
3.52.4

General Fractional Noether
Theorem and Non-Holonomic
Action Principle

Vasily E. Tarasov

Article

https://doi.org/10.3390/math11204400

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com
https://doi.org/10.3390/math11204400


Citation: Tarasov, V.E. General

Fractional Noether Theorem and

Non-Holonomic Action Principle.

Mathematics 2023, 11, 4400. https://

doi.org/10.3390/math11204400

Academic Editor: Dongfang Li

Received: 2 September 2023

Revised: 19 October 2023

Accepted: 20 October 2023

Published: 23 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

General Fractional Noether Theorem and Non-Holonomic
Action Principle

Vasily E. Tarasov 1,2

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia;

tarasov@theory.sinp.msu.ru
2 Department of Physics, 915, Moscow Aviation Institute (National Research University),

Moscow 125993, Russia

Abstract: Using general fractional calculus (GFC) of the Luchko form and non-holonomic variational

equations of Sedov type, generalizations of the standard action principle and first Noether theorem

are proposed and proved for non-local (general fractional) non-Lagrangian field theory. The use of

the GFC allows us to take into account a wide class of nonlocalities in space and time compared to the

usual fractional calculus. The use of non-holonomic variation equations allows us to consider field

equations and equations of motion for a wide class of irreversible processes, dissipative and open

systems, non-Lagrangian and non-Hamiltonian field theories and systems. In addition, the proposed

GF action principle and the GF Noether theorem are generalized to equations containing general

fractional integrals (GFI) in addition to general fractional derivatives (GFD). Examples of field equa-

tions with GFDs and GFIs are suggested. The energy–momentum tensor, orbital angular-momentum

tensor and spin angular-momentum tensor are given for general fractional non-Lagrangian field

theories. Examples of application of generalized first Noether’s theorem are suggested for scalar end

vector fields of non-Lagrangian field theory.

Keywords: action principle; noether theorem; non-Lagrangian field theory; dissipative systems;

variational equation; non-holonomic functional

MSC: 26A33; 35R11

1. Introduction

In physics and mechanics, principles of action stationarity make it possible to obtain
field equations and equations of motion, which have great importance. The Noether theo-
rems are used to derive conservation laws in physics. The action principle and the Noether
theorem are actively applied in different branches of mechanics and physics. For example,
classical field theories are usually based on the Lagrangian and Hamiltonian formalisms,
the standard action principle and the Noether theorems [1–8]. The Noether theorem is used
in classical mechanics [9–11], continuum mechanics [12,13] optical systems [14], statistical
mechanics [15], fluid dynamics [16,17], classical field theory [1,7,18], and in quantum field
theory [1–3,8].

The standard action principle is usually described by a holonomic variational equation,
which has the form of the variation of some holonomic functional being equal to zero. How-
ever, not all equations of motion and field equations can be derived from the holonomic
variational equation and be written in the form of the Euler–Lagrange equations for La-
grangian function or Lagrangian density. Theories, whose equations of motion and/or field
equations cannot be derived from the standard action principle, are called non-Lagrangian
or non-Hamiltonian theories. Non-Lagrangian and non-Hamiltonian theories make it
possible to describe a wide class of irreversible processes and dissipative and open systems.
Therefore, variational equations can be important for such processes and systems.
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The standard Noether theorem is formulated for the Lagrangian field theories with
holonomic variational equations and expresses the invariance of the Lagrangian with
respect to some continuous group of transformations. The Noether theorem formulates a
sufficient condition for the existence of conservation laws [19–22]. the Noether theorem
states that any continuous symmetry of a physical system corresponds to some conservation
law. Since the standard Noether theorem is also based on a holonomic variational equation,
it inherits the same shortcomings as the standard action principle.

Generalizations of the standard action principle and the standard Noether theorems to
a wider class of physical systems and processes are being actively studied. One of the main
goals of such generalizations is to extend the formalism to dissipative and non-conservative
systems. Let us note two main approaches to generalizing the action principle and the
Noether theorem:

(I) The first approach is based on non-holonomic variational equations. The standard
action principles and the Noether theorems use only holonomic variation equations. There-
fore, there are significant restrictions on the classes of field equations, equations of motions
and on the construction of the theories, in which they are used. For a correct, self-consistent
description of the widest class of processes and systems with irreversibility and dissipation
one should use the non-holonomic variational equations. An important generalization of
the standard action principle was proposed by Sedov [23] in works [24–28]. The Sedov
non-holonomic variational equations for electromagnetic, gravitational, hydrodynamic
and thermodynamic fields are used to construct different models of continuous media
with irreversibility and dissipation in papers [24–31] and in books [31–35]. The variational
principles for non-potential operators are described in the review of Filippov, Savchin, and
Shorokhov [36].

(II) The second approach is based on fractional calculus. Fractional calculus of dif-
ferential and integral operators of non-integer order [37–43] is used to describe nonlocal
systems and processes in physics (for example, see handbooks [44,45] and books [46–54]).
The well-known fractional derivatives and integrals can be used to generalize the standard
action principle and the standard Noether theorems. These generalizations allow us to
describe a wide range of systems and fields that are non-Lagrangian and non-Hamiltonian
in a standard sense. These types of systems and fields are fractional Lagrangian and frac-
tional Hamiltonian systems and fields. An important area of research is the generalization
of the Lagrangian and Hamiltonian mechanics by including derivatives of non-integer
order [55–58]. In this case, Lagrangians and Hamiltonians with fractional derivatives lead
directly to equations of motion with non-conservative and dissipative forces.

Let us consider in more detail the second approach and describe the basic results in
this direction. The main results obtained in the use of fractional calculus to generalize the
action principle and Noether theorems are summarized to the following achievements.

(A) The mathematical basis of the action principles and the Noether theorems is variational
calculus. The standard variational calculus considers the holonomic functionals that
are represented by definite integrals of integer orders involving functions and their
derivatives of integer orders. An important concept of variational calculus is the
concept of a functional derivative (variation derivative). One of the directions of
generalizations of variational calculus is related to fractional calculus of integrals and
derivatives of non-integer orders.

(A1) The holonomic functionals can be considered as definite integer-order integrals
involving functions and their fractional derivatives of non-integer orders. This
type of generalization is called “Fractional calculus of variations” (FCofV) or
“Fractional variational calculus” [59–68]. Note that in paper [61], the fractional
integrals are considered in addition to fractional derivatives in FCofV.

(A2) There are other approaches to the generalization of the calculus of variations.
For example, one can define a fractional generalization of functional (variational)
derivatives on non-integer orders, or the functional itself can be defined as a
fractional integral of non-integer orders. However, these approaches are less
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developed. Attempts to formulate such generalizations are discussed in the
papers [69–74].

(B) The standard action principle and Noether’s theorem can be generalized by using
the fractional calculus in the framework of the FCofV-approach. Lagrangians with
fractional derivatives lead directly to equations of motion with non-conservative
forces such as resistance forces, friction, and dissipative forces. Using Lagrangian
functions, which depend on coordinates and its fractional derivatives with respect to
time, once can obtain fractional differential equations of motion as fractional Euler–
Lagrange equations. Generalizations of the standard action principle for systems
that are described by equation with fractional derivatives of non-integer orders are
proposed in works [51,75–91].

(B1) A fractional action principle and fractional Euler–Lagrange equations are pro-
posed in [51,75–91].

(B2) A fractional action principle for fractional field theories is considered in [92–99].
(B3) Noether’s theory for classical non-conservative mechanics is discussed in [55–57].
(B4) Generalizations of the Noether theorem for fractional Lagrangian and Hamilto-

nian systems is considered in [51,86,100–118].
(B5) The Noether theorem for fractional Birkhoffian systems is considered in [119–123].

(C) As an important extension of the FCofV, one can use operator kernels belonging to
a wide class of functions, while retaining the fractional analogs of the fundamental
theorems. Attempts to make such generalizations are considered in works [124–127].

To describe a wider type of non-localities, we can use the general fractional calculus
(GFC), which is based on Sonin’s ideas [128,129]. The most convenient form of GFC is the
Luchko’s form of GFC [130–138]. The Luchko approach is also developed and appied to
various sciences in [139–149]. Other forms of GFC are described and applied in [150–163].
The general fractional integrals (GFIs) and general fractional derivatives (GFDs) form
the GFC, in which generalizations of the fundamental theorems of standard calculus
are satisfied.

In this proposed paper, the generalizations are built within the framework of the
ideology (approach) of the general fractional dynamics (GFDynamics) suggested in [164].
This means that the non-local properties of dynamical systems are studied by using of GFC,
equations with GFIs and GFDs. The approach implies research and results for general
form of nonlocality, which can be described by general-form operator kernels, and not thier
particular form.

The novelty of the proposed work in comparison with other papers devoted the
generalizations of action principle and Noether theorems, as well as the main differences of
the proposed GF action principle and GF Noether theorems, are the following.

(1) [FC −→ GFC]. Firstly, in the proposed generalization of the standard action
principle and standard Noether theorems, we use general fractional calculus (GFC) instead
of the usual fractional calculus, which mainly uses power-type operator kernels. The GFC
allows us to consider different types of non-locality in space and time, in contrast to the
usual fractional calculus. In the proposed paper, the Luchko GFC is used to generalize
standard and fractional action principles and Noether theorems. The GFC is a tool that
allows us to consider different types of nonlocalities in space and time.

(2) [Holonomic −→ GFNon − Holonomic]. Secondly, the use of a non-holonomic
variation equation is proposed, in contrast to the use of a holonomic variation equation
in the standard action principle. This allows us to derive field equations and equations
of motion for non-Lagrangian field theories and systems. It is known that the equations,
which are derived from a Lagrangian with non-integer (fractional) order derivatives, are
non-Lagrangian systems in the standard sense. The proposed approach makes it possible to
obtain equations of motion (and field equations) not only for non-Lagrangian field theory,
but even for generalized non-Lagrangian systems in the sense of fractional dynamics. In the
proposed paper, we consider the non-holonomic functionals that are definite integer-order
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integrals involving functions and their GFDs and GFIs. A generalization of the Sedov
non-holonomic variational equation for the case fractional dynamics and general fractional
dynamics is proposed.

(3) [FDs −→ GFDs + GFIs]. Thirdly, the proposed principle allows us to obtain not
only fractional differential equations, but also equations containing both general fractional
derivatives and general fractional integrals. Moreover, the GF integral equations can be not
only fractional integral equations, but also belong to a wide class of equations with general
fractional integrals. In a non-holonomic variational equation, we consider variations of the
GFIs in addition to the variations of the GFDs. In a particular case, this gives a generalization
of the standard Sedov variational equation by taking into account changes in the integrals
of fields, if the system depends on them. In proposed paper, a generalization of the action
principle and Noether theorem for fractional field equations is proposed, in contrast to the
fractional action principle, which is usually suggested to derive equations of motion of
mechanical systems. By virtue of this, the principle of action for fractional dynamic systems
is a special case of the proposed principle.

The GF action principle and the GF Noether theorems, which are proposed in this
paper, contain the standard and fractional forms of action principle and Noether’s theorems
as special cases.

