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Abstract

New data coming from the LHC experiments have a potential to extend the current knowledge of parton distribution
functions (PDFs). As a short cut to the cumbersome and time consuming task of performing a new PDF fit, re-
weighting methods have been proposed. In this talk, we introduce the so-called Hessian re-weighting, valid for PDF
fits that carried out a Hessian error analysis, and compare it with the better-known Bayesian methods. We determine
the existence of an agreement between the two approaches, and illustrate this using the inclusive jet production at the
LHC.

1. Introduction

The interpretation of high-energy collider data relies
strongly on the precise description of the parton dis-
tribution functions (PDFs). Usually they are obtained
from global fits to data, the extraction being done nowa-
days up to NNLO accuracy [1, 2, 3, 4]. However,
due to the complexity of PDF fits it has been impos-
sible for those outside the groups dedicated to the PDF
fitting (like experimentalists) to work out the implica-
tions that new measurements would have in a global
PDF fit. The situation underwent an improvement
when the NNPDF collaboration revived [5, 6] an old
idea [7] of the Bayesian reweighting technique that tests
the consistency between new data and data previously
included in a PDF fit and also provides with a quan-
titative estimate on how the new data will affect the
known PDFs. This method has become extremely pop-
ular [8, 9, 10, 11, 12, 13, 14]. Unfortunately, it has
been unclear how to extend the reweighting outside the
NNPDF fits. Indeed, while the NNPDF fits use Monte-
Carlo methods for the uncertainty determination, most
of the rival groups make use of the Hessian technique
[15], and provide error sets that quantify the neighbor-
hood of the central fit within a certain confidence level

Δχ2. In order to use the Bayesian reweighting technique
with these Hessian PDFs sets, an extension was pro-
posed in Ref. [16], and has been employed to some ex-
tent [9, 17, 18]. However the accuracy of the proposed
generalization has been put in the spotlight by a recent
study [19] in which the results of reweighting were ob-
served to deviate from the ones obtained by a direct fit.

In this contribution we review the results presented in
Ref. [21] in which, building on the ideas introduced in
Ref. [20], we put forward a different strategy to study
the consistency and impact of a new data set within an
existing set of PDFs that comes with Hessian error sets.

2. The Hessian re-weighting

The description of experimental data by a set of PDFs
f ≡ f (x,Q2) depending on fit parameters {a}, is done
usually by finding the minimum of a χ2-function

χ2{a} =
∑

k

⎡⎢⎢⎢⎢⎢⎣Xtheory
k [ f ] − Xdata

k

δdata
k

⎤⎥⎥⎥⎥⎥⎦
2

, (1)

where Xtheory
k [ f ] are the theory predictions depending

on the parameters {a}, Xdata
k the experimental values and
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δdata
k their uncertainties. The PDF errors are quantified

in the Hessian approach [15] by assuming the behaviour
of χ2 function around the minimum to be sufficiently
quadratic in the space of fit parameters {a}

χ2{a} ≈ χ2
0 +

∑
i j

δaiHi jδa j, (2)

where δa j ≡ a j − a0
j are departures from the best-fit

values and χ2
0 is the minimum value of χ2. The Hes-

sian matrix Hi j has Neig eigenvalues εk and orthonormal
eigenvectors v(k) that satisfy

Hi jv
(k)
j = εkv(k)

i , (3)∑
j

v(k)
j v(�)

j =
∑

j

v( j)
k v( j)
�
= δk�. (4)

This expression can be simplified by a change of vari-
ables that brings the Hessian matrix to a diagonal form

zk ≡ √
εk

∑
j

v(k)
j δa j, (5)

so that

χ2{a} ≈ χ2
0 +

∑
i

z2
i . (6)

Just how much
∑

i z2
i can increase with the fit still being

acceptable is a choice left to those performing the fit,
though generally it is preferred to take Δχ2 > 1 [2, 3].
The corresponding uncertainty for a PDF-dependent
quantity O = O[ f ] can then be calculated as

(ΔO)2 = Δχ2
∑

k

(
∂O
∂zk

)2

. (7)

In addition to the best fit S 0, the Hessian approach in-
troduces the PDF error sets S ±

k , defined in the z-space
as

z(S 0) = (0, 0, ..., 0) ,
...

z(S ±
Neig

) = ±
√
Δχ2 (0, 0, ..., 1) .

