈σn−1
1 σn−3

2 〉 = 〈σn−3
1 σn−1

2 〉, 〈σn−2
1 σn−2

2 〉 = −2〈σn−1
1 σn−3

2 〉 = −2〈σn−3
1 σn−1

2 〉, (3.1.97)

so that
〈
(
σn−1

1 σn−3
2 + σn−2

1 σn−2
2 + σn−3

1 σn−1
2

)
〉 = 0. (3.1.98)

Although the overall normalization is not essential, in reference [94], we list here the nor-
malized values in the normalization convention of that paper:

〈σn−2
1 σn−2

2 〉 =
2

2!
, 〈σn−1

1 σn−3
2 〉 = − 1

2!
= 〈σn−3

1 σn−1
2 〉. (3.1.99)

Not only will our mirror’s correlation functions have the same ratios, in fact their normalized
values will be identical.

From the operator mirror map (3.1.88), in the mirror we should make corresponding state-
ments about correlation functions of products of Π1 and Π2. As explained earlier, correlation
functions in the Landau-Ginzburg orbifold mirror to G(2, n) take the form

〈Πk
1Π`

2〉 =
1

2!

∑
vacua

Πk
1Π`

2

H
= − 1

2!

1

n2

∑
vacua

(Π1 − Π2)2Πk
1Π`

2

Πn−1
1 Πn−2

2

. (3.1.100)
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Note that because of the (Π1 − Π2) factors in the numerator, we no longer need to restrict
to vacua described by distinct Πa, since cases in which they coincide do not contribute;
instead, we can replace the sum over vacua with a sum over two sets of nth roots of unity,
corresponding (up to scale) with separate solutions for Π1 and Π2.

For example, let us compute

〈Πn−2
1 Πn−2

2 〉 = − 1

2!n2

∑
vacua

(Π1 − Π2)2Πn−2
1 Πn−2

2

Πn−1
1 Πn−1

2

,

= − 1

2!n2

(
−1

q

)2 ∑
vacua

Π1Π2(Π1 − Π2)2Πn−2
1 Πn−2

2 ,

= − 1

2!n2q2

∑
vacua

(
Π2

1 − 2Π1Π2 + Π2
2

)
Πn−1

1 Πn−1
2 ,

= − 1

2!n2q2

∑
vacua

(−2)(Π1Π2)Πn−1
1 Πn−1

2 ,

= − 1

2!n2q2

∑
vacua

(−2)(−q)2,

=
2n2

2!n2
=

2

2!
,

where we have used the relations Πn
1 = −q = Πn

2 . Reasoning similarly, it is straightforward
to demonstrate that

〈Πn−1
1 Πn−3

2 〉 = − n2

2!n2
= − 1

2!
= 〈Πn−3

1 Πn−1
2 〉,

which immediately obey the analogues of the relations (3.1.97), (3.1.98) for Π1,2 in place of
σ1,2, and in fact even has the same overall normalization. Using similar reasoning, it is also
trivial to verify that all other correlation functions of products of Π’s of degree 2n−4 vanish.

Thus, we see that the classical genus zero correlation functions in the proposed B-twisted
mirror to G(2, n) match those of the original A-twisted theory, and since the quantum
cohomology relations match, we immediately have that all genus zero correlation functions
match.

3.1.4 Example: Two-Step Flag Manifold

In this section we investigate the flag manifolds, and one can refer to [26] for more examples.
To be concrete, let us work out the proposed mirror to a two-step flag manifold, and check
that it describes the correct number of vacua.

Consider the two-step flag manifold F (k1, k2, n), k1 < k2 < n, which is described in GLSMs
as [40] as a U(k1)× U(k2) gauge theory with

88



• one set of chiral superfields in the (k1,k2) bifundamental representation,

• n chiral superfields in the (1,k2) representation.

(In other words, a representation of a quiver.)

Following our proposal, the mirror is an orbifold of a Landau-Ginzburg model with fields

• Y α
a , a ∈ {1, · · · , k1}, α ∈ {1, · · · , k2}, corresponding to the bifundamentals,

• Ỹiα, i ∈ {1, · · · , n}, corresponding to the second set of matter fields,

• Xµν = exp(−Zµν), µ, ν ∈ {1, · · · k1}, corresponding to the W bosons from the U(k1),

• X̃µ′,ν′ = exp(−Z̃µ′ν′), µ′, ν ′ ∈ {1, · · · , k2}, corresponding to the W bosons from the
U(k2),

• σh, σ̃h′ , h ∈ {1, · · · , k1}, h′ ∈ {1, · · · , k2},

and superpotential

W =

k1∑
h=1

σh

(∑
a,α

ρhaαY
α
a +

∑
µ,ν

αhµνZµν − t

)

+

k2∑
h′=1

σ̃h′

(∑
a,β

ρh
′

aβY
β
a +

n∑
i=1

ρh
′

iαỸiα +
∑
µ′,ν′

αh
′

µ′ν′Z̃µ′ν′ − t̃

)
+
∑
a,α

exp (−Y α
a ) +

∑
i,α

exp
(
−Ỹiα

)
+
∑
µ,ν

Xµν +
∑
µ′,ν′

X̃µ′,ν′ . (3.1.101)

In the expression above,

ρhaα = δha , ρh
′

aα = −δh′α , ρh
′

iα = δh
′

α , αhµν = −δhµ + δhν , αh
′

µ′ν′ = −δh′µ′ + δh
′

ν′ , (3.1.102)

so we can rewrite the superpotential as

W =

k1∑
h=1

σh

(∑
α

Y α
h −

∑
ν 6=h

(Zhν − Zνh) − t

)

+

k2∑
h′=1

σ̃h′

(
−
∑
a

Y h′

a +
∑
i

Ỹih′ −
∑
ν′ 6=h′

(Z̃h′ν′ − Z̃ν′h′) − t̃

)
+
∑
a,α

exp (−Y α
a ) +

∑
i,α

exp
(
−Ỹiα

)
+
∑
µ,ν

Xµν +
∑
µ′,ν′

X̃µ′ν′ . (3.1.103)
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For reasons previously discussed, we focus on the untwisted sector of the Weyl group orbifold.
Integrating out σh, σ̃h′ , we get the constraints∑

α

Y α
h −

∑
ν 6=h

(Zhν − Zνh) = t, (3.1.104)

−
∑
a

Y h′

a +
∑
i

Ỹih′ −
∑
ν′ 6=h′

(
Z̃h′ν′ − Z̃ν′h′

)
= t̃, (3.1.105)

which we can solve as

Y k2
h = −

k2−1∑
α=1

Y α
h +

∑
ν 6=h

(Zhν − Zνh) + t, (3.1.106)

Ỹnk2 = −
n−1∑
i=1

Ỹik2 +
∑
ν′ 6=k2

(
Z̃k2ν′ − Z̃ν′k2

)
+ t̃

+

k1∑
a=1

[
−

k2−1∑
α=1

Y α
a +

∑
ν 6=a

(Zaν − Zνa) + t

]
(3.1.107)

and for h′ < k2,

Ỹnh′ = −
n−1∑
i=1

Ỹih′ +

k1∑
a=1

Y h′

a +
∑
ν′ 6=h′

(
Z̃h′ν′ − Z̃ν′h′

)
+ t̃. (3.1.108)

For later use, define

Πa = exp
(
−Y k2

a

)
, (3.1.109)

= q

(
k2−1∏
α=1

exp (+Y α
a )

)(∏
ν 6=a

Xaν

Xνa

)
, (3.1.110)

Γα = exp
(
−Ỹnα

)
for α < k2, (3.1.111)

= q̃

(
n−1∏
i=1

exp
(

+Ỹiα

))( k1∏
a=1

exp (−Y α
a )

)(∏
ν′ 6=α

X̃αν′

X̃ν′α

)
, (3.1.112)

T = exp
(
−Ỹnk2

)
, (3.1.113)

= q̃qk1

(
n−1∏
i=1

exp
(

+Ỹik2

))(∏
ν′ 6=k2

X̃k2ν′

X̃ν′k2

)
·

·

(
k1∏
a=1

k2−1∏
α=1

exp (+Y α
a )

)(
k1∏
a=1

∏
ν 6=a

Xνa

Xaν

)
, (3.1.114)
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for q = exp(−t), q̃ = exp(−t̃).

The superpotential then becomes

W =

k1∑
a=1

k2−1∑
α=1

exp(−Y α
a ) +

n−1∑
i=1

k2∑
α=1

exp
(
−Ỹiα

)
+
∑
µ,ν

Xµν +
∑
µ′,ν′

X̃µ′ν′

+

k1∑
a=1

Πa +

k2−1∑
α=1

Γα + T. (3.1.115)

We compute the critical locus as follows:

∂W

∂Y α
a

: exp (−Y α
a ) = Πa − Γα + T,

∂W

∂Ỹiα
: exp

(
−Ỹiα

)
=

{
Γα, α 6= k2,
T, α = k2,

∂W

∂Xab

: Xab = −Πa + Πb,

∂W

∂X̃αβ

: X̃αβ =


−Γα + Γβ, α 6= k2, β 6= k2,
+Γβ − T, α = k2, β 6= k2,
−Γα + T, α 6= k2, β = k2.

As discussed earlier in section 3.1.3, we must require that the Xab and X̃αβ be nonzero. Also
using the fact that exp(−Y ) 6= 0, we have

Πa 6= Γα − T, (3.1.116)

Γα 6= 0, (3.1.117)

T 6= 0, (3.1.118)

Πa 6= Πb for a 6= b, (3.1.119)

Γα 6= Γβ for α 6= β, (3.1.120)

Γα 6= T. (3.1.121)

These guarantee that the critical locus does not intersect the fixed point locus of the Weyl
orbifold.
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On the critical locus, from the definitions we then find

Πa = q(−)k1−1

(
k2−1∏
α=1

1

Πa − Γα + T

)
, (3.1.122)

(Γα)n = q̃(−)k2−1

(
k1∏
a=1

(Πa − Γα + T )

)
, (3.1.123)

T n = q̃qk1(−)k2−1+k1(k1−1)

(
k1∏
a=1

k2−1∏
α=1

1

Πa − Γα + T

)
, (3.1.124)

= q̃(−)k2−1

(
k1∏
a=1

Πa

)
, (3.1.125)

where the simplification in (3.1.125) was derived using (3.1.122).

It is useful to compare to the operator mirror map. From equations (3.1.2), (3.1.3), we
expect that the A and B model variables should be related as

exp (−Y α
a ) = σa − σ̃α, (3.1.126)

exp
(
−Ỹiα

)
= σ̃α, (3.1.127)

Xµν = −σµ + σν , (3.1.128)

X̃µ′ν′ = −σ̃µ′ + σ̃ν′ . (3.1.129)

These relations are consistent with the identities derived for the critical locus above if we
identify

σa = Πa + T, (3.1.130)

σ̃α =

{
Γα α < k2,
T α = k2.

(3.1.131)

Furthermore, applying the critical locus results (3.1.122), (3.1.123), (3.1.125), we see that

k2∏
α=1

(σa − σ̃α) = Πa

k2−1∏
α=1

(Πα − Γα + T ) , (3.1.132)

= (−)k1−1q, (3.1.133)

(σ̃α)n = (Γα)n for α < k2, (3.1.134)

= (−)k2−1q̃

(
k1∏
a=1

(Πa − Γα + T )

)
= (−)k2−1q̃

k1∏
a=1

(σa − σ̃α) ,(3.1.135)

(σ̃k2)n = T n, (3.1.136)

= (−)k2−1q̃

(
k1∏
a=1

Πa

)
= (−)k2−1q̃

k1∏
a=1

(σa − σ̃k2) . (3.1.137)
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Now, let us compare to the A model. The one-loop effective action for F (k1, k2, n) on the
Coulomb branch was computed in [40][section 5.2], where in the notation of that reference,
it was shown that

k2∏
α=1

(Σ1a − Σ2α) = q1 for each a, (3.1.138)

(Σ2α)n = q2

k1∏
a=1

(Σ1a − Σ2α) . (3.1.139)

If we identify σa = Σ1a, σ̃α = Σ2α, (−)k1−1q = q1, (−)k2−1q̃ = q2, then we see that the
algebraic equations for the proposed B model mirror match the Coulomb branch relations
derived from the A-twisted GLSM, including the Weyl group Sk1×Sk2 orbifold group action
which appears both here in the Landau-Ginzburg model and also on the Coulomb branch
of the A-twisted GLSM. Since the critical loci here match the critical loci of the one-loop
twisted effective superpotential of the original A-twisted GLSM for the flag manifold, the
number of vacua of the proposed B model mirror necessarily match those of the A model,
and the quantum cohomology ring of the A model matches the relations in the proposed B
model mirror.

