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Abstract

New data coming from the LHC experiments have a potential to extend the current knowledge of parton distribution

functions (PDFs).

As a short cut to the cumbersome and time consuming task of performing a new PDF fit, re-

weighting methods have been proposed. In this talk, we introduce the so-called Hessian re-weighting, valid for PDF
fits that carried out a Hessian error analysis, and compare it with the better-known Bayesian methods. We determine
the existence of an agreement between the two approaches, and illustrate this using the inclusive jet production at the

LHC.

1. Introduction

The interpretation of high-energy collider data relies
strongly on the precise description of the parton dis-
tribution functions (PDFs). Usually they are obtained
from global fits to data, the extraction being done nowa-
days up to NNLO accuracy [1, 2, 3, 4]. However,
due to the complexity of PDF fits it has been impos-
sible for those outside the groups dedicated to the PDF
fitting (like experimentalists) to work out the implica-
tions that new measurements would have in a global
PDF fit. The situation underwent an improvement
when the NNPDF collaboration revived [5, 6] an old
idea [7] of the Bayesian reweighting technique that tests
the consistency between new data and data previously
included in a PDF fit and also provides with a quan-
titative estimate on how the new data will affect the
known PDFs. This method has become extremely pop-
ular 8, 9, 10, 11, 12, 13, 14]. Unfortunately, it has
been unclear how to extend the reweighting outside the
NNPDF fits. Indeed, while the NNPDF fits use Monte-
Carlo methods for the uncertainty determination, most
of the rival groups make use of the Hessian technique
[15], and provide error sets that quantify the neighbor-
hood of the central fit within a certain confidence level
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Ax?. In order to use the Bayesian reweighting technique
with these Hessian PDFs sets, an extension was pro-
posed in Ref. [16], and has been employed to some ex-
tent [9, 17, 18]. However the accuracy of the proposed
generalization has been put in the spotlight by a recent
study [19] in which the results of reweighting were ob-
served to deviate from the ones obtained by a direct fit.
In this contribution we review the results presented in
Ref. [21] in which, building on the ideas introduced in
Ref. [20], we put forward a different strategy to study
the consistency and impact of a new data set within an
existing set of PDFs that comes with Hessian error sets.

2. The Hessian re-weighting

The description of experimental data by a set of PDFs
f = f(x,0% depending on fit parameters {a}, is done
usually by finding the minimum of a y?-function

ay= Y [X L1 - X

data
6k
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k

where X,iheory [f] are the theory predictions depending

on the parameters {a}, Xfa‘a the experimental values and
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(52'“3 their uncertainties. The PDF errors are quantified
in the Hessian approach [15] by assuming the behaviour
of y? function around the minimum to be sufficiently
quadratic in the space of fit parameters {a}

xah = x§ + Z éa;H;joaj, 2
ij
where da; = a; - a(} are departures from the best-fit

values and X% is the minimum value of y2. The Hes-
sian matrix H;; has N.is eigenvalues € and orthonormal
eigenvectors v\¥ that satisfy

H; jv(k) = & v(.k) 3)
Z (%) (l') — (J) (J) = Oy 4)
J

This expression can be simplified by a change of vari-
ables that brings the Hessian matrix to a diagonal form

= Ve y,v\sa, (5)
J
so that
~xg+ 2 (6)

Just how much }; zf can increase with the fit still being
acceptable is a choice left to those performing the fit,
though generally it is preferred to take Ay? > 1 [2, 3].
The corresponding uncertainty for a PDF-dependent
quantity O = O[f] can then be calculated as

W07 = A Z( azk) . ™

In addition to the best fit S, the Hessian approach in-
troduces the PDF error sets S ,f defined in the z-space
as

2(So) = (0,0,..,0),

Z(SN )

eig

A2 (0,0,...,1) .