Using these, the derivatives in Eq. (7) can be evaluated
by a linear approximation

(
∂O
∂zk

)
≈
O

[
S +k

]
− O

[
S −

k

]
2
√
Δχ2

, (8)

so that

(ΔO)2 =
1
4

∑
k

(
O

[
S +k

]
− O

[
S −

k

])2
. (9)

In the recent years the fixed Δχ2 tolerance has been left
aside in favor of a dynamic tolerance

zi(S ±
k ) ≡ ±t±k δik. (10)

Consider now a new set of data �y = y1, y2, . . . , yNdata

with covariance matrix C. We want to know whether
or not it is consistent with an original set of PDFs and,
if so, how including the data would affect the PDFs. For
this purpose we introduce a new function defined as

χ2
new ≡ χ2

0+

Neig∑
k

z2
k+

Ndata∑
i, j=1

(yi[ f ] − yi) C−1
i j

(
y j[ f ] − y j

)
,(11)

which is just Eq. (6) plus the contribution of the new
data. Employing a linear approximation, the theoreti-
cal values yi

[
f
]

in arbitrary z-space coordinates can be
approximated by

yi
[
f
] ≈ yi [S 0] +

Neig∑
k=1

Dikwk, (12)

with

Dik ≡
yi

[
S +k

]
− yi

[
S −

k

]
2

(13)

wk ≡ zk

1
2

(
t+k + t−k

) . (14)

Then, χ2
new is a quadratic function of the new parameters

wk, with its minimum given by

�wmin = −B−1�a, (15)

where the matrix B and vector �a are

Bkn =
∑
i, j

DikC−1
i j D jn +

(
t+k + t−k

2

)2

δkn , (16)

ak =
∑
i, j

DikC−1
i j

(
y j [S 0] − y j

)
. (17)

The solution presents a penalty term

P ≡
Neig∑
k=1

[(
t+k + t−k

2

)
wmin

k

]2

→ Δχ2
Neig∑
k=1

(wmin
k )2, (18)

which allows us to determine whether the new data is
consistent or not with the original PDFs. If a Δχ2 was
taken in the original fit, P � Δχ2 means that the new
data could have been incorporated without a conflict.
However, if P � Δχ2 the new data shows clear ten-
sion with the set of PDFs in question. This does not,
however, always mean that the new data would be in-
compatible with the other data. For instance, it might
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be the case that the new data probe unconstrained com-
ponents of PDFs whose behaviour was initially fixed by
hand. The set of PDFs f new corresponding to the new
global minimum is determined by the components of
the weight vector �wmin

f new ≈ fS 0 +

Neig∑
k=1

( fS +k − fS −
k

2

)
wmin

k . (19)

As the new PDFs f new are a linear combination of the
primary central and error sets, we may say that the orig-
inal ones have just been reweighted. The new distribu-
tions f new obey the same evolution equations and satisfy
the same sum rules as the individual members fS ±

k
and

can thereby be consistently utilized in perturbative QCD
calculations.

3. Bayesian re-weighting

Given a Monte-Carlo ensemble of PDFs fk, k =
1 . . .Nrep (like those of the NNPDF collaboration [4]),
that represent the probability density Pold( f ) of the
PDFs, the expectation value 〈O〉 and variance δ〈O〉 for
a PDF-dependent observable O can be computed as

〈O〉 = 1
Nrep

Nrep∑
k=1

O [
fk
]
, (20)

δ〈O〉 =
√√√

1
Nrep

Nrep∑
k=1

(O [
fk
] − 〈O〉)2. (21)

The initial probability distribution Pold( f ) can be up-
dated to include information from a new set of data �y,
since

Pnew( f ) ∝ P(�y| f )Pold( f ) , (22)

where P(�y| f ) is the likelihood function for the new data,
given a set of PDFs. Consequently, for the observable
O above, the expectation value becomes a weighted av-
erage

〈O〉new =
1

Nrep

Nrep∑
k=1

ωk O [
fk
]
, (23)

δ〈O〉new =

√√√
1

Nrep

Nrep∑
k=1

ωk
(O [

fk
] − 〈O〉new

)2 , (24)

where the weights ωk are proportional to P(�y| f ). How
to choose the likelihood appropriately has been a some-
what controversial issue and two options have been
put forward so far. The original proposal by Giele and

Keller [7] (abbreviated by GK from now on) is to take
P(�y| f )dny as the probability to find the new data to be
confined in an element dny centered around �y leading
to

ωGK
k =

exp
[
−χ2

k/2
]

(1/Nrep)
∑Nrep

k=1 exp
[
−χ2

k/2
] , (25)

with

χ2
k =

Ndata∑
i, j=1

(yi[ fk] − yi) C−1
i j

(
y j[ fk] − y j

)
. (26)

The other option, cherished by the NNPDF collabora-
tion, considers P(�y| f )dχ as the probability for χ ≡ √

χ2

to be confined in a volume element dχ around χ, result-
ing in

ω
chi−squared
k =

(
χ2

k

)(Ndata−1)/2
exp

[
−χ2

k/2
]

(1/Nrep)
∑Nrep

k=1

(
χ2

k

)(Ndata−1)/2
exp

[
−χ2

k/2
] .(27)

We label these weights ωchi−squared
k as their behaviour is

similar to the usual χ2 distribution. The latter choice has
been proven consistent with a direct fit in the NNPDF
framework [5, 6]. However it was pointed out in
Ref. [22] that ωGK

k contain more information on the new
data, as a fixed χ2 may correspond to different data sets.