Let us conclude with a comment on dualities. Flag manifolds have a duality analogous to
the duality G(k, n) ∼= G(n− k, n) of Grassmannians [40][section 2.4]:

F (k1, k2, n) ∼= F (n− k2, n− k1, n). (3.1.140)

In principle, we expect this duality to be realized in the same fashion as the symmetry
G(k, n) ∼= G(n − k, n), namely as an IR relation between two mirror Landau-Ginzburg
orbifolds. For example, from the analysis above for each of the two cases, the two mirrors
are guaranteed to have the same Coulomb branch relations and the same number of vacua.
One can find more mirror examples for different compact Lie groups in [26,124].

3.2 A Proposal for (0,2) Fano Mirrors

The contents of this section were adapted, with minor modifications, with permission from
JHEP, from our publication [27]. In [27], we proposed the mirrors for (0,2) Fanos. Based
on the observations in section 2.3.6, we restrict to (0,2) theories obtained by (some) toric
deformations of abelian (2,2) GLSMs for Fano spaces, by which we mean physically that we
choose E’s such that Ei ∝ φi, where on the (2,2) locus φi is the chiral superfield paired with
the Fermi superfield whose superderivative is Ei.

In addition, to define a mirror, we also make another choice, namely we pick an invertible10

k × k submatrix, of the charge matrix (Qa
i ), which we will denote S. The choice of S will

10 We assume that the charge matrix does indeed have an invertible k × k submatrix. If not, then the
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further constrain the allowed toric deformations – for a given S, we only consider some toric
deformations. Our mirror will depend upon the choice of S, and since different S’s will yield
different allowed bundle deformations, there need not be a simple coordinate transformation
relating results for different choices of S in general. Furthermore, S is only relevant for
bundle deformations – it does not enter (2,2) locus computations, and so it has no analogue
within [25].

For a given choice of S, in the A/2 model, write

Ei =
k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσaφi,

where in the expression above, we do not sum over i’s. The (0,2) deformations we will
consider are encoded in the matrices Bij, where Bij = 0 if i defines a column of the matrix
S. Note that, at least on its face, this does not describe all possible Euler-sequence-type
(0,2) deformations, but only a special subset. We will give a mirror construction for that
special subset.

Then, the mirror can be described by a collection of C×-valued fields Yi (just as on the
(2,2) locus, dual to the chiral superfields of the original theory), satisfying the same D-term
constraints as on the (2,2) locus, and with (0,2) superpotential

W =
k∑
a=1

[
Υa

(
N∑
i=1

Qa
i Yi − ta

)
+

N∑
i=1

ΣaQ
a
iFi

]

−µ
∑
i

Fi exp(−Yi) + µ
∑
i

Fi

(∑
iS ,j,a

BijQ
a
j [(S

−1)T ]aiS exp(−YiS)

)
, (3.2.1)

where iS denotes an index running through the columns of S, and where the second term was
chosen so that the resulting equations of motion duplicate the chiral ring. (For the moment,
we have assumed no twisted masses are present; we will return to twisted masses at the end
of this section.)

Now, to do meaningful computations, we must apply the D-term constraints to both Yi’s
and Fi’s. Applying the D-term constraints to the Fi’s to write them in terms of GA’s (i.e.
integrating out Σa’s), and for simplicity suppressing the Υa constraints and setting the mass
scale µ to unity, we have the expression

W = −
N−k∑
A=1

GA

(∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS)

)
, (3.2.2)

where
DA
iS

= −
∑
i,j

∑
a

V A
i BijQ

a
j [(S

−1)T ]aiS . (3.2.3)

theory has at least one free decoupled U(1), and after performing a change of basis to explicitly decouple
those U(1)’s, our analysis can proceed on the remainder.
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Note when B = 0, D = 0, and the expression for W above immediately reduces to its (2,2)
locus form. We will derive this expression for D below.

In this language, the mirror map between A/2- and B/2-model observables is defined by

k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa ↔ exp(−Yi) = et̃i

N−k∏
A=1

exp(−V A
i θA). (3.2.4)

(Strictly speaking, we will see in examples that these equations define not only the operator
mirror map plus some of the chiral ring relations.)

We can derive the operator mirror map above from the superpotential (3.2.1) by taking a
derivative with respect to Fi, as before. Doing so, one finds

Qa
i σa − exp(−Yi) +

∑
iS ,j,a

BijQ
a
j [(S

−1)T ]aiS exp(−YiS) = 0.

For i corresponding to columns of S, Bij = 0, and the expression above simplifies to

SaiSσa = exp(−YiS).

Plugging this back in, we find

Qa
i σa − exp(−Yi) +

∑
j,a

BijQ
a
jσa = 0,

which is easily seen to be the operator mirror map (3.2.4).

We can apply the operator mirror map as follows. Recall that the constraints imply∑
i

Qa
i Yi = ta

hence ∏
i

exp(−Qa
i Yi) = exp(−ta) = qa,

hence plugging in the proposed map (3.2.4) above, we have

∏
i

(
k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa

)Qai

= qa,

which is the chiral ring relation in the A/2-twisted GLSM.

In passing, to make the method above work, it is important that the determinants appearing
in quantum sheaf cohomology relations in e.g. [42,68–70] all factorize. In other words, recall
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that for a general tangent bundle deformation, the quantum sheaf cohomology ring relations
take the form ∏

α

(detMα)Q
a
α = qa,

where α denotes a block of chiral fields with the same charges, and Mα encodes the E’s,
which will mix chiral superfields of the same charges. In order for the operator mirror map
construction we have outlined above to work, it is necessary that each detMα factorize into
a product of factors, one for each matter chiral multiplet. This is ultimately the reason why
in this paper we have chosen to focus on ‘toric’ deformations, in which each E’s do not mix
different matter chiral multiplets.

Now, in terms of the operator mirror map, let us derive the form of D above in equa-
tion (3.2.3). The equations of motion from the superpotential (3.2.2) are given by

∂W

∂GA

=
∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS) = 0.

Now, we plug in the operator mirror map (3.2.4) above to get∑
i

V A
i

(∑
a

∑
j

(δij +Bij)Q
a
jσa

)
+
∑
iS

DA
iS

(∑
a

∑
j

(δiSj +BiSj)Q
a
jσa

)
= 0.

Using the constraint ∑
i

V A
i Q

a
i = 0,

the first δij term vanishes, and furthermore, since the matrix B is defined to vanish for
indices from columns of S, we see that in the second term, BiSj = 0, hence the equation
above reduces to ∑

i,j

∑
a

V A
i BijQ

a
jσa +

∑
iS

∑
a

DA
iS
SaiSσa = 0.

Since this should hold for all σa, we have that∑
i,j

V A
i BijQ

a
j +

∑
iS

DA
iS
SaiS = 0,

which can be solved to give expression (3.2.3) for D above.

Thus, the expression for the superpotential (3.2.2) together with the operator mirror map (3.2.4)
has equations of motion that duplicate the chiral ring.

In passing, one could also formally try to consider more general cases in which a submatrix
S ⊂ Q is not specified. One might then try to take the expression for the mirror superpo-
tential to be of the form

W = −
N−k∑
A=1

GA

(∑
i

V A
i exp(−Yi) +

∑
i

DA
i exp(−Yi)

)
,
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where now the i index on D is allowed to run over all chiral superfields, not just a subset.
Following the methods above, one cannot uniquely solve for D – one gets families of possible
D’s with undetermined coefficients, and we do not know how to argue that the correlation
functions match for all such coefficients without restricting to subsets defined by choices
S ⊂ Q.

Now, in principle, for (0,2) theories defined by deformations of the (2,2) locus, there is an
analogue of twisted masses that one can add to the theory. In the (2,2) case, twisted masses
corresponded to replacing a vector multiplet by its vevs, so that only a residue of σ survived.
In (0,2), by contrast, the vector multiplet does not contain σ, only the gauge field, gauginos,
and auxiliary fields D, so we can no longer interpret the twisted mass in terms of replacing
a vector multiplet with its vevs.

Instead, we can understand the analogue of a twisted mass in a (0,2) theory corresponding to
a deformation of the (2,2) locus in terms of additions to Ei = D+Λi, for Fermi superfields Λi.
In particular, the (2,2) vector multiplet’s σ field enters GLSMs written in (0,2) superfields
as a factor in such E’s, so twisted masses enter similarly, as terms of the form

Ei = m̃iφi

(where as usual we are admitting the possibilty of several toric symmetries, and simply giving
each chiral superfield the possibility of its own twisted mass). Such terms are only possible
if the (0,2) superpotential has compatible J ’s, meaning that in order for supersymmetry to
hold, one requires E ·J = 0, as usual. This is a residue of the requirement in the (2,2) theory
that twisted masses arise from flavor symmetries.

We have already seen, in section 1.2.3, how (2,2) twisted masses can be represented in the
mirror, described in (0,2) superspace. To describe their combination with E deformations is
straightforward. Briefly, the (0,2) mirror superpotential takes the form

W = −
N−k∑
A=1

GA

(∑
i

V A
i exp(−Yi) +

∑
iS

DA
iS

exp(−YiS)

)
+

N∑
i=1

N−k∑
A=1

GAV
A
i m̃i, (3.2.5)

with (DA
iS

) defined as in (3.2.3), and the operator mirror map has the form

k∑
a=1

N∑
j=1

(δij +Bij)Q
a
jσa + m̃i ↔ exp(−Yi) = et̃i

N−k∏
A=1

exp(−V A
i θA). (3.2.6)

3.2.1 Correlation Functions

In this section, we will argue formally that correlation functions in our proposed (0,2) mirrors
match those of the original theory. More precisely, we will compare closed-string correlation
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functions of A- or A/2-twisted GLSM σ’s to corresponding correlation functions in B- or B/2-
twisted Landau-Ginzburg models. (Often, the Landau-Ginzburg mirror will be an orbifold;
we will only compare against untwisted sector correlation functions in such orbifolds.) Our
computations will focus on genus zero computations, but in (2,2) cases, in principle can be
generalized to any genus.

Before doing so, let us first outline in what sense correlation functions match. There are two
possibilities:

• First, for special matrices (V A
i ), we will argue that correlation functions match on the

nose. In order for this to happen, we will need to require that the determinant of an
invertible k×k submatrix of the charge matrix Q, match (up to sign) the determinant
of a complementary11 (N − k)× (N − k) submatrix of (V A

i ).

• Alternatively, we can always formally rescale some of the Yis (without introducing or
removing orbifolds) to arrange for the determinants above to match, up to sign. In
this case, the correlation functions of one theory are isomorphic to those of the other
theory, but the numerical factors will not match on the nose. (Instead, the relations
between numerical factors will be determined by the rescaling of the Yis.)

In either event, correlation functions will match.

(2,2) supersymmetric cases

We will first check that on the (2,2) locus, the ansatz described above (i.e. the ansatz of [25])
generates matching correlation functions between the A-twisted GLSM and its B-twisted
Landau-Ginzburg model mirror. (See also [83] for an analogous comparison of partition
functions.)

First, let us consider correlation functions in an A-twisted GLSM. An exact expression is
given for fully massive cases in e.g. [41][equ’n (4.77)]:

〈O〉 =
(−)Nc

|W |
1

(−2πi)rkG

∑
σP

O Z1−loop

H

where G is the GLSM gauge group, W its Weyl group, Nc its rank,

Z1−loop =
N∏
i=1

(
k∑
a=1

Qa
i σa

)R(Φi)−1

,

11 ‘Complementary’ in this case means that if the k × k matrix is defined by i’s corresponding to certain
chiral superfields, then those same chiral superfields cannot appear corresponding to any i’s in the (N −k)×
(N − k) submatrix of (V Ai ).

98



(R(Φi) the R-charge, which for simplicity we will assume to vanish,) σP the vacua, and H is
the Hessian of the twisted one-loop effective action, meaning

H = det

(∑
i

Qa
iQ

b
i∑

cQ
c
iσc

)
, (3.2.7)

using (up to factors) the twisted one-loop effective action in e.g. [28][equ’n (3.36)].