Using these, the derivatives in Eq. (7) can be evaluated
by a linear approximation

(go) olsi]-ols;] -
Zk 2
so that

(AO)Y? = Z Z olsi]-olsi )2 . )

k

In the recent years the fixed Ay? tolerance has been left
aside in favor of a dynamic tolerance

zi(S7) = 1 6. (10)

Consider now a new set of data ¥ = y1,¥2, ..., YNy,
with covariance matrix C. We want to know whether
or not it is consistent with an original set of PDFs and,
if so, how including the data would affect the PDFs. For
this purpose we introduce a new function defined as

Neig Nata
Cow SXEHY 24 > 0= 30 G (L1 = ¥7) 1)
k ij=1

which is just Eq. (6) plus the contribution of the new
data. Employing a linear approximation, the theoreti-
cal values y; [ f] in arbitrary z-space coordinates can be
approximated by

Nei
yilf] = yilSol + Zg Diwy., (12)
k=1
with
b, = il "
= —Zk
wp = i +t,:). (14)

Then, y2.,, is a quadratic function of the new parameters
Wy, with its minimum given by

whin = _B7!g, (15)

where the matrix B and vector a are

Zch DJ,,+(

a = ZkaC,-; (v IS0l - ). (17)

2
t
") Otn>  (16)

Bkn

The solution presents a penalty term

Neig Neig

o+t 2 5 -
pP= Z ( ) ;{nm:| - Ay ;(W?m), (18)

which allows us to determine whether the new data is
consistent or not with the original PDFs. If a Ay? was
taken in the original fit, P < AXZ means that the new
data could have been incorporated without a conflict.
However, if P > Ay? the new data shows clear ten-
sion with the set of PDFs in question. This does not,
however, always mean that the new data would be in-
compatible with the other data. For instance, it might
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be the case that the new data probe unconstrained com-
ponents of PDFs whose behaviour was initially fixed by
hand. The set of PDFs f™% corresponding to the new
global minimum is determined by the components of
the weight vector w™in

fnewzfso Z(fé”' 2fS ) ]r:un' (19)

k=1

As the new PDFs ™" are a linear combination of the
primary central and error sets, we may say that the orig-
inal ones have just been reweighted. The new distribu-
tions /™% obey the same evolution equations and satisfy
the same sum rules as the individual members fs+ and
can thereby be consistently utilized in perturbative QCD
calculations.

3. Bayesian re-weighting

Given a Monte-Carlo ensemble of PDFs f;, k =
1...Nyp (like those of the NNPDF collaboration [4]),
that represent the probability density Pq(f) of the
PDFs, the expectation value (Q) and variance 6(Q) for
a PDF-dependent observable O can be computed as

Neep
1
©) = Olfil. (20)
7 2O
Neep
50) = J PN UFARK 1)
rep k=1

The initial probability distribution . q(f) can be up-
dated to include information from a new set of data y,
since

Prew(f) & POL) Pota(f) » (22)

where P(3f) is the likelihood function for the new data,
given a set of PDFs. Consequently, for the observable
O above, the expectation value becomes a weighted av-
erage

Nrep

(Odpew = N ; w O[], (23)
1 Nep

6<0>new = J N. Z Wi (O [ﬁc] - <O>new)2 s (24)
rep 37

where the weights w; are proportional to P(]f). How
to choose the likelihood appropriately has been a some-
what controversial issue and two options have been
put forward so far. The original proposal by Giele and

Keller [7] (abbreviated by GK from now on) is to take
P\ f)d"y as the probability to find the new data to be
confined in an element d"y centered around ¥ leading
to

K exp|-x3/2] | 05)
(1/Nrep) kap eXp [_X%/Z]
with
Naata
Xi = ) A=) G (vilfid - ). (26)

ij=1
The other option, cherished by the NNPDF collabora-
tion, considers Py f)dy as the probability for y = \/)7
to be confined in a volume element dy around y, result-

ing in
(Xi)(l\’amrl)/Z [_Xi/z]
(1Nep) Zp2 (2) ™" exp[-x2/2]

We label these welghts WM o their behaviour is
similar to the usual y? dlstrlbution. The latter choice has
been proven consistent with a direct fit in the NNPDF
framework [5, 6]. However it was pointed out in
Ref. [22] that kaK contain more information on the new
data, as a fixed y> may correspond to different data sets.