In Section 2, a short introduction to the GFC on [aµ, bµ] and new notations for partial
GFDs and GFIs are described. In Section 3, non-holonomic variational equation as a
generalization of action principle is proposed and proved. The GF Euler–Lagrange equation
with GFDs and GFIs are derived. In Section 4, GF Noether theorem is proved. In Section 5,
an example of the application of the GF action principle and the GF Noether theorem to
fractional field equations is described. GF energy–momentum tensor, GF orbital and spin
angular-momentum tensors are derived. Example of field equations for real scalar field
and real vector field are proposed.

2. Preliminary: GFC on [aµ, bµ] and Notations

Let us consider n-dimensional space-time. The point x of this space-time is labeled by
coordinates xµ, where µ = 1, . . . , n and xµ are independent variables.

The GFC is formulated for the Luchko set L1(R
n
+) of kernel pairs {(Mµ(xµ), Kµ(xµ),

µ = 1, . . . n)} for x ∈ R+. The kernels of this set satisfy two conditions:

ˆ xµ

0
Mµ(xµ − zµ)Kµ(zµ) dzµ = {1} =

{
1 if xµ ∈ (0, bµ − aµ]

0 if xµ /∈ (0, bµ − aµ]
, (1)

Mµ(xµ), Kµ(xµ) ∈ C−1(0, bµ − aµ], (2)

where f (xµ) ∈ C−1(0, bµ − aµ] if there is such a function g(xµ) ∈ C−1(0, bµ − aµ] that
f (xµ) = (xµ − aµ)

pµ g(xµ) with p > −1.
Nonlocality in space and time is characterized and described by kernel pairs of integral

and differential operators. Let us give some examples of kernel pairs (Mµ(xµ), Kµ(xµ))
that belong to the Luchko set (see Table 1 of [147] (pp. 5–7), Table 1 of [148] (p. 15), [149]
(p. 11), [144] (pp. 21–22), [145] (p. 10)). Note that we can also consider the kernel pairs
(Mµ,new = λ−1Kµ(xµ), Kµ,new = λMµ(xµ)), where (Mµ(xµ), Kµ(xµ)) are pairs of this list
of examples.

• An example of kernel pairs describing the power-law type of nonlocality.

Mµ(xµ) = hαµ(λxµ) =
(λ xµ)

αµ−1

Γ(αµ)
,

Kµ(xµ) = λ h1−αµ(λxµ) =
λ (λ xµ)

−αµ

Γ(1 − αµ)
. (3)
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• An example of kernel pairs describing gamma-distributed nonlocality.

Mµ(xµ) = hαµ ,λ(λ xµ) =
(λ xµ)

αµ−1

Γ(αµ)
e−λ xµ ,

Kµ(xµ) = λ h1−αµ ,λ(λxµ) +
λ

Γ(1 − αµ)
γ(1 − αµ, λxµ). (4)

• An example of kernel pairs describing the Mittag–Leffler type of nonlocality.

Mµ(xµ) = (λ xµ)
βµ−1 Eαµ ,βµ

[−(λ xµ)
αµ ],

Kµ(xµ) =
λ (λ xµ)

αµ−βµ

Γ(αµ − βµ + 1)
+

λ (λ xµ)
−βµ

Γ(1 − βµ + 1)
. (5)

• An example of kernel pairs describing the Bessel type of nonlocality.

Mµ(xµ) = (
√

λ xµ)
αµ−1 Jαµ−1(2

√
λ xµ),

Kµ(xµ) = λ (
√

λ xµ)
−αµ I−αµ(2

√
λ xµ). (6)

• An example of kernel pairs describing the hypergeometric type of nonlocality.

Mµ(xµ) = (λxµ)
αµ−1Φ(βµ, αµ;−λ xµ),

Kµ(xµ) =
λ sin(παµ)

π
(λ xµ)

−αµ Φ(−βµ, 1 − αµ;−λ xµ). (7)

• An example of kernel pairs describing the cosine type of nonlocality.

Mµ(xµ) =
cos(2

√
λ xµ)√

π λ xµ
, Kµ(xµ) =

λ cosh(2
√

λ xµ)√
π λ xµ

. (8)

Here, γ(β, x) is the incomplete gamma function; Eα,β[x] is the two-parameters Mittag–
Leffler function; Jν(x) is the Bessel function; Iν(x) is the modified Bessel function; Φ(β, α; x)
is the confluent hypergeometric Kummer function. The physical dimensions of the kernels
are [Mµ(xµ)] = [1] and [Kµ(xµ)] = [xµ]−1, where λ > 0, [λ] = [xµ]−1, 0 < αµ ≤ βµ < 1,
and xµ > 0.

The left-sided GFDs of the Riemann–Liouville (RL) and Caputo (C) types are defined as

(∂
(K)
µ,a+ f )(x) =

∂

∂xµ

ˆ xµ

aµ

dzµ Kµ(xµ − zµ) f (z), (9)

(∗∂
(K)
µ,a+ f )(x) =

ˆ xµ

aµ

dzµ Kµ(xµ − zµ)
∂ f (z)

∂zµ
, (10)

where aµ < xµ ≤ bµ, µ = 1, . . . n, and f (x) ∈ C1
−1(W+). The condition f (x) ∈ C1

−1(W+)
means that first-order partial derivatives of function f (x) can be represented as

∂ f (x)

∂xµ
= (xµ − aµ)

pµ g(x)

for all µ = 1, . . . n, where g(x) ∈ C(W+), pµ > − 1 and

W+ = {x : aµ < xµ ≤ bµ, µ = 1, . . . , n}.
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The right-sided GFDs of RL and C types are defined as

(∂
(K)
µ,b− f )(x) =

∂

∂xµ

ˆ bµ

xµ

dzµ Kµ(zµ − xµ) f (z), (11)

(∗∂
(K)
µ,b− f )(x) =

ˆ bµ

xµ

dzµ Kµ(zµ − xµ)
∂ f (z)

∂xµ
, (12)

where aµ ≤ xµ < bµ, µ = 1, . . . n, and f (x) ∈ C1
−1(W−). The condition f (x) ∈ C1

−1(W−)
means that first-order partial derivatives of function f (x) can be represented as

∂ f (x)

∂xµ
= (bµ − xµ)

pµ g(x)

for all µ = 1, . . . n, where g(x) ∈ C(W−), pµ > − 1 and

W− = {x : aµ ≤ xµ < bµ, µ = 1, . . . , n}.

The left-sided and right-sided GFIs are defined as

( I
(M),µ
a+ f )(x) =

ˆ xµ

aµ

dzµ Mµ(xµ − zµ) f (z) (13)

for f (x) ∈ C−1(W+) and

(I
(M),µ
b− f )(x) =

ˆ bµ

xµ

dzµ Mµ(zµ − xµ) f (z) (14)

for f (x) ∈ C−1(W−). Function f (x) belongs to the set C−1(W+), if it can be represented as

f (x1, . . . , xµ, . . . , xn) = (xµ − aµ)
pµ g(x)

for all µ = 1, . . . n, where g(x) ∈ C(W+), and pµ > − 1. Function f (x) belongs to the
set C−1(W−), if it can be represented as

f (x1, . . . , xµ, . . . , xn) = (bµ − xµ)
pµ g(x)

for all µ = 1, . . . n, where g(x) ∈ C(W−), and pµ > − 1.
Note some basic properties of GFDs and DFIs [165]:
(a) The GFIs satisfy the semi-group and commutativity properties, which are proved

as Proposition 3 in [165] (pp. 5–6).
(b) Equations expressing GFDs of the Riemann–Liouville type in terms of GFDs of the

Caputo type are proved as Proposition 4 in [165] (pp. 8–9).
(c) The GFDs satisfy rules of fractional integration by parts, which are proved as

Proposition 5 in [165] (p. 8).
(d) The GFIs satisfy rules of fractional integration by parts, which are proved as

Proposition 2 in [165] (p. 5).
(e) The fundamental theorems of GFC are proved as Theorems 1 and 2 in [165] (pp. 9–11).
For the derivation of field equations and equations of motions from the action prin-

ciple and from non-holonomic variational equation, and also for the proof of the general
fractional Noether theorem it is important the rules of integration by parts for GFDs and
GFIs. Let us write down these rules without proofs in the new notation. Equation of the
integration by parts for the left-sided GFDs of RL type is

ˆ bµ

aµ

dxµ f (x) (∂
(K)
µ,a+g)(x) =

ˆ bµ

aµ

dxµ g(x) (∗∂
(K)
µ,b− f )(x) +

ˆ bµ

aµ

∂

∂xµ

(
f (x) ( I

(K)
µ,a+g)(x)

)
dxµ, (15)
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where f (x) ∈ C1
−1[aµ, bµ) and g(x) ∈ C1

−1(aµ, bµ]. The inverse to Equation (15) with
redesignation of f and g is the equation of the integration by parts for the right-sided GFDs
of Caputo type

ˆ bµ

aµ

dxµ f (x) (∗∂
(K)
µ,b−g)(x) =

ˆ bµ

aµ

dxµ g(x) (∂
(K)
µ,a+ f )(x) −

ˆ bµ

aµ

∂

∂xµ

(
g(x) ( I

(K)
µ,a+ f )(x)

)
dxµ, (16)

where g(x) ∈ C1
−1[aµ, bµ) and f (x) ∈ C1

−1(aµ, bµ]. Equations (15) and (16) are proved as
Equations (28) and (32) in Proposition 5 of [165]. Equation of the integration by parts for
the left-sided GFDs of Caputo type is

ˆ bµ

aµ

dxµ f (x) (∗∂
(K)
µ,a+g)(x) =

ˆ bµ

aµ

dxµ g(x) (∂
(K)
µ,b− f )(x) +

ˆ bµ

aµ

∂

∂xµ

(
g(x) ( I

(K)
µ,b− f )(x)

)
dxµ, (17)

where f (x) ∈ C1
−1[aµ, bµ) and g(x) ∈ C1

−1(aµ, bµ]. The inverse to Equation (17) with
redesignation of f and g is the equation of the integration by parts for the right-sided GFDs
of RL type

ˆ bµ

aµ

dxµ f (x) (∂
(K)
µ,b−g)(x) =

ˆ bµ

aµ

dxµ g(x) (∗∂
(K)
µ,a+ f )(x) −

ˆ bµ

aµ

∂

∂xµ

(
f (x) ( I

(K)
µ,b−g)(x)

)
dxµ, (18)

where g(x) ∈ C1
−1[aµ, bµ) and f (x) ∈ C1

−1(aµ, bµ]. Equations (17) and (18) are proved as
Equations (29) and (30) in Proposition 5 of [165].