In analogy to Eq. (19), the ensemble of PDFs required
by the Bayesian approach can be constructed by

fk ≡ fS 0 +

Neig∑
i

( fS +i − fS −
i

2

)
Rik. (28)

The coefficients Rik are Gaussian random numbers with
mean zero and 1-sigma variance. After computing the
weights ωk, the reweighted PDFs can be written as

fnew = fS 0 +

Neig∑
i

( fS +i − fS −
i

2

) ⎛⎜⎜⎜⎜⎜⎜⎝ 1
Nrep

Nrep∑
k

ωkRik

⎞⎟⎟⎟⎟⎟⎟⎠ ,(29)

and the penalty induced becomes

P = Δχ2
Neig∑

i

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Nrep

Nrep∑
k

ωkRik

⎞⎟⎟⎟⎟⎟⎟⎠
2

. (30)

The Bayesian methods have also another estimator for
the new data compatibility: the effective number of
replicas Neff which is defined as

Neff ≡ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1
Nrep

Nrep∑
k=1

ωk log(Nrep/ωk)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (31)

If Neff � Nrep, the method becomes inefficient and in-
dicates that either the new data contains too much new
information or that it is incompatible with the previous
data.
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4. A pedagogical example

Let us consider a function

g(x) = a0xa1 (1 − x)a2 exa3 (1 + xea4 )a5 , (32)

a typical fit function used in PDF fits. First, we construct
a set of pseudodata (data set 1) for g(x), the value of
each data point yk and its uncertainty δyk obtained by

yk = (1 + αrk)y0
k , δyk = αy0

k

where y0
k = g(x) evaluated with fixed parameters. We

make a χ2 fit with free parameters a0, a1, a2, a3 and
construct the corresponding Hessian error sets with a
certain Δχ2 criteria. After that, we construct a second
set of pseudodata (data set 2) and reweight the origi-
nal fit by these data with all the introduced reweighting
techniques in turn. Finally, we perform a direct fit con-
sidering both data sets and compare it with the predic-
tions given by the reweighting methods. As the global
fits of PDFs usually use Δχ2 > 1, we choose (arbitrar-
ily) in our example Δχ2 = 10. The results are shown in
Figs. 1 and 2. While all the reweighting methods yield
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Figure 1: Upper panel: Data set 1 normalized by the fit to these data.
Lower panel: Data set 2 normalized by the fit to the data set 1. In
both panels the light blue band is the fit uncertainty for Δχ2 = 10, and
in the lower panels we also show the results using the Hessian (black
dashed), Bayesian with ωchi−squared

k (blue dotted) and Bayesian with
ωGK

k (red circles) reweighting.

in present case a good approximation of the direct fit,
only the Hessian reweighting can accurately reproduce
the direct fit. This could have been expected as the repli-
cas were generated using Δχ2 = 10 but the likelihood
function P(�y| f ) does not compensate for this in either
case of the two Bayesian weights. However, as taking
Δχ2 > 1 is equivalent to increasing all the data errors
correspondingly by

√
Δχ2, it should be the case that by

rescaling χ2
k → χ2

k/Δχ
2 in Eqs. (25) and (27) when com-

puting the weight for each replica, compensates for the
tolerance Δχ2 > 1. The results are shown in Fig. 3.

It is clear that an agreement is reached between the
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Figure 2: The results of reweighting for the function g(x) normalized
to the fit using data sets 1 and 2. Black dashed: Hessian reweight-
ing. Blue dotted: Bayesian reweighting with ωchi−squared

k . Red circles:
Bayesian reweighting with ωGK

k .
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Figure 3: As Figure 1, but rescaling the values of χ2 by (Δχ2)−1 in the
case of Bayesian reweighting.

Bayesian method with rescaled GK weights, the Hes-
sian reweighting, and the re-fit (a detailed mathematical
proof for this correspondece is given in Ref.[21]). The
Bayesian reweighting with chi-squared weights, on the
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other hand, does not behave correctly and the rescaling
χ2

k → χ2
k/Δχ

2 makes the chi-squared weights to go hay-
wire.

5. Inclusive jet production at the LHC

Now we apply the reweighting methods to the pro-
duction of inclusive jets in proton+proton collisions at
the LHC. The quadratic PDF dependence of the pro-
ton+proton cross sections

σpp[S ] = f [S ] ⊗ σ̂ ⊗ f [S ], (33)

could potentially decrease the accuracy of the linear ap-
proximation

σpp[S ] ≈ σpp[S 0] +

∑
k

(
σpp[S +k ] − σpp[S −

k ]
)

wk

2
, (34)

which one effectively makes when using Eq. (12). How-
ever, if the result of reweighting does not end up being
very far from the original central fit, the nonlinear cor-
rections should remain subdominant [21].