In analogy to Eq. (19), the ensemble of PDFs required
by the Bayesian approach can be constructed by

fk-fso+2(f5+_ ) i (28)

The coeflicients Ry are Gaussian random numbers with
mean zero and 1-sigma variance. After computing the
weights wy, the reweighted PDFs can be written as

chi—squa d
w 1—square

27

Neig

Fow = Fso + )| (@)( Zkalk],(w)
- rep

1

and the penalty induced becomes

P= A)( i( fa)lek] . (30)

rep

The Bayesian methods have also another estimator for
the new data compatibility: the effective number of
replicas N.g which is defined as

Neep

D wlogWep/w)p- (31
rep

Neg = exp

If Neg << Nyep, the method becomes inefficient and in-
dicates that either the new data contains too much new
information or that it is incompatible with the previous
data.
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4. A pedagogical example

Let us consider a function

g(x) = agx™ (1 — x)2e™ (1 + xe™)™, (32)

a typical fit function used in PDF fits. First, we construct
a set of pseudodata (data set 1) for g(x), the value of
each data point y; and its uncertainty dy; obtained by

yi=(1+an)yl, oy =ay)

where y2 = g(x) evaluated with fixed parameters. We
make a )(2 fit with free parameters ay, a;, a2, a3 and
construct the corresponding Hessian error sets with a
certain A)(Z criteria. After that, we construct a second
set of pseudodata (data set 2) and reweight the origi-
nal fit by these data with all the introduced reweighting
techniques in turn. Finally, we perform a direct fit con-
sidering both data sets and compare it with the predic-
tions given by the reweighting methods. As the global
fits of PDFs usually use Ay> > 1, we choose (arbitrar-
ily) in our example Ay? = 10. The results are shown in
Figs. 1 and 2. While all the reweighting methods yield
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Figure 1: Upper panel: Data set 1 normalized by the fit to these data.

Lower panel: Data set 2 normalized by the fit to the data set 1. In

both panels the light blue band is the fit uncertainty for Ay = 10, and

in the lower panels we also show the results using the Hessian (black

dashed), Bayesian with wd" squared (blue dotted) and Bayesian with
GK (red circles) rewe1ght1ng.

in present case a good approximation of the direct fit,
only the Hessian reweighting can accurately reproduce
the direct fit. This could have been expected as the repli-
cas were generated using Ay?> = 10 but the likelihood
function P(3]f) does not compensate for this in either
case of the two Bayesian weights. However, as taking
Ay? > 1 is equivalent to increasing all the data errors
correspondingly by \/A_Xz , it should be the case that by
rescaling )(i - )(,% /Ax? in Egs. (25) and (27) when com-
puting the weight for each replica, compensates for the
tolerance Ay? > 1. The results are shown in Fig. 3.

It is clear that an agreement is reached between the

Ratio to the fit with data 1 + data 2

096 - Fit with data 1+2

Figure 2: The results of reweighting for the function g(x) normalized

to the fit using data sets 1 and 2. Black dashed: Hessian reweight-

chi—squared

ing. Blue dotted: Bayesian rewelghtmg with w . Red circles:

Bayesian reweighting with w

T L L L A

1.04 |
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Figure 3: As Figure 1, but rescaling the values of y? by (Ay
case of Bayesian reweighting.

Bayesian method with rescaled GK weights, the Hes-
sian reweighting, and the re-fit (a detailed mathematical
proof for this correspondece is given in Ref.[21]). The
Bayesian reweighting with chi-squared weights, on the
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other hand, does not behave correctly and the rescaling
X% - Xi/ Ay? makes the chi-squared weights to go hay-
wire.

5. Inclusive jet production at the LHC

Now we apply the reweighting methods to the pro-
duction of inclusive jets in proton+proton collisions at
the LHC. The quadratic PDF dependence of the pro-
ton+proton cross sections

o?[S] = fIS]1e e fIS], (33)

could potentially decrease the accuracy of the linear ap-
proximation

S (oIS 71 - oIS 1) wi
2

which one effectively makes when using Eq. (12). How-
ever, if the result of reweighting does not end up being
very far from the original central fit, the nonlinear cor-
rections should remain subdominant [21].