For further consideration, it is convenient to use the sum (or linear combination) of
Equations (15)–(18). For example,

ˆ bµ

aµ

dxµ

(
F1 (∂

(K)
µ,a+G1) + F2 (∂

(K)
µ,b−G2) + F3 (∗∂

(K)
µ,a+G3) + F4 (∗∂

(K)
µ,b−G4)

)
=

ˆ bµ

aµ

dxµ

(
G1 (∗∂

(K)
µ,b−F1) + G2 (∗∂

(K)
µ,a+F2) + G3 (∂

(K)
µ,b−F3) + G4 (∂

(K)
µ,a+F4)

)
+

ˆ bµ

aµ

∂

∂xµ

(
F1 ( I

(K)
µ,a+G1) − F2 ( I

(K)
µ,b−G2) + G3 ( I

(K)
µ,b−F3) − G4 ( I

(K)
µ,a+F4)

)
dxµ. (19)

Expressions of form (19) are very bulky, especially if we consider all possible sequential

action of two GFD on the field functions, for example, such as ∂
(K)
µ,a+ ∂

(K)
ν,a+, ∂

(K)
µ,a+ ∂

(K)
ν,b−, and

so on. To simplify equations, we use the notations

∂̂ := {∂̂(µ,q), q = 1, 2, 3, 4} = {∂
(K)
µ,a+, ∂

(K)
µ,b−, ∗∂

(K)
µ,a+, ∗∂

(K)
µ,b−}. (20)

The notation ∂̂(µ,q) means that q = 1 gives the left-sided GFD of RL type, q = 2 gives
the right-sided GFD of RL type, q = 3 gives the left-sided GFD of C type, q = 4 gives the
right-sided GFD of C type with respect to coordinate xµ. Let us also define the operator
notation with the reverse sequence

∂̂ † := {∂̂ †
(µ,q), q = 1, 2, 3, 4} = {∗∂

(K)
µ,b−, ∗∂

(K)
µ,a+, ∂

(K)
µ,b−, ∂

(K)
µ,a+.}. (21)

Note that
∂̂ †
(µ,q) = ∂̂ †

(µ,5−q), (q = 1, 2, 3, 4).

It should be noted the non-commutativity of the GFDs in the general case

∂̂(µ,q) ∂̂(ν,p) f (x) 6= ∂̂(ν,p) ∂̂(µ,q) f (x). (22)
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For GFIs, we can use the notations

Î := {Î(µ,q), q = 1, 2} = {I
(K)
µ,a+, I

(K)
µ,b−}, (23)

Î † := {Î †
(µ,q), q = 1, 2} = {I

(K)
µ,b−, I

(K)
µ,a+}. (24)

Note that
Î †
(µ,q) = Î(µ,3−q), (q = 1, 2).

Using the proposed notations, Equation (19) takes the form

ˆ bµ

aµ

( 4

∑
q=1

Fq ∂̂(µ,q) Gq

)
dxµ =

ˆ bµ

aµ

( 4

∑
q=1

Gq ∂̂ †
(µ,q) Fq

)
dxµ +

ˆ bµ

aµ

∂

∂xµ

( 2

∑
q=1

(−1)q+1
(

Fq Î(µ,q) Gq + Gq+2 Î
†
(µ,q) Fq+2

))
dxµ, (25)

if Fq(x) ∈ C1
−1(Wq) and Gq(x) ∈ C1

−1(W
†
q ), where Wq = W− for q = 1, 3 and Wq = W+

for q = 2, 4, W†
± = W†

∓, i.e., W†
q = W+ for q = 1, 3 and W†

q = W− for q = 2, 4.
It should be emphasized that GFIs in (25) contain kernels of GFDs.
In general, the Lagrangian density and the density of the non-holonomic functional

can depend not only on the GFDs, but also on the GFIs of fields. In this case, the rules of
integration by parts for GFIs (Proposition 2 in [165] (p. 5)) should be used by the equation

ˆ bµ

aµ

dxµ f (x) (I
(M)
µ,a+g)(x) =

ˆ bµ

aµ

dxµ g(x) (I
(M)
µ,b− f )(x), (26)

if f (x) ∈ C−1[aµ, bµ) and g(x) ∈ C−1(aµ, bµ]. The inverse to Equation (26) with redesig-
nation of f and g is

ˆ bµ

aµ

dxµ f (x) (I
(M)
µ,b−g)(x) =

ˆ bµ

aµ

dxµ g(x) (I
(M)
µ,a+ f )(x). (27)

if f (x) ∈ C−1(aµ, bµ] and g(x) ∈ C−1[aµ, bµ). For sum (or linear combinations) of the
left-sided and right-sided GFIs, we have the equation

ˆ bµ

aµ

( 2

∑
q=1

Fq Î(µ,q) Gq

)
dxµ =

ˆ bµ

aµ

( 2

∑
q=1

Gq Î
†
(µ,q) Fq

)
dxµ, (28)

if Fq(x) ∈ C−1(Wq) and Gq(x) ∈ C−1(W
†
q ), Equation can also be used for theories, in

which the Lagrangian density and the density of the non-holonomic functional depend on
the GFIs of fields.

3. Non-Holonomic Action Principle

The standard action principle is actively used in physics and mechanics and field
theory. This principle is represented by holonomic variational equations. It is well-known
that there are a lot of equations of motion and field equations that cannot be derived
from the standard action principle. Therefore it is important to have generalization of the
action principle.

In this section, we proposed to use the Sedov non-holonomic variational equations as
generalizations of the standard action principle. The proposed non-holonomic variational
equation is a fractional generalization, or more precisely a general fractional generalization,
of Sedov variational equations for general fractional field theory.
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Let a point x of space–time has coordinates xµ, where µ = 1, . . . , n and xµ are inde-
pendent variables. Fractional generalizations of the action principle and Noether’s theorem
are considered for tensor field U = U(x), where Uj(x) are components of this field and x is
a point of n-dimensional space. As a field Uj(x) , one can consider, for example, a scalar
field Uj(x) = Φ(x), a vector field Uj(x) = Vµ(x), a tensor field Uj(x) = Fµν.

For simplicity, the generalization of the action principle and the Noether theorem will
be considered for the region R in the form of a multi-dimensional box R in the Cartesian
coordinate system

R = {x : aµ ≤ xµ ≤ bµ, µ = 1, . . . , n}. (29)

To consider a wider class of areas, one should use orthogonal curvilinear coordinates
(OCC) and the methods described in work [140].

3.1. Variations of Fields and Coordinates

To derive GF field equations (or GF equation of motion) from the holonomic and
non-holonomic variational equations, the infinitesimal transformations of fields, its GFDs
and GFIs should be used

Uj(x) −→ U′
j(x) = Uj(x) + δ Uj(x), (30)

∂̂(µ,q)Uj(x) −→ ∂̂(µ,q)U
′
j
(x) = ∂̂(µ,q)Uj(x) + δ ∂̂(µ,q)Uj(x), (31)

Î(µ,q)Uj(x) −→ Î(µ,q)U
′
j
(x) = Î(µ,q)Uj(x) + δ Î(µ,q)Uj(x). (32)

To prove the Noether theorem, consider the infinitesimal transformations of coordi-
nates, fields and its GFDs and GFIs

xµ −→ x′
µ
= xµ + δ xµ, (33)

Uj(x) −→ U′
j(x′) = Uj(x) + δ Uj(x), (34)

∂̂(µ,q)Uj(x) −→ ∂̂(µ,q)U
′
j
(x′) = ∂̂(µ,q)Uj(x) + δ ∂̂(µ,q)Uj(x), (35)

Î(µ,q)Uj(x) −→ Î(µ,q)U
′
j
(x′) = Î(µ,q)Uj(x) + δ Î(µ,q)Uj(x), (36)

where the variations of the GFDs ∂̂(µ,q)Uj(x) and the GFIs Î(µ,q)Uj(x) cannot be represented
as the GFDs and GFIs of the variations δ Uj(x), i.e., we have the inequalities

δ ∂̂(µ,q) Uj(x) 6= ∂̂(µ,q) δ Uj(x), δ Î(µ,q) Uj(x) 6= Î(µ,q) δ Uj(x), (37)

that means the non-commutativity of ∂̂(µ,q), Î(µ,q), and δ.
Note that δ Uj(x) is the variation of the field functions Uj(x) due to both the change

in its form and the change in its argument. The variation due to the change in the form of
the field

δ Uj(x) = U′
j(x) − Uj(x) (38)

which commutates with GFDs ∂̂(µ,q) and GFIs Î(µ,q) by definition

δ ∂̂(µ,q)Uj(x) = ∂̂(µ,q) δ Uj(x), (39)

δ Î(µ,q)Uj(x) = Î(µ,q) δ Uj(x). (40)
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The variation
δ Uj(x) = U′

j(x′) − Uj(x)

can be represented as

δ Uj(x) = δ Uj(x′) + Uj(x′) − Uj(x) = δ Uj(x′) + ∂µUj(x) δxµ, (41)

where the first-order derivative ∂µ is used, since δ is standard variation of the first-order.
In the derivation of the field equations, the variations of the holonomic and non-

holonomic functionals are realized due to a change in the forms of the fields and their
GFDs and GFIs. These variations are denoted as δ Uj(x) and δ Uj(x). Since the coordinates
xµ do not participate in the variation, the integration limits remained fixed. Therefore,
the variations of the the holonomic functional (action) is completely determined by the
variation of the Lagrangian density. Since the field functions on the boundaries of the
integration regions remain fixed, the integral over the surface, which bounds the region of
integration, vanishes.

In the proof of the Noether’s theorem, the coordinates are involved in the variation
in addition to the variation of field functions. Such variations of fields Uj are denoted as
δ Uj. The variation of coordinates leads to the fact that the limits of integration are changed.
Therefore, the result of the variation takes a different form.

3.2. Field Equations from Non-Holonomic Variational Equation

In the general case, to derive the field equation one can use the Sedov non-holonomic
variational equation

δ S + δ W∗ = 0, (42)

where δ S is a variation of the holonomic functional

δ S = δ

ˆ

R
Λ(x, U, ∂̂U, ÎU) dnx =

ˆ

R
δ Λ(x, U, ∂̂U, ÎU) dnx (43)

with Lagrangian density Λ(x, U, ∂̂U, ÎU) = Λ(x, {Uj(x)}, {∂̂(µ,q)Uj(x)}, {Î(µ,q)Uj(x)}),

and δ W∗ is the non-holonomic functional

δ W∗ =

ˆ

R
δW∗ dnx =

ˆ

R

(
Bj(x, U, ∂̂U, ÎU) δ Uj(x) +

4

∑
j=1

C
j µ
q (x, U, ∂̂U, ÎU) δ ∂̂(µ,q)Uj(x) +

2

∑
j=1

A
j µ
q (x, U, ∂̂U, ÎU) δ Î(µ,q)Uj(x)

)
dnx (44)

with density δW∗. Here, the following notations are used

∂̂U := {∂̂(µ,q) Uj} = {∂
(K)
µ,a+ Uj, ∂

(K)
µ,b− Uj, ∗∂

(K)
µ,a+ Uj, ∗∂

(K)
µ,b− Uj}, (45)

ÎU := {I
(M)
µ,a+ Uj, I

(M)
µ,b− Uj}. (46)

and
∂̂2 U := {∂̂(ν,p) ∂̂(µ,q) Uj}, Î2 U := {∂̂(ν,p) ∂̂(µ,q) ∂̂(ν,p) Uj}. (47)

In general, Bj δ Uj = gij Bi δ Uj and C
j µ
q δ ∂̂(µ,q)Uj(x) = gij Cmu

q ,j δ ∂̂(µ,q)Uj(x), where

gij = gij(x) is a metric tensor. Note that summations are implied over repeated indices.
The symbol ∑q=1 for the sum over indices q is given explicitly, since the upper limit of
summation is different for GFDs and GFIs.
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The non-holonomic functional contains the functions Bj = Bj(x, U, ∂̂U, ÎU), C
j µ
q =

C
j µ
q (x, U, ∂̂U, ÎU) and A

j µ
q = A

j µ
q (x, U, ∂̂U, ÎU) that cannot be represented as

Bj =
∂ F

∂Uj
, C

j µ
q =

∂ F

∂ ∂̂(µ,q)Uj

, A
j µ
q =

∂ F

∂ Î(µ,q)Uj

(48)

with a function F = F(x, U, ∂̂U, ÎU). If all conditions (48) are satisfied, then δ W∗ is holo-
nomic functional.