We consider
√

s = 7 TeV jet measurements by the
CMS collaboration [23], and take the CTEQ6.6 PDFs
[24] as a baseline. For CTEQ6.6 we have Δχ2

CTEQ6.6 =

100 (t±k = 10) and Neig = 22. We have employed
the FASTNLO program [25, 26, 27] to compute the
cross sections. In line with the CTEQ6.6 analysis, the
factorization (μ f ) and renormalization (μr) scales were
fixed to the transverse momentum of the jets (μr =

μ f = pT /2), and the QCD coupling was set by taking
αs(MZ) = 0.118 at the Z boson mass pole. To evaluate
the χ2 values, we construct a covariance matrix C from
the uncorrelated errors σuncorr

i and the systematic shifts
βk

i (1-sigma variation of the kth systematic parameter)
by

Ci j = δi j
(
σuncorr

i
)2
+

∑
k

βk
i β

k
j, (35)

The uncorrelated errors σuncorr
i include a 1% uncor-

related systematic uncertainty and the statistical error
added in quadrature. Computing the χ2 using Eq. (26)
corresponds to [28, 29, 30] directly minimizing

χ2 =
∑

i

⎡⎢⎢⎢⎢⎢⎣ytheory
i − ydata

i −∑
k skβ

k
i

σuncorr
i

⎤⎥⎥⎥⎥⎥⎦
2

+
∑

k

s2
k , (36)

with respect to the sk parameters resulting in

smin
k =

∑
j

⎡⎢⎢⎢⎢⎢⎢⎣βk
j −

∑
i,�,s

βk
i C

−1
i� β

s
�β

s
j

⎤⎥⎥⎥⎥⎥⎥⎦ ytheory
j − ydata

j

(σuncorr
j )2 . (37)
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Figure 4: The CMS inclusive jet cross sections compared to the pre-
dictions after the Hessian reweighting and applying the systematic
shifts. All values have been normalized to the central prediction of
CTEQ6.6 and only the statistical data errors are shown.

From this we can compute the aggregate −∑
k smin

k β
k
i of

the systematic shifts for a given data point ydata
i .

The new cross sections after the Hessian reweight-
ing are shown in Fig. 4 and, for curiosity, in Fig. 5
for the Bayesian chi-squared reweighting. For the the
Bayesian techniques we generated 104 PDF replicas us-
ing Eq. (28) and the chi-squared weights are computed
as they are (without rescaling the χ2 values). Given
that jet production is mostly sensitive to the gluon dis-
tribution, in Fig. 6 we present the resulting modifica-
tions on the gluon PDFs. As expected from our ear-
lier example, the Hessian technique and the Bayesian
method with rescaled GK weights are in good agree-
ment. The reweighting penalty P ≈ 21 is clearly lower
than Δχ2

CTEQ6.6 and only a small amount of replicas are
“lost” (Neff is large). Thus, had these data been incorpo-
rated into the CTEQ6.6 fit, they would have not caused
a significant disagreement with the original data. In this
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Figure 5: As Fig. 4 but with the Bayesian reweighting with chi-
squared weights.

sense the data are compatible with the CTEQ6.6 PDFs
in spite of the rather large χ2/Ndata ≈ 1.75. What
comes to the chi-squared weights, they give rise to qual-
itatively similar but much larger effects. The value of
χ2 is almost ideal, χ2/Ndata ≈ 1, but the price to pay
is increasing the original χ2 of CTEQ6.6 clearly more
than the tolerance, P ≈ 480. As Neff is also very low,
one could think that these jet data completely diasgree
with CTEQ6.6. However, as our example of Section 4
demonstrated, the chi-squared weights do not properly
account for the data in the original fit and such a con-
clusion would be flawed.

6. Summary

In summary, we have discussed different methods of
PDF reweighting with an emphasis on a new techn-
nique, the Hessian reweighting. All the methods intend
to “simulate” the full global fit and estimate the effects

Figure 6: The gluon PDFs at Q2 = 10000 GeV2 after reweighting.
Red points: Bayesian reweighting with rescaled GK weights. Blue
dotted lines: Bayesian reweighting with chi-squared weights. Black
dashed lines: Hessian reweighting. The colored band is the original
CTEQ6.6 uncertainty. All results are normalized to the central set of
CTEQ6.6.

that new experimental data would have on a set of PDFs.
After outlining the underlying ideas, we compared the
different approaches through a simple example identify-
ing the correct ways to perform the reweighting in the
case of Hessian PDF fits. Finally, we considered the
inclusive jet production as an additional example. Our
findings indicate that the correct way to reweight Hes-
sian PDFs if different than what has been found to work
for the PDF fits of NNPDF collaboration.
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