We consider /s = 7TeV jet measurements by the
CMS collaboration [23], and take the CTEQ6.6 PDFs
[24] as a baseline. For CTEQ6.6 we have A/\/%TEQM =
100 (ff = 10) and N = 22. We have employed
the FASTNLO program [25, 26, 27] to compute the
cross sections. In line with the CTEQ6.6 analysis, the
factorization (uy) and renormalization (u,) scales were
fixed to the transverse momentum of the jets (u,
ur = pr/2), and the QCD coupling was set by taking
ay(Mz) = 0.118 at the Z boson mass pole. To evaluate
the y? values, we construct a covariance matrix C from
the uncorrelated errors ;"™ and the systematic shifts
,85‘ (1-sigma variation of the kth systematic parameter)
by

oPP[S] ~ oPP[S,] + 34

Cij = 63 ("o + Z BiBS. 35)
k

The uncorrelated errors /"™ include a 1% uncor-
related systematic uncertainty and the statistical error
added in quadrature. Computing the y? using Eq. (26)
corresponds to [28, 29, 30] directly minimizing

Z 52, (36)

k

X = uncorr

O-l

theory d
) [y,- @ — Pk sy
i

with respect to the s; parameters resulting in

mmzz[

- Y BCIBB .(37)
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Figure 4: The CMS inclusive jet cross sections compared to the pre-
dictions after the Hessian reweighting and applying the systematic
shifts. All values have been normalized to the central prediction of
CTEQ6.6 and only the statistical data errors are shown.

From this we can compute the aggregate — >, s}(ni“ﬁf of
the systematic shifts for a given data point ydala

The new cross sections after the Hessian reweight-
ing are shown in Fig. 4 and, for curiosity, in Fig. 5
for the Bayesian chi-squared reweighting. For the the
Bayesian techniques we generated 10* PDF replicas us-
ing Eq. (28) and the chi-squared weights are computed
as they are (without rescaling the y? values). Given
that jet production is mostly sensitive to the gluon dis-
tribution, in Fig. 6 we present the resulting modifica-
tions on the gluon PDFs. As expected from our ear-
lier example, the Hessian technique and the Bayesian
method with rescaled GK weights are in good agree-
ment. The reweighting penalty P ~ 21 is clearly lower
than AX%TEQ“ and only a small amount of replicas are
“lost” (Neg is large). Thus, had these data been incorpo-
rated into the CTEQ®6.6 fit, they would have not caused
a significant disagreement with the original data. In this
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Figure 5: As Fig. 4 but with the Bayesian reweighting with chi-
squared weights.

sense the data are compatible with the CTEQ6.6 PDFs
in spite of the rather large ¥*/Ngaw = 1.75. What
comes to the chi-squared weights, they give rise to qual-
itatively similar but much larger effects. The value of
X2 is almost ideal, X2 [Ngaa = 1, but the price to pay
is increasing the original x> of CTEQ6.6 clearly more
than the tolerance, P ~ 480. As N.g is also very low,
one could think that these jet data completely diasgree
with CTEQ6.6. However, as our example of Section 4
demonstrated, the chi-squared weights do not properly
account for the data in the original fit and such a con-
clusion would be flawed.

6. Summary

In summary, we have discussed different methods of
PDF reweighting with an emphasis on a new techn-
nique, the Hessian reweighting. All the methods intend
to “simulate” the full global fit and estimate the effects

T T
Q*=10000 GeV*

-
T

Original CTEQ6.6 errorband

Rescaled Giele-Keller reweighting
X'/ = 1.75, penalty % 25, Nog/Nyp ~ 0.9

0.85 —

Hessian reweighting
— xz,ans 1.75, penalty ~ 21

e chi-squared reweighting
075 - o xz,fN ~ 1.00, penalty = 480, Nog/N,,, = 0.04

New gluon PDF vs. gluon(CTEQG6.6)

Figure 6: The gluon PDFs at 02 = 10000 GeV? after reweighting.
Red points: Bayesian reweighting with rescaled GK weights. Blue
dotted lines: Bayesian reweighting with chi-squared weights. Black
dashed lines: Hessian reweighting. The colored band is the original
CTEQG6.6 uncertainty. All results are normalized to the central set of
CTEQ6.6.

that new experimental data would have on a set of PDFs.
After outlining the underlying ideas, we compared the
different approaches through a simple example identify-
ing the correct ways to perform the reweighting in the
case of Hessian PDF fits. Finally, we considered the
inclusive jet production as an additional example. Our
findings indicate that the correct way to reweight Hes-
sian PDFs if different than what has been found to work
for the PDF fits of NNPDF collaboration.
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