Theorem 1. Let the GF action functional be defined by Equation (43) and the GF non-holonomic

functional be defined as (44), where Λ(x, U, ∂̂U, ÎU), Bj(x, U, ∂̂U, ÎU), C
j µ
q (x, U, ∂̂U, ÎU),

A
j µ
q (x, U, ∂̂U, ÎU) are continuously differentiable function with respect to its arguments Uj(x),

∂̂(µ,q)Uj(x), Î(µ,q)Uj(x), and

∂Λ

∂ ∂̂(µ,q)Uj

∈ C1
−1(Wq), C

j µ
q ∈ C1

−1(Wq), (49)

∂Λ

∂ Î(µ,q)Uj

∈ C−1(Wq), A
j µ
q ∈ C−1(Wq). (50)

If the variation of the fields δ Uj(x) and δ(Î(µ,q) Uj)(x) are equal to zero on the boundaries of
the region R, then the field equations (equations of motion) have the form

(
∂Λ

∂Uj
+ Bj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

)
= 0, (51)

where j = 1, . . . , m, and the summation over the index µ from 1 to n is implied.

Proof. The variation of Λ is represented as

δ Λ(x, U, ∂̂U, ÎU) =

∂Λ

∂Uj
δ Uj(x) +

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

δ ∂̂(µ,q)Uj(x) +
2

∑
q=1

∂Λ

∂ Î(µ,q)Uj

δ Î(µ,q)Uj(x) =

∂Λ

∂Uj
δ Uj(x) +

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

∂̂(µ,q) δUj(x) +
2

∑
q=1

∂Λ

∂ Î(µ,q)Uj

Î(µ,q) δUj(x), (52)

where the properties δ ∂̂(µ,q) Uj = ∂̂(µ,q) δ Uj and δ Î(µ,q) Uj = Î(µ,q) δUj(x) are used.

Equation (52) describes the variation of Λ due to variations in the forms of Uj(x), ∂̂(µ,q)Uj(x)

and Î(µ,q)Uj(x).
Similarly, we obtain the expression

δW = Bj δ Uj(x) +
4

∑
q=1

C
j µ
q δ ∂̂(µ,q)Uj(x) +

2

∑
q=1

A
j µ
q δ Î(µ,q)Uj(x) =

Bj δ Uj(x) +
4

∑
q=1

C
j µ
q ∂̂(µ,q) δUj(x) +

2

∑
q=1

A
j µ
q Î(µ,q) δUj(x). (53)

Note that the GFIs in (53) contain the kernel Mµ(xµ).
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The rules of integration by parts for GFDs (25) give

ˆ

R

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

∂̂(µ,q) δUj(x) dnx =
4

∑
q=1

ˆ

R
∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

)
δUj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(( ∂Λ

∂ ∂̂(µ,q)Uj

)
(Î(µ,q) δUj)(x) + δUj(x) Î †

(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

))
dnx. (54)

Similarly, we obtain the expression

ˆ

R

4

∑
q=1

C
j µ
q (∂̂(µ,q) δUj)(x) dnx =

4

∑
q=1

ˆ

R
(∂̂ †

(µ,q) C
j µ
q ) δUj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(

C
j µ
q (Î(µ,q) δUj)(x) + (Î †

(µ,q) C
j,µ
q+2) δUj(x)

)
dnx. (55)

Note that in Equations (54) and (55), the GFIs contain the GFD kernel Kµ(xµ).
The rules of integration by parts GFIs (28) give

2

∑
q=1

ˆ

R

∂Λ

∂ Î(µ,q)Uj

Î(µ,q) δUj(x) dnx =
2

∑
q=1

ˆ

R
Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

)
δUj(x) dnx. (56)

Similarly, we obtain

2

∑
q=1

ˆ

R
A

j µ
q (Î(µ,q) δUj)(x) dnx =

2

∑
q=1

ˆ

R
(Î †

(µ,q) A
j µ
q ) δUj(x) dnx. (57)

In Equations (56) and (57), the GFIs contain the GFI kernel Mµ(xµ).
As a result, the left-hand side of the non-holonomic variational Equation (42) takes

the form

δ S + δ W∗ =

ˆ

R

(
∂Λ

∂Uj
+ Bj

)
δ Uj(x) dnx +

ˆ

R

(
4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

))
δ Uj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(( ∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
(Î(µ,q) δUj)(x) +

δUj(x) Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

))
dnx. (58)

The standard Gauss theorem can be used to transform the divergence in Equation (58)
and obtain

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(( ∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
(Î(µ,q) δUj)(x) +

δUj(x) Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

))
dnx =

ˆ

∂R

2

∑
q=1

(−1)q+1
(( ∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
(Î(µ,q) δUj)(x) +
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δUj(x) Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

))
dn−1x, (59)

where ∂R is the boundary of the region R.
To derive field equations, we can use assumption that the variation of the fields δ Uj(x)

are equal to zero on the boundaries of the region R, one can obtain the field equations.

δ Uj(x) = 0 for x ∈ ∂R. (60)

Let us also assume the conditions

δ(Î(µ,q) Uj)(x) = (Î(µ,q) δUj)(x) = 0 for x ∈ ∂R, q = 1 and q = 2 (61)

are satisfied.
As a result, Equations (42) and (58) give the field equations

(
∂Λ

∂Uj
+ Bj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

)
= 0, (62)

where the functions Bj = Bj(x, U, ∂̂U, ÎU), C
j µ
q = C

j µ
q (x, U, ∂̂U, ÎU) and A

j µ
q = A

j µ
q (x,

U, ∂̂U, ÎU) cannot be represented in form (48). In Equation (62), the summations are
implied over repeated indices µ = 1, . . . , n.

Remark 1. There is a problem for term (54) with (Î(µ,q) δUj)(x) since the applicability of the
conditions (61) are not obvious, in the general case. In the case of constructing general fractional
field models, in which condition (61) cannot be satisfied on the boundaries of the region R, we should

consider only models with C
j µ
q = 0 for q = 1 2 and the Lagrangian density Λ independent of the

GFDs ∂̂(µ,q)Uj for q = 1 2. If conditions (60) and (61) are satisfied, then expression (59) is equal
to zero.

3.3. Remark about Functionals with ∂̂ 2Uj, Î
2Uj

Let us make a remark about the dependence of the functional and the function on

∂̂2Uj, Î
2Uj. One can consider theories, in which the Lagrangian density Λ depends on

∂̂(ν,p) ∂̂(µ,q) Uj(x), Î(ν,p) Î(µ,q) Uj(x) and the non-holonomic functional depends on the varia-

tion on δ ∂̂(ν,p) ∂̂(µ,q) Uj(x), δ Î(ν,p) Î(µ,q) Uj(x).
Using equation of (55) of the integration of GFDs by parts twice, we obtain the equation

ˆ

R

4

∑
q,p=1

C
j µν
q,p δ (∂̂(ν,p) ∂̂(µ,q) Uj)(x) dnx =

ˆ

R

4

∑
q,p=1

C
j µν
q,p (∂̂(ν,p) ∂̂(µ,q) δUj)(x) dnx =

4

∑
q,p=1

ˆ

R
(∂̂ †

(ν,p) C
j µν
q,p ) ∂̂(µ,q) δUj(x) dnx +

ˆ

R

∂

∂xν

4

∑
q=1

2

∑
p=1

(−1)p+1
(

C
j µν
q,p (Î(ν,p) ∂̂(µ,q) δUj)(x) + (Î †

(ν,p) C
j µν
q+2,p) (∂̂(µ,q)δUj)(x)

)
dnx, (63)

where
4

∑
q,p=1

ˆ

R
(∂̂ †

(ν,p) C
j µν
q,p ) ∂̂(µ,q) δUj(x) dnx =

4

∑
q,p=1

ˆ

R
(∂̂ †

(µ,q) ∂̂ †
(ν,p) C

j µν
q,p ) δUj(x) dnx +
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ˆ

R

∂

∂xµ

4

∑
p=1

2

∑
q=1

(−1)q+1
(
(∂̂ †

(ν,p)C
j µν
q,p ) (Î(µ,q) δUj)(x) + (Î †

(µ,q) ∂̂ †
(ν,p) C

j µν
q+2,p) δUj(x)

)
dnx. (64)

As a result, we have

ˆ

R

4

∑
q=1

C
j µν
q,p δ (∂̂(ν,p) ∂̂(µ,q) Uj)(x) dnx =

4

∑
q=1

ˆ

R
(∂̂ †

(µ,q) ∂̂ †
(ν,p) C

j µν
q,p ) δUj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

4

∑
p=1

(−1)q+1
(
(∂̂(µ,q)C

j µν
q,p ) (Î(ν,p) δUj)(x) + (Î †

(ν,p) ∂̂(µ,q) C
j µν
q+2,p) δUj(x)

)
dnx +

ˆ

R

∂

∂xµ

4

∑
q=1

2

∑
p=1

(−1)p+1
(

C
j νµ
q,p (Î(µ,p) ∂̂(ν,q) δUj)(x) + (Î †

(µ,p) C
j νµ
q+2,p) (∂̂(ν,q)δUj)(x)

)
dnx. (65)

Equation (65) is valid for wide class of functions C
j µν
q,p = C

j µν
q,p (x, U, ∂̂U, ∂̂2U) as

well as for the derivative of the Lagrangian density. Therefore, Equation (65) holds at
the replacement

C
j µν
q,p −→

∂Λ

∂ ∂̂(ν,p) ∂̂(µ,q)Uj

. (66)

Using equation of (57) of the integration of GFDs by parts twice, we obtain the equation

2

∑
q=1

ˆ

R
A

j µν
q,p (Î(ν,p) Î(µ,q) δUj)(x) dnx =

2

∑
q=1

ˆ

R
(Î †

(µ,q) Î
†
(ν,p) A

j µν
q,p ) δUj(x) dnx. (67)

Equation (67) is satisfied for wide class of functions A
j µν
q,p = A

j µν
q,p (x, U, ∂̂U, ∂̂2U) as

well as for the derivative of the Lagrangian density. Therefore, Equation (67) holds at
the replacement

A
j µν
q,p −→

∂Λ

∂ Î(ν,p) Î(µ,q)Uj

. (68)

To derive field equations in this case, one should assume that the variation of the
fields δ Uj(x) and its GFDs and GFIs with kernels Kµ(x) are equal to zero on the region
boundaries ∂R , one can obtain the field equations.