Now, up to irrelevant overall factors, there is an essentially identical expression for Landau-
Ginzburg correlation functions [78], involving the Hessian of the superpotential rather than
H/Z1−loop above. Therefore, to show that correlation functions match, we will argue that the
H/Z1−loop above, computed for the A-twisted GLSM, matches the Hessian of superpotential
derivatives for the mirror Landau-Ginzburg model.

First, since we are only interested in the determinant, we can rotate the charge matrix (Qa
i )

by an element U ∈ SL(k,C) without changing the determinant:

det

(∑
i

Qa
iQ

b
i∑

cQ
c
iσc

)
7→ (detU)2 det

(∑
i

Qa
iQ

b
i∑

cQ
c
iσc

)
= det

(∑
i

Qa
iQ

b
i∑

cQ
c
iσc

)
.

Thus, it will be convenient to rotate the charge matrix to the form12

Qa
i =

 a1 Q1
k+1 · · · Q1

N
. . .

...
. . .

...
ak Qk

k+1 · · · Qk
N

 . (3.2.8)

Note that for the charge matrix in this form,

Z1−loop =

(
k∏
i=1

aiσi

)−1( N∏
i=k+1

(
k∑
a=1

Qa
i σa

))−1

.

To put the charge matrix in this form, write

Q = [S|∗] = (detS)1/k[S ′|∗],

where S is k × k. Then, multiply in (S ′)−1, to get

(S ′)−1Q = (detS)1/k[I|∗],

which is now diagonal.

12 As we are not conjugating the charge matrix, but rather multiplying on one side only, it should be
possible to arrange for a k × k submatrix to be diagonal, not just in Jordan normal form.
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It is straightforward to compute

H = det

(∑
i

Qa
iQ

b
i∑

cQ
c
iσc

)
=

det


a1

σ1
+

(Q1
k+1)2

Qck+1σc
+ . . .+

(Q1
N )2

QcNσc

Q1
k+1Q

2
k+1

Qck+1σc
+ . . .+

Q1
NQ

2
N

QcNσc
· · ·

Q2
k+1Q

1
k+1

Qck+1σc
+ . . .

Q2
NQ

1
N

QcNσc
a2

σ2
+

(Q2
k+1)2

Qck+1σc
+ . . .+

(Q2
N )2

QcNσc
· · ·

...
...

. . .

 . (3.2.9)

We define13 ti = ai/σi and Ea
i = Qa

i /
√∑

cQ
c
iσc, then the matrix in the above determinant

becomes t1 + (E1
k+1)2 + . . .+ (E1

N)2 E1
k+1E

2
k+1 + . . .+ E1

NE
2
N · · ·

E2
k+1E

1
k+1 + . . .+ E2

NE
1
N t2 + (E2

k+1)2 + . . .+ (E2
N)2 · · ·

...
...

. . .

 . (3.2.10)

When all the ti vanish, one can straightforwardly see that the matrix above is the product
(ET )TET , for matrix E

E =


E1
k+1 E1

k+2 · · · E1
N

E2
k+1 E2

k+2 · · · E2
N

...
...

. . .
...

Ek
k+1 · · · · · · Ek

N

 . (3.2.11)

Using standard results from linear algebra, the generalized characteristic polynomial of ma-
trix (3.2.10), in terms of the variables ti, is given by

k∑
m=0

( ∑
a1<···<am

ta1 · · · tam det (Ma1···am)

)
, (3.2.12)

where the matrix Ma1···am denotes the submatrix of M = (ET )TET by omitting rows a1 · · · am
and columns a′1 · · · a′m (i.e. a principal minor of M of size k−m). (In our conventions, the
determinant vanishes if M has no entries.) Notice that M = (ET )TET , so the determinant
can be written more simply as

detM + t1 · · · tk + (3.2.13)

k−1∑
m=1

 ∑
a1<···<am

ta1 · · · tam

 ∑
i1<···<iN+m−2k

(
detEa1···am,i1···iN+m−2k

)2

 ,

where detEa1···am,ii···iN+m−2k
denotes the determinant of the submatrix of E formed by omit-

ting rows a1 · · · am and columns i1 · · · iN+m−2k. (We formally require it to be zero when
N +m− 2k < 0.)

13 The reader should note that the ti in this section, defined above, is not related to t’s used earlier to
describe FI parameters.
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Finally, we divide by Z1−loop to get an expression forH/Z1−loop whereH is the Hessian (3.2.7):

detM + t1 · · · tk
Z1−loop

+ (3.2.14)

k−1∑
m=1

 ∑
a1<···<am

(aa1)2 · · · (aam)2

 ∏
i/∈{a1,··· ,am}

(
k∑
a=1

Qa
i σa

)Ba1···am

 ,

for

Ba1···am =
∑

i1<···<iN+m−2k

(
detEa1···am,i1···iN+m−2k

)2
,

where detM vanishes for N < 2k. For later use, note that for N ≤ 2k we can expand

detM

Z1−loop

=

(
k∏
i=1

aiσi

) ∏
i 6∈{i1,··· ,ik}

(
k∑
c=1

Qc
k+iσc

)
(Ai1,··· ,ik)

2

 , (3.2.15)

and the terms for 1 ≤ m ≤ k − 1 are given by

a2
a1
· · · a2

am

 ∏
b6∈{a1,··· ,am}

abσb

 ∏
i 6∈{im+1,··· ,ik}

(
k∑
c=1

Qc
k+iσc

)(
Aim+1,··· ,ik

)2

 , (3.2.16)

where Aim+1,··· ,ik denotes the sum of determinants of all (k −m) × (k −m) submatrices of
the charge matrix (Qa

i ) for values of i > k.

Next, we need to compare the ratio H/Z1−loop above to the analogous Hessian arising in the
mirror B-twisted Landau-Ginzburg model. Here, there is a nearly identical computation in
which the Hessian we just computed is replaced with the determinant of second derivatives
of the mirror superpotential (1.2.6):

∂2W

∂θA∂θB
= −

N∑
i=1

(
et̃i

(
N−k∏
C=1

exp(−V C
i θC)

)
V A
i V

B
i

)
,

= −
N∑
i=1

((
k∑
a=1

Qa
i σa

)
V A
i V

B
i

)
,

using the operator mirror map (1.2.7).

Thus, we need to compute

det

(∑
i

V A
i V

B
i

∑
c

Qc
iσc

)
,

and compare to the ratio H/Z1−loop from the A model that we computed previously. In
principle, the argument here is very similar to the argument just given for the determinant
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defined by charge matrices. First, using the fact that V has rankN−k, inside the determinant
we can rotate V to the more convenient form

V A
i =

 V 1
1 · · · V 1

k λ1

...
. . .

...
. . .

V k
1 · · · V k

k λ(N−k)

 . (3.2.17)

In fact, we can say more. Given that the V matrix was originally defined to satisfy∑
i

Qa
i V

A
i = 0,

after the rotation above inside the determinant, the V matrix should in fact have the form

V A
i =


−λ1Q1

k+1

a1
· · · −λ1Qkk+1

ak
λ1

...
. . .

...
. . .

−λ(N−k)Q1
N

a1
· · · −λ(N−k)QkN

ak
λ(N−k)

 . (3.2.18)

Then, using the more convenient form of V above, we find that we can write the matrix(∑
i

V A
i V

B
i

∑
c

Qc
iσc

)
= (3.2.19)

(λ1)2
[

(Q1
k+1)2σ1

a1
+ · · ·+ (Qkk+1)2σk

ak
+Qc

k+1σc

]
λ1λ2

[
Q1
k+1Q

1
k+2σ1

a1
+ · · ·+ Qkk+1Q

k
k+2σk

ak

]
· · ·

λ2λ1
[
Q1
k+1Q

1
k+2σ1

a1
+ · · ·+ Qkk+1Q

k
k+2σk

ak

]
(λ2)2

[
(Q1

k+2)2σ1

a1
+ · · ·+ (Qkk+2)2σk

ak
+Qc

k+2σc

]
· · ·

...
...

. . .

 .

Similarly, we define si = (λi)2Qc
k+iσc and F a

i = λiQa
k+i

√
σa/aa (without summing over the

index a). Then, the matrix above can be written as s1 + (F 1
1 )2 + · · ·+ (F k

1 )2 F 1
1F

1
2 + · · ·+ F k

1 F
k
2 · · ·

F 1
2F

1
1 + · · ·+ F k

2 F
k
1 s2 + (F 1

2 )2 + · · ·+ (F k
2 )2 · · ·

...
...

. . .

 . (3.2.20)

When all si vanish, one can observe that the matrix is the product F TF , for

F =


F 1

1 F 1
2 · · · F 1

N−k
F 2

1 F 2
2 · · · F 2

N−k
...

...
. . .

...
F k

1 F k
2 · · · F k

N−k

 . (3.2.21)
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By using the same technique we can show that the determinant of (3.2.19) vanishes for
N > 2k, and for N ≤ 2k is

det(F TF ) + s1 · · · sN−k + (3.2.22)

N−k−1∑
n=1

 ∑
i1<···<in

(si1si2 · · · sin)

 ∑
a1<···<a2k−N+n

(
detFi1···in,a1···a2k−N+n

)2


For later use, note that

detF TF =
∑

a1<···<a2k−N

(detFa1···a2k−N )2,

=

(
N−k∏
A=1

(λA)2

)(
k∏
b=1

σb
ab

) ∑
i1<···<ik

( ∑
a1,··· ,ak

Qa1
k+i1
· · ·Qak

k+ik
εa1···ak

)2
 ,

where Fa1···a2k−N denotes the submatrix of F a
i formed by deleting columns a1 through a2k−N .

Next, we plug
sij = (λij)2Qc

k+ij
σc

into equation (3.2.22), and compare equation (3.2.14). First, note that we can expand

t1 · · · tk
Z1−loop

=

(
k∏
i=1

a2
i

)(
N∏
j=1

(
k∑
a=1

Qa
jσa

))
,

which matches

s1 · · · sN−k =
N−k∏
A=1

(λA)2

(
k∑
a=1

Qa
k+Aσa

)
so long as

N−k∏
A=1

λA = ±
k∏
i=1

ai. (3.2.23)

Analogous results hold for other terms, as we now verify. First we consider the case N ≥ 2k.
The term detM/Z1−loop in the previous determinant corresponds to the term n = N − 2k in
the expansion (3.2.22), which is given by(

N−k∏
A=1

λA

)2 k∏
a=1

σa
aa

∏
i 6∈{i1,··· ,ik}

(
k∑
c=1

Qc
k+iσc

)
(Ai1···ik)

2 ,

for Ai1···ik defined previously. It is easy to verify that this matches equation (3.2.15) for
detM/Z1−loop so long as condition (3.2.23) is satisfied, just as before. The remaining terms
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in expansion (3.2.22) for any given n correspond to terms in (3.2.14) with m related by
n = N − 2k +m, and have the form(

N−k∏
A=1

λA

)2 ∏
b6∈{a1,··· ,am}

σb
ab

 ∏
i 6∈{im+1,··· ,ik}

(
k∑
c=1

Qc
k+iσc

)(
Aim+1···ik

)2

 ,

and it is easy to verify that this matches equation (3.2.16) so long as condition (3.2.23)
is satisfied, just as before. The reader can now straightforwardly verify that analogous
statements hold for the cases k < N < 2k, which exhausts all nontrivial possibilities.

Thus, we see that correlation functions will match so long as equation (3.2.23) holds. Fur-
thermore, we can always arrange for equation (3.2.23) to hold. If it does not do so initially,
then as discussed at the start of this section, we can perform field redefinitions and rescale
Yis to arrange for it to hold, at the cost of making the isomorphism between the correlation
functions of either theory a shade more complicated. For example, the coefficient of(∑

c

Qc
k+1σc

)
· · ·

(∑
d

Qd
Nσd

)
in equation (3.2.14) is (a1a2 · · · ak)2, and the coefficient of the term of the same order in
equation (3.2.22) is (λ1λ2 · · ·λN−k)2. We see that equation (3.2.23) is required for equality
hold, and the choice of sign in equation (3.2.23) should not have any physical significance.

So far, we have worked at genus zero, but the same argument also implies that the same
closed-string correlation functions match at arbitrary genus. At genus g, A-twisted GLSM
correlation functions are computed in the same fashion albeit with a factor of (H/Z1−loop)g−1

(see e.g. [52][section 4], [53][section 5.1]), whereas B-twisted Landau-Ginzburg model corre-
lation functions (in the untwisted sector) are computed with a factor of (H ′)g−1 [78], for
H ′ the determinant of second derivatives of the mirror superpotential. Demonstrating that
H/Z1−loop = H ′ therefore not only demonstrates that genus zero correlation functions match,
but also higher-genus correlation functions. (For (0,2) theories, by contrast, higher genus
correlation functions are not yet understood, so there we will only be able to compare genus
zero correlation functions.)

Essentially the same argument applies if one adds twisted masses to the theory. One simply
makes the substitution ∑

a

Qa
i σa →

∑
a

Qa
i σa + m̃i, (3.2.24)

where m̃i is the twisted mass. The details of the proof above are essentially unchanged. Also
note that we are free to redefine σa to σa + ca, and we can use this to set the first k twisted
masses to zero. This leaves N − k twisted masses, consistent with a global flavor symmetry
U(1)N−k.

The arguments above hold so long as one can integrate out all of the matter Higgs fields, to
obtain a pure Coulomb branch. In the (2,2) theory one expects that one should be able to
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do this if one adds sufficient twisted masses (see e.g. [52][section 2.3]). (In particular, adding
twisted masses can act as a substitute for going far out along the Coulomb branch, which
also makes the matter fields massive.)

(0,2) supersymmetric cases

We will now generalize the previous argument to (0,2) cases.

Our argument here will be very similar to that given for (2,2) cases. We will compare results
for correlation functions in A/2-twisted GLSMs computed with supersymmetric localization
to results for correlation functions computed in B/2-twisted (0,2) Landau-Ginzburg models.

First, as before, applying supersymmetric localization to an A/2-twisted GLSM, there is an
exact formula for (genus zero) (0,2) correlation functions [42], which has more or less the
same form as in the (2,2) case, now involving a Hessian of derivatives of a twisted one-loop
(0,2) effective action [68], which takes the form

H = det

(∑
i

∑
j Q

a
iAijQ

b
j∑

mAimQ
c
mσc

)
, (3.2.25)

where Aij = δij +Bij.

We assume without loss of generality that the invertible S submatrix of the charge matrix
corresponds to the first k columns of Q. Then, one can show that the determinant (3.2.25)
above is equal to

det


a1

σ1
+

Q1
k+1(Q1

k+1+ε1k+1)
(Qak+1+εak+1)σa

+ . . .+
Q1
N(Q1

N+ε1N)
(QaN+εaN)σa

Q1
k+1(Q2

k+1+ε2k+1)
(Qak+1+εak+1)σa

+ . . .
Q1
N(Q2

N+ε2N)
(QaN+εaN)σa

· · ·
Q2
k+1(Q1

k+1+ε1k+1)
(Qak+1+εak+1)σa

+ . . .
Q2
N(Q1

N+ε1N)
(QaN+εaN)σa

a2

σ2
+

Q2
k+1(Q2

k+1+ε2k+1)
(Qak+1+εak+1)σa

+ . . .+
Q2
N(Q2

N+ε2N)
(QaN+εaN )σa

· · ·
...

...
. . .

 ,

(3.2.26)
where εai =

∑
j BijQ

a
j .

Now, in the B/2-twisted (0,2) Landau-Ginzburg model, there is an analogous expression for
correlation functions [114], involving the Hessian

det
∂2W

∂GA∂θB
.

One can similarly show that the Hessian above is given by (using the (0,2) operator mirror
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map (3.2.4))

det


(λ1)2

[∑k
b=1

Qbk+1(Qbk+1+εbk+1)σb
ab

+ Sk+1

]
λ1λ2

[∑k
b=1

(Qbk+1+εbk+1)Qbk+2σb

ab

]
· · ·

λ2λ1

[∑k
b=1

Qbk+1(Qbk+2+εbk+2)σb
ab

]
(λ2)2

[∑k
b=1

Qbk+2(Qbk+2+εbk+2)σb
ab

+ Sk+2

]
· · ·

...
...

. . .

 ,

(3.2.27)
where Sk+i =

∑
a

(
Qa
k+i + εak+i

)
σa.

Finally, following the same steps as for (2,2), one can show that the ratio H/Z1−loop appear-
ing in the A/2-twisted GLSM matches the Hessian appearing in the B/2-twisted Landau-
Ginzburg model,

det

(∑
i

∑
j Q

a
iAijQ

b
j∑

mAimQ
c
mσc

)(
k∏
i=1

aiσi

)(
N∏

j=k+1

(Qa
j + εaj )σa

)
= det

∂2W

∂GA∂θB
,

so long as
N−k∏
i=1

λi = ±
k∏
i=1

ai.

(As before, if this does not hold, we can always perform field redefinitions to rescale some of
the Yis and corresponding Fermi fields Fi, at the cost of making the isomorphism between cor-
relation functions of either theory slightly more complicated.) Thus, the A/2-twisted GLSM
Hessian matches that arising in B/2-twisted Landau-Ginzburg model correlation function-
s [114]. Since correlation functions in the A/2-twisted GLSM and the B/2-twisted (0,2)
Landau-Ginzburg model have essentially the same form, albeit with potential different Hes-
sians, and we have now demonstrated that the Hessians match, it follows that correlation
functions match.

3.2.2 Examples

So far we have presented formal arguments for a (0,2) mirror defined by a (0,2) Landau-
Ginzburg theory with the same chiral ring and correlation functions14 as the original A/2
theory. In this section we will verify that this proposal reproduces known results in specific
examples.

To be specific, we will compare predictions to mirror proposals previously made in [109,110].
Those papers were originally written by guessing ansatzes for possible mirrors, constrained
to match known results on the (2,2) locus and to have the correct correlation functions and
chiral ring relations. Here, we will see that the proposal we have presented correctly and

14 Technically, untwisted sector correlation functions, if the mirror involves an orbifold.
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systematically reproduces the results obtained by much more laborious methods in [109,110].
This will implicitly also provide tests that correlation functions and chiral rings do indeed
match, as argued formally in the last section.

That said, the systematic proposal of this paper will only apply to special, ‘toric’ deformation-
s, not all tangent bundle deformations, not even all tangent bundle deformations realizable
by Euler-type sequences. Curiously, the terms in the mirrors described in [109, 110] that
are not realized are nonlinear in the fields, suggesting that toric deformations are mirror to
linear terms. We will not pursue this direction further in this paper, but mention it here for
completeness.

P1 × P1

We use P1 × P1 as an example to apply our mirror ansatz and apply consistent checks. The
charge matrix for this case is

Qa
i =

(
1 1

1 1

)
, (3.2.28)

and the dual matrix can be solved as

V A
i =

(
1 −1

−1 1

)
. (3.2.29)

The toric deformation we consider here is

E1 = σφ1, E2 = (σ + ε2σ̃)φ2, E3 = σ̃φ3, E4 = (σ̃ + ε4σ)φ4. (3.2.30)

Thus the chiral ring relations of A/2-model are

σ (σ + ε2σ̃) = q1, σ̃ (σ̃ + ε4σ) = q2. (3.2.31)

From the A/2-model, and following the mirror ansatz we obtain the following Toda dual:

Weff = F1

(
e−Y1 − q1eY1

)
+ F3

(
e−Y3 − q2eY3

)
+ ε2F1e

−Y3 + ε4F3e
−Y1 . (3.2.32)

We define Θ, Θ̃ as

Y1 = Θ, Y2 = t1 −Θ, G1 = F1 = −F2, (3.2.33)

and
Y3 = Θ̃, Y4 = t2 − Θ̃, G2 = −F3 = F4. (3.2.34)

Let us define the low energy theory in terms of single-valued degrees of freedom X = e−Θ1

and X̃ = e−Θ3 . Then you can check that the chiral ring relations are

X(X + ε2X̃) = q1, X̃(X̃ + ε4X) = q2 (3.2.35)
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which agree with the A/2-model chiral ring relations.

The classical correlation functions of the A/2-model are

〈σσ〉 = − ε2
1− ε2ε4

, 〈σσ̃〉 = 1, 〈σ̃σ̃〉 = − ε4
1− ε2ε4

. (3.2.36)

The Hessian factor in the B/2-twisted Landau-Ginzburg model is

det
∂2Weff

∂GA∂ΘB

=

(
e−Y1 + e−Y2 ε2e

−Y3

ε4e
−Y1 e−Y3 + e−Y4

)
=
(

4XX̃ + 2ε2X̃
2 + 2ε4X

2
)
, (3.2.37)

where we have plugged in X = e−Y1 , X̃ = e−Y3 as well as X + ε2X̃ = e−Y2 , X̃ + ε4X = e−Y4 .
The classical correlation functions in this model are

〈X2〉 = − ε2
1− ε2ε4

, 〈XX̃〉 = 1, 〈X̃2〉 = − ε4
1− ε2ε4

. (3.2.38)

we see that the correlation functions of the B/2-twisted Landau-Ginzburg model match those
of the A/2 model, as expected for a mirror.

In this case, we can also consider other possible deformation like [106]

E1 = (σ + ε1σ̃)φ1, E2 = (σ + ε2σ̃)φ2, E3 = σ̃φ3, E4 = σ̃φ4. (3.2.39)

One can certainly follow the mirror ansatz in this paper, and the result will agree with [106],
and furthermore one can prove that the correlation functions are matched exactly between
two sides.

Fn

The last examples we consider in this thesis are the Hirzebruch surfaces Fn. For n > 1, these
are not Fano, but nevertheless one can write down a mirror for the GLSM (which for the
non-Fano cases is more properly interpreted as a mirror to a different geometric phase, the
UV phase, of the GLSM), as discussed in [110]. The charge matrix of the GLSM is[

1 1 n 0
0 0 1 1

]
,

and deformations of the tangent bundle are described mathematically as the cokernel E of
the short exact sequence

0 −→ O2 ∗−→ O(1, 0)2 ⊕O(n, 1)⊕O(0, 1) −→ E −→ 0,

where

∗ =

 Ãx B̃x
γ1s γ2s
α1t α2t

 .
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In the expression above, x is a two-component vector of homogeneous coordinates of charge
(1, 0), s is a homogeneous coordinate of charge (n, 1), and t is a homogeneous coordinate of
charge (0, 1), A, B are constant 2 × 2 matrices, and γ1,2, α1,2 are constants. (In principle,
nonlinear deformations are also possible, but as observed previously in e.g. [42, 68–70], do
not contribute to quantum sheaf cohomology or A/2-model correlation functions, so we omit
nonlinear deformations.) The (2,2) locus is given by the special case

A = I, B = 0, γ1 = n, γ2 = 1, α1 = 0, α2 = 1.

We have the same constraints on fields from D terms as on the (2,2) locus, namely

Y1 + Y2 + nYs = t1, Ys + Yt = t2,

where Y1,2 are dual to the x’s, Y3 is dual to s, and Y4 is dual to t. We can solve them by
taking

t̃1 = 0, t̃2 = t1, t̃s = 0, t̃t = t2,

(V A
i ) =

[
1 −1 0 0
0 −n 1 −1

]
,

so that
Y1 = θ, Y2 = t1 − θ − nθ̃, G1 = F1 = −F2 − nG2,

Y3 = θ̃, Y4 = t2 − θ̃, G2 = F3 = −F4.

First choice of S We take the submatrix S ⊂ Q to correspond to the first and third
columns of the charge matrix Q, i.e.

S =

[
1 n
0 1

]
.

The allowed deformations are

(Aij) =


1 0 0 0
A21 A22 A23 A24

0 0 1 0
A41 A42 A43 A44

 .
To find the corresponding elements of Ã, B̃, γ1,2, α1,2, we compare the E’s. For the defor-
mations defined by Aij,

E1 =
∑
a

Qa
aσaφ1 = σ1φ1,

E2 =
∑
j,a

A2jQ
a
jσaφ2,

= (A21σ1 + A22σ1 + A23(nσ1 + σ2) + A24σ2)φ2,

Es = (nσ1 + σ2)s,

Et = (A41σ1 + A42σ1 + A43(nσ1 + σ2) + A44σ2) t,
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whereas for the bundle deformation parameters,

E1 =
(
Ã11φ1 + Ã12φ2

)
σ1 +

(
B̃11φ1 + B̃12φ2

)
σ2,

E2 =
(
Ã21φ1 + Ã22φ2

)
σ1 +

(
B̃21φ1 + B̃22φ2

)
σ2,

Es = γ1sσ1 + γ2sσ2,

Et = α1tσ1 + α2tσ2,

from which we read off

Ã =

[
1 0
0 A21 + A22 + nA23

]
, B̃ =

[
0 0
0 A23 + A24

]
,

a = det Ã = A21 + A22 + nA23, b = det B̃ = 0, µ = A23 + A24,

γ1 = n, γ2 = 1, α1 = A41 + A42 + nA43, α2 = A43 + A44.