δ Uj(x) = 0, (∂̂(ν,q)δUj)(x) = 0 for x ∈ ∂R, (69)

(Î(ν,p) δUj)(x) = 0, (Î(µ,p) ∂̂(ν,q) δUj)(x) = 0 for x ∈ ∂R. (70)

As a result, the non-holonomic variational equation gives the field equations

(
∂Λ

∂Uj
+ Bj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

)
+

4

∑
q,p=1

∂̂ †
(µ,q) ∂̂ †

(ν,p)

(
∂Λ

∂ ∂̂(ν,p) ∂̂(µ,q)Uj

+ C
j µν
q,p

)
+

2

∑
q,p=1

Î †
(µ,q) Î

†
(ν,p)

(
∂Λ

∂ Î(ν,p) Î(µ,q)Uj

+ A
j µν
q,p

)
= 0. (71)

One can consider general fractional field theories with the dependencies of the

functional and the density functions on the pairs of GFIs and GFDs: ∂̂(µ,q) Î(ν,p) Uj and

Î(ν,p)∂̂(µ,q) Uj.
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4. General Fractional Noether Theorem

The standard first Noether theorem states that to every finite-parameter (depending
on s constant parameters) continuous transformation of fields and coordinates, which
ensures that the variation of the action S is zero, there correspond s dynamic invariants, i.e.,
combinations of fields and their derivatives that are conserved in time [1] (pp. 16–17).

Using non-holonomic variational equations and general fractional calculus, a general-
ization of the standard and fractional Noether theorems is proposed and proved.

4.1. General Fractional Noether Theorem and Its Proof

The general fractional Noether theorem states the following. For every finite-parameter
(depending on constant parameters) continuous transformation of fields and coordinates, which
ensures that the non-holonomic variational equation holds, there correspond dynamic invariants.

Similarly to the classical work of Bogoliubov and Shirkov [1] (pp. 15–24), we will
carry out the proof of Noether’s theorem in a general form, without specifying the type of
transformations under which the non-holonomic variational equation is satisfied for the
fields under consideration. This general consideration has the advantage that it allows one
to obtain not only a mathematical formulation of the conservation laws that follow from
the space–time symmetry, but also, if necessary, to use the general results of the theorem
for cases not related to space-time transformations. For example, using this approach to
Noether’s theorem, one can relate the conservation law of the so-called isotopic spin to the
symmetry of some conditional isotopic space. This law, in particular, can be used to derive
the law of conservation of charge [1].

In the proposed general formulation of Noether’s theorem, the condition that the
sum of the variations of the action and the non-holonomic functional vanishes means the
vanishing of the sum of small changes in the action and the non-holonomic functional due
to infinitesimal transformations of coordinates and functions, i.e., the fulfillment of the non-
holonomic variational equation with these transformations. The generality of Noether’s
theorem is that the theorem is valid for all continuous transformations for which the
non-holonomic variational equation is satisfied when considering any systems and fields.

We will consider a group of continuous transformations with a finite number of
parameters ωm, m = 1, . . . , s. The infinitesimal transformations of coordinates and fields

xµ −→ x′
µ
= xµ + δ xµ, (72)

Uj(x) −→ U′
j(x′) = Uj(x) + δ Uj(x). (73)

The variations δ xµ and δ Uj(x) can be expressed in terms of the infinitesimal linearly
independent transformation parameters ωm, m = 1, . . . , s, by the equations

δ xµ =
s

∑
m=1

X
µ

(m)
(x) δ ωm, (74)

δ Uj(x) =
s

∑
m=1

Yj (m)(x) δ ωm. (75)

The indices j and (m) of the fields Uj(x) and the transformation parameters ωm can
have a simple tensorial one. The repeated indices mean the summation. Substitution of
Equations (74) and (75) into Equations (72) and (73) gives

xµ −→ x′
µ
= xµ +

s

∑
m=1

X
µ

(m)
(x) δ ωm, (76)

Uj(x) −→ U′
j(x′) = Uj(x) +

s

∑
m=1

Yj (m)(x) δ ωm. (77)
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The variations δ and δ are connected as

δ Uj(x) = δ Uj(x) + ∂νUj δxν, (78)

δ ∂̂(µ,q)Uj(x) = δ (∂̂(µ,q)Uj)(x) + ∂ν (∂̂(µ,q)Uj)(x) δxν, (79)

δ Î(µ,q)Uj(x) = δ (Î(µ,q)Uj)(x) + ∂ν (Î(µ,q)Uj)(x) δxν, (80)

where ∂ν = ∂/∂xν is the standard first-order derivative with respect to xν.
To prove the general fractional Noether theorem, let us use the Sedov non-holonomic

variational equation
δ S + δ W∗ = 0, (81)

where the variation of the action functional is

δ S = δ

ˆ

R
Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) dnx :=

ˆ

R
Λ(x′, U′

j(x′), ∂̂′(µ,q)U
′
j(x′), Î′(µ,q)Uj(x′)) dnx′ −

ˆ

R
Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) dnx, (82)

and the variation of non-holonomic functional δ W∗ is

δ W∗ =

ˆ

R

(
Bj(x, U, ∂̂U, ÎU) δ Uj(x) +

4

∑
q=1

C
j µ
q (x, U, ∂̂U, ÎU) δ ∂̂(µ,q)Uj(x) +

2

∑
q=1

A
j µ
q (x, U, ∂̂U, ÎU) δ Î(µ,q)Uj(x) + Eµ(x, U, ∂̂U, ÎU, . . . ) δ xµ

)
dnx. (83)

Note that δ S 6= δ S, and δ W∗ 6= δ W∗, in the general case.

In Equation (83), the functions Bj = Bj(x, U, ∂̂U, ÎU), C
j µ
q = C

j µ
q (x, U, ∂̂U, ÎU) and

A
j µ
q = A

j µ
q (x, U, ∂̂U, ÎU) cannot be represented as

Bj =
∂ F

∂Uj
, C

j µ
q =

∂ F

∂ ∂̂(µ,q)Uj

, A
j µ
q =

∂ F

∂ Î(µ,q)Uj

(84)

with a function F = F(x, U, ∂̂U, ÎU).
Note that the function Eµ = Eµ(x, U, ∂̂U, ÎU, . . . ) is not used in the non-holonomic

variational equation of GF action principle to drive field equations, and the term with
Eµ is absent in the field equations. Therefore, the function Eµ generates some additional
arbitrariness in the definition of the non-holonomic functional δ W∗. This arbitrariness can
be used to simplify the consideration. Using Equations (78)–(80), which express variations
δ through variations δ, Equation (83) takes the form

δ W∗ = δ W∗ +

ˆ

R

(
Bj ∂νUj(x) +

4

∑
q=1

C
j µ
q ∂ν (∂̂(µ,q)Uj)(x) +

2

∑
q=1

A
j µ
q ∂ν (Î(µ,q)Uj)(x) + Eν

)
δ xν dnx, (85)
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where δ W∗ is defined by Equation (44). Equation (85) allows us to simplify the considera-
tion by assuming that

Eν = − Bj ∂νUj(x) −
4

∑
q=1

C
j µ
q ∂ν (∂̂(µ,q)Uj)(x) −

2

∑
q=1

A
j µ
q ∂ν (Î(µ,q)Uj)(x). (86)

Assumption (86) leads to

δ W∗ = δ W∗ =

ˆ

R

(
Bj δ Uj(x) +

4

∑
q=1

C
j µ
q δ (∂̂(µ,q)Uj)(x) +

2

∑
q=1

A
j µ
q δ (Î(µ,q)Uj)(x)

)
dnx, (87)

where the summation over the index µ from 1 to n is implied.
The general fractional Noether theorem can be presented in the form.

Theorem 2. Let the variation of GF action functional be defined by Equation (82) and the variation
of the GF non-holonomic functional be defined as (83) with condition (86), where Λ(x, U, ∂̂U, ÎU),

Bj(x, U, ∂̂U, ÎU), C
j µ
q (x, U, ∂̂U, ÎU), A

j µ
q (x, U, ∂̂U, ÎU) are continuously differentiable func-

tion with respect to its argument, and

∂Λ

∂ ∂̂(µ,q)Uj

∈ C1
−1(Wq),

∂Λ

∂ Î(µ,q)Uj

∈ C−1(Wq), (88)

C
j µ
q ∈ C1

−1(Wq), A
j µ
q ∈ C−1(Wq). (89)

Let field equations (equations of motion) (51) be satisfied also.
For every finite-parameter (depending on constant parameters) continuous transformation

of fields and coordinates in forms (76) and (77), which ensures that the non-holonomic variational
Equation (81) holds, there correspond dynamic invariants

C(m)(t) =

ˆ

∂R
Θ

µ

(m)
(x) dn−1 x (m = 1 . . . , s) (90)

are independent of time xn = t, where

Θ
µ

(m)
(x) = − ∑

j

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
Î(µ,q)

(
Yj (m) − (∂α Uj) Xα

(m)

)
−

∑
j

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

)(
Yj (m) − (∂αUj) Xα

(m)

)
− Λ X

µ

(m)
. (91)

Proof. The sum of variation of the action functional (82) and non-holonomic functional (87)
can be written as

δ S + δ W∗ = A1 + A2 + A3, (92)

where

A1 =

ˆ

R
δ Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) dnx, (93)

A2 =

ˆ

R
Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) dnx′ −

ˆ

R
Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) dnx, (94)

A3 =

ˆ

R

(
Bj δ Uj(x) +

4

∑
q=1

C
j µ
q δ (∂̂(µ,q)Uj)(x) +

2

∑
q=1

A
j µ
q δ (Î(µ,q)Uj)(x)

)
dnx. (95)
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STEP 1. Let us consider the term A1. Using Equations (78)–(80), the variation of the
Lagrangian density is

δ Λ(x, Uj(x), ∂̂(µ,q)Uj(x), Î(µ,q)Uj(x)) =

∂Λ

∂xµ δ xµ +
∂Λ

∂Uj
δ Uj +

∂Λ

∂ ∂̂(µ,q)Uj

δ ∂̂(µ,q)Uj +
∂Λ

∂ Î(µ,q)Uj

δ Î(µ,q)Uj =

∂Λ

∂xµ δ xµ +
∂Λ

∂Uj

(
δ Uj(x) + ∂µUj(x) δxµ

)
+

∂Λ

∂ ∂̂(µ,q)Uj

(
δ ∂̂(µ,q)Uj(x) + ∂ν ∂̂(µ,q)Uj(x) δxν

)
+

∂Λ

∂ Î(µ,q)Uj

(
δ Î(µ,q)Uj(x) + ∂ν Î(µ,q)Uj(x) δxν

)
. (96)

As a result, the term A1 can be written as

A1 =

ˆ

R
δ Λ(x, U, ∂̂U, ÎU) dnx =

ˆ

R

(
δ Λ(x, U, ∂̂U, ÎU) +

d

dxµ Λ(x, U, ∂̂U, ÎU) δxµ
)

dnx, (97)

where δ Λ is the variation of Λ due to variations in the field forms of Uj(x), ∂̂(µ,q)Uj(x) and