Next, let us construct the mirror. From formula (3.2.3),

(DA
iS

) =

[
A21 + A22 − nA24 − 1 A23 + A24

n(A21 + A22 − nA24) + (A41 + A42 − nA44) n(A23 + A24) + (A43 + A44)− 1

]
,

From equation (3.2.2), the proposed mirror superpotential is then

W = −G1

(
e−Y1 − e−Y2 + (A21 + A22 − nA24 − 1)e−Y1 + (A23 + A24)e−Y3

)
−G2

(
−ne−Y2 + e−Y3 − e−Y4 + (n(A21 + A22 − nA24) + (A41 + A42 − nA44)) e−Y1

+ (n(A23 + A24) + (A43 + A44)− 1) e−Y3
)
,

= −G1

(
(A21 + A22 − nA24)X1 −

q1

X1Xn
3

+ (A23 + A24)X3

)
−G2

(
−n q1

X1Xn
3

+ (n(A23 + A24) + (A43 + A44))X3 −
q2

X3

+ (n(A21 + A22 − nA24) + (A41 + A42 − nA44))X1

)
,

where Xi = exp(−Yi), with operator mirror map (3.2.4)

X1 ↔ σ1,

X2 =
q1

X1Xn
3

↔ (A21 + A22)σ1 + A23(nσ1 + σ2) + A24σ2,

X3 ↔ nσ1 + σ2,

X4 =
q2

X3

↔ (A41 + A42)σ1 + A43(nσ1 + σ2) + A44σ2.
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Note that the operator mirror map relations for X2, X4 are consequences of the equations
of motion ∂W/∂GA = 0.

For these deformations, the quantum sheaf cohomology ring is given by [42,68–70]

Q(k)Q
n
(s) = q1, Q(s)Q(t) = q2,

where
Q(k) = (A21 + A22 + nA23)σ2

1 + (A23 + A24)σ1σ2,

Q(s) = nσ1 + σ2, Q(t) = (A41 + A42 + nA43)σ1 + (A43 + A44)σ2.

It is straightforward to check that these relations are implied by the mirror map equations
above.

A proposal was made in [110] for the Toda dual to a (GLSM for a) Hirzebruch surface.
Briefly, the mirror superpotential had the form

W = −G1J1 −G2J2

for [110][section 4.2]

J1 = aX1 + µAB(X3 − nX1) + b
(X3 − nX1)2

X1

− q1X
−1
1 (γ1X1 + γ2(X3 − nX1))−n , (3.2.40)

J2 = n

(
aX1 + µAB(X3 − nX1) + b

(X3 − nX1)2

X1

)
− nq1

X1 (γ1X1 + γ2(X3 − nX1))n
− q2

X3

+
(γ1X1 + γ2(X3 − nX1)) (α1X1 + α2(X3 − nX1))

X3

, (3.2.41)

with operator mirror map
X1 ↔ σ1, X3 ↔ nσ1 + σ2.

It is straightforward to check that the proposal of [110], reviewed above, specializes to our
proposal here.

Second choice of S Next, consider the case that the submatrix S ⊂ Q is taken to
correspond to the first and fourth columns of Q, i.e.

S =

[
1 0
0 1

]
.
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The allowed deformations are

(Aij) =


1 0 0 0
A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 1


Proceeding as before, the corresponding Ã, B̃, γ1,2, α1,2 are given by

Ã =

[
1 0
0 A21 + A22 + nA23

]
, B̃ =

[
0 0
0 A23 + A24

]
,

a = det Ã = A21 + A22 + nA23, b = det B̃ = 0, µ = A23 + A24,

γ1 = A31 + A32 + nA33, γ2 = A33 + A34,

α1 = 0, α2 = 1.

Next, let us construct the mirror. From formula (3.2.3),

(DA
iS

) =

[
A21 + A22 + nA23 − 1 A23 + A24

n(A21 + A22 + nA23)− (A31 + A32 + nA33) n(A23 + A24)− (A33 + A34 − 1)

]
.

From equation (3.2.2), the proposed mirror superpotential is then

W = −G1

(
e−Y1 − e−Y2 + (A21 + A22 + nA23 − 1)e−Y1 + (A23 + A24)e−Y4

)
−G2

(
−ne−Y2 + e−Y3 − e−Y4 + (n(A21 + A22 + nA23)− (A31 + A32 + nA33)) e−Y1

+ (n(A23 + A24)− (A33 + A34 − 1)) e−Y4
)
,

= −G1

(
(A21 + A22 + nA23)X1 −

q1

qn2

Xn
4

X1

+ (A23 + A24)X4

)
−G2

(
−n q1

qn2

Xn
4

X1

+
q2

X4

+ (n(A23 + A24)− (A33 + A34))X4

+ (n(A21 + A22 + nA23)− (A31 + A32 + nA33))X1

)
,

where Xi = exp(−Yi), with operator mirror map (3.2.4)

X1 ↔ σ1,

X2 =
q1

qn2

Xn
4

X1

↔ (A21 + A22)σ1 + A23(nσ1 + σ2) + A24σ2,

X3 =
q2

X4

↔ (A31 + A32)σ1 + A33(nσ1 + σ2) + A34σ2,

X4 ↔ σ2.
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The operator mirror map relation for X2 is a consequence of ∂W/∂G1 = 0, and the operator
mirror map relation for X3 is a consequence of that plus ∂W/∂G2 = 0.

A second proposal was made in [110] for the Toda dual to a (GLSM for a) Hirzebruch surface,
in which the mirror superpotential had the form

W = −G1J1 −G2J2,

for [110][section 4.2]

J1 =

(
aX1 + µABX4 + b

X2
4

X1

)
− q1

qn2

(α1X1 + α2X4)n

X1

, (3.2.42)

J2 = −n
(
aX1 + µABX4 + b

X2
4

X1

− q1

qn2

(α1X1 + α2X4)n

X1

)
+

(
α2γ2X4 + γ1α1

X2
1

X4

+ (γ1α2 + γ2α1)X1

)
− q2

X4

, (3.2.43)

with operator mirror map
X1 ↔ σ1, X4 ↔ σ2.

It is straightforward to check that this proposal of [110] specializes to our proposal. Some
other perspectives of (0,2) mirror symmetry can be found [105,107,108].
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Chapter 4

Conclusions and Future Directions

4.1 Research Summary

The previous chapters are devoted to detailed discussion of my work, this section I will briefly
summarize my work for the conclusion.

Supersymmetric Localization in GLSMs for Supermanifolds Supermanifolds have
recently been of renewed interest due to progress in superstring perturbation theory [121].
About two decades ago, it was suggested in the literature [55] that A-twisted NLSM cor-
relation functions for certain supermanifolds are equivalent to A-twisted NLSM correlation
functions for hypersurfaces in ordinary spaces under certain conditions. We used super-
symmetric localization to first show the A-twisted GLSM correlation functions for certain
supermanifolds are equivalent to corresponding A-twisted GLSM correlation functions for
hypersurfaces. Then, we showed that physical two-sphere partition functions are the same
for these two different target spaces, which we conjectured that the map from GLSM param-
eters to NLSM parameters are the same for them as well [64]. We also found that elliptic
genera share similar phenomena, indicating the Witten index and central charges match.
Finally, we extended the calculations to (0,2) deformations, and conjectured a (0,2) version
of the statement for NLSMs.

Localization of twisted N=(0,2) gauged linear sigma models in two dimension-
s In [42], we use supersymmetric localization to study twisted N=(0,2) GLSMs [16]. For
N=(0,2) GLSMs deformed from N=(2,2) GLSMs, we consider the A/2-twisted and for-
mulized the genus-zero correlation functions of certain pseudo topological observables in
terms of Jeffrey-Kirwan-Grothendieck residues on Coulomb branches, which generalize the
Jeffrey-Kirwan residue prescription relevant for the N=(2,2) locus. We reproduce known re-
sults for abelian GLSMs, and can systematically calculate more examples with new formulas
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that render the quantum sheaf cohomology relations and other properties manifest.

A proposal for nonabelian mirrors In [26], we proposed a generalization of the Hori-
Vafa mirror construction [25] from abelian (2,2) GLSMs to non-abelian (2,2) GLSMs with
connected gauge groups, a potential solution to an old problem. Inspired by the quantum
behavior of the non-abelian gauge dynamics, we proposed that the mirror of a nonabelian
gauge theory is a Weyl-group orbifold of the Hori-Vafa mirror of an abelian gauge theory
containing both matter fields corresponding to those of the original non-abelian theory as well
as new matter fields with the same indices as the W bosons of the original theory. We formally
showed that topological correlation functions of B-model mirror LGs match the A-model
gauge theories’ correlation functions in general. We studied two examples, Grassmannians
and two-step flag manifolds, verifying in each case that the mirror correctly reproduces
details ranging from the number of vacua and correlations functions to quantum cohomology
relations. We also studied mirrors of pure gauge theories, comparing and extending claims
of [87] for the IR behavior of the original gauge theories. Furthermore, in our paper [124], we
studied mirrors to theories with exceptional gauge groups and predicted a similar statement
to [87].

A proposal for (0,2) mirrors of toric varieties In [27], we proposed an extension of
the Hori-Vafa construction [25] of (2,2) GLSM mirrors to (0,2) theories obtained from (2,2)
theories by special tangent bundle deformations. Our ansatz can systematically produce
the (0,2) mirrors of toric varieties and the results are consistent with existing examples
which were produced by laborious guesswork. We also explicitly verified that closed string
correlation functions of the original A and A/2 twisted models match those of the mirror B
and B/2 twisted Landau-Ginzburg models, extending Hori-Vafa’s work in the (2,2) case and
providing an important consistency check in the (0,2) case.

4.2 Future Work

I will end my thesis by mentioning several directions which are related my previous work.

3d/2d mirror symmetry In three dimensions, mirrors to non-abelian theories and Kähler
metrics of moduli spaces have been well-explored in the literature [125]. It is therefore natural
to ask how three-dimensional mirror symmetry relates to two-dimensional mirror symmetry.
Some work relating three-dimensional mirrors to two-dimensional mirrors in abelian cases
exists [126]. Our interest lies in extending the relationship to non-abelian mirrors. In passing,
some different aspects of the relationship between 3d and 2d mirrors can be found in [87].
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Open string mirror symmetry My work so far has focused on closed string mirror
symmetry, however, open string mirror symmetry has been significantly explored in past
from several different directions, see for example [4,127–131] and the reviews [133,134]. My
starting point for this direction is to understand GLSMs with boundaries first [59], and then
use techniques developed in GLSMs and supersymmetric localization methods to uncover
some new insights in this direction based on our work [26].

Correlation functions for N = (0, 2) theories without (2,2) locus To get a four-
dimensional spacetime with N = 1 SUSY from a heterotic string compactifications requires
that the worldsheet has N = (0, 2) SUSY, and most such theories are not deformations of
(2,2) theories [1]. N = (0, 2) gauged linear sigma models provide a global description of
string compactifications [16], however only rare BPS quantities of N = (0, 2) theories can be
calculated exactly, such as elliptic genera [19] and correlation functions forN = (0, 2) theories
with a (2,2) locus [42]. In [42], we provided all of ingredients for calculating correlation
functions of N = (0, 2) theories; however, for general N = (0, 2) theories, the one-loop
determinants do not depend solely upon topological observables. However, based on [132]
for Calabi-Yau target spaces, one can define the topological sub-ring for general (0,2) theories,
suggesting that supersymmetric localization could apply to general (0,2) theories under some
conditions. We first aim to compute correlation functions in some concrete examples, and
then try to find hints of what circumstances will allow supersymmetric localization to be
applied in other (0,2) theories. Last but not least, I want to mention that any examples
we find would also benefit the 6d community, as compactifications of 6d (0,2) theories are
typically 2d (0,2) theories without a (2,2) locus.
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Appendix A

Conventions and One Loop
Determinants

The contents of this section were adapted, with minor modifications, with permission from
JHEP, from our publication [42].

A.1 Curved space conventions

Our conventions mostly follow [41,42,46], to which we refer for further details. We work on
a Riemannian two-manifold with local complex coordinates z, z̄, and Hermitian metric:

ds2 = 2gzz̄(z, z̄)dzdz̄ . (A.1.1)

We choose the canonical frame

e1 = g
1
4dz , e1̄ = g

1
4dz̄ , (A.1.2)

with
√
g = 2gzz̄ by definition. The spin connection is given by

ωz = − i
4
∂z log g , ωz̄ =

i

4
∂z̄ log g . (A.1.3)

The covariant derivative on a field of spin s ∈ 1
2
Z is:

Dµϕ(s) = (∂µ − isωµ)ϕ(s) . (A.1.4)

We generally write down derivatives in the frame basis as well: D1ϕ(s) = ez1Dzϕ(s) and
D1̄ϕ(s) = ez̄1̄Dz̄ϕ(s).
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A.2 Lagrangian on Curved Spaces

In section 2.1.2, we described the GLSM for supermanifolds on flat worldsheets. However,
in this paper we also consider GLSMs for supermanifolds on the two-sphere. Since S2 is
not flat, the Lagrangian will have curvature correction terms [43,44,46]. In this section, we
want to write out Lagrangians for GLSMs for supermanifolds on a worldsheet two-sphere.
Since the only difference with GLSM for ordinary spaces is the kinetic term for odd chiral
superfields (2.1.6), we will only write out Lodd

kin .

First, consider the physical Lagrangian on S2. By solving the supergravity background, one
can follow [43] to get the kinetic term for the odd superfield Φ̃ with vector R-charge R̃ as:1

Lodd
kin = Dµ

¯̃φDµφ̃+ ¯̃φσ2φ̃+ ¯̃φη2φ̃+ i ¯̃φD̃φ̃+ ¯̃FF̃ +
iR̃

r
¯̃φσφ̃+

R̃(2− R̃)

4r2

¯̃φφ̃

− i ¯̃ψγµDµψ̃ + i ¯̃ψσψ̃ − ¯̃ψγ3ηψ̃ + i ¯̃ψλ̃φ̃− i ¯̃φ¯̃λψ̃ − R̃

2r
¯̃ψψ̃. (A.2.1)

Similarly, we can follow [41] to get the twisted Lagrangian on S2. The kinetic term for odd
chiral superfields will have the same form as Eq. (2.35) in [41]. One difference is that the
statistical properties for each component field are changed.

A.3 Elliptic Genera with General R Charges

In this section, we calculate the elliptic genera for more general R-charge assignments, follow-
ing Appendix A.7. In the same spirit of Section 2.1.3, we focus on comparison of hypersurface
and supermanifold.

As an example, we only consider GLSMs for hypersurfaces in WPN[Q1,...,QM+1] and for WPN+1|M
[Q1,...,QM+1|Q̃]

.

Actually, we only need compare the one-loop determinants for the P -field, say P with U(1)
charge −Q̃, and that for the odd chiral superfield, say Ψ with U(1) charge Q̃. From appendix
A.7, the R-charge for P is 2− ζQ̃ and the R-charge for Ψ is ζQ̃. Then we have

Z1−loop
P =

θ1(q, yRP /2−1x−Q̃)

θ1(q, yRP /2x−Q̃)
=

θ1(q, y−ζQ̃/2x−Q̃)

θ1(q, y1−ζQ̃/2x−Q̃)
,

Z1−loop
Ψ =

θ1(q, yRΨ/2x−Q̃)

θ1(q, yRΨ/2−1x−Q̃)
=

θ1(q, yζQ̃x−Q̃)

θ1(q, yζQ̃/2−1x−Q̃)
.

1There is another supergravity background used in [44]. These two supergravity backgrounds are claimed
to be equivalent to each other as studied in [46]
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Then according to the property of θ1-function, θ1(τ, x) = −θ1(τ, x−1), above two one-loop
determinants equal to each and so do their elliptic genera. This calculation can be easily
generalized to more general cases as in section 2.1.3.

A.4 One-loop determinants

Consider the gauge theories with a (2, 2) locus of section 2.3. In this Appendix, we compute
the one-loop determinant of the matter fields. The one-loop contribution from the W -bosons
and their superpartners is exactly the same as in [41], to which we refer for further discussions
of the gauge sector.

A.4.1 Matter determinant for A/2-twisted GLSM with (2, 2) locus

The matter sector localization is performed with the kinetic terms of the chiral and Fermi
multiplets. Placing oneself at a generic point on the Coulomb branch and expanding the
Lagrangian at quadratic order in the matter fields, one finds:

Lloc = φ̃I∆bos
IJ φ

J + (B̃ , Λ̃−)I∆fer
IJ

(
Λ−
C

)J
+ iB̃IQI(λ̃)φI +

1

2
B̃Σ
a φ̃

I(∂σ̃aM̃IJ)ΛJ , (A.4.1)

with the kinetic operators

∆bos
IJ = −4δIJD1D1̄ + M̃IKM

K
J + iQI(D) , ∆fer

IJ =

(
1
2
M̃JI 2iD1

−2iD1̄ 2MIJ

)
. (A.4.2)

Here MIJ was defined in (2.3.9), and QI us the gauge charge of ΦI ,ΛI . Since the mixing
is limited to the γ blocks defined in section 2.3.1, we restrict ourselves to a single block of
gauge charge Qγ and effective R-charge

rγ = rγ −Qγ(k) , (A.4.3)

in a given flux sector. It is easy to perform the supersymmetric Gaussian integral explicitly.
Here we can focus on the case λ̃ = B̃Σ = 0.

A.5 Operator determinants in A/2 deformations of (2,2)

theories

In this section, we will compute operator determinants and their ratios for (0,2) (A/2 twisted)
GLSM’s obtained by deforming (2,2) theories off of the (2,2) locus.

120



We shall group (0,2) chiral and Fermi superfields originating from (2,2) chirals according to
their gauge charges. Groups of fields with the same charges can be mixed into one another
with the E deformations, defined by

D+Λi = Ei(φ).

In this appendix we will compute Z1−loop for a set of (0,2) chiral and Fermi superfields all
of the same charges, obtained as deformations of a set of (2,2) chiral superfields of the same
charges. These can be multiplied together in the obvious way to get Z1−loop for sets of fields
with different charges, as we discuss in examples in the main text.

We will localize around the background

λ = 0, D = iF12, [σ, σ] = 0, Dzσ = 0.

Our computations will take place on the Coulomb branch given above. In nonabelian cases,
we will work with a set of commuting σ fields providing coordinates on the Coulomb branch,
but as they commute, we can treat them just as if the gauge group were abelian. Thus, we
are able to treat abelian and nonabelian cases identically in what follows.

Our conventions will largely follow [53].

A.5.1 Bosonic operator determinant

We will begin by examining the bosons in the theory. The kinetic terms for the bosons are
standard, and the potential terms are of the form

|Ei(φ)|2

where we will assume linear deformations of the form

Ei(φ) =
∑
a

Aiajσ
aφj

for σa’s the adjoint-valued (neutral in abelian theories) fields in the (2,2) gauge multiplet
(here, a (0,2) chiral multiplet), φi’s a given set of bosons of identical charges, and Aiaj a set
of constant matrices that mix the bosons. Let N denote the number of complex bosons of
the same charge. It will be convenient to define

Ei
j(φ) =

∑
a

Aiajσ
a

so that
Ei(φ) = Ei

jφ
j.
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Expanding out the bosonic potential terms, we have

|Ei(φ)|2 =
∑
i

(∑
j

|Ei
j|2|φj|2

)

+
∑
i 6=j

(∑
k

(Ek
i )∗(Ek

j )

)
φ
ı
φj.

Since the potential terms mix the various φi, we need to consider a matrix of operators for
all the φi simultaneously. Thus, we define Oφ to be the operator such that the boson kinetic
and potential terms are encoded by ∫

(~φ)†Oφ~φ

where
(~φ)T = (φ1, φ2, · · · )

and the operator Oφ is
t2 + |E1

1 |2 + · · ·+ |EN
1 |2 (E1

1)∗E1
2 + · · ·+ (EN

1 )∗EN
2 · · · (E1

1)∗E1
N + · · ·+ (EN

1 )∗EN
N

E1
1(E1

2)∗ + · · ·+ EN
1 (EN

2 )∗ t2 + |E1
2 |2 + · · ·+ |EN

2 |2 · · · (E1
2)∗E1

N + · · ·+ (EN
2 )∗EN

N
...

...
. . .

...
(E1

N)∗E1
1 + · · ·+ (EN

N )∗EN
1 (E1

N)∗E1
2 + · · ·+ (EN

N )∗EN
2 · · · t2 + |E1

N |2 + · · ·+ |EN
N |2

 ,
where t2 represents −D2 + iρ(D) + ir/2R2, for ρ the gauge representation, r the twisting of
the boson2, and

ρ(D) = ρ(im/2R2) + ρ(D0).

Now, we need to compute the determinant of the operator above. We will begin by formally
computing the determinant for a single mode, then expanding across all modes.

If we think of t2 as −λ for λ an eigenvalue, the determinant of Oφ above is the same
as the characteristic polynomial of the matrix obtained by setting t to 0, which one can
straightforwardly see is the product (ET )†ET , for

E =


E1

1 E2
1 · · · EN

1

E1
2 E2

2 · · · EN
2

...
...

. . .
...

E1
N E2

N · · · EN
N

 .
2 This term should be carefully distinguished from curvature-dependent terms that arise in (2,2). Because

we are putting a topological field theory on S2, we do not need to add curvature-dependent terms to the
action; however, we are twisting a boson, and this term arises in the supersymmetric action.
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Using standard results from linear algebra, the characteristic polynomial, in terms of t2

rather than −λ, is given by
N∑
k=0

t2(N−k)Tr ∧k ((ET )†ET )

where for any matrix M , ∧kM denotes a matrix encoding principal minors3 of M of size k.
Furthermore, since it is a product, the principal minors of (ET )†ET are the same as norm
squares of principal minors of E.

If we let Ẽi1,··· ,ik,j1,··· ,jk denote the determinant of the submatrix of E formed by omitting
rows i1 · · · ik and columns j1 · · · jk (i.e. a principal minor of E of size N − k), then the
characteristic polynomial above, i.e. the determinant of the bosonic operator matrix, can
be written in the form

N∑
k=0

t2k

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)
.

So far we have discussed the operator determinant for a single mode. Let us now assemble
the complete result. We enumerate each boson mode as a tensor spherical harmonic Y s

j,j3
,

which has D2 eigenvalues [53]

−D2Y s
j,j3

=
j(j + 1)− s2

R2
Y s
j,j3
.

Define b = ρ(m) + r, for r the twisting of the boson and ρ the charge of the matter field,
then s = b/2, and the angular momentum is j = (|b|/2) + n, n ≥ 0, and we have

−D2Y s
j,j3

=
2n(n+ 1) + (2n+ 1)|b|

2R2
Y s
j,j3
.

Putting this together, we find that the complex bosonic operator determinant, taking into
account the 2j + 1 = 2n+ |b|+ 1 multiplicities, is given by

detOφ =
∏
n≥0

[
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)]2n+|b|+1

(A.5.1)

for

tn =
2n(n+ 1) + (2n+ 1)|b| − b

2R2
.

The last term, namely −b/2R2, arises from

ρ(D) = ρ(im/2R2) + ρ(D0).

in the Lagrangian terms −D2 + iρ(D) + ir/(2R2). In the expression above, we take D0 = 0.

3 Recall a principal minor is the determinant of a submatrix formed by omitting rows and columns.
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A.5.2 Fermion operator determinant

Next, we consider the Fermi fields. In (0,2) supermultiplets, there are two contributions:
right-moving fermions ψ+ in the chiral superfields, and left-moving fermions ψ− in the Fermi
superfields. In general in (0,2) theories, one would want to consider them separately; however,
in the present case, since we are describing deformations off the (2,2) locus, it is more
convenient to combine the left- and right-moving fermions into a single operator. This
is possible because in this theory, the left- and right-moving fermions couple to the same
bundles4, and it is necessary because the E interactions mix the left- and right-moving
fermions. Specifically, because of the E potentials, we have interaction terms5

ψ
i

−ψ
j
+E

j
i + ψ

j

+ψ
i
−(Ej

i )
∗. (A.5.2)

The resulting operator for the left- and right-moving fermions Oψ is given as∫
~ψOψ ~ψ

where
(~ψ)T =

(
ψ1

+, ψ
1
−, ψ

2
+, ψ

2
−, · · ·

)
,

~ψ = ~ψ†γ0 =
(
ψ

1

−, ψ
1

+, ψ
2

−, ψ
2

+, · · ·
)
,

and Oψ is described by a 2N × 2N matrix of the form

Oψ =



E1
1 (2/R)D+ E2

1 0 · · · EN
1 0

(2/R)D− (E1
1)∗ 0 (E1

2)∗ · · · 0 (E1
N)∗

E1
2 0 E2

2 (2/R)D+ · · · EN
2 0

0 (E2
1)∗ (2/R)D− (E2

2)∗ · · · 0 (E2
N)∗

...
. . .