Î(µ,q)Uj(x) such that

δ Λ(x, U, ∂̂U ÎU) =
∂Λ

∂Uj
δ Uj(x) +

∂Λ

∂ ∂̂(µ,q)Uj

δ ∂̂(µ,q)Uj(x) +
∂Λ

∂ Î(µ,q)Uj

δ Î(µ,q)Uj(x), (98)

and the term dΛ/dxµ is the total variation due to variations in the coordinates:

d

dxµ Λ(x, U(x), ∂̂U(x), ÎU(x)) =

∂Λ

∂xµ +
∂Λ

∂Uj

∂Uj

∂xµ +
∂Λ

∂ ∂̂(ν,p)Uj

∂ ∂̂(ν,p)Uj

∂xµ +
∂Λ

∂ Î(ν,p)Uj

∂ Î(ν,p)Uj

∂xµ . (99)

STEP 2. Let us consider the term A2. Using the equation

det ‖
∂ x′ µ

∂ xν
‖ = exp

(
Sp ln

(
‖

∂ x′ µ

∂ xν
‖

))
,

and the linear approximation

‖
∂ x′ µ

∂ xν
‖ ≈ ‖δ

µ
ν +

∂δxµ

∂xν
‖,

we get

dnx′ = dx′0 dx′1 dx′2 dx′3 = det ‖
∂ x′ µ

∂ xν
‖ dnx ≈

(
1 +

∂δxµ

∂xµ

)
dnx. (100)

As a result, the term A2, which describes the difference between the two terms that
describes the variation in the region of integration, can be written as

A2 =

ˆ

R
Λ(x, U, ∂̂U, ÎU)

∂δxµ

∂xµ dnx. (101)
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Then, the variation of the action functional δ S = A1 + A2 can be written as

A1 + A2 =

ˆ

R

(
δ Λ(x, U, ∂̂U, ÎU) +

d Λ(x, U, ∂̂U, ÎU)

dxµ δ xµ + Λ(x, U, ∂̂U, ÎU)
∂δxµ

∂xµ

)
dnx =

ˆ

R

(
δ Λ(x, U, ∂̂U, ÎU) +

d

dxµ

(
Λ(x, U, ∂̂U, ÎU) δ xµ

))
dnx. (102)

STEP 3. Let us consider the first term of Equation (102). Using the properties δ ∂̂(µ,q) Uj =

∂̂(µ,q) δ Uj and δ Î(µ,q) Uj = Î(µ,q) δUj(x), the first term of Equation (102) is the variation of
Λ gives

ˆ

R

(
δ Λ(x, U, ∂̂U, ÎU)

)
dnx =

ˆ

R

( ∂Λ

∂Uj
δ Uj(x) +

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

δ ∂̂(µ,q)Uj(x) +
2

∑
q=1

∂Λ

∂ Î(µ,q)Uj

δ Î(µ,q)Uj(x)
)

dnx =

ˆ

R

( ∂Λ

∂Uj
δ Uj(x) +

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

∂̂(µ,q) δUj(x) +
2

∑
q=1

∂Λ

∂ Î(µ,q)Uj

Î(µ,q) δUj(x)
)

dnx. (103)

Equation (103) describes the variation of Λ due to variations in the forms of Uj(x),

∂̂(µ,q)Uj(x) and Î(µ,q)Uj(x).
Using the rules of integration by parts for GFDs (25), the second term of (103) is

ˆ

R

4

∑
q=1

∂Λ

∂ ∂̂(µ,q)Uj

∂̂(µ,q) δUj(x) dnx =
4

∑
q=1

ˆ

R
∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

)
δUj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(( ∂Λ

∂ ∂̂(µ,q)Uj

)
(Î(µ,q) δUj)(x) + δUj(x) Î †

(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

))
dnx. (104)

Using the rules of integration by parts for GFIs (28), the third term of (103) is

2

∑
q=1

ˆ

R

∂Λ

∂ Î(µ,q)Uj

Î(µ,q) δUj(x) dnx =
2

∑
q=1

ˆ

R
Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

)
δUj(x) dnx. (105)

As a result, we obtain
A1 + A2 =

ˆ

R

(( ∂Λ

∂Uj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

))
δ Uj(x) dnx +

ˆ

R

∂

∂xµ

( 2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uj

)
(Î(µ,q) δUj)(x) +

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

)
δUj(x) + Λ δxµ

)
dnx. (106)
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STEP 4. Using the properties δ ∂̂(µ,q) Uj = ∂̂(µ,q) δ Uj and δ Î(µ,q) Uj = Î(µ,q) δUj(x),
we obtain the expression

A3 =

ˆ

R

(
Bj δ Uj(x) +

4

∑
q=1

C
j µ
q δ (∂̂(µ,q)Uj)(x) +

2

∑
q=1

A
j µ
q δ (Î(µ,q)Uj)(x)

)
dnx =

ˆ

R

(
Bj δ Uj(x) +

4

∑
q=1

C
j µ
q ∂̂(µ,q) δUj(x) +

2

∑
q=1

A
j µ
q Î(µ,q) δUj(x)

)
dnx. (107)

Using the rules of integration by parts for GFDs (25), the second term of Equation (107) is

ˆ

R

4

∑
q=1

C
j µ
q ∂̂(µ,q) δUj(x) dnx =

4

∑
q=1

ˆ

R
∂̂ †
(µ,q) C

j µ
q δUj(x) dnx +

ˆ

R

∂

∂xµ

2

∑
q=1

(−1)q+1
(

C
j µ
q (Î(µ,q) δUj)(x) + (Î †

(µ,q) C
j,µ
q+2) δUj(x)

)
dnx. (108)

Using the rules of integration by parts for GFIs (28), the third term of Equation (107) is

2

∑
q=1

ˆ

R
A

j µ
q Î(µ,q) δUj(x) dnx =

2

∑
q=1

ˆ

R
Î †
(µ,q) A

j µ
q δUj(x) dnx. (109)

As a result, we obtain

A3 =

ˆ

R

(
Bj +

4

∑
q=1

∂̂ †
(µ,q)C

j µ
q +

2

∑
q=1

Î †
(µ,q)A

j µ
q

)
δ Uj(x) dnx +

ˆ

R

∂

∂xµ

( 2

∑
q=1

(−1)q+1 C
j µ
q (Î(µ,q) δUj)(x) +

2

∑
q=1

(−1)q+1 Î †
(µ,q) C

j µ
q+2 δUj(x) + Λ δxµ

)
dnx. (110)

STEP 5. Using Equations (106) and (110), the left hand side of the non-holonomic
variational Equation (81) takes the form

δ S + δ W∗ = A1 + A2 + A3 =

ˆ

R

(( ∂Λ

∂Uj
+ Bj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

))
δ Uj(x) dnx +

ˆ

R

∂

∂xµ

( 2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
(Î(µ,q) δUj)(x) +

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

)
δUj(x) + Λ δxµ

)
dnx. (111)

Using the field equations

(
∂Λ

∂Uj
+ Bj

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
+

2

∑
q=1

Î †
(µ,q)

(
∂Λ

∂ Î(µ,q)Uj

+ A
j µ
q

)
= 0,
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expression (111) takes the form

δ S + δ W∗ =

ˆ

R

∂

∂xµ

( 2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
(Î(µ,q) δUj)(x) +

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

)
δUj(x) + Λ δxµ

)
dnx. (112)

STEP 6. Substitution of Equations (74) and (75) into Equations (78) and (80) gives

δ Uj(x) = δ Uj(x) − ∂νUj(x) δxν =
s

∑
m=1

(
Yj (m)(x) − ∂νUj(x) Xν

(m)(x)
)

δ ωm, (113)

and
δ Î(µ,q) Uj(x) = Î(µ,q) δ Uj(x) = Î(µ,q)

(
δ Uj(x) − ∂ν Uj(x) δxν

)
=

s

∑
m=1

ωm Î(µ,q)

(
Yj (m)(x) − ∂ν Uj(x) X

µ

(m)
(x)
)

, (114)

where the property
(Î(µ,q) δUj)(x) = δ(Î(µ,q) Uj)(x)

is used.
As a result, using transformations (74) and (75), and Equations (113) and (114) one

can obtain

δ S + δ W∗ = −
s

∑
m=1

ˆ

R

(
∂

∂xµ Θ
µ

(m)
(x)

)
dnx δωm, (115)

where

Θ
µ

(m)
(x) = − ∑

j

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uj

+ C
j µ
q

)
Î(µ,q)

(
Yj (m) − (∂α Uj) Xα

(m)

)
−

m

∑
j=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uj

+ C
j µ
q+2

)(
Yj (m) − (∂αUj) Xα

(m)

)
− Λ X

µ

(m)
, (116)

and Λ = Λ(x, U, ∂̂U, ÎU), Cj µ = Cj µ(x, U, ∂̂U, ÎU). In Equation (116), summation over
j is highlighted in order to emphasize the absence of summation over µ.

STEP 7. Using the non-holonomic variational Equation (81), and the independence of
the transformation parameters, we obtain

ˆ

R

(
∂

∂xµ Θ
µ

(m)
(x)

)
dnx = 0. (117)

Using that the region R of integration is arbitrary, Equation (117) gives the conserved
current equation

∂

∂xµ Θ
µ

(m)
(x) = 0 (118)

for all x ∈ R, where summation over a repeating index µ is assumed.
STEP 8. The standard Gauss theorem can be used to transform the right-hand side of

Equation (117) and to obtain the conservation laws for the corresponding surface integrals.
Let us assume that the integral in (117) is valuated over a region that expands without
limit in space-like directions, but is bounded in time-like directions by space-like (n − 1)-
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dimensional surfaces σ1, σ2, and let the field be equal to zero on the boundaries of the
spatial region. Then, one can obtain

ˆ

σ1

Θ
µ

(m)
(x) d σµ −

ˆ

σ2

Θ
µ

(m)
(x) d σµ = 0, (119)

where d σµ is the projection of the surface area element σ onto the (n − 1)-dimensional
plane perpendicular to the xµ-axis. Equation (119) means that the surface integrals

C(m)(σ) =

ˆ

σ
Θ

µ

(m)
(x) d σµ (120)

are independent of the surface σ. In the special case, where the surfaces are the (n − 1)-
dimensional planes xn = t = const, the integral is calculated over the (n − 1)-dimensional
configuration space, and the integrals

C(m)(t) =

ˆ

∂R
Θ

µ

(m)
(x) dn−1 x (121)

are independent of time xn = t.

As a result, it was proved that to each continuous s-parameter transformation of coor-
dinates (76) and fields (77), there correspond time-independent invariants Cm = C(m)(t),
m = 1, . . . , s given by Equations (121).

4.2. Remark about General Form of Gf Non-Holonomic Functional

The GF non-holonomic functional δ W∗, which is given by Equation (85), can be
written as

δ W∗ = δ W∗ +

ˆ

R
Jα(x) δ xα dnx, (122)

where δ W∗ is defined by Equation (44) and

Jα(x) = Eα + Bj ∂αUj(x) +
4

∑
q=1

C
j µ
q ∂α (∂̂(µ,q)Uj)(x) +

2

∑
q=1

A
j µ
q ∂α (Î(µ,q)Uj)(x). (123)

Here Jα(x) = Jα(x, U, ∂̂U, ÎU, ∂∂̂U, ∂ÎU).
Using (76), we obtain

δ W∗ = δ W∗ +
s

∑
m=1

ˆ

R
J(m)(x) dnx δωm, (124)

where

J(m)(x) = Jα(x) Xα
(m)(x) = Bj ∂αUj(x) Xα

(m)(x) +
4

∑
q=1

C
j µ
q ∂α (∂̂(µ,q)Uj)(x) Xα

(m)(x) +

2

∑
q=1

A
j µ
q ∂α (Î(µ,q)Uj)(x) Xα

(m)(x) + Eα Xα
(m)(x). (125)

As a result, using transformations (74) and (75), and Equations (113) and (114) one
can obtain

δ S + δ W∗ = −
s

∑
m=1

ˆ

R

(
∂

∂xµ Θ
µ

(m)
(x) − J(m)(x)

)
dnx δωm, (126)

where Θ
µ

(m)
(x) is defined by Equation (91).
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Similar to the proof of the GF Noether’s theorem (Theorem 2), non-holonomic varia-
tional Equation (81), and the independence of the transformation parameters give

ˆ

R

(
∂

∂xµ Θ
µ

(m)
(x) − J(m)(x)

)
dnx = 0. (127)

Using that the region R of integration is arbitrary, Equation (117) gives the law

∂

∂xµ Θ
µ

(m)
(x) = J(m)(x). (128)

In the simplest case C
j µ
q = 0, A

j µ
q = 0, Eµ = 0, we have

J(m)(x) = Bj ∂αUj(x) Xα
(m)(x), (129)

where m = 1 . . . , s, and summation over indices j and α is meant. Equation (128) describe
generalized conservation laws (sometimes called the laws of change or balance equations).

The assumption (86) means that

J(m)(x) = 0 for all x ∈ R. (130)

This case is similar to the case of the existence of dissipative structures [166], when
the loss of the system energy is compensated by its influx from the outside. The field
equations with condition J(m)(x) = 0 are similar to the case of steady states of open
classical and quantum systems, which coincide with stationary states of closed classical and
quantum systems that are described in [167–169] and in Chapter 21 of [170] (pp. 453–462)
(see also [171–173]). A dissipative structure is a dynamical state that can be interpreted as
an reproducible steady state. This is a state that occurs in a nonequilibrium environment,
provided that the dissipation of energy occurs, which comes from the outside.Dissipative
structures are formed only in open nonequilibrium systems that exchange energy, substance,
or both with the environment. A dissipative structure is a dissipative system that develops
in an environment with which it is exchanged by energy or substance. In other words, this
is an open dissipative system, which is characterized by the balance of its exchanges (energy
and substance exchange). In such systems, a violation of spatial symmetry (anisotropy)
may occur, and chaotic complex structures may appear.

5. Example of Application to Fractional Field Equations

5.1. General Energy–Momentum Tensor and Energy–Momentum Vector

For infinitesimal space-time translations

xµ −→ x′
µ
= xµ + δ xµ, (131)

one can consider δ xµ as the transformation parameters δ ωm = δ ωµ. Using the transfor-
mation law

Uµ(x) −→ U′
µ(x′) = Uµ(x). (132)

one can see
X

µ

(m)
= X

µ
ν = δ

µ
ν , Yµ(m) = 0, (133)

where µ, ν = 1, . . . , n. In this case, Equation (116) gives

Θ
µ

(m)
(x) = T

µ
ν(x) =

n

∑
α=1

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uα

+ C
α µ
q

)
Î(µ,q) ∂ν Uα(x) +

n

∑
α=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uα

+ C
α µ
q+2

)
∂νUα(x) − Λ δ

µ
ν . (134)
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As a result, we have

Tµν(x) =
n

∑
α=1

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uα

+ C
α µ
q

)
Î(µ,q) gνβ ∂β Uα(x) +

n

∑
α=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uα

+ C
α µ
q+2

)
gνβ ∂βUα(x) − Λ gµν. (135)

Equation of the conservation law (118) has the form

∂

∂xµ Tµν(x) = 0. (136)

Integrals of Tµν(x) that is written by Equation (121) is the time-conserved vector

C(m)(t) = Pµ =

ˆ

∂R
Tµn(x) dn−1 x. (137)

The component of vector (137) with µ = n is the Hamilton function, which is inter-
preted as the energy. The vector Pµ is called the general fractional energy–momentum
vector, and the tensor Tµν(x) is interpreted as the general fractional energy–momentum
tensor.

5.2. General Orbital and Spin Angular-Momentum Tensors

Let us consider the infinitesimal rotations

xµ −→ x′
µ
= xµ + xν δ Ωµν, (138)

where the indices µ and ν define the plane, in which rotation with the parameter Ωµν

takes place. Using that Ωµν = −Ωνµ, one can consider δ Ωµν with µ < ν as the linear
independent transformation parameters

δ ωm = δ ωµν = δ Ωµν,

where µ < ν.
The variations δ xµ and δ Uµ(x) can be expressed in terms of the infinitesimal linearly

independent transformation parameters ωµν, [1], pp. 20–22. The variations δ xµ and δ Uµ(x)
can be expressed by the equations

δ xµ = ∑
α<β

X
µ
αβ(x) δ ωαβ, (139)

X
µ
αβ(x) = xβ δ

µ
α − xα δ

µ
β , (140)

where α < β.
The variations δ Uµ(x) of field Uµ(x) can be expressed by the equations

δ Uµ(x) = ∑
α<β

Yµ αβ(x) δ ωαβ, (141)

where
Yµαβ(x) = ∑

ν<β

Aν
µαβ Uν(x). (142)

For scalar fields Aν
µαβ = 0. For the vector fields

Aν
µαβ = gµα δν

β − gµβ δν
α, (143)
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where α < β. For the vector fields, one can write

Yµαβ(x) = gµα Uβ(x) − gµβ Uα(x). (144)

Using Equation (116) with (m) = (αβ) and j = γ, the angular-momentum tensor
M

µ
αβ = Θ

µ

(m)
(x) is

M
µ
αβ(x) = −

n

∑
γ=1

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uγ

+ C
γ µ
q

)
Î(µ,q)

(
Yγ αβ − ∂ν Uγ(x) X

µ
αβ

)
−

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)(
Yγ αβ − ∂νUγ(x) Xν

αβ

)
− Λ X

µ
αβ. (145)

As a result, using (140) and (142), we obtain

M
µ
αβ(x) =

n

∑
γ=1

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uγ

+ C
γ µ
q

)
Î(µ,q) (xβ ∂α Uγ(x) − xα ∂β Uγ(x)) +

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)
(xβ ∂α Uγ(x) − xα ∂β Uγ(x)) − Λ (xβ δ

µ
α − xα δ

µ
β)−

n

∑
γ=1

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)Uγ

+ C
γ µ
q

)
Î(µ,q) (gγα Uβ(x) − gγβ Uα(x))−

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)
(gγα Uβ(x) − gγβ Uα(x)). (146)

If the Lagrangian density Λ is independent of the GFDs of the RL types, i.e., ∂̂(µ,q)Uγ(x)
with q = 1, q = 2, and the non-holonomic functional does not depend on the variation of
the GFDs of the RL types (i.e., C

γ µ
q = 0 for with q = 1, q = 2), then

M
µ
αβ(x) =

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)
(xβ ∂α Uγ(x) − xα ∂β Uγ(x))−

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)
(gγα Uβ(x) − gγβ Uα(x)) − Λ (xβ δ

µ
α − xα δ

µ
β). (147)

Equation (147) can be represented in the form

M
µ
αβ(x) = gαγ gβδ M

µγδ
OR (x) + S

µ
αβ(x), (148)

where M
µγδ
OR (x) is the orbital angular-momentum tensor that is described as

M
µαβ
OR (x) = xµ Tαβ(x) − xα Tµβ(x), (149)

where Tαβ(x) is the energy–momentum tensor defined by (135), and S
µ
αβ(x) is the spin

angular-momentum tensor

S
µ
αβ(x) =

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Uγ

+ C
γ µ
q+2

)
(gγα Uβ(x) − gγβ Uα(x)) (150)
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for vector fields. For scalar field, S
µ
αβ(x) = 0 since Aν

γαβ = 0, and the orbital angular-

momentum is conserved ∂β M
µαβ
OR (x) = 0.

The tensor S
µ
αβ(x) characterizes the polarization properties of the field and cor-

responds to the spin angular momentum of the particles described by the quantized
fields Uµ(x).

The spatial density of the orbital and spin angular momenta is given by M
µαn
OR (x) and

Sn
αβ(x), respectively. Integrating these expressions over configuration space, one can obtain

the orbital and spin angular momentum tensors in the form

M
µα
OR =

ˆ

∂R
M

µαn
OR (x) dn−1x, Sαβ =

ˆ

∂R
Sn

αβ(x) dn−1x, (151)

Contracting the space components of Sαβ with the antisymmetric tensor of εαβγ, one
can obtain the components of the (n − 1)-dimensional (pseudo) spin vector Sα = εαβγ Sβγ.

5.3. Example of Field Equations for Real Scalar Field

Let us consider example with the scalar field Uj(x) = ϕ(x), and let us assume that
the holonomic functional does not depend on the GFIs of the field and the non-holonomic
functional does not depend on variations of these GFIs of the scalar field. Then, field
Equation (71) for scalar field is

(
∂Λ

∂ϕ
+ B

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)ϕ
+ C

j µ
q

)
+

4

∑
q,p=1

∂̂ †
(µ,q) ∂̂ †

(ν,p)

(
∂Λ

∂ ∂̂(ν,p) ∂̂(µ,q)ϕ
+ C

j µν
q,p

)
= 0. (152)

It should be emphasized that non-holonomic functional δ W∗ cannot be represented

as a variation of holonomic functional. For the function B = B(x, ϕ, ∂̂ϕ, ∂̂2 ϕ), this fact
means that it cannot be represented as

B =
∂J

∂ϕ
+

4

∑
q=1

∂̂ †
(µ,q)

∂J

∂ ∂̂(µ,q)ϕ
+

4

∑
q,p=1

∂̂ †
(µ,q) ∂̂ †

(ν,p)

∂J

∂ ∂̂(ν,p) ∂̂(µ,q)ϕ
. (153)

for a function J = J(x, ϕ, ∂̂ϕ, ∂̂2 ϕ), i.e., there is no such function J, for which Equation (153)
is satisfied.

In standard field theory, field equations of scalar fields can be derived from holo-
nomic variational equation only if the field equation is linear with respect to second-order
derivatives [35] (p. 534).

Let us consider the function B as a bilinear combination of two GFDs ∂̂(ν,p) ∂̂(µ,q)ϕ(x)
such that

B =
4

∑
q,p=1

δ
µν,αβ
qp (x, ϕ) (∂̂(µ,p) ∂̂(α,q)ϕ)(x) (∂̂(ν,p) ∂̂(β,q)ϕ)(x), (154)

where

δ
µν,αβ
qp (x, ϕ) = aqp(x, ϕ) gµν gαβ + bqp(x, ϕ) gµα gνβ + cqp(x, ϕ) gµβ gνα. (155)

In particular case aqp, bqp, cqp can be arbitrary real numbers.