...
E1
N 0 E2

N 0 · · · EN
N (2/R)D+

0 (EN
1 )∗ 0 (EN

2 )∗ · · · (2/R)D− (EN
N )∗


.

Since the eigenvalues of D+ and D− are minus one another, it will often be convenient to

4 Although the gauge bundle in the corresponding low-energy nonlinear sigma model is different from the
tangent bundle, in the UV GLSM, the left-moving fermions couple to the same bundle as the right-moving
fermions, and the different gauge bundle is realized via interactions and RG flow.

5 Our notation is unfortunately slightly confusing. In [16][eqn. (6.18)] the interaction terms are of the
form ψ−ψ+(∂E/∂φ) instead of ψ−ψ+E, but the E’s we have defined above, which depend upon σ and σ̃
but not φ, are the derivatives of the E’s appearing in [16][section 6].
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represent the matrix above as

O(t) =



E1
1 +t E2

1 0 · · · EN
1 0

−t (E1
1)∗ 0 (E1

2)∗ · · · 0 (E1
N)∗

E1
2 0 E2

2 +t · · · EN
2 0

0 (E2
1)∗ −t (E2

2)∗ · · · 0 (E2
N)∗

...
. . .

...
E1
N 0 E2

N 0 · · · EN
N +t

0 (EN
1 )∗ 0 (EN

2 )∗ · · · −t (EN
N )∗


where t represents the eigenvalues of (2/R)D+, and−t represents the eigenvalues of (2/R)D−.

Note that for t = 0, the nonzero entries of the matrix (O(t)ij) have the property that i, j
are either both even or both odd, and the entries with t’s are all one step above or below
the diagonal: for j odd, O(t)j+1,j = −t, and for j even, O(t)j−1,j = +t.

Now, we wish to compute detO(t). This will be a polynomial in t of degree 4N . We will
compute the coefficients in that polynomial separately.

First, let us consider the t-independent term in that polynomial. This can be computed as
detO(t) for t = 0. We will show that in this case,

detO(0) = | detE|2.

More generally, consider a 2n× 2n matrix C built by interweaving two n×n matrices A, B,
in the form

(Cij) =


A11 0 A12 0 A13 0 · · ·
0 B11 0 B12 0 B13 · · ·
A21 0 A22 0 A23 0 · · ·
0 B21 0 B22 0 B23 · · ·
...

. . .

 .
Now,

detC = εi1···i2nCi11 · · ·Ci2nn,

=
n∑

j1=1

n∑
k1=1

· · ·
n∑

kn=1

ε(2j1−1)(2k1)(2j2−1)(2k2)···(2kn)Aj11Bk11Aj22Bk22 · · ·Bknn,

=
n∑

j1=1

n∑
k1=1

· · ·
n∑

kn=1

εj1···jnεk1···knAj11Bk11Aj22Bk22 · · ·Bknn,

= (detA)(detB).

For our current matrix O(t), when t = 0 it can be written as an interweaving of E and E†,
so using the lemma above we immediately have that

detO(0) = | detE|2.
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Now, consider terms in the expansion of detO(t) that are linear in t. Such terms arise from
terms in the determinant of the form

(O(t)j±1,j)(2N − 1 factors of the form O(t)odd,odd or O(t)even,even).

However, when computing the determinant, the total number of odd indices should be the
same as the total number of even indices, and the O(t)j±1,j factor creates an imbalance.
Therefore there are no terms of this form. In fact, the same argument implies that there can
be no terms with odd powers of t.

What remains is to compute the coefficients of nonzero even powers of t. For the same
imbalance reasons as above, all contributions to even powers of t must arise from terms
involving the same number of factors of −t (from below the diagonal) as +t (from above the
diagonal). With that in mind, the coefficient of t2k will be a sum of terms of each of which is
a determinant of two interweaved matrices, each formed from E and E† by omitting k rows
and columns. In other words, the coefficient of t2k is given by∑

i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
where Ẽi1···ik,j1···jk denotes the determinant of the submatrix of E formed by omitting rows
{i1, · · · , ik} and columns {j1, · · · , jk}, i.e. a principal minor of E. (It can be shown that the
signs are all positive, which we leave as an exercise for the reader.) The sum above is the
same as the sum of norm squares of the size N − k principal minors of E.

As a special case, in the case N = 2, it is straightforward to compute that

detO(t) = t4 + t2
(
|E1

1 |2 + |E1
2 |2 + |E2

1 |2 + |E2
2 |2
)

+ | detE|2.

The coefficient of t2, namely

|E1
1 |2 + |E1

2 |2 + |E2
1 |2 + |E2

2 |2

is the sum of the norm squares of the determinants of the 1× 1 matrices formed by omitting
all possible pairs of rows and columns from E. The coefficient of t4, namely 1, is the sum of
the norm squares of the determinants of the 0× 0 matrices formed by omitting all possible
quadruples of rows and columns, leaving nothing. Finally, note that the last, t-independent,
term is of the same form, but involving no subtractions of any rows or columns.

Thus, we find that the general expression is of the form

detO(t) =
N∑
k=0

t2k

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)
.

Note that we obtained the same expression for the determinant of the boson operator ma-
trix, which means that most oscillator modes will cancel, exactly as one would expect in a
topological field theory.
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So far we have just computed the determinant for a single mode, and have not considered
special cases. Next, we consider special cases and take into account mode multiplicities.

First, we recall that a Dirac spinor on S2 has generically two components:

Y
−b/2
j,j3

for j ≥
∣∣∣ b
2

∣∣∣ , Y
−b/2−1
j,j3

for j ≥
∣∣∣ b
2

+ 1
∣∣∣ .

We expand ~ψ in eigenmodes as

(~ψ)T =
(
Y
−b/2
j,j3

, Y
−b/2−1
j,j3

, Y
−b/2
j,j3

, Y
−b/2−1
j,j3

, · · ·
)
.

(The pairs of modes are forced to have matching spins and other quantum numbers by virtue
of the existence of off-diagonal interactions.)

Now, we distinguish various cases. First consider the case b ≤ −2. At j = −(b/2)− 1, only
the (2j + 1 = −b − 1) left-moving modes exist, while for j = −(b/2) − 1 + n, and n ≥ 1,
both modes survive. In the special case j = −(b/2)− 1, the fermion operator reduces to

E1
1 E2

1 E3
1 · · ·

E1
2 E2

2 E3
2 · · ·

E1
3 E2

3 E3
3 · · ·

...
. . .


which is the matrix E. Thus, when b ≤ −2, the entire fermion operator determinant, taking
into account mode multiplicities, takes the form

(detE)−b−1
∏
n≥1

(
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
))2n−b−1

where

tn =
n(n+ |b+ 1|)

R2

(and using the fact that for n ≥ 1, 2j + 1 = 2n− b− 1).

Next, consider the special case b = −1, in which j = 1/2. In this case, both left- and
right-moving modes exist, of multiplicity 2j + 1 for j = (1/2) + n, for n ≥ 0. Thus, taking
into account mode multiplicities, the entire fermion determinant is given by

∏
n≥0

(
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
))2n+2

where

tn =
(n+ 1)2

R2
.
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Next, consider the case b ≥ 0. At j = b/2, only the right-moving modes survive, of multi-
plicity 2j + 1 = b+ 1. In this case, the fermion operator reduces to

(E1
1)∗ (E1

2)∗ (E1
3)∗ · · ·

(E2
1)∗ (E2

2)∗ (E2
3)∗ · · ·

(E3
1)∗ (E3

2)∗ (E3
3)∗ · · ·

...
. . .


which is the matrix E†. For j = (b/2) + n for n ≥ 1, both modes exist. Thus, for b ≥ 0, the
entire fermion operator determinant, taking into account mode multiplicites, takes the form

(detE†)b+1
∏
n≥1

[
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)]2n+b+1

where

tn =
n(n+ |b+ 1|)

R2
.

Putting this together, an expression for the fermion determinant valid for all b is given by

(S(detE))|b+1|
∏
n≥1

[
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)]2n+|b+1|

(A.5.3)

where

tn =
n(n+ |b+ 1|)

R2

where S is the identity for b ≤ −2 and complex conjugation for b ≥ 0.

A.5.3 Matter determinant ratios

Now, let us assemble Z1−loop. This is the ratio of the fermionic to bosonic operator determi-
nants.

First, consider the case b ≥ 0. Here, the tn’s appearing in the bosonic and fermionic deter-
minants match:

tn =
n(n+ |b+ 1|)

R2
=

2n(n+ 1) + (2n+ 1)|b| − b
2R2

,

so most of the factors in the infinite products for detOψ, detOφ cancel out. What remains
from the fermionic determinant detOψ is the factor

(S(detE))|b+1| = (detE†)b+1,

128



and the remaining uncancelled part of the bosonic determinant detOφ is the n = 0 factor in
the infinite product,[

N∑
k=0

t2k0

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣Ẽi1···ik,j1···jk∣∣∣2
)]2(0)+|b|+1

= (| detE|2)b+1,

using the fact that t0 = 0. Putting this together, the ratio of bosonic and fermionic deter-
minants can easily be shown to be

detOψ
detOφ

=
(detE†)b+1

(| detE|2)b+1
=

(
1

detE

)b+1

.

Now, let us consider the case that b < 0. Here, we use the fact that the tn’s appearing in
fermion determinants differ from the tn’s appearing in bosonic determinants by a shift of n:

fermion tn =
n(n− b− 1)

R2
= boson tn−1

to cancel all of the factors in the infinite product appearing in the bosonic determinant detOφ,
against all of the factors in the infinite product appearing in the fermionic determinant
detOψ, leaving just the overall multiplicative factor of the fermionic determinant:

detOψ
detOφ

= (S(detE))|b+1| = (detE)−b−1.

In any event, for any value of b, we get the same result:

Z1−loop =

(
1

detE

)b+1

.

In passing, we should remark on the fact that the result above is independent of the radius
R of S2 – a standard property for a topological field theory, but more noteworthy in these
twisted (0,2) theories. One can easily check that one-loop determinants agree with (2,2
theories when E is the identity matrix.

A.5.4 Alternative computation

In this section we briefly outline an alternative way to arrive at the same result for matter
determinant ratios. Specifically, the fermion matrix Oψ(t) can, after a coordinate transfor-
mation, be rearranged into the block form[

E −tI
tI E†

]
.
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Now, for any matrix of the form [
A B
C D

]
,

where A, B, C, D are square matrices of the same size, and CD = DC, then

det

[
A B
C D

]
= det(AD −BC).

In the present case, this implies

detOψ(t) = det(EE† + t2I) = detOφ,

and so we see that the fermion and boson operator determinants, for any one fixed mode,
cancel one another. Of course, to complete the verification in this language, one would also
need to check various special cases, as was done above.

A.5.5 Gauge fields

Contributions from gauge multiplets in theories obtained by deforming off the (2,2) locus
should be identical6 to those in the (2,2) theory, so we can be brief.

In the conventions of e.g. [53][section 5.1], the contribution from the gauge multiplet (here
involving both a (0,2) gauge multiplet plus adjoint-valued (0,2) chiral multiplets, typically
denoted σ, so as to fill out the matter content of a (2,2) gauge multiplet) is given by

Z1−loop
gauge = (−)

∑
α>0 α(m)

∏
α∈G

α(σ)(dσ)r

for r the rank of G. As we are working along the Coulomb branch, we take σ’s lying in the
maximal torus of G to be the integration parameters. For example, if G = U(1)k, then the
contribution above is merely

(dσ)k = dσ1 · · · dσk,

and if G = U(k), then the contribution above takes the form∏
α 6=β

(σα − σβ)(dσ)k.

6 To be slightly careful, the E’s can also contribute to interaction terms between the fermions and the
gauginos; however, because we localize on vanishing gauginos, those interaction terms are not relevant here.
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A.6 Operator determinants in B/2 deformations of cotan-

gent bundles

Dual to A/2 twists of deformations of (2,2) theories are B/2 twists of deformations of cotan-
gent bundles. The reason for that relationship is discussed in [113]; here, we will briefly focus
on computing operator determinants, utilizing the results of appendix A.5 for brevity.