For Lagrangian density Λ = Λ(x, ϕ, ∂̂φ) and C
j µ
q = 0 and C

j µν
q,p = 0, field Equa-

tion (152) is

∂Λ

∂ϕ
+ B(ϕ, ∂̂ϕ, ∂̂2 ϕ) +

4

∑
q=1

(
∂̂ †
(µ,q)

∂Λ

∂ ∂̂(µ,q)ϕ

)
= 0, (156)

where B = B(ϕ, ∂̂ϕ, ∂̂2 ϕ) is defined by (154) and cannot be represented as (153).
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For function (154) and the Lagrangian density

Λ(x, ϕ, ∂̂φ) = −
1

2

( 4

∑
q,p=1

gµν(∂̂(µ,q)ϕ)(x)(∂̂(ν,p)ϕ)(x) + m2 ϕ2(x)
)

, (157)

with C
j µ
q = 0 and C

j µν
q,p = 0, field Equation (152) is

−
4

∑
q=1

gµν(∂̂ †
(µ,q) gµν ∂̂(ν,p)ϕ)(x) − m2 ϕ(x) +

4

∑
q,p=1

δ
µν,αβ
qp (x, ϕ) (∂̂(µ,p) ∂̂(α,q)ϕ)(x) (∂̂(ν,p) ∂̂(β,q)ϕ)(x) = 0, (158)

where B(ϕ, ∂̂ϕ, ∂̂2 ϕ) cannot be represented in the form (153) and q 6= p, in general.
Using (135) and field Equation (158), general energy–momentum tensor of the scalar

field is

Tµν(x) =
2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)ϕ

)
Î(µ,q) gνβ ∂β ϕ(x) +

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)ϕ

)
gνβ ∂β ϕ(x) − Λ gµν. (159)

Using Equation (145) with Yγ αβ = 0, the angular-momentum tensor of the sclar field is

M
µ
αβ(x) =

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)ϕ

)
Î(µ,q)

(
∂ν ϕ(x) X

µ
αβ

)
+

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)ϕ

)(
∂ν ϕ(x) Xν

αβ

)
− Λ X

µ
αβ = (160)

2

∑
q=1

(−1)q+1

(
∂Λ

∂ ∂̂(µ,q)ϕ

)
Î(µ,q) (xβ ∂α ϕ(x) − xα ∂β ϕ(x)) +

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)ϕ

)
(xβ ∂α ϕ(x) − xα ∂β ϕ(x)) − Λ (xβ δ

µ
α − xα δ

µ
β), (161)

where we use that Aν
µαβ = 0 for scalar field.

If the Lagrangian density Λ is independent of the GFDs of the RL types that is (∂̂(µ,q)Uγ

with q = 1, q = 2), then

M
µ
αβ(x) =

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)ϕ

)
(xβ ∂α ϕ(x) − xα ∂β ϕ(x)). (162)

and the orbital angular-momentum tensor

M
µ
αβ(x) = gαγ gβδ M

µγδ
OR (x), (163)

the spin angular-momentum tensor

S
µ
αβ(x) = 0. (164)
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5.4. Example of Field Equations for Real Vector Field

Let us consider a vector field with components Uj(x) = Aµ(x). To simplify the
consideration, we will assume that the Lagrangian density Λ is independent of the GFDs

of the RL types, i.e., ∂̂(µ,q)Uγ(x) with q = 1, q = 2, and the non-holonomic functional

δW∗ does not depend on the variation of the GFDs of the Riemann–Liouville types (i.e.,
C

γ µ
q = 0 for with q = 1, q = 2). We will also assume that Λ does not depend on the

GFIs Î(µ,q)Uγ(x) and non-holonomic functional does not depend on variation of the GFIs

δ Î(µ,q)Uγ(x).
One can consider the Lagrangian density with bilinear combinations of the vector field

functions Aµ and their GFDs of the Caputo type ∂̂(µ,q)Aν with q = 3 and q = 4 in the form

Λ = −
1

2

4

∑
q,p=3

(
δ

µν,αβ
q p ∂̂(µ,q) Aα ∂̂(ν,p) Aβ + m2 Aµ Aµ

)
=

−
1

2

4

∑
q,p=3

(
aqp ∂̂(µ,q) Aα ∂̂(µ,p) Aα + bqp ∂̂(µ,q) Aµ ∂̂(α,p) Aα +

cqp ∂̂(µ,q) Aα ∂̂(α,p) Aµ + m2 Aµ Aµ
)

, (165)

where apq, bqp, cqp are arbitrary real constants, and δ
µν,αβ
q p is the bilinear combination of

the metrics
δ

µν,αβ
qp = aqp gµν gαβ + bqp gµα gνβ + cqp gµβ gνα, (166)

The non-holonomic functional (44) can be taken in the form

δ W∗ = λ

ˆ

(
Bµ(x, A(x), ∂̂A(x)) δ Aµ(x) +

4

∑
q=3

C
ν µ
q (x, A(x), ∂̂A(x)) δ ∂̂(µ,q)Aν(x)

)
dnx. (167)

In this case, the field Equations (62) of the vector field are

(
∂Λ

∂Aα
+ Bα

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q)Aα

+ C
α µ
q

)
= 0. (168)

For the Lagrangian density (165), we obtain

∂Λ

∂Aα
= −m2 Aα(x), (169)

∂Λ

∂(∂̂(µ,q)Aα)
= − δ

µβ,να
qp (∂̂(ν,p) Aβ)(x). (170)

Using (169) and (170), field Equations (168) take the form

(
−m2 Aα(x) + Bα

)
+

4

∑
q=1

∂̂ †
(µ,q)

(
− δ

µβ,να
qp (∂̂(ν,p) Aβ)(x) + C

α µ
q

)
= 0. (171)

The energy–momentum tensor (135) is

Tµν(x) =
n

∑
α=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Aα

+ C
α µ
q+2

)
gνβ ∂β Aα(x) − Λ gµν =

n

∑
α=1

4

∑
q,p=3

(−1)q+1 Î †
(µ,q)

(
− δ

µβ,να
qp (∂̂(ν,p) Aβ)(x) + C

α µ
q

)
gνβ ∂β Aα(x) − Λ gµν. (172)
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The angular-momentum tensor (147) is

M
µ
αβ(x) =

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Aγ

+ C
γ µ
q+2

)
(xβ ∂α Aγ(x) − xα ∂β Aγ(x))−

n

∑
γ=1

2

∑
q=1

(−1)q+1 Î †
(µ,q)

(
∂Λ

∂ ∂̂(µ,q+2)Aγ

+ C
γ µ
q+2

)
(gγα Aβ(x) − gγβ Aα(x)) − Λ (xβ δ

µ
α − xα δ

µ
β). (173)

Substitution Equations (169) and (170) into Equation (173) gives

M
µ
αβ(x) =

n

∑
γ=1

4

∑
q,p=3

(−1)q+1 Î †
(µ,q)

(
− δ

µβ,νγ
qp (∂̂(ν,p) Aβ)(x) + C

γ µ
q+2

)
(xβ ∂α Aγ(x) − xα ∂β Aγ(x))−

n

∑
γ=1

4

∑
q,p=3

(−1)q+1 Î †
(µ,q)

(
− δ

µβ,νγ
qp (∂̂(ν,p) Aβ)(x) + C

γ µ
q

)
(gγα Aβ(x) − gγβ Aα(x)) − Λ (xβ δ

µ
α − xα δ

µ
β). (174)

Equation (174) can be represented in the form

M
µ
αβ(x) = gαγ gβδ M

µγδ
OR (x) + S

µ
αβ(x), (175)

where M
µγδ
OR (x) is the orbital angular-momentum tensor that is described as

M
µαβ
OR (x) = xµ Tαβ(x) − xα Tµβ(x), (176)

where Tαβ(x) is the energy–momentum tensor defined by (172), and S
µ
αβ(x) is the spin

angular-momentum tensor

S
µ
αβ(x) =

n

∑
γ=1

4

∑
q,p=3

(−1)q+1 Î †
(µ,q)

(
− δ

µβ,νγ
qp (∂̂(ν,p) Aβ)(x) + C

γ µ
q

)
(gγα Aβ(x) − gγβ Aα(x)). (177)

Note that the sum over q and p is realized from 3 to 4.

6. Conclusions

In this paper, the following generalizations have been proposed.
1. A generalization of the standard action principle and the usual fractional action

principle by using the Luchko general fractional calculus and non-holonomic variational
equations of Sedov type. The proposed general fractional action principle is formulated
as a non-holonomic variational equation that depends on variations of coordinates, GF
derivatives and GF integrals. The GF integrals are considered in the left-sided and right
sided. The GF derivatives of Riemann–Liouville and Caputo types are considered in both
the left-sided and right-sided versions.

2. A generalization of the standard Noether theorem and the usual fractional Noether
theorem by using the Luchko general fractional calculus and non-holonomic variational
equations of Sedov type. The proposed general fractional Noether theorem is formulated
by using the non-holonomic variational equations and general fractional action principle
for equations with the GF derivatives and GF integrals.

3. Examples of field equations with GFDs and GFIs are suggested. The energy–
momentum tensor, orbital angular-momentum tensor and spin angular-momentum tensor
are given for general fractional non-Lagrangian field theories. Examples of the application
of generalized first Noether’s theorem are suggested for scalar end vector fields of non-
Lagrangian field theory.

The proposed GF action principle and GF Noether theorem allow us to take into
account a wide range of space–time nonlocalities and a wide class of irreversible processes,
dissipative and open systems, and non-Lagrangian and non-Hamiltonian field theories
and systems.
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Let us note new directions for the development and application of the suggested
approach to the description of nonlocal processes and systems.

(1) The GF action principle and the GF Noether theorem can be used for modern
continuum mechanics including electrodynamics, hydrodynamics, and elasticity theory,
where properties of spatial nonlocality and memory with dissipation and irreversibility
should be taken into account [147,148].

(2) The GF action principle and the GF Noether theorem can be used in nonlocal
quantum mechanics. The standard Schwinger action principle (see in [2] (Section 2.1,
pp. 60–78), and [174]) can be generalized for spatial nonlocality and memory. It should
be emphasized that to take into account dissipative and irreversible processes, quantum
mechanics should be described by Lindblad equations and its generalizations instead of
the Schrodinger equations for the wave function.

(3) The basic postulate of quantization of classical fields use the Noether theorem (see
classical book of Bogoliubov and Shirkov [1] (p. 89)), This postulate and the GF Noether
theorem can be used to formulate the quantization of non-Lagrangian field theories with
space–time nonlocality. This approach can be used to formulate quantum field theories
similar to quantum mechanics of open, non-Hamiltonian and dissipative systems [170–173].

(4) The GF action principle and the GF Noether theorem can be formulated for spinor
fields, gauge symmetries, and corresponding conservation laws to generalize ths standard
gauge field theories [7,11,18,111]. It should be emphasized that the general fractional
second Noether theorem should be described with the generalization for spinor fields that
are considered in the standard gauge theories [7,11,18,111].

(5) The GF action principle and the GF Noether theorem can also be generalized
by using the multi-kernel GFC of arbitrary order [144], the GFC in the Riesz form for
multi-dimensional space [142], the scale-Invariant GFC [143].

There are many other directions of development and applications of the proposed GF
nonholonomic variational equations and the GF Noether theorem.
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