To begin, let us outline the GLSM’s whose B/2 twists will be dual to A/2 deformation-
s of tangent bundles. Suppose a toric variety is described mathematically as a quotient
Cn//(C×)r, which is to say that the GLSM has n chiral superfields and r U(1) gauge fields.
A deformation E of the cotangent bundle of a toric variety is described mathematically by

0 −→ E −→ ⊕αO(−~qα)
J̃aα−→ Or −→ 0

and physically in (0,2) superspace language by a set of Fermi superfields Λα (of charge vectors
−~qα, opposite to the charges of the chirals φα describing the homogeneous coordinates),
obeying

D+Λα = 0,

and a set of r neutral chiral superfields pa, along with a (0,2) superpotential

W = ΛαJα

where each Jα is a holomorphic function of the chiral superfields, including the pa, related
to the map in the short exact sequence above as

Jα = paJ̃
a
α.

To help make this more clear, consider the example of P1 × P1 with a deformation of the
cotangent bundle. The corresponding GLSM is a U(1)2 gauge theory with (0,2) chiral super-
fields xi, x̃i, of charges (1, 0), (0, 1), respectively, corresponding to homogeneous coordinates
on the base space; (0,2) Fermi superfields Λi, Λ̃i, of charges (−1, 0), (0,−1), respectively,
corresponding to part of the bundle; and two neutral (0,2) chiral superfields pa. This theory
has a (0,2) superpotential of the form

W = Λi(p1Ax+ p2Bx)i + Λ̃i(p1Cx̃+ p2Dx̃)i

where A, B, C, D are four 2×2 matrices. The cotangent bundle itself is described by taking
A = D = I2×2, and B = C = 0. (It is no accident that this is the same data defining a
deformation of the tangent bundle of P1 × P1.) In the language above,

Ji = (p1Ax+ p2Bx)i, J̃i = (p1Cx̃+ p2Dx̃)i

(where here J̃ indicates other components of Jα, rather than components of J̃aα).
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Now, let us compute the bosonic interactions, in order to compute the bosonic operator
determinant. From the superpotential above, after integrating out the auxiliary fields we
have interaction terms ∑

α

|Jα|2 =
∑
α

|paJ̃aα|2.

We will only consider ‘linear’ deformations, which means that each Jα will be of the form

Jα = paB
a
αβφ

β.

Define
Fαβ = paB

a
αβ

so that
Jα = Fαβφ

β.

Thus, the bosonic potential terms are of the form

∑
α

|Jα|2 =
∑
α

(∑
β

|Fαβ|2|φβ|2
)

+
∑
β 6=γ

(∑
α

F ∗αγFαβ

)
(φγ)∗φβ.

The boson kinetic and potential terms are then encoded by∫
(~φ)†Oφ~φ

where
(~φ)T =

(
φ1, φ2, · · ·

)
,

and the operator Oφ is
t2 + |F11|2 + · · ·+ |FN1|2 (F11)∗F12 + · · ·+ (FN1)∗FN2 · · · (F11)∗F1N + · · ·+ (FN1)∗FNN

(F12)∗F11 + · · ·+ (FN2)∗FN1 t2 + |F12|2 + · · ·+ |FN2|2 · · · (F12)∗F1N + · · ·+ (FN2)∗FNN
...

...
. . .

...
(F1N)∗F11 + · · ·+ (FNN)∗FN1 (F1N)∗F12 + · · ·+ (FNN)∗FN2 · · · t2 + |F1N |2 + · · ·+ |FNN |2


where t2 represents −D2 + iρ(D), for ρ the gauge representation, and

ρ(D) = ρ(im/2R2) + ρ(D0).

The operator Oφ is essentially identical to the bosonic operator appearing in the A/2 discus-
sion, so we can apply the same analysis as for the A/2 examples previously discussed. One
ultimately finds, from equation (A.5.1), that

detOφ =
∏
n≥0

[
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣F̃i1···ik,j1···jk∣∣∣2
)]2n+|b|+1

(A.6.1)
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for

tn =
2n(n+ 1) + (2n+ 1)|b| − b

2R2
.

Now, let us compute the fermion operator determinant.

Returning to the general case above, the (0,2) superpotential yields the following Yukawa-
type interaction terms:

λα−ψ+paF̃
a
α + λα−pa

∂F̃ a
α

∂φβ
ψβ+ + c.c.

Although this theory no longer has σ fields, i.e. (0,2) chiral multiplets which become part of
the vector multiplets on the (2,2) locus, the pa play an analogous role. In particular, instead
of a Coulomb branch formed from σ vevs, in this theory we have an analogous gauge-theoretic
branch formed from p vevs. Thus, our analysis will closely follow the A/2 case.

Working on the p branch, and expanding about constant p vevs, the pertinent Yukawa
interaction terms are given by

λα−ψ
β
+Fαβ + λ

α

−ψ
β

+(Fαβ)∗ (A.6.2)

where

Fαβ = pa
∂J̃aα
∂φβ

.

Note that the Yukawa couplings above are extremely similar to those given in the previous
A/2 twisting in equation (A.5.2).

Briefly, much of the analysis of appendix A.5 carries over to this case, albeit for computations
on the “p branch” rather than the usual Coulomb branch of σ vevs. For example, the bosonic
operator determinant has the same form as before.

For the fermionic operator determinants, we need to work slightly harder. As before, since
the interaction terms mix fermions of different chiralities, we shall work with an operator
spanning both. Unlike the previous case, each λ− has the opposite gauge charge from ψ+,
so for reasons of consistency, we will use a slightly different vector of fermions, of the form

~ψT =
(
ψ1

+, λ
1

−, ψ
2
+, λ

2

−, · · ·
)
,

so that
~ψ = ~ψ†γ0 =

(
λ1
−, ψ

1

+, λ
2
−, ψ

2

+, · · ·
)
,

so that if we write the quadratic fermion terms as∫
~ψOψ ~ψ
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then

Oψ =



F11 (2/R)D+ F12 0 · · · F1N 0
(2/R)D− (F11)∗ 0 (F21)∗ · · · 0 (FN1)∗

F21 0 F22 (2/R)D+ · · · F2N 0
0 (F12)∗ (2/R)D− (F22)∗ · · · 0 (FN2)∗

...
. . .

...
FN1 0 FN2 0 · · · FNN (2/R)D+

0 (F1N)∗ 0 (F2N)∗ · · · (2/R)D− (FNN)∗


which is clearly isomorphic to the fermion operator appearing in A/2 discussions in sec-
tion A.5.2.

Expanding the ~ψ in modes as in the A/2 section (with the different twisting implicitly

taken into account in the fact that the ~ψ here involves a different set of fermions), we can
immediately recover an expression for the fermion determinant from equation (A.5.3):

(S(detF ))|b+1|
∏
n≥1

[
N∑
k=0

t2kn

( ∑
i1<i2<···<ik,j1<j2<···<jk

∣∣∣F̃i1···ik,j1···jk∣∣∣2
)]2n+|b+1|

(A.6.3)

where

tn =
n(n+ |b+ 1|)

R2
,

F the matrix given by 
F11 F12 F13 · · ·
F21 F22 F23 · · ·
F31 F32 F33 · · ·

...
. . .

 ,
and where S is the identity for b ≤ −2 and complex conjugation for b ≥ 0.

Now that we have computed the (one-loop) operator determinants for bosons and fermions,
we can now compute

Z1−loop =
detOψ
detOφ

=

(
1

detF

)b+1

which is precisely dual to the result for the A/2 models describing deformations of the tangent
bundle.

A.7 Vector R-charges

In this section, we will discuss the assignment of R-charges to chiral superfields in physical
models, especially for odd chiral superfields.
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For A-twisted models without superpotential (e.g. without P -fields), we always assign van-
ishing R-charges to chiral superfields Φi’s. If the superpotential is nonzero, then it must have
total R-charge two, so one must assign nonzero R-charges to some of the chiral superfields.

First consider all chiral superfield Φi are charged under only one U(1) gauge symmetry. We
can mix U(1)R with this U(1) to get a new U(1)′R R-symmetry [60,122]:

U(1)′R = U(1)R + ζU(1),

where ζ is the deformation parameter. After mixing, the new U(1) R-charge is

R′i = Ri + ζQi.

If starting with Ri = 0, we can continuously deform it to be R′i = ζQi as the new R-charge.
Therefore, nonzero R-charges assigned to (even) chiral superfields should be proportional to
their weights. For convenience, we will denote R′i also as Ri following without causing any
confusion. Thus, the R-charges are assigned to be:

Ri = ζQi.

Now consider the P field, in the superpotential W = PG(Φ), where G(Φ) is a degree d
polynomial in Φi’s.

d =
∑
i

niQi,

for a set of integers {ni} and ni comes from the power of Φi in one term of the (quasi-
)homogeneous polynomial G. Then the U(1) charge for this P -field should be −d. To
guarantee RW = 2, we need to assign the P field R-charge:

RP = 2−
∑
i

niRi = 2− ζ
∑
i

niQi = 2− ζd.

In the above, when ζ = 0, it agrees with the assignments in A-twisted models.

In the toric supermanifold case, odd chiral superfields and even chiral superfields share the
same U(1) gauge, and so we should assign R charges to those odd chiral superfields by:

R̃µ = ζQ̃µ.

Specifically, if we consider A-twisted theories, R charges should be assigned as

Ri = 0, and R̃µ = 0.

These computations can be generalized to multiple U(1)’s.

135



Appendix B

Brief Notes on the (2,2) Mirror
Ansatz

The contents of this section were adapted, with minor modifications, with permission from
JHEP, from our publication [27].

In this appendix we will briefly outline how symmetries and the operator mirror map partially
determine the exponential terms in the (2,2) GLSM mirror superpotential. Suppose we
have not derived the instanton-generated terms, and only have an ansatz for the mirror
superpotential of the form

W =
k∑
a=1

Σa

(
N∑
i=1

Qa
i Yi − ta

)
+ g(Yi), (B.0.1)

for some unknown function g(Yi). (Requiring R-charges match only fixes terms exp(−Yi)
up to an R-invariant function.) Instead of deriving g from a direct instanton computation
in the A-twisted theory, we outline here how the same result could be obtained using other
properties of the theory.

Now, previously we derived the operator mirror map (1.2.7) from the form of the mirror su-
perpotential, but one can outline an independent justification, and then use it to demonstrate
the form of g. To see this, use the relation [25][equ’n (3.17)]

Y + Y = 2Φe2QV Φ,

which implies component relations [25][equ’ns (3.20), (3.21)]

χ+ = 2ψ+φ, χ− = −2φ†ψ−,

for χ the superpartners of Y and ψ the superpartners of φ. From [16][equ’n (2.19)], the
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equations of motion of σa (in the limit e2 →∞, so that the kinetic terms drop out) are(
N∑
i=1

Qa
i |φi|2

)
σa ∝

N∑
i=1

ψ+iψ−i.

If we add twisted masses so that only one φ field is light, then this becomes

Qa
i σa + m̃i ∝

ψ+iψ−i
|φi|2

∝ χ+iχ−i.

Now, the χ+χ− could come from a Y 2, but that has the wrong R charge to make the
expression sensible. However, exp(−Yi) has the correct R charge and contains Y 2, so up to
overall factors, which can be reabsorbed into field redefinitions, this suggests

Qa
i σa + m̃i = exp(−Yi),

which is the operator mirror map (1.2.7). (Granted, we are again using axial R-charges, but
here since we know some components, there is less ambiguity.)

Returning to the ansatz (B.0.1), we can now determine the function g. The equations of
motion from the superpotential above imply

∂W

∂Yi
= Qa

i σa +
∂g

∂Yi
,

= 0,

and the operator mirror map implies

Qa
i σa + m̃a = exp(−Yi),

hence
∂g

∂Yi
= −Qa

i σa = m̃i − exp(−Yi),

hence
g(Yi) = m̃iYi +

∑
i

exp(−Yi),

up to an irrelevant additive constant.

It is tempting to apply the same methods to (0,2) theories. Unfortunately, the decreased
symmetry leads to multiple possible potential (0,2) mirror superpotentials, derived from
applying the operator mirror map in different ways, which must be independently tested
against chiral rings and correlation functions.
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